CROSS-REFERENCES TO RELATED APPLICATIONSThis patent application claims priority to U.S. Provisional Patent Application No. 61/499,599 entitled, “Systems and Methods for Fraud Detection/Prevention for a Benefits Program,” filed Jun. 21, 2011, the complete disclosure of which is fully incorporated by reference herein for all purposes.
BACKGROUND OF THE INVENTIONAccount balance and other information for accounts held by an account owner are often needed by third parties for various reasons. For example, when applying for a mortgage, an applicant is typically required to provide information on all of the applicant's accounts to ensure there is sufficient cash attributable to the applicant (e.g., to use as a down payment). As another example, when applying for government benefits, such as supplemental security income (SSI) or other cash or services programs, a beneficiary's accounts must be located to ensure available assets have not been illegally transferred or do not otherwise exceed any qualification amount limits.
Searching for and verifying account balances can be difficult and time consuming. For example, in the case of a mortgage application, where an applicant has a number of accounts at different banks or other institutions (as used herein, “institutions” may include any type of financial service organizations, such as banks, credit unions, third-party payment services such as PayPal or the like, online banking services, online virtual money account systems, investment firms, brokerages, credit card companies, loan companies, check cashing services, payday loan services, government institutions, or any other entity providing financial services or information), verifying account balances may involve sending written requests to a number of different institutions, and each institution conducting a manual look-up for each specified account. Further, the applicant may not have complete account numbers or may not remember or provide information on all accounts. Even if the applicant has account numbers, the applicant may not provide the correct bank name or ID (such as a routing and transit number) to enable convenient and timely verification. In other cases, when the applicant has all the necessary account information, and even if a current balance has been confirmed by a bank, that balance may not be legitimate. That is, an applicant may have received or borrowed funds from another person (such as a relative) to temporarily show an account balance larger that what is actually owned by the account holder, to fraudulently qualify for a mortgage, loan, or government benefit.
In the case of an application for government benefits, an applicant may not disclose accounts, or income reflected in those accounts that would result in disqualification under the benefits program, or may have made transfers out of accounts to conceal assets.
Further, government and law enforcement agencies may from time to time have need to execute and serve subpoenas or National Security Letters (“NSLs”) pursuant to 18 U.S.C. §2709 (or other applicable statutes) to institutions to gain access to financial accounts or information for individuals or entities (such as corporations) named in such subpoenas. However, it is time consuming and expensive for such government and law enforcement agencies to locate which institutions may have information regarding an individual or entity named in a subpoena, and the institutions waste significant resources and expense responding to such subpoenas especially when there is no account or financial information for the named individual or entity that is accessible by the particular institution. The problem is magnified by the current approach of law enforcement to take a “shotgun” approach by delivering subpoenas or NSLs to a large number of major institutions in an attempt to find any applicable accounts for a person or entity of investigatory interest.
Thus, there is a need for systems and methods to locate, verify and/or access account information, especially for accounts that are maintained across a number of different institutions.
BRIEF SUMMARY OF THE INVENTIONEmbodiments of the present invention provide systems and methods for locating and accessing assets, such as accounts. For purposes of the present disclosure, accounts may include, but are not limited to, deposit accounts such as checking, savings, CDs, money market accounts in the United States, or International accounts. Accounts may also include (i) reward or loyalty accounts providing merchant reward points, such as in the exemplary case of retail sales; (ii) online financial accounts such as PayPal accounts; (iii) online gaming such as Farmville or SecondLife; or (iv) frequent flyer programs or stored value accounts. Further, accounts may include credit or loan accounts, credit card accounts, debit accounts, prepaid accounts, or any account regarding any desired type of financial information.
In one embodiment, a system and method is provided for locating an account. The system and method provides a database for storing account data for accounts maintained at a plurality of institutions. The account data for each account includes at least a personal identifier for an account holder. A request to locate an account is received, with the request including a submitted personal identifier. The account is located by matching the submitted personal identifier to the personal identifier stored in the database, and at least some of the account data for the located account is retrieved.
In another embodiment, a system and method is provided for locating and accessing an account of an account holder without having to contact one or more institutions where the account might be maintained. The system and method provides a database populated with account data for a plurality of accounts from a plurality of institutions maintaining the accounts. Account data is initially transferred from each of the institutions. The account data represents a plurality of account characteristics associated with each of the accounts. The account characteristics comprise an account identifier assigned to each account by the maintaining institution, a personal identifier for the account holder that is assigned by an entity independently of the institutions, and a balance of funds in the account. Updated account data is also periodically transferred from each of the institutions. The account data is stored in the database. A personal identifier (such as a social security number) for an account holder may be used to locate and retrieve at least some of the account data.
