BRIEF DESCRIPTION OF THE FIGURESFIG. 1 illustrates a wild-type IgG1 locus in a mouse (IgG1, top), showing the JH region gene segment fusing to a CH1 gene segment, followed by a hinge region, a CH2 gene segment, and a CH3 gene segment; an IgG1 locus targeted with a construct that deletes a CH1 domain (IgG1ΔCH1, middle); and an IgG1 locus targeted with a construct that deletes both a CH1 domain and a hinge region (IgG1ΔCH1-Δhinge, bottom).
FIG. 2 illustrates targeting a mouse IgG1 gene to make a genetically modified locus that expresses an IgG1 lacking a CH1 domain.
FIG. 3 illustrates targeting a mouse IgG1 gene to make a genetically modified locus that expresses an IgG1 lacking a CH1 domain and lacking a hinge region.
FIG. 4 illustrates targeting a mouse heavy chain constant region locus to make a genetically modified locus that expresses an IgG1 lacking a CH1 domain, and does not express an IgG2b or an IgG2a.
FIG. 5 illustrates a mouse heavy chain constant region targeted with a construct that deletes a CH1 domain and deletes a hinge region and that deletes an IgG2b gene and an IgG2a gene.
FIG. 6 illustrates a heavy chain constant region of a genetically modified mouse having an IgG1 that lacks a CH1 domain or lacks a CH1 domain and a hinge region (top), and a heavy chain constant region of a genetically modified mouse having an IgG1 that lacks a CH1 domain or lacks a CH1 domain and a hinge region, and that lacks an IgG2a gene and lacks an IgG2b gene (bottom).
FIG. 7 shows Western blots of CHO cell supernatants from CHO cells engineered to independently express control (cytokine ectodomain fusion with a mouse Fc), chimeric (human VR)/(mouse Fc) heavy chain antibody lacking a CH1 domain (hVR-mFcΔCH1), camelized chimeric (human VR)/(mouse Fc) heavy chain antibody lacking a CH1 domain (hVR*-mFcΔCH1), chimeric (human VR)/(mouse Fc) heavy chain antibody (hVR-mFc), camelized chimeric (human VR)/(mouse Fc) heavy chain antibody (hVR*-mFc), mFc with (mFc) or without (mFcΔCH1) a CH1 domain.
FIG. 8 shows Western blot images from a reducing SDS-PAGE of mouse sera from a wild-type mouse (left) and from a genetically modified mouse whose IgG1 lacks a CH1 domain and lacks a hinge region (heterozygous) (right), blotted with anti-mouse IgG; schematics of the heavy chains are provided, as are molecular weight marker positions.
FIG. 9 shows Western blots images from a non-reducing SDS-PAGE of mouse sera from a wild-type mouse (WT) and four genetically modified mice whose IgG1 lacks a CH1 domain and lacks a hinge region (homozygous; noted asHO 1,HO 2,HO 3,HO 4, respectively), blotted with anti-mouse IgG; each mouse (WT or HO) is represented by two lanes indicated by brackets above the lanes corresponding to 1:5 and 1:10 dilutions of serum for each animal (consecutive lanes from left to right for each).
FIG. 10 provides a schematic diagram of a normal IgG1 antibody (left) and a heavy chain antibody that lacks a CH1 domain and lacks a hinge region.
FIG. 11 shows separate IgG1 and IgG2b serum immunoglobulin assays from wild type mice (WT) and genetically modified mice that contain an IgG1 lacking a CH1 domain and lacking a hinge region (HO; homozygous mouse that expresses a heavy chain antibody that lacks a CH1 domain and lacks a hinge region). Control is pooled human serum.
FIG. 12 shows the protein sequences of eleven independent RT-PCR clones amplified from splenoctye RNA of mice bearing mouse heavy chain gene sequences at a modified endogenous mouse heavy chain locus devoid of IgG1 CH1 and hinge region sequences. B1=SEQ ID NO:19; B2=SEQ ID NO:21; B3=SEQ ID NO:23; B5=SEQ ID NO:25; D2=SEQ ID NO:27; D5=SEQ ID NO:29; D6=SEQ ID NO:31; E2=SEQ ID NO:33; E8=SEQ ID NO:35; E10=SEQ ID NO:37; F6=SEQ ID NO:39. Lower case bases indicate non-germline bases resulting from either mutation and/or N addition during recombination. Dots represent artificial gaps in the sequence for proper alignment of framework (FR) and complementary determining regions (CDR), which are noted above the sequences. The first nine amino acids from the CH2 region of the endogenous IgG1 (CH2) constant region are shown for each clone.
