CROSS-REFERENCE TO RELATED APPLICATIONSThis application claims priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 61/727,800, filed Nov. 19, 2012, entitled “Audio Feedback for Medical Conditions,” the contents of which are fully incorporated by reference herein.
TECHNICAL FIELDThis invention relates to the field of applications designed to monitor and provide audio feedback for human medical conditions.
BACKGROUND ARTSome people have a medical condition that is exacerbated by physical conditions. For example, some people look down habitually when they walk. This is especially noticeable in people who develop osteoporosis because their neck no longer straightens, and it is easier and more natural for them to look down. Physical therapists encourage patients to keep their head up to prevent them from getting dizzy. The consequences of dizziness can be serious, such as a fall resulting in a broken bone.
Recordable greeting cards have been disclosed (e.g., EP0207258A1 to Weigl, D580488 to Zarffis), as have a plethora of medical sensors. Some of these sensors may emit vibrations or sounds. A Lumoback product (webpage visited Nov. 16, 2012), http://www.lumoback.com/?x=saying, comprises a belt that is worn around a patient's abdomen, and that provides vibrations when the patient's lower back slouches, reminding the patient to stand up or sit up straight.
Unfortunately, the physical therapist isn't always with the patient who needs a reminder in response to a physical condition, such as to lift the head up. Although a vibration could be useful for as a reminder for a single condition, a vibration does not readily differentiate among various multiple physical conditions.
There is an unfilled need for an improved device which can both detect certain medically significant conditions and provide enhanced real-time feedback to the user to inform them of the detected medical condition, with the flexibility of providing different cues when the detected conditions are different.
DISCLOSURE OF THE INVENTIONWe have discovered an apparatus that comprises a sensor to detect a medical condition, or more generally a body measurement of any type, for example a condition related to the movement or position of the body or part of the body of an individual; a processor to evaluate the signals from the sensor; an optional microphone; a read/write medium to record audio cues that correspond to the various conditions detected by the sensor; and an audio output device to play prerecorded audio cues to provide immediate feedback when a particular medical condition is detected.
The elements of the apparatus need not be physically connected, but can be configured as discrete electronic devices inter-connected via wired or wireless techniques known in the art, for example infrared signals, or radio frequency (RF) signals such as Bluetooth.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 illustrates schematically one embodiment of the invention.
FIG. 2 illustrates schematically one embodiment of a person recording one or more audio cues for the patient.
FIG. 3 illustrates schematically a patient being monitored by a sensor and receiving audio cues in accordance with one embodiment of the invention.
FIGS. 4A and 4B illustrate schematically an example configuration with two discrete physical devices for detecting a desirable and undesirable physical condition of a patient's head position.
FIGS. 5A and 5B illustrate schematically a second example configuration with one discrete physical device for detecting a desirable and undesirable physical condition of a patient's head position.
FIG. 6 illustrates schematically an alternative embodiment having multiple sensors, for example for detecting a patient's head position, hand position, blood pressure, and gait.
FIG. 7 illustrates schematically one embodiment of software architecture for a system to support the novel device.
MODES FOR CARRYING OUT THE INVENTIONAs illustrated in the embodiment depicted inFIG. 1,system100 comprises sensor(s)101,processor102,microphone103,audio output device104 and read/writemedium105. One or more sensor(s)101 can detect motion, position, or other body measurements and can be used or positioned in a variety of ways. Theprocessor102 can be single, multi, or parallel. The read/writemedium105 can be RAM, flash, solid state, hard disk, virtual cloud storage, or other storage means. Theoptional microphone103, and theaudio output device104 can be single or multi, mono or stereo, etc. The components in this configuration can be located in one or more physical packages. Connectivity can be wired, wireless, or virtual.
One embodiment to record audio cues is shown inFIG. 2. Anyperson106 can record cues using amicrophone103 and aprocessor102 that is capable of storing the message on a read/writemedium105. The cues can be arbitrary, but it is preferred that the recordings be appropriate to the medical conditions of the specific patient. It can direct thepatient107 with specific instructions, such as “Lift your head up!” In addition, the recording can be in the patient's language of choice. An unexpected benefit is that the person who makes the recording can be a person, such as a grandchild, whose voice recording may be able to cue the patient in an especially motivating and positive way. Theprocessor102, microphone103, and read/writemedium105 can be located in a single physical package or can be contained in multiple discrete packages and inter-connected electronically using any one of a number of well-known physically wired, wireless, or virtual connections. In an alternative embodiment, the system does not include a microphone. The audio cues may be recorded externally through means known in the art, for example with a voice recorder or a computer equipped with a microphone, and file(s) containing externally-recorded audio cue(s) may be uploaded to the system.
