RELATED APPLICATIONSThe present application is a continuation-in-part application of U.S. patent application Ser. No. 12/187,121 filed Aug. 6, 2008, which claims the benefit of and priority to U.S. Provisional Application No. 61/015,301 filed Dec. 20, 2007, the disclosures of both of which are hereby incorporated by reference in their entirety.
TECHNICAL FIELDThe present invention relates to systems and methods for removing undesirable materials from a site of interest within the circulatory system. More particularly, the present invention relates to systems and methods for removing substantially en bloc clots, thrombi, and emboli, among others, from within heart chambers, as well as medium to large vessels, while reinfusing fluid removed from the site of interest back into the patient to minimize fluid loss.
BACKGROUNDMany of the most common and deadly diseases afflicting mankind result from or in the presence of undesirable material, most notably blood clots, in the blood vessels and heart chambers. Examples of such diseases include myocardial infarction, stroke, pulmonary embolism, deep venous thrombosis, atrial fibrillation, infective endocarditis, etc. The treatment of some of these conditions, which involve smaller blood vessels, such as myocardial infarction and stroke, has been dramatically improved in recent years by targeted mechanical efforts to remove blood clots from the circulatory system. Other deadly conditions, which involve medium to large blood vessels or heart chambers, such as pulmonary embolism (½ million deaths per year) or deep venous thrombosis (2-3 million cases per year) have not benefited significantly from such an approach. Present treatment for such conditions with drugs or other interventions is not sufficiently effective. As a result, additional measures are needed to help save lives of patients suffering from these conditions.
The circulatory system can be disrupted by the presence of undesirable material, most commonly blood clots, but also tumor, infective vegetations, and foreign bodies, etc. Blood clots can arise spontaneously within the blood vessel or heart chamber (thrombosis) or be carried through the circulation from a remote site and lodge in a blood vessel (thromboemboli).
In the systemic circulation, this undesirable material can cause harm by obstructing a systemic artery or vein. Obstructing a systemic artery interferes with the delivery of oxygen-rich blood to organs and tissues (arterial ischemia) and can ultimately lead to tissue death or infarction. Obstructing a systemic vein interferes with the drainage of oxygen-poor blood and fluid from organs and tissues (venous congestion) resulting in swelling (edema) and can occasionally lead to tissue infarction.
Many of the most common and deadly human diseases are caused by systemic arterial obstruction. The most common form of heart disease, such as myocardial infarction, results from thrombosis of a coronary artery following disruption of a cholesterol plaque. The most common causes of stroke include obstruction of a cerebral artery either from local thrombosis or thromboemboli, typically from the heart. Obstruction of the arteries to abdominal organs by thrombosis or thromboemboli can result in catastrophic organ injury, most commonly infarction of the small and large intestine. Obstruction of the arteries to the extremities by thrombosis or thromboemboli can result in gangrene.
In the systemic venous circulation, undesirable material can also cause serious harm. Blood clots can develop in the large veins of the legs and pelvis, a common condition known as deep venous thrombosis (DVT). DVT arises most commonly when there is a propensity for stagnated blood (long-haul air travel, immobility) and clotting (cancer, recent surgery, especially orthopedic surgery). DVT causes harm by (1) obstructing drainage of venous blood from the legs leading to swelling, ulcers, pain and infection and (2) serving as a reservoir for blood clot to travel to other parts of the body including the heart, lungs (pulmonary embolism) and across a opening between the chambers of the heart (patent foramen ovale) to the brain (stroke), abdominal organs or extremities.
In the pulmonary circulation, the undesirable material can cause harm by obstructing pulmonary arteries, a condition known as pulmonary embolism. If the obstruction is upstream, in the main or large branch pulmonary arteries, it can severely compromise total blood flow within the lungs and therefore the entire body, resulting in low blood pressure and shock. If the obstruction is downstream, in large to medium pulmonary artery branches, it can prevent a significant portion of the lung from participating in the exchange of gases to the blood resulting low blood oxygen and build up of blood carbon dioxide. If the obstruction is further downstream, it can cut off the blood flow to a smaller portion of the lung, resulting in death of lung tissue or pulmonary infarction.
