CROSS-REFERENCE TO RELATED APPLICATIONSThis application is a continuation of and claims priority to co-pending U.S. application Ser. No. 13/886,543, filed May 3, 2013, which is incorporated herein by reference in its entirety.
FIELDAspects described herein generally relate to image analysis. More specifically, various aspects provide techniques for automatically detecting content depicted in an image file and automatically performing an action based on the detected image.
BACKGROUNDMobile devices have become essential business tools. Even when a user uses his or her mobile device for commercial or business use, the devices are increasingly owned by the user rather than being owned by an employer. One of the ways in which mobile devices are used is as a tool in meetings to capture the results of collaboration on a whiteboard or flipchart by taking a photograph using a built in camera on the mobile device to take a photo of the information. Such information may belong to or be owned by the employer, regardless of the fact that the photo may be stored in the user's mobile device photo gallery along with other images for that user, which may include family photos and other personal imagery. An image depicting employer owned information may be referred to herein as a “work product image.”
When an employee leaves a company, the employee is often required to return any company owned intellectual property (IP) before leaving. This may include work product images. However, there is no way for the company or employer to delete (wipe) the work product images from the user's device without wiping the whole photo or image gallery. Wiping the entire gallery, however, will remove all the user's photos, both personal and corporate.
BRIEF SUMMARYThe following presents a simplified summary of various aspects described herein. This summary is not an extensive overview, and is not intended to identify key or critical elements or to delineate the scope of the claims. The following summary merely presents some concepts in a simplified form as an introductory prelude to the more detailed description provided below.
To overcome limitations in the prior art described above, and to overcome other limitations that will be apparent upon reading and understanding the present specification, aspects described herein are directed to techniques for processing images stored on a mobile device to classify the content of each image and to identify certain types of images as potential corporate property. Images classified as corporate property may subsequently be managed differently from images not classified as corporate property. Stated differently, aspects described herein selectively identify and control imagery depicting company (non-personal) information when those images are mixed in with user owned non-corporate (personal) content.
Various aspects described herein provide methods, systems and apparatuses that allow for the analysis and management of work product images. According to one or more aspects, the analysis and management of the work product may include registering a mobile device with an enterprise resource or enterprise service provided by an enterprise; installing an image manager on the mobile device; and executing the image manager on the mobile device.
The image manager may be configured to perform various functions including, for example, selecting a first image stored on the mobile device; processing the first image to identify one or more elements present in the first image; determining that the first image is a work product image based on the one or more elements present in the first image; responsive to determining that the first image is a work product image, storing a copy of the first image to a work product image backup location and editing the first image to prevent unauthorized viewing of the first image on the mobile device; determining that an action has occurred, such as one that indicates a user of the mobile device is no longer employed by the enterprise; and responsive to determining that the action has occurred, performing a deletion of work product images from the mobile device, which includes deleting the first image from the mobile device. In some arrangements, other images, such as those determined to be non-work product images may be ignored during the deletion of the work product images.
Other aspects relate to the image manager performing user actions based on restricted image security. For example, an image manager may remove the restricted image security from a work product image when a user views or opens the work product image. An image manager may also reapply the restricted image security to a work product image when a user closes the work product image.
Further aspects may relate to how a work product image is determined. For example, determining whether an image is a work product image may be dependent on the elements present in the image. In some variations, the presence of whiteboards, charts (e.g., a flipchart), hand drawn writing, hand drawn graphs, or machine readable codes (e.g., quick recognition codes or bar codes) may be used to determine whether an image is a work product image.
BRIEF DESCRIPTION OF THE DRAWINGSA more complete understanding of aspects described herein and the advantages thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features, and wherein:
FIG. 1 depicts an illustrative computer system architecture that may be used in accordance with one or more illustrative aspects described herein.
FIG. 2 depicts an illustrative remote-access system architecture that may be used in accordance with one or more illustrative aspects described herein.
FIG. 3 depicts an illustrative virtualized (hypervisor) system architecture that may be used in accordance with one or more illustrative aspects described herein.
FIG. 4 depicts an illustrative cloud-based system architecture that may be used in accordance with one or more illustrative aspects described herein.
FIG. 5 depicts an illustrative enterprise mobility management system.
FIG. 6 depicts another illustrative enterprise mobility management system.
FIG. 7 depicts a method for analyzing and managing images in accordance with one or more illustrative aspects described herein.
FIG. 8 depicts various elements that may be present in an image according to various aspects described herein.
FIG. 9 depicts an example image with restricted image security according to one or more illustrative aspects described herein.
DETAILED DESCRIPTIONIn the following description of the various embodiments, reference is made to the accompanying drawings identified above and which form a part hereof, and in which is shown by way of illustration various embodiments in which aspects described herein may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope described herein. Various aspects are capable of other embodiments and of being practiced or being carried out in various different ways.
As a general introduction to the subject matter described in more detail below, aspects described herein provide systems, methods and apparatuses that allow an enterprise to analyze and manage work product images that are stored on a mobile device. Employees of an enterprise may use a mobile device to store both work product images (e.g., images of sensitive or proprietary information) and non-work product images (e.g., personal images). An enterprise may desire to enforce security protocols on the work product images, but the employee may not want the security protocols applied to the non-work product images. In some embodiments, by installing and executing an image manager that is able to analyze and manage images, the enterprise can enforce security protocols on only the work product images. Such security protocols may include the prevention of unauthorized viewing of the work product image (e.g., by encrypting the work product image) or deleting any work product image from the mobile device when the employee's employment has ended (but ignoring the non-work product images that are stored on the mobile device).
It is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. Rather, the phrases and terms used herein are to be given their broadest interpretation and meaning. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. The use of the terms “mounted,” “connected,” “coupled,” “positioned,” “engaged” and similar terms, is meant to include both direct and indirect mounting, connecting, coupling, positioning and engaging.
Computing Architecture
Computer software, hardware, and networks may be utilized in a variety of different system environments, including standalone, networked, remote-access (aka, remote desktop), virtualized, and/or cloud-based environments, among others.FIG. 1 illustrates one example of a system architecture and data processing device that may be used to implement one or more illustrative aspects of the invention in a standalone and/or networked environment.Various network nodes103,105,107, and109 may be interconnected via a wide area network (WAN)101, such as the Internet. Other networks may also or alternatively be used, including private intranets, corporate networks, LANs, metropolitan area networks (MAN) wireless networks, personal networks (PAN), and the like. Network101 is for illustration purposes and may be replaced with fewer or additional computer networks. A local area network (LAN) may have one or more of any known LAN topology and may use one or more of a variety of different protocols, such as Ethernet.Devices103,105,107,109 and other devices (not shown) may be connected to one or more of the networks via twisted pair wires, coaxial cable, fiber optics, radio waves or other communication media.
The term “network” as used herein and depicted in the drawings refers not only to systems in which remote storage devices are coupled together via one or more communication paths, but also to stand-alone devices that may be coupled, from time to time, to such systems that have storage capability. Consequently, the term “network” includes not only a “physical network” but also a “content network,” which is comprised of the data—attributable to a single entity—which resides across all physical networks.
The components may includedata server103,web server105, andclient computers107,109.Data server103 provides overall access, control and administration of databases and control software for performing one or more illustrative aspects of the invention as described herein.Data server103 may be connected toweb server105 through which users interact with and obtain data as requested. Alternatively,data server103 may act as a web server itself and be directly connected to the Internet.Data server103 may be connected toweb server105 through the network101 (e.g., the Internet), via direct or indirect connection, or via some other network. Users may interact with thedata server103 usingremote computers107,109, e.g., using a web browser to connect to thedata server103 via one or more externally exposed web sites hosted byweb server105.Client computers107,109 may be used in concert withdata server103 to access data stored therein, or may be used for other purposes. For example, from client device107 a user may accessweb server105 using an Internet browser, as is known in the art, or by executing a software application that communicates withweb server105 and/ordata server103 over a computer network (such as the Internet).
Servers and applications may be combined on the same physical machines, and retain separate virtual or logical addresses, or may reside on separate physical machines.FIG. 1 illustrates just one example of a network architecture that may be used, and those of skill in the art will appreciate that the specific network architecture and data processing devices used may vary, and are secondary to the functionality that they provide, as further described herein. For example, services provided byweb server105 anddata server103 may be combined on a single server.
Eachcomponent103,105,107,109 may be any type of known computer, server, or data processing device.Data server103, e.g., may include aprocessor111 controlling overall operation of therate server103.Data server103 may further includeRAM113,ROM115,network interface117, input/output interfaces119 (e.g., keyboard, mouse, display, printer, etc.), andmemory121. I/O119 may include a variety of interface units and drives for reading, writing, displaying, and/or printing data or files.Memory121 may further storeoperating system software123 for controlling overall operation of thedata processing device103,control logic125 for instructingdata server103 to perform aspects of the invention as described herein, andother application software127 providing secondary, support, and/or other functionality which may or may not be used in conjunction with aspects of the present invention. The control logic may also be referred to herein as thedata server software125. Functionality of the data server software may refer to operations or decisions made automatically based on rules coded into the control logic, made manually by a user providing input into the system, and/or a combination of automatic processing based on user input (e.g., queries, data updates, etc.).
