TECHNICAL FIELDThe present disclosure relates generally to medical devices and, in particular, to a medical device system and associated method for wireless communication.
BACKGROUNDA wide variety of implantable medical devices (IMDs) are available for monitoring physiological conditions and/or delivering therapies. Such devices may include sensors for monitoring physiological signals for diagnostic purposes, monitoring disease progression, or controlling and optimizing therapy delivery. Examples of implantable monitoring devices include hemodynamic monitors, ECG monitors, and glucose monitors. Examples of therapy delivery devices include devices enabled to deliver electrical stimulation pulses such as cardiac pacemakers, implantable cardioverter defibrillators, neurostimulators, and drug delivery devices, such as insulin pumps, morphine pumps, etc.
IMDs are often coupled to medical leads, extending from a housing enclosing the IMD circuitry. The leads carry sensors and/or electrodes and are used to dispose the sensors/electrodes at a targeted monitoring or therapy delivery site while providing electrical connection between the sensor/electrodes and the IMD circuitry. Leadless IMDs have also been proposed which incorporate electrodes/sensors on or in the housing of the device.
Physical connection of an IMD to sensors implanted deeply in a patient's body or distributed in various body locations to enable communication of sensed signals to the IMD can be cumbersome, highly invasive, or simply not feasible depending on a desired sensor implant location. Furthermore, as sensors become miniaturized to facilitate minimally-invasive surgical methods and implantation at very specific monitoring sites, the power capacity of such sensors becomes limited due to physical size of the sensor. As implantable device technology advances, and the ability to continuously and remotely provide total patient management care expands, there is an apparent need for providing efficient wireless communication of data acquired by implantable physiological sensors.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a schematic diagram of an implantable medical device system according to one embodiment.
FIG. 2 is a functional block diagram of sensing device and communication hub according to one embodiment.
FIG. 3 is a diagram of one embodiment of a communication power management scheme for implementation in an implantable sensing device.
FIG. 4 is a diagram of a communication power management scheme that may be implemented in an implantable sensing device according to an alternative embodiment.
FIG. 5 is a flow chart of one method for power management of communication operations in an implantable sensing device during its shelf life.
FIG. 6 is a flow chart of an alternative method for power management of communication operations in an implantable sensing device during its shelf life.
FIG. 7 is a flow chart of one method for controlling communication functions of an implantable sensing device enabled to perform a monitoring protocol according to one embodiment.
FIG. 8 is a schematic diagram of an implantable medical device system comprising multiple implantable medical devices in bidirectional communication with a communication hub.
DETAILED DESCRIPTIONIn the following description, references are made to illustrative embodiments. It is understood that other embodiments may be utilized without departing from the scope of the disclosure. For example, while communication power management methods and apparatus described herein are described in various embodiments to be implemented in implantable physiological sensors, the methods described may be implemented in medical devices that are external or wearable.
FIG. 1 is a schematic diagram of an implantablemedical device system10 according to one embodiment.System10 includes asensing device12, acommunication hub14, and anexternal communication device16.Sensing device12 is provided for sensing at least one physiological signal.Sensing device12 is a miniaturized device having a limited power supply available, due to its small size, for powering the primary sensing operation of the device and for other functions such as transmitting and receiving data through wireless communication operations.Sensing device12 is configured as a wireless device to enable minimally-invasive implantation methods, such as by needle injection, without the associated limitations of tunneling and coupling a medical electrical lead todevice12.Sensing device12 may be implanted intra- or extravascularly, deeply in the patient's body or at body locations remote fromhub14.
Sensing device12 may incorporate one or more of numerous types of physiological sensors, including but not limited to, a pressure sensor, oxygen sensor, accelerometer, pH, glucose, or other chemical sensor, temperature sensor, acoustical sensor, electrodes for measuring EEG or EMG signals, impedance signals, or cardiac signals, etc.Sensing device12 typically does not include therapy delivery capabilities due to its small size and limited power supply, however, communication methods described herein do not exclude embodiments in which thewireless sensing device12 is capable of delivering some type of therapy to the patient.
Communication hub14 is provided with relatively greater power capacity available for communication operations thansensing device12.Communication hub14 is provided with or without therapy delivery and/or sensing functionality.Communication hub14 is adapted for extracutaneous, subcutaneous or submuscular implantation, or more generally nearer to the patient's skin than a potentially deeper implant location ofsensing device12.Communication hub14 may be a dedicated communication device to provide transmission of data fromsensing device12 to an external device16 (or another implanted device located remotely from sensing device12). In other embodiments,communication hub14 may include sensing and/or therapy delivery capabilities. For example,hub14 may be embodied as a pacemaker, ICD, neurostimulator, ECG monitor, hemodynamic monitor or the like.Hub14 may be a wireless device as shown, but in other embodiments one or more leads may extend fromhub14 as necessary for other sensing or therapy delivery functions performed byhub14.
A relatively short-distance, lowpower communication link20 provides bidirectional communication betweensensing device12 and hub14 (as compared to a communication link that would be required if sensingdevice12 were communicating directly with external device16).Communication link20 may utilize conduction of communication signals through body tissues. Reference is made, for example, to U.S. Pat. No. 5,113,859 (Funke), hereby incorporated herein by reference in its entirety.Hub14, being larger and/or more superficially implanted thansensor12 provides relatively higher power communication signals for transmission of data acquired bysensing device12 over a relatively longer distance toexternal device16. In this way, the power supply ofsensing device12 may be miniaturized and conserved for powering the primary sensing operations ofdevice12. Power needed for transmitting data acquired bydevice12 toexternal device16 is minimized by the use ofcommunication hub14.
