Movatterモバイル変換


[0]ホーム

URL:


US20140154668A1 - Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same. - Google Patents

Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
Download PDF

Info

Publication number
US20140154668A1
US20140154668A1US13/838,600US201313838600AUS2014154668A1US 20140154668 A1US20140154668 A1US 20140154668A1US 201313838600 AUS201313838600 AUS 201313838600AUS 2014154668 A1US2014154668 A1US 2014154668A1
Authority
US
United States
Prior art keywords
metallic
nanosensor
nanodevice
capture agent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/838,600
Inventor
Stephen Y. Chou
Liang-Cheng Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton University
Original Assignee
Princeton University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2011/037455external-prioritypatent/WO2012024006A2/en
Application filed by Princeton UniversityfiledCriticalPrinceton University
Priority to US13/838,600priorityCriticalpatent/US20140154668A1/en
Assigned to THE TRUSTEES OF PRINCETON UNIVERSITYreassignmentTHE TRUSTEES OF PRINCETON UNIVERSITYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: CHOU, STEPHEN Y., ZHOU, Liang-cheng
Priority to PCT/US2014/029675prioritypatent/WO2014145036A1/en
Priority to CN201480028357.9Aprioritypatent/CN105229467A/en
Priority to CN201480028669.XAprioritypatent/CN105358979A/en
Priority to PCT/US2014/028417prioritypatent/WO2014144133A1/en
Priority to PCT/US2014/029979prioritypatent/WO2014197096A2/en
Priority to CN201480028698.6Aprioritypatent/CN105209884A/en
Priority to CN201480028307.0Aprioritypatent/CN105247349A/en
Priority to EP14806827.3Aprioritypatent/EP2972239A4/en
Priority to PCT/US2014/030108prioritypatent/WO2014197097A2/en
Priority to PCT/US2014/030624prioritypatent/WO2014145798A2/en
Priority to EP14764689.7Aprioritypatent/EP2969542A4/en
Priority to CN201480028671.7Aprioritypatent/CN105246682A/en
Priority to PCT/US2014/031099prioritypatent/WO2014146115A2/en
Publication of US20140154668A1publicationCriticalpatent/US20140154668A1/en
Priority to US14/459,251prioritypatent/US9013690B1/en
Priority to US14/668,750prioritypatent/US10234394B2/en
Priority to US14/852,412prioritypatent/US20160003744A1/en
Priority to US14/852,417prioritypatent/US20160003817A1/en
Priority to US16/009,140prioritypatent/US20190064071A1/en
Abandonedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

This disclosure provides, among other things, a nanosensor comprising a substrate and one or a plurality of pillars extending from a surface of the substrate, where the pillars comprise a metallic dot structure, a metal disc, and a metallic back plane. The nanosensor comprises a molecular adhesion layer that covers at least a part of the metallic dot structure, the metal disc, and/or the metallic back plane and a capture agent bound to the molecular adhesion layer. The nanosensor amplifies a light signal from an analyte, when the analyte is specifically bound to the capture agent.

Description

Claims (83)

