CROSS-REFERENCE TO RELATED APPLICATIONSThis application claims the benefit of U.S. Provisional Patent Application No. 61/837,716, filed Jun. 21, 2013, titled “Films and Methods of Manufacture,” which is hereby incorporated by reference in its entirety.
INCORPORATIONS BY REFERENCEU.S. patent application Ser. No. 12/089,574, filed on Apr. 8, 2008, is a national stage application of PCT/US2006/040038, filed Oct. 12, 2006, and both applications are hereby incorporated by reference in their entirety. U.S. patent application Ser. No. 13/727,682, filed on Dec. 27, 2012, claims the benefit of U.S. Provisional Patent Application No. 61/580,679 filed Dec. 28, 2011 entitled “Films and Methods of Manufacture,” and both applications are hereby incorporated by reference in their entirety.
FIELD OF THE DISCLOSUREThe present disclosure generally relates to films (e.g., polymer films) and methods of manufacture, and in at least some embodiments, perforated films and methods of medical use.
BACKGROUNDHigh-energy lower extremity fractures have been associated with surgical site infection (SSI) and osteomyelitis rates ranging from approximately 14% to 60% in both military and civilian settings. The current standard for treatment of such fractures typically includes using metal implants (plates and screws or nails) for fracture fixation, which have the potential disadvantage of placing metal within a fracture site. These metal implants can serve as sites for bacterial adhesion and formation of a bacterial biofilm, where bacteria can remain sequestered from the body's immune system, resulting in surgical site infections.
Although the use of intravenous (IV) antibiotics as a prophylaxis against wound infection has become standard, infection rates in certain types of orthopedic trauma remain high. Systemic antibiotics may not reach the implant surface in sufficient concentration due to locally impaired circulation at the wound site, and bacterial biofilm formation can be very rapid. Biofilm based infections are not only resistant to systemic antibiotic therapy and the host immune system, they typically require additional surgery to remove the infected implant.
Locally delivered antibiotics hold promise for reducing SSIs, particularly those associated with high-energy fractures, as they can be used to deliver high concentrations of antibiotics where needed and prevent the development of biofilms on the implant surface. Multiple studies in animals have demonstrated that if an implant surface can be protected from colonization by bacteria for a period of time immediately after surgery, the rate of subsequent infection can be significantly reduced.
Surgeons have used a variety of products for local delivery of antibiotics, typically aminoglycosides and/or vancomycin, including polymethyl methacrylate (PMMA) cements, beads, gels, and collagen sponges. However, in certain situations, these antibiotic treatments are not practical, for example where they take up space at the site making wound closure difficult, and in other situations may also require a separate surgery for their removal.
Infections represent a major challenge in orthopedic or trauma surgery. Despite prophylactic measures like asepsis and antisepsis, the surgery site is still a site of access for local pathogens to become virulent and cause infections.
Coating an implantable device with a drug, such as an antibiotic, has been effective to reduce infection. However, given the large number, sizes, and shapes of implants and other medical devices, the regulatory, financial, and logistical burden of providing a coating for each device is enormous. The problem is amplified if one considers additional drugs to use in coatings such as analgesics, antineoplastic agents and growth promoting substances.
SUMMARYEmbodiments of the present disclosure are directed to polymer films, and in some embodiments, perforated polymer films and novel casting methods of making the same. In some embodiments, the films are for use with implantable medical devices though the films may be used in any application.
Commercial methods of forming a perforated film currently existing generally involve forming a solid film as a first step, then punching or cutting holes into the film as a second step. An advantage of at least some of the embodiments described herein is that the holes or apertures of the film are formed at the same time that the film is formed. This may be useful when the polymer film to be formed is very thin and at risk for damage due to subsequent handling or processing or when the thickness and/or strength of the film makes it difficult to punch or cut by traditional methods without damaging the film. Such a process may also be advantageous when the polymer solution contains an active agent that may be damaged by subsequent hole-punching steps. The active agent may be a drug, such as an anti-microbial agent, including one or more of an anti-bacterial agent, an anti-viral agent, and anti-parasitic agent of the type known to one having ordinary skill in the art, or any suitable alternative active agent, such as an anti-inflammatory, a steroid, an analgesic, an opioid, a growth factor, or the like,
Embodiments of the present disclosure may also be useful for making quantities of cast film such as those which are considered too small to make economically by traditional methods which are typically continuous processes designed for high volume production. An additional advantage of at least some embodiments of the present disclosure is that apertures (or perforations) formed in the cast sheet can have complex shapes. A further advantage of certain embodiments of the disclosure is that at least one side of the film may be formed to have a non-planar surface which in some embodiments increases (or reduces) friction and gives an improved tactile feel. These advantages of the present disclosure, as well as others, are described in further detail below.
In one embodiment there is a flexible body comprising a film (e.g., a polymer film) having a first surface and an opposing second surface, the film having a plurality of apertures extending from the first surface to the second surface and a plurality of raised lips protruding from the first surface such that each of the plurality of apertures is surrounded by a one of the plurality of raised lips. In a preferred embodiment, the film is comprised of a polymeric material (i.e., a polymer film). In one embodiment, the film comprises a single layer, and in another embodiment, the film can comprise a plurality of layers, for example, two or more layers, such as two layers, three layers, four layers, up to and including seven layers. In certain embodiments, the film can comprise an adhesive layer, for example, the first surface or the second surface of the film, or both, can comprise an adhesive layer. In another embodiment, one or more of the layers may be a drug containing layer and/or a rate controlling layer for drug release (with or without a drug contained therein).
In one embodiment, the polymer material comprises a bioresorbable polymer. In one embodiment, the bioresorbable polymer comprises a polyester or blend of polyesters (collectively “polyesters”) and their co-polymers and derivatives. In certain preferred embodiments the polyester(s) is hydrolyzable. Suitable polyesters can include, for example, polyglycolic acid, polylactic acid and polycaprolactone. In one embodiment, the bioresorbable polymer is a copolymer of glycolide, trimethylene carbonate, lactide and caprolactone.
In one embodiment, the first surface includes a contiguous planar portion extending between the plurality of raised protruding lips. In one embodiment, the plurality of raised protruding lips each have an outer edge that is raised above the contiguous planar portion by approximately 0.1 mm to approximately 1.0 mm. In one embodiment, the polymer film comprises a plurality of discrete eluting drug components and wherein the polymer film is configured to elute the plurality of discrete drug components at different time periods following implantation of the flexible body. In a further embodiment, the flexible body comprises at least one attachment configured to form the polymer film into a sleeve. In one embodiment, the polymer film has a first tensile strength in a first planar direction and a second tensile strength in a second planar direction that is perpendicular to the first planar direction, wherein the first tensile strength is substantially equal to the second tensile strength. In one embodiment, the polymer film has a nominal thickness of no greater than 0.06 mm. In one embodiment, the first surface has a first tactile feel that is different from a second tactile feel of the second surface.
In another embodiment there is a method of producing a polymer film comprising: placing a polymer solution into a one sided mold having a plurality of protrusions extending from a bottom of the mold. In certain embodiments, the polymer solution is characterized by a viscosity that inhibits the unaided flow of the polymer throughout the mold. The process further includes urging the polymer solution around each of the plurality of protrusions; and solidifying the polymer solution. In one embodiment, the mold includes a perimeter form extending to an elevation that is substantially equal to an elevation of each of the plurality of protrusions. In one embodiment, the urging comprises drawing an urging instrument such as a blade, bar, squeegee or roller across the perimeter form and the plurality of protrusions to force the polymer solution to flow around the plurality of protrusions and throughout the mold such that the polymer solution has a substantially uniform thickness. In one embodiment, at least a portion of an outer surface of a protrusion, for example an upper portion of a protrusion, is substantially free of polymer solution after the drawing. In one embodiment, the placing step includes depositing the polymer solution in the mold such that a portion of the polymer solution is above the elevation of the perimeter form and the protrusions. In a still further embodiment, one or more of the method steps can be repeated such that a film comprising a plurality of layers may be produced, for example, two or more layers, such as two layers, three layers, four layers, up to and including seven layers. In certain embodiments, the method additionally includes the steps of placing one or more additional polymer solutions in the mold over a first polymer solution, and urging the one or more polymer solutions around each of the plurality of protrusions. These steps can occur prior to, during, or after the step of solidifying the polymer solution. Thus, according to one embodiment of the method, each of the one or more polymer solutions placed in the mold can solidify prior to, during, or after, the step of placing the next or subsequent additional polymer solution into the mold. According to one embodiment, the one or more polymer solutions comprises a polymer solution that can solidify into an adhesive layer, and according to another embodiment, the one or more polymer solutions comprises a rate controlling layer for drug release.
In one embodiment, solidifying the polymer solution includes reducing a thickness of the polymer solution. In one embodiment, solidifying the polymer solution includes forming a meniscus of solidified polymer around each of the plurality of protrusions. In one embodiment, distance from the bottom of the mold to a top of each of the plurality of protrusions is less than approximately 0.3 mm. In one embodiment, the polymer solution contains a drug. In one embodiment, the polymer solution is formed by combining a solvent, a polymer, and the drug at a temperature below 90° C. In one embodiment, the perimeter form defines a total mold area and the plurality of protrusions defines an area that is at least about 15% of the total mold area. In a further embodiment, the method comprises peeling, or otherwise removing, the drug eluting film from the mold.
In one embodiment, the polymer solution comprises a cross-linkable pre-polymer solution. In one embodiment, the solidifying step includes cross-linking the polymer by applying UV radiation, temperature change, polymerization catalysts, soluble crosslinking agents or combinations thereof to the polymer solution. In one embodiment, the polymer solution includes discrete drug units. In one embodiment, the polymer solution comprises a first solvent and a polymer and the solidifying step includes exposing the polymer solution to a second solvent in which the first solvent is soluble and in which the polymer and the drug are not soluble such that the first solvent is at least substantially removed from the polymer solution and the polymer solidifies to contain the drug.
The polymer films disclosed herein may be used to inhibit microbial infection at a surgical site, including bacterial colonization of a medical implant implanted at the surgical site. Typically, the methods comprise identifying a surgical site in need of microbial inhibition and contacting the surgical site with a polymer film comprising an active agent (e.g., drug). The methods may also involve identifying a zone at a surgical site or on a medical implant needing microbial inhibition, contacting the medical implant with the polymer film, e.g., by affixing the polymer film to the implant, and implanting the medical implant at the surgical site. Because the contacting of the polymer film and the medical implant are done at or near the time of surgery, i.e., intraoperatively, the surgeon can match the polymer film with the medical implant to be contacted based on the size and shape of the medical implant and the drug requirements for the subject patient.