In an additional aspect, a government or law enforcement agency may provide one or more personal identifier(s) corresponding to an individual or an entity named in a subpoena (or an instrument such as a National Security Letter or Writ of Execution) for financial or accounting records access, and the provided personal identifier(s) is/are used to determine which institutions, if any, have account or financial information for the individual or an entity named in the subpoena. If one or more of such institutions are found to have such account or financial information for the individual or an entity named in the subpoena, the names of the matching institutions are provided to the government or law enforcement agency with sufficient information (account number or identification information, for example) so that the subpoena may be efficiently served on the one or more matching institutions. If no matching institutions are found, indicia showing no match found may be returned to the government or law enforcement agency. Although a preferred embodiment provides the account identification information for subpoenas to government or law enforcement agencies, it is understood by those of skill in the art that a service could be provided to non-government entities or persons to locate bank accounts corresponding to the identified parties. As described more completely below, additional embodiments may perform analysis to provide additional information to the querying agency.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a block diagram of a system for locating and accessing account information in accordance with embodiments of the invention.
FIG. 2 illustrates exemplary data provided to and stored in the database system ofFIG. 1.
FIGS. 3-5 are flow diagrams illustrating several processes used within the database system ofFIG. 1, for locating and accessing account data.
FIG. 6 is a block diagram of one suitable scoring model and process for use in one embodiment of the invention.
FIG. 7 is a flow diagram illustrating a process used within the database system ofFIG. 1, in accordance with an alternative embodiment.
FIG. 8 is a block diagram of a computer system upon which various devices, systems, and processes described in conjunction withFIGS. 1-7 may be implemented.
DETAILED DESCRIPTION OF THE INVENTIONDescribed embodiments of the present invention provide means for enabling assets (such as financial accounts owned by an account holder) to be located and accessed, even when maintained at a number of different institutions. In some embodiments, accounts are located using a personal identifier associated with the account holder, rather than an account number. In one specific embodiment, the personal identifier is a social security number (SSN).
In certain described embodiments, a system for locating assets may receive two different types of requests to locate assets (such as financial accounts). One such request may be an asset search request, and the other may be an asset verification request.
Briefly, as examples, an asset search request might be used by a government entity to locate accounts of a person applying for welfare benefits or some other form of government assistance. Government programs providing benefits (particularly welfare benefits) often have criteria that permit applicants/beneficiaries to qualify only as long as their assets (such as checking, savings and other financial accounts) have balances below a specified threshold. As an example, in many states, a beneficiary must have no more than $2000 in assets in order to qualify for Medicaid nursing home benefits. The systems and methods described herein permit an asset search for any accounts held by the beneficiary in order to confirm that balances in accounts held by the beneficiary are in fact below the required threshold. In other embodiments, transaction data in an identified account may be evaluated to determine or verify benefits eligibility. For example, where benefits eligibility is based on or related to income, a system and method could additionally provide account data relevant to the risk that a beneficiary is receiving income (e.g., deposited into an account) that would make the beneficiary ineligible for benefits. As a more specific example, in the case of unemployment insurance benefits paid by a government agency, transaction data in an identified account could be evaluated to provide risk scores and/or indicators pertaining to whether there might be employment income deposited to an account that would make the account holder ineligible for receiving or continuing to receive unemployment benefits. Data reflecting the likelihood of employment income could be based on data provided for ACH transactions posted to the account (e.g., ACH data indicating payroll deposits), or for non-ACH deposits (e.g., check deposits), based on the payor name or account, the check amount, or other check deposit information (e.g., by comparing that information to prior employment data provided by the beneficiary or by comparing that information to transaction patterns or history). In some embodiments, the periodicity or timing of deposit transactions might be relevant and could be evaluated.
An asset verification request, on the other hand, might be used by an entity (such as a mortgage company) to verify account balances. For example, a mortgage applicant may state that the applicant has sufficient funds saved in one or more accounts to make a down payment (or sufficient funds saved to supplement income as needed to make mortgage payments). In this example, a mortgage company needs to verify that balances in the applicant's accounts are adequate to meet the applicant's financial needs after the mortgage has been granted.
Embodiments of the present invention support alternative asset search and verification queries or requests. For example, systems and methods as described herein may be used in various situations where account information (such as balances) may be needed, such as to qualify or comply with certain government programs, to obtain consumer/commercial loans, or to initiate legal or other actions. These other situations include (but are not limited to) programs involving cash or noncash welfare payments, health care assistance, Supplemental Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI), child support requests (e.g., confirming financial means or needs), Housing Subsidies, Earned Income Tax Credits (EITC), corporate audit verifications, small business loans, student loans, student financial assistance, credit checks, and delinquent tax collections.
Other embodiments may support asset search and verification requests for various kinds of accounts or account information beyond those maintained at financial institutions. For example, government agencies may contribute benefits data, including details relating to those benefits and relating to the beneficiary, such as name, address, social security number (SSN), date of birth, employer (if any), date benefits applied for, type or amount of benefits, date benefits began, agency or agency location, and so forth. As should be appreciated, such information (particularly when accessible by using a personal identifier or SSN of the beneficiary), can be used to identify and assess the risk of fraud when processing a beneficiary's request for benefits.
