CLAIM OF PRIORITYThis application is a continuation of and claims the benefit of priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 13/114,900, filed on May 24, 2011, which is hereby incorporated by reference herein in its entirety.
TECHNICAL FIELDThe present disclosure generally relates to games and applications in general and, in particular embodiments, to computer-implemented online games.
BACKGROUNDIn many games, there is a virtual world or some other imagined playing space where a player/user of the game controls one or more player characters (herein “character,” “player character,” or “PC”). Player characters can be considered in-game representations of the controlling player. As used herein, the terms “player,” “user,” “entity,” and “friend” may refer to the in-game player character controlled by that player, user, entity, or friend, unless context suggests otherwise. The game display can display a representation of the player character. A game engine accepts inputs from the player, determines player character actions, decides the outcomes of events, and presents the player with a game display illuminating what happened. In some games, there are multiple players, wherein each player controls one or more player characters.
In many computer games, there are various types of in-game assets (aka “rewards” or “loot”) that a player character can obtain within the game. For example, a player character may acquire game points, gold coins, experience points, character levels, character attributes, virtual cash, game keys, or other in-game items of value. In many computer games, there are also various types of in-game obstacles that a player must overcome to advance within the game. In-game obstacles can include tasks, puzzles, opponents, levels, gates, actions, and so forth. In some games, a goal of the game may be to acquire certain in-game assets, which can then be used to complete in-game tasks or to overcome certain in-game obstacles. For example, a player may be able to acquire a virtual key (i.e., the in-game asset) that can then be used to open a virtual door (i.e., the in-game obstacle).
An electronic social networking system typically operates with one or more social networking servers providing interaction between users such that a user can specify other users of the social networking system as “friends.” A collection of users and the “friend” connections between users can form a social graph that can be traversed to find second, third and more remote connections between users, much like a graph of nodes connected by edges can be traversed.
Many online computer games are operated on an online social network. Such a network allows both users and other parties to interact with the computer games directly, whether to play the games or to retrieve game- or user-related information. Internet users may maintain one or more accounts with various service providers, including, for example, online game networking systems and online social networking systems. Online systems can typically be accessed using browser clients (e.g., MICROSOFT INTERNET EXPLORER, MOZILLA FIREFOX, GOOGLE CHROME).
In many computer games, there are various types of in-game actions that a player character can make within the game. For example, a player character in an online role-playing game may be able to interact with other player characters, build a virtual house, attack enemies, go on a quest, go to a virtual store to buy/sell virtual items, and so forth. A player character in an online poker game may be able to play at specific tables, place bets of virtual currency for certain amounts, play or fold certain hands, play in a online poker tournament, and so forth.
Matching players for an online game presents additional challenges since players may wish to join an instance of a game without previous knowledge of other available players. One factor for matching players is typically skill level, which can be based, for example, on a win-loss record or a rating system. For example, in some operational settings, players are randomly matched within a skill level. In multiplayer synchronous games, where players are simultaneously engaged, physical proximity may also be considered as a factor for matching players in order to avoid problems due to server lag. In multiplayer asynchronous games, however, where players are not constrained to be simultaneously engaged, server proximity is less relevant and other criteria may be more useful for promoting a desirable player experience. Thus, there is a need for improved methods for matching players in online asynchronous games.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 illustrates an example of a system for implementing particular disclosed embodiments.
FIG. 2 illustrates an example social network.
FIG. 3 illustrates a method of matching players based on gameplay characteristics according to an example embodiment.
FIG. 4 illustrates an example method of matching players based on gameplay characteristics including playing frequency, playing intensity, or playing style.
FIG. 5 Illustrates an example method of matching players that includes classifying users into groups that each correspond to a different range of gameplay values for some measure of gameplay characteristics.
FIG. 6 illustrates a method of matching players based on chat characteristics according to an example embodiment.
FIG. 7 illustrates an example method of matching players based on chat characteristics including chat frequency, chat intensity, or chat substance.
FIG. 8 Illustrates an example method of matching players that includes classifying users into groups that each correspond to a different range of chat values for some measure of chat characteristics.
FIG. 9 illustrates an example data flow in a system.
FIG. 10 illustrates an example network environment.
FIG. 11 illustrates an example computer system architecture.
DESCRIPTION OF EXAMPLE EMBODIMENTSFIG. 1 illustrates an example of a system for implementing various disclosed embodiments. In particular embodiments,system100 comprises player101,social networking system120a,game networking system120b,client system130, andnetwork160. The components ofsystem100 can be connected to each other in any suitable configuration, using any suitable type of connection. The components may be connected directly or over anetwork160, which may be any suitable network. For example, one or more portions ofnetwork160 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, another type of network, or a combination of two or more such networks.
Social networking system120ais a network-addressable computing system that can host one or more social graphs.Social networking system120acan generate, store, receive, and transmit social networking data.Social networking system120acan be accessed by the other components ofsystem100 either directly or vianetwork160.Game networking system120bis a network-addressable computing system that can host one or more online games.Game networking system120bcan generate, store, receive, and transmit game-related data, such as, for example, game account data, game input, game state data, and game displays.Game networking system120bcan be accessed by the other components ofsystem100 either directly or vianetwork160. Player101 may useclient system130 to access, send data to, and receive data fromsocial networking system120aandgame networking system120b.Client system130 can access social networking system120 orgame networking system120bdirectly, vianetwork160, or via a third-party system. As an example and not by way of limitation,client system130 may accessgame networking system120bviasocial networking system120a.Client system130 can be any suitable computing device, such as a personal computer, laptop, cellular phone, smart phone, computing tablet, and so forth.
AlthoughFIG. 1 illustrates a particular number of players101,social networking systems120a,game networking systems120b,client systems130, andnetworks160, this disclosure contemplates any suitable number of players101,social networking systems120a,game networking systems120b,client systems130, andnetworks160. As an example and not by way of limitation,system100 may include one or moregame networking systems120band nosocial networking systems120a.As another example and not by way of limitation,system100 may include a system that comprises bothsocial networking system120aandgame networking system120b.Moreover, althoughFIG. 1 illustrates a particular arrangement of player101,social networking system120a,game networking system120b,client system130, andnetwork160, this disclosure contemplates any suitable arrangement of player101,social networking system120a,game networking system120b,client system130, andnetwork160.