What is claimed is:
1. A nanodevice comprising:
(a) a substrate; and
(b) one or a plurality of pillars extending from a surface of the substrate, wherein at least one of said pillars comprises:
i. a metallic disc on top of the pillar;
ii. a metallic back plane at the foot of the pillar, said metallic back plane covering a substantial portion of said substrate surface near the foot of the pillar;
iii. a metallic dot structure on sidewall of the pillar; and
iv. a molecular adhesion layer that covers at least a part of said metallic dot structure, said metal disc, and/or said metallic back plane;
wherein said nanosensor amplifies a light signal that is proximal to the exterior surface of said adhesion layer.
2. The nanodevice ofclaim 1, wherein the exterior surface of said molecular adhesion layer comprises a capture agent-reactive group, selected from an amine-reactive group, a thiol-reactive group, a hydroxyl-reactive group, an imidazolyl-reactive group and a guanidinyl-reactive group.
3. The nanodevice ofclaim 2, wherein said capture agent-reactive group is a N-hydroxysuccinimidyl ester, sulfo-N-hydroxysuccinimidyl ester, a halo-substituted phenol ester, pentafluorophenol ester, a nitro-substituted phenol ester, an anhydride, isocyanate, isothiocyanate, an imidoester, maleimide, iodoacetyl, hydrazide, an aldehyde, or an epoxide.
4. The nanodevice ofclaim 1, wherein said molecular adhesion layer is attached to said metallic dot structure, said metal disc, and/or said metallic back plane via a metal-sulfur bond.
5. The nanodevice ofclaim 1, wherein said molecular adhesion layer has a thickness of 0.5 nm to 50 nm.
6. The nanodevice ofclaim 1, wherein the molecular adhesion layer is a monolayer of alkanethiol or thio-poly(ethylene)glycol.
7. The nanodevice ofclaim 1, wherein the molecular adhesion layer is attached to said metallic dot structure, said metal disc, and/or said metallic back plane via a streptavidin/biotin interaction.
8. The nanodevice ofclaim 1, wherein the exterior surface of said molecular adhesion layer comprises a biotin moiety or streptavidin.
9. The nanodevice ofclaim 1, the exterior surface of said metallic dot structure, said metal disc, and/or said metallic back plane comprises a streptavidin group that can bind to a biotinylated capture agent.
10. The nanodevice ofclaim 1, the exterior surface of said metallic dot structure, said metal disc, and/or said metallic back plane comprises a biotin moiety that can bind to a streptavidin-linked capture agent.
11. The nanodevice ofclaim 1, wherein said nanosensor is disposed within a container.
12. The nanodevice ofclaim 1, wherein said molecular adhesion layer is a self-assembled monolayer (SAM), wherein each molecule of the SAM comprises three parts: (i) a head group that has specific affinity to the metal surfaces of the nanodevice, (ii) a terminal group that specific affinity to the capture agent, and (iii) a linker that links the head group and terminal group, wherein the length of the linker determines the average spacing between the metal surfaces and an attached capture agent can affects light amplification of the nanodevice.
13. The nanodevice ofclaim 1, wherein the metal is selected from the group consisting of gold, silver, copper, aluminum, alloys thereof, and combinations thereof.
14. The nanodevice ofclaim 1, wherein the top of said pillar has a shape selected from the group of shapes consisting of round, polygonal, pyramidal, elliptical, elongated bar shaped, or any combination thereof.
15. The nanodevice ofclaim 1, wherein the lateral dimension of said metallic disc is in the range from 5 nm to 150 nm.
16. The nanodevice ofclaim 1, wherein said metallic disc and the metallic back plane are spaced by a distance in the range of 0.1 nm to 60 nm.
17. The nanodevice ofclaim 1, wherein said at least one metallic dot structure has dimensions in the range of 1 nm to 25 nm.
18. The nanodevice ofclaim 1, wherein the distance between said metallic dot structure and said metallic disc, and the distance between said metallic dot structure and said metallic backplane is in the range of 0.5 nm to 50 nm.
19. The nanodevice ofclaim 1, wherein the spacing between the two nearest pillars of said plurality of pillars is in the range from 2 nm to 200 nm.
20. The nanodevice ofclaim 1, wherein said pillar has a sidewall surface that is columnar, sloped, or curved.
21. The nanodevice ofclaim 1, wherein the thickness of the said metallic disc and metallic back plane is between 5 nm to 60 nm.
22. The nanodevice ofclaim 1, wherein said pillar has a lateral dimension or a height less than the wavelength of said light.
23. The nanodevice ofclaim 1, wherein said metallic disc has substantially the same lateral geometry as said pillar.
24. The nanodevice ofclaim 1, wherein said pillar comprises a dielectric or semiconductor material selected from the group consisting of polymers, silicon-dioxide, silicon-nitride, hafnium oxide, aluminum oxide, silicon, gallium arsenide, and gallium nitride.
25. The nanodevice ofclaim 1, wherein the lateral dimension of said metallic disc is less than the wavelength of said light.
26. A method of making a nanosensor, comprising:
attaching a capture agent to the molecular adhesion layer of a nanodevice ofclaim 1.
27. The method ofclaim 26, wherein said capture agent is a protein or nucleic acid.
28. The method ofclaim 27, wherein said capture agent is an antibody.
29. The method ofclaim 27, wherein said capture agent is an oligonucleotide.
30. A nanosensor, comprising:
(a) a nanodevice ofclaim 1; and
(b) a capture agent that specifically binds to an analyte, wherein said capture agent is linked to the molecular adhesion layer of said nanodevice;
wherein said nanosensor amplifies a light signal from an analyte, when said analyte is bound to said capture agent.
31. The nanosensor ofclaim 30, wherein said light signal is luminescence or fluorescence.
32. The nanosensor ofclaim 30, wherein said capture agent is a protein.
33. The nanosensor ofclaim 32, wherein said capture agent is an antibody.
34. The nanosensor ofclaim 30, wherein said capture agent is a nucleic acid.
35. The nanosensor ofclaim 30, wherein said capture agent is an oligonucleotide.
36. The nanosensor ofclaim 30, further comprising a labeled analyte that is specifically bound to said capture agent.
37. The nanosensor ofclaim 36, wherein said labeled analyte is directly or indirectly labeled with a light-emitting label.
38. The nanosensor ofclaim 37, wherein said labeled analyte is linked to said light-emitting label via a streptavidin/biotin interaction.
39. The nanosensor ofclaim 30, wherein the thickness of said molecular adhesion layer is selected to optimize the amplification of said light signal.
40. The nanosensor ofclaim 30, wherein nanosensor is in a multi-well format, wherein each well of a multi-well plate comprises a nanosensor ofclaim 30, wherein the nanosensor in each of the wells comprises a different capture agent.
41. A system comprising:
(a) a nanosensor ofclaim 30;
(b) a holder for said nanosensor;
(c) an excitation source that induces a light signal from a label; and
(d) a reader adapted to read said light signal.
42. The system ofclaim 41, wherein said excitation source is a light source.
43. The system ofclaim 41, wherein said excitation source is electrical current.
44. The system ofclaim 41, wherein said reader is a photodetector, a CCD camera, a CMOS camera, a spectrometer or an optical sensor capable of producing a two dimensional spectral map of a surface of said nanosensor.
45. The system ofclaim 41, wherein said nanosensor is in a multi-well format, and said holder and/or said reader can be moved so that reader can read a light signal from each of the wells independently.
46. A method of detecting and/or quantifying an analyte, comprising:
(a) attaching a capture agent to the molecular adhesion layer of a nanodevice ofclaim 1 to produce a nanosensor;
(b) contacting a sample containing a target analyte with said nanosensor, wherein said target analyte specifically binds to said capture agent and said contacting is done under conditions suitable for said binding; and
(c) reading a light signal from any target analyte that is bound to said nanosensor;
wherein said method further comprises labeling said target analyte with a light-emitting label, either prior to or after it is bound to said capture agent.
47. The method ofclaim 46, wherein said reading applies an exciting said light emitting label using light, electricity, a chemical or combination of thereof, and measuring at least one property of said light signal selected from intensity, wavelength, and location.
48. The method ofclaim 46, wherein said analyte is labeled after it is bound to the capture agent of said nanosensor.
49. The method ofclaim 46, wherein said labeling is done by binding said target analyte to a detection agent that specifically binds to said target analyte and that is linked to a light-emitting label.
50. The method ofclaim 46, wherein said method comprise labeling said light-emitting label after it is bound to the capture agent, wherein said method further comprises removing any unbound light-emitting label from the nanosensor prior to said reading.
51. The method ofclaim 49, wherein said detection agent is a secondary antibody that comprises a light-emitting label.
52. The method ofclaim 49, wherein said detection agent is a nucleic acid that comprises a light-emitting label.
53. The method ofclaim 46, wherein said light-emitting label is a fluorescent, chemiluminescent or electroluminescent label.
54. The method ofclaim 53, wherein said light-emitting label is labeled with IRDye800CW, Alexa 790 or Dylight 800.
55. The method ofclaim 46, wherein said label emits light at a wavelength in the range of 300 nm to 1200 nm.
56. The method ofclaim 46, wherein said method comprises blocking said nanosensor prior to said contacting step (b), thereby preventing non-specific binding of said capture agents to non-target analytes.
57. The method ofclaim 46, wherein said sample is a liquid sample.
58. The method ofclaim 46, wherein said sample is a clinical sample.
59. The method ofclaim 46, wherein said sample is derived from a bodily fluid.
60. The method ofclaim 46, wherein said analyte is a protein.
61. The method ofclaim 46, wherein said capture agent and said analyte are nucleic acids.
62. The method ofclaim 46, wherein said analyte is a cancer biomarker.
63. The method ofclaim 46, wherein said analyte is a biomarker for a neurological disease.
64. The method ofclaim 46, wherein said analyte is a biomarker for cardiovascular diseases
65. The method ofclaim 46, wherein said analyte is a biomarker for organic diseases
66. The method ofclaim 46, wherein said analyte is a biomarker for an infectious or parasitic disease.
67. A method for fabricating said nanodevice ofclaim 1, comprising:
(a) patterning at least one pillar on a top surface of a substrate;
(b) depositing a metallic material layer of said top surface;
(c) allowing the metallic material deposited on the pillar tops to form a disc, the metallic material deposited on the pillar feet to form a metallic back plane, and the metallic material deposited on the sidewall to form at least one metallic dot structure;
(d) depositing a molecular adhesion layer on top of the deposited metallic material, wherein the molecular adhesion layer covers at least a part of said metallic dot structure, said metal disc, and/or said metallic back plane, and wherein the exterior surface of said molecular adhesion layer comprises a capture agent-reactive group.
68. The method ofclaim 67, further comprising:
attaching a capture agent to said molecular adhesion layer.
69. The method ofclaim 67, wherein said patterning is an embossing of a material.
70. A method of diagnosing a disease or condition, comprising:
(a) obtaining a liquid sample from a patient suspected of having said disease or condition;
(b) contacting said sample with a nanosensor ofclaim 1, wherein the capture agent of said nanosensor specifically binds to a biomarker for said disease and wherein said contacting is done under conditions suitable for specific binding of said biomarker with said capture agent;
(c) removing any biomarker that is not bound to said capture agent; and
(d) reading a light signal from biomarker that remain bound to said nanosensor, wherein a light signal indicates that said patient has said disease or condition;
wherein said method further comprises labeling said biomarker with a light-emitting label, either prior to or after it is bound to said capture agent.
71. The method ofclaim 70, wherein said patient is suspected of having cancer and said antibody binds to a cancer biomarker.
72. The method ofclaim 70, wherein said patient is suspected of having a neurological disorder and said antibody binds to a biomarker for said neurological disorder.
73. The method ofclaim 70, wherein said liquid sample comprises amniotic fluid, aqueous humour, vitreous humour, whole blood, fractionated blood, plasma, serum, breast milk, cerebrospinal fluid (CSF), cerumen (earwax), chyle, chime, endolymph, perilymph, feces, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, sweat, synovial fluid, tears, vomit, urine or exhaled condensate.
74. The method ofclaim 70, wherein said sensor is employed to detect or quantify chemical compounds or biomolecules that correlate with the stage of a diseases.
75. The method ofclaim 74, wherein said disease is cancer, a cardiac disease, a pulmonary disease, a renal disease, or a mental disorder,
76. The method ofclaim 70, wherein said sensor is employed to detect or quantify a microorganism.
77. The method ofclaim 76, wherein said microorganism is a virus, fungus or bacteria from the environment or a clinical sample.
78. The method ofclaim 70, wherein said sensor is employed to detect or quantify chemical compounds or biological entities that pose hazard to food safety or national security,
79. The method ofclaim 78, wherein said chemical compounds or biological entities is toxic waste or anthrax.
80. The method ofclaim 70, wherein said sensor is employed to quantify a vital parameter in a medical or physiological monitor.
81. The method ofclaim 80, wherein said vital parameter is glucose, blood oxygen level, or total blood count.
82. The method ofclaim 70, wherein said sensor is employed to detector or quantify a specific DNA or RNA from a biosample.
83. The method ofclaim 70, wherein said sensor is employed to the sequence and compare genetic sequences in DNA in the chromosomes or mitochondria.
US13/838,6002010-05-212013-03-15Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.AbandonedUS20140154668A1 (en)

Priority Applications (19)