In addition, systems and methods of the present invention permit account information from a large number of banking and other institutions as well as from government agencies to be stored in a single database system so that accounts across all of those institutions or agencies may be searched or verified with one request. Not only does this eliminate the need for contacting multiple institutions and agencies, but it also permits the data from individual accounts (or multiple accounts) to be analyzed for risk-related factors (e.g., in the case of mortgage applications, factors indicating savings patterns, suspicious deposits, and possible links to known fraudsters/con artists; and in the case of government benefits, factors indicating suspicious transfers to third parties or benefits received across multiple jurisdictions or agencies). In some embodiments, search or verification requests may be batched and sent daily. In other embodiments, an individual search or verification request can be sent electronically (on-line and in real-time), and an immediate response can be returned by the system. In one implementation, the located account information sent in the response can be immediately reviewed, perhaps in the presence of the applicant (e.g., while a mortgage applicant is in the presence of a mortgage officer), thus permitting the applicant to explain discrepancies and provide further information that can be used to refine subsequent requests, if appropriate. Such an exchange of information in real time may significantly reduce the time and cost of mortgage qualification, cash and services benefits applications and other processes requiring a search or verification of accounts.
Turning now toFIG. 1, there is shown anexemplary system100 for locating and accessing account information. The account information is stored and processed at a centralaccount database system110 having adatabase device120 for storing account information and an account database management system (DBMS)130 for managing the data in database120 (e.g., the DBMS stores, retrieves, arranges, sorts and processes the data in the database). As illustrated, the data used to populate thedatabase120 is obtained from a number offinancial institutions140. In addition, requests to access the account data stored indatabase system110 may be received from government agencies150 (e.g., to establish qualification for benefits), from mortgage companies160 (e.g., to verify account balances) and from other entities170 (e.g., needing to locate and access account data for various reasons, such as creditworthiness, ability to supply funds, or debt or asset verification).
Thefinancial institutions140 maintain financial accounts, and include banks, savings and loan associations, investment firms and similar institutions. The accounts for which data is provided may include checking accounts, savings accounts, certificates of deposit, brokerage accounts, money market accounts, and other financial accounts (in the United States or elsewhere). Accounts may also include (i) reward or loyalty accounts providing merchant reward points, such as in the exemplary case of retail sales; (ii) online financial accounts such as PayPal accounts; (iii) online gaming accounts, such as Farmville or SecondLife accounts; or (iv) frequent flyer programs or stored value accounts. Further, accounts may include credit or loan accounts, credit card accounts, debit accounts, prepaid accounts, or any account regarding any desired type of financial information.
It should be appreciated that, while the embodiment illustrated inFIG. 1 assumes financial institutions will contribute data, and that government agencies, mortgage companies and other entities will access the data, in some cases thefinancial institutions140 may also access account data in system110 (e.g., as part of a loan application) andgovernment agencies150,mortgage companies160 andother entities170 may contribute account data (e.g., benefits accounts and mortgage accounts). Thus, in their broadest sense,financial institutions140 may represent any kind of institution or other entity maintaining an account or asset (financial or otherwise), andgovernment agencies150,mortgage companies160 andother entities170 may represent any kind of entity (governmental, commercial or otherwise) wanting to locate and/or verify accounts or assets that are maintained at various institutions.
FIG. 2 illustrates exemplary data provided to (and stored in) thedatabase system110 by each of thefinancial institutions140. In this particular example, the data comprises account data for a bank account, and thus includes the following data fields (collectively designated as202 inFIG. 2):
Routing and Transit Number (RTN)Account NumberAccount Type (e.g., checking, savings, certificate of deposit, investment account)
Social Security Number (SSN)/Tax ID NumberAccount Status (open/present, closed, deceased, non-sufficient funds, etc.)
Name of Account Holder(s)Authorized Signor(s) of AccountAddress(es) of Account HolderEmail Address(es) of Account HolderPhone NumberDate of Birth (DOB) of Account holder
Data date (date of receipt by system110)
Current BalanceAverage Balance (e.g., average balance over the past 30 days)
Interest PaidMaturity Date (e.g., maturity date for a certificate of deposit)
As should be appreciated,FIG. 2 shows data for only one account, and in practice there would be many accounts from many institutions stored indatabase system110.
As seen inFIG. 2, the data includes aninitial transfer210 for each of the data fields (current and historical information at the time of the initial transfer), and subsequent periodic transfers212-1 through212-nfor most of the same data fields (to keep the data updated). InFIG. 2, the illustrated periodic data transfers212-1 through212-nare each transferred and stored daily (Day 1,Day 2,Day 3, etc., up to the current day). Such a frequent updating is generally preferred, although is some embodiments and applications a less frequent updating might be acceptable. The updated data fields are illustrated as including the same data as the initial transfer, other than the RTN, Account Number and Account Type fields, since it is assumed, for purposes of the described embodiment, that these three data fields will remain unchanged over the life of the account.
Also,FIG. 2 shows each updated daily transfer of data (212-1 through212-n) having allfields202 indatabase system110 populated with data (other than RTN, Account Number and Account Type). However, in practice, much of that data will not change between transfers, and sodatabase system110 may be managed so that only the changed data in a daily transfer will be stored (in such case, especially if updates are daily, many of the data fields illustrated inFIG. 2 would in fact not be populated in order to efficiently mange storage space and minimize unnecessary data processing). This filtering of unnecessary data could be implemented in one embodiment bydatabase system110 being programmed to review data fields as they are received from thefinancial institutions140 and to remove data that has not changed since the day before. In another embodiment, thefinancial institutions140 may have systems on-site and programmed to remove unchanged data before it is transmitted.