Memory121 may also store data used in performance of one or more aspects of the invention, including afirst database129 and asecond database131. In some embodiments, the first database may include the second database (e.g., as a separate table, report, etc.). That is, the information can be stored in a single database, or separated into different logical, virtual, or physical databases, depending on system design.Devices105,107,109 may have similar or different architecture as described with respect todevice103. Those of skill in the art will appreciate that the functionality of data processing device103 (ordevice105,107,109) as described herein may be spread across multiple data processing devices, for example, to distribute processing load across multiple computers, to segregate transactions based on geographic location, user access level, quality of service (QoS), etc.
One or more aspects may be embodied in computer-usable or readable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices as described herein. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The modules may be written in a source code programming language that is subsequently compiled for execution, or may be written in a scripting language such as (but not limited to) HTML or XML. The computer executable instructions may be stored on a computer readable medium such as a nonvolatile storage device. Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof. In addition, various transmission (non-storage) media representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space). Various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Therefore, various functionality may be embodied in whole or in part in software, firmware and/or hardware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like. Particular data structures may be used to more effectively implement one or more aspects of the invention, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.
With further reference toFIG. 2, one or more aspects described herein may be implemented in a remote-access environment.FIG. 2 depicts an example system architecture including ageneric computing device201 in anillustrative computing environment200 that may be used according to one or more illustrative aspects described herein.Generic computing device201 may be used as a server206ain a single-server or multi-server desktop virtualization system (e.g., a remote access or cloud system) configured to provide virtual machines for client access devices. Thegeneric computing device201 may have aprocessor203 for controlling overall operation of the server and its associated components, including random access memory (RAM)205, read-only memory (ROM)207, input/output (I/O)module209, andmemory215.
I/O module209 may include a mouse, keypad, touch screen, scanner, optical reader, and/or stylus (or other input device(s)) through which a user ofgeneric computing device201 may provide input, and may also include one or more of a speaker for providing audio output and a video display device for providing textual, audiovisual, and/or graphical output. Software may be stored withinmemory215 and/or other storage to provide instructions toprocessor203 for configuringgeneric computing device201 into a special purpose computing device in order to perform various functions as described herein. For example,memory215 may store software used by thecomputing device201, such as anoperating system217,application programs219, and an associateddatabase221.
Computing device201 may operate in a networked environment supporting connections to one or more remote computers, such as terminals240 (also referred to as client devices). Theterminals240 may be personal computers, mobile devices, laptop computers, tablets, or servers that include many or all of the elements described above with respect to thegeneric computing device103 or201. The network connections depicted inFIG. 2 include a local area network (LAN)225 and a wide area network (WAN)229, but may also include other networks. When used in a LAN networking environment,computing device201 may be connected to theLAN225 through a network interface oradapter223. When used in a WAN networking environment,computing device201 may include amodem227 or other wide area network interface for establishing communications over theWAN229, such as computer network230 (e.g., the Internet). It will be appreciated that the network connections shown are illustrative and other means of establishing a communications link between the computers may be used.Computing device201 and/orterminals240 may also be mobile terminals (e.g., mobile phones, smartphones, PDAs, notebooks, etc.) including various other components, such as a battery, speaker, and antennas (not shown).
Aspects described herein may also be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of other computing systems, environments, and/or configurations that may be suitable for use with aspects described herein include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
As shown inFIG. 2, one ormore client devices240 may be in communication with one ormore servers206a-206n(generally referred to herein as “server(s)206”). In one embodiment, thecomputing environment200 may include a network appliance installed between the server(s)206 and client machine(s)240. The network appliance may manage client/server connections, and in some cases can load balance client connections amongst a plurality ofbackend servers206.
The client machine(s)240 may in some embodiments be referred to as asingle client machine240 or a single group ofclient machines240, while server(s)206 may be referred to as asingle server206 or a single group ofservers206. In one embodiment asingle client machine240 communicates with more than oneserver206, while in another embodiment asingle server206 communicates with more than oneclient machine240. In yet another embodiment, asingle client machine240 communicates with asingle server206.
Aclient machine240 can, in some embodiments, be referenced by any one of the following non-exhaustive terms: client machine(s); client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); or endpoint node(s). Theserver206, in some embodiments, may be referenced by any one of the following non-exhaustive terms: server(s), local machine; remote machine; server farm(s), or host computing device(s).
In one embodiment, theclient machine240 may be a virtual machine. The virtual machine may be any virtual machine, while in some embodiments the virtual machine may be any virtual machine managed by a Type 1 or Type 2 hypervisor, for example, a hypervisor developed by Citrix Systems, IBM, VMware, or any other hypervisor. In some aspects, the virtual machine may be managed by a hypervisor, while in aspects the virtual machine may be managed by a hypervisor executing on aserver206 or a hypervisor executing on aclient240.
Some embodiments include aclient device240 that displays application output generated by an application remotely executing on aserver206 or other remotely located machine. In these embodiments, theclient device240 may execute a virtual machine receiver program or application to display the output in an application window, a browser, or other output window. In one example, the application is a desktop, while in other examples the application is an application that generates or presents a desktop. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications, as used herein, are programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded.
Theserver206, in some embodiments, uses a remote presentation protocol or other program to send data to a thin-client or remote-display application executing on the client to present display output generated by an application executing on theserver206. The thin-client or remote-display protocol can be any one of the following non-exhaustive list of protocols: the Independent Computing Architecture (ICA) protocol developed by Citrix Systems, Inc. of Ft. Lauderdale, Fla.; or the Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond, Wash.
A remote computing environment may include more than oneserver206a-206nsuch that theservers206a-206nare logically grouped together into aserver farm206, for example, in a cloud computing environment. Theserver farm206 may includeservers206 that are geographically dispersed while and logically grouped together, orservers206 that are located proximate to each other while logically grouped together. Geographically dispersedservers206a-206nwithin aserver farm206 can, in some embodiments, communicate using a WAN (wide), MAN (metropolitan), or LAN (local), where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations. In some embodiments theserver farm206 may be administered as a single entity, while in other embodiments theserver farm206 can include multiple server farms.
In some embodiments, a server farm may includeservers206 that execute a substantially similar type of operating system platform (e.g., WINDOWS, UNIX, LINUX, iOS, ANDROID, SYMBIAN, etc.) In other embodiments,server farm206 may include a first group of one or more servers that execute a first type of operating system platform, and a second group of one or more servers that execute a second type of operating system platform.
Server206 may be configured as any type of server, as needed, e.g., a file server, an application server, a web server, a proxy server, an appliance, a network appliance, a gateway, an application gateway, a gateway server, a virtualization server, a deployment server, a SSL VPN server, a firewall, a web server, an application server or as a master application server, a server executing an active directory, or a server executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality. Other server types may also be used.
Some embodiments include a first server106athat receives requests from aclient machine240, forwards the request to a second server106b, and responds to the request generated by theclient machine240 with a response from the second server106b. First server106amay acquire an enumeration of applications available to theclient machine240 and well as address information associated with anapplication server206 hosting an application identified within the enumeration of applications. First server106acan then present a response to the client's request using a web interface, and communicate directly with theclient240 to provide theclient240 with access to an identified application. One ormore clients240 and/or one ormore servers206 may transmit data overnetwork230, e.g.,network101.
FIG. 2 shows a high-level architecture of an illustrative desktop virtualization system. As shown, the desktop virtualization system may be single-server or multi-server system, or cloud system, including at least onevirtualization server206 configured to provide virtual desktops and/or virtual applications to one or moreclient access devices240. As used herein, a desktop refers to a graphical environment or space in which one or more applications may be hosted and/or executed. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications may include programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded. Each instance of the operating system may be physical (e.g., one operating system per device) or virtual (e.g., many instances of an OS running on a single device). Each application may be executed on a local device, or executed on a remotely located device (e.g., remoted).
With further reference toFIG. 3, acomputer device301 may be configured as a virtualization server in a virtualization environment, for example, a single-server, multi-server, or cloud computing environment.Virtualization server301 illustrated inFIG. 3 can be deployed as and/or implemented by one or more embodiments of theserver206 illustrated inFIG. 2 or by other known computing devices. Included invirtualization server301 is a hardware layer that can include one or morephysical disks304, one or morephysical devices306, one or morephysical processors308 and one or morephysical memories316. In some embodiments,firmware312 can be stored within a memory element in thephysical memory316 and can be executed by one or more of thephysical processors308.Virtualization server301 may further include anoperating system314 that may be stored in a memory element in thephysical memory316 and executed by one or more of thephysical processors308. Still further, ahypervisor302 may be stored in a memory element in thephysical memory316 and can be executed by one or more of thephysical processors308.
Executing on one or more of thephysical processors308 may be one or morevirtual machines332A-C (generally332). Each virtual machine332 may have avirtual disk326A-C and avirtual processor328A-C. In some embodiments, a firstvirtual machine332A may execute, using avirtual processor328A, acontrol program320 that includes atools stack324.Control program320 may be referred to as a control virtual machine, Dom0, Domain 0, or other virtual machine used for system administration and/or control. In some embodiments, one or more virtual machines332B-C can execute, using avirtual processor328B-C, aguest operating system330A-B.