Application NumberPriority DateFiling DateTitle
US13/838,600US20140154668A1 (en)2010-05-212013-03-15Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
PCT/US2014/029675WO2014145036A1 (en)2013-03-152014-03-14Rapid and sensitive analyte measurement assay
CN201480028357.9ACN105229467A (en)2013-03-152014-03-14Quick and sensitive analysis measurement determination method
CN201480028669.XACN105358979A (en)2013-03-152014-03-14Analyte detection enhancement by targeted immobilization, surface amplification, and pixelated reading and analysis
PCT/US2014/028417WO2014144133A1 (en)2013-03-152014-03-14Analyte detection enhancement by targeted immobilization, surface amplification, and pixelated reading and analysis
PCT/US2014/029979WO2014197096A2 (en)2013-03-152014-03-15Assay enhancement by selective deposition and binding on amplification structures
CN201480028698.6ACN105209884A (en)2013-03-152014-03-15Assay enhancement by selective deposition and binding on amplification structures
PCT/US2014/030108WO2014197097A2 (en)2013-03-152014-03-16Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same
CN201480028307.0ACN105247349A (en)2013-03-152014-03-16 Plasmonic nanocavity assay sensors for enhanced analyte detection and methods of making and using same
EP14806827.3AEP2972239A4 (en)2013-03-152014-03-16 PLASMONIC NANOCAVITY NETWORK TYPE SENSORS FOR IMPROVING ANALYTE DETECTION AND METHOD FOR MANUFACTURING AND USING SAID SENSORS
PCT/US2014/030624WO2014145798A2 (en)2013-03-152014-03-17Nanoparticle structures, fabrication, methods, and applications in chemical and biological sensing
EP14764689.7AEP2969542A4 (en)2013-03-152014-03-18 NANOPARTICLE STRUCTURE, MANUFACTURE, METHODS AND APPLICATIONS IN CHEMICAL AND BIOLOGICAL DETECTION
PCT/US2014/031099WO2014146115A2 (en)2013-03-152014-03-18Nanoparticle structures, fabrication, methods, and applications in chemical and biological sensing
CN201480028671.7ACN105246682A (en)2013-03-152014-03-18 Composite nanoparticle structures for chemical and biological sensing
US14/459,251US9013690B1 (en)2010-05-212014-08-13Highly sensitive detection of biomarkers for diagnostics
US14/668,750US10234394B2 (en)2010-05-212015-03-25Method for highly sensitive detection of biomarkers for diagnostics
US14/852,412US20160003744A1 (en)2012-04-102015-09-11Plasmonic Nanocavity Array Sensors for Analyte Detection Enhancement and Methods for Making and Using of the Same
US14/852,417US20160003817A1 (en)2012-04-102015-09-11Rapid and sensitive analyte measurement assay
US16/009,140US20190064071A1 (en)2010-05-212018-06-14Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US34717810P2010-05-212010-05-21
PCT/US2011/037455WO2012024006A2 (en)2010-05-212011-05-20Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same
US201261622226P2012-04-102012-04-10
US13/838,600US20140154668A1 (en)2010-05-212013-03-15Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.

Related Parent Applications (3)

Application NumberTitlePriority DateFiling Date
US13/699,270Continuation-In-PartUS9182338B2 (en)2010-05-212011-05-20Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same
PCT/US2011/037455Continuation-In-PartWO2012024006A2 (en)2010-05-212011-05-20Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same
US201313699270AContinuation-In-Part2010-05-212013-06-13

Related Child Applications (5)

Application NumberTitlePriority DateFiling Date
PCT/US2014/029675Continuation-In-PartWO2014145036A1 (en)2012-04-102014-03-14Rapid and sensitive analyte measurement assay
PCT/US2014/030108Continuation-In-PartWO2014197097A2 (en)2010-05-212014-03-16Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same
US14/459,251ContinuationUS9013690B1 (en)2010-05-212014-08-13Highly sensitive detection of biomarkers for diagnostics
US14/668,750ContinuationUS10234394B2 (en)2010-05-212015-03-25Method for highly sensitive detection of biomarkers for diagnostics
US14/852,412Continuation-In-PartUS20160003744A1 (en)2010-05-212015-09-11Plasmonic Nanocavity Array Sensors for Analyte Detection Enhancement and Methods for Making and Using of the Same

Publications (1)

Publication NumberPublication Date
US20140154668A1true US20140154668A1 (en)2014-06-05

Family

ID=50825785

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US13/838,600AbandonedUS20140154668A1 (en)2010-05-212013-03-15Structures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
US14/459,251Active2031-05-24US9013690B1 (en)2010-05-212014-08-13Highly sensitive detection of biomarkers for diagnostics
US14/668,750ActiveUS10234394B2 (en)2010-05-212015-03-25Method for highly sensitive detection of biomarkers for diagnostics

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
US14/459,251Active2031-05-24US9013690B1 (en)2010-05-212014-08-13Highly sensitive detection of biomarkers for diagnostics
US14/668,750ActiveUS10234394B2 (en)2010-05-212015-03-25Method for highly sensitive detection of biomarkers for diagnostics

Country Status (1)