It should be appreciated that, since the data stored indatabase system110 is likely to be extensive for any given account, the account data could be processed in a number of ways bysystem110, in addition to being available to a requester making an account search or verification request. For example, the data could be processed to provide balance information in various forms (e.g., a single, current 30 day average balance, or average balances over 6 months, over 1 year or longer). The needs of the requester can thus be met by processing data in a way that is useful to the requester (e.g., a governmental entity is likely to need different information than a mortgage company). In a response the data associated with any account can be filtered, processed and stored in a way to provide only the information on the account that is most useful to the requester.
In addition, and as will be described in more detailed later, the data associated with an account can be analyzed (and, in some cases, compared to data from other, external sources) to provide risk scores or other risk-related data pertinent to the request. For example, thedatabase system110 may respond to a mortgage company request with not only basic account information (current status, current account balance, and average balance), but also with alerts and flags if critical data has recently changed (new signers, new account holder names, significant changes in balances, etc.). Also, patterns for deposits and withdrawals (e.g., as reflected in daily balances) can indicate if the account holder is a consistently good saver, or has relied on a single or a few large deposits in order to reach the current balance. If the entity managing thedatabase system110 provides risk-related data, then data stored in the database could also include a risk marker216 (stored in a “Risk Flag” field as seen inFIG. 2) that indicates risk factors have been identified for the account. The risk marker could be as simple as a “yes” or “no,” and in other embodiments could be a code to indicate whether the risk is relevant to specific categories of requesters, such a government benefits program, a mortgage company, a creditor, or some other request category. It should be appreciated that some factors (e.g., recent patterns of transfers out) would be relevant to a request from a government benefits program, and the same factors may have little or no relevance to a mortgage company. In embodiments where the system has collected risk-related data (in addition to the risk marker itself), such data could be stored in a separate table of data (to be described later), and would only be accessed if the risk is relevant to the purpose of the request.
FIGS. 3,4 and5 illustrate processes for responding to requests received at thedatabase system110. Before proceeding with descriptions of such Figures, it should be noted that a request to thesystem110 may have a standard format and include information pertinent to the person (for whom the account data is sought), such as account holder SSN, name, address, and bank name(s) and account numbers (if any). However, information needed to identify any accounts for the person could be minimal and, in one embodiment, might only be an SSN. For example, in the case of an account search request (e.g., by a government agency doing a search for accounts), the SSN may be the only identifier provided and used to locate accounts. Other relevant data can be provided, if desired, to provide more accuracy and confirm matches (name, address, and even bank account numbers—if supplied by the person), and generally more information will be returned and its accuracy improved when more personal information is provided. In the case of an account verification request (e.g., by a mortgage company wanting to verify balance information supplied by an applicant), account numbers would typically be provided (for redundancy) as identifiers in addition to an SSN, to make sure that any account identified by an applicant is considered in verifying account balances. But even in that example, thesystem110 could process and return account information based on a social security number. However, with either type of request, it should be appreciated that in some embodiments the requester may only provide a social security number as an identifier, and information can be returned bysystem100 based only on that identifier and not relying on account numbers or other data concerning the account holder.
Turning now toFIG. 3, a request for an account search (e.g., locating for a government agency any account at any institution belonging to a person that is the subject of the search) is received by system110 (step310). The system determines if the request is valid (step312). Such a determination could be based on several possible factors, such as whether the requester is authorized (e.g., the requester has, in advance, been properly authorized as an entity or individual), whether the request has been properly formatted (e.g., a personal identifier, such as a provided SSN, has the correct number of digits or is recognized as a valid SSN), and whether the device transmitting the request is recognized (e.g., from previous transactions or has been authorized in advance by the requester). If the request is not valid, the requester is notified (and the request is not processed further). If the request is valid, the system next determines whether there is an account in thedatabase system110 that matches the provided personal identifier (step314). If the personal identifier does not identify any account, the requester is notified and the process ends (as indicated inFIG. 3). Alternatively, other steps can be taken (point “A” in the drawings) to identify accounts without using a social security number (such steps will be described shortly in conjunction withFIG. 4).
If accounts are identified with the provided personal identifier, the system looks for matches with other data (if any) provided by the requester (step320). For example, a name or address provided in the request is compared to the data stored insystem110 for the identified account, and if there is no match the requester is notified and the search may end (at least temporarily). Alternatively, the process could continue, but with the understanding that the account data may not be relevant to the person that is the subject of the request. If the data matches atstep320, then the data for the identified account is retrieved,step322. If risk data is also to be provided (if available and requested, step324), then the risk data is retrieved (step326) and the retrieved data is provided to the requester as part of the response (step330).