The components ofsystem100 may be connected to each other using anysuitable connections110. For example,suitable connections110 include wireline (such as, for example, Digital Subscriber Line (DSL) or Data Over Cable Service Interface Specification (DOCSIS)), wireless (such as, for example, Wi-Fi or Worldwide Interoperability for Microwave Access (WiMAX)) or optical (such as, for example, Synchronous Optical Network (SONET) or Synchronous Digital Hierarchy (SDH)) connections. In particular embodiments, one ormore connections110 each include an ad hoc network, an intranet, an extranet, a VPN, a LAN, a WLAN, a WAN, a WWAN, a MAN, a portion of the Internet, a portion of the PSTN, a cellular telephone network, another type of connection, or a combination of two or more such connections.Connections110 need not necessarily be the same throughoutsystem100. One or morefirst connections110 may differ in one or more respects from one or moresecond connections110. AlthoughFIG. 1 illustrates particular connections between player101,social networking system120a,game networking system120b,client system130, andnetwork160, this disclosure contemplates any suitable connections between player101,social networking system120a,game networking system120b,client system130, andnetwork160. As an example and not by way of limitation, in particular embodiments,client system130 may have a direct connection tosocial networking system120aorgame networking system120b,bypassingnetwork160.
Online Games and Game SystemsIn an online computer game, a game engine manages the game state of the game. Game state comprises all game play parameters, including player character state, non-player character (NPC) state, in-game object state, game world state (e.g., internal game clocks, game environment), and other game play parameters. Each player101 controls one or more player characters (PCs). The game engine controls all other aspects of the game, including non-player characters (NPCs), and in-game objects. The game engine also manages the game state, including player character state for currently active (online) and inactive (offline) players.
An online game can be hosted bygame networking system120b,which can be accessed using any suitable connection with asuitable client system130. A player may have a game account ongame networking system120b,wherein the game account can contain a variety of information associated with the player (e.g., the player's personal information, financial information, purchase history, player character state, and game state). In some embodiments, a player may play multiple games ongame networking system120b,which may maintain a single game account for the player with respect to all the games, or multiple individual game accounts for each game with respect to the player. In some embodiments,game networking system120bcan assign a unique identifier to each player101 of an online game hosted ongame networking system120b.Game networking system120bcan determine that a player101 is accessing the online game by reading the user's cookies, which may be appended to HyperText Transfer Protocol (HTTP) requests transmitted byclient system130, and/or by the player101 logging onto the online game.
In particular embodiments, player101 may access an online game and control the game's progress via client system130 (e.g., by inputting commands to the game at the client device).Client system130 can display the game interface, receive inputs from player101, transmit user inputs or other events to the game engine, and receive instructions from the game engine. The game engine can be executed on any suitable system (such as, for example,client system130,social networking system120a,orgame networking system120b). As an example and not by way of limitation,client system130 can download client components of an online game, which are executed locally, while a remote game server, such asgame networking system120b,provides backend support for the client components and may be responsible for maintaining application data of the game, processing the inputs from the player, updating and/or synchronizing the game state based on the game logic and each input from the player, and transmitting instructions toclient system130. As another example and not by way of limitation, each time player101 provides an input to the game through the client system130 (such as, for example, by typing on the keyboard or clicking the mouse of client system130), the client components of the game may transmit the player's input togame networking system120b.
Game Systems, Social Networks, and Social GraphsIn an online multiplayer game, players may control player characters (PCs), while a game engine controls non-player characters (NPCs) and game features. The game engine also manages player character state and game state and tracks the state for currently active (i.e., online) players and currently inactive (i.e., offline) players. A player character can have a set of attributes and a set of friends associated with the player character. As used herein, the term “player character state” can refer to any in-game characteristic of a player character, such as location, assets, levels, condition, health, status, inventory, skill set, name, orientation, affiliation, specialty, and so on. Player characters may be displayed as graphical avatars within a user interface of the game. In other implementations, no avatar or other graphical representation of the player character is displayed. Game state encompasses the notion of player character state and refers to any parameter value that characterizes the state of an in-game element, such as a non-player character, a virtual object (such as a wall or castle), and so forth. The game engine may use player character state to determine the outcome of game events, while sometimes also considering set or random variables. Generally, a player character's probability of having a more favorable outcome is greater when the player character has a better state. For example, a healthier player character is less likely to die in a particular encounter relative to a weaker player character or non-player character. In some embodiments, the game engine can assign a unique client identifier to each player.
In particular embodiments, player101 may access particular game instances of an online game. A game instance is a copy of a specific game play area that is created during runtime. In particular embodiments, a game instance is a discrete game play area where one or more players101 can interact in synchronous or asynchronous play. A game instance may be, for example, a level, zone, area, region, location, virtual space, or other suitable play area. A game instance may be populated by one or more in-game objects. Each object may be defined within the game instance by one or more variables, such as, for example, position, height, width, depth, direction, time, duration, speed, color, and other suitable variables. A game instance may be exclusive (i.e., accessible by specific players) or non-exclusive (i.e., accessible by any player). In particular embodiments, a game instance is populated by one or more player characters controlled by one or more players101 and one or more in-game objects controlled by the game engine. When accessing an online game, the game engine may allow player101 to select a particular game instance to play from a plurality of game instances. Alternatively, the game engine may automatically select the game instance that player101 will access. In particular embodiments, an online game comprises only one game instance that all players101 of the online game can access.
In particular embodiments, a specific game instance may be associated with one or more specific players. A game instance is associated with a specific player when one or more game parameters of the game instance are associated with the specific player. As an example and not by way of limitation, a game instance associated with a first player may be named “First Player's Play Area.” This game instance may be populated with the first player's PC and one or more in-game objects associated with the first player. In particular embodiments, a game instance associated with a specific player may only be accessible by that specific player. As an example and not by way of limitation, a first player may access a first game instance when playing an online game, and this first game instance may be inaccessible to all other players. In other embodiments, a game instance associated with a specific player may be accessible by one or more other players, either synchronously or asynchronously with the specific player's game play. As an example and not by way of limitation, a first player may be associated with a first game instance, but the first game instance may be accessed by all first-degree friends in the first player's social network. In particular embodiments, the game engine may create a specific game instance for a specific player when that player accesses the game. As an example and not by way of limitation, the game engine may create a first game instance when a first player initially accesses an online game, and that same game instance may be loaded each time the first player accesses the game. As another example and not by way of limitation, the game engine may create a new game instance each time a first player accesses an online game, wherein each game instance may be created randomly or selected from a set of predetermined game instances. In particular embodiments, the set of in-game actions available to a specific player may be different in a game instance that is associated with that player compared to a game instance that is not associated with that player. The set of in-game actions available to a specific player in a game instance associated with that player may be a subset, superset, or independent of the set of in-game actions available to that player in a game instance that is not associated with him. As an example and not by way of limitation, a first player may be associated with Blackacre Farm in an online farming game. The first player may be able to plant crops on Blackacre Farm. If the first player accesses a game instance associated with another player, such as Whiteacre Farm, the game engine may not allow the first player to plant crops in that game instance. However, other in-game actions may be available to the first player, such as watering or fertilizing crops on Whiteacre Farm.