FIG. 13 shows the protein sequences of seven independent RT-PCR clones amplified from splenoctye RNA of mice bearing human heavy chain gene sequences at a modified endogenous mouse heavy chain locus devoid of an IgG1 CH1 region sequence. A8=SEQ ID NO:51; C2=SEQ ID NO:53; D9=SEQ ID NO:55; C4=SEQ ID NO:57; H8=SEQ ID NO:59; A5=SEQ ID NO:61; A2=SEQ ID NO:63. Lower case bases indicate non-germline bases resulting from either mutation and/or N addition during recombination. Dots represent artificial gaps in the sequence for proper alignment of framework (FR) and complementary determining regions (CDR), which are noted above the sequences. The first seven amino acids of the 13 amino acid hinge region of the endogenous IgG1 (HINGE) constant region are shown for each clone.
SUMMARYGenetically modified cells, non-human embryos, non-human animals and methods and compositions for making and using them are provided, wherein the animals are genetically modified to lack a functional CH1 sequence in an immunoglobulin G (IgG), optionally modified to lack a functional IgG hinge region on the modified IgG, and wherein the cells, embryos, and animals comprise a functional IgM CHI sequence. In some aspects, the mice comprise a replacement of one or more, or all, endogenous mouse immunoglobulin heavy chain variable region gene segments with one or more human immunoglobulin heavy chain variable region gene segments. In some aspects, all endogenous mouse V, D, and J gene segments are replaced with one or more human V, one or more human D, and one or more human J gene segments.
In one aspect, a genetically modified mouse is provided, wherein the genetic modification comprises a modification of a nucleotide sequence encoding an IgG constant region, wherein the modification results in a loss of function of the CH1 domain of the IgG constant region. In one embodiment, the loss of function modification is a deletion of a nucleotide sequence encoding the CH1 domain, or a deletion within the nucleotide sequence encoding the CH1 domain.
In one embodiment, the IgG is selected from IgG1, IgG2a, IgG2b, and a combination thereof. In one embodiment, the IgG is an IgG1. In one embodiment, the IgG is an IgG1, an IgG2a, and an IgG2b.
In one embodiment, the modification further comprises a deletion of a nucleotide sequence for a hinge region of the IgG that comprises the CH1 modification.
In one embodiment, the genetically modified mouse is selected from a 129 strain, a C57BL/6 strain, and a mix of 129 x C57BL/6. In a specific embodiment, the mouse is 50% 129 and 50% C57BL/6.
In one embodiment, the genetically modified mouse is a 129 strain selected from the group consisting of a 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129S1/SvIm), 129S2, 129S4, 129S5, 129S9/SvEvH, 129S6 (129/SvEvTac), 129S7, 129S8, 129T1, 129T2 (see, e.g., Festing et al. (1999) Revised nomenclature for strain 129 mice, Mammalian Genome 10:836). In one embodiment the genetically modified mouse is a C57BL strain, in a specific embodiment selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr, C57BL/Ola. In a specific embodiment, the genetically modified mouse is a mix of an aforementioned 129 strain and an aforementioned C57BL/6 strain. In another specific embodiment, the mouse is a mix of aforementioned 129 strains, or a mix of aforementioned BL/6 strains. In a specific embodiment, the 129 strain of the mix is a 129S6 (129/SvEvTac) strain.
In one embodiment, the mouse comprises one or more unrearranged endogenous mouse heavy chain immunoglobulin variable region (mVR) gene segments operably linked to the modified IgG constant region sequence. In one embodiment, the one or more mVR gene segments are from a mouse VH gene family selected from VH1, VH3, VH5, VH7, VH14, and a combination thereof. In one embodiment, the one or more mVR gene segments are selected from a mVH 1-26, 1-42, 1-50, 1-58, 1-72, 3-6, 5-6, 7-1, 14-2, and a combination thereof.