External device16 may be a programmer, home monitor, personal computer, a communication device, or other external device configured to receive data fromhub14 viacommunication link22.External device16 is used to program or send commands to sensingdevice12 viahub14.External device16 may be further coupled to a communication network for transmitting data to a remote patient management database to enable a clinician to remotely review data retrieved fromsensing device12. In some embodiments,hub14 may communicate directly with a communication device or system. For example,external device16 may represent a cell phone tower andhub14 is configured to transmit and receive cellular signals to and from a cell phone via the cell phone tower. Reference is made to commonly-assigned U.S. Pat. Nos. 6,599,250 (Webb et al.), 6,442,433 (Linberg et al.) 6,622,045 (Snell et al.), 6,418,346 (Nelson et al.), and 6,480,745 (Nelson et al.) for general descriptions and examples of network communication systems for use with implantable medical devices for remote patient monitoring and device programming, all of which patents are hereby incorporated herein by reference in their entirety.
As will be described herein, communication circuitry withindevice12 is normally powered off, referred to as a “sleep mode”, during which the communication circuitry cannot transmit or receive communication signals. Sensingdevice12 and/orhub14 may include a reed switch or other mechanism that can be actuated by anexternal activator18, such as a magnet, to manually cause the communication circuitry withinsensing device12 orhub14 to be powered up to an “awake” state, such that it is enabled to send and/or receive communication signals. This manual activation of the communication circuitry ofdevice12 and/orhub14 may be used in an emergency situation, during an implant procedure, during office visits, or other times when communication withsensing device12 is required.
FIG. 2 is a functional block diagram ofsensing device12 andcommunication hub14 according to one embodiment.Sensing device12 includes at least onetransducer30 and/or sensingelectrodes42 and44 for monitoring at least one physiological signal, which may be an acoustical, pressure, oxygen, flow or other type of physical signal or an electrical signal such as an EMG or impedance signal.Control processor32 and associatedmemory34 controls device functions and stores data acquired bydevice12 inmemory34 for transmission tohub14.Control processor32 may be embodied as a microprocessor or any other type of control circuitry such as a digital state machine, application specific integrated circuitry, or other circuitry or combination thereof.Memory34 stores physiological signal data and stores operating parameters and algorithms used bycontrol processor32.
Power supply36, which may be a rechargeable battery, provides power for the various circuitry included indevice12.Communication circuitry38 includes a transmitter, receiver, which may be combined as a transceiver device, and antenna as needed for wirelessly receiving and transmitting data viacommunication link20 withcommunication hub14.Communication circuitry38 is normally powered off viaswitch40 and will be transitioned from a low power state, which may be an “off” state in which no power is provided tocommunication circuitry38, untilcontrol32 causespower supply36 to provide power tocommunication circuitry38 viaswitch40. Aclock signal46 or other timing circuitry is included for use in controlling power supplied to thecommunication circuitry38 according to scheduled or timed intervals.
Device12 may include a manual wake upelement41 that may be activated by magnetic field generated by an external magnet or other handheld device. Manual wake upelement41 may be implemented as a reed switch or other zero-power element that generates an interrupt signal in response to an applied field such as a magnetic field generated by the proximity of a magnet or other externally applied field source. The interrupt signal is applied to control32 to indicate an immediate communication request byhub14 orexternal device16. In response to an interrupt signal generated by manual wake upelement41,control processor32 will enablepower supply36 to provide power tocommunication circuit38 viaswitch40. Activation of manual wake upelement41 causes a transition from an off state to an on state ofcommunication circuitry38 in which acommunication link20 may be subsequently established and data may be transmitted or received bycommunication circuitry38.
Transducer30 or another dedicated implant condition sensor and/orelectrodes42 and44 andcontrol processor32 may be configured to cooperatively detect an implant condition or a calibration condition. For example,electrodes42 and44 may be used to detect a low impedance signal resulting from contact with bodily fluids or saline. As will be further described herein, thecommunication circuit38 may remain in an off state until an implant or calibration condition is detected by an implant/calibration condition sensor, at which time the receiver incommunication circuit38 is powered up for receiving instructions. In the embodiment shown,electrodes42 and44 function as an implant condition sensor. In other embodiments,transducer30 used in monitoring a physiological signal after implantation ofsensing device12 may be used to detect an implant or calibration condition. In still other embodiments, another dedicated zero-power or ultralow power sensor may be provided for detecting an implant condition, which may relate to temperature, pressure, light, etc.
Communication hub14 includes control circuitry embodied asprocessor52 and associated memory54,communication circuit58 including transmission and receiving circuitry, and apower supply56. A timer orclock signal60 is used for establishing scheduled data transmission times betweenhub14 anddevice12.Hub14 may include a reed switch or other manual wake-upelement63 responsive to anexternal magnet18 or other handheld device for generating an interrupt signal to control52. The wake-up interrupt signal indicates an immediate communication request byexternal device16.Control52 provides power tocommunication circuit58 viaswitch62 to receive instructions fromexternal device16 and respond accordingly.
At other times,communication link20 betweensensing device12 andhub14 is established at a scheduled time under the control ofsensing device control32 andhub control52.Clocks46 and60 may each include an oscillator that provides a periodic interrupt signal torespective control processors32 and52 during a beacon listening mode of operation. A beacon signal is generally a higher power communication request signal transmitted by a requesting device beyond the receiver detection limit of the receiving device so that the receiver can operate at a relatively lower sensitivity between communication sessions to save power and to minimize false wake ups due to environmental signals. Reception of a beacon signal is an indicator to initiate a standard communication protocol required for transmitting and receiving data. The periodic interrupt signal causescontrol processor32 or52 to enablerespective communication circuit38 or58 to periodically listen for a beacon signal from another device indicating a request to establish communication. In response to receiving a beacon signal,control32 or52 enablescommunication circuit38 or58 to send and receive data.