Virtualization server301 may include ahardware layer310 with one or more pieces of hardware that communicate with thevirtualization server301. In some embodiments, thehardware layer310 can include one or morephysical disks304, one or morephysical devices306, one or morephysical processors308, and one or more memory216.Physical components304,306,308, and316 may include, for example, any of the components described above.Physical devices306 may include, for example, a network interface card, a video card, a keyboard, a mouse, an input device, a monitor, a display device, speakers, an optical drive, a storage device, a universal serial bus connection, a printer, a scanner, a network element (e.g., router, firewall, network address translator, load balancer, virtual private network (VPN) gateway, Dynamic Host Configuration Protocol (DHCP) router, etc.), or any device connected to or communicating withvirtualization server301.Physical memory316 in thehardware layer310 may include any type of memory.Physical memory316 may store data, and in some embodiments may store one or more programs, or set of executable instructions.FIG. 3 illustrates an embodiment wherefirmware312 is stored within thephysical memory316 ofvirtualization server301. Programs or executable instructions stored in thephysical memory316 can be executed by the one ormore processors308 ofvirtualization server301.
Virtualization server301 may also include ahypervisor302. In some embodiments,hypervisor302 may be a program executed byprocessors308 onvirtualization server301 to create and manage any number of virtual machines332.Hypervisor302 may be referred to as a virtual machine monitor, or platform virtualization software. In some embodiments,hypervisor302 can be any combination of executable instructions and hardware that monitors virtual machines executing on a computing machine.Hypervisor302 may be Type 2 hypervisor, where the hypervisor that executes within anoperating system314 executing on thevirtualization server301. Virtual machines then execute at a level above the hypervisor. In some embodiments, the Type 2 hypervisor executes within the context of a user's operating system such that the Type 2 hypervisor interacts with the user's operating system. In other embodiments, one ormore virtualization servers201 in a virtualization environment may instead include a Type 1 hypervisor (Not Shown). A Type 1 hypervisor may execute on thevirtualization server301 by directly accessing the hardware and resources within thehardware layer310. That is, while a Type 2hypervisor302 accesses system resources through ahost operating system314, as shown, a Type 1 hypervisor may directly access all system resources without thehost operating system314. A Type 1 hypervisor may execute directly on one or morephysical processors308 ofvirtualization server301, and may include program data stored in thephysical memory316.
Hypervisor302, in some embodiments, can provide virtual resources to operating systems330 orcontrol programs320 executing on virtual machines332 in any manner that simulates the operating systems330 orcontrol programs320 having direct access to system resources. System resources can include, but are not limited to,physical devices306,physical disks304,physical processors308,physical memory316 and any other component included invirtualization server301hardware layer310.Hypervisor302 may be used to emulate virtual hardware, partition physical hardware, virtualize physical hardware, and/or execute virtual machines that provide access to computing environments. In still other embodiments,hypervisor302 controls processor scheduling and memory partitioning for a virtual machine332 executing onvirtualization server301.Hypervisor302 may include those manufactured by VMWare, Inc., of Palo Alto, Calif.; the XEN hypervisor, an open source product whose development is overseen by the open source Xen.org community; HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others. In some embodiments,virtualization server301 executes ahypervisor302 that creates a virtual machine platform on which guest operating systems may execute. In these embodiments, thevirtualization server301 may be referred to as a host server. An example of such a virtualization server is the XEN SERVER provided by Citrix Systems, Inc., of Fort Lauderdale, Fla.
Hypervisor302 may create one or more virtual machines332B-C (generally332) in which guest operating systems330 execute. In some embodiments,hypervisor302 may load a virtual machine image to create a virtual machine332. In other embodiments, thehypervisor302 may executes a guest operating system330 within virtual machine332. In still other embodiments, virtual machine332 may execute guest operating system330.
In addition to creating virtual machines332,hypervisor302 may control the execution of at least one virtual machine332. In other embodiments,hypervisor302 may presents at least one virtual machine332 with an abstraction of at least one hardware resource provided by the virtualization server301 (e.g., any hardware resource available within the hardware layer310). In other embodiments,hypervisor302 may control the manner in which virtual machines332 accessphysical processors308 available invirtualization server301. Controlling access tophysical processors308 may include determining whether a virtual machine332 should have access to aprocessor308, and how physical processor capabilities are presented to the virtual machine332.
As shown inFIG. 3,virtualization server301 may host or execute one or more virtual machines332. A virtual machine332 is a set of executable instructions that, when executed by aprocessor308, imitate the operation of a physical computer such that the virtual machine332 can execute programs and processes much like a physical computing device. WhileFIG. 3 illustrates an embodiment where avirtualization server301 hosts three virtual machines332, in otherembodiments virtualization server301 can host any number of virtual machines332.Hypervisor302, in some embodiments, provides each virtual machine332 with a unique virtual view of the physical hardware, memory, processor and other system resources available to that virtual machine332. In some embodiments, the unique virtual view can be based on one or more of virtual machine permissions, application of a policy engine to one or more virtual machine identifiers, a user accessing a virtual machine, the applications executing on a virtual machine, networks accessed by a virtual machine, or any other desired criteria. For instance,hypervisor302 may create one or more unsecure virtual machines332 and one or more secure virtual machines332. Unsecure virtual machines332 may be prevented from accessing resources, hardware, memory locations, and programs that secure virtual machines332 may be permitted to access. In other embodiments,hypervisor302 may provide each virtual machine332 with a substantially similar virtual view of the physical hardware, memory, processor and other system resources available to the virtual machines332.
Each virtual machine332 may include avirtual disk326A-C (generally326) and avirtual processor328A-C (generally328.) The virtual disk326, in some embodiments, is a virtualized view of one or morephysical disks304 of thevirtualization server301, or a portion of one or morephysical disks304 of thevirtualization server301. The virtualized view of thephysical disks304 can be generated, provided and managed by thehypervisor302. In some embodiments,hypervisor302 provides each virtual machine332 with a unique view of thephysical disks304. Thus, in these embodiments, the particular virtual disk326 included in each virtual machine332 can be unique when compared with the other virtual disks326.
A virtual processor328 can be a virtualized view of one or morephysical processors308 of thevirtualization server301. In some embodiments, the virtualized view of thephysical processors308 can be generated, provided and managed byhypervisor302. In some embodiments, virtual processor328 has substantially all of the same characteristics of at least onephysical processor308. In other embodiments,virtual processor308 provides a modified view ofphysical processors308 such that at least some of the characteristics of the virtual processor328 are different than the characteristics of the correspondingphysical processor308.
With further reference toFIG. 4, some aspects described herein may be implemented in a cloud-based environment.FIG. 4 illustrates an example of a cloud computing environment (or cloud system)400. As seen inFIG. 4, client computers411-414 may communicate with acloud management server410 to access the computing resources (e.g., host servers403, storage resources404, and network resources405) of the cloud system.
Management server410 may be implemented on one or more physical servers. Themanagement server410 may run, for example, CLOUDSTACK by Citrix Systems, Inc. of Ft. Lauderdale, Fla., or OPENSTACK, among others.Management server410 may manage various computing resources, including cloud hardware and software resources, for example, host computers403, data storage devices404, and networking devices405. The cloud hardware and software resources may include private and/or public components. For example, a cloud may be configured as a private cloud to be used by one or more particular customers or client computers411-414 and/or over a private network. In other embodiments, public clouds or hybrid public-private clouds may be used by other customers over an open or hybrid networks.
Management server410 may be configured to provide user interfaces through which cloud operators and cloud customers may interact with the cloud system. For example, themanagement server410 may provide a set of APIs and/or one or more cloud operator console applications (e.g., web-based on standalone applications) with user interfaces to allow cloud operators to manage the cloud resources, configure the virtualization layer, manage customer accounts, and perform other cloud administration tasks. Themanagement server410 also may include a set of APIs and/or one or more customer console applications with user interfaces configured to receive cloud computing requests from end users via client computers411-414, for example, requests to create, modify, or destroy virtual machines within the cloud. Client computers411-414 may connect tomanagement server410 via the Internet or other communication network, and may request access to one or more of the computing resources managed bymanagement server410. In response to client requests, themanagement server410 may include a resource manager configured to select and provision physical resources in the hardware layer of the cloud system based on the client requests. For example, themanagement server410 and additional components of the cloud system may be configured to provision, create, and manage virtual machines and their operating environments (e.g., hypervisors, storage resources, services offered by the network elements, etc.) for customers at client computers411-414, over a network (e.g., the Internet), providing customers with computational resources, data storage services, networking capabilities, and computer platform and application support. Cloud systems also may be configured to provide various specific services, including security systems, development environments, user interfaces, and the like.
Certain clients411-414 may be related, for example, different client computers creating virtual machines on behalf of the same end user, or different users affiliated with the same company or organization. In other examples, certain clients411-414 may be unrelated, such as users affiliated with different companies or organizations. For unrelated clients, information on the virtual machines or storage of any one user may be hidden from other users.
Referring now to the physical hardware layer of a cloud computing environment, availability zones401-402 (or zones) may refer to a collocated set of physical computing resources. Zones may be geographically separated from other zones in the overall cloud of computing resources. For example,zone401 may be a first cloud datacenter located in California, andzone402 may be a second cloud datacenter located in Florida. Management sever410 may be located at one of the availability zones, or at a separate location. Each zone may include an internal network that interfaces with devices that are outside of the zone, such as themanagement server410, through a gateway. End users of the cloud (e.g., clients411-414) might or might not be aware of the distinctions between zones. For example, an end user may request the creation of a virtual machine having a specified amount of memory, processing power, and network capabilities. Themanagement server410 may respond to the user's request and may allocate the resources to create the virtual machine without the user knowing whether the virtual machine was created using resources fromzone401 orzone402. In other examples, the cloud system may allow end users to request that virtual machines (or other cloud resources) are allocated in a specific zone or on specific resources403-405 within a zone.
