FIELD OF TECHNOLOGYThe present disclosure relates to electronic devices, including but not limited to, portable electronic devices having touch-sensitive displays and their control.
BACKGROUNDElectronic devices, including portable electronic devices, have gained widespread use and may provide a variety of functions including, for example, telephonic, electronic messaging and other personal information manager (PIM) application functions. Portable electronic devices include, for example, several types of mobile stations such as simple cellular telephones, smart telephones, wireless personal digital assistants (PDAs), and laptop computers with wireless 802.11 or Bluetooth capabilities.
Portable electronic devices such as PDAs or smart telephones are generally intended for handheld use and ease of portability. Smaller devices are generally desirable for portability. A touch-sensitive display, also known as a touchscreen display, is particularly useful on handheld devices, which are small and have limited space for user input and output. The information displayed on the touch-sensitive displays may be modified depending on the functions and operations being performed. With continued demand for decreased size of portable electronic devices, touch-sensitive displays continue to decrease in size.
Improvements in devices with touch-sensitive displays are desirable.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a block diagram of a portable electronic device in accordance with the disclosure.
FIG. 2 is a sectional side view of a portable electronic device with piezoelectric actuators in accordance with the disclosure.
FIG. 3 is a sectional side view of a portable electronic device with a depressed touch-sensitive display in accordance with the disclosure.
FIG. 4 is a sectional side view of a piezoelectric actuator in accordance with the disclosure.
FIG. 5 is a sectional side view of a piezoelectric actuator with a force sensor in accordance with the disclosure.
FIG. 6 is a block diagram including force sensors and actuators of the portableelectronic device100 in accordance with the disclosure.
FIG. 7 is a flowchart illustrating a method of providing tactile feedback in accordance with the disclosure.
FIG. 8 is a front view of a portable electronic device with selection options displayed on the touch-sensitive display in accordance with the disclosure.
FIG. 9 shows graphs of characteristics of tactile feedback in accordance with the disclosure.
FIG. 10 is a front view of a portable electronic device with selection options displayed on the touch-sensitive display in accordance with the disclosure.
FIG. 11 is a front view of a portable electronic device with a selection option displayed on the touch-sensitive display and associated areas illustrated in accordance with the disclosure.
DETAILED DESCRIPTIONThe following describes an apparatus for and method of providing tactile feedback to vary the resistance to movement of a touch along a touch-sensitive display or other touch-sensitive device, e.g., varying the friction effect. The tactile feedback may be applied to guide a touch toward an identified selection option. One or more piezoelectric actuators may be utilized to provide tactile feedback to the touch-sensitive display, for example, in response to an actuation signal.
For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. Numerous details are set forth to provide an understanding of the embodiments described herein. The embodiments may be practiced without these details. In other instances, well-known methods, procedures, and components have not been described in detail to avoid obscuring the embodiments described. The description is not to be considered as limited to the scope of the embodiments described herein.
The disclosure generally relates to an electronic device, which is a portable electronic device in the embodiments described herein. Examples of portable electronic devices include mobile, or handheld, wireless communication devices such as pagers, cellular phones, cellular smart-phones, wireless organizers, personal digital assistants, wirelessly enabled notebook computers, and so forth. The portable electronic device may also be a portable electronic device without wireless communication capabilities, such as a handheld electronic game device, digital photograph album, digital camera, or other device.
A block diagram of an example of a portableelectronic device100 is shown inFIG. 1. The portableelectronic device100 includes multiple components, such as aprocessor102 that controls the overall operation of the portableelectronic device100. Communication functions, including data and voice communications, are performed through acommunication subsystem104. Data received by the portableelectronic device100 is decompressed and decrypted by adecoder106. Thecommunication subsystem104 receives messages from and sends messages to awireless network150. Thewireless network150 may be any type of wireless network, including, but not limited to, data wireless networks, voice wireless networks, and networks that support both voice and data communications. Apower source142, such as one or more rechargeable batteries or a port to an external power supply, powers the portableelectronic device100.
Theprocessor102 interacts with other components, such as Random Access Memory (RAM)108,memory110, adisplay112 with a touch-sensitive overlay114 operably connected to anelectronic controller116 that together comprise a touch-sensitive display118, one ormore actuators120, one ormore force sensors122, an auxiliary input/output (I/O)subsystem124, adata port126, aspeaker128, amicrophone130, short-range communications132, andother device subsystems134. User-interaction with a graphical user interface is performed through the touch-sensitive overlay114. Theprocessor102 interacts with the touch-sensitive overlay114 via theelectronic controller116. Information, such as text, characters, symbols, images, icons, and other items that may be displayed or rendered on a portable electronic device, is displayed on the touch-sensitive display118 via theprocessor102. Theprocessor102 may interact with anaccelerometer136 that may be utilized to detect direction of gravitational forces or gravity-induced reaction forces.