The presence of the undesirable material within the heart chambers can cause harm by obstructing flow or by serving as a reservoir for emboli to other organs in the body. The most common site for obstruction within the heart is in the heart valves. Infective vegetations, a condition known as endocarditis, can cause partial obstruction to flow across a valve before destroying the valve. Patients with prosthetic valves, especially mechanical valves, are particularly prone to valve thrombosis and obstruction. The heart chambers are the most common source of emboli (cardioemboli) to the systemic circulation, including stroke. Emboli tend to arise from areas that are prone to stagnation of blood flow under pathologic conditions. The left atrial appendage in patients with atrial fibrillation is prone to thrombosis, as well as the left ventricular apex in patients with acute myocardial infarction or dilated cardiomyopathy. Infected vegetations or thrombi on the heart valves are also common sources of emboli. Undesirable material such as blood clots and infected vegetations can reside in the chambers of the right heart (atrium and ventricle), often associated with prosthetic material such as pacemaker leads or long-term indwelling catheters.
The most effective treatment for conditions resulting from the presence of blood clots or other undesirable materials within the circulation is, of course, to stabilize or eliminate the material before it has embolized. Alternatively, if obstruction to flow has already occurred but before the obstruction has caused permanent harm (infarction, shock, death), the material can be eliminated by utilizing biologic or mechanical means.
Biologic treatments involve the delivery of agents to the material, which either dissolve the material or, at a minimum, stabilize it until the body can eliminate it. In the case of infective vegetations, antimicrobial agents can, over time, decrease the chances of embolization. In the case of blood clots, the agents include 1) anticoagulant agents (heparin, warfarin, etc.) which prevent propagation of blood clots; and 2) more potent thrombolytic agents (streptokinase, urokinase, tPA, etc.) which actively dissolve clots. The agents are usually delivered systemically, i.e., into a peripheral or central vein and allowed to circulate throughout the body. Thrombolytic agents can also be delivered through a catheter directly to the blood clot which can increase its effectiveness by increasing local concentrations but this does not completely eliminate the absorption into systemic circulation throughout the body.
Thrombolytic agents have been shown to increase survival in patients with hemodynamically significant pulmonary embolism as documented by echocardiographic evidence of right ventricular strain. The use of thrombolytic agents is the standard of care in this subgroup of patients with a high 20-25% early mortality. They are commonly used in to dissolve clots in other blood vessels including arteries to heart, abdominal organs and extremities.
There are two primary disadvantages to thrombolytic agents. First, every cell in the body is exposed to the agent which can lead to serious and often life threatening bleeding complications in remote areas such as the brain and stomach. The risk of major bleeding complications can be as high as 25% and the risk of often fatal bleeding into the brain can go up to 3%. Second, blood clots undergo a process called organization where the soft gel-like red/purple clot is transformed into a firmer, whitish clot by the cross-linking of proteins such as fibrin. Organized clots are much less amenable to treatment with thrombolytic agents. Thromboemboli, such as pulmonary emboli, can contain a significant amount of organized clot since the thrombus frequently developed at its original site (e.g., the deep veins of the legs) over a long period of time prior to embolizing to the remote site (e.g., the lungs).
Mechanical treatments involve the direct manipulation of the material to eliminate the obstruction. This can involve aspiration, maceration, and compression against the vessel wall, or other types of manipulation. The distinct advantage of mechanical treatment is that it directly attacks the offending material and eliminates the vascular obstruction independent of the specific content of the offending material. Mechanical treatments, if feasible, can usually prove to be superior to biologic treatments for vascular obstruction. Procedural success rates tend to be higher. The best example of this advantage is in the treatment of acute myocardial infarction. Although thrombolytic therapy has had a major impact on the management of patient with myocardial infarction, this option is now relegated to a distant second choice. The clear standard of care today for an acute myocardial infarction is an emergency percutaneous coronary intervention during which the coronary artery obstruction is relieved by aspiration, maceration or balloon compression of the offending thrombus. This mechanical approach has been shown to decrease the amount of damaged heart tissue and improve survival relative to the thrombolytic biological approach.
Mechanical treatment, however, has played a limited role in the removal of blood clots found in larger blood vessels such as pulmonary arteries and heart chambers. Surgical pulmonary embolectomy involves opening the pulmonary artery and removing the offending clot under direct vision. This operation has been performed for nearly 100 years, but did not become practical until the introduction of the heart lung machine. Even then, it was generally relegated to a salvage procedure in moribund patients in whom all other options had been exhausted because of the inherent danger in the surgery and the recovery period. While surgical pulmonary embolectomy is very effective in completely evacuating pulmonary emboli whether soft-fresh and firm-organized clot, it is an invasive procedure.