In this example, each zone401-402 may include an arrangement of various physical hardware components (or computing resources)403-405, for example, physical hosting resources (or processing resources), physical network resources, physical storage resources, switches, and additional hardware resources that may be used to provide cloud computing services to customers. The physical hosting resources in a cloud zone401-402 may include one or more computer servers403, such as thevirtualization servers301 described above, which may be configured to create and host virtual machine instances. The physical network resources in acloud zone401 or402 may include one or more network elements405 (e.g., network service providers) comprising hardware and/or software configured to provide a network service to cloud customers, such as firewalls, network address translators, load balancers, virtual private network (VPN) gateways, Dynamic Host Configuration Protocol (DHCP) routers, and the like. The storage resources in the cloud zone401-402 may include storage disks (e.g., solid state drives (SSDs), magnetic hard disks, etc.) and other storage devices.
The example cloud computing environment shown inFIG. 4 also may include a virtualization layer (e.g., as shown inFIGS. 1-3) with additional hardware and/or software resources configured to create and manage virtual machines and provide other services to customers using the physical resources in the cloud. The virtualization layer may include hypervisors, as described above inFIG. 3, along with other components to provide network virtualizations, storage virtualizations, etc. The virtualization layer may be as a separate layer from the physical resource layer, or may share some or all of the same hardware and/or software resources with the physical resource layer. For example, the virtualization layer may include a hypervisor installed in each of the virtualization servers403 with the physical computing resources. Known cloud systems may alternatively be used, e.g., WINDOWS AZURE (Microsoft Corporation of Redmond Wash.), AMAZON EC2 (Amazon.com Inc. of Seattle, Wash.), IBM BLUE CLOUD (IBM Corporation of Armonk, N.Y.), or others.
Enterprise Mobility Management Architecture
FIG. 5 represents an enterprise mobilitytechnical architecture500 for use in a BYOD environment. The architecture enables a user of amobile device502 to both access enterprise or personal resources from amobile device502 and use themobile device502 for personal use. The user may accesssuch enterprise resources504 orenterprise services508 using amobile device502 that is purchased by the user or amobile device502 that is provided by the enterprise to user. The user may utilize themobile device502 for business use only or for business and personal use. The mobile device may run an iOS operating system, and Android operating system, or the like. The enterprise may choose to implement policies to manage themobile device504. The policies may be implanted through a firewall or gateway in such a way that the mobile device may be identified, secured or security verified, and provided selective or full access to the enterprise resources. The policies may be mobile device management policies, mobile application management policies, mobile data management policies, or some combination of mobile device, application, and data management policies. Amobile device504 that is managed through the application of mobile device management policies may be referred to as an enrolled device.
The operating system of the mobile device may be separated into a managedpartition510 and anunmanaged partition512. The managedpartition510 may have policies applied to it to secure the applications running on and data stored in the managed partition. The applications running on the managed partition may be secure applications. The secure applications may be email applications, web browsing applications, software-as-a-service (SaaS) access applications, Windows Application access applications, and the like. The secure applications may be securenative applications514, secureremote applications522 executed by asecure application launcher518,virtualization applications526 executed by asecure application launcher518, and the like. The securenative applications514 may be wrapped by asecure application wrapper520. Thesecure application wrapper520 may include integrated policies that are executed on themobile device502 when the secure native application is executed on the device. Thesecure application wrapper520 may include meta-data that points the securenative application514 running on themobile device502 to the resources hosted at the enterprise that the securenative application514 may require to complete the task requested upon execution of the securenative application514. The secureremote applications522 executed by asecure application launcher518 may be executed within the secureapplication launcher application518. Thevirtualization applications526 executed by asecure application launcher518 may utilize resources on themobile device502, at theenterprise resources504, and the like. The resources used on themobile device502 by thevirtualization applications526 executed by asecure application launcher518 may include user interaction resources, processing resources, and the like. The user interaction resources may be used to collect and transmit keyboard input, mouse input, camera input, tactile input, audio input, visual input, gesture input, and the like. The processing resources may be used to present a user interface, process data received from theenterprise resources504, and the like. The resources used at theenterprise resources504 by thevirtualization applications526 executed by asecure application launcher518 may include user interface generation resources, processing resources, and the like. The user interface generation resources may be used to assemble a user interface, modify a user interface, refresh a user interface, and the like. The processing resources may be used to create information, read information, update information, delete information, and the like. For example, the virtualization application may record user interactions associated with a GUI and communicate them to a server application where the server application will use the user interaction data as an input to the application operating on the server. In this arrangement, an enterprise may elect to maintain the application on the server side as well as data, files, etc. associated with the application. While an enterprise may elect to “mobilize” some applications in accordance with the principles herein by securing them for deployment on the mobile device, this arrangement may also be elected for certain applications. For example, while some applications may be secured for use on the mobile device, others may not be prepared or appropriate for deployment on the mobile device so the enterprise may elect to provide the mobile user access to the unprepared applications through virtualization techniques. As another example, the enterprise may have large complex applications with large and complex data sets (e.g. material resource planning applications) where it would be very difficult, or otherwise undesirable, to customize the application for the mobile device so the enterprise may elect to provide access to the application through virtualization techniques. As yet another example, the enterprise may have an application that maintains highly secured data (e.g. human resources data, customer data, engineering data) that may be deemed by the enterprise as too sensitive for even the secured mobile environment so the enterprise may elect to use virtualization techniques to permit mobile access to such applications and data. An enterprise may elect to provide both fully secured and fully functional applications on the mobile device as well as a virtualization application to allow access to applications that are deemed more properly operated on the server side. In an embodiment, the virtualization application may store some data, files, etc. on the mobile phone in one of the secure storage locations. An enterprise, for example, may elect to allow certain information to be stored on the phone while not permitting other information.
In connection with the virtualization application, as described herein, the mobile device may have a virtualization application that is designed to present GUI's and then record user interactions with the GUI. The application may communicate the user interactions to the server side to be used by the server side application as user interactions with the application. In response, the application on the server side may transmit back to the mobile device a new GUI. For example, the new GUI may be a static page, a dynamic page, an animation, or the like.
The applications running on the managed partition may be stabilized applications. The stabilized applications may be managed by adevice manager524. Thedevice manager524 may monitor the stabilized applications and utilize techniques for detecting and remedying problems that would result in a destabilized application if such techniques were not utilized to detect and remedy the problems.
The secure applications may access data stored in asecure data container528 in the managedpartition510 of the mobile device. The data secured in the secure data container may be accessed by the secure wrappedapplications514, applications executed by asecure application launcher522,virtualization applications526 executed by asecure application launcher522, and the like. The data stored in thesecure data container528 may include files, databases, and the like. The data stored in thesecure data container528 may include data restricted to a specificsecure application530, shared amongsecure applications532, and the like. Data restricted to a secure application may include securegeneral data534 and highlysecure data538. Secure general data may use a strong form of encryption such as AES 128-bit encryption or the like, while highlysecure data538 may use a very strong form of encryption such as AES 254-bit encryption. Data stored in thesecure data container528 may be deleted from the device upon receipt of a command from thedevice manager524. The secure applications may have a dual-mode option540. The dual mode option540 may present the user with an option to operate the secured application in an unsecured mode. In an unsecured mode, the secure applications may access data stored in anunsecured data container542 on theunmanaged partition512 of themobile device502. The data stored in an unsecured data container may bepersonal data544. The data stored in anunsecured data container542 may also be accessed byunsecured applications548 that are running on theunmanaged partition512 of themobile device502. The data stored in anunsecured data container542 may remain on themobile device502 when the data stored in thesecure data container528 is deleted from themobile device502. An enterprise may want to delete from the mobile device selected or all data, files, and/or applications owned, licensed or controlled by the enterprise (enterprise data) while leaving or otherwise preserving personal data, files, and/or applications owned, licensed or controlled by the user (personal data). This operation may be referred to as a selective wipe. With the enterprise and personal data arranged in accordance to the aspects described herein, an enterprise may perform a selective wipe.
The mobile device may connect toenterprise resources504 andenterprise services508 at an enterprise, to thepublic Internet548, and the like. The mobile device may connect toenterprise resources504 andenterprise services508 through virtual private network connections. The virtual private network connections may be specific toparticular applications550, particular devices, particular secured areas on the mobile device, and the like552. For example, each of the wrapped applications in the secured area of the phone may access enterprise resources through an application specific VPN such that access to the VPN would be granted based on attributes associated with the application, possibly in conjunction with user or device attribute information. The virtual private network connections may carry Microsoft Exchange traffic, Microsoft Active Directory traffic, HTTP traffic, HTTPS traffic, application management traffic, and the like. The virtual private network connections may support and enable single-sign-on authentication processes554. The single-sign-on processes may allow a user to provide a single set of authentication credentials, which are then verified by anauthentication service558. Theauthentication service558 may then grant to the user access tomultiple enterprise resources504, without requiring the user to provide authentication credentials to eachindividual enterprise resource504.