CountryLink
US (3)US20140154668A1 (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20130264268A1 (en)*2012-04-052013-10-10Seiko Epson CorporationSeparator
US20150212000A1 (en)*2012-08-102015-07-30Hamamatsu Photonics K.K.Surface-enhanced raman scattering element
US20160003817A1 (en)*2012-04-102016-01-07The Trustees Of Princeton UniversityRapid and sensitive analyte measurement assay
US20160003744A1 (en)*2012-04-102016-01-07The Trustees Of Princeton UniversityPlasmonic Nanocavity Array Sensors for Analyte Detection Enhancement and Methods for Making and Using of the Same
WO2016168386A1 (en)*2015-04-142016-10-20Illumina, Inc.Structured substrates for improving detection of light emissions and methods relating to the same
WO2017027643A1 (en)2015-08-102017-02-16Essenlix Corp.Bio/chemical assay devices and methods for simplified steps, small samples, accelerated speed, and ease-of-use
US9721789B1 (en)*2016-10-042017-08-01Applied Materials, Inc.Saving ion-damaged spacers
US9741593B2 (en)2015-08-062017-08-22Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US9754800B2 (en)2010-05-272017-09-05Applied Materials, Inc.Selective etch for silicon films
US9768034B1 (en)2016-11-112017-09-19Applied Materials, Inc.Removal methods for high aspect ratio structures
US9773648B2 (en)2013-08-302017-09-26Applied Materials, Inc.Dual discharge modes operation for remote plasma
US9773695B2 (en)2014-07-312017-09-26Applied Materials, Inc.Integrated bit-line airgap formation and gate stack post clean
US9837249B2 (en)2014-03-202017-12-05Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9837284B2 (en)2014-09-252017-12-05Applied Materials, Inc.Oxide etch selectivity enhancement
US9842744B2 (en)2011-03-142017-12-12Applied Materials, Inc.Methods for etch of SiN films
US9863884B2 (en)2012-08-102018-01-09Hamamatsu Photonics K.K.Surface-enhanced Raman scattering element, and method for producing same
US9863883B2 (en)2012-08-102018-01-09Hamamatsu Photonics K.K.Surface-enhanced raman scattering element
US9865484B1 (en)2016-06-292018-01-09Applied Materials, Inc.Selective etch using material modification and RF pulsing
US9881805B2 (en)2015-03-022018-01-30Applied Materials, Inc.Silicon selective removal
US9885117B2 (en)2014-03-312018-02-06Applied Materials, Inc.Conditioned semiconductor system parts
US9934942B1 (en)2016-10-042018-04-03Applied Materials, Inc.Chamber with flow-through source
US9947549B1 (en)2016-10-102018-04-17Applied Materials, Inc.Cobalt-containing material removal
US9966240B2 (en)2014-10-142018-05-08Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en)2012-09-212018-05-22Applied Materials, Inc.Chemical control features in wafer process equipment
US10026621B2 (en)2016-11-142018-07-17Applied Materials, Inc.SiN spacer profile patterning
US10032606B2 (en)2012-08-022018-07-24Applied Materials, Inc.Semiconductor processing with DC assisted RF power for improved control
US10043684B1 (en)2017-02-062018-08-07Applied Materials, Inc.Self-limiting atomic thermal etching systems and methods
US10043674B1 (en)2017-08-042018-08-07Applied Materials, Inc.Germanium etching systems and methods
US10049891B1 (en)2017-05-312018-08-14Applied Materials, Inc.Selective in situ cobalt residue removal
US20180231418A1 (en)*2014-09-262018-08-16Korea Institute Of Machinery & MaterialsSubstrate On Which Multiple Nanogaps Are Formed, And Manufacturing Method Therefor
US10062587B2 (en)2012-07-182018-08-28Applied Materials, Inc.Pedestal with multi-zone temperature control and multiple purge capabilities
US10062585B2 (en)2016-10-042018-08-28Applied Materials, Inc.Oxygen compatible plasma source
US10062578B2 (en)2011-03-142018-08-28Applied Materials, Inc.Methods for etch of metal and metal-oxide films
US10062579B2 (en)2016-10-072018-08-28Applied Materials, Inc.Selective SiN lateral recess
US10062575B2 (en)2016-09-092018-08-28Applied Materials, Inc.Poly directional etch by oxidation
JP2018136576A (en)*2014-08-292018-08-30国立研究開発法人物質・材料研究機構Electromagnetic wave absorption and radiation material and method for producing the same, and infrared ray source
US10128086B1 (en)2017-10-242018-11-13Applied Materials, Inc.Silicon pretreatment for nitride removal
US10132755B2 (en)2012-08-102018-11-20Hamamatsu Photonics K.K.Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
US10147620B2 (en)2015-08-062018-12-04Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10163696B2 (en)2016-11-112018-12-25Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US10170336B1 (en)2017-08-042019-01-01Applied Materials, Inc.Methods for anisotropic control of selective silicon removal
US10224210B2 (en)2014-12-092019-03-05Applied Materials, Inc.Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en)2016-11-142019-03-26Applied Materials, Inc.Airgap formation with damage-free copper
US10256079B2 (en)2013-02-082019-04-09Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en)2017-12-082019-04-09Applied Materials, Inc.Selective tungsten removal
US10283321B2 (en)2011-01-182019-05-07Applied Materials, Inc.Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en)2017-10-242019-05-07Applied Materials, Inc.Oxygen treatment for nitride etching
US10297458B2 (en)2017-08-072019-05-21Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US10319600B1 (en)2018-03-122019-06-11Applied Materials, Inc.Thermal silicon etch
US10319649B2 (en)2017-04-112019-06-11Applied Materials, Inc.Optical emission spectroscopy (OES) for remote plasma monitoring
US10319739B2 (en)2017-02-082019-06-11Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10354889B2 (en)2017-07-172019-07-16Applied Materials, Inc.Non-halogen etching of silicon-containing materials
US10403507B2 (en)2017-02-032019-09-03Applied Materials, Inc.Shaped etch profile with oxidation
US10424464B2 (en)2015-08-072019-09-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US10424485B2 (en)2013-03-012019-09-24Applied Materials, Inc.Enhanced etching processes using remote plasma sources
US10468285B2 (en)2015-02-032019-11-05Applied Materials, Inc.High temperature chuck for plasma processing systems
US10465294B2 (en)2014-05-282019-11-05Applied Materials, Inc.Oxide and metal removal
US10468267B2 (en)2017-05-312019-11-05Applied Materials, Inc.Water-free etching methods
US10490406B2 (en)2018-04-102019-11-26Appled Materials, Inc.Systems and methods for material breakthrough
US10497573B2 (en)2018-03-132019-12-03Applied Materials, Inc.Selective atomic layer etching of semiconductor materials
US10504700B2 (en)2015-08-272019-12-10Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en)2016-05-192019-12-10Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
CN110573860A (en)*2017-04-182019-12-13学校法人冲绳科学技术大学院大学学园 Nanoplasmonic Instruments, Materials, Methods and System Integration
US10522371B2 (en)2016-05-192019-12-31Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US10541246B2 (en)2017-06-262020-01-21Applied Materials, Inc.3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en)2017-07-112020-01-21Applied Materials, Inc.Optical emission spectroscopic techniques for monitoring etching
US10546729B2 (en)2016-10-042020-01-28Applied Materials, Inc.Dual-channel showerhead with improved profile
CN110785498A (en)*2017-02-082020-02-11Essenlix公司 Nucleic acid hybridization detection
US10566206B2 (en)2016-12-272020-02-18Applied Materials, Inc.Systems and methods for anisotropic material breakthrough
US10573496B2 (en)2014-12-092020-02-25Applied Materials, Inc.Direct outlet toroidal plasma source
US10573527B2 (en)2018-04-062020-02-25Applied Materials, Inc.Gas-phase selective etching systems and methods
US10593560B2 (en)2018-03-012020-03-17Applied Materials, Inc.Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en)2014-10-142020-03-17Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US10615047B2 (en)2018-02-282020-04-07Applied Materials, Inc.Systems and methods to form airgaps
CN110998325A (en)*2017-02-092020-04-10Essenlix公司Amplification assay
US10629473B2 (en)2016-09-092020-04-21Applied Materials, Inc.Footing removal for nitride spacer
US10672642B2 (en)2018-07-242020-06-02Applied Materials, Inc.Systems and methods for pedestal configuration
US10679870B2 (en)2018-02-152020-06-09Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en)2018-04-172020-06-30Applied Materials, Inc.Two piece electrode assembly with gap for plasma control
US10727080B2 (en)2017-07-072020-07-28Applied Materials, Inc.Tantalum-containing material removal
US10755941B2 (en)2018-07-062020-08-25Applied Materials, Inc.Self-limiting selective etching systems and methods
WO2020180732A3 (en)*2019-03-012020-10-15Universal Sequencing TechnologyDevice and method for biopolymer identification
US10854426B2 (en)2018-01-082020-12-01Applied Materials, Inc.Metal recess for semiconductor structures
US10858693B2 (en)*2014-10-062020-12-08Indiana University Research & Technology CorporationSystems and methods for localized surface plasmon resonance biosensing
US10872778B2 (en)2018-07-062020-12-22Applied Materials, Inc.Systems and methods utilizing solid-phase etchants
US10886137B2 (en)2018-04-302021-01-05Applied Materials, Inc.Selective nitride removal
US10892198B2 (en)2018-09-142021-01-12Applied Materials, Inc.Systems and methods for improved performance in semiconductor processing
US10903054B2 (en)2017-12-192021-01-26Applied Materials, Inc.Multi-zone gas distribution systems and methods
US10903052B2 (en)2017-02-032021-01-26Applied Materials, Inc.Systems and methods for radial and azimuthal control of plasma uniformity
US20210025879A1 (en)*2019-01-302021-01-28Suzhou Astrabio Technology Co., Ltd.Single molecule quantitative detection method and detection system
US10920319B2 (en)2019-01-112021-02-16Applied Materials, Inc.Ceramic showerheads with conductive electrodes
US10920320B2 (en)2017-06-162021-02-16Applied Materials, Inc.Plasma health determination in semiconductor substrate processing reactors
US10943834B2 (en)2017-03-132021-03-09Applied Materials, Inc.Replacement contact process
US10964512B2 (en)2018-02-152021-03-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en)2018-09-142021-06-29Applied Materials, Inc.Semiconductor substrate supports with embedded RF shield
US11062887B2 (en)2018-09-172021-07-13Applied Materials, Inc.High temperature RF heater pedestals
CN113140911A (en)*2020-01-172021-07-20三星电子株式会社Biosensor, super-surface device and method of manufacturing the same
US20210247319A1 (en)*2018-07-162021-08-12Korea Institute Of Machinery & MaterialsSurface-enhanced raman scattering patch and attachable sensor using the same
US11121002B2 (en)2018-10-242021-09-14Applied Materials, Inc.Systems and methods for etching metals and metal derivatives
US11233332B2 (en)*2017-05-022022-01-25Electronics And Telecommunications Research InstituteLight absorber
US11239061B2 (en)2014-11-262022-02-01Applied Materials, Inc.Methods and systems to enhance process uniformity
US20220034815A1 (en)*2020-07-302022-02-03Korea Institute Of Materials ScienceSubstrate including 3d nanoplasmonic composite structure, method of fabricating the same, and rapid analysis method using the same
US11257693B2 (en)2015-01-092022-02-22Applied Materials, Inc.Methods and systems to improve pedestal temperature control
US11276559B2 (en)2017-05-172022-03-15Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en)2017-05-172022-03-15Applied Materials, Inc.Multi-zone semiconductor substrate supports
US11328909B2 (en)2017-12-222022-05-10Applied Materials, Inc.Chamber conditioning and removal processes
US11417534B2 (en)2018-09-212022-08-16Applied Materials, Inc.Selective material removal
US11437242B2 (en)2018-11-272022-09-06Applied Materials, Inc.Selective removal of silicon-containing materials
EP3931561A4 (en)*2019-02-272022-11-09NanoMosaic Inc.Nanosensors and use thereof
US11594428B2 (en)2015-02-032023-02-28Applied Materials, Inc.Low temperature chuck for plasma processing systems
US20230062418A1 (en)*2021-08-312023-03-02Kla CorporationSystem and method for feature signal enhancement using a selectively bonded photoluminescent material
US11682560B2 (en)2018-10-112023-06-20Applied Materials, Inc.Systems and methods for hafnium-containing film removal
US11721527B2 (en)2019-01-072023-08-08Applied Materials, Inc.Processing chamber mixing systems
US11802999B2 (en)*2016-08-312023-10-31RikenLight absorbing body, bolometer, infrared ray absorbing body, solar thermal power generating device, radiant cooling film, and method for manufacturing light absorbing body
WO2024026441A3 (en)*2022-07-282024-03-07Armonica Technologies, Inc.Polymer sequencing apparatus
US12163183B2 (en)2018-10-222024-12-10Indiana University Research And Technology CorporationSystems and methods for localized surface plasmon resonance biosensing
US20250067674A1 (en)*2021-03-112025-02-27Imperial College Innovations LtdChips and methods
US12340979B2 (en)2017-05-172025-06-24Applied Materials, Inc.Semiconductor processing chamber for improved precursor flow
EP4083610B1 (en)*2019-12-232025-09-17National Institute for Materials ScienceBiomolecular inspection chip for fluorescence detection