BRIEF DESCRIPTION OF THE DRAWINGSThe foregoing summary, as well as the following detailed description of embodiments of the polymer films and methods of manufacture, will be better understood when read in conjunction with the appended drawings of exemplary embodiments. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
FIG. 1A is an enlarged perspective schematic view of a portion of a film (in this instance a polymer film) in accordance with an exemplary embodiment of the present disclosure;
FIG. 1B is a 60× magnified photo of an aperture of a polymer film in accordance with an exemplary embodiment of the present disclosure;
FIG. 2 is a top view of three exemplary sleeves formed from the polymer film ofFIG. 1B in combination with a respective implantable medical device;
FIG. 3A is a perspective view of a portion of a mold in accordance with an exemplary embodiment of the present disclosure;
FIG. 3B is a top plan view of the mold ofFIG. 3A;
FIG. 3C is a cross-sectional side view of the mold ofFIG. 3B taken about line C-C inFIG. 3B;
FIG. 3D is an enlarged corner section of the mold shown inFIG. 3B;
FIG. 3E is an enlarged cross section of the mold shown inFIG. 3D taken alongline3E-3E;
FIG. 3F is an enlarged perspective photograph of a section of the mold ofFIG. 3A;
FIG. 3G is an enlarged perspective photograph of a section of the mold in accordance with another exemplary embodiment of the present disclosure;
FIG. 4A is a schematic side cross-sectional view of the mold ofFIG. 3A with the polymer added;
FIG. 4B is a schematic side cross-sectional view of the mold shown inFIG. 4A showing the drawing device drawing the polymer across the mold;
FIG. 4C is a schematic side cross-sectional view of the mold shown inFIG. 4A showing the polymer after being drawn across the mold and solidified to form a polymer film;
FIG. 4D is a schematic side cross-sectional view of the mold shown inFIG. 4C showing the polymer after being drawn across the mold and solidified to form a polymer film in accordance with another embodiment;
FIG. 4E is a schematic side cross-sectional view of the mold shown inFIG. 4C showing the polymer after being drawn across the mold and solidified to form a polymer film in accordance with yet another embodiment;
FIG. 5 is a perspective view of an automated casting apparatus in accordance with an exemplary embodiment of the present disclosure;
FIG. 6 is a perspective view of the automated casting apparatus ofFIG. 5 showing the polymer being added to the mold;
FIG. 7 is a perspective view of the automated casting apparatus ofFIG. 5 showing the drawing device drawing the polymer across the mold;
FIG. 8 is a perspective view of polymer being added to a mold in accordance with another exemplary embodiment of the present disclosure;
FIG. 9 is a perspective view of the mold ofFIG. 8 showing the drawing device drawing the polymer across the mold;
FIG. 10 is a perspective view of the mold ofFIG. 8 showing the polymer film being removed from the mold;
FIG. 11A is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1 shown in one configuration;
FIG. 11B is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1 shown in another configuration;
FIG. 11C is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11D is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11E is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11F is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11G is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11H is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11I is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11J is a top plan view of a sleeve that comprises at least one polymer film of the type illustrated inFIG. 1, shown in another configuration;
FIG. 11K is an enlarged perspective view of a portion of the film of each of the sleeves as illustrated inFIGS. 11A-J in accordance with one embodiment;
FIG. 11L is an enlarged top plan view of a portion of each of the sleeves as illustrated inFIGS. 11A-J, such as a top plan view of the area withinregion11E inFIG. 11E;
FIG. 11M is an enlarged view of a seam of a sleeve such as those shown inFIGS. 11A-11J;
FIG. 12 is a yield stress graph of a polymer film in accordance with an exemplary embodiment of the present disclosure;
FIG. 13 is a strain at yield graph of a polymer film in accordance with an exemplary embodiment of the present disclosure;
FIG. 14 is a graph illustrating the rate of drug release over time when a sleeve in accordance with an exemplary embodiment of the present disclosure is placed into saline solution;
FIG. 15 is an in-vitro mass loss graph of a polymer film in accordance with an exemplary embodiment of the present disclosure;
FIG. 16 is an in-vitro molecular weight loss graph of a polymer film in accordance with an exemplary embodiment of the present disclosure;
FIG. 17A is a top, front, right perspective view of the sleeve illustrated inFIG. 11A, including a pair of films shown in a closed configuration;
FIG. 17B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 17A taken atline17B-17B ofFIG. 17A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 17C is a top plan view of the sleeve illustrated inFIG. 17A;
FIG. 17D is a bottom plan view of the sleeve illustrated inFIG. 17A;
FIG. 17E is a rear elevation view of the sleeve illustrated inFIG. 17A;
FIG. 17F is a front elevation view of the sleeve illustrated inFIG. 17A;
FIG. 17G is a right side elevation view of the sleeve illustrated inFIG. 17A;
FIG. 17H is a left side elevation view of the sleeve illustrated inFIG. 17A;
FIG. 18A is a top, front, right perspective view of the sleeve illustrated inFIG. 11B, including a pair of films shown in a closed configuration;
FIG. 18B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 18A taken at line18B-18B ofFIG. 18A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 18C is a top plan view of the sleeve illustrated inFIG. 18A;
FIG. 18D is a bottom plan view of the sleeve illustrated inFIG. 18A;
FIG. 18E is a rear elevation view of the sleeve illustrated inFIG. 18A;
FIG. 18F is a front elevation view of the sleeve illustrated inFIG. 18A;
FIG. 18G is a right side elevation view of the sleeve illustrated inFIG. 18A;
FIG. 18H is a left side elevation view of the sleeve illustrated inFIG. 18A;
FIG. 19A is a top, front, right perspective view of the sleeve illustrated inFIG. 11C, including a pair of films shown in a closed configuration;
FIG. 19B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 19A taken at line19B-19B ofFIG. 19A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 19C is a top plan view of the sleeve illustrated inFIG. 19A;
FIG. 19D is a bottom plan view of the sleeve illustrated inFIG. 19A;
FIG. 19E is a rear elevation view of the sleeve illustrated inFIG. 19A;
FIG. 19F is a front elevation view of the sleeve illustrated inFIG. 19A;
FIG. 19G is a right side elevation view of the sleeve illustrated inFIG. 19A;
FIG. 19H is a left side elevation view of the sleeve illustrated inFIG. 19A;
FIG. 20A is a top, front, right perspective view of the sleeve illustrated inFIG. 11D, including a pair of films shown in a closed configuration;
FIG. 20B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 20A taken at line20B-20B ofFIG. 20A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 20C is a top plan view of the sleeve illustrated inFIG. 20A;
FIG. 20D is a bottom plan view of the sleeve illustrated inFIG. 20A;
FIG. 20E is a rear elevation view of the sleeve illustrated inFIG. 20A;
FIG. 20F is a front elevation view of the sleeve illustrated inFIG. 20A;
FIG. 20G is a right side elevation view of the sleeve illustrated inFIG. 20A;
FIG. 20H is a left side elevation view of the sleeve illustrated inFIG. 20A;
FIG. 21A is a top, front, right perspective view of the sleeve illustrated inFIG. 11E, including a pair of films shown in a closed configuration;
FIG. 21B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 21A taken at line21B-21B ofFIG. 21A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 21C is a top plan view of the sleeve illustrated inFIG. 21A;
FIG. 21D is a bottom plan view of the sleeve illustrated inFIG. 21A;
FIG. 21E is a rear elevation view of the sleeve illustrated inFIG. 21A;
FIG. 21F is a front elevation view of the sleeve illustrated inFIG. 21A;
FIG. 21G is a right side elevation view of the sleeve illustrated inFIG. 21A;
FIG. 21H is a left side elevation view of the sleeve illustrated inFIG. 21A;
FIG. 22A is a top, front, right perspective view of the sleeve illustrated inFIG. 11F, including a pair of films shown in a closed configuration;
FIG. 22B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 22A taken atline22B-22B ofFIG. 22A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 22C is a top plan view of the sleeve illustrated inFIG. 22A;
FIG. 22D is a bottom plan view of the sleeve illustrated inFIG. 22A;
FIG. 22E is a rear elevation view of the sleeve illustrated inFIG. 22A;
FIG. 22F is a front elevation view of the sleeve illustrated inFIG. 22A;
FIG. 22G is a right side elevation view of the sleeve illustrated inFIG. 22A;
FIG. 22H is a left side elevation view of the sleeve illustrated inFIG. 22A;
FIG. 23A is a top, front, right perspective view of the sleeve illustrated inFIG. 11G, including a pair of films shown in a closed configuration;
FIG. 23B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 23A taken at line23B-23B ofFIG. 23A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 23C is a top plan view of the sleeve illustrated inFIG. 23A;
FIG. 23D is a bottom plan view of the sleeve illustrated inFIG. 23A;
FIG. 23E is a rear elevation view of the sleeve illustrated inFIG. 23A;
FIG. 23F is a front elevation view of the sleeve illustrated inFIG. 23A;
FIG. 23G is a right side elevation view of the sleeve illustrated inFIG. 23A;
FIG. 23H is a left side elevation view of the sleeve illustrated inFIG. 23A;
FIG. 24A is a top, front, right perspective view of a portion of the sleeve illustrated inFIG. 11H, including a pair of films shown in a closed configuration;
FIG. 24B is a sectional elevation view of the sleeve illustrated inFIG. 23A taken at line24B-24B ofFIG. 24A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 24C is a top plan view of the sleeve illustrated inFIG. 24A;
FIG. 24D is a bottom plan view of the sleeve illustrated inFIG. 24A;
FIG. 24E is a rear elevation view of the sleeve illustrated inFIG. 24A;
FIG. 24F is a front elevation view of the sleeve illustrated inFIG. 24A;
FIG. 24G is a right side elevation view of the sleeve illustrated inFIG. 24A;
FIG. 24H is a left side elevation view of the sleeve illustrated inFIG. 24A;
FIG. 25A is a top, front, right perspective view of the sleeve illustrated inFIG. 11I, including a pair of films shown in a closed configuration;
FIG. 25B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 25A taken atline25B-25B ofFIG. 25A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 25C is a top plan view of the sleeve illustrated inFIG. 25A;
FIG. 25D is a bottom plan view of the sleeve illustrated inFIG. 25A;
FIG. 25E is a rear elevation view of the sleeve illustrated inFIG. 25A;
FIG. 25F is a front elevation view of the sleeve illustrated inFIG. 25A;
FIG. 25G is a right side elevation view of the sleeve illustrated inFIG. 25A;
FIG. 25H is a left side elevation view of the sleeve illustrated inFIG. 25A;
FIG. 26A is a top, front, right perspective view of the sleeve illustrated inFIG. 11J, including a pair of films shown in a closed configuration;
FIG. 26B is a sectional elevation view of a portion of the sleeve illustrated inFIG. 26A taken at line26B-26B ofFIG. 26A, showing the sleeve in an open configuration whereby the films are partially separated from each other;
FIG. 26C is a top plan view of the sleeve illustrated inFIG. 26A;
FIG. 26D is a bottom plan view of the sleeve illustrated inFIG. 26A;
FIG. 26E is a rear elevation view of the sleeve illustrated inFIG. 26A;
FIG. 26F is a front elevation view of the sleeve illustrated inFIG. 26A;
FIG. 26G is a right side elevation view of the sleeve illustrated inFIG. 26A; and
FIG. 26H is a left side elevation view of the sleeve illustrated inFIG. 26A;
FIG. 27 is graph showing a log reduction in CFUs for a variety of bacteria in the presence of a drug-containing polymer film according to one embodiment of the present disclosure;
FIG. 28 is a graph showing a minimum effective concentration and zone of inhibition in the presence of drug-containing polymer films according to embodiments of the present disclosure; and;
FIG. 29 is a graph showing a zone of inhibition against several bacteria in the presence of a drug-containing polymer film according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTSReferring to the drawings in detail, wherein like reference numerals indicate like elements throughout, there is shown inFIGS. 1A and 3A polymer films, generally designated10, and molds, generally designated18, in accordance with exemplary embodiments of the present disclosure.
Referring to the embodiment ofFIG. 1A, the film10 (e.g., a polymer film) is aflexible body11 having afirst surface10aand asecond surface10bthat is opposite the first surface along a transverse direction T. As also illustrated inFIG. 2, theflexible body11, and thus thefilm10, defines first and secondopposed sides10cand10dthat are spaced from each other along a lateral direction A that is perpendicular to the transverse direction T, and first and second opposed ends10eand10fthat are spaced from each other along a longitudinal direction L that is perpendicular to both the transverse direction T and the lateral direction A. In accordance with one embodiment, thefilm10 is elongate along the longitudinal direction L so as to define a length along the longitudinal direction L, defines a thickness along the transverse direction T, and defines a width along the lateral direction A. Thesides10cand10dand theends10eand10fcan define edges, and in combination can define anouter periphery13 of thefilm10.
The film may define at least one layer of a biologically compatible material. such as a polymeric material. In one embodiment, thefilm10 may be formed from a single thin layer of a biologically compatible material. In one embodiment,film10 is comprised of two or more layers of biologically compatible material, such as two layers, three layers, four layers, up to and including seven layers. In certain embodiments, thefilm10 can comprise an adhesive layer. For example, thefirst surface10aor the second10bsurface of thefilm10, or both thefirst surface10aand thesecond surface10b, can comprise an adhesive layer, such that the adhesive layer defines one or both of thefirst surface10aand thesecond surface10b. For instance, when thefilm10 is formed from a single layer, the single layer of thefilm10 can have adhesive properties, such that the layer of adhesive is defined by the single layer of thefilm10 and one or both of the first and second surfaces can comprise an adhesive layer. Alternatively, when thefilm10 comprises a plurality (e.g., at least two) layers, at least one of the two or more layers offilm10 can include a layer of adhesive that is applied to one or both of the first andsecond surfaces10aand10bof the film. In certain embodiments, one or more of the layers of thefilm10 may be a drug containing layer and/or a rate controlling layer for drug release (with or without a drug contained therein). Unless otherwise indicated, reference herein to one or more layers of thefilm10 includes both embodiments where thefilm10 is formed of a single layer, and embodiments where the film comprises a plurality of layers.
In a preferred embodiment, the biologically-compatible material is a polymeric material and in a further preferred embodiment, the polymeric material is bioresorbable. In embodiments used with a medical device, such as a bone plate12 (seeFIG. 2), for instance where the film covers at least a portion of thebone plate12, thefilm10, in some embodiments, will dissolve away over time when implanted in vivo and be absorbed into a patient, leaving only thebone plate12 behind (such as ifbone plate12 is not also made of a bioresorbable material). Thebone plate12 may also be made of a bioresorbable material in other embodiments in which case both thebone plate12 and thefilm10 will eventually dissolve. In some embodiments, thefilm10 may be configured to absorb at a different rate from an absorbable bone plate12 (e.g., a faster or a slower rate). It should be appreciated in certain embodiments that thefirst surface10aof thefilm10 can face thebone plate12 and thesecond surface10bcan face away from thebone plate12 during use, and in other embodiments thesecond surface10bof thefilm10 can face thebone plate12 and thefirst surface10acan face away from thebone plate12 during use. While reference is made herein to abone plate12, it should be appreciated that thefilm10 is configured for use in combination with any suitable medical implants as desired, such as any suitable orthopedic implant used in musculoskeletal repair, and that unless otherwise indicated herein, reference to abone plate12 applies with equal weight to other medical implants.
In some embodiments, abioresorbable film10 has advantages over non-resorbable meshes which, for example, can become encased with or embedded in dense fibrous tissue or present other issues associated with long term foreign body exposure. In some embodiments, thefilm10 is only partially bioresorbable.
A bioresorbable polymer may be used in order to provide a controlled release of a drug such as an antibiotic, with a definite end point. Continuous, long term presence of an antibiotic is often undesirable, since this can create conditions for development of antibiotic resistant bacteria. In one embodiment, complete degradation of thefilm10 ensures that the drug will be completely released in a pre-determined and/or selectable time. In one embodiment, the drug release can be completely released or substantially completely released even where thefilm10 is not fully absorbed.
The absorption of thefilm10 may also impact and/or control the release of the antibiotic in the continuous release phase. As thefilm10 degrades, for example, the permeability of the film may increase, and more drugs may be released. In some embodiments, the polymer defines a film that is flexible, has a sufficiently high tensile strength, and can be processed by solution casting.