FIG. 3 is a diagram80 of one embodiment of a communication power management scheme for implementation in conjunction with an implantable sensing device. Diagram80 shows communication wake-up modes that may be implemented duringdifferent time periods91 and95 of the sensing device life. Generally, a “shelf-life”period91 exists from the time ofdevice manufacture81 until a time ofdevice implant90. Following theshelf life91, animplant period95 exists from the time ofimplant90 until a time ofexplant98, or until the end of the usable life of the device.
In some embodiments, the sensing device may be a single use device and upon reaching end-of-life or explantation, the device is no longer used. In other embodiments, the sensing device may be a reusable device that is explanted at98 and is returned (as indicated by dashed arrow) to an initial status that corresponds to settings established at a time ofdevice manufacture81. As such, in some embodiments the sensing device will operate in a shelf life mode duringperiod91 a single time and in a monitoring or implant mode during period95 a single time. In other embodiments, a sensing device may operate in a shelf life mode and an implant mode repeated times when the device is reused in the same or different patients.
During theshelf life period91, the sensing device is configured to operate in at least one of three possible communication wake-up modes. As used herein, a “communication wake-up mode” refers to the method by which the communication circuitry is woken up from a “sleep” state, in which power is not coupled to the sensing device communication circuitry, to an “awake” state, in which the communication circuitry is fully powered for bidirectional communication with the communication hub.
During theshelf life91, a manual wake-upmode82 may be enabled which allows a user to manually activate a manual wake-up element in the sensing device to deliver an interrupt signal to the control processor, which in turn powers up the sensing device communication circuitry. The communication circuitry may be powered up directly in response to a manual wake-up interrupt signal or indirectly by first enabling abeacon listening mode83 as will be described further in conjunction withFIG. 6.
During theshelf life91, a sensor for detecting an implant or calibration condition may be enabled to cause a wake-up interrupt signal for an automated wake upmode84 that does not require user intervention. The wake-up interrupt signal provided by an implant/calibration sensor detecting an implant or calibration condition may cause the sensing device control processor to wake up the communication circuitry directly or indirectly by first enablingbeacon listening mode83, as will be described in conjunction withFIG. 6.
Abeacon listening mode83 may be enabled from the time ofdevice manufacture81 or enabled as part of a manual wake-upmode82 or automated implant/calibration detection wake-upmode84. These three communication wake-upmodes82,83 and84 may be implemented alone or in any combination during theshelf life period91. Generally, the communication wake-up mode implemented during the shelf life of the device is used to wake up the sensing device communication circuitry at the time ofimplant90 to enable programming, implant measurements or other operations that require communication with the sensing device during the implant procedure.
At the time ofimplantation90, the communication wake-up mode is converted to a mode or combination of modes used for theimplant period95. The wake-up mode during theimplant period95 is controlled at least in part by the communication hub. The wake-up mode utilized may vary over theimplant period95 according to instructions received from the hub.
The wake-up mode that is used during the implant period may include the manual wake upmode92, thebeacon listening mode94, and a scheduled transmission wake-upmode96 or any combination thereof. The manual wake upmode92 may be used to wake up the communication circuitry in response to user activation, either directly or indirectly via initiation of a beacon listening mode. During a scheduled transmission wake-up mode, a scheduled wake-up time is programmed in response to a command from the communication hub and causes the sensing device control processor to wake up the communication circuitry directly at the scheduled time or indirectly via initiation of a beacon mode at the scheduled time. Thebeacon listening mode94 may be enabled in response to a manual wake-up interrupt, in response to a command from the communication hub, or in response to a scheduled wake-up time. The communication wake upmodes92,94 and96 may be enabled singly or in any combination duringimplant period95.
An implant/calibration detection wake-upmode84 is not used afterimplant90, i.e. duringimplant period95. Generally once implanted, an implant sensor would continuously detect implantation. Once implantation is detected and causes the communication circuitry to be powered up, the implant/calibration detection wake-upmode84 is disabled from further use during theimplant period95. Other wake-up modes are utilized during theimplant period95 as indicated.
FIG. 4 is a diagram80′ of a communication power management scheme for use in an implantable sensing device according to an alternative embodiment. InFIG. 3, it is assumed that if any device calibration needs to be performed, it is performed at a time ofdevice manufacture81 or at the time ofimplant90. InFIG. 4, acalibration85 may be performed at a separate point in time frommanufacture81, when the battery is electrically coupled to other sensing device circuitry, and at a separate time fromimplant90. Different wake-up modes may be utilized duringdifferent portions91aand91b, prior to calibration and after calibration, respectively, of ashelf life91.
In some embodiments, it may be desirable to minimize the likelihood of false wake-ups and power usage during theshelf life91. This can be done by disabling the manual wake-up mode and/or the beacon listening mode during at least a portion of the shelf life of the sensing device. The calibration/implant detection wake upmode84 may be enabled as the sole wake-up mode during ashelf life portion91aextending from the time ofdevice manufacture81 until a time of device calibration85 (or throughout shelf life91). In some embodiments, a calibration procedure may be performed in a simulated implant environment, such as in a saline solution, a temperature controlled chamber, a pressure-controlled chamber, or the like. Thus detection of a calibration condition corresponding to a simulated implant condition by the sensing device may cause the device communication circuit to be enabled, for example in a beacon listening operating mode. After completing a calibration procedure, thehub14 or another external device may program calibration constants for storage by the sensing device. The sensing device either automatically or in response to further instructions shuts down power to the communication circuitry and disables the beacon listening mode until an implant condition is detected again. Power may be conserved during thepost-calibration period91bby putting the communication circuitry to sleep until an implant condition is detected.