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20140154668A1 (en)*2010-05-212014-06-05The Trustees Of Princeton UniversityStructures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
KR20190057445A (en)2015-09-142019-05-28에센릭스 코프.Device and system for analyzing a sample, particularly blood, as well as methods of using the same
WO2018056744A1 (en)*2016-09-222018-03-29고려대학교 산학협력단Nanoplasmonic biosensor and method for detecting disease marker by using same
CN109997042B (en)2016-09-222022-08-19高丽大学校产学协力团Nanoplasmon biosensor and method of detecting disease marker using the same
GB201701691D0 (en)*2017-02-012017-03-15Illumina IncSystem and method with reflective fiducials
GB201701688D0 (en)2017-02-012017-03-15Illumia IncSystem and method with fiducials in non-recliner layouts
SG11201906442TA (en)2017-02-012019-08-27Illumina IncSystem and method with fiducials responding to multiple excitation frequencies
GB201701689D0 (en)2017-02-012017-03-15Illumia IncSystem and method with fiducials of non-closed shapes
GB201701686D0 (en)2017-02-012017-03-15Illunina IncSystem & method with fiducials having offset layouts
US10386338B2 (en)*2017-10-302019-08-20Cynthia Rena WrightDNA/RNA PEMS microcantilever probe for detection of viral infection and detection of genetic variants
CN108375567B (en)*2018-02-242021-03-09国家纳米科学中心 A kind of surface enhanced Raman substrate and preparation method thereof
WO2020154726A1 (en)*2019-01-252020-07-30Arizona Board Of Regents On Behalf Of The University Of ArizonaOptical cavity surface bioconjugation using lipid membranes for label free, ultrasensitive detection of biomolecules
US11609229B2 (en)*2020-04-302023-03-21Mytech Co. Ltd.Fluorescence counting system for quantifying viruses or antibodies on an immobilized metal substrate by using an antigen-antibody reaction
WO2022020373A1 (en)*2020-07-202022-01-27Massoud AkhtariSystem and method for determining presence of certain attributes in a test article
WO2024151551A1 (en)*2023-01-092024-07-18Pumpkinseed Technologies, Inc.Methods and systems for label-free analyte detection
WO2024216192A1 (en)*2023-04-142024-10-17The Board Of Trustees Of The Leland Stanford Junior UniversityPolyphenol-containing compositions for upregulating camp gene expression

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20030026900A1 (en)*2001-05-102003-02-06Zyvex CorporationSystem and method for controlling deposition parameters in producing a surface to tune the surface's plasmon resonance wavelength
US20060038990A1 (en)*2004-08-202006-02-23Habib Youssef MNanowire optical sensor system and methods for making and using same
US20060146323A1 (en)*2005-01-062006-07-06Alexandre BratkovskiNanowires for surface-enhanced raman scattering molecular sensors
US20060252065A1 (en)*2004-10-212006-11-09Yiping ZhaoSurface enhanced Raman spectroscopy (SERS) systems, substrates, fabrication thereof, and methods of use thereof
US20080024776A1 (en)*2006-07-252008-01-31Alexandre BratkovskiControllable surface enhanced Raman spectroscopy
US20090214392A1 (en)*2008-02-272009-08-27The Texas A&M University SystemNano-fluidic Trapping Device for Surface-Enhanced Raman Spectroscopy
US20090213369A1 (en)*2005-03-142009-08-27The Regents Of The University Of CaliforniaMetallic Nanostructures Adapted for Electromagnetic Field Enhancement