To identify a subscriber for network access, the portableelectronic device100 uses a Subscriber Identity Module or a Removable User Identity Module (SIM/RUIM) card138 for communication with a network, such as thewireless network150. Alternatively, user identification information may be programmed intomemory110.
The portableelectronic device100 includes anoperating system146 and software programs orcomponents148 that are executed by theprocessor102 and are typically stored in a persistent, updatable store such as thememory110. Additional applications or programs may be loaded onto the portableelectronic device100 through thewireless network150, the auxiliary I/O subsystem124, thedata port126, the short-range communications subsystem132, or any othersuitable subsystem134.
A received signal, such as a text message, an e-mail message, or web page download, is processed by thecommunication subsystem104 and input to theprocessor102. Theprocessor102 processes the received signal for output to thedisplay112 and/or to the auxiliary I/O subsystem124. A subscriber may generate data items, for example e-mail messages, which may be transmitted over thewireless network150 through thecommunication subsystem104. For voice communications, the overall operation of the portableelectronic device100 is similar. Thespeaker128 outputs audible information converted from electrical signals, and themicrophone130 converts audible information into electrical signals for processing.
The touch-sensitive display118 may be any suitable touch-sensitive display, such as a capacitive, resistive, infrared, surface acoustic wave (SAW) touch-sensitive display, strain gauge, optical imaging, dispersive signal technology, acoustic pulse recognition, and so forth, as known in the art. A capacitive touch-sensitive display includes a capacitive touch-sensitive overlay114. Theoverlay114 may be an assembly of multiple layers in a stack including, for example, a substrate, a ground shield layer, a barrier layer, one or more capacitive touch sensor layers separated by a substrate or other barrier, and a cover. The capacitive touch sensor layers may be any suitable material, such as patterned indium tin oxide (ITO).
One or more touches, also known as touch contacts or touch events, may be detected by the touch-sensitive display118. Theprocessor102 may determine attributes of the touch, including a location of a touch. Touch location data may include an area of contact or a single point of contact, such as a point at or near a center of the area of contact. A signal is provided to thecontroller116 in response to detection of a touch. A touch may be detected from any suitable object, such as a finger, thumb, appendage, or other items, for example, a stylus, pen, or other pointer, depending on the nature of the touch-sensitive display118. Thecontroller116 and/or theprocessor102 may detect a touch by any suitable contact member on the touch-sensitive display118. Multiple simultaneous touches may be detected.
The actuator(s)120 may be depressed by applying sufficient force to the touch-sensitive display118 to overcome the actuation force of theactuator120. Theactuator120 may be actuated by pressing anywhere on the touch-sensitive display118. Theactuator120 may provide input to theprocessor102 when actuated. Actuation of theactuator120 may result in provision of tactile feedback. Other different types ofactuators120 may be utilized than those described herein. When force is applied, the touch-sensitive display118 is depressible, pivotable, and/or movable. Tactile, or haptic, feedback may be provided by apparatus such as one ormore actuators120, such as piezoelectric devices, vibrator motors also known as vibramotors, ultrasonic devices, or other suitable apparatus.
A cross section of a portableelectronic device100 taken through the centers of piezoelectric (“piezo”)actuators120 is shown inFIG. 2. The portableelectronic device100 includes ahousing202 that encloses components such as shown inFIG. 1. Thehousing202 may include a back204,sidewalls208, and aframe206 that houses the touch-sensitive display118. Abase210 extends between thesidewalls208, generally parallel to the back204, and supports theactuators120. Thedisplay112 and theoverlay114 are supported on asupport tray212 of suitable material, such as magnesium.Optional spacers216 may be located between thesupport tray212 and theframe206, may advantageously be flexible, and may also be compliant or compressible, and may comprise gel pads, spring elements such as leaf springs, foam, and so forth.
The touch-sensitive display118 is moveable and depressible with respect to thehousing202. Aforce302 applied to the touch-sensitive display118 moves, or depresses, the touch-sensitive display118 toward thebase210. When sufficient force is applied, theactuator120 is depressed or actuated as shown inFIG. 3. The touch-sensitive display118 may also pivot within the housing to depress theactuator120. Theactuators120 may be actuated by pressing anywhere on the touch-sensitive display118. Theprocessor102 receives a signal when theactuator120 is depressed or actuated.