Recent data has shown that the early outcomes with surgical pulmonary embolectomy are excellent, at least as good as thrombolytic treatment, as long as the procedure is performed in a timely fashion before the patient becomes very ill or suffers a cardiac arrest. The long term outcomes of patients surviving surgical pulmonary embolectomy have always been very good. Although these data have generated a renewed interest in performing surgical pulmonary embolectomy, its use remains limited because of the invasiveness of the procedure. Although minimally invasive approaches have been described, the standard procedure requires a 20-25 cm incision through the sternal bone and placing the patient on cardiopulmonary bypass (the heart-lung machine).
Catheter-based removal of blood clots from larger blood vessels (e.g., pulmonary arteries) and heart chambers has had limited success, at least compared to smaller blood vessels (e.g., coronary arteries). Catheter pulmonary embolectomy, where the pulmonary emboli are removed percutaneously using one of several techniques, has been around for nearly 30 years but few patients currently receive these therapies. These techniques can be subdivided into three categories. With fragmentation thrombectomy, the clot is broken into smaller pieces, most of which migrate further downstream, decreasing the central obstruction but resulting in a “no-reflow” phenomenon. It is sometimes used in combination with thrombolytics which preclude their use as an alternative to thrombolytics. With the rheolytic thrombectomy, high velocity saline jets create a Venturi effect and draw the fragments of the clot into the catheter. Finally the aspiration techniques draw the clot into a catheter via suction. With a Greenfield embolectomy, the catheter with the attached clot is repeatedly drawn out of the vein. All of these techniques rely on catheters which are small compared to the size of the clots and blood vessels. Their limited success is likely related to their inability to achieve a complete en-bloc removal of the material without fragmentation.
The experience with catheter-based treatment of deep venous thrombus has also had limited success. The operator must use relatively small catheters to remove or break up large amounts of well embedded clot. This procedure is therefore time-consuming, inefficient and ultimately not very effective in removal of the whole clot.
It is clear that all of the therapeutic options available to patients with clot or other undesirable material in medium or large blood vessels, such as those with pulmonary embolism, have serious limitations. Anticoagulation only limits propagation of clot, it does not remove it. Thrombolytic therapy is not targeted, carries a real risk of major bleeding, and is not very effective in firm/organized clots. Catheter embolectomy uses technology developed for small blood vessels, does not scale well to material residing in medium and large vessels or heart chambers, and thus is not very effective. Surgical embolectomy is highly effective but highly invasive. There is a real need for a direct mechanical treatment that is as effective as surgical embolectomy but can be performed using endovascular techniques.
Current efforts to apply existing catheter embolectomy technologies to medium to large blood vessels and heart chambers encounter at least two obstacles: fragmentation and excessive blood loss. Techniques which depend on fragmentation of the material tend to be inefficient and ineffective in medium to large blood vessels and heart chambers because the flow of blood will carry a significant portion of the fragmented material away before it can be captured in the catheter. On the other hand, techniques which depend on aspiration of undesirable material will result in excessive blood loss as the size of the catheter increases.
A need therefore exists for a system and method to endovascularly remove undesirable material residing in medium to large blood vessels and heart chambers with minimal fragmentation and without excessive blood loss.
SUMMARY OF THE INVENTIONThe present invention relates generally to systems and methods for removing undesirable material residing in vessels, such as blood vessels, or within chambers of the heart. More specifically, the subject invention relates to systems and methods for using a cannula to remove substantially en bloc, from a site of obstruction or interest, an undesirable material, such as blood clots, embolisms and thromboembolisms, without significant fragmentation and without excessive fluid loss. In addition, the systems and methods of the present invention may simultaneously reinfuse aspirated (i.e., removed) and filtered fluid, such as blood, back into the patient on a substantially continuous basis to minimize any occurrences of fluid loss and/or shock. The subject invention may be particularly useful, but may not be limited to, the removal of blood clots, tumors, infective vegetations and foreign bodies from medium to large blood vessels and heart chambers.