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5552272A (en)*1993-06-101996-09-03Biostar, Inc.Detection of an analyte by fluorescence using a thin film optical device
GB9517955D0 (en)*1995-07-251995-11-08Univ StrathclydeNucleotide sequence detection and analysis
US7758794B2 (en)2001-10-292010-07-20Princeton UniversityMethod of making an article comprising nanoscale patterns with reduced edge roughness
US5866430A (en)*1996-06-131999-02-02Grow; Ann E.Raman optrode processes and devices for detection of chemicals and microorganisms
AU2740000A (en)*1999-01-252000-08-07Lockheed Martin Energy Research CorporationMultifunctional and multispectral biosensor devices and methods of use
EP1222432A1 (en)1999-09-272002-07-17Array Bioscience CorporationFractal absorber for heat pipes with broad range heat radiation absorptivity
US7153682B2 (en)2000-06-052006-12-26Chiron CorporationMicroarrays on mirrored substrates for performing proteomic analyses
US6791099B2 (en)2001-02-142004-09-14Applied Materials, Inc.Laser scanning wafer inspection using nonlinear optical phenomena
WO2004068405A2 (en)2003-01-252004-08-12Oraevsky Alexander AHigh contrast optoacoustical imaging using nanoparticles
US7151598B2 (en)*2003-04-042006-12-19Vladimir PoponinMethod and apparatus for enhanced nano-spectroscopic scanning
US7460224B2 (en)2005-12-192008-12-02Opto Trace Technologies, Inc.Arrays of nano structures for surface-enhanced Raman scattering
US7892489B2 (en)2003-05-272011-02-22Optotrace Technologies, Inc.Light scattering device having multi-layer micro structure
US7509956B2 (en)2003-07-162009-03-31Dombrowski John FSecure airway clip
JP4806411B2 (en)2004-05-192011-11-02ブィピー ホールディング、エルエルシー Optical sensor for use with a visible light laser excitation beam and a Raman spectroscopic detector and method for detecting chemical groups in an analyte
US7583379B2 (en)2005-07-282009-09-01University Of Georgia Research FoundationSurface enhanced raman spectroscopy (SERS) systems and methods of use thereof
US7306963B2 (en)2004-11-302007-12-11Spire CorporationPrecision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
JP4838626B2 (en)2005-04-282011-12-14キヤノン株式会社 Substrate for target substance detection element used in apparatus for detecting target substance using plasmon resonance, detection element and detection apparatus using the same
EP1896805A4 (en)2005-06-142010-03-31Steven M EbsteinApplications of laser-processed substrate for molecular diagnostics
US7426025B2 (en)2005-09-232008-09-16Hewlett-Packard Development Company, L.P.Nanostructures, systems, and methods including nanolasers for enhanced Raman spectroscopy
US8003408B2 (en)*2005-12-292011-08-23Intel CorporationModification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS)
JP2007240361A (en)2006-03-092007-09-20Sekisui Chem Co LtdLocalized plasmon enhancing sensor
US20090263485A1 (en)*2008-03-012009-10-22Chun LiTargeted hollow gold nanostructures and methods of use
JP2007319988A (en)2006-06-012007-12-13National Institute For Materials Science Group IV semiconductor nanowire manufacturing method and structure control method
US7851172B2 (en)2006-07-252010-12-14University Of Kentucky Research FoundationBiomarkers of mild cognitive impairment and alzheimer's disease
US7388661B2 (en)2006-10-202008-06-17Hewlett-Packard Development Company, L.P.Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (NERS)
US7504834B2 (en)2006-12-202009-03-173M Innovative Properties CompanyDetection system
WO2008096757A1 (en)2007-02-062008-08-14Toppan Printing Co., Ltd.Method for detection of biological molecule and chip for detection of biological molecule
KR20080080841A (en)2007-03-022008-09-05주식회사 아이센스Electrochemical biosensor
KR100874158B1 (en)2007-03-142008-12-15주식회사 아이센스 Electrochemical Biosensors and Measuring Instruments
US20090097022A1 (en)*2007-08-242009-04-16Dynamic Throughput Inc.Discovery tool with integrated microfluidic biomarker optical detection array device and methods for use
US7714317B2 (en)2007-08-302010-05-11Brookhaven Science Associates, LlcAssembly of ordered carbon shells on semiconducting nanomaterials
CN101952697B (en)*2007-11-022014-08-13加利福尼亚大学董事会 Real-time single-step bioassays using nanoplasmon resonators with ultrahigh sensitivity
US8115920B2 (en)2007-11-142012-02-143M Innovative Properties CompanyMethod of making microarrays
US8192669B2 (en)2008-05-272012-06-05Chou Stephen YMethods for fabricating large area nanoimprint molds
US8547549B2 (en)2008-11-172013-10-01Hewlett-Packard Development Company, L.P.Substrate for surface enhanced Raman scattering (SERS)
EP2461801A2 (en)2009-08-052012-06-13Lupin LimitedControlled release pharmaceutical compositions of milnacipran
US20110166045A1 (en)*2009-12-012011-07-07Anuj DhawanWafer scale plasmonics-active metallic nanostructures and methods of fabricating same
US8786852B2 (en)2009-12-022014-07-22Lawrence Livermore National Security, LlcNanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
RU2426193C1 (en)2010-05-052011-08-10Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"Method of depositing platinum layers onto substrate
CN103026298B (en)2010-05-212016-03-16普林斯顿大学 Structure for enhancing local electric field, light absorption, light radiation, material detection and methods for making and using the same
US20140154668A1 (en)*2010-05-212014-06-05The Trustees Of Princeton UniversityStructures for Enhancement of Local Electric Field, Light Absorption, Light Radiation, Material Detection and Methods for Making and Using of the Same.
JP5553717B2 (en)2010-09-172014-07-16富士フイルム株式会社 Light measuring method and measuring apparatus using photoelectric field enhancement device
EP2904389A4 (en)2012-10-012016-07-06Univ Princeton MICROFLUIDIC SENSORS WITH ENHANCED OPTICAL SIGNALS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20030026900A1 (en)*2001-05-102003-02-06Zyvex CorporationSystem and method for controlling deposition parameters in producing a surface to tune the surface's plasmon resonance wavelength
US20060038990A1 (en)*2004-08-202006-02-23Habib Youssef MNanowire optical sensor system and methods for making and using same
US20060252065A1 (en)*2004-10-212006-11-09Yiping ZhaoSurface enhanced Raman spectroscopy (SERS) systems, substrates, fabrication thereof, and methods of use thereof
US20060146323A1 (en)*2005-01-062006-07-06Alexandre BratkovskiNanowires for surface-enhanced raman scattering molecular sensors
US20090213369A1 (en)*2005-03-142009-08-27The Regents Of The University Of CaliforniaMetallic Nanostructures Adapted for Electromagnetic Field Enhancement
US20080024776A1 (en)*2006-07-252008-01-31Alexandre BratkovskiControllable surface enhanced Raman spectroscopy
US20090214392A1 (en)*2008-02-272009-08-27The Texas A&M University SystemNano-fluidic Trapping Device for Surface-Enhanced Raman Spectroscopy