The time ofdevice calibration85 may occur at varyingintervals91aand91bfrom the time ofdevice manufacture81 and the time ofdevice implantation90, respectively, depending on the type of device and other factors. The wake-up mode during thesecond portion91bof the shelf life period, betweencalibration85 andimplantation90 of the device, may include one or more of wake-upmodes86,87,88 and89 and may use a different mode(s) than the communication mode used during thefirst portion91aof the shelf life period. The communication mode set for the post-calibration/pre-implant interval91bmay be established by the communication hub (or another programming device) at the time ofcalibration85 and based in part on the expected duration of thetime period91b.
For example, ifcalibration85 occurs soon afterdevice manufacture81, such that the period oftime91buntil implant is still relatively long, the hub may send a command to re-enable the calibration/implant detection wake-upmode88 that will cause communication circuitry to be powered up only in response to an implant condition being detected. The manual wake upmode86, thebeacon listening mode87, and the scheduled wake-upmode89 may be disabled during this time to reduce the likelihood of false wake-ups and minimize power usage.
In another example, ifcalibration85 occurs at a very short period of time beforeimplant90, thebeacon listening mode87 or even a scheduled wake-upmode89 may be enabled aftercalibration85. As such, ifcalibration85 does not occur at substantially the same time asdevice manufacture81 ordevice implant90, a different mode or combination of communication wake-upmodes86,87,88 or89 may be selected to set the overall wake-up mode used during a post-calibration, pre-implant period oftime91b, which may be different than one or both of the wake-up modes during the pre-calibrationshelf life period91aand theimplant period95.
The sensing device is converted to a communication wake-up mode that includes any combination of manual wake-upmode92,beacon listening mode94, and scheduled transmission wake-upmode96 duringimplant period95. Wake-upmodes92,94 and96 may be implemented alone or in any combination duringimplant period95 and the implemented wake-up mode may change over time duringimplant period95 as controlled, at least in part, by thecommunication hub14.
FIG. 5 is aflow chart100 of one method for controlling communication power in a medical device system during a shelf life period of an implantable sensing device. Operations performed by or pertaining primarily to sensingdevice12 are shown on the left side of the dashed line and operations performed by or pertaining primarily to thecommunication hub14 are shown on the right side of the dashed line.
Flow chart100 and other flow charts presented herein are intended to illustrate the functional operation of the associated devices, and should not be construed as reflective of a specific form of software or hardware necessary to practice the methods described. It is believed that the particular form of software will be determined primarily by the particular system architecture employed in the device. Providing software to accomplish the described functionality in the context of any modern implantable medical device system, given the disclosure herein, is within the abilities of one of skill in the art.
Methods described in conjunction with flow charts presented herein may be implemented in a computer-readable medium that includes instructions for causing a programmable processor to carry out the methods described. A “computer-readable medium” includes but is not limited to any volatile or non-volatile media, such as a RAM, ROM, CD-ROM, NVRAM, EEPROM, flash memory, and the like. The instructions may be implemented as one or more software modules, which may be executed by themselves or in combination with other software.
The method shown byflow chart100 pertains to power management operations during the “shelf-life” of thesensing device12, i.e. during a time period between device manufacture and implantation of thesensing device12 in a patient's body. In this embodiment,sensing device12 is configured to operate in a beacon listening wake-up mode at the time of device manufacture and throughout the shelf life of the device and is then converted to a desired communication wake-up mode for an implant period during an implantation procedure.
Atblock102 the sensing device is initialized at the time of device manufacture. Initializing the device includes setting a power status for the shelf life of the device. Power supplied to sensor transducer circuitry or other functional circuitry not used or needed during storage of the device is disabled. However, the sensing device is initialized to enable power to a transceiver in the communication circuit periodically. In one embodiment, the sensing device is provided with an ultralow power oscillator that is enabled atblock103 to periodically generate an interrupt signal provided to the sensing device control circuitry. In response, the control circuitry enables a switch to provide power from the sensing device power supply to the communication transceiver in the sensing device. This periodic interrupt signal is enabled atblock103 at the time of device initialization to cause a periodic wake-up of the transceiver to “listen” for a beacon signal during its shelf life.
At block104 a beacon period and on time are set. The beacon period defines the oscillation period of the beacon listening interval, i.e. how often the transceiver is powered up to listen for a beacon signal. The beacon on time defines how long the transceiver will remain powered up to listen for a beacon signal before it is powered down again. For example, the oscillator may be enabled to provide an interrupt signal to the communication transceiver approximately once per second, once per minute, every two minutes, every five minutes or other set time interval (the beacon listening period). The on time will be a fraction of the beacon listening period, for example, a fraction of a second, a fraction of a minute, and so on.
Between beacon listening intervals, power is largely conserved because the oscillator is an ultralow power oscillator, which may utilize current in the range of the normal leakage current of the device or less. For example, in a miniaturized sensing device having a volume of 1 cc or less, an average current drain for normal sensing function of the device may be on the order of approximately 100 nA. An ultralow current drain would be a fraction of the normal function current drain, for example approximately 10 nA or less, which may correspond to an ultralow power of approximately 30 nW or less for a 3V supply.
Atblock106, the sensing device listens for a beacon signal during the on time that is initiated at the start of each beacon period. If no beacon signal is received before expiration of the on time, the communication circuitry is powered down until the start of the next beacon period (return to block104).
At the time of sensing device calibration and/or device implantation, thecommunication hub14 is enabled (for example manually) to transmit a beacon signal atblock120. The beacon signal may be transmitted for a period of time that is at least as long as the beacon period plus the on time set in the sensing device to promote reception of the beacon signal by the sensing device during the next on time. If a confirmation signal from the sensing device is not received atblock122 by thehub14, the process inhub14 returns to block120. The beacon signal may be sustained or extended, rescheduled, and/or increased or otherwise adjusted in power in another attempt to establish communication with thesensing device12.