In one embodiment, the mouse comprises a rearranged gene that encodes an FR1, FR2, and an FR3 in an IgG heavy chain that lacks a functional CH1 region, wherein the FR1, FR2, and FR3 are each independently at least 90%, 95%, 96%, 97%, 98%, or 99% identical to an FR1, FR2, and FR3 derived from a mVH germline sequence selected from a VH1, VH3, VH5, VH7, and VH14 gene family. In one embodiment, the mVH germline sequence is selected from a 1-26, 1-42, 1-50, 1-58, 1-72, 3-6, 5-6, 7-1, and 14-2 sequence.
In one embodiment, the mouse comprises a CDR3 derived from a DH gene segment selected from DH 1-1, 2-14, 3-1, 3-2, 3-3, 4-1, and a combination thereof. In one embodiment, the mouse CDR3 comprises a sequence encoded by a JH that is a JH1, JH2, JH3, or JH4.
In one embodiment, the mouse comprises a rearranged antibody sequence that encodes a CDR3 that is derived from a rearrangement of a DH 1-1, 2-14, 3-1, 3-2, 3-3, 4-1, and a JH1, JH2, JH3, or JH4.
In one embodiment, the mouse comprises a rearranged gene that encodes an FR4 in an IgG heavy chain that lacks a functional CH1 region, wherein the FR4 is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to an FR4 encoded by a rearrangement of a DH1-1, 2-14, 3-1, 3-2, 3-3, or 4-1 with a JH1, JH2, JH3, or JH4.
In one embodiment, the mouse comprises an unrearranged human heavy chain immunoglobulin variable region (hVR) gene segment at an endogenous mouse heavy chain variable region locus. In one embodiment, the mouse comprises an unrearranged hVR gene segment operably linked to the modified IgG constant region sequence at an endogenous mouse heavy chain variable region locus. In one embodiment, the hVR gene segments are from a human VH gene family selected from VH1, VH3, VH4, and a combination thereof. In one embodiment, the one or more hVR gene segments are selected from 1-2, 1-8, 1-18, 1-46, 1-69, 3-21, 3-72, and 4-59. In a specific embodiment, the one or more hVR gene segments are selected from 1-8, 1-18, and 1-69.
In one embodiment, all or substantially all mouse heavy chain V gene segments are replaced by one or more human heavy chain V gene segments. In one embodiment, all mouse heavy chain V and D gene segments are replaced by one or more human heavy chain V and D gene segments. In one embodiment, all mouse heavy chain V, D, and J gene segments are replaced with one or more human heavy cahin V, one or more human heavy chain D, and and one or more human heavy chain J gene segments. In these embodiments, the human heavy chain V and/or D and/or J gene segments are at the mouse endogenous heavy chain locus and are operably linked to the mouse constant region gene(s) or modified mouse constant region gene(s).
In one embodiment, the mouse comprises a nucleotide sequence that encodes a FR1, FR2, and FR3 sequence of an IgG heavy chain that lacks a functional CH1 region, that is at least 80% identical to an FR1, FR2, and FR3 from a human germline nucleotide sequence of a 1-8, 1-18, or 1-69 human immunoglobulin heavy chain variable region gene segment; wherein the FR1+FR2+FR3 sequence of the modified mouse is optimally aligned with the recited human germline sequence without regard to the sequence of the CDRs of the mouse and human sequences (i.e., optimally aligning the FRs while not considering the identities of amino acids of any CDRs in the comparison). In specific embodiments, the FR1, FR2, and FR3 are about 85%, 90%, 95%,96%,97%,98%, or 99% identical to a human germline nucleotide sequence of a FR1+FR2+FR3 of of a heavy chain variable region gene segment that is a 1-8, 1-18, or 1-69 gene segment.
In one embodiment, the mouse further comprises a FR4 that is at least 80% identical to a FR4 formed by a human D6-19/J6 rearrangement, a D6-7/J4 rearrangement, a D4-4/J4 rearrangement, a D6-6/J2 rearrangement, a D3-16/J6 rearrangement, a D6-6/J4 rearrangement, and a D1-7/J4 rearrangement. In specific embodiments, the FR4 is about 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to an FR4 formed by the aforementioned D/J rearrangement.
In one embodiment, the mouse comprises a nucleotide sequence encoding a FR1 whose amino acid sequence differs by no more than 1, no more than 2, no more than 3, no more than 4, or no more than 5 amino acids from a FR1 encoded by a germline sequence of human heavy chain variable region gene segment selected from V1-8, V1-18, and V1-69. In a specific embodiment, the nucleotide sequence encoding the FR1 is a rearranged sequence operably linked to a sequence encoding an IgG constant region that lacks a functional CH1 sequence.