The virtual private network connections may be established and managed by anaccess gateway560. Theaccess gateway560 may include performance enhancement features that manage, accelerate, and improve the delivery ofenterprise resources504 to themobile device502. The access gateway may also re-route traffic from themobile device502 to thepublic Internet548, enabling themobile device502 to access publicly available and unsecured applications that run on thepublic Internet548. The mobile device may connect to the access gateway via a transport network562. The transport network562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
Theenterprise resources504 may include email servers, file sharing servers, SaaS applications, Web application servers, Windows application servers, and the like. Email servers may include Exchange servers, Lotus Notes servers, and the like. File sharing servers may include ShareFile servers, and the like. SaaS applications may include Salesforce, and the like. Windows application servers may include any application server that is built to provide applications that are intended to run on a local Windows operating system, and the like. Theenterprise resources504 may be premise-based resources, cloud based resources, and the like. Theenterprise resources504 may be accessed by themobile device502 directly or through theaccess gateway560. Theenterprise resources504 may be accessed by themobile device502 via a transport network562. The transport network562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
The enterprise services508 may includeauthentication services558,threat detection services564,device manager services524,file sharing services568,policy manager services570,social integration services572,application controller services574, and the like.Authentication services558 may include user authentication services, device authentication services, application authentication services, data authentication services and the like.Authentication services558 may use certificates. The certificates may be stored on themobile device502, by theenterprise resources504, and the like. The certificates stored on themobile device502 may be stored in an encrypted location on the mobile device, the certificate may be temporarily stored on themobile device502 for use at the time of authentication, and the like.Threat detection services564 may include intrusion detection services, unauthorized access attempt detection services, and the like. Unauthorized access attempt detection services may include unauthorized attempts to access devices, applications, data, and the like.Device management services524 may include configuration, provisioning, security, support, monitoring, reporting, and decommissioning services.File sharing services568 may include file management services, file storage services, file collaboration services, and the like.Policy manager services570 may include device policy manager services, application policy manager services, data policy manager services, and the like.Social integration services572 may include contact integration services, collaboration services, integration with social networks such as Facebook, Twitter, and LinkedIn, and the like.Application controller services574 may include management services, provisioning services, deployment services, assignment services, revocation services, wrapping services, and the like.
The enterprise mobilitytechnical architecture500 may include anapplication store578. Theapplication store578 may include unwrappedapplications580, pre-wrapped applications582, and the like. Applications may be populated in theapplication store578 from theapplication controller574. Theapplication store578 may be accessed by themobile device502 through theaccess gateway560, through thepublic Internet548, or the like. The application store may be provided with an intuitive and easy to use User Interface. Theapplication store578 may provide access to asoftware development kit584. Thesoftware development kit584 may provide a user the capability to secure applications selected by the user by wrapping the application as described previously in this description. An application that has been wrapped using thesoftware development kit584 may then be made available to themobile device502 by populating it in theapplication store578 using theapplication controller574.
The enterprise mobilitytechnical architecture500 may include a management and analytics capability588. The management and analytics capability588 may provide information related to how resources are used, how often resources are used, and the like. Resources may include devices, applications, data, and the like. How resources are used may include which devices download which applications, which applications access which data, and the like. How often resources are used may include how often an application has been downloaded, how many times a specific set of data has been accessed by an application, and the like.
FIG. 6 is another illustrative enterprisemobility management system600. Some of the components of themobility management system500 described above with reference toFIG. 5 have been omitted for the sake of simplicity. The architecture of thesystem600 depicted inFIG. 6 is similar in many respects to the architecture of thesystem500 described above with reference toFIG. 5 and may include additional features not mentioned above.
In this case, the left hand side represents an enrolledmobile device602 with areceiver604, which interacts with cloud gateway606 (which includes Access Gateway and App Controller functionality) to accessvarious enterprise resources608 and services609 such as Exchange, Sharepoint, PKI Resources, Kerberos Resources, Certificate Issuance service, as shown on the right hand side above. Although not specifically shown, themobile device602 may also interact with an enterprise application store (StoreFront) for the selection and downloading of applications.
Thereceiver604 acts as the UI (user interface) intermediary for Windows apps/desktops hosted in an Enterprise data center, which are accessed using the HDX/ICA display remoting protocol. Thereceiver604 also supports the installation and management of native applications on themobile device602, such as native iOS or Android applications. For example, the managed applications610 (mail, browser, wrapped application) shown in the figure above are all native applications that execute locally on the device.Receiver604 and MDX (mobile experience technology) of this architecture act to provide policy driven management capabilities and features such as connectivity and SSO (single sign on) to enterprise resources/services608. Thereceiver604 handles primary user authentication to the enterprise, normally to Access Gateway (AG) with SSO to other cloud gateway components. Thereceiver604 obtains policies fromcloud gateway606 to control the behavior of the MDX managedapplications610 on themobile device602.
The Secure IPC links612 between thenative applications610 andreceiver604 represent a management channel, which allows receiver to supply policies to be enforced by theMDX framework614 “wrapping” each application. TheIPC channel612 also allowsreceiver604 to supply credential and authentication information that enables connectivity and SSO toenterprise resources608. Finally theIPC channel612 allows theMDX framework614 to invoke user interface functions implemented byreceiver604, such as online and offline authentication.
Communications between thereceiver604 andcloud gateway606 are essentially an extension of the management channel from theMDX framework614 wrapping each native managedapplication610. TheMDX framework614 requests policy information fromreceiver604, which in turn requests it fromcloud gateway606. TheMDX framework614 requests authentication, andreceiver604 logs into the gateway services part of cloud gateway606 (also known as NetScaler Access Gateway).Receiver604 may also call supporting services oncloud gateway606, which may produce input material to derive encryption keys for the local data vaults616, or provide client certificates which may enable direct authentication to PKI protected resources, as more fully explained below.
In more detail, theMDX Framework614 “wraps” each managedapplication610. This may be incorporated via an explicit build step, or via a post-build processing step. TheMDX Framework614 may “pair” withreceiver604 on first launch of anapplication610 to initialize the Secure IPC channel and obtain the policy for that application. TheMDX Framework614 may enforce relevant portions of the policy that apply locally, such as the receiver login dependencies and some of the containment policies that restrict how local OS services may be used, or how they may interact with theapplication610.
TheMDX Framework614 may use services provided byreceiver604 over theSecure IPC channel612 to facilitate authentication and internal network access. Key management for the private and shared data vaults616 (containers) may be also managed by appropriate interactions between the managedapplications610 andreceiver604.Vaults616 may be available only after online authentication, or may be made available after offline authentication if allowed by policy. First use ofvaults616 may require online authentication, and offline access may be limited to at most the policy refresh period before online authentication is again required.
Network access to internal resources may occur directly from individual managedapplications610 throughAccess Gateway606. TheMDX Framework614 is responsible for orchestrating the network access on behalf of eachapplication610.Receiver604 may facilitate these network connections by providing suitable time limited secondary credentials obtained following online authentication. Multiple modes of network connection may be used, such as reverse web proxy connections and end-to-end VPN-style tunnels618.
The Mail and Browser managedapplications610 have special status and may make use of facilities that might not be generally available to arbitrary wrapped applications. For example, the Mail application may use a special background network access mechanism that allows it to access Exchange over an extended period of time without requiring a full AG logon. The Browser application may use multiple private data vaults to segregate different kinds of data.
This architecture supports the incorporation of various other security features. For example, cloud gateway606 (including its gateway services) in some cases will not need to validate AD passwords. It can be left to the discretion of an enterprise whether an AD password is used as an authentication factor for some users in some situations. Different authentication methods may be used if a user is online or offline (i.e., connected or not connected to a network).
Step up authentication is a feature whereincloud gateway606 may identify managednative applications610 that are allowed to have access to highly classified data requiring strong authentication, and ensure that access to these applications is only permitted after performing appropriate authentication, even if this means a re-authentication is required by the user after a prior weaker level of login.
Another security feature of this solution is the encryption of the data vaults616 (containers) on themobile device602. Thevaults616 may be encrypted so that all on-device data including files, databases, and configurations are protected. For on-line vaults, the keys may be stored on the server (cloud gateway606), and for off-line vaults, a local copy of the keys may be protected by a user password. When data is stored locally on thedevice602 in thesecure container616, it is preferred that a minimum of AES 256 encryption algorithm be utilized.
Other secure container features may also be implemented. For example, a logging feature may be included, wherein all security events happening inside anapplication610 are logged and reported to the backend. Data wiping may be supported, such as if theapplication610 detects tampering, associated encryption keys may be written over with random data, leaving no hint on the file system that user data was destroyed. Screenshot protection is another feature, where an application may prevent any data from being stored in screenshots. For example, the key window's hidden property may be set to YES. This may cause whatever content is currently displayed on the screen to be hidden, resulting in a blank screenshot where any content would normally reside.
Local data transfer may be prevented, such as by preventing any data from being locally transferred outside the application container, e.g., by copying it or sending it to an external application. A keyboard cache feature may operate to disable the autocorrect functionality for sensitive text fields. SSL certificate validation may be operable so the application specifically validates the server SSL certificate instead of it being stored in the keychain. An encryption key generation feature may be used such that the key used to encrypt data on the device is generated using a passphrase supplied by the user (if offline access is required). It may be XORed with another key randomly generated and stored on the server side if offline access is not required. Key Derivation functions may operate such that keys generated from the user password use KDFs (key derivation functions, notably PBKDF2) rather than creating a cryptographic hash of it. The latter makes a key susceptible to brute force or dictionary attacks.