As mentioned above, in some cases, even if an account is not identified with a personal identifier such as an SSN (step314), thesystem110 can be programmed to locate accounts using other personal information of the person in question. This is illustrated inFIG. 4, where thesystem100 first looks for other matches of personal information (e.g., names, addresses, phone numbers), and if there is match (step412), the system may also analyze the match to verify that the information is for same account holder (step414). As an example, this last step can be based on the amount of information matched, so that with two or more pieces of personal information being the same (both name and address for an account are the same as the name and address in the request) a match is indicated. In this example, if there is there is no match, thesystem100 notifies the requester and the search ends. As an additional step, thesystem100 may also further review any account where a match is made and verified atsteps412 and414, identify the personal identifier such as an SSN for that verified account, and then also identify any other accounts in the database (at any institution) having the same personal identifier as the verified account (step416). This process then returns to the process inFIG. 3, with any retrieved data provided back to the requester.
FIG. 5 illustrates a process similar to that ofFIG. 3, but rather than an account search request, this process is used to respond to an account verification request (e.g., from a mortgage company). An account verification request is received by the system110 (step510) and the system determines if the request is valid (step512). The system then determines if any accounts stored in the system are identified by the provided personal identifier such as an SSN,step514. Since many account verification requests will also include account numbers provided by an applicant, the system determines if any accounts are identified by provided account numbers (step516). The accounts that are identified (either atstep514 or step516) are retrieved (step522).
The system notifies the requester as to the nature of the matches (step520). If there is no match of any accounts (no match of either the personal identifier or the account number), the requester is so notified and the process may end with that notification at step520 (as indicated inFIG. 5). Alternatively, additional steps can be taken (point “A” in the drawings) to identify accounts (such additional steps are shown in, and were earlier described in conjunction with,FIG. 4). If, atstep520, there has been a match of only one of the personal identifier or account number, the requester is so notified (as to what identifier or information resulted in the match) and the process continues to the earlier described step522 (account data for the identified account is retrieved).
If risk data is also to be provided (if available and requested, step524), then the risk data is retrieved (step526) and the retrieved data is provided to the requester as part of the response (step530).
WhileFIGS. 3,4 and5 illustrate the search or verification process ending when no accounts are indentified or found within system110 (e.g., atsteps314,412, and520), it should be appreciated that other methods could be employed to respond to a search or verification request, in the event of an account not being found withinsystem110. For example, in one embodiment, when a requester provides account numbers and one or more of those account numbers are not found in thesystem110, thesystem110 could be configured to forward those account numbers to the institution(s) where they are maintained (e.g., using an RTN or bank name provided with the request), and then to respond to the requestor with any information supplied directly by the institution. In some cases, information supplied directly by the financial institution may supplement the account data retrieved fromdatabase120 and, in those cases, both the information from the financial institution and account data retrieved from database may be provided in a response to the requestor (e.g., atsteps330 and530). The methods just described could be accomplished automatically (on a batched basis or in real-time) in response an account number not being found insystem110 or, alternatively, could be accomplished with the assistance of personnel involved inoperating system110. In yet another embodiment, thesystem110 could be electronically linked to the systems at variousfinancial institutions140 and configured to remotely search account databases at those institutions, so that as thesystem110 searches itsown database120 it could likewise search (simultaneously or otherwise) the databases of the linked financial institutions and combine any located data in a response to a requester.
In some embodiments risk-related data (e.g., a risk score) may be generated based on the account data provided to and storeddatabase system110. This is illustrated by the scoring model and process ofFIG. 6, where the account data for any given account is provided to scoringlogic610. The scoring logic, which could be implemented within thedatabase management system130 or a separate processing system (not shown) within centralaccount database system110, may use a statistical or rules-based analysis (other forms of analysis, such as artificial neural networks, could also be used) to develop a score (examples of analysis used by scoringlogic610 will be given shortly). In some instances, the account data may not be sufficient to generate a score (e.g., the account has recently been opened, or there has been very little or no account activity). In such case, the account data may be stored in ahold account queue612 until sufficient data is available. In other cases, where there is sufficient data, the account data and resulting risk score may be stored in a scoredaccount queue614, which includes a risk score table620.
The process ofFIG. 6 also illustrates that the scoring process may be continuous. As additional new account data arrives for any accounts represented in thehold account queue612, the account data is reapplied to thescoring logic610. The additional data is also used in association with already scored accounts in scoredaccount queue614 to make fresh calculations of risk data for those accounts. That is, the scoringlogic610 is periodically re-run using updated account data (along with previous data in the scored account queue614), and the table620 is updated with new scores as they are generated. Over time, most of the accounts represented in thehold account queue612 should migrate to the scoredaccount queue614. Eventually, most active accounts will have risk scores in table620.
InFIG. 6, risk scores622 in table620 are illustrated as numerical (from 1 to 100), with “100” representing the highest risk and “1” representing the lowest. Of course other, simpler forms of risk data could be generated, such as only three risk levels (“low,” “medium,” and “high”). Also,risk reasons624 are illustrated in table620. Such reasons (or codes for such reasons) could be based on risk factors described below.