In one embodiment, the mouse comprises a nucleotide sequence encoding a FR2 whose amino acid sequence differs by no more than 1, no more than 2, no more than 3, no more than 4, or no more than 5 amino acids from a FR2 encoded by a germline sequence of human heavy chain variable region gene segment selected from V1-8, V1-18, and V1-69. In a specific embodiment, the nucleotide sequence encoding the FR2 is a rearranged sequence operably linked to a sequence encoding an IgG constant region that lacks a functional CH1 sequence.
In one embodiment, the mouse comprises a nucleotide sequence encoding a FR3 whose amino acid sequence differs by no more than 1, no more than 2, no more than 3, no more than 4, no more than 5, no more than 6, no more than 7, no more than 8, no more than 9, no more than 10, or no more than 11 amino acids from a FR3 encoded by a germline sequence of human heavy chain variable region gene segment selected from V1-8, V1-18, and V1-69. In a specific embodiment, the nucleotide sequence encoding the FR3 is a rearranged sequence operably linked to a sequence encoding an IgG constant region that lacks a functional CH1 sequence.
In one embodiment, the mouse comprises a nucleotide sequence encoding a FR4 whose amino acid sequence differs by no more than 1, no more than 2, or no more than 3 amino acids from a FR4 amino acid sequence encoded by a rearrangement of a human D6-19/J6, a D6-7/J4, a D4-4/J4, a D6-6/J2, a D3-16/J6, a D6-6/J4, and a D1-7/J4. In a specific embodiment, the nucleotide sequence encoding the FR4 is a rearranged sequence operably linked to a sequence encoding an IgG constant region that lacks a functional CH1 sequence.
In one embodiment, the mouse comprises a nucleotide sequence encoding a heavy chain CDR3 derived from a human heavy chain D region gene segment (hDH). In one embodiment, the hDH is selected from D1-7, D3-16, D4-4, D6-6, D6-7, and D6-19.
In one embodiment, the mouse comprises a nucleotide sequence encoding a heavy chain CDR3 derived from a human heavy chain joining gene segment (JH). In a specific embodiment, the JH is selected from J2, J4, and J6.
In one embodiment, the mouse comprises a heavy chain CDR3 encoded by a nucleotide sequence derived from a human DH and a human JH rearrangement. In a specific embodiment, the CDR3 is derived from a D1-7/J4, D3-16/J6, D4-4/J4, D6-6/J2, D6-6/J4, D6-7/J4, or a D6-19/J6 rearrangement.
In one embodiment, the mouse comprises a replacement of an endogenous mVR gene segment with an hVR gene segment. In a specific embodiment, the replacement of the mVR gene segment with the hVR gene segment is on the same allele as the modified heavy chain constant region. In another specific embodiment, the replacement of the mVR gene segment with the hVR gene segment is on a different allele than the modified heavy chain constant region.
In one embodiment, 90-100% of mVR gene segments are replaced with at least one hVR gene segment. In a specific embodiment, all or substantially all of the endogenous mVR gene segments are replaced with at least one hVR gene segment. In one embodiment, the replacement is with at least 18, at least 39, or at least 80 or 81 hVR gene segments. In one embodiment, the replacement is with at least 12 functional hVR gene segments, at least 25 functional hVR gene segments, or at least 43 functional hVR gene segments.
In one embodiment, the genetically modified mouse comprises a transgene that comprises at least one unrearranged hVR gene segment, at least one unrearranged human D segment, at least one unrearranged human J segment, and at least one human heavy chain constant sequence. In one embodiment, the endogenous mouse heavy chain variable region and kappa light chain variable region loci are functionally silenced. In a specific embodiment, the mouse is capable of trans-switching to produce a chimeric human/mouse antibody comprising a human heavy chain variable domain contiguous with a mouse IgG sequence that lacks a functional CH1 domain and, optionally, lacks a hinge region of the IgG that lacks the functional CH1 domain. In a specific embodiment, the transgene further comprises an IgG sequence that lacks a CH1 domain, and optionally comprises an IgM having a functional CH1 domain. In a further specific embodiment, the IgG sequence lacks a hinge region.