In particular embodiments, a game engine can interface with a social graph. Social graphs are models of connections between entities (e.g., individuals, users, contacts, friends, players, player characters, non-player characters, businesses, groups, associations, concepts, etc.). These entities are considered “users” of the social graph; as such, the terms “entity” and “user” may be used interchangeably when referring to social graphs herein. A social graph can have a node for each entity and edges to represent relationships between entities. A node in a social graph can represent any entity. In particular embodiments, a unique client identifier can be assigned to each user in the social graph. In general, this disclosure assumes that at least one entity of a social graph is a player or player character in an online multiplayer game, although this disclosure is applicable to players or player characters that are not characterized as entities of a social graph.
The minimum number of edges required to connect a player (or player character) to another user is considered the degree of separation between them. For example, where the player and the user are directly connected (one edge), they are deemed to be separated by one degree of separation. The user would be a so-called “first-degree friend” of the player. Where the player and the user are connected through one other user (two edges), they are deemed to be separated by two degrees of separation. This user would be a so-called “second-degree friend” of the player. Where the player and the user are connected through N edges (or N−1 other users), they are deemed to be separated by N degrees of separation. This user would be a so-called “Nth-degree friend.” As used herein, the term “friend” means only first-degree friends, unless context suggests otherwise.
Within the social graph, each player (or player character) has a social network. A player's social network includes all users in the social graph within Nmaxdegrees of the player, where Nmaxis the maximum degree of separation allowed by the system managing the social graph (such as, for example,social networking system120aorgame networking system120b). In one embodiment, Nmaxequals 1, such that the player's social network includes only first-degree friends. In another embodiment, Nmaxis unlimited and the player's social network is coextensive with the social graph.
In particular embodiments, the social graph is managed bygame networking system120b,which is managed by the game operator. In other embodiments, the social graph is part of asocial networking system120amanaged by a third-party (e.g., Facebook, Friendster, Myspace). In yet other embodiments, player101 has a social network on bothgame networking system120bandsocial networking system120a,wherein player101 can have a social network on thegame networking system120bthat is a subset, superset, or independent of the player's social network onsocial networking system120a.In such combined systems,game network system120bcan maintain social graph information with edge type attributes that indicate whether a given friend is an “in-game friend,” an “out-of-game friend,” or both. The various embodiments disclosed herein are operable when the social graph is managed bysocial networking system120a,game networking system120b,or both.
FIG. 2 shows an example of a social network within a social graph. As shown,Player201 can be associated, connected or linked to various other users, or “friends,” within thesocial network200. These associations, connections or links can track relationships between users within thesocial network200 and are commonly referred to as online “friends” or “friendships” between users. Each friend or friendship in a particular user's social network within a social graph is commonly referred to as a “node.” For purposes of illustration and not by way of limitation, the details ofsocial network200 will be described in relation toPlayer201. As used herein, the terms “player” and “user” can be used interchangeably and can refer to any user or character in an online multiuser game system or social networking system. As used herein, the term “friend” can mean any node within a player's social network.
As shown inFIG. 2,Player201 has direct connections with several friends. WhenPlayer201 has a direct connection with another individual, that connection is referred to as a first-degree friend. Insocial network200,Player201 has four first-degree friends. That is,Player201 is directly connected toFriend 11211, Friend 21221,Friend 31231, and Friend 41241. In a social graph, it is possible for individuals to be connected to other individuals through their first-degree friends (i.e., friends of friends). As described above, each edge required to connect a player to another user is considered the degree of separation. For example,FIG. 2 shows thatPlayer201 has three second-degree friends to which he is connected via his connection to his first-degree friends. Second-degree Friend 12212 and Friend 22222 are connected toPlayer201 via his first-degree Friend 11211, and second-degree Friend 42242 is connected toPlayer201 via his first-degree Friend 31231. The limit on the depth of friend connections, or the number of degrees of separation for associations, thatPlayer201 is allowed is typically dictated by the restrictions and policies implemented bysocial networking system120a.
In various embodiments,Player201 can have Nth-degree friends connected to him through a chain of intermediary degree friends as indicated inFIG. 2. For example, Nth-degree Friend 1N219 is connected toPlayer201 via second-degree Friend 32232 and one or more other higher-degree friends. Various embodiments may take advantage of and utilize the distinction between the various degrees of friendship relative toPlayer201.
In particular embodiments, a player (or player character) can have a social graph within an online multiplayer game that is maintained by the game engine and another social graph maintained by a separate social networking system.FIG. 2 depicts an example of in-gamesocial network260 and out-of-gamesocial network250. In this example,Player201 has out-of-game connections255 to a plurality of friends, forming out-of-gamesocial network250. Here,Friend 11211 and Friend 21221 are first-degree friends withPlayer201 in his out-of-gamesocial network250.Player201 also has in-game connections265 to a plurality of players, forming in-gamesocial network260. Here, Friend 21221,Friend 31231, and Friend 41241 are first-degree friends withPlayer201 in his in-gamesocial network260, and Friend 42242 is a second-degree friend. In some embodiments, it is possible for a friend to be in both the out-of-gamesocial network250 and the in-gamesocial network260. Here, Friend 21221 has both an out-of-game connection255 and an in-game connection265 withPlayer201, such that Friend 21221 is in bothPlayer201's in-gamesocial network260 andPlayer201's out-of-gamesocial network250.
As with other social networks,Player201 can have second-degree and higher-degree friends in both his in-game and out of game social networks. In some embodiments, it is possible forPlayer201 to have a friend connected to him both in his in-game and out-of-game social networks, wherein the friend is at different degrees of separation in each network. For example, if Friend 22222 had a direct in-game connection withPlayer201, Friend 22222 would be a second-degree friend inPlayer201's out-of-game social network, but a first-degree friend inPlayer201's in-game social network. In particular embodiments, a game engine can access in-gamesocial network260, out-of-gamesocial network250, or both.
In particular embodiments, the connections in a player's in-game social network can be formed both explicitly (e.g., users must “friend” each other) and implicitly (e.g., the system observes user behaviors and “friends” users to each other). Unless otherwise indicated, reference to a friend connection between two or more players can be interpreted to cover both explicit and implicit connections, using one or more social graphs and other factors to infer friend connections. The friend connections can be unidirectional or bidirectional. It is also not a limitation of this description that two players who are deemed “friends” for the purposes of this disclosure are not friends in real life (i.e., in disintermediated interactions or the like), but that could be the case.
Game Systems and Game InterfacesA game event may be an outcome of an engagement, a provision of access, rights and/or benefits, or the obtaining of some assets (e.g., health, money, strength, inventory, land, etc.). A game engine determines the outcome of a game event according to a variety of factors, such as the game rules, a player character's in-game actions, player character state, game state, interactions of other player characters, and random calculations. Engagements can include simple tasks (e.g., plant a crop, clean a stove), complex tasks (e.g., build a farm or business, run a café), or other events.