The following tables illustrate scoring analysis (exemplary risk factors and corresponding risk impact) that could be used in scoringlogic610, for both an account search request (involving government benefits) and an asset verification request (involving a mortgage application). In one embodiment, the risk scores could be calculated by initially assigning a neutral score (e.g., 50), and then increasing or decreasing the initial score based on the risk impact identified in the tables. Also, individual risk factors could be weighted differently, e.g., depending on desires of the requester or based on experiential data collected by the operator of thesystem110. Further, some risk factors require comparing account data to relevant data in separate, external databases (as an example, such databases might store names, addresses, email addresses, phone numbers and account numbers of suspected fraudsters). Thesystem110 would access those external databases as necessary in performing various risk analysis steps.
|
| Risk Score Analysis |
| Account Search-Government Benefits |
| Factors | Risk Impact |
|
| Transfer In/Out Patterns | Frequent deposits and withdrawals - |
| (money flow in and out | increased risk (likely attempt to keep |
| of account) | balances low) |
| Infrequent transactions - decreased risk |
| Dates of Withdrawals (in | Withdrawals within 6 months of begin date - |
| relation to program | increased risk (likely attempt to conceal |
| requirements specifying | assets) |
| a begin date for balances | Withdrawals more than 6 moths prior to |
| to be below program | begin date - decreased risk |
| threshold amount) |
| Amount of Withdrawals | At least one withdrawal - increased risk |
| (e.g. total withdrawals of | No withdrawals - decreased risk |
| $1000 during past 5 years) |
| Number/Nature of Located | 5 or more located accounts (likely attempt to |
| Accounts | spread assets) - increased risk |
| Less than 5 located accounts - decreased risk |
| Accounts located but not identified by |
| beneficiary - increased risk |
| Names, addresses, phone | Matches with suspected fraudsters - |
| numbers on account (in | increased risk |
| addition to those of | No matches with suspected fraudsters - |
| beneficiary) | decreased risk |
| Account SSN/Name Match | SSN or name for account do not match those |
| provided in request - increased risk |
| Both SSN and name for account match those |
| provided in request - decreased risk |
|
|
| Risk Score Analysis |
| Mortgage Application |
| Factors | Risk Impact |
| |
| Saving Pattern | Infrequent deposits during each month (not a |
| | likely consistent “saver”) - increased risk |
| | Frequent and consistent deposits - decreased |
| | risk |
| Added Signer | Signer address same as applicant - decreased |
| | risk |
| | Signer address at zip code distant from |
| | applicant - increased risk |
| | Name or SSN of new signer matches |
| | suspected fraudsters - increased risk |
| | No matches with suspected fraudsters - |
| | decreased risk |
| Recent deposits | Large Amount(s) - increased risk |
| | Small amount(s) - decreased risk |
| |
Also, because thesystem100 will likely store account information across most (if not all) financial institutions, additional data (not directly related to the account at hand) can be collected to provide additional forms of risk analysis. For example, if account data for an account is accessed and it reveals a large deposit (or a series of recent deposits that total a large amount), all other accounts in the system could be checked to see if a corresponding and identical withdrawal amount (or series of withdrawals) can be matched, thus linking another account (as a source account) to the account at hand. Thesystem110 could then check external databases to see if the source account is associated with a fraudster.
Embodiments of the invention also support other useful ways to tap the extensive and rich source of information maintained in thesystem110. For example, the account data (including the risk scores) maintained in thesystem110 may be used to assess creditworthiness. Not only could stored risk data be used in such an assessment, but loan or other credit accounts could be accessed (e.g., using only a SSN) to locate outstanding balances or credit limits (when stored in association with such accounts), and thus determine either the general creditworthiness of a person or entity (e.g., a person applying additional credit), but also verify representations made by an applicant in connection with the applicant's existing accounts.
As a further aspect of the present invention, a government or law enforcement agency may provide one or more personal identifier(s) corresponding to an individual or an entity named in a subpoena (or an instrument such as a National Security Letter or Writ of Execution) for financial or accounting records access, and the provided personal identifier(s) is/are used to determine which institutions, if any, have account or financial information for the individual or an entity named in the subpoena. If one or more of such institutions are found to have such account or financial information for the individual or an entity named in the subpoena, the names of the matching institutions are provided to the government or law enforcement agency with sufficient information (account number or identification information, for example) so that the subpoena may be efficiently served on the one or more matching institutions. If no matching institutions are found, indicia showing no match found may be returned to the government or law enforcement agency. As described more completely below, additional embodiments may perform analysis to provide additional information to the querying agency. The personal identifier for the individual or entity named in the subpoena may comprise any desired identification element, including, but not limited to, an SSN, a personal name, a mailing address, a physical address, the name of a corporate entity, a driver's license number, a prisoner number, an immigration number, a Matricula Consular number, or any other desired indicia. Further, personal identifiers may constitute a plurality of information designed to either narrow or broaden the search criteria depending on the desired result. Requiring more than one match for a plurality of provided identifiers might produce fewer results and would narrow the search. A match for any one of a plurality of provided identifiers might produce more results and would broaden the search.