Cited By (168)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9754800B2 (en)2010-05-272017-09-05Applied Materials, Inc.Selective etch for silicon films
US10283321B2 (en)2011-01-182019-05-07Applied Materials, Inc.Semiconductor processing system and methods using capacitively coupled plasma
US10062578B2 (en)2011-03-142018-08-28Applied Materials, Inc.Methods for etch of metal and metal-oxide films
US9842744B2 (en)2011-03-142017-12-12Applied Materials, Inc.Methods for etch of SiN films
US20130264268A1 (en)*2012-04-052013-10-10Seiko Epson CorporationSeparator
US20160003817A1 (en)*2012-04-102016-01-07The Trustees Of Princeton UniversityRapid and sensitive analyte measurement assay
US20160003744A1 (en)*2012-04-102016-01-07The Trustees Of Princeton UniversityPlasmonic Nanocavity Array Sensors for Analyte Detection Enhancement and Methods for Making and Using of the Same
US10062587B2 (en)2012-07-182018-08-28Applied Materials, Inc.Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en)2012-08-022018-07-24Applied Materials, Inc.Semiconductor processing with DC assisted RF power for improved control
US9863884B2 (en)2012-08-102018-01-09Hamamatsu Photonics K.K.Surface-enhanced Raman scattering element, and method for producing same
US10132755B2 (en)2012-08-102018-11-20Hamamatsu Photonics K.K.Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
US9863883B2 (en)2012-08-102018-01-09Hamamatsu Photonics K.K.Surface-enhanced raman scattering element
US9874523B2 (en)*2012-08-102018-01-23Hamamatsu Photonics K.K.Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions
US20150212000A1 (en)*2012-08-102015-07-30Hamamatsu Photonics K.K.Surface-enhanced raman scattering element
US11264213B2 (en)2012-09-212022-03-01Applied Materials, Inc.Chemical control features in wafer process equipment
US10354843B2 (en)2012-09-212019-07-16Applied Materials, Inc.Chemical control features in wafer process equipment
US9978564B2 (en)2012-09-212018-05-22Applied Materials, Inc.Chemical control features in wafer process equipment
US10256079B2 (en)2013-02-082019-04-09Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en)2013-02-082021-06-01Applied Materials, Inc.Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en)2013-03-012019-09-24Applied Materials, Inc.Enhanced etching processes using remote plasma sources
US9773648B2 (en)2013-08-302017-09-26Applied Materials, Inc.Dual discharge modes operation for remote plasma
US9837249B2 (en)2014-03-202017-12-05Applied Materials, Inc.Radial waveguide systems and methods for post-match control of microwaves
US9885117B2 (en)2014-03-312018-02-06Applied Materials, Inc.Conditioned semiconductor system parts
US9903020B2 (en)2014-03-312018-02-27Applied Materials, Inc.Generation of compact alumina passivation layers on aluminum plasma equipment components
US10465294B2 (en)2014-05-282019-11-05Applied Materials, Inc.Oxide and metal removal
US9773695B2 (en)2014-07-312017-09-26Applied Materials, Inc.Integrated bit-line airgap formation and gate stack post clean
JP2018136576A (en)*2014-08-292018-08-30国立研究開発法人物質・材料研究機構Electromagnetic wave absorption and radiation material and method for producing the same, and infrared ray source
US9837284B2 (en)2014-09-252017-12-05Applied Materials, Inc.Oxide etch selectivity enhancement
US20180231418A1 (en)*2014-09-262018-08-16Korea Institute Of Machinery & MaterialsSubstrate On Which Multiple Nanogaps Are Formed, And Manufacturing Method Therefor
US10527494B2 (en)*2014-09-262020-01-07Korea Intitute of Machinery & MaterialsSubstrate on which multiple nanogaps are formed, and manufacturing method therefor
US10858693B2 (en)*2014-10-062020-12-08Indiana University Research & Technology CorporationSystems and methods for localized surface plasmon resonance biosensing
US10796922B2 (en)2014-10-142020-10-06Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490418B2 (en)2014-10-142019-11-26Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en)2014-10-142020-03-17Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en)2014-10-142018-05-08Applied Materials, Inc.Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en)2014-10-142020-07-07Applied Materials, Inc.Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en)2014-11-262022-02-01Applied Materials, Inc.Methods and systems to enhance process uniformity
US11637002B2 (en)2014-11-262023-04-25Applied Materials, Inc.Methods and systems to enhance process uniformity
US10224210B2 (en)2014-12-092019-03-05Applied Materials, Inc.Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en)2014-12-092020-02-25Applied Materials, Inc.Direct outlet toroidal plasma source
US11257693B2 (en)2015-01-092022-02-22Applied Materials, Inc.Methods and systems to improve pedestal temperature control
US10468285B2 (en)2015-02-032019-11-05Applied Materials, Inc.High temperature chuck for plasma processing systems
US12009228B2 (en)2015-02-032024-06-11Applied Materials, Inc.Low temperature chuck for plasma processing systems
US11594428B2 (en)2015-02-032023-02-28Applied Materials, Inc.Low temperature chuck for plasma processing systems
US9881805B2 (en)2015-03-022018-01-30Applied Materials, Inc.Silicon selective removal
US10900030B2 (en)2015-04-142021-01-26Illumina, Inc.Structured substrates for improving detection of light emissions and methods relating to the same
US12359194B2 (en)2015-04-142025-07-15Illumina, Inc.Structured substrates for improving detection of light emissions and methods relating to the same
WO2016168386A1 (en)*2015-04-142016-10-20Illumina, Inc.Structured substrates for improving detection of light emissions and methods relating to the same
EP3696536A1 (en)*2015-04-142020-08-19Illumina, Inc.A method of manufacturing a substrate and a method of analyzing biomolecules capable of generating light emissions
CN108449971A (en)*2015-04-142018-08-24亿明达股份有限公司 Structured substrate for improved detection of light emission and methods involving same
US11466268B2 (en)2015-04-142022-10-11Illumina, Inc.Structured substrates for improving detection of light emissions and methods relating to the same
US10147620B2 (en)2015-08-062018-12-04Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10607867B2 (en)2015-08-062020-03-31Applied Materials, Inc.Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en)2015-08-062019-11-05Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US9741593B2 (en)2015-08-062017-08-22Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US11158527B2 (en)2015-08-062021-10-26Applied Materials, Inc.Thermal management systems and methods for wafer processing systems
US10424464B2 (en)2015-08-072019-09-24Applied Materials, Inc.Oxide etch selectivity systems and methods
US10424463B2 (en)2015-08-072019-09-24Applied Materials, Inc.Oxide etch selectivity systems and methods
WO2017027643A1 (en)2015-08-102017-02-16Essenlix Corp.Bio/chemical assay devices and methods for simplified steps, small samples, accelerated speed, and ease-of-use
US10504700B2 (en)2015-08-272019-12-10Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en)2015-08-272022-10-18Applied Materials, Inc.Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en)2016-05-192019-12-31Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en)2016-05-192023-08-22Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en)2016-05-192019-12-10Applied Materials, Inc.Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en)2016-06-292018-01-09Applied Materials, Inc.Selective etch using material modification and RF pulsing
US12057329B2 (en)2016-06-292024-08-06Applied Materials, Inc.Selective etch using material modification and RF pulsing
US11802999B2 (en)*2016-08-312023-10-31RikenLight absorbing body, bolometer, infrared ray absorbing body, solar thermal power generating device, radiant cooling film, and method for manufacturing light absorbing body
US10629473B2 (en)2016-09-092020-04-21Applied Materials, Inc.Footing removal for nitride spacer
US10062575B2 (en)2016-09-092018-08-28Applied Materials, Inc.Poly directional etch by oxidation
US10062585B2 (en)2016-10-042018-08-28Applied Materials, Inc.Oxygen compatible plasma source
US10224180B2 (en)2016-10-042019-03-05Applied Materials, Inc.Chamber with flow-through source
US10546729B2 (en)2016-10-042020-01-28Applied Materials, Inc.Dual-channel showerhead with improved profile
US11049698B2 (en)2016-10-042021-06-29Applied Materials, Inc.Dual-channel showerhead with improved profile
US9934942B1 (en)2016-10-042018-04-03Applied Materials, Inc.Chamber with flow-through source
US9721789B1 (en)*2016-10-042017-08-01Applied Materials, Inc.Saving ion-damaged spacers
US10541113B2 (en)2016-10-042020-01-21Applied Materials, Inc.Chamber with flow-through source
US10319603B2 (en)2016-10-072019-06-11Applied Materials, Inc.Selective SiN lateral recess
US10062579B2 (en)2016-10-072018-08-28Applied Materials, Inc.Selective SiN lateral recess
US9947549B1 (en)2016-10-102018-04-17Applied Materials, Inc.Cobalt-containing material removal
US10163696B2 (en)2016-11-112018-12-25Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US10770346B2 (en)2016-11-112020-09-08Applied Materials, Inc.Selective cobalt removal for bottom up gapfill
US9768034B1 (en)2016-11-112017-09-19Applied Materials, Inc.Removal methods for high aspect ratio structures
US10186428B2 (en)2016-11-112019-01-22Applied Materials, Inc.Removal methods for high aspect ratio structures
US10242908B2 (en)2016-11-142019-03-26Applied Materials, Inc.Airgap formation with damage-free copper
US10026621B2 (en)2016-11-142018-07-17Applied Materials, Inc.SiN spacer profile patterning
US10600639B2 (en)2016-11-142020-03-24Applied Materials, Inc.SiN spacer profile patterning
US10566206B2 (en)2016-12-272020-02-18Applied Materials, Inc.Systems and methods for anisotropic material breakthrough
US10903052B2 (en)2017-02-032021-01-26Applied Materials, Inc.Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en)2017-02-032019-09-03Applied Materials, Inc.Shaped etch profile with oxidation
US10043684B1 (en)2017-02-062018-08-07Applied Materials, Inc.Self-limiting atomic thermal etching systems and methods
US11408028B2 (en)*2017-02-082022-08-09Essenlix CorporationNucleic acid hybridization assay
CN110785498A (en)*2017-02-082020-02-11Essenlix公司 Nucleic acid hybridization detection
US10325923B2 (en)2017-02-082019-06-18Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10319739B2 (en)2017-02-082019-06-11Applied Materials, Inc.Accommodating imperfectly aligned memory holes
US10529737B2 (en)2017-02-082020-01-07Applied Materials, Inc.Accommodating imperfectly aligned memory holes
CN110998325A (en)*2017-02-092020-04-10Essenlix公司Amplification assay
US11940382B2 (en)2017-02-092024-03-26Essenlix CorporationAssay with amplification
US10943834B2 (en)2017-03-132021-03-09Applied Materials, Inc.Replacement contact process
US10319649B2 (en)2017-04-112019-06-11Applied Materials, Inc.Optical emission spectroscopy (OES) for remote plasma monitoring
EP3612813A4 (en)*2017-04-182020-04-15Okinawa Institute of Science and Technology School Corporation NANOPLASMONIC INSTRUMENTATION, MATERIALS, PROCESS AND SYSTEM INTEGRATION
CN110573860A (en)*2017-04-182019-12-13学校法人冲绳科学技术大学院大学学园 Nanoplasmonic Instruments, Materials, Methods and System Integration
US11867597B2 (en)2017-04-182024-01-09Okinawa Institute Of Science And Technology School CorporationNanoplasmonic instrumentation, materials, methods and system integration
US11293920B2 (en)2017-04-182022-04-05Okinawa Institute Of Science And Technology School CorporationNanoplasmonic instrumentation, materials, methods and system integration
US11233332B2 (en)*2017-05-022022-01-25Electronics And Telecommunications Research InstituteLight absorber
US11915950B2 (en)2017-05-172024-02-27Applied Materials, Inc.Multi-zone semiconductor substrate supports
US11276559B2 (en)2017-05-172022-03-15Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en)2017-05-172022-03-15Applied Materials, Inc.Multi-zone semiconductor substrate supports
US11361939B2 (en)2017-05-172022-06-14Applied Materials, Inc.Semiconductor processing chamber for multiple precursor flow
US12340979B2 (en)2017-05-172025-06-24Applied Materials, Inc.Semiconductor processing chamber for improved precursor flow
US10468267B2 (en)2017-05-312019-11-05Applied Materials, Inc.Water-free etching methods
US10049891B1 (en)2017-05-312018-08-14Applied Materials, Inc.Selective in situ cobalt residue removal
US10497579B2 (en)2017-05-312019-12-03Applied Materials, Inc.Water-free etching methods
US10920320B2 (en)2017-06-162021-02-16Applied Materials, Inc.Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en)2017-06-262020-01-21Applied Materials, Inc.3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en)2017-07-072020-07-28Applied Materials, Inc.Tantalum-containing material removal
US10541184B2 (en)2017-07-112020-01-21Applied Materials, Inc.Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en)2017-07-172019-07-16Applied Materials, Inc.Non-halogen etching of silicon-containing materials
US10170336B1 (en)2017-08-042019-01-01Applied Materials, Inc.Methods for anisotropic control of selective silicon removal
US10043674B1 (en)2017-08-042018-08-07Applied Materials, Inc.Germanium etching systems and methods
US10593553B2 (en)2017-08-042020-03-17Applied Materials, Inc.Germanium etching systems and methods
US10297458B2 (en)2017-08-072019-05-21Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US11101136B2 (en)2017-08-072021-08-24Applied Materials, Inc.Process window widening using coated parts in plasma etch processes
US10128086B1 (en)2017-10-242018-11-13Applied Materials, Inc.Silicon pretreatment for nitride removal
US10283324B1 (en)2017-10-242019-05-07Applied Materials, Inc.Oxygen treatment for nitride etching
US10256112B1 (en)2017-12-082019-04-09Applied Materials, Inc.Selective tungsten removal
US10903054B2 (en)2017-12-192021-01-26Applied Materials, Inc.Multi-zone gas distribution systems and methods
US12148597B2 (en)2017-12-192024-11-19Applied Materials, Inc.Multi-zone gas distribution systems and methods
US11328909B2 (en)2017-12-222022-05-10Applied Materials, Inc.Chamber conditioning and removal processes
US10861676B2 (en)2018-01-082020-12-08Applied Materials, Inc.Metal recess for semiconductor structures
US10854426B2 (en)2018-01-082020-12-01Applied Materials, Inc.Metal recess for semiconductor structures
US10964512B2 (en)2018-02-152021-03-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en)2018-02-152020-06-30Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en)2018-02-152020-06-09Applied Materials, Inc.Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en)2018-02-282020-04-07Applied Materials, Inc.Systems and methods to form airgaps
US10593560B2 (en)2018-03-012020-03-17Applied Materials, Inc.Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en)2018-03-122019-06-11Applied Materials, Inc.Thermal silicon etch
US11004689B2 (en)2018-03-122021-05-11Applied Materials, Inc.Thermal silicon etch
US10497573B2 (en)2018-03-132019-12-03Applied Materials, Inc.Selective atomic layer etching of semiconductor materials
US10573527B2 (en)2018-04-062020-02-25Applied Materials, Inc.Gas-phase selective etching systems and methods
US10490406B2 (en)2018-04-102019-11-26Appled Materials, Inc.Systems and methods for material breakthrough
US10699879B2 (en)2018-04-172020-06-30Applied Materials, Inc.Two piece electrode assembly with gap for plasma control
US10886137B2 (en)2018-04-302021-01-05Applied Materials, Inc.Selective nitride removal
US10755941B2 (en)2018-07-062020-08-25Applied Materials, Inc.Self-limiting selective etching systems and methods
US10872778B2 (en)2018-07-062020-12-22Applied Materials, Inc.Systems and methods utilizing solid-phase etchants
US20210247319A1 (en)*2018-07-162021-08-12Korea Institute Of Machinery & MaterialsSurface-enhanced raman scattering patch and attachable sensor using the same
US12140546B2 (en)*2018-07-162024-11-12Korea Institute Of Materials ScienceSurface-enhanced Raman scattering patch and attachable sensor using the same
US10672642B2 (en)2018-07-242020-06-02Applied Materials, Inc.Systems and methods for pedestal configuration
US11049755B2 (en)2018-09-142021-06-29Applied Materials, Inc.Semiconductor substrate supports with embedded RF shield
US10892198B2 (en)2018-09-142021-01-12Applied Materials, Inc.Systems and methods for improved performance in semiconductor processing
US11062887B2 (en)2018-09-172021-07-13Applied Materials, Inc.High temperature RF heater pedestals
US11417534B2 (en)2018-09-212022-08-16Applied Materials, Inc.Selective material removal
US11682560B2 (en)2018-10-112023-06-20Applied Materials, Inc.Systems and methods for hafnium-containing film removal
US12163183B2 (en)2018-10-222024-12-10Indiana University Research And Technology CorporationSystems and methods for localized surface plasmon resonance biosensing
US11121002B2 (en)2018-10-242021-09-14Applied Materials, Inc.Systems and methods for etching metals and metal derivatives
US11437242B2 (en)2018-11-272022-09-06Applied Materials, Inc.Selective removal of silicon-containing materials
US11721527B2 (en)2019-01-072023-08-08Applied Materials, Inc.Processing chamber mixing systems
US10920319B2 (en)2019-01-112021-02-16Applied Materials, Inc.Ceramic showerheads with conductive electrodes
US20210025879A1 (en)*2019-01-302021-01-28Suzhou Astrabio Technology Co., Ltd.Single molecule quantitative detection method and detection system
US12140520B2 (en)2019-02-272024-11-12NanoMosaic INC.Nanosensors and use thereof
EP3931561A4 (en)*2019-02-272022-11-09NanoMosaic Inc.Nanosensors and use thereof
WO2020180732A3 (en)*2019-03-012020-10-15Universal Sequencing TechnologyDevice and method for biopolymer identification
EP4083610B1 (en)*2019-12-232025-09-17National Institute for Materials ScienceBiomolecular inspection chip for fluorescence detection
CN113140911A (en)*2020-01-172021-07-20三星电子株式会社Biosensor, super-surface device and method of manufacturing the same
US11841325B2 (en)*2020-07-302023-12-12Korea Institute Of Materials ScienceSubstrate including 3D nanoplasmonic composite structure, method of fabricating the same, and rapid analysis method using the same
US20220034815A1 (en)*2020-07-302022-02-03Korea Institute Of Materials ScienceSubstrate including 3d nanoplasmonic composite structure, method of fabricating the same, and rapid analysis method using the same
US20250067674A1 (en)*2021-03-112025-02-27Imperial College Innovations LtdChips and methods
US20230062418A1 (en)*2021-08-312023-03-02Kla CorporationSystem and method for feature signal enhancement using a selectively bonded photoluminescent material
WO2024026441A3 (en)*2022-07-282024-03-07Armonica Technologies, Inc.Polymer sequencing apparatus