In one embodiment, the mouse comprises a first heavy chain variable region allele and a second heavy chain variable region allele, wherein the first allele and the second allele are both from the same mouse strain. In one embodiment, the first allele is from a first mouse strain and the second allele is from a second mouse strain. In one embodiment, one allele of the first and the second alleles comprises a replacement of an mVR with at least one hVR. In another embodiment, both alleles comprise a replacement of an mVR with at least on hVR.
In one aspect, a genetically modified mouse is provided, wherein the mouse expresses an IgM that comprises a CH1 domain, and the mouse expresses an IgG that lacks a functional CH1 domain or that expresses an IgG that lacks both a functional CH1 domain and that lacks a functional hinge region.
In one embodiment, the IgG is an IgG1.
In one embodiment, the mouse expresses four IgGs that are: a modified IgG1 and a wild-type IgG3, IgG2a, and IgG2b. In another embodiment, the mouse expresses no more than two IgGs that are: a modified IgG1 and a wild-type IgG3. In a specific embodiment the mouse expresses heavy chain isotypes that are: a wild-type IgM, a wild-type IgD, a wild-type IgG3, a modified IgG1, a wild-type IgG2a, a wild-type IgG2b, a wild-type IgA, and a wild-type IgE. In another specific embodiment, the mouse expresses heavy chain isotypes that are: a wild-type IgM, a wild-type IgD, a wild-type IgG3, a modified IgG1, a wild-type IgA, and a wild-type IgE. In variosu embodiments, the modification of the IgG1 comprises a deletion of a CH1 domain and, optionally, a deletion of a hinge region.
In one embodiment, the mouse is from a strain selected from 129, C56BL/6, a mixed 129xC57BL/6.
In one aspect, a mouse that expresses a heavy chain antibody is provided, wherein the heavy chain antibody consists essentially of a dimeric heavy chain, wherein the heavy chain lacks a functional CH1 domain or lacks both a functional CH1 domain and a functional hinge region, the heavy chain comprises a mammalian heavy chain variable domain that comprises a sequence that is not identical to a mammalian heavy chain variable domain encoded by a germline variable region gene, and the heavy chain comprises a human or mouse CH2 domain and a human or mouse CH3 domain, wherein the mouse expresses a wild-type human or mouse IgM.
In one embodiment, the mouse comprises a functional immunoglobulin light chain gene locus.
In one embodiment, wherein the mammalian heavy chain variable domain is a human or mouse heavy chain variable domain.
In one embodiment, the heavy chain antibody consists essentially of a dimeric heavy chain lacking a functional CH1 domain and lacking a functional hinge region, wherein the heavy chain comprises a human variable domain that comprises at least one somatic mutation and comprises a CH2 domain and a CH3 domain. In a specific embodiment, the CH2 domain and the CH3 domain are independently selected from mouse and human domains. In a specific embodiment, both the CH2 and the CH3 domain are human; in another embodiment, both the CH2 and the CH3 domain are mouse.
In one aspect, a heavy chain antibody is provided, wherein the heavy chain antibody comprises a heavy chain comprising a non-camelid variable domain and a heavy chain constant region lacking a CH1 domain.
In one embodiment, the heavy chain antibody further lacks a hinge region.
In one embodiment, the heavy chain antibody comprises a constant region that consists essentially of a hinge region, a CH2 domain, and a CH3 domain. In another embodiment, the heavy chain antibody comprises a constant region that consists essentially of a CH2 domain and a CH3 domain.
In one embodiment, the non-camelid variable domain is a somatically mutated human or mouse heavy chain variable domain obtained from an IgM- or an IgG-encoding nucleotide sequence of a B cell from a mouse or a genetically modified mouse comprising a human heavy chain variable region gene segment. In a specific embodiment, the mouse comprises a humanized heavy chain variable region gene segment. In another embodiment, the mouse comprises a replacement of the endogenous mouse heavy chain variable region gene segment locus with at least one human variable region gene segment. In another embodiment, the mouse comprises a replacement of the endogenous mouse heavy chain locus with at least one human variable gene segment, at least one human D gene segment, and at least one human J gene segment. In a specific embodiment, the endogenous mouse immunoglobulin variable region locus is all or substantially all replaced with a human immunoglobulin variable region locus comprising a plurality of human V, D, and J gene segments.