In one embodiment, a system for removing an undesirable material from within a vessel is provided. The system includes a first cannula having a distal end and an opposing proximal end. The distal end of the first cannula, in an embodiment, may include or may be deployable to a diameter relatively larger than that of the proximal end. The first cannula may be designed for maneuvering within the vessel to a site of interest, such that an undesirable material can be captured substantially en bloc through the distal end and removed along the first cannula away from the site. The system may also include a pump, in fluid communication with the proximal end of the first cannula, so as to provide a sufficient suction force for removing the undesirable material from the site of interest. The system may further include a second cannula in fluid communication with the pump, so that fluid removed from the site of interest by the first cannula can be directed along the second cannula and reinfused through a distal end of the second cannula. In one embodiment, the distal end of the second cannula may be situated in spaced relation to the distal end of the first cannula. The system may also be provided with a filter device positioned in fluid communication with the first cannula. The filter device, in an embodiment, may act to entrap or capture the undesirable material and remove it from the fluid flow. The system may further be provided with a reservoir in fluid communication with the filter device. The reservoir may act to transiently collect fluid being directed from the filter device and to provide a source of fluid for reinfusion by the second cannula. A second filter may also be included in fluid communication between the pump and the second cannula, so as to remove, prior to reinfusion, any debris that may have escaped from the filter device from the fluid flow.
In another embodiment, there is provided a method for removing an undesirable material from within a vessel. The method includes initially maneuvering a first cannula having a distal end and an opposing proximal end to a site of interest within the vessel, such that the distal end of the first cannula is positioned adjacent the undesirable material. Next, a second cannula, in fluid communication with the first cannula, may be positioned such that its distal end can be situated in spaced relation to the distal end of the first cannula. Thereafter, a suction force may be provided through the distal end of the first cannula to the site of interest, so as to remove, through the distal end of the first cannula, the undesirable material substantially en bloc from the site of interest. Subsequently, any fluid removed along with the undesirable material may be reinfused, through the distal end of the second cannula, to a location in spaced relation from the distal end of the first cannula. The suction and reinfusion of blood can occur, in an embodiment, continuously for a desired duration to minimize fluid loss in the patient. Alternatively, the step of suctioning an undesirable material can occur at an intermittent pulse for a desired duration following reinfusion of the removed fluid.
In a further embodiment, an apparatus for removing an undesirable material from within a vessel is provided. The apparatus includes an elongated tube having a distal end through which an undesirable material can be captured, a pathway extending along the tube to provide a passage for transporting the undesirable material from the distal end, and a proximal end in opposing relations to the distal end through which the undesirable material can exit. The apparatus also includes a funnel situated at the distal end of the tube, and designed for deployment between an flared open position and a collapsed closed position, so as to better engage and capture the undesirable material. The apparatus further includes a mechanism positioned about a distal portion of the tube, which mechanism, upon actuation, can deploy the funnel between the closed position and the open position. In one embodiment, the funnel includes a plurality of strips, with each strip being pivotally coupled at one end to the distal end of the tube. The funnel may also include a substantially impermeable membrane extending across a space between adjacent strips, such that the membrane, in connection with the strips define the shape of the funnel. The mechanism, in an embodiment, includes a balloon positioned circumferentially about the tube at a location proximal to the funnel, and an attachment mechanism provided with one end attached to the funnel and an opposite end attached to the balloon. By design, upon expansion of the balloon, the attachment mechanism can pull on the funnel to deploy it into a flared open position. The apparatus may also include a jacket positioned circumferentially about the distal end of the tube, and extending from the funnel to the balloon to protect the vessel from potential irritation that may be caused by the balloon and the strips defining the funnel. As the jacket may be attached to the funnel and the balloon, in one embodiment, the jacket may act as the mechanism for deploying the funnel into a flared open position upon expansion of the balloon.