For example, furnishing a plurality of personal identifiers such as an SSN and name and address (and requiring that an indentified account have a match for each of the SSN, name and address) may further refine the search results and limit false positives, but depending on the amount of information returned, submissions of multiple identifiers, if a multiple match is required, could return too little information to be useful. Optionally, and to further refine results, the submitting agency may specify which of the submitted personal identifiers are required, and which may be optional, or which may be required in combination. For example, the submitting agency may specify that both a last name and an SSN must match the submission. In some embodiments, personal identifiers may comprise a list of related information for a suspect individual, for instance, a list of personal identifiers corresponding to known associates of the individual, and accounts of the known associates may be identified (along with the accounts of the suspect individual). Using additional analysis techniques, which may include link analysis or network analysis, account information corresponding to known associates and to others linked to the individual or entity identified in the subpoena may be returned to the submitting agency.
A simplified illustration of one such process is seen inFIG. 7. The process ofFIG. 7 is similar to (and has steps corresponding to those of) ofFIG. 3, but more specifically involves a search request (step710) from a government agency for an individual or entity contemplated as the subject of a subpoena. As described in conjunction withFIG. 3, thesystem110 determines whether the request is valid,step712, and whether any accounts associated with a personal identifier of the subject (such as a social security number) can be identified,step714. If there is no SSN match, then the requester is notified (and the process may end), but optionally, other steps can be undertaken to identify accounts without using a social security number (steps proceeding from point “A” in the drawings, using a process similar to that described earlier in conjunction withFIGS. 3 and 4). Atstep720 other account data (e.g., name and address, if any, provided with the request) may be used to provide additional confirmation that the identified account is matched to the person that is the subject of the search. While not illustrated inFIG. 7, linking and network analysis can optionally be used to identify additional accounts and provide other information that may have some association with the subject of the contemplated subpoena, as will be described in connection with a specific example to follow shortly. Account data for any identified account is retrieved atstep722. As inFIG. 3, if risk data associated with an identified account is available (step724), it may also be retrieved (step726). Among other things, risk data may be used to determine the need for quickly executing a subpoena and then seizing an account that has a high risk of being involved in fraudulent activity (and that may be likely to have its balance quickly depleted/transferred by the fraudster/account holder). The retrieved data is provided (step730), and a subpoena is prepared and executed atstep732 by the government agency.
As a specific example addressing an embodiment of the present invention, consider a hypothetical subpoena that is planned to be issued so that a law enforcement agency may find and obtain financial account information (and possibly related information) for an individual named Vito A. Corleone who has an SSN of 123-45-6789. Prior to embodiments of the present invention being available, difficulties immediately arise in trying to determine which financial institutions may have accounts for Vito Corleone; prior practices may have involved serving subpoenas or NSLs on a large number of financial institutions hoping that one or more of them have an account for Vito Corleone. In the process, much time and expense was wasted serving the subpoenas or NSLs to the institutions not having accounts for Vito, as well as the wasted time and expense borne by the financial accounts in responding to such “blind guess” subpoenas. However, in embodiments of the present invention, the law enforcement agencies may be provided indicia regarding which institutions have accounts related to Vito Corleone with a matching SSN, and optionally, account indentifying information corresponding to accounts for which Vito is a signatory.
In a modification of the previous example, consider the case where no hits were found for Vito Corleone, with or without his SSN, at any institution's records stored in the database system (110) of the present invention. It may be likely that accounts may have been opened at various institutions by Vito's known associates to attempt to conceal Vito's financial transaction information. In an embodiment of the present invention, Vito's last known address was known by the submitting law enforcement agency (123 Genco Way, Long Island N.Y.), and a list of known associates: P. Clemenza, S. Tessio, L. Brasi, D. Tommasino, and T. Hagen. A query could then be submitted to systems of the present invention to find accounts matching his address and any of his known associates, and such accounts may then be scrutinized to determine whether they are associated with Vito Corleone. Those of skill in the relevant arts also realize that other cross-matching information (for example Vito's middle name “Andolini”) might be utilized with or without his SSN, and with or without other identifying information such as known associates. Further, through analyzing a network of Vito's associations created through linking and network analysis techniques as more completely described in U.S. Provisional Patent Application No. 61/448,156 filed Mar. 1, 2011 entitled, “System and Method for Suspect Entity Detection and Mitigation,” the disclosure of which is hereby fully incorporated by reference for all purposes, ancillary information regarding Vito Corleone's social or financial transaction history may be analyzed to determine possible accounts that have some association with Vito. Types of ancillary information provided about Vito may include checking account records of any kind (bank statements, cancelled checks, etc.), loan information (loan applications, ledgers, etc.), savings account and securities records (certificates of deposit, investments, etc.), records of any safe deposit boxes at a bank, supporting financial documents (copies of tax returns, credit reports, etc.), current or present addresses associated with an account, hot files, accounts closed for cause, mobile or land line phone numbers associated with Vito or his present or prior addresses, and the like. Once a network has been constructed with Vito's identifying information, related accounts (or other information) and the institutions that host them, may be provided to the querying law enforcement agency.