A cross section taken through the center of apiezo actuator120 is shown inFIG. 4. Theactuator120 may comprise one or more piezo devices orelements402. Thepiezo actuator120 is shown disposed between the base210 and the touch-sensitive display118. Thepiezo actuator120 includes apiezoelectric element402, such as a piezoelectric ceramic disk, fastened to asubstrate404, for example, by adhesive, lamination, laser welding, and/or by other suitable fastening method or device. The piezoelectric material may be lead zirconate titanate or any other suitable material. Although thepiezo element402 is a ceramic disk in this example, the piezoelectric material may have any suitable shape and geometrical features, for example a non-constant thickness, chosen to meet desired specifications.
Thesubstrate404, which may also be referred to as a shim, may be comprised of a metal, such as nickel, or any other suitable material such as, for example, stainless steel, brass, and so forth. Thesubstrate404 bends when thepiezo element402 contracts diametrically, as a result of build up of charge at thepiezo element402 or in response to a force, such as an external force applied to the touch-sensitive display118.
Thesubstrate404 andpiezo element402 may be suspended or disposed on asupport406 such as a ring-shaped frame for supporting thepiezo element402 while permitting flexing of thepiezo actuator120 as shown inFIG. 4. Thesupports406 may be disposed on the base210 or may be part of or integrated with thebase210, which may be a printed circuit board. Optionally, thesubstrate404 may rest on thebase210, and each actuator120 may be disposed, suspended, or preloaded in an opening in thebase210. Theactuator120 is not fastened to thesupport406 or the base210 in these embodiments. Theactuator120 may optionally be fastened to thesupport406 through any suitable method, such as adhesive or other bonding methods.
Apad408 may be disposed between thepiezo actuator120 and the touch-sensitive display118. Thepad408 in the present example is a compressible element that may provide at least minimal shock-absorbing or buffering protection and may comprise suitable material, such as a hard rubber, silicone, and/or polyester, and/or other materials. Thepad408 is advantageously flexible and resilient and may provide a bumper or cushion for thepiezo actuator120 as well as facilitate actuation of thepiezo actuator120 and/or one ormore force sensors122 that may be disposed between thepiezo actuators120 and the touch-sensitive display118. When the touch-sensitive display118 is depressed, theforce sensor122 generates a force signal that is received and interpreted by themicroprocessor102. Thepad408 may be advantageously aligned with anoptional force sensor122 to facilitate the transfer or focus of forces exerted on the touch-sensitive display118 onto theforce sensors122. Thepads408 transfer forces between the touch-sensitive display118 and theactuators120 whether theforce sensors122 are above or below thepads408. Thepads408 facilitate provision of tactile feedback from theactuators120 to the touch-sensitive display118 without substantially dampening the force applied to or on the touch-sensitive display118.
Theoptional force sensor122 may be disposed between thepiezo actuator120 and the touch-sensitive display118 as shown inFIG. 5. Theforce sensor122 may be disposed between the touch-sensitive display118 and thepad408 or between the pad and thepiezo actuator120, to name a few examples. Theforce sensors122 may be force-sensitive resistors, strain gauges, piezoelectric or piezoresistive devices, pressure sensors, quantum tunneling composites, force-sensitive switches, or other suitable devices. Force as utilized throughout the specification, including the claims, refers to force measurements, estimates, and/or calculations, such as pressure, deformation, stress, strain, force density, force-area relationships, thrust, torque, and other effects that include force or related quantities. A piezoelectric device, which may be thepiezo element402, may be utilized as a force sensor.
Force information related to a detected touch may be utilized to select information, such as information associated with a location of a touch. For example, a touch that does not meet a force threshold may highlight a selection option, whereas a touch that meets a force threshold may select or input that selection option. A value meets a threshold when the value is at or beyond the threshold. The input of the selection option is typically processed by theprocessor102. The force threshold may be determined by a force sensor, by a force that actuates an actuator, or other force determination device. Selection options include, for example, displayed or virtual keys of a keyboard; selection boxes or windows, e.g., “cancel,” “delete,” or “unlock”; function buttons, such as play or stop on a music player; icons, representing applications or other features, and so forth. Different magnitudes of force may be associated with different functions or input. For example, a lesser force may result in panning, and a higher force may result in zooming.
A block diagram including force sensors and actuators of the portableelectronic device100 is shown inFIG. 6. In this example, eachforce sensor122 is electrically connected to acontroller602, which includes an amplifier and analog-to-digital converter (ADC)604. Eachforce sensor122 may be, for example, a force-sensing resistor wherein the resistance changes as force applied to theforce sensor122 changes. As applied force on the touch-sensitive display118 increases, the resistance decreases. This change is determined via thecontroller116 for each of theforce sensors122, and a value representative of the force at each of theforce sensors122 may be determined.