If a beacon signal is received by thesensing device12, the sensing device control circuitry fully enables the communication transceiver by providing power atblock108 so that data may be received/transmitted. The communication transceiver may remain enabled to receive/transmit data until a power-down or “sleep” command is received or until no communication occurs for a predetermined period of time.
A confirmation signal is returned to thehub14 atblock110. If the communication is a full duplex mode between thesensing device12 andhub14,sensing device12 can immediately send a beacon response signal atblock110 confirming that a communication link is established and the receiver is ready to receive data. Thehub14 can then terminate the beacon signal atblock124 to save energy inhub14. If the communication mode betweensensing device12 andhub14 is half-duplex, thesensing device12 will wait for the termination of the beacon signal and then send the beacon response signal immediately afterwards atblock110.
Sensing device12 receives instructions fromhub14 atblock112 and performs any requested tasks atblock114. Instructions received atblock112 may include operating commands to perform measurements or transfer data, clear memory registers, store calibration data, store a monitoring protocol, or the like. After receiving a complete data transmission and implementing new operating parameters or completing requested tasks atblock114, the sensing device may send a success signal atblock116 back tohub14. Requested tasks performed atblock114 may involve additional bidirectional communication not explicitly shown inFIG. 5 betweendevice12 andhub14 such as transmitting sensed signal data. If received data is incomplete or other errors occur, a failure signal may be transmitted by sensingdevice12 atblock116.
Hub14 determines if all communications are complete atblock128. In response to a failure signal sent by thesensing device12,hub14 returns to block126 to resend data and/or make additional requests. If a success signal is received byhub14, additional communication operations may still be required depending on the particular tasks being performed. As such, if communications are not complete according to a particular calibration or implantation protocol,hub14 may return to block126 to send additional data to sensingdevice12.
If communications are determined to be complete atblock128, the communication hub sends instructions establishing a wake-up mode for the subsequent implant period atblock130. In some embodiments, determining that communications are complete may be automatic byhub14. In other embodiments, a manual command entered by a user using an external device in communication withhub14 may indicate that communication operations are complete.
In response to the wake-up mode instructions transmitted fromhub14 tosensing device12, the sensing device enables an implant period wake up mode atblock118 according to the received instructions. For example, the oscillator providing a control interrupt signal to periodically wake-up the communication transceiver to listen for a beacon signal may be disabled and a scheduled time may be set for waking up the communication circuitry, either directly or via re-enabling the beacon listening mode. In this way, a continuous beacon signal listening mode is enabled only prior to and up to implantation of the device, i.e., during the shelf-life of the device, in some embodiments such that communication may be initiated with thesensing device12 when needed to perform calibration operations, perform implant testing and measurements, and/or confirm a desired implant location.
After implantation, the sensing device is configured to conserve power by operating in a wake-up mode established by thecommunication hub14. Sensing device operation proceeds to a monitoring or implant mode of operation, as indicated by connector A, which is generally described below in conjunction withFIG. 7. It is understood that at any time during the shelf life of thesensing device12, the sensing device communication circuitry may be powered up in response to manual activation of a manual wake-up element, such as a magnet applied to a reed switch in the sensing device, as described previously.
It is contemplated that in some embodiments, a beacon listening mode of operation is restored after performing calibration procedures and maintained until an implantation procedure is performed. As such, in some embodiments, the beacon listening mode may be initialized at device manufacture, used to establish communication with a hub to perform a calibration procedure, then restored and maintained until communications are again established during an implantation procedure. When the communication transceiver is powered up atblock108, the beacon listening mode is disabled temporarily but may be re-enabled after calibration procedures are completed until an implant procedure is performed at a later time.
FIG. 6 is a flow chart of an alternative method for power management of communication operations in an implantable sensing device during its shelf life. Inflow chart200, instead of enabling a beacon listening mode of operation at the time of device manufacture, a “wake-up” element is provided for first detecting a wake-up condition, which causes the beacon listening mode to then become enabled.
Atblock202, thesensing device12 is initialized at the time of device manufacture by setting any default programmable parameter values and setting a power status of the device for the shelf-life of the device. Power supplied to sensor circuitry not used or needed during storage of the device is disabled. The power status includes shutting down power to the sensing device communication circuit and the oscillator generating an interrupt signal for the beacon listening mode. The communication circuit and beacon mode oscillator remain completely powered down until an implant or calibration condition is detected.
Device initialization includes enabling a wake-up element atblock204. The wake-up element may correspond to a zero-power or ultra-low power manual wake-up element, such as a reed switch that responds to user application of a magnet to the sensing device. Additionally or alternatively, the “wake-up element” enabled atblock204 may correspond to a zero-power or ultra-low power implant sensor configured to automatically detect an implant or calibration condition. In one embodiment, the sensing device is configured to detect an implant condition by performing periodic impedance measurements taken between electrodes on the sensor housing. A periodic current signal is applied to the electrodes and the resulting voltage across the electrodes is measured to determine an impedance measurement. If the impedance remains high due to an air path between electrodes, for example while still in a package prior to implantation, an implant or calibration condition is not detected. The sensing device remains in the power status set for the shelf-life of the device as indicated by the “no” loop ofblock206.
The impedance may be monitored by continuous or intermittent cycling of a low level current signal to the impedance measuring electrodes with the resulting voltage provided as input to a comparator for detecting a low impedance between the electrodes. One impedance monitoring method for implant detection is generally described in U.S. Pat. No. 5,534,018 (Wahlstrand, et al.), hereby incorporated herein by reference in its entirety. In an alternative embodiment, a temperature measurement method may be employed for detecting device implantation, as generally described in U.S. Pat. No. 6,681,135 (Davis, et al.), hereby incorporated herein by reference in its entirety.