Further, one or more initialization vectors may be used in encryption methods. An initialization vector will cause multiple copies of the same encrypted data to yield different cipher text output, preventing both replay and cryptanalytic attacks. This will also prevent an attacker from decrypting any data even with a stolen encryption key if the specific initialization vector used to encrypt the data is not known. Further, authentication then decryption may be used, wherein application data is decrypted only after the user has authenticated within the application. Another feature may relate to sensitive data in memory, which may be kept in memory (and not in disk) only when it's needed. For example, login credentials may be wiped from memory after login, and encryption keys and other data inside objective-C instance variables are not stored, as they may be easily referenced. Instead, memory may be manually allocated for these.
An inactivity timeout may be implemented, wherein after a policy-defined period of inactivity, a user session is terminated.
Data leakage from theMDX framework614 may be prevented in other ways. For example, when anapplication610 is put in the background, the memory may be cleared after a predetermined (configurable) time period. When backgrounded, a snapshot may be taken of the last displayed screen of the application to fasten the foregrounding process. The screenshot may contain confidential data and hence should be cleared.
Another security feature relates to the use of an OTP (one time password)620 without the use of an AD (active directory)622 password for access to one or more applications. In some cases, some users do not know (or are not permitted to know) their AD password, so these users may authenticate using anOTP620 such as by using a hardware OTP system like SecurID (OTPs may be provided by different vendors also, such as Entrust or Gemalto). In some cases, after a user authenticates with a user ID, a text is sent to the user with anOTP620. In some cases, this may be implemented only for online use, with a prompt being a single field.
An offline password may be implemented for offline authentication for thoseapplications610 for which offline use is permitted via enterprise policy. For example, an enterprise may want StoreFront to be accessed in this manner. In this case, thereceiver604 may require the user to set a custom offline password and the AD password is not used.Cloud gateway606 may provide policies to control and enforce password standards with respect to the minimum length, character class composition, and age of passwords, such as described by the standard Windows Server password complexity requirements, although these requirements may be modified.
Another feature relates to the enablement of a client side certificate forcertain applications610 as secondary credentials (for the purpose of accessing PKI protected web resources via the MDX micro VPN feature). For example, an application such as @WorkMail may utilize such a certificate. In this case, certificate-based authentication using ActiveSync protocol may be supported, wherein a certificate from thereceiver604 may be retrieved bycloud gateway606 and used in a keychain. Each managed application may have one associated client certificate, identified by a label that is defined incloud gateway606.
Cloud gateway606 may interact with an Enterprise special purpose web service to support the issuance of client certificates to allow relevant managed applications to authenticate to internal PKI protected resources.
Thereceiver604 and theMDX Framework614 may be enhanced to support obtaining and using client certificates for authentication to internal PKI protected network resources. More than one certificate may be supported, such as to match various levels of security and/or separation requirements. The certificates may be used by the Mail and Browser managed applications, and ultimately by arbitrary wrapped applications (provided those applications use web service style communication patterns where it is reasonable for the MDX Framework to mediate https requests).
MDX client certificate support on iOS may rely on importing a PKCS 12 BLOB (Binary Large Object) into the iOS keychain in each managed application for each period of use. MDX client certificate support may use a HTTPS implementation with private in-memory key storage. The client certificate will never be present in the iOS keychain and will not be persisted except potentially in “online-only” data value that is strongly protected.
Mutual SSL may also be implemented to provide additional security by requiring that amobile device602 is authenticated to the enterprise, and vice versa. Virtual smart cards for authentication tocloud gateway606 may also be implemented.
Both limited and full Kerberos support may be additional features. The full support feature relates to an ability to do full Kerberos login toAD622, using an AD password or trusted client certificate, and obtain Kerberos service tickets to respond to HTTP Negotiate authentication challenges. The limited support feature relates to constrained delegation in AFEE, where AFEE supports invoking Kerberos protocol transition so it can obtain and use Kerberos service tickets (subject to constrained delegation) in response to HTTP Negotiate authentication challenges. This mechanism works in reverse web proxy (aka CVPN) mode, and when http (but not https) connections are proxied in VPN and MicroVPN mode.
Another feature relates to application container locking and wiping, which may automatically occur upon jail-break or rooting detections, and occur as a pushed command from administration console, and may include a remote wipe functionality even when anapplication610 is not running.
A multi-site architecture or configuration of StoreFront and App Controller may be supported that allows users to be service from one of several different locations in case of failure.
In some cases, managedapplications610 may be allowed to access a certificate and private key via an API (example OpenSSL). Trusted managedapplications610 of an enterprise may be allowed to perform specific Public Key operations with an application's client certificate and private key. Various use cases may be identified and treated accordingly, such as when an application behaves like a browser and no certificate access is required, when an application reads a certificate for “who am I,” when an application uses the certificate to build a secure session token, and when an application uses private keys for digital signing of important data (e.g. transaction log) or for temporary data encryption.
Any one or more of the aforementioned computing environments may be used to perform one or more aspects of the image analysis and handling techniques described herein.
Analysis of Images and Image Management
As discussed above, a mobile device may be used for business use and/or personal use, and an enterprise may want to delete from the mobile device or otherwise control selected or all data, files, and/or applications owned, licensed or controlled by the enterprise. Such data or files may include images or pictures that may include sensitive or proprietary enterprise information.FIG. 7 depicts a method for analyzing and managing images, such as images that include sensitive or proprietary enterprise information.
Atstep701, the mobile device may be registered. In some arrangements, the mobile device may register to become an enrolled device so that, for example, the mobile device can be managed through an application of mobile device management policies. Additionally, the mobile device may register with an enterprise resource or enterprise service that provides image analysis or management functions on behalf of the enterprise, or that manages the services a mobile device is registered to. For example, the mobile device may register with a device manager so that the enterprise has a record of the mobile device being enrolled in an image analysis or management service. In some arrangements, the mobile device may register by connecting to an enterprise resource or enterprise service (e.g., via a wireless link or VPN), authenticating (e.g., device authentication, user authentication), and receiving an acknowledgement of successful registration.
Atstep702, the mobile device may install an image manager. The image manager may be included as part of an application, plug-in to another application installed on the mobile device, a receiver (e.g., receiver604), or a policy obtained by a receiver (e.g., a policy for use with MDX framework614). For example, the mobile device may connect to an application store (e.g., application store578), an enterprise resource, or an enterprise service (e.g., policy manager570) to request and/or receive the image manager (e.g., via a download). Upon receiving the image manager, it may be installed on the mobile device. The image manager may enforce a work product image security protocol provided by the enterprise. In some arrangements, the image manager may have access to the image management software or image storage location of the mobile device, such as the device's image gallery, image folder, or download folders. The image manager may be able to interface with the device's image gallery via an API that includes, for example, functions to scan, select, edit, or delete an image from the image gallery.
The image manager may be able to execute in both the foreground and the background. When in the foreground, a user interface may be displayed on the mobile device that provides various options to a user for analyzing and managing the images stored on the mobile device. In addition to providing the user interface, the image manager may also analyze and manage the images on the mobile device. When operating in the background, the image manager may continue to analyze and manage the images on the mobile device. The remaining steps ofFIG. 7 generally describe an example process that may be performed, in some variations, by an image manager executing on the mobile device.
Atstep703, the image manager may select a first image. The first image may be any image stored by the mobile device that has not yet been analyzed or managed. For example, the image manager may scan a gallery of the mobile device, identify an image, compare the image (e.g., the image's file name, time code, or other identifying information) with a record of images that have been analyzed and managed, and if the image has not been analyzed and managed (e.g., the image's file name, time code, or other identifying information was not found in the record) the image may be selected.
Atstep705, the image manager may process the selected image. In some instances, the selected image may be the image selected atstep703. In others, the selected image may be an image selected atstep713. In some arrangements, processing may include updating the record to include an entry for the selected image, such as by storing an entry that includes the selected image's file name, time code, or other identifying information.
Processing the image may include analyzing the image to identify various elements of the image. For example, the image manager may employ various image analysis and classification techniques to identify the presence within the image of elements that may be considered sensitive or proprietary enterprise information. To perform such image analysis, image analysis and classification techniques such as background segmentation, object segmentation, edge detection, template matching, optical character recognition, and the like, may be used. In particular, some embodiments may employ techniques suitable to identifying whiteboards, charts (e.g., a flipchart), and documents (e.g., paper documents and digital documents, such as an image of a document displayed on a computer display), which can include large areas of white space (or other large single color space), printed fonts (e.g., a document with letters in the Helvetica or Times New Roman font) and hand drawn writing (e.g., letters or words written in a small number of colors, such as black, red or green), and/or graphical elements (e.g., boxes, charts). Techniques that separate the areas of white space from other portions of the image (e.g., a “dirty” background) may be used when analyzing the image.
FIG. 8 depicts various elements that may be present in an image.Image portion800 includes various elements that may likely have sensitive or proprietary enterprise information. The elements ofexample image portion800 can be identified by image analysis techniques, such as the techniques used by the image manager atstep705. Indeed, a segmentation algorithm may be used to separate whitespace area from one or more non-whitespace areas of a selected image (not shown), resulting in, for example,image portion800, which includes whitespace area (e.g., whitespace element801) and, in some instances, one or more other elements (e.g.,elements802,804,806,808 and810). Additional analysis techniques may be used to identify the elements included in an image.
For example, optical character recognition may be used to identify writing elements, such as writing elements802 (“Confidential”),803 (“Meeting”),804 (“Citrix”),807 (“X”) and808 (“Y”).
Template matching may be used to identifyaxes element806.
