Movatterモバイル変換


[0]ホーム

URL:


US20120314031A1 - Invariant features for computer vision - Google Patents

Invariant features for computer vision
Download PDF

Info

Publication number
US20120314031A1
US20120314031A1US13/155,293US201113155293AUS2012314031A1US 20120314031 A1US20120314031 A1US 20120314031A1US 201113155293 AUS201113155293 AUS 201113155293AUS 2012314031 A1US2012314031 A1US 2012314031A1
Authority
US
United States
Prior art keywords
depth
coordinate system
local
plane
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/155,293
Inventor
Jamie D. J. Shotton
Mark J. Finocchio
Richard E. Moore
Alexandru O. Balan
Kyungsuk David Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft CorpfiledCriticalMicrosoft Corp
Priority to US13/155,293priorityCriticalpatent/US20120314031A1/en
Assigned to MICROSOFT CORPORATIONreassignmentMICROSOFT CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: BALAN, ALEXANDRU O., FINOCCHIO, MARK J., LEE, KYUNGSUK DAVID, MOORE, RICHARD E., SHOTTON, JAMIE D. J.
Priority to US13/688,120prioritypatent/US8878906B2/en
Publication of US20120314031A1publicationCriticalpatent/US20120314031A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLCreassignmentMICROSOFT TECHNOLOGY LICENSING, LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: MICROSOFT CORPORATION
Abandonedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Technology is described for determining and using invariant features for computer vision. A local orientation may be determined for each depth pixel in a subset of the depth pixels in a depth map. The local orientation may an in-plane orientation, an out-out-plane orientation or both. A local coordinate system is determined for each of the depth pixels in the subset based on the local orientation of the corresponding depth pixel. A feature region is defined relative to the local coordinate system for each of the depth pixels in the subset. The feature region for each of the depth pixels in the subset is transformed from the local coordinate system to an image coordinate system of the depth map. The transformed feature regions are used to process the depth map.

Description

Claims (20)

1. A method, comprising:
accessing a depth map that includes a plurality of depth pixels, the depth map is associated with an image coordinate system having a plane;
estimating a local orientation for each depth pixel in a subset of the depth pixels, the local orientation is one or both of an in-plane orientation and an out-out-plane orientation relative to the plane of the image coordinate system;
defining a local coordinate system for each of the depth pixels in the subset, each local coordinate system is based on the local orientation of the corresponding depth pixel;
defining a feature region relative to the local coordinate system for each of the depth pixels in the subset;
transforming the feature region for each of the depth pixels in the subset from the local coordinate system to the image coordinate system; and
using the transformed feature regions to process the depth map.
9. A system comprising:
a depth camera for generating depth maps that includes a plurality of depth pixels, each pixel having a depth value, each depth map is associated with a 2D image coordinate system;
logic coupled to the depth camera, the logic is operable to:
access a depth map from the depth camera, the depth map is associated with an image coordinate system having a plane;
estimate a local orientation for each depth pixel in a subset of the depth pixels, the local orientation includes one or both of an in-plane orientation that is in the plane of the 2D image coordinate system and an out-out-plane orientation that is out-of-the plane of the 2D image coordinate system;
define a local 3D coordinate system for each of the depth pixels in the subset, each local 3D coordinate system is based on the local orientation of the corresponding depth pixel;
define a feature region relative to the local coordinate system for each of the depth pixels in the subset;
transform the feature region for each of the depth pixels in the subset from the local 3D coordinate system to the 2D image coordinate system; and
identify an object in the depth map based on the transformed feature regions.
15. A computer readable storage medium having instructions stored thereon which, when executed on a processor, cause the processor to perform the steps of:
accessing a depth map that includes an array of depth pixels, each depth pixel has a depth value, the depth map is associated with a 2D image coordinate system;
estimating a local orientation for each depth pixel in a subset of the depth pixels, the local orientation includes in-plane orientation that is in the plane of the 2D image coordinate system and an out-of-plane orientation that is out-of-the plane of the 2D image coordinate system;
determining a 3D model for the depth map, the model includes a plurality of 3D points that are based on the depth pixels, each of the points has a corresponding depth pixel;
defining a local 3D coordinate system for each of the plurality of points, each local 3D coordinate system is based on the position and the local orientation of the corresponding depth pixel;
defining feature test points relative to the local coordinate system for each of the points;
transforming the feature test points from the local 3D coordinate system to the 2D image coordinate system for each of the feature test points; and
identifying an object in the depth map based on the transformed feature test points.
US13/155,2932011-06-072011-06-07Invariant features for computer visionAbandonedUS20120314031A1 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US13/155,293US20120314031A1 (en)2011-06-072011-06-07Invariant features for computer vision
US13/688,120US8878906B2 (en)2011-06-072012-11-28Invariant features for computer vision