One particular class of preferred bioresorbable polymers are those containing aliphatic polyesters. Examples of such polyesters include polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polydioxanone, poly(trimethylene carbonate) (TMC), polyhydroxyalkanoates, and copolymers, derivatives, and blends of the same. Bioresorbable polymer materials can differ in their molecular weight, polydispersity, crystallinity, glass transition temperatures, and degradation rates, which can ultimately alter the mechanical properties of the film.
Particularly preferred bioresorbable polymers include co-polymer compositions containing PGA, PLA and PCL. According to one embodiment,film10 is comprised of co-polymer having about 40% to about 95% glycolide content by weight; for example about 60% to about 75%, about 60% to about 70%, about 65% to about 75%, and about 68% to about 72%. According to another embodiment,film10 is comprised of co-polymer having about less than 1% (including 0%) to about 50% caprolactone content by weight; for example about 5% percent to about 30%, about 10% to about 40%, about 10% to about 22%, about 14% to about 18%, and about 30% to about 40%. According to a further embodiment,film10 is comprised of about less than 1% (including 0%) to about 15% lactide content by weight; for example less than about 1% to about 10%, less than about 1% to about 7.5%, about 3% to about 7.5%, about less than 1% to about 5%, and about 4% to about 7%.
In one embodiment, thefilm10 is comprised of a co-polymer that includes one or more of four monomers; glycolide, lactide, caprolactone, and trimethylene carbonate. Glycolide may be included and may have the effect of speeding up degradation of thefilm10. Lactide may also be included and may have the effect of increasing mechanical strength offilm10. Caprolactone and trimethylene carbonate may be used and may have the effect of increasing flexibility offilm10.
In one embodiment, the bioresorbable polymer includes one or more of PLA, PGA, PCL, polydioxanone, TMC and copolymers of these. In one embodiment, the bioresorbable polymer is produced from a copolymer of glycolic acid, caprolactone, lactic acid, and trimethylene carbonate. In one embodiment, the bioresorbable polymer is produced from a copolymer of approximately 60-70% glycolic acid, approximately 17-20% caprolactone, approximately 5-10% lactic acid and approximately 8-10% trimethylene carbonate. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid, L-lactide, D-lactide, D,L-lactide, glycolide, a lactone, a lactam, trimethylene carbonate, a cyclic carbonate, a cyclic ether, para-dioxanone, beta-hydroxybutyric acid, beta-hydroxypropionic acid, beta-hydroxyvaleric acid, and a combination thereof. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid. L-lactide; D-lactide, D,L-lactide, ε-caprolactone, trimethylene carbonate, para-dioxanone, and a combination thereof.Film10 may also or alternatively include natural biopolymers such as alginate, chitosan, collagen, gelatin, hyaluronate, zein and others.
Still referring toFIG. 1A, thefilm10 may be configured to have any preferred dimensions including a thickness h3measured along the transverse direction T betweenfirst surface10aandsecond surface10bnot inclusive of the raisedlips14athat are illustrated inFIGS. 1A and 1B as surroundingapertures14. In one embodiment,film10 is sufficiently thin such that it does not interfere with the mechanical interlocking between thebone plate12 and the screws that are driven through thefilm10 and thebone plate12 and into an underlying bone during fixation (such as where if the film is trapped between the plate and screw). In some embodiments, thickness h3is minimized as much as possible. In one embodiment, the thickness offilm10 is selected such that degradation offilm10 does not cause significant loosening of a connection tobone plate12 such as a plate-screw construct.
In some embodiments, the thickness h3offilm10 is approximately 0.05 mm. In some embodiments, the thickness h3offilm10 is approximately no greater than 0.05 mm. In some embodiments, thickness h3offilm10 is less than approximately 0.05 mm, for example approximately 0.04 mm. In some embodiments, thickness h3offilm10 is approximately 0.06 mm. In some embodiments, thickness h3offilm10 is approximately 0.07 mm. In some embodiments, thickness h3 offilm10 is approximately 0.08 mm. In some embodiments, thickness h3offilm10 is approximately 0.09 mm. In some embodiments, thickness h3offilm10 is approximately 0.1 mm. In some embodiments, thickness h3offilm10 is approximately 0.2 mm. In some embodiments, thickness h3offilm10 is approximately 0.3 mm. In some embodiments, thickness h3offilm10 is approximately 0.4 mm. In some embodiments, thickness h3offilm10 is approximately 0.5 mm.
In one embodiment, the thickness h3of thefilm10 is approximately uniform throughoutfilm body11. In some embodiments, thefilm10 is tapered toward one or more edges along theouter periphery13. In some embodiments, thickness h3offilm10 differs in two or more sections of thefilm body11 to control strength or drug delivery of each area.
In some embodiments, thefilm10 is of sufficient strength to withstand mechanical forces such as implantation, drilling and screw placement. In other embodiments, thefilm10 has tensile properties that permit a region of the film to tear upon penetration of a screw or other fixation element through that region. This has the advantage of preventing the film from becoming entangled with or otherwise wrapped around the fixation element, which can potentially cause damage to the film and inhibit the correct placement of the fixation element. In one embodiment,film10 has a first tensile strength in a first planar direction and a second tensile strength in a second planar direction that is perpendicular to the first planar direction, where the first tensile strength is substantially equal to the second tensile strength. In one embodiment,film10 has the strength characteristics as listed in tables 1-3 below. Each of the six samples listed in the Tables below were films comprised of a copolymer containing approximately 70% glycolide, 17% caprolactone, 8% trimethylene carbonate, and 5% lactide by weight.
| TABLE 1 |
|
| | | | | | Tensile strain at |
| Film | | Specimen | Length | Width | Thickness | Yield (Offset |
| Sample | Start Date | label | (mm) | (mm) | (mm) | 0.2%) (%) |
|
|
| 1 | 07/02/2009 | Day 0 | 50.00 | 10.510 | 0.059 | 2.44051 |
| 9:02AM | Sample | 1 |
| 2 | 07/02/2009 | Day 0 | 50.00 | 11.160 | 0.063 | 3.43452 |
| 9:05AM | Sample | 2 |
| 3 | 07/02/2009 | Day 0 | 50.00 | 11.230 | 0.062 | 2.04468 |
| 9:07AM | Sample | 3 |
| 4 | 07/02/2009 | Day 0 | 50.00 | 10.740 | 0.057 | 2.81023 |
| 9:09AM | Sample | 4 |
| 5 | 07/02/2009 | Day 0 | 50.00 | 11.180 | 0.066 | 3.06678 |
| 9:13AM | Sample | 5 |
| 6 | 07/02/2009 | Day 0 | 50.00 | 10.920 | 0.058 | 3.65944 |
| 9:15AM | Sample | 6 |
| Mean | | | 50.00 | 10.957 | 0.061 | 2.90936 |
| Standard | | | 0.000 | 0.288 | 0.003 | 0.607 |
| Deviation |
| Coefficient | | | 0.000 | 2.625 | 5.639 | 20.854 |
| of |
| Variation |
|
| TABLE 2 |
|
| Tensile | Tensile | Tensile | Tensile |
| stress at | strain at | stress at | strain at |
| Yield | Maximum | Maximum | Break |
| Film | (Offset 0.2%) | Load | Load | (Standard) |
| Sample | (MPa) | (%) | (MPa) | (%) |
|
|
| 1 | 13.75364 | 22.50031 | 26.31165 | 31.66499 |
| 2 | 14.00508 | 31.66468 | 27.57964 | 49.99874 |
| 3 | 9.25147 | 32.49843 | 26.60082 | 149.99967 |
| 4 | 12.82553 | 26.66562 | 28.46340 | 55.83280 |
| 5 | 13.53060 | 23.33406 | 26.59371 | 36.66562 |
| 6 | 12.60631 | 35.83187 | 26.79990 | 212.49840 |
| Mean | 12.66211 | 28.74916 | 27.05819 | 89.44337 |
| Standard | 1.756 | 5.393 | 0.812 | 74.322 |
| Deviation |
| Coefficient | 13.865 | 18.760 | 3.000 | 83.094 |
| of |
| Variation |
|
| TABLE 3 |
| |
| | Tensile stress at | |
| | Break |
| Film | (Standard) | Modulus (Automatic |
| Sample | (MPa) | Young's) (MPa) |
| |
|
| 1 | 15.20147 | 749.15765 |
| 2 | 21.71590 | 504.50877 |
| 3 | 19.08817 | 657.83084 |
| 4 | 18.08469 | 574.31825 |
| 5 | 18.71550 | 618.69300 |
| 6 | 21.75346 | 436.82724 |
| Mean | 19.09320 | 590.22262 |
| Standard | 2.460 | 111.150 |
| Deviation |
| Coefficient | 12.885 | 18.832 |
| of |
| Variation |
| |
In one embodiment,film10 has a tensile strain at yield (Offset 0.2%) of approximately 2% to approximately 4% and/or a mean tensile strain of approximately 3%. In one embodiment,film10 has a tensile stress at yield (Offset 0.2%) of approximately 9 MPa to approximately 14 MPa, and/or a mean tensile stress at yield of approximately 12.5 MPa. In one embodiment,film10 has a tensile stress at maximum load of approximately 25 MPa to approximately 30 MPa, and/or a mean tensile stress at maximum load of approximately 27 MPa. In one embodiment,film10 has a tensile strain at break (standard) of approximately 30% to approximately 215%, and/or a mean tensile strain at break of approximately 89%. In one embodiment,film10 has an automatic Young's modulus of approximately 430 MPa to approximately 750 MPa, and/or a mean automatic Young's modulus of approximately 590 MPa.Film10 may be characterized by combination of one or more of the foregoing properties.
Referring toFIGS. 1A, 1B, 2, 11K and 11L, in some embodiments,film10 includes a plurality of apertures orapertures14. In one embodiment, theapertures14 allow the passage or transport of fluids through film10 (e.g., when implanted near living tissue). In some embodiments, it may be important to allow for fluid flow from one side of the sleeve to the other (inside to outside) in order, for example, to avoid creating a “dead space” between thefilm10 and thebone plate12. Additionally, theapertures14 may advantageously provide more even distribution of the drug or biological agent to adjacent tissue and bone as the material leaches out of the polymer than a sleeve without such apertures.
Theapertures14 may be configured to be any size and shape, including variations within the same polymer film. In one embodiment,apertures14 are defined by substantially cylindrical sidewalls. In some embodiments,apertures14 have sidewalls that have segments that are inwardly facing convex surfaces. In some embodiments, the inwardly facing convex surface is substantially parabolic.Apertures14 need not be perfectly round in cross section, and in some embodiments, may be ovoid, elliptical, star or diamond in shape. In some embodiments,apertures14 extend to one or more apexes. In one embodiment, such apexes promote tears infilm10 during use (e.g., where a zone of weakness is created by the aperture). In one embodiment,apertures14 extend completely throughsheet12 from thefirst surface10ato thesecond surface10b(seeFIG. 4C). In one embodiment, one or more of theapertures14 can extend only partially throughfilm10, for instance from thesecond surface10btoward but not to thefirst surface10a, to control drug release or increase the initial strength of thefilm10. In certain embodiments, thefilm10 may have a first one or more regions having theapertures14 and a second one or more regions devoid of theapertures14. A film region can be defined as any single contiguous area, substantially either elliptical or quadrangular, of at least 10% of the total surface area offilm surface10aor10b. According to one embodiment, one or moreregions having apertures14 can be separated by one or more regions having noapertures14. According to another embodiment, a region having apertures is contiguous, and in a further embodiment a region having no apertures is contiguous. For example the periphery of thefilm10 can have apertures while the remainder of the film is devoid of apertures, or alternatively a periphery offilm10 can be devoid of apertures while the remainder of the film has apertures. It should be appreciated that the distribution pattern can be configured as desired to include more or less apertures in any one region of the film, as well as permitting an even or regular distribution of apertures throughout the film.
Theapertures14 may be configured to allow for any desired porosity offilm10. In one embodiment, the porosity of thefilm10 is the range of approximately 1% to approximately 30%, in another embodiment approximately 5% to about 25%, in another embodiment approximately 10% to about 20%, and in a preferred embodiment is approximately 15%. In one embodiment, the porosity offilm10 is greater than approximately 1%. In one embodiment, the porosity offilm10 is greater than approximately 2%. In one embodiment, the porosity offilm10 is greater than approximately 3%. In one embodiment, the porosity offilm10 is greater than approximately 4%. In one embodiment, the porosity offilm10 is greater than approximately 5%. In one embodiment, the porosity offilm10 is greater than approximately 6%. In one embodiment, the porosity offilm10 is greater than approximately 7%. In one embodiment, the porosity offilm10 is greater than approximately 8%. In one embodiment, the porosity offilm10 is greater than approximately 9%. In one embodiment, the porosity offilm10 is greater than approximately 10%. In one embodiment, the porosity offilm10 is greater than approximately 11%. In one embodiment, the porosity offilm10 is greater than approximately 12%. In one embodiment, the porosity offilm10 is greater than approximately 13%. In one embodiment, the porosity offilm10 is greater than approximately 14%. In one embodiment, the porosity offilm10 is greater than approximately 15%. In one embodiment, the porosity offilm10 is greater than approximately 16%. In one embodiment, the porosity offilm10 is greater than approximately 17%. In one embodiment, the porosity offilm10 is greater than approximately 18%. In one embodiment, the porosity offilm10 is greater than approximately 19%. In one embodiment, the porosity offilm10 is greater than approximately 20%.