An online game can be hosted by a game networking system, which can be accessed over any suitable network with an appropriate client system (e.g., as inFIG. 10). A player may have a game system account on a game system, wherein the game system account can contain a variety of information about the player (e.g., the player's personal information, player character state, game state, etc.). In various embodiments, an online game can be embedded into a third-party website. The game can be hosted by the networking system of the third-party website, or it can be hosted on the game system and merely accessed via the third-party website. The embedded online game can be hosted solely on a server of the game system or use a third-party vendor server. In addition, any combination of the functions of the present disclosure can be hosted on or provided from any number of distributed network resources. For example, one or more executable code objects that implement all or a portion of the game can be downloaded to a client system for execution.
A webpage-based game interface for an online game may be accessed by a browser client (e.g., MICROSOFT INTERNET EXPLORER, MOZILLA FIREFOX, GOOGLE CHROME). In various embodiments, a user of aclient system130 can use a browser client to access the online game over the Internet (or other suitable network). A game interface may be automatically generated and presented to the user in response to the user visiting or accessing the game operator's website or a third-party's website fromclient system130 with a browser client.Game system120bcan transmit data toclient system130, allowing it to display the game interface, which is typically some type of graphic user interface. For example, the webpage downloaded toclient system130 may include an embedded call that causesclient system130 to download an executable object, such as a Flash .SWF object, which executes onclient system130 and renders the game within the context of the webpage. Other interface types are possible, such as server-side rendering and the like. Typically a game interface is configured to receive signals from the user viaclient system130. For example, the user may click on a game interface or enter commands from a keyboard or other suitable input device. The game engine can respond to these signals to allow game play. The display of a game interface may change based on the output of the game engine, the input of the player, and other signals fromgame system120bandclient system130.
Typically a game interface can display various game components, such as the game environment, options available to the player (e.g., in-game actions, preferences, settings, etc.), game results, and so forth. Some components of the game interface may be static, while others may be dynamic (e.g., changing with game play). The user may be able to interact with some components (e.g., player character, NPCs, virtual objects, etc.) and not interact with other components (e.g., the background of the virtual world, such as the virtual street or sidewalk). The user can engage in specific in-game actions or activities by providing input to the game interface.
Virtual CurrencyIn various embodiments, players within the game can acquire virtual currency. In such games, the virtual currency might be represented by virtual coins, virtual cash, or by a number or value stored by the server for that player's benefit. Such virtual currency represents units of value for use in the online game system and is analogous to legal currency. Virtual currency can be purchased in one or more actual cash or credit transactions by a player, where the legal currency is transferred using a credit/debit/charge card transaction conveyed over a financial network. In some embodiments, a player may earn virtual currency by taking action in the game. For example, a player may be rewarded with one or more units of virtual currency after completing a task, quest, challenge, or mission within the game. For example, a farming game might reward10 gold coins each time a virtual crop is harvested.
In some embodiments, virtual currency can be used to purchase one or more in-game assets or other benefits. For example, a player may be able to exchange virtual currency for a desired level, access, right, or item in an online game. In one embodiment, legal currency can be used to directly purchase an in-game asset or other benefit. The player can select the desired in-game asset or other benefit. Once the selections are made, the player can place the order to purchase the in-game asset or other benefit. This order is received by the game system, which can then process the order. If the order is processed successfully, an appropriate financial account associated with the player can be debited by the amount of virtual currency or legal currency needed to buy the selected in-game asset or other benefit.
In some embodiments, multiple types of virtual currency may be available for purchase from the game system operator. For example, an online game may have virtual gold coins and virtual cash. The different types of virtual currency may have different exchange rates with respect to legal currency and each other. For example, a player may be able to exchange $1 in legal currency for either 100 virtual gold coins or $2 in virtual cash, but virtual gold coins may not be exchanged for virtual cash. Similarly, where in-game assets and other benefits can be purchased with virtual currency, they may have different exchange rates with respect to the different types of virtual currency. For example, a player may be able to buy a virtual business object for $10 in virtual cash, but may not purchase the virtual business object for virtual gold coins alone. In some embodiments, certain types of virtual currency can be acquired by engaging in various in-game actions while other types of virtual currency can only be acquired by exchanging legal currency. For example, a player may be able to acquire virtual gold coins by selling virtual goods in a business, but can only acquire virtual cash by exchanging legal currency. In some implementations, virtual cash may also be awarded for leveling up in the game.
Player-Matching Mechanic for Asynchronous GamesIn addition to an opponent's skill level, the quality of a player's experience in an online asynchronous game may be affected by other factors related to his opponent's moves and social behavior related to those moves. For example, when the playing frequency (e.g., how often a player makes a move in the game) varies substantially between two players, one of them may lose interest or even forget about the game. Similarly, chatting frequency (e.g., how often a player chats with an opponent during a game) varies substantially between players, but can significantly affect engagement of other users. For example, while not making a move, a user may be enticed to enter a game because he has received a chat message from another player. On the other hand, if a player does not respond to chats, one or both of the players may become frustrated with the experience. In accordance with certain embodiments, a player-matching mechanic facilitates player matching in online asynchronous games by comparing user values for at least one of gameplay characteristics or chat characteristics.
FIG. 3 shows a flowchart that illustrates amethod300 of matching two or more players in an online asynchronous game according to an example embodiment. Typically in an asynchronous game, players specify moves at different times so that they need not be present or active at the same time. In many cases, a game includes multiple rounds in which players alternate moves at different times (e.g., chess). However, in some cases the game may include multiple rounds in which players specify moves at different times in each round before a common deadline in that round (e.g., certain multi-player games). In some cases the moves may each include multiple discrete component moves.
Afirst operation302 includes receiving values for moves corresponding to users playing in instances of the online asynchronous game where players specify moves at different times. Asecond operation304 includes determining gameplay characteristics for the users from the moves to characterize gameplay patterns over time. Athird operation306 includes matching a first user and a second user for a selected instance of the online asynchronous game by comparing their corresponding gameplay characteristics.
The gameplay characteristics may include a variety of move-related features.FIG. 4 shows anexample method310, where determininggameplay characteristics312 includes calculating values for one or more of playingfrequency314, playingintensity316, or playingstyle318. For example, theplaying frequency314 may be calculated as a value for how often that user plays the online asynchronous game with respect to a reference time zone (e.g., typically once a day by Eastern Standard Time (EST)). In this context, the reference time zone may be more specifically and narrowly defined, for example, as a portion of a conventional time zone (e.g., 8 pm-4 am EST). Alternatively, theplaying frequency314 may be calculated as a value for how long that user waits in the online asynchronous game before responding to another player (e.g., typically ten hours). As another example, playingintensity316 may be calculated as a value for how many simultaneous instances of the online asynchronous game that user plays (e.g., typically ten simultaneous games). As yet another example, playingstyle318 may be calculated as one or more values for how often that user employs selected move patterns in the online asynchronous game (e.g., typically includes complex strategy moves). These selected move patterns may include selectively enabled special features of a game that some but not all users prefer to include in the game experience.