A zero-power or ultra-low power wake-up element implemented to sense or respond to a wake-up condition and generate a wake-up interrupt signal uses minimal current from the sensing device power supply. A minimal current may be on the order of the leakage current of the sensing device or less, and may correspond to a current drain of up to approximately 100 nA and may be less than approximately 1 nA.
If a wake-up element detects a calibration or implant condition, or a manual wake-up element is activated, the sensing device control processor receives a wake-up interrupt signal generated by the wake-up element atblock206. The sensing device control processor enables a beacon listening mode oscillator atblock208. Upon enabling the beacon listening mode oscillator,sensing device12 sets a total beacon mode time atblock210. The beacon listening mode will be enabled for a maximum period of time and will then be disabled again. This maximum beacon listening mode time prevents the sensing device from remaining in a beacon listening mode indefinitely due to a false wake-up.
The beacon period and on time are set atblock212 as described previously to enable the sensing device to periodically listen for a beacon signal from thehub14, signifying a request for communication by the hub, during the total beacon mode time. If no beacon signal is received during an on time interval atblock214 and the beacon mode time expires, as determined atblock216, the beacon listening mode is terminated atblock218 by disabling the oscillator interrupt signal. The sensing device control processor returns to block206 to wait for another wake-up interrupt signal generated by a calibration/implant detection element or a manual wake-up element.
If the hub sends a beacon signal atblock120, and the signal is received by sensingdevice12 atblock214 during the beacon on time, the sensing device communication circuit is powered up atblock220. The behavior ofhub14 atblock120 through130 corresponds to that described in conjunction withFIG. 5. Once a beacon signal is received, the behavior ofsensing device12 atblocks220 through228 generally corresponds to that described in conjunction withblocks108 through118 ofFIG. 5.
Briefly, thecommunication hub14 sends instructions or requests to thesensing device12 atblock126 after receiving a confirmation from sensingdevice12 and terminating the beacon signal (block222 and blocks122-124). Upon receiving the instructions atblock224, thesensing device12 performs the requested operations atblock226 and sends a success signal atblock228. When communications are complete (block128), e.g. calibration procedures, implant measurements, initial programming of the sensing device and so on, instructions establishing a communication wake up mode to be enabled during the subsequent implant period are sent (block130).
Atblock230, the sensing device enables the communication wake-up mode for the implant period according to the received instructions. In one embodiment this includes enabling a scheduled transmission wake-up mode. An implant detection wake-up mode is disabled atblock230. Once a device is implanted, the circuitry used for detecting an implant or calibration condition may be completely powered down. The implant detection wake-up interrupt signal is disabled and not used for the duration of the implant life of the device.
Sensing device operation proceeds to a monitoring mode of operation, as indicated by connector A, as generally described in conjunction withFIG. 7. Thesensing device12 may perform sensing operations according to a monitoring protocol, but no communication data will be sent or received until the sensing device communication circuitry is woken up according to an implemented wake-up mode.
While the methods of a beacon listening mode and a wake-up element detecting a wake-up condition are described in a combined manner in conjunction withFIG. 6, it is contemplated that a sensing element included insensing device12 for detecting a wake-up condition may be implemented without a beacon listening mode operation. In response to sensing an implant condition or manual wake-up activation, the sensing device communication circuitry may be fully powered up to enable bidirectional communication withhub14 and remain powered up until further instructions are received byhub14. Additionally, a timer may be set for powering down the sensing device communication circuitry if data is not received fromhub14 during a specified time period after sensing the implant condition to avoid sustained power to the communication circuitry due to a false wake up.
FIG. 7 is aflow chart300 of a method according to one embodiment for managing communication power usage in an implantable medical device system enabled to perform a monitoring protocol.Flow charts100 and200 of respectiveFIGS. 5 and 6 relate to sensing device communication operations and power management during the shelf-life of the sensing device. Theflow chart300 ofFIG. 7 relates to the control of communication functions during the implant period. Operations performed by or pertaining primarily to sensingdevice12 are shown on the left side of the dashed vertical line and operations performed by or pertaining primarily to thecommunication hub14 are shown on the right side of the dashed vertical line as indicated.
After setting an initial communication wake-up mode at the end of the shelf life, i.e. upon implantation, as described above, thesensing device12 begins to function according to a programmed monitoring protocol for recording a physiological signal (or signals). Thesensing device12 may be configured in an ultralow power or off state between physiological signal monitoring intervals to conserve power.
If the initial communication wake-up mode set for the implant period is a scheduled transmission wake-up mode, as determined atdecision block304, a scheduled wake-up interval timer is set atblock306 for a data transmission time established by thecommunication hub14 when the communication wake-up mode was set. When the scheduled transmission timer expires, as determined atblock308,sensing device12 powers up its communication circuitry atblock309 and transmits a beacon signal atblock310 to request communication withhub14.
When operating in a scheduled transmission wake-up mode, thehub14 may operate in a beacon listening mode. Alternatively, the hub may set a hub wake-up timer for enabling a beacon listening mode at a particular time. In this way, the communication circuitry of thehub14 may be powered down between scheduled data transmission times.
At any time, however, an external wake-up activation signal may be applied to thehub14 to activate a manual wake-up element included inhub14. If the manual wake-up element is activated atblock350, a manual wake-up interrupt signal is generated to cause the hub to power up its transceiver atblock354. Thehub14 may then begin sending a beacon signal and/or listening for a beacon signal from sensingdevice12 for establishing communication withsensing device12.
While not explicitly shown inFIG. 7, it is to be understood that sensingdevice12 may be configured for manual wake-up capabilities at any time during the implant life of the device, as described previously herein.