Thepiezo actuators120 are electrically connected to apiezo driver604 that communicates with thecontroller602. Thecontroller602 is also in communication with themain processor102 of the portableelectronic device100 and may exchange signals with themain processor102. Thepiezo actuators120 and theforce sensors122 are operatively connected to themain processor102 via thecontroller602. Thecontroller602 controls thepiezo driver606 that controls the current/voltage to thepiezoelectric devices402 of theactuator120, and thus thecontroller602 controls the force applied by thepiezo actuators120 on the touch-sensitive display118. Thepiezoelectric devices402 may be controlled individually via a separate control line between each actuator120 and thecontroller602. Different signals may be sent to eachdifferent actuator120. Alternatively, thepiezoelectric devices402 may be controlled substantially equally and concurrently, for example, by the same signal that may be provided through a common control line that extends to each actuator120 or by individual control lines such as shown inFIG. 6.
The tactile feeling of switches, actuators, keys, other physical objects, textures, and so forth may be simulated, or a non-simulated tactile feedback may be provided by controlling thepiezoelectric devices402. For example, when a force applied on the touch-sensitive display118 exceeds a depression threshold, the voltage/charge at thepiezo actuators120 is modified such that thepiezo actuator120 imparts a force on the touch-sensitive display118, which force may, for example, simulate depression of a dome switch. When the force applied to the touch-sensitive display118 falls below a release threshold, the voltage/charge at thepiezo actuators120 is modified such that thepiezo actuator120 imparts a force or discontinues imparting a force on the touch-sensitive display118, which may, for example, simulate release of a dome switch.
Theactuators120 may vibrate the touch-sensitive display118 in opposing directions, e.g., in the z direction or up and down from the perspective of any ofFIG. 2 throughFIG. 5. Alternatively, the actuators may vibrate the touch-sensitive display118 by vibrating the touch-sensitive display118 in directions other than perpendicular to the touch-sensitive display118. The vibration may be varied by varying one or more parameters of the vibration, such as amplitude or magnitude, frequency, and duration. The touch-sensitive display118 vibrates while thehousing202 remains relatively stationary, i.e., thehousing202 is not directly vibrated. Although the tactile feedback is provided to the touch-sensitive display118, less intense feedback may be felt along thehousing202. The touch-sensitive display118 may be vibrated at one or more frequencies. The touch-sensitive display118 may be vibrated at multiple frequencies, for example, vibrating at one frequency for one time period followed by vibrating at another frequency for another period. Theactuators120 may be controlled to vibrate over various or varied distances. Theactuators120 may be controlled to vibrate the touch-sensitive display118 across a varying frequency sweep, for example, from one frequency to another frequency and back to the original frequency. Vibrations may be provided at various frequencies and across various frequency ranges. Other tactile feedback, such as pulses, clicks, or pops, may be provided by thepiezo actuators120.
Theprocessor102 generates and provides an actuation signal to theactuators120 to provide tactile feedback to the touch-sensitive display118. The actuation signal may be generated and tactile feedback may be provided in response to detected input from the touch-sensitive display118, in response to receiving a wireless communication, or to facilitate finding, touching, and selecting selection options. The actuation signal includes tactile feedback information, such as frequency, duration, and amplitude, magnitude, or intensity of feedback information for theactuators120. The actuation signal may be based at least in part on the force or the force signal provided by theforce sensors122. The intensity of the feedback may be varied in relation to the amount of the applied force. The actuation signal provides information and/or instructions for how theactuators120 provide tactile feedback, e.g., how theactuators120 move the touch-sensitive display118. Thepiezo actuators120 move the touch-sensitive display relative to thehousing202 to provide the tactile feedback. For example, thepiezo actuators120 may move the touch-sensitive display118 in opposing directions, e.g., in each z direction or up and down from the perspective ofFIG. 3, resulting in vibration of the touch-sensitive display118. The touch-sensitive display118 may move in an inward direction with respect to thehousing202, i.e., in a direction toward the base201 or back204 of thehousing202. The touch-sensitive display118 may also move in an outward direction with respect to thehousing202, i.e., in a direction away from the base201 or back204 of thehousing202. In another example, the provision of tactile feedback may result in a single movement of the touch-sensitive display118, such as a single pulse or click. The tactile feedback may comprise different characteristics, for example, vibrations and pulses or clicks, individually or in combination, and may simulate various different perceptible tactile sensations among the characteristics.