In still another embodiment, there is provided a system for removing an undesirable material from within a vessel. The system includes a first cannula having a distal end and an opposing proximal end, the first cannula designed for maneuvering within a vessel to a site of interest, such that the undesirable material can be directed substantially en bloc through the distal end and removed along the first cannula away from the site of interest. In an embodiment, the first cannula includes one or more side port to permit introduction of a balloon dilator, an angiography catheter, a balloon embolectomy catheter, and/or other instruments or devices into the first cannula. The first cannula may also include multiple lumens. The system also includes a funnel designed to be situated at and in fluid communication with the distal end of the first cannula, the funnel having a mechanism designed to apply a distal force to the undesirable material that may be attached to a wall of the vessel, so as to dislodge the undesirable material therefrom. In some embodiments, the funnel is in fluid communication with the distal end of the first cannula via a fluid channel. The funnel may also be deployable between a collapsed closed position and an open position. For example, the funnel may be deployable by a balloon dilator to expand from the collapsed closed position to the open position. In an embodiment, the funnel includes two walls and a plurality of microspheres provided between the two walls, or a plurality of veins and a plurality of microspheres provided within the veins. The plurality of microspheres may be designed to engage one another to form a substantially continuous, rigid structure, so as to provide the funnel with sufficient rigidity. The mechanism of the funnel may include an atraumatic tip of the funnel, an extension from the funnel, or a ring situated above or about the funnel, the mechanism being designed to be made sufficiently rigid so as to dislodge the undesirable material. The system further includes a pump in fluid communication with the proximal end of the first cannula, to provide a sufficient suction force for pulling the undesirable material from the site of interest into the first cannula. For example, the pump can be used to generate a negative pressure to create a suction force necessary to pull the plurality of microspheres to form the substantially continuous, rigid structure. In some embodiments, the system may further include a second cannula in fluid communication with the pump and being designed to have its distal end situated in spaced relation to the distal end of the first cannula, such that fluid removed from the site of interest by the first cannula can be directed along the second cannula and reinfused through the distal end of the second cannula.
In a further embodiment, a method for removing an undesirable material from within a vessel is provided. The method includes first maneuvering a first cannula having a distal end and an opposing proximal end to a site of interest within a vessel in a patient, such that the distal end of the first cannula is positioned adjacent an undesirable material. The step of maneuvering may, if desirable, include introducing via one or more side port into the first cannula a balloon dilator, an angiography catheter, a balloon embolectomy catheter, and/or other instruments or devices. The method also includes deploying a funnel situated at and in fluid communication with the distal end of the first cannula from a collapsed closed position to an open position, such that in the open position the funnel can be used to engage and capture the undesirable material. In an embodiment, the step of deploying includes expanding, at the site of interest, the funnel using a balloon dilator. The method further includes providing a suction force, through the distal end of the first cannula, to the undesirable material. In some examples, the step of providing includes applying the suction force to the funnel, via a fluid channel in fluid communication with the funnel and the distal end of the first cannula, to make the funnel sufficiently rigid. For example, applying the suction force may include applying it via the fluid channel to a plurality of microspheres provided within the funnel, to pull the plurality of microspheres to form a substantially continuous, rigid structure, so as to provide the funnel with sufficient rigidity. The method additionally includes applying, via a substantially rigid mechanism at the distal end of the first cannula, a distal force to the undesirable material that may be attached to a wall of the vessel so as to dislodge the undesirable material therefrom, such that the undesirable material is removed substantially en bloc away from the site of interest through the distal end of the first cannula. In some embodiments, the method may further include positioning a second cannula, in fluid communication with the first cannula, such that its distal end is situated in spaced relation to the distal end of the first cannula; and reinfusing, through the distal end of the second cannula, any fluid removed along with the undesirable material to a location in spaced relation from the distal end of the first cannula. In an example, the step of providing includes entrapping, downstream of the proximal end of the first cannula and towards a source for the suction force, the undesirable material so as to remove it from the fluid before the step of reinfusing. Additionally, the step of entrapping may include permitting the fluid to continuously flow into the second cannula, while impeding movement of the undesirable material toward the second cannula. Further, the step of reinfusing may include continuously collecting fluid directed from the proximal end of the first cannula and using the collected fluid as a source of fluid for reinfusion. In certain embodiments, using the method of the present invention, at least 10 cm3of the undesirable material can be removed from the site of interest without substantial fragmentation.