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US13/155,293US20120314031A1 (en)2011-06-072011-06-07Invariant features for computer vision

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US13/688,120ContinuationUS8878906B2 (en)2011-06-072012-11-28Invariant features for computer vision

Publications (1)

Publication NumberPublication Date
US20120314031A1true US20120314031A1 (en)2012-12-13

Family

ID=47292845

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US13/155,293AbandonedUS20120314031A1 (en)2011-06-072011-06-07Invariant features for computer vision
US13/688,120Active2031-07-08US8878906B2 (en)2011-06-072012-11-28Invariant features for computer vision

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US13/688,120Active2031-07-08US8878906B2 (en)2011-06-072012-11-28Invariant features for computer vision

Country Status (1)

CountryLink
US (2)US20120314031A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20120306735A1 (en)*2011-06-012012-12-06Microsoft CorporationThree-dimensional foreground selection for vision system
US20130131836A1 (en)*2011-11-212013-05-23Microsoft CorporationSystem for controlling light enabled devices
US20140208274A1 (en)*2013-01-182014-07-24Microsoft CorporationControlling a computing-based device using hand gestures
WO2014154839A1 (en)*2013-03-272014-10-02Mindmaze S.A.High-definition 3d camera device
US20140313136A1 (en)*2013-04-222014-10-23Fuji Xerox Co., Ltd.Systems and methods for finger pose estimation on touchscreen devices
US20140347443A1 (en)*2013-05-242014-11-27David CohenIndirect reflection suppression in depth imaging
US20150139487A1 (en)*2013-11-212015-05-21Lsi CorporationImage processor with static pose recognition module utilizing segmented region of interest
US20150161437A1 (en)*2013-10-302015-06-11Ivan L. MazurenkoImage processor comprising gesture recognition system with computationally-efficient static hand pose recognition
US20150213646A1 (en)*2014-01-282015-07-30Siemens AktiengesellschaftMethod and System for Constructing Personalized Avatars Using a Parameterized Deformable Mesh
US20150302317A1 (en)*2014-04-222015-10-22Microsoft CorporationNon-greedy machine learning for high accuracy
US9310983B2 (en)*2013-10-162016-04-123M Innovative Properties CompanyAdding, deleting digital notes from a group of digital notes
US20160196657A1 (en)*2015-01-062016-07-07Oculus Vr, LlcMethod and system for providing depth mapping using patterned light
US9609242B2 (en)*2015-06-252017-03-28Intel CorporationAuto-correction of depth-sensing camera data for planar target surfaces
US9607215B1 (en)*2014-09-242017-03-28Amazon Technologies, Inc.Finger detection in 3D point cloud
US10152674B2 (en)2012-01-162018-12-11Texas Instruments IncorporatedAccelerated decision tree execution
CN109074661A (en)*2017-12-282018-12-21深圳市大疆创新科技有限公司Image processing method and equipment
US10175845B2 (en)2013-10-162019-01-083M Innovative Properties CompanyOrganizing digital notes on a user interface
CN109409311A (en)*2018-11-072019-03-01上海为森车载传感技术有限公司A kind of limit for height method for early warning based on binocular stereo vision
US20190146313A1 (en)*2017-11-142019-05-16Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and correction
US20190166339A1 (en)*2017-11-142019-05-30Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and slope-based correction
US10325184B2 (en)*2017-04-122019-06-18Youspace, Inc.Depth-value classification using forests
CN110059594A (en)*2019-04-022019-07-26北京旷视科技有限公司A kind of environment sensing adapting to image recognition methods and device
CN110097575A (en)*2019-04-282019-08-06电子科技大学A kind of method for tracking target based on local feature and scale pond
US10380767B2 (en)2016-08-012019-08-13Cognex CorporationSystem and method for automatic selection of 3D alignment algorithms in a vision system
US20190304175A1 (en)*2018-03-302019-10-03Konica Minolta Laboratory U.S.A., Inc.Three-dimensional modeling scanner
US10437342B2 (en)2016-12-052019-10-08Youspace, Inc.Calibration systems and methods for depth-based interfaces with disparate fields of view
CN111079819A (en)*2019-12-122020-04-28哈尔滨市科佳通用机电股份有限公司Method for judging state of coupler knuckle pin of railway wagon based on image recognition and deep learning
US10957072B2 (en)2018-02-212021-03-23Cognex CorporationSystem and method for simultaneous consideration of edges and normals in image features by a vision system
US11093737B2 (en)*2018-08-142021-08-17Boe Technology Group Co., Ltd.Gesture recognition method and apparatus, electronic device, and computer-readable storage medium
CN114581309A (en)*2022-03-012022-06-03京东科技信息技术有限公司Point cloud data processing method and device, storage medium and electronic equipment
US11573641B2 (en)*2018-03-132023-02-07Magic Leap, Inc.Gesture recognition system and method of using same
US11716487B2 (en)*2015-11-112023-08-01Sony CorporationEncoding apparatus and encoding method, decoding apparatus and decoding method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9940545B2 (en)*2013-09-202018-04-10Change Healthcare LlcMethod and apparatus for detecting anatomical elements
US9811721B2 (en)*2014-08-152017-11-07Apple Inc.Three-dimensional hand tracking using depth sequences
TWI610250B (en)*2015-06-022018-01-01鈺立微電子股份有限公司Monitor system and operation method thereof
US10048765B2 (en)2015-09-252018-08-14Apple Inc.Multi media computing or entertainment system for responding to user presence and activity
GB2543777B (en)*2015-10-272018-07-25Imagination Tech LtdSystems and methods for processing images of objects
US9734435B2 (en)*2015-12-312017-08-15Microsoft Technology Licensing, LlcRecognition of hand poses by classification using discrete values
US10078377B2 (en)2016-06-092018-09-18Microsoft Technology Licensing, LlcSix DOF mixed reality input by fusing inertial handheld controller with hand tracking
US10929654B2 (en)*2018-03-122021-02-23Nvidia CorporationThree-dimensional (3D) pose estimation from a monocular camera
JP7445642B2 (en)2018-08-132024-03-07マジック リープ, インコーポレイテッド cross reality system
US11227435B2 (en)2018-08-132022-01-18Magic Leap, Inc.Cross reality system
CN113196209A (en)2018-10-052021-07-30奇跃公司Rendering location-specific virtual content at any location
WO2021076748A1 (en)2019-10-152021-04-22Magic Leap, Inc.Cross reality system with wireless fingerprints
US11568605B2 (en)2019-10-152023-01-31Magic Leap, Inc.Cross reality system with localization service
US11257294B2 (en)2019-10-152022-02-22Magic Leap, Inc.Cross reality system supporting multiple device types
EP4052086A4 (en)2019-10-312023-11-15Magic Leap, Inc.Cross reality system with quality information about persistent coordinate frames
CN120599183A (en)2019-11-122025-09-05奇跃公司Cross-reality system with location services and location-based shared content
WO2021118962A1 (en)2019-12-092021-06-17Magic Leap, Inc.Cross reality system with simplified programming of virtual content
JP7684321B2 (en)2020-02-132025-05-27マジック リープ, インコーポレイテッド Cross reality system with prioritization of geolocation information for position determination
JP2023514208A (en)2020-02-132023-04-05マジック リープ, インコーポレイテッド Cross-reality system with map processing using multi-resolution frame descriptors
CN115427758B (en)2020-02-132025-01-17奇跃公司Cross-reality system with precisely shared maps
EP4111425A4 (en)2020-02-262024-03-13Magic Leap, Inc. CROSS-REALLY SYSTEM WITH FAST LOCALIZATION
US11900547B2 (en)2020-04-292024-02-13Magic Leap, Inc.Cross reality system for large scale environments