Theactuators120 may be controlled to provide tactile feedback having different characteristics. The amplitude and/or frequency of the vibration may be selected to cause a particular sensation when a user touches the touch-sensitive display118. For example, varying the amplitude and/or frequency of vibration may vary the resistance to movement of a touch along the touch-sensitive display. Thus, tactile feedback may have the characteristic of a low friction effect or a high friction effect. Such resistance is generally related to a coefficient of friction of a touch along the touch-sensitive display118. For example, increasing the frequency of vibration reduces the resistance to movement of a touch along the touch-sensitive display118, thus a touch more easily slides along the touch-sensitive display118. Decreasing the frequency of vibration increases the resistance to movement of a touch along the touch-sensitive display118, thus a touch slides with more difficulty along the touch-sensitive display118. When the touch-sensitive display118 is not vibrated, the resistance to movement along the touch-sensitive display118 is highest. Varying the amplitude and/or duration of the vibration causes similar effects to resistance to movement along the touch-sensitive display118. For example, reducing the amplitude and increasing the duration, i.e., time vibrated compared to time not vibrated, of the vibration reduces resistance to movement along the touch-sensitive display118.
The frequency of vibration may be varied, for example, to vary the resistance to movement of a touch along the touch-sensitive display118. For example, the vibration may be varied across a range of frequencies, e.g., 30 kHz to 80 kHz. Alternatively, the ends of the range of frequencies may vary. For example, the range of frequencies may be between 30 kHz to 35 kHz and 75 kHz to 80 kHz. Any frequency ranges may be utilized depending on the capabilities of theactuators120 and the properties of the touch-sensitive display118. The highest frequency of vibration typically results in the least resistance to movement along the touch-sensitive display118. Similarly, the amplitude of vibration may be varied, for example, to vary the resistance to movement of a touch along the touch-sensitive display118. Smaller amplitudes of vibration, e.g., 3 to 5 μm, result in less resistance to movement along the touch-sensitive display118 than larger amplitudes of vibration, e.g., 100 to 150 μm.
To reduce or inhibit audible buzzing or humming due to vibration of the touch-sensitive display118, the frequency of the vibration may be set to a frequency above the audible range of a user, e.g., above 20 kHz. Setting the vibration to a frequency at or near the resonant frequency of the touch-sensitive display118, for example 30 kHz, results in more efficient vibration, resulting in more efficient battery usage for the portableelectronic device100. Different touch-sensitive displays118 and different portable electronic devices may have different resonant frequencies. Resonant frequency determination may take into account engagement of a contact member, e.g., a finger or stylus. Other frequencies may be utilized.
A flowchart illustrating a method of providing tactile feedback for a touch-sensitive display of a portable electronic device is shown inFIG. 7. The method may be carried out by software executed, for example, by theprocessor102. Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description. The method may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by at least one processor of the portable electronic device to perform the method may be stored in a computer-readable medium.
One or more selection options are displayed702. When a touch is detected704, tactile feedback is provided706. A touch may comprise a single continuous touch or a plurality of individual touches. Tactile feedback may generally be provided by an actuation signal provided to theactuators120. Theprocessor102 may generate the actuation signal based on stored information, calculations, formulas, processes performed on a map, such as a map of resistance to movement along the touch-sensitive display, and so forth. Optionally, one of the selection options may be identified708. For example, a predictive text algorithm, as known in the art, may be utilized to identify a selection item, such as one of a plurality of characters displayed, for example, on a virtual keyboard. Alternatively, when a few selection options are displayed, a selection option may be identified by identifying the selection option most likely to be chosen, for example, by identifying the selection option most often selected, least likely to lose data, least likely to cause undesired input or performance of functions, and so forth. The actuation signal may be generated to facilitate finding, identifying, qualifying, and/or selection of selection options. The actuation signal may be generated, for example, to direct a user to the identified selection option, for example, by varying the tactile feedback such that the resistance to movement of a touch along the touch-sensitive display increases or decreases depending on the touch location and whether the touch is moving toward the identified selection option.