Submissions of requests for subpoena/NSL account identification may be made by the requesting agency individually in a real-time, or in a single or grouped batch mode submittal that is executed at a predetermined time interval (for example, overnight). Additionally, further analysis could produce information that may be provided to the requesting government or law enforcement agency regarding identity information for other individual signatories on joint accounts that correspond to the individual or entity named in the subpoena; prior transactions indicating financial fraud related to the individual or entity named in the subpoena, and through network analysis, identifications of or risk indicia regarding any potential fraud rings associated with the individual or entity that is named in the subpoena. As such, additional related investigatory leads may be provided to the government or law enforcement agency as a result of social or transactional associations with other entities. In an additional aspect, the requesting agency (or an entity, broker, or processor acting on the agency's behalf), after determining which institutions possess information about the subject of the subpoena/NSL, may send to the relevant institutions a formatted request for information that allows the possessing institutions to “fill in the blanks” for any missing data that is pertinent to the subject of the subpoena/NSL, and the requesting entity/broker/processor may process the response on the institution's behalf directly to the law enforcement agency. In a further aspect of the present invention, the requesting government agency may specify to a processor/broker the relevant laws, statutes, rules, or orders under which it has acting authority to submit the subpoena/NSL, and the processor/broker pursues obtaining the information for the agency on its behalf. Further, the processor/broker may utilize the specified listing of laws, statutes, rules or orders furnished by the government agency to tailor the information request to one or more institutions that have been determined to possess information about the subject of the subpoena/NSL, and may optionally filter or redact any information that is received from the relevant institutions that is not permitted to be provided under a legal framework of identified statutes, laws, or rules.
FIG. 8 is a block diagram illustrating an exemplary computer system upon which embodiments of the present invention may be implemented. This example illustrates acomputer system800 such as may be used, in whole, in part, or with various modifications, to provide the functions of thecentral database system110, including theDBMS130 and thescoring logic610, as well as other components and functions of the invention described herein.
Thecomputer system800 is shown comprising hardware elements that may be electrically coupled via abus890. The hardware elements may include one or morecentral processing units810, one or more input devices820 (e.g., a mouse, a keyboard, etc.), and one or more output devices830 (e.g., a display device, a printer, etc.). Thecomputer system800 may also include one ormore storage devices840, representing remote, local, fixed, and/or removable storage devices and storage media for temporarily and/or more permanently containing computer-readable information, and one or more storage media reader(s)850 for accessing the storage device(s)840. By way of example, storage device(s)840 may be disk drives, optical storage devices, solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable or the like.
Thecomputer system800 may additionally include a communications system860 (e.g., a modem, a network card—wireless or wired, an infra-red communication device, a Bluetooth™ device, a near field communications (NFC) device, a cellular communication device, etc.) Thecommunications system860 may permit data to be exchanged with a network, system, computer, mobile device and/or other component as described earlier. Thesystem800 also includes workingmemory880, which may include RAM and ROM devices as described above. In some embodiments, thecomputer system800 may also include aprocessing acceleration unit870, which can include a digital signal processor, a special-purpose processor and/or the like.
Thecomputer system800 may also comprise software elements, shown as being located within a workingmemory880, including anoperating system884 and/orother code888.Software code888 may be used for implementing functions of various elements of the architecture as described herein. For example, software stored on and/or executed by a computer system, such assystem800, can be used in implementing the processes seen inFIGS. 3-7.
It should be appreciated that alternative embodiments of acomputer system800 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Furthermore, there may be connection to other computing devices such as network input/output and data acquisition devices (not shown).
While various methods and processes described herein may be described with respect to particular structural and/or functional components for ease of description, methods of the invention are not limited to any particular structural and/or functional architecture but instead can be implemented on any suitable hardware, firmware, and/or software configuration. Similarly, while various functionalities are ascribed to certain individual system components, unless the context dictates otherwise, this functionality can be distributed or combined among various other system components in accordance with different embodiments of the invention. As one example, the centralaccount database system110 system may be implemented by a single system having one or more storage device and processing elements. As another example, the centralaccount database system110 system may be implemented by plural systems, with their respective functions distributed across different systems either in one location or across a plurality of linked locations.
Moreover, while the various flows and processes described herein (e.g., those illustrated inFIG. 3-7) are described in a particular order for ease of description, unless the context dictates otherwise, various procedures may be reordered, added, and/or omitted in accordance with various embodiments of the invention. Moreover, the procedures described with respect to one method or process may be incorporated within other described methods or processes; likewise, system components described according to a particular structural architecture and/or with respect to one system may be organized in alternative structural architectures and/or incorporated within other described systems. Hence, while various embodiments may be described with (or without) certain features for ease of description and to illustrate exemplary features, the various components and/or features described herein with respect to a particular embodiment can be substituted, added, and/or subtracted to provide other embodiments, unless the context dictates otherwise. Consequently, although the invention has been described with respect to exemplary embodiments, it will be appreciated that the invention is intended to cover all modifications and equivalents within the scope of the following claims.