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060285755A1 (en)*2005-06-162006-12-21Strider Labs, Inc.System and method for recognition in 2D images using 3D class models
US20090016604A1 (en)*2007-07-112009-01-15Qifa KeInvisible Junction Features for Patch Recognition
US20090157649A1 (en)*2007-12-172009-06-18Panagiotis PapadakisHybrid Method and System for Content-based 3D Model Search
US20090185746A1 (en)*2008-01-222009-07-23The University Of Western AustraliaImage recognition
US20100246915A1 (en)*2009-03-272010-09-30Mitsubishi Electric CorporationPatient registration system
US20120219188A1 (en)*2009-10-192012-08-30Metaio GmbhMethod of providing a descriptor for at least one feature of an image and method of matching features

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6711293B1 (en)1999-03-082004-03-23The University Of British ColumbiaMethod and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image
US7133572B2 (en)2002-10-022006-11-07Siemens Corporate Research, Inc.Fast two dimensional object localization based on oriented edges
US7689033B2 (en)2003-07-162010-03-30Microsoft CorporationRobust multi-view face detection methods and apparatuses
US7274832B2 (en)2003-11-132007-09-25Eastman Kodak CompanyIn-plane rotation invariant object detection in digitized images
US8503720B2 (en)2009-05-012013-08-06Microsoft CorporationHuman body pose estimation
US20110025689A1 (en)2009-07-292011-02-03Microsoft CorporationAuto-Generating A Visual Representation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060285755A1 (en)*2005-06-162006-12-21Strider Labs, Inc.System and method for recognition in 2D images using 3D class models
US20090016604A1 (en)*2007-07-112009-01-15Qifa KeInvisible Junction Features for Patch Recognition
US20090157649A1 (en)*2007-12-172009-06-18Panagiotis PapadakisHybrid Method and System for Content-based 3D Model Search
US20090185746A1 (en)*2008-01-222009-07-23The University Of Western AustraliaImage recognition
US20100246915A1 (en)*2009-03-272010-09-30Mitsubishi Electric CorporationPatient registration system
US20120219188A1 (en)*2009-10-192012-08-30Metaio GmbhMethod of providing a descriptor for at least one feature of an image and method of matching features

Cited By (49)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20120306735A1 (en)*2011-06-012012-12-06Microsoft CorporationThree-dimensional foreground selection for vision system
US9594430B2 (en)*2011-06-012017-03-14Microsoft Technology Licensing, LlcThree-dimensional foreground selection for vision system
US20130131836A1 (en)*2011-11-212013-05-23Microsoft CorporationSystem for controlling light enabled devices
US9628843B2 (en)*2011-11-212017-04-18Microsoft Technology Licensing, LlcMethods for controlling electronic devices using gestures
US10152674B2 (en)2012-01-162018-12-11Texas Instruments IncorporatedAccelerated decision tree execution
US11429872B2 (en)2012-01-162022-08-30Texas Instruments IncorporatedAccelerated decision tree execution
US20140208274A1 (en)*2013-01-182014-07-24Microsoft CorporationControlling a computing-based device using hand gestures
WO2014154839A1 (en)*2013-03-272014-10-02Mindmaze S.A.High-definition 3d camera device
US20140313136A1 (en)*2013-04-222014-10-23Fuji Xerox Co., Ltd.Systems and methods for finger pose estimation on touchscreen devices
US9069415B2 (en)*2013-04-222015-06-30Fuji Xerox Co., Ltd.Systems and methods for finger pose estimation on touchscreen devices
US20140347443A1 (en)*2013-05-242014-11-27David CohenIndirect reflection suppression in depth imaging
US9729860B2 (en)*2013-05-242017-08-08Microsoft Technology Licensing, LlcIndirect reflection suppression in depth imaging
US9310983B2 (en)*2013-10-162016-04-123M Innovative Properties CompanyAdding, deleting digital notes from a group of digital notes
US10175845B2 (en)2013-10-162019-01-083M Innovative Properties CompanyOrganizing digital notes on a user interface
US10698560B2 (en)2013-10-162020-06-303M Innovative Properties CompanyOrganizing digital notes on a user interface
US20150161437A1 (en)*2013-10-302015-06-11Ivan L. MazurenkoImage processor comprising gesture recognition system with computationally-efficient static hand pose recognition