A direction of the touch is determined710. A current touch location and one or more recent touch locations may be utilized to determine the direction. When the direction is toward the identified selection at712, tactile feedback is reduced714. Tactile feedback may be reduced, for example, by reducing the resistance to movement of a touch along the touch-sensitive display. Alternatively, tactile feedback may be reduced by reducing resistance to movement of a trackball, reducing resistance to movement along a trackpad or optical joystick, or reducing vibration felt through the housing of the portableelectronic device100. For example, the frequency of vibration may be increased or the amplitude of vibration decreased to reduce the resistance to movement of a touch along the touch-sensitive display. When the direction is not toward the identified selection at712, tactile feedback is increased716. A direction toward the identified selection may be a direction from a current point that intersects via a straight line any point in the area of a selection option or its active area. An active area is the area associated with a selection option, such that a touch detected at a location within the associated active area results in highlighting or selecting that selection option. Although an active area is typically the same as the displayed area of a selection box for a selection option, the active area may be larger or smaller than the displayed area of the selection box. A slightly larger area than the active area may also be included. Any other direction is a direction is not toward the identified selection. Tactile feedback may be increased, for example, by increasing the resistance to movement of a touch along the touch-sensitive display. Alternatively, tactile feedback may be increased by increasing resistance to movement of a trackball, increasing resistance to movement along a trackpad or optical joystick, or increasing vibration felt through the housing of the portableelectronic device100. For example, the frequency of vibration may be decreased or the amplitude of vibration increased to reduce the resistance to movement of a touch along the touch-sensitive display. When a selection option is chosen, the process continues at702, otherwise the process continues at710.
A front view of a portable electronic device shown with selection options displayed on the touch-sensitive display is shown inFIG. 8. Threeselection options802,804,806 are displayed, and the lowest displayedoption804 is the selection option identified, for example, and the most likely option to be selected. Thepath808 of a touch starts at P1 and continues to P6, where theselection option804 is selected.
Graphs of characteristics of tactile feedback are shown inFIG. 9. The upper graph illustrates an example of coefficient of friction or resistance to movement by a touch along the touch-sensitive display118 effectively provided by tactile feedback. The lower graph illustrates an example of a vibration characteristic, such as amplitude, frequency, or duration, that comprises the tactile feedback. The example graphs are correlated to the points P1 through P6 along thetouch path808 ofFIG. 8.
The touch event begins at P1, where the coefficient of friction or resistance to movement by a touch along the touch-sensitive display118 is maximized. Frequency of vibration is the characteristic of tactile feedback that is varied in this example in the lower graph between a minimum and a maximum frequency for a chosen range, such as 30 kHz and 80 kHz. At P1, the frequency is 30 kHz in the example. As the touch proceeds toward P2 in the direction of the identifiedselection option804, the friction coefficient reduces linearly until its minimum value at P2, which is at the edge of the active area for theselection option804, which in this example is the same as the display area of the selection box for theselection option804. The frequency of the vibration of the tactile feedback increases linearly from P1 to P2, where the frequency is at its maximum value in this example, and the resistance to movement along the touch-sensitive display118 reduces linearly as the touch approaches the identifiedselection option804. As the touch moves from P2 to P3, which movement is within the active area of theselection option804, the friction coefficient remains at its minimum value, while the frequency of the vibration of the tactile feedback remains at the maximum frequency value, 80 kHz in this example. As the touch continues from P3 to P4 along a curved path away from the identifiedselection option804, which is in a direction not toward the identifiedselection option804, the friction coefficient increases, and the frequency value of the tactile feedback decreases, both in a curved manner, thereby increasing the resistance to movement along the touch-sensitive display118. As the touch continues from P4 to P5 along a curved path toward the identifiedselection option804, the friction coefficient decreases, and the frequency value of the tactile feedback increases, both in a curved manner, thereby decreasing the resistance to movement along the touch-sensitive display118. As the touch moves from P5 to P6, which movement is within the active area of theselection option804, the friction coefficient remains at its minimum value, while the frequency of the vibration of the tactile feedback remains at the maximum frequency value for the range, 80 kHz in this example. At P6, the identified selection option is selected, and the tactile feedback returns to the starting points, e.g., maximum friction coefficient and minimum frequency. The minimum frequency for a chosen range may be 0 Hz, or no tactile feedback, to reduce energy draw on the battery. Although the above example utilizes the minimum and maximum for an operating range of different characteristics, different values for those ranges may be utilized. Operation of thedevice100 need not strictly be maintained between a minimum and maximum for a range, e.g., operation may not reach the minimum or maximum of the range.