Then, with available gameplay characteristics, it is possible to match players with similar characteristics or selectively dissimilar characteristics depending on the requirements of the operational setting. For example, in some cases it may be desirable to match relatively similar players to ensure compatibility (e.g., similar playing frequencies). Similarity may also include players from different time zones who are active simultaneously. For example, someone who plays every morning in Japan could be matched with someone who plays at night-time in the United States in the case where they wish to play at the same or similar times relative to the reference time zone (e.g., EST). Alternatively, it may be desirable to match players with quantified dissimilarities (e.g., different playing frequencies) to alter the players' gaming experience and measure the results (e.g., whether the lower-frequency player now plays faster or the higher-frequency player now plays slower).FIG. 5 shows anexample method320 that includes classifying users into groups that each correspond to a different range of gameplay values for some measure of gameplay characteristics (e.g., frequency of play) at afirst operation322. Themethod320 then includes matching the first user and the second user by selecting them from an identical group or from different groups at asecond operation324. For example, the different groups may be characterized by a threshold difference between gameplay values in the two groups (e.g., with respect to minimum and maximum playing frequency values for each group). The selection within a group can be carried out randomly (e.g., with a conventional random number generator) or by applying another selection principle such as skill level or chat characteristics as discussed below.
In addition to gameplay characteristics based on moves played, players may be matched by the characteristics of chat communications between players in an online asynchronous game.FIG. 6 shows a flowchart that illustrates amethod330 of matching two or more players in an online asynchronous game according to an example embodiment.
Afirst operation332 includes receiving values for chat communications corresponding to users playing in instances of the online asynchronous game where players specify moves at different times. For example, the chat communications may occur during the moves or between moves of the game. Asecond operation334 includes determining chat characteristics for the users from the chat communications to characterize chat patterns over time. Athird operation336 includes matching a first user and a second user for a selected instance of the online asynchronous game by comparing their corresponding chat characteristics.
The chat characteristics may include a variety of move-related features.FIG. 7 shows anexample method340, where determiningchat characteristics342 includes calculating values for one or more ofchat frequency344, chatintensity346 or chatsubstance348. For example, thechat frequency344 may be calculated as a value for how often that user initiates a chat communication during the online asynchronous game (e.g., typically after every move). Alternatively, thechat frequency344 may be calculated as a value for how often that user participates in a chat communication during the online asynchronous game (e.g., typically at the start and the end of a game). As another example, chatintensity346 may be calculated as a value for a size of a chat communication for that user in the online asynchronous game. For example, this size (e.g., number of words or characters) may be calculated for a typical or random discrete chat communication or alternatively for the union of all chat communications during an instance of the game. As yet another example, chatsubstance348 may be calculated as one or more values for how often that user includes selected text elements in a chat communication during the online asynchronous game (e.g., typically uses complimentary words to describe opponent).
Then, similarly to the above-described matching by gameplay characteristics, it is possible to match players with similar chat characteristics or selectively dissimilar chat characteristics depending on the requirements of the operational setting. For example, in some cases it may be desirable to match relatively similar players to ensure compatibility (e.g., similar chat frequencies). Alternatively, it may be desirable to match players with quantified dissimilarities (e.g., different chat frequencies, typically initiates chats or chats with friend-list players versus chatting with random players) to alter the players' gaming experience and measure the results (e.g., whether the lower-frequency player now chats more frequently or the higher-frequency player now chats less frequently).FIG. 8 shows anexample method350 that includes classifying users into groups that each correspond to a different range of chat values for some measure of chat characteristics (e.g., chat frequency) at afirst operation352. Themethod350 then includes matching the first user and the second user by selecting them from an identical group or from different groups at asecond operation354. For example, the different groups may be characterized by a threshold difference between chat values in the two groups (e.g., with respect to minimum and maximum chat frequency values for each group).
In some embodiments chat values may be used in combination with gameplay values for matching players. For example, players may first be separated into groups by comparing gameplay values, and then players may be selected from an identical group or from different groups by comparing chat values. Similarly, players may be first grouped according to gameplay values, then grouped according to chat values, and then randomly selected from identical or different groups. As discussed above, skill level (e.g., a skill rating) may also used in the selection process, for example, by first grouping for skill level, then grouping for gameplay values, then grouping for chat values, and then randomly selecting from identical or different groups. In general, separate or recursive groupings can be made according to one or more criteria for skill level, gameplay values or chat values, and the selection process may include one or more of these criteria or a randomization process.
In some embodiments the asynchronous game may be considered as a family of games that share common features so that gameplay characteristics or chat characteristics may be used to match players in an instance of a specific game variant within the family. For example, gameplay characteristics and chat characteristics corresponding to a family of strategic games may be used to match two players in an instance of a chess game even if those two players had not previously played chess in the online system.
Additional embodiments relate to an apparatus for carrying out any one of the above-described methods (e.g., as a game mechanic), where the apparatus includes a computer for executing computer instructions related to the method. In this context the computer may be a general-purpose computer including, for example, a processor, memory, storage, and input/output devices (e.g., keyboard, display, disk drive, Internet connection, etc.). However, the computer may include circuitry or other specialized hardware for carrying out some or all aspects of the method. In some operational settings, the apparatus or computer may be configured as a system that includes one or more modular units, each of which is configured to carry out some aspects of the method either in software, in hardware or in some combination thereof. For example, the system may be configured as part of a computer network that includes the Internet. At least some values for the results of the method can be saved for later use in a computer-readable medium, including memory units (e.g., RAM (Random Access Memory), ROM (Read Only Memory)) and storage devices (e.g., hard-disk systems, optical storage systems).
Additional embodiments also relate to a computer-readable medium that stores (e.g., tangibly embodies) a computer program for carrying out any one of the above-described methods by means of a computer. The computer program may be written, for example, in a general-purpose programming language (e.g., C, C++) or some specialized application-specific language. The computer program may be stored as an encoded file in some useful format (e.g., binary, American Standard Code for Information Interchange (ASCII)). In some contexts, the computer-readable medium may be alternatively described as a computer-useable medium, a computer-storage medium, a computer-program medium, machine-readable medium or some alternative non-transitory storage medium. Depending on the operational setting, specified values for the above-described methods may correspond to input files for the computer program or computer.