If a scheduled transmission wake-up timer expires atblock352 inhub14, the hub transceiver is powered up atblock354. The scheduled wake-up interval set inhub14 expires at a somewhat shorter interval than the sensing device scheduled wake up interval. As a scheduled transmission time approaches, the communication hub transceiver is woken up earlier, for example one second, one minute or even earlier than the scheduled wake up time of the sensor. Mismatches between timing circuits of the hub and the sensing device are accommodated by enabling thecommunication hub14 to listen for a beacon signal from thesensing device12 at a slightly earlier time than the sensing device wake-up time. If the communication hub receiver is enabled at a scheduled time that is intended to correspond exactly to a scheduled transmission time of the sensing device, a mismatch between timing circuits of thehub14 andsensing device12 could cause communication errors or failures.
Upon receiving a confirmation from thehub14 atblock312, thesensing device12 begins transmitting acquired data atblock314, which may be stored or real-time data depending on the monitoring application. In an alternative embodiment, the sensing device transceiver may be powered up upon expiration of a scheduled wake-up time interval and immediately begin transmitting data atblock314 without first sending a beacon signal and waiting for a response. In this case, thehub14 would fully power-up its communication circuitry in advance of the scheduled transmission time.
Thecommunication hub14 receives the sensing device data atblock356. With the reception of data, thehub14 can trim its internal oscillator to compensate for drifts between the timing circuits of thehub14 and thesensing device12.
After receiving a complete data transmission from sensingdevice12,communication hub14 sends instructions, including instructions relating to the communication wake-up mode, to thesensing device12 atblock358. Thesensing device12 may enable communication error correction protocols, receive updated operating parameters, or receive other information back from thehub14 atblock330. The hub may send instructions regarding additional tasks to be performed by the sensing device, which are performed atblock332 and may involve additional bidirectional communication withhub14. The communication wake-up mode is updated atblock334 according to the received instructions.
The communication wake-up mode may remain unchanged, or the wake-up mode may be converted to a different mode, for example from a scheduled transmission mode to a scheduled or continuous beacon listening mode. Furthermore, time intervals used to control the wake-up mode may remain the same or be changed. The wake-up mode and/or intervals used to control wake-ups may change depending on a physiological status of a patient, a therapy delivery status, or based on user input.
If a scheduled transmission wake-up up mode is maintained, the hub may provide an instruction to keep the same or set a different scheduled transmission wake-up interval. In one embodiment, the next wake-up interval scheduled in the sensing device after a data transmission is a relatively short wake-up interval that corresponds to a data processing time inhub14. The sensing device sets the wake-up timer atblock306 and powers down the communication circuitry until the timer expires, as determined again atblock308. Additionally, the sensing device may disable power to any sensing operations during this data processing time.
The scheduled wake-up interval transmitted atblock358 in this case may be referred to as a processing time wake-up interval in that this interval is not set to establish the next time that the sensing device is scheduled to transmit acquired physiological signal data. Rather this processing time interval is a time period in which the signal data just transmitted by sensingdevice12 is analyzed byhub14 atblock360.Sensing device12 may or may not acquire physiological data during the processing time interval. The communication circuitry of thesensing device12 is shut down during data processing to conserve device power. The data analysis performed during the processing time interval is used to establish the next scheduled wake-up interval that defines when a data transmission will again occur.
Thehub14 determines a next scheduled transmission wake-up time interval based on the data analysis and transmits the next wake up time interval to thesensing device12 at the next scheduled wake-up time. In response to the processed data, the hub may increase, decrease, or maintain a previous wake-up time interval used for transmitting sensed data. For example, if the sensed signals indicate that the patient is stable, the wake-up interval for the next data transmission time may remain the same or be increased. If the sensed signals indicate that a condition may be changing or unstable, the wake-up interval for the next data transmission may be shortened to allow more frequent monitoring of physiological data.
It is recognized that in some embodiments, data processing atblock360 may be performed by another device after transferring the received data fromhub14 to the other device, which may be implanted or external. Theexternal device16 communicates a wake-up schedule back tohub14 for subsequent transmission to thesensing device12.
The communication transceiver of thesensing device12 is powered up atblock309, at the end of the scheduled wake-up interval corresponding to a data processing time, to receive the next scheduled transmission wake up time from the communication hub. At this time, there may be no new physiological data to transmit so after sensing a beacon signal atblock310 the sensing device may wait for wake-up mode instructions. The next scheduled wake-up time will correspond to a time interval that will include further monitoring by the sensing device for acquiring physiological signal data.
At other times, the wake-up mode may be converted to a continuous or scheduled beacon operation. If the wake-up mode is not a scheduled transmission mode (block304), the wake-up mode may be a scheduled beacon listening mode, as determined atblock320. Configuring a scheduled beacon listening mode includes setting a timer for the first beacon listening period to begin.
When the timer expires atblock322, the beacon period and beacon on time are set atblock324. The beacon period sets the period at which an oscillator provides a wake-up interrupt signal to the sensing device control circuitry. The on time controls how long the communication circuitry is powered and enabled to listen for a beacon signal during a given beacon period. If a signal is not received during an on time, the device returns to block324 and remains in a beacon listening mode until a beacon signal is received atblock326.
If the wake-up mode is neither a scheduled transmission mode (block304) or a scheduled beacon listening mode (block320), the wake-up mode is set to a continuous beacon listening mode. The process advances to block324 where the beacon period and on time are set to repeatedly cause a periodic wake-up interrupt signal and beacon listening on time until a beacon signal is received during an on time atblock326.
Additionally, if a scheduled transmission wake-up mode is set but a hub confirmation signal is not received atblock312 after sending a beacon signal atblock310, this failure to establish communication can cause the wake-up mode to automatically convert to a continuous beacon listening mode by advancing to block324. The “continuous” beacon listening mode is “continuous” in that no timer is set to separate beacon periods. The beacon period and on time are set during the “continuous” beacon listening mode such that the communication circuitry is shut down during an “off time” portion of the beacon period, which corresponds to the time period from the end of an on time until the next wake-up interrupt signal is provided by the oscillator.