Referring toFIG. 11L, in one embodiment, theapertures14 have an average maximum cross-sectional length (e.g., diameter) in the range of approximately 0.1 mm to approximately 1.5 mm, such as approximately 0.1 mm to 1.0 mm, 0.1 mm to 0.5 mm, 0.5 mm to 1.5 mm, 0.5 mm to 1.0 mm, 0.1 mm to 0.75 mm, 0.5 mm to 0.75 mm, 0.75 mm to 1.0 mm, and 0.75 mm to 1.5 mm. In apreferred embodiment apertures14 have an average maximum cross-sectional length (e.g., diameter) of about 0.75 mm. In one embodiment, apertures are spaced apart from adjoining apertures in the range of approximately 0.5 mm to about 5 mm. such as approximately 0.5 mm to approximately 2.5 mm, 2.5 mm to 5.0 mm, 1.0 mm to 2.0 mm, 1.5 mm to 2.0 mm, 0.5 mm to 1.0 mm, 0.5 mm to 1.75 mm, and 1.0 mm to 1.75 mm. In a particularly preferred embodiment, apertures have an average maximum cross-sectional length of 0.75 mm and a spaced apart approximately 1.75 mm. In a preferred embodiment,apertures14 are spaced apart approximately 1.75 mm. In one embodiment, theapertures14 are arranged in a regular array (e.g., aligned rows and columns as illustrated inFIG. 11K). In one embodiment, theapertures14 are arranged in an irregular array. Thus, theapertures14 can generally be configured such that a diameter of the threaded shaft of the bone screw that is driven through thefilm10, an aligned bone fixation hole of the bone implant, and the underlying bone, is greater than both the cross-sectional dimensions of theapertures14 and the gap betweenadjacent apertures14, such that a given screw shaft is configured to be driven through a region of thefilm10 that includes more than oneaperture14. It should be appreciated that the shaft of the bone fixation screw can be driven through at least one of theapertures14, such as a plurality of theapertures14, through the aligned bone implant hole, and into the underlying bone. The step of driving the screw shaft through at least one or more of theapertures14 can decrease random unpredictable tearing of the film compared to a step of driving the screw shaft through a region of thefilm10 that is devoid ofapertures14.
Referring toFIGS. 1A, 1B and 4C, in some embodiments, thefirst surface10acan define a contiguousplanar portion15 and interfaces, which can be configured as solidified meniscuses17 as described below, that adjoin the contiguousplanar portion15 and one or more interior surfaces that define a respective one of theapertures14. In accordance with one embodiment, one or more of themeniscuses17 can be configured as a raisedlip14athat extends out with respect to the contiguous planar portion15 (e.g., along a direction from thesecond surface10btoward thefirst surface10a) along the transverse direction T, and thus extends out from thefirst surface10a. A benefit of the raisedlip14aaround eachaperture14 may include providing a reinforcement or grommet to eachaperture14, effectively increasing the mechanical strength of thefilm10 relative to a similar perforated film that is devoid of raisedlips14a. A further benefit of the raisedlips14amay include a texture on thefirst surface10a. Such a texture may be an advantage for tactile feel or for the purpose of increasing (or reducing) friction of thefirst surface10aof thefilm10 when, for example, thefirst surface10ais in contact with another surface. In one embodiment, the raisedlips14adecrease the tendency of thefilm10 to adhere to a surface such as the metal surface of an implant, making it easier to slide a sleeve made from thefilm10 onto thebone plate12. In one embodiment, thelips14aprovide stand-off between thebone plate12 and thefilm10, thereby reducing the surface area of thefilm10 that is in contact with thebone plate12.
In one embodiment, the contiguousplanar portion15 extends between the plurality of raised protrudinglips14a, for instance from each of the raisedlips14ato others of the raisedlips14a. In one embodiment, the raisedlips14aare substantially in the shape of the outer surface of an impact crater. In one embodiment, the raisedlips14adefine a continuous concave outer surface. In one embodiment, the concave outer surface is a parabolic concave surface. In one embodiment, one or more oflips14a(or, in some embodiments, eachlip14a) has a concave outer surface and an opposed convex inner surface, either or both of which are parabolic in shape. In one embodiment, thelips14acan each have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.1 mm to approximately 1.0 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.1 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.2 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.3 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.4 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.5 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.6 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.7 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.8 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 0.9 mm. In one embodiment,lips14aeach have an edge that is raised above the contiguousplanar portion15 offirst surface10aby approximately 1.0 mm.
In one embodiment, thelips14aimpart a first tactile feel to thefirst surface10athat is different (e.g., distinguishable by a surgeon wearing a surgical glove) from a second tactile feel ofsecond surface10bthat is devoid of thelips14a. In one embodiment,apertures14 in one or more areas onfirst surface10aeach are bounded by a raisedlip14aandapertures14 in one or more other areas onfirst surface10aare not so bounded. In one embodiment, the solidifiedmeniscus17 can define a height h4(seeFIG. 4C) from thesecond surface10bto the outermost end of the raisedlips14a. The height h4can be defined by the raisedlips14a, and can be uniform across thefirst surface10ain accordance with one embodiment. In one embodiment, at least one of the raisedlips14ahas a height h4that is different than the height h4of at least one other of the raisedlips14a. In one embodiment, one ormore apertures14 are bounded by alip14aon one or bothfirst surface10aandsecond surface10b. An embodiment such as the one illustrated inFIG. 1A, may include a singlecontinuous lip14athat surrounds eachaperture14. The continuous lip may be substantially uniform in thickness and/or substantially uniform in height relative to any one aperture, or fromaperture14 toaperture14. Theapertures14 may be evenly spaced apart across all or at least a portion of thefilm10. In other embodiments, at least a portion of thefilm10 is characterized byapertures14 that are spaced apart in at least two different spacing configurations, so as to define two different patterns ofapertures14.
In some embodiments, thefilm10 includes one or more drugs or other substance for delivery in the body. Such drugs include, but are not limited to, antimicrobial agents, anti-fibrotic agents, anesthetics and anti-inflammatory agents as well as other classes of drugs, including biological agents such as proteins, growth inhibitors and the like. In further embodiments, thefilm10 can include one or more biocompatible particles. The particles, according to one embodiment, can assist in bone remodeling and regrowth. For example, in certain embodiments, particles are calcium-containing salt particles, such as calcium phosphate or calcium sulfate particles. These calcium salts are well known for use at bone remodeling and regrowth sites. Other potential biocompatible particles can include salts or oxides containing, for example, silicon, magnesium, strontium, and zinc. In certain embodiments, the particles are at least partially insoluble and can be substantially insoluble in the polymer film. In embodiments where the particles are insoluble in the film, the particles provide heterogeneous nucleation sites in the polymer film. Such nucleation sites can increase the rate of crystallization of the film as well as increasing the overall crystallinity of the film as compared to the film without such nucleation sites. Altering the crystallinity properties of a polymer film can be desired where a decrease in elastic behavior is preferred. For example,FIGS. 12 and 13 (and explained more fully below) show the decrease in elongation and yield properties of a plain polymer film upon the incorporation of insoluble biocompatible particles (in this case, 5% and 10% addition of insoluble gentamicin sulfate particles). Additionally, an increase in crystallinity can be a factor that potentially slows the degradation rate of a biodegradable polymer film.
In one embodiment, thefilm10 includes an active agent, such as a drug or drugs. The active agent may be an anti-microbial agent, for instance an antibiotic, anti-viral agent, or anti-parasitic agent, though as previously mentioned, it should be appreciated that other active agents typically used in conjunction with orthopedic surgery are also contemplated within the scope of this disclosure, including, for example, anti-inflammatory drugs, steroids, analgesics, opioids, growth factors, and the like. In embodiments including an antibiotic, the antibiotic selected may be active against the majority of bacteria found in orthopedic implant related infections. These include primarily staphylococci, and Gram negative bacilli.
In one embodiment, the drug selected is stable during the manufacturing process that fabricates the film. Depending upon the manufacturing processes utilized, the polymer formulation of the film, the preferred drug, and the pharmaceutical formulation of the preferred drug (e.g., the particular pharmaceutical salt utilized) the drug can either be soluble or insoluble with the polymer formulation. In embodiments where the drug is at least partially—including being substantially—insoluble in the polymer, the film can physically entrap the drug particles. In embodiments where the drug is at least partially—including being substantially—soluble with the polymer, the film can chemically bond with and to the drug. In certain embodiments, the film can both physically entrap and chemically bond with and to the drug
In one embodiment,film10 includes gentamicin sulfate. Gentamicin sulfate is thermally stable above 100° C., and is stable to organic solvents including DMSO, which is used in the manufacturing process in some embodiments. Gentamicin sulfate is active against many bacteria commonly associated with orthopedic infection, such asStaphylococcus aureusincluding MRSA, coagulase negative staphylococci, and Gram negative rods such asPseudomonasandEnterobacterspecies. Without being bound by any particular theory, it is believed that local delivery of gentamicin to a fracture site containing a metallic implant may be effective in preventing infection by some bacteria which are intermediate or resistant to systemic levels of gentamicin because of the locally higher concentrations of gentamicin at the fracture site.
Referring toFIGS. 4A-4C, in one embodiment,film10 comprises a drug that is at least partially insoluble and can be substantially insoluble in the film, such that the drug can serve as a biocompatible particle that provides a heterogeneous nucleation site as previously mentioned. In a further embodiment,film10 comprises a plurality of discreteeluting drug components30. In one embodiment,film10 is configured to elute the plurality ofdiscrete drug components30 at different time periods following implantation. In one embodiment, the elution of drug components30 (e.g., an antibiotic such as gentamicin) in vivo is a two-phase process, with a burst release occurring as soon asfilm10 contacts water or body fluid, and a second phase which is controlled by the degradation rate of the polymer. In some embodiments, it is desirable to have an initial burst release of gentamicin to reduce bacterial contamination of the wound site on initial implantation, then a lower level release of gentamicin for a period of days to weeks afterward, to prevent growth and/or biofilm formation of any surviving bacteria. In one embodiment,film10 is configured to elute up to approximately 20 percent of the drug within the first hour after implantation. In another embodiment,film10 is configured to elute up to approximately 60 percent of the drug contained withinfilm10 approximately 1 week afterfilm10 has been implanted in contact with living tissue. In another embodiment,film10 is configured to elute up to approximately 100% of the drug within 10 days after implantation. In one embodiment, the combination of particle size and polymer degradation rate control the drug release profile, and create the desired 2-phase release. In one embodiment, the drug is released over a 2 to 3 week time period. In other embodiments, the drug is released over a shorter or longer time frame.
In one embodiment, where the drug is insoluble with the film, the relative amounts of drug released during these two phases are controlled by the particle size of the drug in the film. In one embodiment,drug components30 are evenly distributed throughoutfilm10, and anydrug components30 in contact with a surface offilm10 are dissolved more rapidly than adrug component30 that is not in contact with a surface offilm10. In one embodiment, a quantity ofdrug components30 that are in contact with a surface offilm10 upon implantation are configured to release in a burst upon implantation. In one embodiment, the larger the size ofdrug components30, the higher the proportion ofdrug components30 in contact with the surface, and the greater the burst release. For this reason, the size ofdrug components30, in one embodiment, is kept under 10 microns in diameter which reduces the burst release to approximately 20 to 35% of the total drug content. In one embodiment,drug components30 are under 20 microns in diameter.
In one embodiment,film10 is configured to deliver multiple drugs from one or more independent layers, some of which may contain no drug. In certain embodiments, one or more of the layers may be a drug containing layer and/or a rate controlling layer for drug release (with or without a drug contained therein). In another embodiment,film10 may include a plurality of drug components each being characterized by a different release rate fromfilm10 such that a first drug is associated with a first release profile that is different from a second release profile of a second drug.
Where the film contains one or more antibiotics that can release from the film into the surgical site environment over a period a time, a Zone of Inhibition (ZOI) can be formed around the film where certain bacterial growth cannot occur due to the presence of the antibiotic containing film. Where the film defines a central axis or center point, the ZOI is defined as the radial distance extending in three dimensions from the central axis or center point where bacteria will not colonize. According to one embodiment, the film has a ZOI of at least 12 mm. According to one embodiment, where the film includes the antibiotic gentamicin (13% by weight), the film has a ZOI of at least 20 mm where the bacteria are selected fromS. aureus, S. epidermidis, Pseudomonas aeruginosa, orEnterobacter cloacae, or combinations thereof
Accordingly, when thefilm10 defines a cover suitable for use in combination with a medical implant, the cover does not have to overlay the entire surface area of an implant to be effective, and can thus overlay at least a portion of the surface area of one or both sides (e.g., the bone-facing side and the side opposite the bone-facing side) of the implant up to an entirety of the surface area of one or both sides of the implant. For example, in those cases where at least onefilm10 defines a cover configured as a polymer film sleeve31 (see, e.g.,FIGS. 11A-J) designed to completely cover an implant, such as thebone plate12, thefilm10 may be torn or damaged during fracture reduction and plating, or otherwise does not cover the entire surface of the implant. Alternatively, the sleeve can be designed to cover only a portion of the implant. In this manner, a surgeon can determine an appropriate zone of inhibition needed for a particular surgical site and/or medical implant, and utilize the polymer film accordingly, e.g., utilize the appropriate length and/or quantity of polymer film.