In one embodiment, the non-camelid variable domain is a human or a mouse variable domain. In another embodiment, the non-camelid variable domain is a human or a mouse variable domain comprising one or more camelizing modifications. In a specific embodiment, the camelizing modification is selected from L11S, V37F, G44E, L45C, L45R, and W47G (Kabat numbering). In a specific embodiment, the camelizing modification is selected from V37F, G44E, and L45C. In a specific embodiment, the heavy chain variable domain comprises a complementarity determining region 3 (CDR3) that comprises two cysteines.
In one embodiment, the heavy chain antibody comprises a dimer of a first heavy chain comprising a first heavy chain variable domain and a second heavy chain comprising a second heavy chain variable domain, wherein each of the first and the second heavy chains lacks a CH1 domain (or lacks a CH1 domain and a hinge region). In one embodiment, the human variable domain of the first heavy chain of the dimer binds a first epitope, and the human variable domain of the second heavy chain of the dimer binds a second epitope, wherein the first and the second epitope are not identical. In a specific embodiment, the heavy chain variable domains of the first and the second heavy chains comprise human heavy chain variable domains and/or human heavy chain FR regions as described herein.
In one aspect, a genetically modified non-human cell is provided, wherein the genetic modification comprises a deletion of an IgG CH1 domain and the cell expresses a functional IgM. In a specific embodiment, the cell comprises an IgM gene comprising a sequence encoding a CH1 domain.
In one embodiment, the cell is selected from a non-human ES cell, a pluripotent cell, and a totipotent cell. In a specific embodiment, the non-human ES cell is selected from a mouse ES cell and a rat ES cell.
In one aspect, a genetically modified non-human embryo is provided, wherein the genetic modification comprises a modification as described herein. In one embodiment, the genetic modification comprises a deletion of an IgG CH1 domain and the non-human embryo expresses a functional IgM. In a specific embodiment, the non-human embryo comprises an IgM gene comprising a CH1 domain.
In one embodiment, the non-human embryo is a mouse embryo or a rat embryo.
In one aspect, a non-human embryo comprising a donor cell is provided, wherein the donor cell is genetically modified, and wherein the genetic modification is a modification as described herein. In one embodiment, the genetic modification comprises a deletion of an IgG CH1 domain and the cell comprises an IgM gene comprising a CH1 domain.
In one embodiment, the non-human embryo is a mouse embryo or a rat embryo, and the donor cell is a mouse ES cell or a rat ES cell, respectively.
In one aspect, a DNA construct is provided, wherein the DNA construct comprises (a) a mouse homology arm homologous to a first sequence 5′ and immediately adjacent to the start of an IgG CH1 region; (b) a marker or drug selection cassette; and, (c) a homology arm homologous to asecond sequence 3′ and immediately adjacent to the end of an IgG CH1 region or, alternatively, a homology arm homologous to asecond sequence 3′ and immediately adjacent to the end of an IgG hinge region.
In one aspect, a method for making an antibody that lacks a CH1 domain is provided, comprising: (a) immunizing a non-human animal as described herein that lacks a functional CH1 domain in an IgG or lacks a functional CH1 domain and lacks a functional hinge region in the IgG, wherein the mouse expresses an IgM that comprises a functional CH1 domain; (b) maintaining the non-human animal under conditions sufficient for the non-human animal to make an antibody; (c) identifying an antibody made by the mouse that lacks a functional CH1 domain or that lacks a functional hinge region; and, (d) isolating from the mouse the antibody, a cell that makes the antibody, or a nucleotide sequence that encodes a sequence of the antibody.
In one embodiment, the non-human animal comprises a functional immunoglobulin light chain gene locus.
In one aspect, a method for humanizing a mouse heavy chain antibody is provided, comprising immunizing a genetically modified mouse that makes heavy chain antibodies with an antigen of interest, allowing the mouse to mount an immune response, identifying a mouse VH region of the mouse that is encoded in a B cell of the mouse, wherein the B cell specifically binds the antigen of interest, and humanizing the VH region.
In one embodiment, the genetically modified mouse that makes heavy chain antibodies is a mouse as described herein. In one embodiment, the mouse comprises at least one mVR gene segment operably linked to a heavy chain constant locus that comprises an intact IgM gene and that comprises an IgG gene that lacks a CH1 domain or that lacks a CH1 domain and lacks a hinge domain. In one embodiment, the IgG gene is an IgG1 gene. In one embodiment, the IgG gene is selected from IgG1, IgG2A, IgG2B, IgG3, and a combination thereof.