Data FlowFIG. 9 illustrates an example data flow between the components ofsystem500. In particular embodiments,system500 can includeclient system530,social networking system520a,andgame networking system520b.The components ofsystem500 can be connected to each other in any suitable configuration and using any suitable type of connection. The components may be connected directly or over any suitable network.Client system530,social networking system520a,andgame networking system520bcan each have one or more corresponding data stores such aslocal data store525,social data store545, andgame data store565, respectively.Social networking system520aandgame networking system520bcan also have one or more servers that can communicate withclient system530 over an appropriate network.Social networking system520aandgame networking system520bcan have, for example, one or more internet servers for communicating withclient system530 via the Internet. Similarly,social networking system520aandgame networking system520bcan have one or more mobile servers for communicating withclient system530 via a mobile network (e.g., Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Wireless Personal Area Network (WPAN), Wi-Fi, etc.). In some embodiments, one server may be able to communicate withclient system530 over both the Internet and a mobile network. In other embodiments, separate servers can be used.
Client system530 can receive and transmitdata523 to and fromgame networking system520b.This data can include, for example, webpages, messages, game inputs, game displays, HTTP packets, data requests, transaction information, updates, and other suitable data. At some other time, or at the same time,game networking system520bcan communicatedata543,547 (e.g., game state information, game system account information, page info, messages, data requests, updates, etc.) with other networking systems, such associal networking system520a(e.g., FACEBOOK, MYSPACE, etc.).Client system530 can also receive and transmitdata527 to and fromsocial networking system520a.This data can include, for example, webpages, messages, social graph information, social network displays, HTTP packets, data requests, transaction information, updates, and other suitable data.
Communication betweenclient system530,social networking system520a,andgame networking system520bcan occur over any appropriate electronic communication medium or network using any suitable communications protocols. For example,client system530, as well as various servers of the systems described herein, may include Transport Control Protocol/Internet Protocol (TCP/IP) networking stacks to provide for datagram and transport functions. Of course, any other suitable network and transport layer protocols can be utilized.
In addition, hosts or end-systems described herein may use a variety of higher layer communications protocols, including client-server (or request-response) protocols, such as HTTP. Other communications protocols, such as HTTP Secure (HTTP-S), File Transfer Protocol (FTP), Simple Network Management Protocol (SNMP), Telnet, and a number of other protocols, may also be used. In addition, a server in one interaction context may be a client in another interaction context. In particular embodiments, the information transmitted between hosts may be formatted as HyperText Markup Language (HTML) documents including HTMLS documents. Other structured document languages or formats can be used, such as Extensible Markup Language (XML), and the like. Executable code objects, such as JavaScript and ActionScript, can also be embedded in the structured documents.
In some client-server protocols, such as the use of HTML over HTTP, a server generally transmits a response to a request from a client. The response may comprise one or more data objects. For example, the response may comprise a first data object, followed by subsequently transmitted data objects. In particular embodiments, a client request may cause a server to respond with a first data object, such as an HTML page, which itself refers to other data objects. A client application, such as a browser, will request these additional data objects as it parses or otherwise processes the first data object.
In particular embodiments, an instance of an online game can be stored as a set of game state parameters that characterize the state of various in-game objects, such as, for example, player character state parameters, non-player character parameters, and virtual item parameters. In particular embodiments, a game state is maintained in a database as a serialized, unstructured string of text data as a so-called Binary Large Object (BLOB). When a player accesses an online game ongame networking system520b,the BLOB containing the game state for the instance corresponding to the player can be transmitted toclient system530 for processing by a client-side executable object. In particular embodiments, the client-side executable may be a FLASH-based game, which can de-serialize the game state data in the BLOB. As a player plays the game, the game logic implemented atclient system530 maintains and modifies the various game state parameters locally. The client-side game logic may also batch game events, such as mouse clicks, and transmit these events togame networking system520b.Game networking system520bmay itself operate by retrieving a copy of the BLOB from a database or an intermediate memory cache (memcache) layer.Game networking system520bcan also de-serialize the BLOB to resolve the game state parameters and execute its own game logic based on the events in the batch file of events transmitted by the client to synchronize the game state on the server side.Game networking system520bmay then re-serialize the game state, now modified, into a BLOB and pass this to a memory cache layer for lazy updates to a persistent database.
With a client-server environment in which the online games may run, one server system, such asgame networking system520b,may supportmultiple client systems530. At any given time, there may be multiple players atmultiple client systems530 all playing the same online game. In practice, the number of players playing the same game at the same time may be very large. As the game progresses with each player, multiple players may provide different inputs to the online game at theirrespective client systems530, andmultiple client systems530 may transmit multiple player inputs and/or game events togame networking system520bfor further processing. In addition,multiple client systems530 may transmit other types of application data togame networking system520b.
In particular embodiments, a computer-implemented game may be a text-based or turn-based game implemented as a series of web pages that are generated after a player selects one or more actions to perform. The web pages may be displayed in a browser client executed onclient system530. As an example and not by way of limitation, a client application downloaded toclient system530 may operate to serve a set of webpages to a player. As another example and not by way of limitation, a computer-implemented game may be an animated or rendered game executable as a stand-alone application or within the context of a webpage or other structured document. In particular embodiments, the computer-implemented game may be implemented using Adobe Flash-based technologies. As an example and not by way of limitation, a game may be fully or partially implemented as a SWF object that is embedded in a web page and executable by a Flash media player plug-in. In particular embodiments, one or more described webpages may be associated with, or accessed by,social networking system520a.This disclosure contemplates using any suitable application for the retrieval and rendering of structured documents hosted by any suitable network-addressable resource or website.
Application event data of a game is any data relevant to the game (e.g., player inputs). In particular embodiments, each application datum may have a name and a value, and the value of the application datum may change (i.e., be updated) at any time. When an update to an application datum occurs atclient system530, either caused by an action of a game player or by the game logic itself,client system530 may need to informgame networking system520bof the update. For example, if the game is a farming game with a harvest mechanic (such as Zynga FarmVille), an event can correspond to a player clicking on a parcel of land to harvest a crop. In such an instance, the application event data may identify an event or action (e.g., harvest) and an object in the game to which the event or action applies. For illustration purposes and not by way of limitation,system500 is discussed in reference to updating a multi-player online game hosted on a network-addressable system (such as, for example,social networking system520aorgame networking system520b), where an instance of the online game is executed remotely on aclient system530, which then transmits application event data to the hosting system such that the remote game server synchronizes game state associated with the instance executed by theclient system530.