US20150139487A1 (en)*2013-11-212015-05-21Lsi CorporationImage processor with static pose recognition module utilizing segmented region of interest
US9524582B2 (en)*2014-01-282016-12-20Siemens Healthcare GmbhMethod and system for constructing personalized avatars using a parameterized deformable mesh
US20150213646A1 (en)*2014-01-282015-07-30Siemens AktiengesellschaftMethod and System for Constructing Personalized Avatars Using a Parameterized Deformable Mesh
US20150302317A1 (en)*2014-04-222015-10-22Microsoft CorporationNon-greedy machine learning for high accuracy
US9607215B1 (en)*2014-09-242017-03-28Amazon Technologies, Inc.Finger detection in 3D point cloud
US20160196657A1 (en)*2015-01-062016-07-07Oculus Vr, LlcMethod and system for providing depth mapping using patterned light
US9609242B2 (en)*2015-06-252017-03-28Intel CorporationAuto-correction of depth-sensing camera data for planar target surfaces
TWI737608B (en)*2015-06-252021-09-01美商英特爾股份有限公司Method, apparatus, and non-transitory computer readable media for auto-correction of depth-sensing camera data for planar target surfaces
US11716487B2 (en)*2015-11-112023-08-01Sony CorporationEncoding apparatus and encoding method, decoding apparatus and decoding method
US10380767B2 (en)2016-08-012019-08-13Cognex CorporationSystem and method for automatic selection of 3D alignment algorithms in a vision system
US10437342B2 (en)2016-12-052019-10-08Youspace, Inc.Calibration systems and methods for depth-based interfaces with disparate fields of view
US10325184B2 (en)*2017-04-122019-06-18Youspace, Inc.Depth-value classification using forests
US11258997B2 (en)2017-11-142022-02-22Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and slope-based correction
US11592732B2 (en)*2017-11-142023-02-28Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and correction
US20190146313A1 (en)*2017-11-142019-05-16Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and correction
US20190166339A1 (en)*2017-11-142019-05-30Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and slope-based correction
US10684537B2 (en)*2017-11-142020-06-16Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and correction
US10681318B2 (en)*2017-11-142020-06-09Texas Instruments IncorporatedCamera-assisted arbitrary surface characterization and slope-based correction
WO2019127192A1 (en)*2017-12-282019-07-04深圳市大疆创新科技有限公司Image processing method and apparatus
CN109074661A (en)*2017-12-282018-12-21深圳市大疆创新科技有限公司Image processing method and equipment
US11881000B2 (en)2018-02-212024-01-23Cognex CorporationSystem and method for simultaneous consideration of edges and normals in image features by a vision system
US10957072B2 (en)2018-02-212021-03-23Cognex CorporationSystem and method for simultaneous consideration of edges and normals in image features by a vision system
US11573641B2 (en)*2018-03-132023-02-07Magic Leap, Inc.Gesture recognition system and method of using same
US20230152902A1 (en)*2018-03-132023-05-18Magic Leap, Inc.Gesture recognition system and method of using same
US12141366B2 (en)*2018-03-132024-11-12Magic Leap, Inc.Gesture recognition system and method of using same
US10650584B2 (en)*2018-03-302020-05-12Konica Minolta Laboratory U.S.A., Inc.Three-dimensional modeling scanner
US20190304175A1 (en)*2018-03-302019-10-03Konica Minolta Laboratory U.S.A., Inc.Three-dimensional modeling scanner
US11093737B2 (en)*2018-08-142021-08-17Boe Technology Group Co., Ltd.Gesture recognition method and apparatus, electronic device, and computer-readable storage medium
CN109409311A (en)*2018-11-072019-03-01上海为森车载传感技术有限公司A kind of limit for height method for early warning based on binocular stereo vision
CN110059594A (en)*2019-04-022019-07-26北京旷视科技有限公司A kind of environment sensing adapting to image recognition methods and device
CN110097575A (en)*2019-04-282019-08-06电子科技大学A kind of method for tracking target based on local feature and scale pond
CN111079819A (en)*2019-12-122020-04-28哈尔滨市科佳通用机电股份有限公司Method for judging state of coupler knuckle pin of railway wagon based on image recognition and deep learning
CN114581309A (en)*2022-03-012022-06-03京东科技信息技术有限公司Point cloud data processing method and device, storage medium and electronic equipment