In still a further embodiment, an apparatus for removing an undesirable material from within a vessel is provided. The apparatus includes an elongated tube having a distal end through which an undesirable material can be captured, a pathway extending along the tube to provide a passage for transporting the undesirable material from the distal end, and a proximal end in opposing relations to the distal end through which the undesirable material can exit. The tube may include one or more side port to permit introduction of a balloon dilator, an angiography catheter, a balloon embolectomy catheter, and/or other instruments or devices into the tube. The tube may also include multiple lumens. The apparatus also includes a funnel designed to be situated at and in fluid communication with the distal end of the tube, the funnel being designed for deployment between a collapsed closed position and an open position, and having a mechanism designed to apply a distal force to the undesirable material that may be attached to a wall of the vessel, so as to dislodge the undesirable material therefrom. In an embodiment, the funnel is deployable by a balloon dilator to expand from the collapsed closed position to the open position. The funnel may include two walls and a plurality of microspheres provided between the two walls, or a plurality of veins and a plurality of microspheres provided within the veins. The plurality of microspheres may be designed to engage one another to form a substantially continuous, rigid structure, so as to provide the funnel with sufficient rigidity. In certain embodiments, the mechanism includes an atraumatic tip of the funnel, an extension from the funnel, or a ring situated above or about the funnel, the mechanism being designed to be made sufficiently rigid so as to dislodge the undesirable material. The apparatus additionally includes a fluid channel extending between the distal end of the tube and the funnel, to provide fluid communication between the distal end of the tube and the funnel. The fluid channel may be designed to communicate a suction force to the funnel to pull the plurality of microspheres to form the substantially continuous, rigid structure. In some embodiments, the apparatus may further include a sheath designed to slide toward and away from the distal end of the tube, so as to expose or cover up the funnel to permit the funnel to be deployed into the open position or the collapsed closed position, respectively.
BRIEF DESCRIPTION OF THE DRAWINGSThese and other features and advantages of the present invention will become more apparent from the following detailed descriptions taken in conjunction with the accompanying drawings wherein like reference characters denote corresponding parts throughout the several views.
FIG. 1 illustrates system for removing an undesirable material from within a vessel in accordance with one embodiment of the present invention.
FIGS. 2A-2L illustrate a distal end of a suction cannula in operation in connection with the system shown inFIG. 1.
FIGS. 3A-3B illustrate an alternate distal end of a suction cannula used in connection with the system shown inFIG. 1.
FIGS. 4A-4E illustrate a variety of cannulas for use in connection with the system shown inFIG. 1.
FIGS. 5A-5B illustrate one or more port through which another device may be introduced within a suction cannula used in connection with the system shown inFIG. 1.
FIG. 6 illustrates a system for removing an undesirable material from within a vessel in accordance with another embodiment of the present invention.
FIG. 7 illustrates a system of the present invention being deployed within a patient for removing an undesirable material from a site of interest.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTSAs noted above, existing catheter techniques may not be effective in removing undesirable material, such as clots, from medium and large size blood vessels or from heart chambers, because these catheters tend to be small relative to the material to be removed. As a result, the material often needs to be fragmented in order to fit within the catheter. However, with fragmentation, the chances of the fragments being carried away in the bloodstream increases, resulting in downstream obstruction. If the catheter is enlarged to accommodate the larger structure and material, such a catheter may aspirate an unacceptable volume of blood, resulting in excessive fluid loss and/or shock in the patient.
The present invention overcomes the deficiencies of existing devices and techniques and can act to remove substantially en bloc (i.e., wholly or entirely) undesirable material, such as thrombi and emboli, from the vasculature, including medium to large size blood vessels, and from heart chambers. Vessels from which the undesirable material may be removed, in accordance with an embodiment of the present invention, include, for example, those within the pulmonary circulation (e.g., pulmonary arteries), systemic venous circulation (e.g., vena cavae, pelvic veins, leg veins, neck and arm veins) or arterial circulation (e.g., aorta or its large and medium branches). The heart chambers may be, for example, in the left heart (e.g., the left ventricular apex and left atrial appendage), right heart (e.g., right atrium and right ventricle), or on its valves. The present invention can also act to remove tumors, infective vegetations and other foreign bodies.
Although reference is made to medium and large vessels, it should be appreciated that the systems and methods, hereinafter disclosed, can be scaled and adapted for use within smaller vessels within the body, if desired.