In a particular embodiment, one or more objects of a game may be represented as an Adobe Flash object. Flash may manipulate vector and raster graphics, and supports bidirectional streaming of audio and video. “Flash” may mean the authoring environment, the player, or the application files. In particular embodiments,client system530 may include a Flash client. The Flash client may be configured to receive and run the Flash application or game object code from any suitable networking system (such as, for example,social networking system520aorgame networking system520b). In particular embodiments, the Flash client may be run in a browser client executed onclient system530. A player can interact with Flash objects usingclient system530 and the Flash client. The Flash objects can represent a variety of in-game objects. Thus, the player may perform various in-game actions on various in-game objects by making various changes and updates to the associated Flash objects. In particular embodiments, in-game actions can be initiated by clicking or similarly interacting with a Flash object that represents a particular in-game object. For example, a player can interact with a Flash object to use, move, rotate, delete, attack, shoot, or harvest an in-game object. This disclosure contemplates performing any suitable in-game action by interacting with any suitable Flash object. In particular embodiments, when the player makes a change to a Flash object representing an in-game object, the client-executed game logic may update one or more game state parameters associated with the in-game object. To ensure synchronization with the Flash object shown to the player atclient system530, the Flash client may send the events that caused the game state changes to the in-game object togame networking system520b.However, to expedite the processing and hence the speed of the overall gaming experience, the Flash client may collect a batch of some number of events or updates into a batch file. The number of events or updates may be determined by the Flash client dynamically or determined bygame networking system520bbased on server loads or other factors. For example,client system530 may send a batch file togame networking system520bwhenever50 updates have been collected or after a threshold period of time, such as every minute.
As used herein, the term “application event data” may refer to any data relevant to a computer-implemented game application that may affect one or more game state parameters, including, for example and without limitation, changes to player data or metadata, changes to player social connections or contacts, player inputs to the game, and events generated by the game logic. In particular embodiments, each application datum may have a name and a value. The value of an application datum may change at any time in response to the game play of a player or in response to the game engine (e.g., based on the game logic). In particular embodiments, an application data update occurs when the value of a specific application datum is changed. In particular embodiments, each application event datum may include an action or event name and a value (such as an object identifier). Thus, each application datum may be represented as a name-value pair in the batch file. The batch file may include a collection of name-value pairs representing the application data that have been updated atclient system530. In particular embodiments, the batch file may be a text file, and the name-value pairs may be in string format.
In particular embodiments, when a player plays an online game onclient system530,game networking system520bmay serialize all the game-related data, including, for example and without limitation, game states, game events, and user inputs, for this particular user and this particular game into a BLOB and store the BLOB in a database. The BLOB may be associated with an identifier that indicates that the BLOB contains the serialized game-related data for a particular player and a particular online game. In particular embodiments, while a player is not playing the online game, the corresponding BLOB may be stored in the database. This enables a player to stop playing the game at any time without losing the current state of the game that the player is in. When a player resumes playing the game next time,game networking system520bmay retrieve the corresponding BLOB from the database to determine the most-recent values of the game-related data. In particular embodiments, while a player is playing the online game,game networking system520bmay also load the corresponding BLOB into a memory cache so that the game system may have faster access to the BLOB and the game-related data contained therein.
Systems and MethodsIn particular embodiments, one or more described webpages may be associated with a networking system or networking service. However, alternate embodiments may have application to the retrieval and rendering of structured documents hosted by any type of network addressable resource or web site. Additionally, as used herein, a user may be an individual, a group, or an entity (such as a business or third party application).
Particular embodiments may operate in a wide area network environment, such as the Internet, including multiple network addressable systems.FIG. 10 illustrates anexample network environment600 in which various example embodiments may operate.Network cloud660 generally represents one or more interconnected networks, over which the systems and hosts described herein can communicate.Network cloud660 may include packet-based wide area networks (such as the Internet), private networks, wireless networks, satellite networks, cellular networks, paging networks, and the like. AsFIG. 10 illustrates, particular embodiments may operate in a network environment comprising one or more networking systems, such associal networking system620a,game networking system620b,and one ormore client systems630. The components ofsocial networking system620aandgame networking system620boperate analogously; as such, hereinafter they may be referred to simply as networking system620.Client systems630 are operably connected to the network environment via a network service provider, a wireless carrier, or any other suitable means.
Networking system620 is a network addressable system that, in various example embodiments, comprises one or morephysical servers622 anddata stores624. The one or morephysical servers622 are operably connected to networkcloud660 via, by way of example, a set of routers and/or networking switches626. In an example embodiment, the functionality hosted by the one or more physical servers122 may include web or HTTP servers, and FTP servers, as well as, without limitation, webpages and applications implemented using Common Gateway Interface (CGI) script, PHP Hyper-text Preprocessor (PHP), Active Server Pages (ASP), HTML, XML, Java, JavaScript, Asynchronous JavaScript and XML (AJAX), Flash, ActionScript, and the like.
Physical servers622 may host functionality directed to the operations of networking system620. Hereinafterservers622 may be referred to asserver622, althoughserver622 may include numerous servers hosting, for example, networking system620, as well as other content distribution servers, data stores, and databases.Data store624 may store content and data relating to, and enabling, operation of networking system620 as digital data objects. A data object, in particular embodiments, is an item of digital information typically stored or embodied in a data file, database, or record. Content objects may take many forms, including: text (e.g., American Standard Code for Information Interchange (ASCII), Standard Generalized Markup Language (SGML), HTML), images (e.g., jpeg, tif and gif), graphics (vector-based or bitmap), audio, video (e.g., mpeg), or other multimedia, and combinations thereof. Content object data may also include executable code objects (e.g., games executable within a browser window or frame), podcasts, and so forth. Logically,data store624 corresponds to one or more of a variety of separate and integrated databases, such as relational databases and object-oriented databases, that maintain information as an integrated collection of logically related records or files stored on one or more physical systems. Structurally,data store624 may generally include one or more of a large class of data storage and management systems. In particular embodiments,data store624 may be implemented by any suitable physical system(s) including components, such as one or more database servers, mass storage media, media library systems, storage area networks, data storage clouds, and the like. In one example embodiment,data store624 includes one or more servers, databases (e.g., MySQL), and/or data warehouses.Data store624 may include data associated with different networking system620 users and/orclient systems630.
Client system630 is generally a computer or computing device including functionality for communicating (e.g., remotely) over a computer network.Client system630 may be a desktop computer, laptop computer, personal digital assistant (PDA), in- or out-of-car navigation system, smart phone or other cellular or mobile phone, or mobile gaming device, among other suitable computing devices.Client system630 may execute one or more client applications, such as a web browser, to access and view content over a computer network. In particular embodiments, the client applications allow a user ofclient system630 to enter addresses of specific network resources to be retrieved, such as resources hosted by networking system620. These addresses can be Uniform Resource Locators (URLs) and the like. In addition, once a page or other resource has been retrieved, the client applications may provide access to other pages or records when the user “clicks” on hyperlinks to other resources. By way of example, such hyperlinks may be located within the webpages and provide an automated way for the user to enter the URL of another page and to retrieve that page.