In one embodiment, the method further comprises cloning a nucleotide sequence encoding the humanized VH region onto a nucleotide sequence of a human immunoglobulin constant region.
In one embodiment, the mouse mVR gene segment is from a mouse VH gene family selected from VH1 and VH14, and the humanization comprises replacing a mouse framework of VH1 or VH14 with a framework from a human VH1 gene. In one embodiment, the human VH1 gene is selected from 1-2, 1-3, 1-8, 1-17, 1-18, 1-24, 1-45, 1-46, 1-58, and 1-69. In specific embodiments, the mVR gene is a 1-58 gene and the human gene is a 1-18 gene; the mVR gene is a 1-26 gene and the human gene is a 1-2 gene; the mVR gene is a 1-50 gene and the human gene is a 1-46 gene; the mVR gene is a 1-17 gene and the human gene is a 1-2 gene; the mVR gene is a 1-42 gene and the human gene is a 1-2 gene; the mVR is a 14-1 gene and the human gene is a 1-2 gene; or the mVR is a 14-2 gene and the human gene is a 1-2 gene.
In one embodiment, the mVR gene segment is from a mouse VH gene selected from a VH4, VH5, VH6, VH7, VH10, VH11, and VH13 gene, and the humanization comprises replacing a mouse framework with a framework from a human VH3 gene. In one embodiment, the human VH3 gene is selected from 3-7, 3-9, 3-11, 3-13, 3-15, 3-16, 3-20, 3-21, 3-23, 3-30, 3-33, 3-35, 3-38, 3-43, 3-48, 3-49, 3-53, 3-64, 3-66, 3-72, 3-73, and 3-74. In a specific embodiment, the mVR gene is a 7-1 gene and the human gene is a 3-72 gene; the mVR gene is a 3-6 gene and the human gene is a 4-59 gene; the mVR gene is a 5-6 gene and the human gene is a 3-21 gene.
In one embodiment, the mVR gene segment is from a mouse VH gene family selected from VH3 and VH12, and the humanization comprises replacing a mouse framework with a framework from a human VH4 gene. In one embodiment, the human VH4 gene is selected from 4-4, 4-28, 4-31, 4-34, 4-39, 4-59, and 4-61.
In one embodiment, the mVR gene segment is from a mouse VH4 gene family, and the humanization comprises replacing a mouse VH4 framework with a framework from a human VH6 gene. In one embodiment, the human VH6 gene is 6-1.
In one embodiment, the mVR gene segment is from a mouse VH9 gene family, and the humanization comprises replacing a mouse VH9 framework with a framework from a human VH gene of the human VH7 family. In one embodiment, the human VH gene is selected from 7-4-1 and 7-81.
In one embodiment, the humanization further comprises making one or more conservative or non-conservative substitutions, one or more deletions, and/or one or more insertions in a mouse CDR such that the mouse CDR corresponds more closely to a human CDR.
In one embodiment, the humanization further comprises making one or more conservative or nonconservative substitutions, one or more deletions, and/or one or more insertions in a human framework such that the human framework corresponds more closely to the mouse framework.
In one aspect, a genetically modified mouse is provided that comprises a functional immunoglobulin light chain gene, wherein the mouse expresses a heavy chain antibody that lacks a light chain and that lacks a CH1 region or that lacks a CH1 region and a hinge region.
In one embodiment, the mouse comprises an immunoglobulin gene that lacks a sequence encoding a CH1 region, or lacks a sequence encoding a hinge and a CH1 region. In one embodiment, the immunoglobulin gene that lacks the sequence is one or more heavy chain constant genes. In a specific embodiment, the immunoglobulin gene that lacks the sequence is selected from an IgG1, IgG2a, IgG2b, and IgG3 gene. In a specific embodiment, the mouse comprises an IgM gene with a CH1 region, and/or a hinge region, and/or a CH1 region and hinge region.
In one embodiment, the antibody is expressed in response to an antigen, and the antibody specifically binds the antigen.
In one embodiment, the antibody comprises a mouse VH domain. In a specific embodiment, the mouse VH domain comprises a mouse VH gene segment selected from 1-26, 1-42, 1-50, 1-58, 1-72, 3-6, 5-6, 7-1, 14-1, and 14-2.