Each application, including the homescreen, may have one or more maps of touch locations and tactile feedback characteristics. For example, each different set of selection options for any application may have a map of tactile feedback characteristics for each location on the touch-sensitive display118, for example, resistance to movement along the touch-sensitive display118. For example, the selection options “Unlock,” “Cancel,” and “Emergency” are displayed on the password entry screen shown inFIG. 10. The options are displayed inselection boxes1002 with the word associated with the option displayed inside each box. Theareas1004 not associated with the selection boxes may be assigned very high resistance values because no function is associated with these areas. The “Unlock” and “Cancel” selection boxes may be assigned very low resistance values, because these options are the most likely to be selected. Optionally, theareas1006 adjacent to these selection boxes may have a slightly higher resistance value than the selection box but lower than the surroundingareas1004 to facilitate selection. The “Emergency” selection box may have a middle resistance value, because inadvertent selection of such an option is undesirable. Optionally, theinnermost area1008 of the “Emergency” selection box may have a lower resistance value than thearea1010 inside theselection box1002 nearest the border. Alternatively, a variable resistance may be applied to one or more selection options. For example, resistance to movement of touch may vary based on the distance of the touch from the selection item. For example, resistance may be higher further from the selection option and lower closer to the selection option. For example, the frequency of vibration may vary linearly or exponentially with respect to the inverse of the distance to the selection option. Beyond a predetermined distance, such as 1 cm, the width of an average finger, and so forth, the tactile feedback may be maximized or eliminated. In addition, tactile feedback within a selection box for a selection option may vary within the selection box, e.g., linearly, with the least resistance to movement near the center of the box and the most resistance to movement near the border of the box.
The tactile feedback, e.g., characteristic of vibration, may be varied based on a number of criteria, for example, touch location, displayed information, proximity to a selection option, application settings, user profiles, manual adjustments, predictive text algorithms, function performed, user history, touch force, user touch techniques, and so forth.
For example, tactile feedback may have one characteristic, e.g., low resistance to movement of a touch along the touch-sensitive display, when the touch location is associated with an identified selection option. Tactile feedback may have another characteristic, e.g., high resistance to movement of a touch along the touch-sensitive display, when the touch location is not associated with the identified selection option, for example. Areas associated with a selection option may comprise the active area orselection box1102 for a selection option and, optionally, anyadjacent areas1104, such as shown inFIG. 11. Touches associated with selection options include touches at locations that are associated with the areas associated with the selection options. Thearea1106 comprising a path between atouch location1108 and the identifiedselection option1102 may also be considered to be associated with the identified selection option. Thearea1106 comprising a path between atouch location1108 and the identifiedselection option1102 varies as the touch moves. Areas or touch locations that are not associated with the identified selection option, e.g., the areas outside thepath area1106 and theadjacent area1104, are considered not to be associated with the identified selection option.
Alternatively, varying resistance to movement may also be advantageous to highlight aspects of information displayed on a touch-sensitive display, for example, to emphasize selection options, de-emphasize selection options, and/or to highlight displayed information. For example, a calendar application may display a calendar with discrete areas associated with dates and times. Tactile feedback may be provided with lower resistance to movement along the touch-sensitive display118 for touches at areas associated with available times for a meeting and with higher resistance to movement along the touch-sensitive display118 for touches at areas associated with unavailable times for a meeting. Alternatively, tactile feedback may be provided with higher resistance to movement along the touch-sensitive display118 for areas associated with available times for a meeting and with lower resistance to movement along the touch-sensitive display118 for areas associated with unavailable times for a meeting. As the touch location crosses a boundary of the calendar, such as a date or time period, tactile feedback, such as a pulse, may be provided to more positively indicate location of the touch within a discrete area of the calendar. Other applications divided into multiple discrete areas, such as spreadsheets or games, may also provide variable tactile feedback based on touch location to change the resistance to movement of a touch along the touch-sensitive display118. Optionally, different tactile feedback may be provided as a finger crosses a boundary of the selection box of a selection option, such as a pulse or a quick vibration at a different frequency than the vibration prior to crossing the boundary. Alternatively, theactuators120 may raise the touch-sensitive display while the touch location is associated with the identified selection option. For example, the touch-sensitive display118 may be raised approximately 100 μm.
Specific applications may take advantage of the ability to provide varying tactile feedback. For example, a physical therapy program may utilize varying tactile feedback to rehabilitate a finger, hand, wrist, and so forth, e.g., to build fine motor skills after an injury. Varying tactile feedback may be applied to assist a visually-impaired person to make selections on a touch-sensitive display118, for example, in addition to any screen reading program that may run on the portableelectronic device100.
The characteristics of the tactile feedback may be stored in application settings or user profiles. Manual adjustment capability may be provided, and the manual adjustments stored for an application and/or in user profiles. For example, the portable electronic device may store amplitude, frequency range, and/or duration of frequency of vibration selected or entered by a user.
Predictive text algorithms may be utilized to identify one or more selection options for which tactile feedback may be varied. For example, when “gree” has been entered, “d,” “n,” and “t” are the most likely characters to be entered, i.e., the identified selection options described above. Tactile feedback along the paths between the displayed “e” key, or other touch location, and the displayed keys for “d,” “n,” and “t” may be provided to reduce resistance to movement of a touch along these paths to facilitate entry of these characters. Although tactile feedback may facilitate movement of a touch along the touch-sensitive display toward the identified selection option(s), such tactile feedback does not prohibit entry of other characters.