Referring toFIGS. 3A-10, there are shown devices used in a method of manufacturingfilms10 in accordance with exemplary embodiments of the present disclosure.
In one embodiment, a manufacturing method createspolymer films10 for drug delivery. In one embodiment, thefilm10 is solvent cast. In some embodiments, solvent casting methods are advantageous in the fabrication offilms10 that contain adrug component30 that could be potentially damaged by the heat and shear of melt processes such as blown film extrusion. Producingfilms10 using a punch press (e.g., with many hundreds or thousands of holes or holes with complicated geometry) may also be time consuming and expensive.
In some embodiments, methods described herein can create thethin films10 and theapertures14 in a single step. In some embodiments, methods described herein create thefilm10 and thousands ofapertures14 within the periphery of the film with accurate predetermined control of geometry and placement of theapertures14 and accurate predetermined control of the thickness of thefilm10.
Referring toFIGS. 3A-3G, in some embodiments, thefilm10 is cast in amold18. In one embodiment,mold18 includes a plurality of protrusions orposts20 extending from a bottom18aofmold18. When polymeric solution is deposited in themold18, theposts20 occupy space that defines theapertures14 when the polymeric solution solidifies intofilm10. In one embodiment, themold18 is comprised of injection molded polypropylene. Themold18 may be manufactured from other materials, including polymers (seeFIG. 3F), glass, metals (seeFIG. 3G) or ceramics. In one embodiment, themold18 is comprised of two or more materials. For example, the bottom18aof themold18 may be made from metal with a polymer coating to reduce adhesion of the cast film to the mold and/or to form posts20. The cavity in the mold may be formed by a casting process, a compressing molding process, an injection molding process, a chemical etching process or a machining process.
In one embodiment, themold18 includes a cavity depth of approximately 0.25 mm. In one embodiment, a distance from the bottom of themold18 to a top of each of the plurality of theposts20 is equal to the cavity depth (i.e., the height of peripheral wall22) or vice versa. In one embodiment, theposts20 are longer than the desired thickness of thefilm10. In one embodiment, theposts20 extend 0.3 mm from the bottom18aof themold18. In one embodiment, posts20 extend 0.2 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.25 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.3 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.35 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.4 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.45 mm from the bottom18aof themold18. In one embodiment, theposts20 extend 0.5 mm from the bottom18aof themold18.
In one embodiment, theposts20 are arranged to produce a predetermined selected size, shape, pattern, and arrangement of theapertures14 described above. In one embodiment, a perimeter form orperipheral wall22 of themold18 defines a total mold area, and the plurality ofposts20 define an area that is substantially equal to or corresponding to the ultimate porosity of thefilm10.
In one embodiment, themold18 includes atrough24 that extends at least partially around theperipheral wall22 ofmold18. In one embodiment, thetrough24 extends around the entireperipheral wall22 ofmold18. In some embodiments, thetrough24 retains any excess polymer that flows or is urged from the cavity of the mold over theperipheral wall22. In one embodiment, themold18 includes anextension40, which can define a handle that extends out from at least one outer edge of themold18. In one embodiment, theextension40 is provided for grasping and manipulating themold18 without contacting the polymer solution that is disposed within themold18.
According to the present disclosure, there is a method of producing a polymer film comprising: placing a polymer solution into a mold having a plurality of protrusions extending from a bottom of the mold. In certain embodiments, the polymer solution is characterized by a viscosity that inhibits the unaided flow of the polymer throughout the mold. The process further includes urging the polymer solution around each of the plurality of protrusions; and solidifying the polymer solution. In one embodiment, the mold includes a perimeter form extending to an elevation that is substantially equal to an elevation of each of the plurality of protrusions. In one embodiment, the urging comprises drawing an urging instrument such as a blade, bar, squeegee or roller across the perimeter form and the plurality of protrusions to force the polymer solution to flow around the plurality of protrusions and throughout the mold such that the polymer solution has a substantially uniform thickness. In one embodiment, at least a portion of an outer surface of a protrusion, for example an upper portion of a protrusion, is substantially free of polymer solution after the drawing. In one embodiment, the placing step includes depositing the polymer solution in the mold such that a portion of the polymer solution is above the elevation of the perimeter form and the protrusions. In still further embodiments, one or more of the method steps can be repeated such that the method can produce a film comprising a plurality of layers, for example, two or more layers, such as two layers, three layers, four layers, up to and including seven layers. In certain embodiments the method additionally includes the steps of placing one or more additional polymer solutions (for example, placing an additional polymer solution, placing a second additional polymer solution, placing a third additional polymer solution, up to and including placing a sixth additional polymer solution) in the mold over a first polymer solution, and urging the one or more polymer solutions around each of the plurality of protrusions. The step of placing one or more polymer solutions in the mold can occur prior to, during, or after the step of solidifying the polymer solution. Thus, according to one embodiment of the method, each of the one or more polymer solutions placed in the mold can solidify prior to, during, or after, the step of placing the next or subsequent additional polymer solution into the mold (e.g., placing a third additional polymer solution into the mold prior to, during, or after, solidifying the second additional solution; or placing an additional polymer solution into the mold prior to, during, or after solidifying a first polymer solution). According to another embodiment, all of the polymer solutions placed into the mold can solidify substantially simultaneously. According to one embodiment, the one or more polymer solutions comprise a polymer solution that can solidify into an adhesive layer, and according to another embodiment, the one or more polymer solutions comprise a rate controlling layer for drug release.
In one embodiment, apolymer solution28 is formed. Thepolymer solution28 is placed in the cavity of themold18 so as to create thefilm10. In some embodiments where the drug is insoluble in the polymer, a solvent anddrug component30 are first mixed to form a well distributed suspension, and then polymer is added and dissolved in the solvent/drug suspension. In other embodiments, the polymer is dissolved in the solvent and then the insoluble drug is added to the solution at the desired amount. In still other embodiments, the drug is soluble in the polymer/solvent solution. In embodiments where aliphatic polyesters comprise the polymer formulation, typically a polar solvent will be used. Suitable polar solvents can include dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), alcohols, acetone, ethyl acetate, acetonitrile, dimethylformamide (DMF), and formic acid. In one embodiment, a polymer material is dissolved at a 4:1 solvent to polymer ratio in dimethyl sulfoxide (DMSO) at elevated temperature and the drug gentamicin sulfate is added at 13% by weight. In one embodiment,polymer solution28 is formed by introducingdrug units30 to a polymer/solvent blend at a temperature below 90° C. In one embodiment,polymer solution28 comprises a cross-linkable pre-polymer such as polyurethanes, polyfumarates, polymethacrylates, etc.
Referring toFIGS. 4A, 6 and 8, once thepolymer solution28 is prepared,polymer solution28 is placed into themold18, which can be a one sided mold as illustrated. In some embodiments, the viscosity ofpolymer solution28 and/or the density ofposts20 substantially inhibits the unaided flow of thepolymer28 throughout themold18. In one embodiment, after addingpolymer solution28 to mold18, the top surface ofpolymer solution28 is a height h2above the base18aofmold18 which is greater than a height h1of the mold cavity and posts20.
Referring toFIGS. 4B, 7 and 9, after thepolymer solution28 has been added to themold18, in one embodiment, thepolymer solution28 can be urged around each of the plurality ofposts20 in the cavity of themold18. For instance, any suitable urginginstrument26 can urge the polymer solution around each of the plurality ofposts20. In one embodiment, urginginstrument26 can be, for example, a blade, bar, squeegee or roller that slides, or themold18 is moved relative to urginginstrument26, across theperimeter wall22 and over theposts20 to forcepolymer solution28 to flow around posts20 and throughoutmold18 such thatpolymer solution28 has a substantially uniform thickness. In one embodiment, drawing the urginginstrument26 acrossmold18 causes the urginginstrument26 to remove excess polymeric film material from the top surface ofposts20. In one embodiment, an outer surface, such as an upper surface, of one ormore posts20 is substantially free ofpolymer solution28 after the drawing.
Referring toFIG. 4C, once thepolymer solution28 is drawn or spread throughoutmold18, thepolymer solution28 is solidified to form thefilm10. In one embodiment, themold18 can be placed into a solvent drying oven at an elevated temperature to remove the solvent, leaving behind a thin cast film. In one embodiment, thepolymer solution28 is solidified by cross-linking the polymer by applying UV radiation, temperature change, polymerization catalysts, soluble crosslinking agents or combinations thereof to thepolymer solution28. In one embodiment, the solidifying step includes exposing themold18 containing thepolymer solution28 to a second solvent. In one embodiment where, for example, thepolymer solution28 includes polymer, a drug and a first solvent, the first solvent is soluble in the second solvent, but the polymer and drug component are not soluble in the second solvent. Thus, by exposing thepolymer solution28 to the second solvent, the first solvent is removed from the polymer solution leaving the polymer and the drug product to solidify to form, for example, the film.
In one embodiment, solidifying the polymer solution reduces a thickness of the polymer solution from a first thickness h1to a second thickness h3. In one embodiment, solidifying the polymer solution reduces a thickness of the polymer solution proximate toposts20 from a first thickness h1to a second thickness h4. In one embodiment, the thickness h4of thefilm10 proximate theposts20 is greater than the thickness h1of thefilm10 between theposts20. In one embodiment, thelips14acan be created due to the polymer solution forming a meniscus around each ofposts20 during solidifying of thepolymer solution28 to form thefilm10. In one embodiment, the meniscuses formed about theposts20 define thelips14awhen thepolymer solution28 has solidified. In one embodiment, height h4oflips14amay be controlled by careful selection of the material and geometry of theposts20 or by coating theposts20 with, for example, a lubricious material such as a fluoropolymer or silicone mold release. In one embodiment, the height h4of thelips14ais controlled by the concentration of the polymer solution.
Referring toFIGS. 4C-4E, the material that forms theposts20 can affect the configuration of the solidifiedmeniscus17 between theapertures14 and the contiguousplanar portion15, such as the formation oflips14aaround apertures14. The height of thelips14arelative to the contiguousplanar portion15 is the difference between h4and h3, and can be the result of a meniscus of thepolymer solution28 solidifying around posts20. The meniscus can be defined by the curve in the upper surface of the polymer solution near theposts20 and is caused by surface tension between thepolymer solution28 and the respective posts20. Thepolymer solution28 can have either a convex or concave meniscus at posts20. A concave meniscus, which creates the raisedlips14a, can occur when the molecules of the polymer solution are attracted to the material of the posts20 (commonly known as adhesion) such that the level of the polymer solution is higher around theposts20 than the solution generally. According to one embodiment, as shown inFIG. 4C, theposts20 comprise materials configured to cause a concave meniscus in polymer solution, where h4is greater than h3. Conversely, a convex meniscus occurs when the molecules of the polymer solution have a stronger attraction to each other (commonly known as cohesion) than to the material of theposts20. According to one embodiment, as shown inFIG. 4D, theposts20 comprise materials configured to create a convex meniscus in polymer solution where h3is greater than h4. Thus, it should be appreciated that themeniscuses17 between the contiguousplanar portion15 and theapertures14 can be configured as raisedlips14athat extend out from thesecond surface10bin the manner described above, or can be configured as depressions that are recessed into thesecond surface10balong a direction from thefirst surface10atoward the second surface, from the contiguousplanar portion15 to respective ones of theapertures14. According to a further embodiment as shown inFIG. 4E, theposts20 comprise materials configured to cause minimal to no meniscus (e.g., substantially no meniscus) of the polymer solution, such that where h4is substantially equal to h3at themeniscus17.
Referring toFIG. 10, once thepolymer solution28 is solidified, thefilm10 is peeled out of themold18, such that the meniscuses formed during the casting of thepolymer solution28 define the solidifiedmeniscuses17.
Referring toFIGS. 5-7, a method of producingfilm10 may include an automated or partially automated castingmachine42. In one embodiment, the automated casting apparatus includes one or more computers44 having one or more processors and memory (e.g., one or more nonvolatile storage devices). In some embodiments, memory or computer readable storage medium of memory stores programs, modules and data structures, or a subset thereof for a processor to control and run the various systems and methods disclosed herein. In one embodiment, a computer readable storage medium having stored thereon computer-executable instructions which, when executed by a processor, perform one or more of the methods disclosed herein.
Thefilm10 may be manufactured by alternative methods. In one embodiment, thepolymer solution28 can be cast onto perforated film material with a backing blotter layer, and then the perforated film is removed from the blotter layer, removing the cast solution where there were holes in the casting sheet. One difference with such a process from the above described processes is that, in some embodiments, it does not create a raisedlip14aandapertures14.
In another embodiment,porous films10 may also be formed by a lyophilization or freeze-drying method. In one embodiment, a thin solid film of polymer solution is cast in a mold, then the mold chilled to a temperature below the freezing point of the solution, then placed under vacuum to remove the solvent from the film. In some embodiments, this process will also produce fine pores which are much smaller than theapertures14 described in some of the embodiments above.
In one embodiment, the polymer material used forfilm10 can be a crosslinkable prepolymer liquid and urged or drawn to fill the mold and remove excess material in the manner described above, then crosslinked in place by UV radiation, temperature, a catalyst or other means. In one embodiment, this process could produce a very similar final product as described above, except that the final thickness of thecast film10 can be substantially equal to the depth of the mold, and there would be little or nolip14aaround theapertures14.