In one embodiment, the antibody comprises a human VH domain. In a specific embodiment, the human VH domain comprises a sequence derived from a human VH gene segment selected from 1-2, 1-18, 1-46, 3-21, 3-72, and 4-59.
In one aspect, a genetically modified mouse is provided that expresses a binding protein that consists essentially of two IgG1 heavy chains that each lack a CH1 domain, wherein the mouse expresses an IgM that comprises a CH1 region, and wherein the mouse is incapable of expressing from its genome an mRNA that comprises a nucleotide sequence encoding a CH1 domain of an IgG1.
In one embodiment, the immunoglobulin heavy chains that each lack a CH1 domain consist essentially of, from N-terminal to C-terminal, a human or mouse heavy chain immunoglobulin variable region, optionally a hinge region, a mouse CH2 region, and a mouse CH3 region. In a specific embodiment, the heavy chain immunoglobulin variable region is a human variable region, a hinge region is present, and the mouse comprises a functional immunoglobulin light chain gene locus.
In one aspect, a mouse is provided that expresses a heavy chain antibody that lacks a light chain and that lacks a CH1 region in whole or in part, wherein the mouse expresses a B cell receptor on a B cell, wherein the B cell receptor on its surface displays a binding molecule that comprises an immunoglobulin heavy chain variable domain fused directly to an immunoglobulin hinge region or fused directly to a CH2 region, wherein the binding molecule lacks a CH1 region. In one embodiment, the binding molecule comprises an IgG1 CH2 and CH3 region.
In one aspect, a method for making a heavy chain antibody is provided, comprising immunizing a mouse with an antigen of interest, wherein the mouse comprises an IgG gene that lacks a sequence encoding a CH1 region, wherein the mouse comprises an intact IgM constant region gene, allowing the mouse to mount an immune response against the antigen of interest, and isolating from the mouse a cell or protein that specifically recognizes the antigen of interest, wherein the cell or protein comprises a heavy chain antibody that lacks a CH1 domain and that lacks a cognate light chain and that specifically binds the antigen of interest.
In one embodiment, the mouse comprises a functional light chain gene. In one embodiment, the mouse comprises a functional light chain gene selected from lambda, kappa, and a combination thereof.
In one embodiment, the mouse comprises a replacement of all or substantially all mouse heavy chain V, D, J gene segments with one or more human V, D, J gene segments.
In one embodiment, the IgG gene that lacks the sequence encoding a CH1 is selected from an IgG1, IgG2a, IgG2b, IgG3, and a combination thereof.
In one embodiment, the IgG gene that lacks the CH1 sequence is IgG1, and the mouse lacks a gene encoding IgG2a, IgG2b, IgG3, or a combination thereof. In one embodiment, the IgG gene that lacks the CH1 sequence is IgG2a, and the mouse lacks a gene encoding IgG1, IgG2b, IgG3, or a combination thereof. In one embodiment, the IgG gene that lacks the CH1 sequence is IgG2b, and the mouse lacks a gene encoding IgG1, IgG2a, IgG3, or a combination thereof. In one embodiment, the IgG gene that lacks the CH1 sequence is IgG3, and the mouse lacks a gene encoding IgG1, IgG2a, IgG2b, or a combination thereof.
In one embodiment, the mouse comprises a B cell that bears on its surface a B cell receptor, wherein the B cell receptor comprises a rearranged heavy chain VDJ that binds the antigen of interest, and wherein the B cell receptor comprises an IgM that comprises a CH1 region, and wherein the IgM comprises a light chain. In one embodiment, the light chain is VJ rearranged. In a specific embodiment, the light chain is a kappa or a lambda light chain that is cognate with the rearranged heavy chain VDJ that binds the antigen of interest.
In one aspect, a mouse heavy chain antibody, human heavy chain antibody, or chimeric human/mouse heavy chain antibody made in a mouse according to the invention is provided.
In one aspect, a mouse heavy chain antibody, human heavy chain antibody, chimeric human/mouse heavy chain antibody, or humanized heavy chain antibody made using a heavy chain variable region nucleotide sequence or fragment thereof made in a mouse according to the invention is provided.
Other embodiments are described and will become apparent to those skilled in the art from a review of the ensuing detailed description.