Object recognition may be used to identify a handwritten graph element, such asline graph element809.
In some arrangements, template matching may also be used to identify the presence of a chart element, which may be composed of multiple elements. For example, template matching may identify a chart element based onelements806,807,808, and809, such as by having a template that includes the axes (e.g., perpendicular lines arranged as a two-dimensional Cartesian coordinate system), the axes labels (e.g., ‘x’ and ‘y’ arranged near the origin of the axes), and a line representing a plotted line graph. Additionally, object recognition may be used with template matching to identify the chart element (e.g., object recognition to identify the line graph element and template matching to identify the axes element).
Different templates and/or object recognition processes may be used to identify different chart or graph elements, such as bar graphs, pie graphs, process charts, tree hierarchies, and the like. For example, template matching or object recognition could be used to identify a process chart element (e.g., an element including the entirety or a portion ofFIG. 6), which may include one or more boxes (having writing inside each box) and relational arrows between the boxes.
The image may also be analyzed for particular machine readable codes, such as a quick recognition (QR) code or bar code. The image manager may process the image to identify the presence ofcode element810 and, in some arrangements, may process the machine readable code element to determine information encoded by the element (e.g., machinereadable code element810 encodes information identifying a web site of Citrix).
Identifying various elements within an image may include executing a few different image analysis techniques. For example, the image manager may processimage portion800 using a color segmentation technique or edge segmentation technique prior to performing template matching or object recognition to identify an element. As other examples,image portion800 may be processed using border detection algorithms or color gradient detection algorithms to identify hand drawn lines (e.g., element809), an arrow element (e.g., an element including thearrow connecting steps703 and705 ofFIG. 7), a geometric shape element (e.g., a box shape such as the rectangle depiction ofstep703 ofFIG. 7 or the diamond shape such as the diamond depiction ofstep707 ofFIG. 7)
While the example ofFIG. 8 depicts a few elements that are likely to include sensitive or proprietary enterprise information, other elements could be identified by the image manager including elements that are not likely to include sensitive or proprietary enterprise information. In some arrangements, elements that are not likely to include sensitive or proprietary enterprise information may include exterior elements (e.g., a skyline, a tree, grass, or a mountain), person elements (e.g., a person or body part, such as a hand or head) and the like.
What elements can be identified by the image manager may be defined by the enterprise or the user. For example, the enterprise may label each whiteboard or flip chart in its premises with a particular QR code and the image manager may be configured to identify the particular QR code. As another example, the user may be presented with a user interface that lists the various elements that can be identified by the image manager and the user may be able to select or deselect elements that the image manager is configured to identify.
Additionally, while the above examples relate to employ techniques suitable to identifying whiteboards, charts, and documents, other techniques could be employed that are suitable to identifying elements specific to the business of the enterprise. As one particular example, the enterprise may be a microchip manufacturer or design company. Various techniques, such as template matching and object recognition, could be used to identify integrated circuit components (e.g., using template matching or object recognition to identify a large area of black space and silver pins placed around the perimeter of the black space; object recognition to identify a printed circuit board), a design of an integrated circuit (e.g., template matching or object recognition to identify a depiction of a logic gate, such as an AND gate, OR gate, or the like), or chip part numbers that are commonly printed onto an integrated circuit (e.g., optical character recognition for chip part numbers that are produced by the enterprise).
Processing the image may, in some embodiments, also include pre-processing atstep705, such as to eliminate a selected image from further processing. For example, if the image includes a large number colors or non-linear color areas (e.g., an area within the image having a large number of colors that change from pixel to pixel in a non-linear fashion), the image manager may prevent the selected image from being processed further atstep705 to identify elements (thereafter causing a determination that the selected image is a non-work product image, as discussed further below in connection with step707).
After processing the image atstep705, the image manager may proceed to step707 to determine whether the selected image is a work product image. In some arrangements, this determination is based on the elements that were identified atstep705. For example, if an element considered to likely include sensitive or proprietary enterprise information is identified in the selected image, the image manager may determine that the image is a word product image (e.g., determine that the selected image is a work product image if any ofelements801,802,803,804,806,807,808,809 and810 are identified, or determine that the selected image is a work product image if a process chart element is identified, for example, from an image taken ofFIG. 6).
As another example, the image manager may base the determination of whether the selected image is a work product image on particular elements not being identified in the selected image. For example, when a white space element (e.g., element801) is not identified in an image, the image manager may determine that the image is not a work product image.
The image manager may also determine whether the selected image is a work product image based on both the presence and the absence of particular elements in the selected image. For example, image manager may determine that an image is a work product image when a white space element (e.g., element801) is identified in the image and at least one other element likely to include sensitive or proprietary enterprise information is also identified in the image (e.g., one or more ofelements802,803,804,806,807,808,809 or810).
The image manager may also determine whether the selected image is a work product image based on content of the identified elements. For example, the image manager may determine that an image is a work product image when a machine readable element encodes particular information. With respect to the example ofFIG. 8, image manager may determine that the image is a work product image whenelement810 encodes information specifying a website of the enterprise. As another example, the image manager may determine that an image is a work product image when a writing element includes particular recognized text. With respect to the example ofFIG. 8, image manager may determine that the image is a work product image when one of the depicted writing elements includes text matching a name of the enterprise (e.g.,element804 and the recognized text of “Citrix”) or other specific text (e.g.,element802 and the recognized text of “Confidential” orelement803 and the recognized text of “Meeting”).
The image manager may also determine whether the selected image is a work product image based on the presence/absence of elements and further based on the content of the identified elements. For example, the image manager may determine that an image is a work product image if a white space element is identified (e.g., element801) and another identified element includes particular text (e.g.,element802 and the recognized text of “Confidential”;element803 and the recognized text of “Meeting”; orelement804 and the recognized text matching a name of the enterprise) or encodes particular information (e.g.,element810 and the encoded information of the enterprise's website).
The image manager may also determine whether the selected image is a work product image based on a set of elements being present and/or absent from the image or a threshold number of elements being present and/or absent from the image. For example, the image manager may determine that an image is a work product image if a white space element is identified (e.g., element801) and at least one other element (e.g.,element802,803,804,806,807,808,809 or810) is also identified. Such an example could be referred to as requiring a threshold of two elements being present in the selected image. As another example, in embodiments where, for example, the enterprise is a microchip manufacturer or design company, the image manager may determine that an image is a work product image if at least three part numbers are identified in the image.
The image manager may also determine whether the selected image is a work product image based on how the elements are arranged. For example, if elements are arranged in a tree fashion and each element is a writing element or a graphic element, the image manager may determine that such an image is a work product image (e.g., such arrangements and elements may be found in an image of the enterprise's organizational chart).
Additionally, some embodiments may include input from a user when determining whether an image is a work product image. For example, the image manager may request or receive input from a user that identifies particular elements in the image or that specifies whether the image is a work product image or not. Indeed, in some arrangements, the image manager may determine that a threshold number of elements that are unlikely to include sensitive or proprietary enterprise information are present in the image and, responsively, may request input from the user to specify whether the image is a work product image or not. Alternatively, the image manager may determine that a ratio between elements likely to include sensitive or proprietary enterprise information present in an image and elements unlikely to include sensitive or proprietary enterprise information present in the image is equal to or above a threshold and, responsively, may request input from the user to specify whether the image is a work product image or not.
In various arrangements, a user or the enterprise may specify how the image manager performs the determination of whether an image is a work product image. For example, the user or the enterprise may be able to specify which elements are required to be present/absent for the image to be determined as a work product image (e.g., specify that an image which includes a white space element and a graph element is to be determined as a work product image). The user or the enterprise may also be able to specify what information should be included/encoded by an element for the image to be determined as a work product image (e.g., specify that an image which includes a machine readable code element encoding particular information, such as an enterprise's website, is to be determined as a work product image).
If the image manager determines that the selected image is a work product image, the method may proceed to step709. Otherwise, the method may proceed to step711. However, in some arrangements, instead of proceeding directly to step711 when the selected image is not a work product image, the image manager may optionally perform additional processing on the image (not shown). For example, the image manager may make a copy of the selected image and store the copy in a non-work product image backup location. In some arrangements, the non-work product backup location may be at the mobile device (e.g., in a private data vault of the image manager, or other secure location) or at a remote location (e.g., a secure location accessed via a cloud gateway). In some embodiments, the user or enterprise may be able to set the non-work product backup location. Additionally, the image manager may update its record of images that have been analyzed and managed to indicate that the selected image does not have restricted security and/or is a non-work product image. Further, the user may be required to opt-in to the non-work product backup service provided by the image manager.
Atstep709, the selected image is considered a work product image (due to the determination at step707) and the image manager may restrict image security to prevent unauthorized viewing of the image. The ability of the image manager to restrict image security may depend on the API of the mobile device. As discussed above, a mobile phone's gallery software may include an API for editing an image (e.g., an Edit function). In some embodiments, it may be possible to restrict image security using the Edit function. For example, the image manager may create a copy of the selected image and store the copy in a work product image backup location. In some arrangements, the work product backup location may be at the mobile device (e.g., in a private data vault of the image manager, or other secure location) or at a remote location (e.g., a secure location accessed via a cloud gateway). The backup location may be specified by a setting of the image manager which, in various embodiments can be set or specified by the enterprise or user. Additionally, the image manager may update the record of images that have been analyzed and managed with a pathname to the copy of the selected image. In some embodiments, the copy may be encrypted with a key known by the image manager.