In another embodiment, thefilm10 can be produced as a thin porous film in a screen printing process. In one embodiment, a layer of solution is screen printed in the final pattern, then dried. In one embodiment, this produces a much thinner layer, however multiple layers of polymer can be screen printed and dried one on top of the other to build up the desired thickness offilm10, which can define a multi-layered film.
In another embodiment, a similar casting process could be performed as described above using a glass plate with a pattern made from a hydrophobic polymer such as silicone, in the shape of the desired apertures. In one embodiment, when a thin layer of polymer solution is cast onto the plate, the surface tension differences between the glass and the patterned polymer cause the solution to concentrate on the glass surface, and pull away from the patterned hydrophobic polymer surface. In one embodiment, the solution is then dried to form a solid film with apertures in the same pattern as the silicone polymer. In one embodiment, this process could also be performed with a crosslinkable prepolymer liquid as described above.
In another embodiment, a thin porous polymer film is made using a two-sided mold, where the polymer solvent solution is injected into the mold, and chilled to solidify the solution. In one embodiment, the mold is then opened and one side removed, leaving the chilled solution in the cavity side. In one embodiment, the chilled solution side is placed into an oven to dry the polymer solution and form afilm10.
According to one embodiment of the disclosure, the film further comprises an adhesive layer, which is biocompatible, and capable of adhesively fixing at least one surface of the film to another surface (e.g. an outer surface of a medical device). In one embodiment, substantially all of the first or second surface of the film, or both has an adhesive layer. In another embodiment, only a portion of the first or second surface of the film, or both has an adhesive layer, for example along the periphery of the first or second surface or both. The adhesive layer can be formed integrally with the film during the solvent casting process. In such a process the adhesive can be applied to the mold and the polymer solution subsequently cast on top of the adhesive layer. Alternatively, the polymer solution can be cast in the mold first and the adhesive layer applied over the polymer. In certain embodiments, the polymer solution itself can comprise the adhesive layer. Of course, where it is desired to have the adhesive applied to both surfaces of the film, the adhesive layer can be applied in both manners. In still yet another embodiment, the film can be solution cast molded and separately have the adhesive layer applied after removal from the mold, for example by dipping, spraying, or coating the adhesive onto the film.
According to one embodiment where the film contains a surface adhesive layer as previously described, a film storage system, for the storage, packaging and/or shipment of the film can include 1) the film containing an surface adhesive layer, and 2) a non-adhesive backing material (e.g., a strip) that can be placed over the surface adhesive layer to protect and shield the adhesive layer until such time as it is desired to adhesively affix the film to the surface of another object, such as, for example, a surface of a medical device or a tissue such as bone. At such time, a user, preferably a surgeon or nurse, can remove the non-adhesive backing material and apply the film as desired. According to another embodiment where the film contains a surface adhesive layer, a film storage system, for the storage, packaging and/or shipment of the film can include 1) the film containing a surface adhesive layer, and 2) a collector where the film can be collected. For example,film10 can be wound around a collector such as a cylinder and collected and stored in a rolled configuration until such time as it is desired to adhesively affix the film to the surface of a medical device or surface of a tissue. At such time, a user, preferably a surgeon or nurse, can unwind a length of film as identified and cut or otherwise separate the desired length of film from the cylinder and apply the film as desired.
In other embodiments,film10 can be applied to a desired anatomical site and secured at the site without the use of an adhesive layer, or in conjunction with an adhesive layer. For example in certain embodiments, a film fixation system for film fixation at an anatomical site can include 1) a film and 2) a film fixation element where the fixation element securely affixes the film to the anatomical site, preferably securely affixes the film to a medical device at the anatomical site or to a tissue such as a bone or tendon at the anatomical site. According to one embodiment, the fixation element is a screw, pin, wire, suture, staple, glue, or combinations thereof. In addition, the polymer film (with or without an adhesive layer) may be wrapped around the medical device one or more times. It should be appreciated that in certain embodiments as described above, the adhesive layer of the film can function as the film fixation element. According to still another embodiment, the system for film fixation can be further combined with a medical device to provide a system for treatment, for example a system for fracture fixation including 1) an orthopedic medical device and 2) a film fixation system including a film and a film fixation element.
The different possibilities for affixing the polymer film to the medical device or tissue provides a user with flexibility. In certain of these embodiments, the user can size and shape the polymer as desired or needed and can cover all or part of the medical device surface or tissue with the polymer film. For example, one could selectively affix the polymer film to only a bone-facing surface of the implant.
Referring toFIGS. 2 and 11A-11J, after creating thefilm10, thefilm10 can be formed into an active biocompatible implant cover25 configured for placement onto or over a surface of a medical implant. Thebiocompatible implant cover25 can be referred to as active in that it includes one or more active agents of the type described herein, alone or in combination, such that when implanted, the activebiocompatible implant cover25 delivers the one or more active agents. The medical implant can be a bone implant, such as an intramedullary nail or a bone plate, or any alternative medical implant (such as an implant for use in orthopedic and/or musculoskeletal repair), thefilm10 is shaped and fashioned to generally correspond to conform to the shape of at least a portion or substantially all of thebone plate12. In some embodiments, at least onefilm10 is shaped and fashioned into acover25 that can be configured as a sleeve31 (seeFIGS. 11A-I1J and17A-26H) that is configured to receive at least a portion or an entirety of thebone plate12, or a strip that can be adhesively attached to one or more surfaces of thebone plate12. It should be further appreciated that one or more surfaces of thesleeve31 can have adhesive properties so as to adhesively attach to one or more surfaces of thebone plate12.
Referring toFIGS. 11A-11J and 17A-26H in general, thesleeve31 includes at least onefilm10 that defines afirst sleeve portion31aand asecond sleeve portion31bthat is spaced from thefirst sleeve portion31aalong the transverse direction T. Theapertures14 of thefirst sleeve portion31acan be aligned with theapertures14 of thesecond sleeve portion31b, or at least one or more up to all of theapertures14 of thefirst sleeve portion31acan be offset with respect to all others of the apertures of thesecond sleeve portion31balong either or both of the lateral and longitudinal directions. Thefirst sleeve portion31adefines an inner surface35aand anouter surface37aopposite the inner surface35a. Similarly, thesecond sleeve portion31bdefines aninner surface35band anouter surface37bopposite theinner surface35b. Theinner surfaces35aand35bface each other, and theouter surfaces37aand37bface opposite each other.
Either or both of theinner surfaces35aand35bcan be defined by one of thefirst surface10aor thesecond surface10b, and either or both of theouter surfaces37aand37bcan be defined by the other one of thefirst surface10aor thesecond surface10b. It should thus be appreciated that the meniscuses17 (see, e.g.,FIG. 1A) can be disposed at either the inner surface35aor theouter surface37a, and can further be disposed at theinner surface35bor theouter surface37b. In one embodiment, the first andsecond sleeve portions31aand31bare monolithic with each other, such that themeniscuses17 are disposed on either both inner35aand35bor bothouter surfaces37aand37b. Because the at least onefilm10 of thesleeve31 is flexible, thesleeve31 can be iterated between a first closed configuration whereby the first andsecond sleeve portions31aand31b, and in particular theinner surfaces35aand35b, are immediately adjacent each other along the transverse direction T such that thesleeve31 does not define an opening between the first andsecond sleeve portions31aand31b, and a second open configuration whereby thesleeve31 defines anopening33 between the first andsecond sleeve portions31aand31b, and in particular between theinner surfaces35aand35b. Thus, theinner surfaces35aand35bcan be referred to as implant facing, or bone plate facing, surfaces.
Theopening33 defined between the first andsecond sleeve portions31aand31b. Theopening33 can be sized so as to define a height in the transverse direction T and a width in the lateral direction A that is at least equal to, and can be greater than, the respective height and width of thebone plate12 that is received in theopening33. Theopening33 can have a length along the longitudinal direction L that can be equal to, less than, or greater than, the length of thebone plate12 such that theopening33 is sized to receive at least a portion up to all of thebone plate12. Accordingly, each of thesleeve portions31aand31bis configured to cover at least a portion, and up to all, of at least one surface of thebone plate12.
Thesleeve31 can be configured in any manner as desired. For instance, thefilm10 can be created in any manner described herein, and shaped so as to define a shaped film that can correspond to the shape of a preselected bone plate shape that is to be received in the resultingsleeve31. After thefilm10 has been molded, material of the resultingfilm10 can be removed so as to define a first shaped film that can correspond to the shape of a preselected bone plate shape. A second shaped film substantially identical to the first shaped film can be created from thesame film10 that defined the first shaped film, or from aseparate film10. For instance, material can be removed from therespective film10 so as to define the second shaped film. The first and second shapedfilms10 can be positioned adjacent each other such that their respective outer peripheries are aligned along the transverse direction T. At least a portion of the outer peripheries of the first and second films can be attached to each other by any one of the attachment methods of the type described herein so as to define aclosure16, such as an attachment or an alternatively configured closure, such that the first shaped film defines thefirst sleeve portion31aand the second shaped film defines thesecond sleeve portion31b.
Theclosure16 can extend about a portion of theperiphery39 of thesleeve31. For instance, thesleeve31 can define afront end39aand aproximal portion43athat is disposed proximate to thefront end39a, and a rear end that is spaced from thefront end39balong at least the longitudinal direction L (which includes embodiments in which at least a portion of the front andrear ends39aand39bcan further be spaced from each other along the lateral direction A) and defines adistal end43bdisposed proximate to therear end39b. Thesleeve31 can further define first andsecond sides39cand39d, respectively, that are spaced from each other along at least the lateral direction A (which includes embodiments in which at least a portion of the first andsecond sides39cand39dcan further be spaced from each other along the longitudinal direction L). The first andsecond sides39cand39dextend between the front andrear ends39aand39b, for instance from thefront end39ato therear end39b. The ends39aand39bin combination with thesides39cand39dcan define theouter periphery39 of thesleeve31. Theclosure16 can extend about a portion of theouter periphery39 so as to define at least oneopening41 at theouter periphery39 between thefirst sleeve portion31aand thesecond sleeve portion31b. For instance, theclosure16 can extend along a portion or an entirety of therear end39b, a portion or an entirety of one or both of the first andsecond sides39cand39d, and a portion or an entirety of thefront end39a, both alone or in combination. For instance, in one embodiment, the first andsecond sides39cand39dand therear end39bare attached, such that thesleeve31 defines theopening41 at thefront end39a. Alternatively or additionally, thesleeve31 can define a second open end at therear end39b. Alternatively or additionally, the sleeve can define a third or fourth opening at one or both of thesides39cand39d, respectively. One or more of the first, second, third, and fourth openings can be continuous with each other.
When thesleeve31 is in the open configuration, theopening41 can be dimensioned such that thebone plate12 can be inserted into, and removed from if desired, theopening41 and into and out of theopening33. Alternatively, thebone plate12 can be placed between the first andsecond sleeve portions31aand31b, and a substantial entirety of the periphery of thesleeve31 can define theclosure16, such that thebone plate12 is disposed in theopening33 and substantially encapsulated by the sleeve so as to be non-removable from the film, meaning that thesleeve31 does not define an opening at theouter periphery39 that is sized sufficiently for thebone plate12 to be removed from thesleeve31 without breaching either of thesleeve portions31aand31bor theclosure16. It should be appreciated that when thebone plate12 is disposed in the opening, the first andsecond sleeve portions31aand31bcover at least a portion of respective opposed surfaces of thebone plate12.
In accordance with one embodiment, either or both of theouter periphery39 of thesleeve31 and an outer periphery of theopening33, such as can be defined by the inner periphery of theclosure16 or other closure, can extend parallel to an outer periphery of thebone plate12, such that thesleeve31 can define a sheath. Thus, it should be appreciated that the closure has an inner boundary that defines an outer periphery of theopening33, and at least a portion up to all of the inner boundary can be parallel to theouter periphery39 of thesleeve31. It should be appreciated that the at least onefilm10 can be shaped in any suitable manner as desired so as to define thesleeve31. For instance, as described, two shaped films can be adjoined to define the first and second portions of thesleeve31aand31b. The first and second shaped films can be produced by cutting a respective one or two moldedfilms10. Alternatively, the cavity of the mold can be shaped so as to define theouter periphery39 of thesleeve31, and the as-molded film can be removed from the mold and thus define the shaped film. Alternatively still, thefilms10 can be attached in the manner described herein such that the inner periphery of theclosure16 is sized and shaped such that the resultingopening33 is sized to receive a plurality of differently shapedbone plates12 and the inner periphery of theclosure16 does not extend parallel to the outer periphery of thebone plate12.