If a beacon signal is received atblock326, the communication transceiver is fully powered atblock328 for establishing bidirectional communication with thehub14. Thesensing device12 may send a confirmation signal to thehub14 and data transmission may then begin between thedevice12 andhub14 in a handshaking mode.
After receiving instructions and performing any requested tasks atblocks330 and332, the sensing device wake-up mode is updated atblock334 according to hub instructions. Sensing device communication circuitry is put to sleep atblock336 and the process returns to block302 to continue recording physiological signals per a programmed monitoring protocol.
As such, the communication wake-up mode ofsensing device12 may vary between a scheduled transmission mode, a scheduled beacon listening mode, and a continuous beacon listening mode under the control ofhub14 during an implant period. Converting from one mode to another, for example from a scheduled transmission mode to a continuous beacon listening mode, may occur automatically by sensingdevice12 in response to a communication failure or other events.
The communication wake-up mode may be implemented as one or a combination of wake-up modes, which may vary over the implant life of the sensing device. For example, in an alternative embodiment, instead of setting a scheduled wake up interval corresponding to a data processing time as described above, a scheduled transmission wake-up mode may be followed by a scheduled beacon listening mode. Beacon listening will be enabled after a scheduled time interval that corresponds to an expected data processing time.
Alternatively, the sensing device may enable a scheduled or continuous beacon listening mode automatically at the end of a scheduled data transmission to wait for instructions regarding the next wake-up mode.
FIG. 8 is a schematic diagram of an implantable medical device system including multiple implantablemedical devices412′,412″,412″ (collectively412) in bidirectional communication with ahub414 viarespective communication links420′,420″ and420′″ (collectively420). Thedevices412 may be embodied as one or more types of sensing devices implanted in distributed locations in a patient's body.Hub414 provides communication power management for themultiple devices412 by transmitting a wake-up mode and associated time intervals, e.g. a scheduled transmission wake-up interval, a scheduled beacon listening wake-up time, beacon period, and beacon on time.
Furthermore,external device416 may program a wake-up mode inhub414, which may generally correspond to any of the wake-up modes described herein, and a wake-up mode to be transmitted to sensing device(s)412. Additionally, eachdevice412 andhub414 may be woken up by activation of a reed switch or other manually activated ultra-low power or zero-power sensor as described previously. Providing a method for manually causing communication wake up between scheduled wake ups allows emergency or other procedures that require communication withhub414 and/or anydevices412 to be performed between scheduled wake-ups.
Hub414 controls the communication power mode of eachsensing device412 by sending commands via anappropriate communication link420.Hub414 may manage the communication power used by thedevices412 by determining whether the device operates in a scheduled wake-up mode or in a scheduled or continuous beacon listening mode, and these modes of operation may be changed over time.Hub414 may determine the communication wake up mode for eachdevice412 automatically, based on a patient condition and/or the type of signal(s) sensed by the sensing device.
For example, if a sensing device is providing signals relating to confirming an arrhythmia, the sensing device may be set to a continuous beacon listening mode so that data can be quickly retrieved from the sensing device when a serious arrhythmia is detected or suspected. If a sensing device is providing signals relating to a physiological condition that may change more gradually over time, e.g. thoracic edema or other heart failure condition, the sensing device may be set to a scheduled transmission wake-up mode with intervals of beacon listening mode operations following each scheduled transmission and corresponding to data processing time periods.
Hub414 dynamically controls the communication wake up mode of thedevices412 according to patient need and physician preferences.Hub414 may select an operating mode for aparticular device412 automatically based on patient condition, sensing device functionality, and other factors. Alternatively or additionally,hub414 may receive instructions for controlling wake-up modes of thesensing devices412 from anexternal device416.External device416 is used to transmit programming instructions entered by a user or determined automatically in response to analysis of data received fromdevices412. Eachsensing device412 may be controlled to transmit data according to a unique wake up schedule for that device.
Thehub414 may maintain its own communication circuitry in an off state and power up its receiving circuitry in accordance with scheduled wake up times ofdevices412 or a scheduled wake up time for communicating withexternal device416.
When themagnet418 is held overhub414,hub414 powers up its communication transceiver and waits an interval of time for a wake-up command fromexternal device416 that identifies the hub with its own unique device identification. If this command is not received,hub414 shuts down its communication circuitry. The communication circuitry may be locked in response to not receiving a command so that the circuitry cannot be enabled by a manual wake-up mode again for a certain interval of time. This interval of disabling the manual wake up mode prevents frequent powering up of the communication circuitry due to electromagnetic interference or other spurious magnetic fields and may be implemented in thesensing devices412 and thehub414 to reduce power losses due to false manual wake-ups.
If thehub414 does receive the wake-up command containing the hub's unique identification within a predetermined time interval, the hub establishes acommunication link422 withexternal device416 and receives programming data and destination information fromexternal device416. The data is then transferred to theappropriate devices412.
In a similar manner, any ofsensing devices412 may be woken up usingmagnet418 or other manual activator of an internal sensing element that is configured to provide an interrupt signal to control circuitry within the sensing device. Thesensing device412 waits a predetermined interval of time for a command including a unique identity of the sensing device and enables its communication circuitry for receiving further data in response to the command. If the predetermined interval expires before receiving the command, the communication circuitry is prevented from being woken up again by an external signal for a predetermined period of time to prevent power losses to due external interference.
Hub414 reduces communication power usage by thesensing devices412 by performing higher power communication transmissions toexternal device416 and by establishing the wake-up mode of thesensing devices412 during the implant period of the device.
Thus, an implantable medical device system and method for managing device communications and associated power usage has been presented in the foregoing description with reference to specific embodiments. It is appreciated that various modifications to the referenced embodiments may be made without departing from the scope of the disclosure as set forth in the following claims.