Using the Edit function, the selected image may be edited to restrict its security. For example, the image manager may edit the image to prevent unauthorized viewing of the image. For example, the image data may be replaced with a default image, such as an image including a lock icon or text identifying the image as being secured by the enterprise (e.g., “This image is a work product image and has been secured by your enterprise's image manager”).Example image900 ofFIG. 9 provides an example of an image with restricted image security. As illustrated inFIG. 9, the original image data ofimage900 has been edited to have alock icon901 andtext903. For illustrative purposes, the original image data ofimage900 could be considered to be the image data depicted inFIG. 8. Such editing of the original image data ofimage900 prevents viewing of the original image data until it has been restored by the image manager.
The image manager may restrict image security in other additional or alternative ways. For example, image manager may, instead of backing up a copy of the image, may encrypt the image with a key known by the image manager. As another example, the image manager may delete the selected image from the mobile device. In some embodiments where the image manager deletes the selected image from the mobile device, the image manager may, prior to the deletion of the selected image, store a backup of the selected image.
Additionally, the image manager may update its record of images that have been analyzed and managed to indicate that the selected image has restricted security and/or is a work product image.
The image manager may also, in some variations, transmit user notifications including, for example, an indication that the selected image was a work product image and/or an indication of what security measures were employed. Such user notifications may include a pop-up message displayed on the mobile device that, for example, requests the user accept (or cancel) the restricted image security being applied to the selected image, or a push notification displayed in a notification bar of the mobile device's user interface that provides notice to a user of the selected image's restricted security.
After the image manager has restricted image security, the method may proceed to step711.
In some variations, one or more ofsteps705,707 or709 may be performed by one or more remote computing devices (e.g., by anenterprise resource504 or an enterprise resource508). For example, ifstep705 is performed by one or more remote computing devices, the selected image may be transmitted from the mobile device to the one or more remote computing devices (e.g., via a VPN connection), so that the one or more remote computing devices can perform the processing of the selected image.
Ifstep707 is performed by one or more remote computing devices, the one or more remote computing devices may receive elements identified during the selected image's processing (e.g., via a communication from the mobile device if the processing is performed by the mobile device, or resulting from the processing of the selected image if the processing ofstep705 is performed by the one or more remote computing devices) and determine whether the selected image is a work product image based on the elements (in a manner similar to how the image manager may perform the determination of step707). In some arrangements where the one or more remote computing devices performstep707, a message indicating whether the selected image is a work product image may be transmitted from the one or more remote computing devices to the mobile device (e.g., via a VPN connection) so that the image manager may proceed with the remaining steps ofFIG. 7.
Ifstep709 is performed by one or more remote computing devices, the one or more remote computing devices may receive an indication that the selected image is a work product image (e.g., via a communication from the mobile device if the determination ofstep707 is performed by the mobile device, or resulting from the determination atstep707 ifstep707 is performed by the one or more remote computing devices) and the selected image (e.g., via a communication from the mobile device ifstep705 is performed by the mobile device, or resulting from the determination atstep705 ifstep705 is performed by the one or more remote computing devices). Upon receiving the indication that the selected image is a work product image and the selected image, the one or more remote computing devices may proceed to restrict image security, such as by backing up a copy of the selected image's original image data and editing the original image data to prevent unauthorized viewing (similar to the manner in which the image manager can restrict security at step709). In some arrangements where the one or more remote computing devices performstep709, may be transmitted from the one or more remote computing devices to the mobile device so that the image manager may proceed with the remaining steps ofFIG. 7. Such data may include an indication of whether the selected image is a work product image or not, an indication of what security restrictions where placed on the image (e.g., encryption, the key used, etc.), and where a copy of the selected image's original image data was stored (e.g., the work product image backup location). Upon receiving such data, the image manager may update its record of analyzed and managed images.
Atstep711, the selected image is either a work product image with restricted image security (via step709) or the selected image is not a work product image. Atstep711, the image manager may determine whether there are additional images on the mobile device that have not been analyzed or managed. This determination may include comparing images in the mobile device's gallery with the image manager's record of images that have been analyzed and managed. If there are images in the gallery that are not in the record of images that have been analyzed and managed, the image manager may determine that more images need to be analyzed or managed and may proceed to step713. Otherwise, the image manager may determine that all images on the mobile device have been analyzed or managed and may proceed to step715.
Atstep713, the image manager may select the next image to analyze or manage. This step may proceed similar to step703 and may result in one of the images in the mobile device's gallery being selected for analysis and/or managing. After selecting the next image, the method may proceed to step705.
Atstep715, the image manager may wait for an action event. The image manager may be configured to recognize various action events as they occur. The example method ofFIG. 7 illustrates three possible action events that can be recognized by an image manager: (1) actions that occur when a user interacts with an image (“user actions”), such as a user viewing an image on the mobile device; (2) actions that are initiated by the enterprise (“enterprise actions”), such as a selective delete message being received by the image manager from the enterprise when a user's employment ends; and (3) actions that occur when an image is created (“image creation actions”), such as a new image being added to the mobile device's gallery.
When an action event occurs, the image manager may determine which action event has occurred and may respond in a manner specific to which action event has occurred. For example, if user action occurs, the image manager may proceed to step717 to perform the user action based on an image's restricted image security. If an enterprise action occurs, the image manager may proceed to step719 to delete work product images. If an image creation action occurs, the image manager may proceed to step713 to select the new image and subsequently analyze and manage the new image.
Atstep717, the image manager may perform the user action based on the restricted image security. Generally, a user action is associated with a particular image (e.g., a user may request to view or open a particular image). Prior to performing the user action, the image manager may determine whether the associated image has restricted image security or is a work product image (e.g., by checking the image manager's record of images that have been analyzed and managed).
After determining whether the associated has restricted image security or is a work product image, the image manager may proceed with performing the user action based on the restricted image security. For example, if the associated image has restricted image security or is a work product image and the user action is to view the associated image, the image manager may restore the original image data of the associated image (e.g., replace the image data illustrated inFIG. 9 with the original image data illustrated inFIG. 8) to remove the restricted image security. In some instances, the image manager may decrypt the associated image to remove the restricted image security. Upon removing the restricted image security, the image manager may cause display of the original image data. In some arrangements, the original image data may be retrieved from a work product image backup location.
As another example, if the associated image has restricted image security or is a work product image and the user action is to edit the associated image, the image manager may determine whether editing a work product image is authorized. If editing is authorized, the image manager may allow the user to edit the associated image.
As yet another example, if the associated image has restricted image security or is a work product image and the user action is to delete the associated image, the image manager may determine whether the user also wishes to remove a backup copy of the associated image (e.g., the copy stored at the work product image backup location). If the user requests to remove the backup copy, the image manager may cause the copy to be deleted and may update its record of images that have been analyzed and managed to reflect the deletion. Subsequently, the image manager may cause the associated image to be deleted from the mobile device.
As yet another example, if the associated image has restricted image security or is a work product image and the user action is to close the associated image, the image manager may reapply restricted image security (e.g., perform functions similar to those discussed above in connection with step709). For example, the image manager may reencrypt the associated image or reedit the associated image to prevent unauthorized viewing.
In some embodiments, the image manager may perform the user action based on additional security conditions. For example, in some embodiments, the image manager may allow the user to view, edit, or delete a work product image only if a VPN connection to the enterprise exists or if the user enters a password. If the VPN connection does not exist or the user fails to enter a correct password, the image manager may not perform the user action. Similarly, in some variations, the image manager may remove image security only if a VPN connection to the enterprise exists or if the user enters a password. For example, if the user wishes to view a work product image, but a VPN connection does not exist or the user fails to enter a correct password, the image manager may cause the secured image data to be displayed (e.g., display the image data illustrated inFIG. 9, or display the encrypted image data).
If the associated image does not have restricted image security or is not a work product image, the image manager may proceed with performing the user action without additional processing.
Atstep719, an enterprise action has occurred and the image manager may proceed to delete work product images. In some variations, an enterprise action may occur when a user's employment ends (e.g., a message sent by the enterprise indicating that a user of the mobile device is no longer employed by the enterprise), when a mobile device is lost or stolen (e.g., a message sent by the enterprise indicating that the mobile device has been reported lost or stolen), when an enterprise sends a command to the mobile device to delete work product images (e.g., an enterprise may cause deletion of work product images according to a periodic schedule or in accordance with a quota that specifies the maximum amount of work product images that may be stored at the mobile device), or according to a different security procedure implemented by the enterprise. Responsive to the enterprise action occurring, the image manager may proceed through the mobile device's gallery and may delete any image in the gallery that is a work product image. Any non-work product image may be ignored (e.g., not deleted). In some variations, only work product images that are included on the image manager's record of images that have been analyzed and managed may be deleted atstep719. Additionally, when deleting work product images, the image manager may update its record to reflect the deletion. Some enterprise actions may cause the image manager to respond differently than deleting work product images. For example, an enterprise action may cause the image manager to reprocess all images stored on the mobile device. Such enterprise actions may occur when the enterprise changes what criteria needs to be satisfied for an image to be determined as a work product image, when the enterprise changes what elements are to be identified in an image, or when the enterprise changes how a work product image's security is restricted. On particular example of an enterprise action that causes the image manager to reprocess all images stored on the mobile device is when the enterprise transmits an update to the image manager to the mobile device.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are described as example implementations of the following claims.