FIG. 3 shows one embodiment to monitor apatient107 with sensor(s)101. The sensor(s)101 can be physically attached to thepatient107, or can be a remote sensor, such as a camera monitoring the patient. Aprocessor102 interprets data from the sensor(s)101 and determines whether at least one medical condition is met. The medical condition can be an unhealthy change in position, pattern of motion, or other measurable body data. Multiple medical conditions can be simultaneously addressed.FIG. 6 shows an example employing multiple sensors101: if the patient's blood pressure is detected to drop at the same time that her head position drops, she can be told to “Lie down!” to prevent a fall. Referring back toFIG. 3, theprocessor102 then selects the appropriate cue from a read/writemedium105 and plays the cue on anaudio output device104 such as a speaker or headset. The sensor(s)101,processor102, read/writemedium105, andaudio output device104 can be located in a single physical package or can be contained in multiple discrete packages and inter-connected electronically using any one of a number of well-known physically wired, wireless, or virtual connections.
In an alternative embodiment, rather than an audio cue an output device generates another type of feedback signal, such as a buzz, vibration, light, etc.
FIGS. 4A and 4B illustrate one embodiment, where asensor101 is attached to a hat worn on the patient's107 head, and the rest of the hardware is contained in apackage303 attached to the patient's belt. The desiredhead position301 of thepatient107 is looking straight ahead. The medical condition being detected is when the head drops or looks down, as shown by theundesired head position302. In this example, theprocessor102, microphone103,audio output device104, and read/writemedium105, can all be contained in an Android device orother smartphone303, and thesensor101 comprises an accelerometer connected wirelessly, e.g. by Bluetooth.
FIGS. 5A and 5B illustrate an alternative embodiment, where all hardware is in asingle package304 attached to a hat worn on the patient's107 head. The desiredhead position301 of thepatient107 is looking straight ahead. The medical condition being detected is when the head drops or looks down, as shown by theundesired head position302. In this example, the accelerometer sensor, processor, microphone, audio output device, and read/write medium are all contained in onephysical package304, attached topatient107's hat. In this configuration, the onepackage304 could be a device running iOS, such as an iPhone. Additional embodiments could incorporate other custom or off-the-shelf hardware components in a variety of configurations and complexity.
Example. A working device configured as depicted inFIG. 4 has been built and successfully tested to monitor and provide feedback for a patient's head position. Thepatient107 showed increased compliance in keeping his head up while walking He was much more motivated hearing his grandchild's voice in a recording, rather than another adult, such as his daughter, whom he perceived as “nagging”.
In accordance with the present invention there are many additional examples of uses for sensor(s)101 that could detect movement or position of a patient's body or body part with an accelerometer as shown inFIG. 6. For example, asensor101 attached to a shoe could detect a person who is dragging her foot; a medical condition that can result in tripping. A person with nervous habits such as biting their fingernails or pulling their hair (trichotillomania) could have asensor101 that would detect hand movements that encompass the undesired behavior. A patient could benefit from feedback on various nervous habits that might or might not rise to the level at which the nervous habits would be considered a “medical condition.” Such a nervous habit is nevertheless considered a “medical condition” for purposes of this disclosure, unless context clearly indicates otherwise.
FIG. 7 illustrates the components of the operating software orfirmware400 for one embodiment of the invention. Thesoftware400 comprises the system-level software anddrivers401 for whichever physical embodiment is selected. Upon this software or firmware, a layer of software exists that can be used by theapplication406 in a variety of ways as described herein. Standard utilities for recording and sound403 are typically available in a computer system to support input from amicrophone103 for audio recording and output to anaudio output device104. A device-specific software stack401 for aspecific sensor101 may be available commercially or through open source, or an application developer can add specific code for a particular sensor.
In one embodiment, theapplication406 detects a physical condition based on a signal from the sensor(s)101, selects the appropriate audio cue, and sends it to theaudio output device104. In an expanded embodiment, the application can also use the user features402 of a system to implement a display showing a record of progress for thepatient107 for eachsensor101, while logging this data on the read/write medium105. One unexpected result of using this expanded embodiment is that we have found that the audio cues can be optimized for the individual patient, based on the record of that patient's past performance or results. A second unexpected benefit is that the logged data can be exported or transmitted viastandard network access406, to other computers for analysis or distribution to medical providers, e.g., via the cloud.
The complete disclosures of all references cited in this specification are hereby incorporated by reference. In the event of an otherwise irreconcilable conflict, however, the present specification