As described above, thesleeve31 can include aclosure16, such as an attachment or alternatively configured closure as desired. For instance, asingle film10, which can be shaped as desired, can be folded about itself along a fold, such that the film defines the first andsecond portions31aand31bof thesleeve31 that are separated from each other by the fold. Thus, the fold can be said to define a closure at a portion of theouter periphery39 of thesleeve31. The fold can be disposed, for instance at a midline of thefilm10, such that thefilm10 defines two symmetrical regions separated from each other by the fold. The fold can define a fold line, or thefilm10 may be shaped into a cylinder and the two opposed edges of the film that are opposite the fold can, in combination, define one of the sides of thesleeve31. Resulting open portions of theouter periphery39 of thesleeve31 can be left open as desired, or closed, for instance attached in the manner disclosed above. Thus, the foldedfilm10 can be at least partially attached to itself. For instance, the free ends of thefilm10 can be attached to each other so as to define an attachment at one of the first and second sides31cand31dof thesleeve31, and the fold can define the other of the first and second sides31cand31d. Thus, thesleeve31 can include aclosure16 at both the first and second sides31cand31d. In one embodiment, thesecond surface10boverlaps thefirst surface10aat the opposed edges of thefilm10 such that thefirst surface10adefines the inner sleeve surfaces35aand35bat the opposed edges of thefilm10 so as to define at a least a region of theclosure16 when the opposed edges of thefilm10 are attached to each other. Alternatively, thefirst surface10aoverlaps thesecond surface10bat the opposed edges of thefilm10 such that thesecond surface10adefines the inner sleeve surfaces35aand35bat the opposed edges of thefilm10 so as to define a least a region of theclosure16 when the opposed edges of thefilm10 are attached to each other. The two symmetrical regions of thefilm10 can be shaped so as to correspond to the preselected bone plate shape, for instance by removing material of thefilm10 or by contouring the mold cavity in the manner described above.
It should be appreciated that in some embodiments, theclosure16, such as the attachment, can be visible through at least one of the first andsecond sleeve portions31aand31bas illustrated inFIGS. 11A, 11B, 11D, and 11E, or can be hidden by the first andsecond sleeve portions31aand31b, for instance as illustrated inFIGS. 11C and 11F-11J. Accordingly, those embodiments in which theclosure16, such as the attachment, is visible can be constructed such that theclosure16, such as the attachment, is hidden, and thus the outer periphery can be illustrated as shown inFIGS. 11C and 11F-11J. Conversely, those embodiments in which theclosure16, such as the attachment, is hidden can be constructed such that the closure, such as the attachment, is visible, and thus theouter periphery39 can be illustrated as shown inFIGS. 11A, 11B, 11D, and 11E.
Referring now toFIGS. 11A-11J andFIGS. 17A-26H, thesleeve31 can define any suitable size and shape as desired. For instance, thesleeve31 can be constructed as any suitable sized and shaped sheath as desired that is configured to form fit the bone that is to be received in the respective opening (such that the inner periphery of theclosure16 is substantially parallel to the outer periphery of the bone plate12). As illustrated inFIGS. 11A-11C and 17A-19H, thesleeve31 can define a cross-sectional dimension at theproximal portion43aalong the lateral direction A that is greater than the cross-sectional dimension of thesleeve31 at thedistal portion43balong the lateral direction A. For instance, at least one of the sides31cand31dcan define a flaredregion45 that extends laterally out from an adjacent region of the respective side as it extends along a direction from therear end39btoward thefront end39a, and thus is flared along the lateral direction A away from the opposed side with respect to the adjacent region of the respective side as it extends along a direction from therear end39btoward thefront end39a. The flaredregion45 of one of the sides31cand31dcan extend laterally out further or an equal amount (seeFIGS. 11H, 11I and 24A-25H), with respect to the flaredregion45 of the opposed side. Further, the flaredregion45 of one of the sides31cand31dcan define the same shape (seeFIGS. 11H, 11I and 24A-25H) or a different shape with respect to the flaredregion45 of the opposed side. In accordance with the illustrated embodiment atFIGS. 11A and 17A-H, the flaredregion45 at thesecond side39dextends laterally out further than the flared region at thefirst side39c. Thus, it should be appreciated that a portion of thefront end39ais offset with respect to therear end39balong the lateral direction. Either or both of thefront end39aand therear end39bcan be curved (e.g., convex as illustrated or concave as desired) or straight as desired in all embodiments, unless otherwise indicated. In accordance with the illustrated embodiment atFIGS. 11B, 11C, 18A-18H, and 19A-19H, thesecond side39dincludes the flaredregion45 and thefirst side39cis linear from thefront end39ato therear end39b. Referring now toFIGS. 11D-11G and 20A-23H, both the first andsecond sides39cand39dcan extend linearly and parallel to each other from thefront end39ato therear end39b. Therear end39bcan be curved or straight as desired. The length of thesleeve31 can be any dimension as desired from thefront end39ato therear end39balong the longitudinal direction L. Similarly, the width of thesleeve31 can be any dimension as desired from thefirst side39cto thesecond side39dalong the lateral direction A. Referring toFIGS. 11J and 26A-H, the flaredregion45 at one of thesides39cand39dcan extend laterally inward toward the other one of thesides39cand39d, and the flaredregion45 at the other one of thesides39 can extend laterally outward. For instance, as illustrated, theproximal end43aof thefirst side39ccan extend laterally inward toward the second side along a direction from therear end39btoward thefront end39a. Theproximal end43aof thesecond side39dcan extend laterally outward away from thefirst side39calong a direction from therear end39btoward thefront end39a. Moreover, the flaredregion45 can extend to a location spaced from thefront end39aalong a direction from thefront end39atoward therear end39b, such that a length of theproximal portion43athat extends between the flared region43 and thefront end39aextends parallel to an adjacent region of the respective side, such asside39d, that is disposed adjacent the flaredregion45.
As described above, the activebiocompatible implant cover25 can be configured as a sleeve, such as any sized or shapedsleeve31 as desired, which can define a sheath, or theimplant cover25 can be alternatively configured as desired. For instance, theimplant cover25 can be configured as one or more strips of thefilm10 that are configured to overlay at least a portion of one or more surfaces of thebone plate12. The strips can be shaped as described above such that the outer periphery of the strips is substantially aligned with, or parallel to, the outer periphery of thebone plate12, or can be sized greater than thebone plate12 or less than thebone plate12. Thus, the strips can define any size and shape as desired, for instance the shapes as illustrated inFIGS. 11A-11J andFIGS. 17A-26H with respect to thesleeve31, or any alternative shape as desired. The strips can further be sized greater than the sizes of thesleeves31 illustrated inFIGS. 11A-11J andFIGS. 17A-26H, or less than the sizes of thesleeves31 as illustrated inFIGS. 11A-11J andFIGS. 17A-26H. Thus, one or more of the strips can be placed along a portion up to all of the bone facing surface of thebone plate12, a portion up to all of the outer surface of thebone plate12 that is opposite the bone facing surface, or both. The strip can define an inner surface that faces thebone plate12, and an outer surface that faces away from thebone plate12. The inner surface of the strip can be defined by thefirst surface10aor thesecond surface10b. Conversely, the outer surface of the strip can be defined by thefirst surface10aor thesecond surface10b.
In one embodiment, the strips can be sized so as to wrap around thebone plate12, for instance at least one-half of a revolution about thebone plate12 such that the strip overlays at least a portion of the bone facing and outer surfaces of thebone plate12. The strip can be wrapped around thebone plate12, as many full revolutions as desired until the strip overlays a sufficient area of one or both of the bone facing and outer surfaces of thebone plate12 as desired. The strip can be dimensioned as desired, for instance by removing material from the as-moldedfilm10, or by contouring the mold cavity to define a desired size and shape of the strip.
As described herein, at least a portion offilm10 orfilms10 can be attached to each other by attachment methods to define aclosure16, such as an attachment. In certain embodiments, the attachment can be defined by attachment components, such as a seam, glue, sutures, staples, pins, wires, screws, heat, ultraviolet light, or a combination thereof that attach a first region of film to a second region of film that overlaps the first region of film, for instance along the transverse direction T. Accordingly, two regions of the same film or two separate films may be attached to form asleeve31. For example, first andsecond films10 can be positioned adjacent each other such that a first region of film, which can be defined by thefirst film10, overlaps with a second region of film, which can be defined by thesecond film10. The first and second regions of film can overlap along any direction as desired, such as the transverse direction T. The overlapping first and second regions of film can be attached to each other with one of the attachment components. Alternatively, asingle film10 can be formed into a sleeve by folding thefilm10 so as to at least partially define aclosure16, and contouring the single film such that free ends overlap. Thus, the free ends of thesingle film10 can define the first and second overlapping regions of film. The overlapping first and second regions of film, whether monolithic with each other and defined by thesame film10, or defined bydifferent films10, can be attached to each other by applying any of the above described attachment components to one or both of the first and second overlapping regions of film so as to at least partially define aclosure16. For instance, a glue can be applied along one or both surfaces of the overlapping first and second regions of film that face each other, and the surfaces can be brought against each other and/or the glue. In another embodiment, the attachment can be defined by applying heat and/or pressure to the first and second overlapping regions until the regions of film begin to soften (or melt) and integrate with one another, and subsequently allowing the portions to re-solidify. In addition, multi-film sleeves and strips may be prepared by attaching two separate films that are immediately adjacent each other, for instance in the transverse direction T.
In addition tosleeves31,film10 may be used, in some embodiments, for other medical applications such as hernia repair mesh, adhesion barrier, soft tissue augmentation, filtration membranes, drug delivery membranes, bone graft containment (e.g., for maintaining bone graft in place for example in a spinal fusion procedure, or segmental defect grafting in a long bone), or wound care products such as bandages.
The polymer film may be used at any surgical site susceptible to microbial infection. Such methods can be used with any polymer film embodiment and/or combination of embodiments disclosed herein. Typically, the methods comprise identifying a surgical site in need of microbial inhibition and contacting the surgical site with a polymer film comprising an active agent. The methods may also involve identifying a zone at a surgical site or on a medical implant needing microbial inhibition (zone of inhibition), contacting the medical implant with the polymer film, and implanting the medical implant at the surgical site. In certain embodiments, the polymer film is used in conjunction with medical implants comprised of material that is susceptible to bacterial colonization, for example, implants comprising metal.
The polymer film may be used in conjunction with metal bone plates to be implanted at fracture sites in the extremities, particularly the lower extremities, such as fractures associated with the femur, fibula, and tibia. Following implantation, the bacterial growth at the surgical site may be monitored to determine the effectiveness of the treatment.
The implant may be contacted with the film in any manner as described herein. For example, the film may be in the form of an implant cover configured for placement onto or over a surface of a medical implant. In the case of a sleeve, the polymer film is slipped over at least a portion of the implant. As described herein, the sleeve can include at least one open end, and in certain embodiments two open ends. Alternatively, the polymer film may be adhered or affixed to the implant via adhesive or fixation devices such as sutures, screws, or other types of fasteners. Typically, a doctor will select an implant with the proper contour, such as a bone plate, to treat the bone fracture at issue. In the case of percutaneous procedures, and before implant fixation, a cavity within the soft tissue may be prepared to reduce the stresses on the polymer film during implant insertion.
The contacting of the polymer film and implant is typically done at or near the time of surgery, i.e., intraoperatively, such that the surgeon can match the polymer film with the medical implant to be contacted based on size and shape and the drug requirements for the subject patient. If the implant is in the form of a sleeve, the sleeve may be applied by opening it and inserting the implant, such as a bone plate, until the anatomic portion of the plate is seated in the sleeve. The sleeve may cover the entire implant or a portion of the implant. For example, the sleeve may be trimmed and/or folded to conform to the implant as desired. Prior to instrumentation attachment or screw/fastener insertion of the medical implant at the surgical site, the polymer film may be pierced through the holes in the implant that will be used during final implant fixation. This will provide an unimpeded path for the screw/fastener through the polymer film. The implant may then be affixed using standard surgical procedures.
Total drug dosing of the polymer film is a function of the size of the implant as well as surgical need. In one embodiment, the polymer film contains approximately 0.6 mg of gentamicin sulfate per square centimeter of surface area. The total dose of drug delivered depends on the size of the polymer film and the implant it is designed to contact. In certain embodiments, a surgeon will determine the amount of antibiotic that is needed at a surgical site of a particular patient. The polymer film may then be manipulated to meet the delivery need. For example, if the patient requires more antibiotic than is available in a single polymer film, multiple polymer films may be used and/or longer or otherwise larger films may be selected. To the extent the polymer film is in the form of a sleeve, an implant may be fitted with multiple sleeves. If the patient requires less antibiotic, the polymer film may be reduced by, e.g., cutting or trimming. As indicated herein, the surgeon may determine an appropriate zone of inhibition that will prevent bacterial colonization on an implant even if the polymer film is not contacting the entire surface area of the implant, such that cutting or trimming the polymer film may reduce the overall drug load, but not reduce the effectiveness of the anti-microbial treatment.
In one embodiment, there is an initial release of 20% of the drug content in the film within one hour of implantation. This is followed by a sustained release of the remaining drug content for approximately 7 to 10 days. The polymer film itself is completely degraded by hydrolysis and absorbed by the body within 60-90 days of implantation.
In the case of gentamicin, gentamicin-related nephrotoxicity is related to duration of treatment, and is typically transient although full functional recovery may not occur for several months after therapy stops. Nephrotoxicity is also related to plasma gentamicin levels, with recommended trough levels not to exceed 2.0 μg/ml. Peak plasma gentamicin levels released from the polymer film have been found to be well below this level in sheep studies, including in the range of 0.1 μg/ml. Local administration of gentamicin may be particularly advantageous as compared to systemic antibiotic treatments. According to one embodiment, local delivery of gentamicin provides a higher concentration of antibiotic at a surgical site than a comparable standard of care amount of systemic antibiotic treatment, thus permitting a higher potential for eliminating bacterial growth at the site. According to another embodiment, local delivery of gentamicin provides a lower plasma concentration than a comparable standard of care amount of systemic antibiotic treatment, thus potentially reducing potential adverse effects, for example nephrotoxicity, that can result from systemic antibiotic treatments. Thus, local delivery provides an opportunity to deliver higher concentration of antibiotics with an overall smaller quantity than systemic treatments.