Also Published As

Publication numberPublication date
US10234394B2 (en)2019-03-19
US9013690B1 (en)2015-04-21
US20150338346A1 (en)2015-11-26

Similar Documents

PublicationPublication DateTitle
US10234394B2 (en)Method for highly sensitive detection of biomarkers for diagnostics
EP2836821B1 (en)Ultra-sensitive sensor
US20190049385A1 (en)Composite Nanoparticle Structures for Chemical and Biological Sensing
US20190064071A1 (en)Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same
US20150253321A1 (en)Microfluidic Sensors with Enhanced Optical Signals
US10656149B2 (en)Analyte detection enhancement by targeted immobilization, surface amplification, and pixelated reading and analysis
Citartan et al.Label-free methods of reporting biomolecular interactions by optical biosensors
Chang et al.Large-scale plasmonic microarrays for label-free high-throughput screening
US20090303461A1 (en)Detection of enhanced multiplex signals by surface enhanced raman spectroscopy (sers)
US20050196876A1 (en)Detection of biomolecules using porous biosensors and Raman spectroscopy
Song et al.Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots
JP2023521872A (en) Methods and systems for enhancing the optical signal of extracellular vesicles
US20160169886A1 (en)Assay structures and enhancement by selective modification and binding on amplification structures
US20160003817A1 (en)Rapid and sensitive analyte measurement assay
Kim et al.Label-free C-reactive protein SERS detection with silver nanoparticle aggregates
US20160033488A1 (en)Assay Enhancement by Selective Deposition and Binding on Amplification Structures
JP2025524969A (en) Methods and systems for enhancing electromagnetic radiation signals from extracellular vesicles
JP5298877B2 (en) Assay method using plasmon excitation sensor

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:THE TRUSTEES OF PRINCETON UNIVERSITY, NEW JERSEY

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOU, STEPHEN Y.;ZHOU, LIANG-CHENG;SIGNING DATES FROM 20130515 TO 20130521;REEL/FRAME:030606/0443

STPPInformation on status: patent application and granting procedure in general

Free format text:FINAL REJECTION MAILED

STCBInformation on status: application discontinuation

Free format text:ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION


[8]ページ先頭

©2009-2025 Movatter.jp