A webpage or resource embedded within a webpage, which may itself include multiple embedded resources, may include data records, such as plain textual information, or more complex digitally encoded multimedia content, such as software programs or other code objects, graphics, images, audio signals, videos, and so forth. One prevalent markup language for creating webpages is HTML. Other common web browser-supported languages and technologies include XML, the Extensible Hypertext Markup Language (XHTML), JavaScript, Flash, ActionScript, Cascading Style Sheet (CSS), and, frequently, Java. By way of example, HTML enables a page developer to create a structured document by denoting structural semantics for text and links, as well as images, web applications, and other objects that can be embedded within the page. Generally, a webpage may be delivered to a client as a static document; however, through the use of web elements embedded in the page, an interactive experience may be achieved with the page or a sequence of pages. During a user session at the client, the web browser interprets and displays the pages and associated resources received or retrieved from the website hosting the page, as well as, potentially, resources from other websites.
When a user at aclient system630 desires to view a particular webpage (hereinafter also referred to as target structured document) hosted by networking system620, the user's web browser, or other document rendering engine or suitable client application, formulates and transmits a request to networking system620. The request generally includes a URL or other document identifier as well as metadata or other information. By way of example, the request may include information identifying the user, such as a user ID, as well as information identifying or characterizing the web browser or operating system running on the user'sclient computing device630. The request may also include location information identifying a geographic location of the user's client system or a logical network location of the user's client system. The request may also include a timestamp identifying when the request was transmitted.
Although the example network environment described above and illustrated inFIG. 10 described with respect tosocial networking system620aandgame networking system620b, this disclosure encompasses any suitable network environment using any suitable systems. As an example and not by way of limitation, the network environment may include online media systems, online reviewing systems, online search engines, online advertising systems, or any combination of two or more such systems.
FIG. 11 illustrates an example computing system architecture, which may be used to implement aserver622 or aclient system630. In one embodiment,hardware system700 comprises aprocessor702, acache memory704, and one or more executable modules and drivers, stored on a tangible computer readable medium, and directed to the functions described herein. Additionally,hardware system700 may include a high performance input/output (I/O)bus706 and a standard I/O bus708. Ahost bridge710 may coupleprocessor702 to high performance I/O bus706, whereas I/O bus bridge712 couples the twobuses706 and708 to each other. Asystem memory714 and one or more network/communication interfaces716 may couple tobus706.Hardware system700 may further include video memory (not shown) and a display device coupled to the video memory.Mass storage718 and I/O ports720 may couple tobus708.Hardware system700 may optionally include a keyboard, a pointing device, and a display device (not shown) coupled tobus708. Collectively, these elements are intended to represent a broad category of computer hardware systems, including but not limited to general purpose computer systems based on the x86-compatible processors manufactured by Intel Corporation of Santa Clara, Calif., and the x86-compatible processors manufactured by Advanced Micro Devices (AMD), Inc., of Sunnyvale, Calif., as well as any other suitable processor.
The elements ofhardware system700 are described in greater detail below. In particular,network interface716 provides communication betweenhardware system700 and any of a wide range of networks, such as an Ethernet (e.g., IEEE 802.3) network, a backplane, and so forth.Mass storage718 provides permanent storage for the data and programming instructions to perform the above-described functions implemented inservers622, whereas system memory714 (e.g., DRAM) provides temporary storage for the data and programming instructions when executed byprocessor702. I/O ports720 are one or more serial and/or parallel communication ports that provide communication between additional peripheral devices, which may be coupled tohardware system700.
Hardware system700 may include a variety of system architectures, and various components ofhardware system700 may be rearranged. For example,cache704 may be on-chip withprocessor702. Alternatively,cache704 andprocessor702 may be packed together as a “processor module,” withprocessor702 being referred to as the “processor core.” Furthermore, certain embodiments of the present disclosure may not require nor include all of the above components. For example, the peripheral devices shown coupled to standard I/O bus708 may couple to high performance I/O bus706. In addition, in some embodiments, only a single bus may exist, with the components ofhardware system700 being coupled to the single bus. Furthermore,hardware system700 may include additional components, such as additional processors, storage devices, or memories.
An operating system manages and controls the operation ofhardware system700, including the input and output of data to and from software applications (not shown). The operating system provides an interface between the software applications being executed on the system and the hardware components of the system. Any suitable operating system may be used, such as the LINUX Operating System, the Apple Macintosh Operating System, available from Apple Computer Inc. of Cupertino, Calif., UNIX operating systems, Microsoft(r) Windows(r) operating systems, Berkeley Software Distribution (BSD) operating systems, and the like. Of course, other embodiments are possible. For example, the functions described herein may be implemented in firmware or on an application-specific integrated circuit.
Furthermore, the above-described elements and operations can be comprised of instructions that are stored on non-transitory storage media. The instructions can be retrieved and executed by a processing system. Some examples of instructions are software, program code, and firmware. Some examples of non-transitory storage media are memory devices, tapes, disks, integrated circuits, and servers. The instructions are operational when executed by the processing system to direct the processing system to operate in accordance with the disclosure. The term “processing system” refers to a single processing device or a group of inter-operational processing devices. Some examples of processing devices are integrated circuits and logic circuitry. Those skilled in the art are familiar with instructions, computers, and storage media.
ConclusionAlthough only certain embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible without materially departing from the novel teachings of this disclosure. For example, aspects of embodiments disclosed above can be combined in other combinations to form additional embodiments. Accordingly, all such modifications are intended to be included within the scope of this disclosure.
A recitation of “a”, “an,” or “the” is intended to mean “one or more” unless specifically indicated to the contrary. In addition, it is to be understood that functional operations, such as “awarding,” “locating,” “permitting,” and the like, are executed by game application logic that accesses, and/or causes changes to, various data attribute values maintained in a database or other memory. Unless specifically indicated to the contrary, ordinal identifiers such as “first” and “second” are used herein for labeling purposes only and are not intended to denote any specific spatial or temporal ordering. Furthermore, the labeling of a “first” element does not imply the presence of a “second” element.
The present disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend.
For example, the methods, game features and game mechanics described herein may be implemented using hardware components, software components, and/or any combination thereof. By way of example, while embodiments of the present disclosure have been described as operating in connection with a networking website, various embodiments of the present disclosure can be used in connection with any communications facility that supports web applications. Furthermore, in some embodiments the term “web service” and “website” may be used interchangeably and additionally may refer to a custom or generalized Application Programming Interface (API) on a device, such as a mobile device (e.g., cellular phone, smart phone, personal Global Positioning System (GPS), PDA, personal gaming device, etc.), that makes API calls directly to a server. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the disclosure as set forth in the claims and that the disclosure is intended to cover all modifications and equivalents within the scope of the following claims.