In one embodiment, the method of inhibiting microbial infection at a surgical site comprises contacting a medical implant with a polymer film of the present disclosure at or near the time of surgery, wherein the film comprises a drug component having a particle size of 10 microns or less, and implanting the medical implant at the surgical site. As described herein, with respect to bacteria, the polymer film is able to produce a 5 to 7-log reduction of colony forming units.
In more particular embodiments of the method, the polymer film is in the form of a sleeve and comprises a bioresorbable film comprising a copolymer of glycolide, trimethylene carbonate, lactide and caprolactone, the active agent is gentamicin sulfate, and the surgical site is a bone fracture site of the lower extremities, such as the tibia.
Example 1Film preparation: Films were produced from a copolymer of approximately: 70% glycolic acid, 17% caprolactone, 5% lactic acid and 8% trimethylene carbonate (US Surgical, North Haven, Conn.). This copolymer was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 20% by weight, and either cast as a thin film onto a 20 cm×20 cm glass plate, or mixed with 5% or 10% gentamicin sulfate and then cast. Cast films were dried in air at 60° C. for a minimum of 12 hours to remove solvent, then removed from the glass plate and stored under vacuum for further testing. Finished films had a thickness of 0.06±0.01 mm.
Tensile testing: 10 mm×80 mm strips cut from the cast films were tested in tension to failure on an Instron test stand (model 3342) at 20 mm/sec, dry and at room temperature, per ASTM D882. Initial yield stress of the films tested at t=0 are shown inFIG. 12 and the elongation of the films at yield are shown inFIG. 13. Incorporation of gentamicin sulfate into the films results in a minor decrease in tensile strength and elasticity.
Drug release testing: 19 mm diameter disk samples cut from cast films (5% & 10% gentamicin) were placed in PBS at 37° C. Concentration of gentamicin in solution was measured at 15 min, 30 min, 1 hr, 2 hr, 4 hr, 6 hr, 1 d, 2 d, 4 d, 7 d and weekly up to 12 weeks, using fluorescence polarization immunoassay technique (TDxFLx, Abbott Laboratories). Results are shown inFIG. 14.
In-vitro degradation: 19 mm diameter disk samples cut from cast films (plain, 5% gentamicin, 10% gentamicin) were weighed and placed into vials containing phosphate buffered saline solution (PBS) at 37° C. for 1 d, 4 d, 7 d and weekly up to 10 weeks. Fresh PBS was changed weekly and the pH was monitored. At test times, the samples were removed from the solution, freeze dried, and weighed. The inherent viscosity of each sample was also measured by dilute solution viscosity (Cannon-Ubbelhode semi micro viscometer, in HFIP at 25° C.). In-vitro degradation of all polymer films proceeded at a similar rate, regardless of the level of incorporated gentamicin, as shown inFIG. 15. Molecular weight of the polymer as measured by inherent viscosity dropped rapidly within the first 7 days in-vitro, then at a slower rate, as shown inFIG. 16.
Example 2In one exemplary embodiment, implants were tested by implantation in sheep. The implants were metal plates with tubular, thin (0.05-0.08 mm), transparent polymer sleeves carefully slipped over the metal plates just before they were surgically inserted and attached to the bone. The sleeves had a tight fit, covered the metal plates completely over the entire length, although they were open at both ends of the plates. The sleeves were comprised of a synthetic copolyester (glycolide, caprolactone, trimethylenecarbonate, lactide) with aperture holes of 1.5 mm diameter equally spaced throughout. One group of sleeves contained triclosan (2,4,4□-trichloro-2□-hydroxydiphenyl ether) at a concentration of 1%, one group of sleeves contained gentamicin at a concentration of 10%, and one group of sleeves contained a combination of both triclosan (1%) and gentamicin (10%). The concentration of gentamicin and Triclosan were chosen based on in vitro testing to determine the therapeutic window for each compound.
The hydrophobic triclosan was in complete solution within the polymer, in contrast to the hydrophilic gentamicin, which remained suspended as 10-20 μm small particles. In vitro testing has shown that due to its poor water solubility, triclosan is released from these films only slowly over a to 3 weeks period, with minimal initial burst release.
Approximately 50% of the more water soluble gentamicin which is exposed to the surface of the sleeves was released into the adjacent tissue within 24 hours after insertion. The remaining gentamicin encapsulated in the depth of the polymer dissolves more slowly and was released over a 2 to 3 week period after implantation. The polymer was designed to degrade through hydrolysis within 60 days after surgery.
The sleeves with or without antimicrobial agents were proven biocompatible, with minimal effect on soft tissue and bone healing and not corrosive to the metallic implants. Additional details of the experiment can be found in Vet Surg. 2012 Jan. 12.Biodegradable Sleeves for Metal Implants to Prevent Implant-Associated Infection: An Experimental In Vivo Study in Sheep. von Plocki S C, Armbruster D, Klein K, Kampf K, Zlinszky K, Hilbe M, Kronen P, Gruskin E, von Rechenberg B., which is hereby incorporated by reference in its entirety.
Example 3In one exemplary embodiment,film10 is manufactured by the following method:
Determination of Gentamicin Moisture Content:
The moisture content of gentamicin sulfate powder is measured by a loss on drying method. Approximately 0.5 grams of gentamicin is weighed in a glass jar, then heated under vacuum to 110° C. for 3 hours and weighed a second time. The weight loss is recorded as the moisture content, which is used to calculate the percent moisture.
Solution Mixing:
14.69 grams of gentamicin sulfate powder is weighed, compensating for the percent moisture content as calculated above. This is mixed into 400 g of DMSO solvent in a 1 L vessel, using a paddle mixer. The mixture is stirred for 30 minutes until the gentamicin is uniformly distributed. 100 g of a copolymer containing glycolic acid, caprolactone, lactic acid, and trimethylene carbonate monomers is added to the suspension, and the mixing vessel is heated to 65° C. Mixing is continued for 2 hours until the polymer is completely dissolved into the solution, then the solution temperature is reduced to 55° C.
Film Casting & Solvent Drying:
A casting mold and drawing blade made from high density polyethylene are used to cast thin perforated films from the polymer solution. The casting mold and drawing blade are pre-cleaned using an alkaline detergent solution and loaded into an automated CNC casting fixture. 15 ml of the polymer solution are drawn up in a polypropylene syringe, which is loaded into the casting fixture. The casting fixture automatically dispenses the solution onto the casting mold, and draws the blade across the surface of the mold. The mold filled with polymer solution is placed into a solvent drying oven at 85° C. for approximately 90 minutes to dry the film. The molds are removed from the drying oven and the films are peeled from the molds within 2 minutes.
Sleeve Sealing:
An impulse heat sealing press with specially shaped dies is used to seal and cut the cast film into the shape of a sleeve. Two cast films are placed into the press, and the press is closed with a pressure of 80 psi and heated to 200° C. for 4 seconds. The sleeves are removed from the excess film material and cut to the appropriate length. Sealed sleeves can be dried under vacuum at 50° C. and sealed in moisture barrier packaging to prevent degradation of the bioresorbable polymer.
Example 4In vitro studies have been conducted to evaluate the effectiveness of a gentamicin containing resorbable polymer film to prevent colonization of metal implants by common bacterial pathogens. Colonization assays using agar to simulate soft tissue coverage of stainless steel and titanium fracture fixation plates have shown that the film is effective in preventing bacterial colonization of the metallic implants byStaphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosaandEnterobacter cloacae. These data represent at least a 5 to 6-log reduction in bacterial counts compared to metallic implants with no film (control).
In time to kill assays, stainless steel plates were inoculated with bacteria. The gentamicin sulfate containing film was then placed on the plate and the number of surviving bacteria were measured at different time points. Time to kill data for target bacteria are shown below. The gentamicin film was effective to produce a 5 to 7-log reduction in bacterial colonization—measured as “colony forming units” (CFU)—by all Gram positive (shown in blue:Staphylococcus aureus(MSSA),Staphylococcus aureus(MRSA),Staphylococcus aureus(MDR) andStaphylococcus epidermidis) and Gram negative (shown in green:Pseudomonas aeruginosa, Enterobacter cloacae, andAcinetobacter baumannii) target bacteria, except for a multi-drug resistant strain ofS. aureus, and the anaerobeP. acnes, both of which are typically gentamicin resistant.FIG. 27 illustrates the effectiveness of the gentamicin sulfate containing film in preventing colonization of stainless steel in vitro (various bacteria per ISO 22916)
Example 5The objective was to measure the zone of inhibition of a gentamicin film. Testing was performed with 4 different species of bacteria.
Samples
6 mm punches of the gentamicin film (0.1%, 0.5%, 1.0%, 5.0%, and 13% gentamicin sulfate, anhydrous) (the 13% gentamicin film was tested separately from the other gentamicin films and the data was separately collected and produced)
Controls
blank filter disk w/ 120 ug Gentamicin in 30 ul dPBS; blank filter disk in 30 ul dPBS
Bacteria
S. aureusATCC 25923;S. epidermidisATCC 12228;Pseudomonas aeruginosaATCC 10145;Enterobacter cloacaeATCC 29941
Materials & Instrument
Glass culture tubes (VWR #: 89001-480); Blank Disks, 6.35 mm diameter (VWR#: 90002-114); 6 mm Disposable Biopsy Punches (VWR#: 21909-144); Mueller Hinton agar dishes (VWR #: 100219-188); 0.5 McFarland turbidity standard (VWR #: 29447-318); dPBS (VWR #: 12001-664); Cotton swabs; Incubator; Thermometer; Bacterial hood
Experimental Method
Add colonies from an agar dish which was incubated o/n at 36° C. to dPBS.
Adjust turbidity with dPBS to 0.5 McFarland Standard equivalent.
Within 15 minutes of adjusting turbidity, dip a sterile cotton swab into the dPBS. Swirl the swab in this tube and when removing the swab, press it into the side of the tube above the liquid.
Inoculate Mueller-Hinton agar plates by streaking once down the middle of the plate. Then streak the swab all over the plate; rotate 2×'s˜60° each time. After streaking the entire plate, streak the swab around the rim of the plate.
Place filter disks/punches onto the dish.
Place in the 36° C. incubator within 15 minutes inoculating dish.
Incubate 16-18 hours.
Measure ZOI in millimeters using slide caliper (ZOI was measured a linear distance measured through the center point of the disk).FIG. 28 illustrates the minimum effective concentration and measured ZOI.
| | | S. | P. |
| S. aureus | E. cloacae | epidermidis | aeruginosa |
| |
| Blank | 0.00 | 0.00 | 0.00 | 0.00 |
| 120 ug gentamicin | 30.5 | 22.4 | 34.9 | 26.7 |
| 5% gentamicin | 21.2 | 17.4 | 27.2 | 12.9 |
| 1% gentamicin | 15.1 | 12.3 | 19.8 | 0.0 |
| 0.5% gentamicin | 13.4 | 10.0 | 15.7 | 0.0 |
| 0.1% gentamicin | 0.0 | 0.0 | 6.7 | 0.0 |
|
| | | S. | P. |
| S. aureus | E. cloacae | epidermidis | aeruginosa |
| |
| Blank | 0.00 | 0.00 | 0.00 | 0.00 |
| 120 ug gentamicin | 28.73 | 25.27 | 31.37 | 24.90 |
| 13% gentamicin | 25.80 | 22.40 | 29.87 | 20.33 |
|
Example 6In order to evaluate the effectiveness of a gentamicin sulfate containing polymer film to prevent bacterial colonization, stainless steel fracture fixation plates were covered with gentamicin sulfate containing polymer films in the form of sleeves or sleeves that were too short to cover the full plate, i.e., only half of the plate (5.5 cm of the 11 cm long plate) was covered. These plates were inoculated with bacteria and evaluated for antimicrobial activity in a 3-dimensional agar assay which simulates soft tissue coverage Four common pathogens (P. aeruginosa, S. aureus, E. cloacae, andS. epidermidis) were evaluated, and the gentamicin sulfate containing polymer film (13% by weight gentamicin) effectively prevented colonization of the steel plates, even those surfaces of the plates not covered by the polymer film (5 to 6 log reduction in CFU relative to controls).FIG. 29 illustrates the measured zone of inhibition for the various bacteria.
It will be appreciated by those skilled in the art that changes could be made to the exemplary embodiments shown and described above without departing from the broad inventive concept thereof. It is understood, therefore, that this disclosure is not limited to the exemplary embodiments shown and described, but it is intended to cover modifications within the spirit and scope of the present disclosure as defined by the claims. For example, specific features of the exemplary embodiments may or may not be part of the claimed invention and features of the disclosed embodiments may be combined. Unless specifically set forth herein, the terms “a”. “an” and “the” are not limited to one element but instead should be read as meaning “at least one”.
It is to be understood that at least some of the figures and descriptions of the invention have been simplified to focus on elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements that those of ordinary skill in the art will appreciate may also comprise a portion of the invention. However, because such elements are well known in the art, and because they do not necessarily facilitate a better understanding of the invention, a description of such elements is not provided herein.
Further, to the extent that the method does not rely on the particular order of steps set forth herein, the particular order of the steps should not be construed as limitation on the claims. Further, it should be appreciated that method steps of all embodiments can be incorporated into the method steps of any other embodiment described herein unless otherwise indicated, and structural features of all embodiments can be incorporated into all other embodiments unless otherwise indicated. The claims directed to the method of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the steps may be varied and still remain within the spirit and scope of the present invention.