Also Published As

Publication numberPublication date
US20140002607A1 (en)2014-01-02
US8878906B2 (en)2014-11-04

Similar Documents

PublicationPublication DateTitle
US8878906B2 (en)Invariant features for computer vision
US8610723B2 (en)Fully automatic dynamic articulated model calibration
Memo et al.Head-mounted gesture controlled interface for human-computer interaction
US9344707B2 (en)Probabilistic and constraint based articulated model fitting
US8953844B2 (en)System for fast, probabilistic skeletal tracking
US8452051B1 (en)Hand-location post-process refinement in a tracking system
US8558873B2 (en)Use of wavefront coding to create a depth image
US8897491B2 (en)System for finger recognition and tracking
US8983233B2 (en)Time-of-flight depth imaging
US8929612B2 (en)System for recognizing an open or closed hand
US8660303B2 (en)Detection of body and props
US8638985B2 (en)Human body pose estimation
US20150310256A1 (en)Depth image processing
US20110317871A1 (en)Skeletal joint recognition and tracking system
US20140085625A1 (en)Skin and other surface classification using albedo

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:MICROSOFT CORPORATION, WASHINGTON

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOTTON, JAMIE D. J.;FINOCCHIO, MARK J.;MOORE, RICHARD E.;AND OTHERS;SIGNING DATES FROM 20110603 TO 20110606;REEL/FRAME:026412/0187

STCBInformation on status: application discontinuation

Free format text:ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

ASAssignment

Owner name:MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034766/0509

Effective date:20141014


[8]ページ先頭

©2009-2025 Movatter.jp