Predictive text algorithms may be utilized in conjunction with other criteria, such as a user touch technique, e.g., thumb-typing. When a predictive text algorithm identifies a vowel as the most likely character to be entered, the paths to the vowels may extend from one side of the touch-sensitive display118 or the other depending on the vowel. For example, “a” and “e” may be presumed to be typed by a left thumb, and areas of reduced resistance for these selection options may extend to the left of the selection boxes. The letters “u” and “i” and “o” may be presumed to be typed by a right thumb, and areas of reduced resistance for these selection options may extend to the right of the selection boxes. The areas of reduced resistance may also extend below or above the displayed character or function to accommodate easier thumb-typing.
User history may be utilized to provide or vary tactile feedback. For example, when a user routinely deletes an “L” after entering a “K,” which may indicate inadvertent sliding toward the “L,” tactile feedback may be applied to increase resistance to movement along the touch-sensitive display118 between “K” and “L” after the “K” is entered.
The tactile feedback may be adjusted to accommodate for touch rate and force of touch. For example, the frequency of vibration may be increased to reduce the resistance to movement along the touch-sensitive display118 to facilitate ease of operation when higher touch rates and/or more forceful or heavy touches are utilized.
A user may type on a virtual keyboard with a contact member, such as a stylus or one or more fingers, that drags or slides along the touch-sensitive display118. In this situation, tactile feedback may be provided such that the resistance to movement along the touch-sensitive display118 is reduced, e.g., by increasing the frequency of vibration, thereby facilitating easier sliding of the contact member along the touch-sensitive display118. The tactile feedback, such as a vibration, may be provided at a higher frequency when one or more touch locations are associated with the area of the virtual keys, whereas tactile feedback may be provided at a lower frequency, or not at all, when one or more touch locations are associated with an area other than the virtual keys. Drawing applications, games, and other applications may also have one or more areas on the touch-sensitive display118 for which reduced resistance to movement is beneficial.
Optionally, other processes may be utilized in addition to varying tactile feedback to facilitate easier selection of selection options, such as increasing the active area of the identified selection option(s) and/or reducing the force threshold for the selection option(s).
Although the above description utilizes the example of a touch-sensitive display, the method and embodiments may be applied to other touch-sensitive devices that do not include a display, such as a trackball, trackpad, touchpad, optical trackpad or touchpad, and so forth. The method applies to a cursor rather than a touch for such devices. Tactile feedback may be applied to the touch-sensitive device as well as to the display and/or housing of the portable electronic device. The method may be applied to moveable or non-moveable (e.g., fixed with respect to a housing) touch-sensitive displays, touch-sensitive devices with or without tactile feedback, and touch-sensitive devices with or without force sensors.
A method of providing tactile feedback includes providing tactile feedback when a touch or cursor is associated and is not associated with a selection option. Thus, a touch or cursor may be directed to a selection option by varying tactile feedback in accordance with a path between a touch location and a selection option. The tactile feedback facilitates finding, locating, and selecting selection options, facilitating use by visually impaired persons and/or facilitating use without looking at the touch-sensitive display. Tactile feedback facilitating finding, locating, and selecting selection options decreases device use time, reduce selection errors and may reduce power consumption.
A method comprises displaying on a display at least one selection option comprising a first selection option and detecting a touch or cursor on the display. Tactile feedback having a first characteristic is provided when the touch or cursor is at a first location associated with the first selection option. Tactile feedback having a second characteristic is provided when the touch or cursor is detected at a second location not associated with the first selection option.
A method comprises displaying, on a touch-sensitive display, at least one selection option comprising a first selection option, detecting a touch moving along the touch-sensitive display, and determining a direction of the touch. Tactile feedback having a first characteristic is provided when the direction is toward the first selection option. Tactile feedback having a second characteristic is provided when the direction is other than toward the first selection option.
A portable electronic device comprises a touch-sensitive device and a tactile feedback apparatus operably coupled to the touch-sensitive device. A processor operably coupled to the touch-sensitive device and the tactile feedback apparatus is configured to display a selection option on a display, engage the tactile feedback apparatus to provide tactile feedback having a first characteristic when a touch or cursor is at a first location associated with the selection option, engage the tactile feedback apparatus to provide tactile feedback having a first characteristic when a touch or cursor is at a first location associated with the selection option, and engage the tactile feedback apparatus to provide tactile feedback having a second characteristic when the touch or cursor is detected at a second location not associated with the selection option. The tactile feedback apparatus may comprise at least one piezoelectric device or other device capable of providing variable feedback to a touch-sensitive display.
The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.