Referring now toFIG. 1, there is illustrated asystem1 for removing an undesirable material, substantially en bloc, from an obstruction site or site of interest within the vasculature, and for reinfusion of fluid removed (i.e., suctioned or aspirated) from the site of interest back into a patient, in order to minimize fluid loss within the patient.System1, in an embodiment, may be provided with a first orsuction cannula10 for capturing and removing en bloc the undesirable material from the site of interest, such as that within a blood vessel or a heart chamber.Cannula10, in an embodiment, may be an elongated tube and may include adistal end11 through which the undesirable material can be captured and removed.Cannula10 may also include a lumen orpathway12 extending along a body portion ofcannula10.Pathway12, in one embodiment, provides a passage along which the captured material and aspirated circulatory fluid, such as blood, that may be captured therewith may be transported and directed away from the site of interest.Cannula10 may further include aproximal end13 in opposing relations to thedistal end11, and through which the captured material may exit from thecannula10.
Sincecannula10 may be designed for introduction into the vasculature, for instance, through a peripheral blood vessel, and may need to subsequently be maneuvered therealong to the site of interest,cannula10, in an embodiment, may be made from a pliable material. For example,cannula10 can be provided with a coil extruded tube to allow for desired flexibility and kink resistance, coupled with sufficient pushability (i.e., linear stiffness) to navigate the vascular system. A portion of distal end11 (e.g., a few centimeters or longer) may, in an embodiment, be provided with an angle or an arcuate form to engage the vascular wall, for secure placement ofdistal end11 within the vessel. A portion ofproximal end13, on the other hand, may be substantially free of coiled reinforcement to allow forcannula10 to be clamped externally without interrupting fluid communication therein. In addition, ascannula10 may be used to introduce a suction force to the site of interest for capturing the undesirable material,cannula10 may be made from a sufficiently stiff material or may be reinforced with a sufficiently stiff material, so as not to collapse under a suction force. In one embodiment,cannula10 may be constructed from a biocompatible material, such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, polyether block amide (Pebax®), silicone, or a combination thereof.
In certain instances, it may be desirable to maneuvercannula10 to the site of interest using image guidance, for example, using fluoroscopy or echocardiography. In order to permitcannula10 to be visualized,cannula10, in an embodiment, may also include a radioopaque material or any material capable of being visualized.
To better engage and capture the undesirable material substantially en bloc and without significant fragmentation, thedistal end11 ofcannula10 may be designed to have a diameter that can be relatively larger than that of theproximal end13. In one embodiment, as illustrated inFIGS. 2A-2D,distal end11 ofcannula10 may be in the shape of afunnel20, and may be provided with a diameter, for example, approximately at least three times that ofpathway12. Of course, depending on the surgical procedure being implemented, the ratio between the diameter offunnel20 andpathway12 can be varied, if so desired.Funnel20, with its design, may be placed directly at a site ofinterest23 to engage undesirable material24 (FIG. 2C), or spatially away from the site ofinterest23 to capture the undesirable material24 (FIG. 2D). In a situation where thedistal end11 may be situated spatially away from the site of interest, by providingdistal end11 withfunnel20, a vortex effect may be generated during suctioning to better direct the undesirable material into thefunnel20. It is believed that fluid flowing intofunnel20 can often exhibit a laminar flow circumferentially along the interior surface of thefunnel20 to generate a vortex flow into thedistal end11 ofsuction cannula10. Thus, in the presence of a vortex flow, such a flow can act to direct the undesirable material toward thedistal end11 to allow the material to subsequently be pulled into the distal end by suctioning.
To provide a funnel shaped distal end,cannula10 may include, in an embodiment, asheath21 circumferentially situated aboutdistal end11 ofcannula10.Sheath21 can be a thin walled layer of a material having sufficient elasticity. In an embodiment, suitable materials forsheath21 can have an elastic recoil force sufficient to compressfunnel20. In this way, funnel20 can be kept in a collapsed state, allowing easy manipulation and maneuvering within the vessel toward as well as away from the site ofinterest23.Sheath21 can also providefunnel20, for example, with a smooth surface and a tapered profile in its collapsed state.Sheath21, as illustrated, may be designed to slide toward as well as away from thedistal end11 ofcannula10. In that way, when thedistal end11 is positioned at the site ofinterest23, andsheath21 is retracted (i.e., slid away from the distal end11), funnel20 may be exposed and expanded into the desired shape in order to engageundesirable material24. To collapsefunnel20,sheath21 may be advanced toward thedistal end11 and over thefunnel20. Thereafter,cannula10 may be maneuvered from the site ofinterest23.
In order to enhance capture and removal of theundesirable material24, looking now atFIGS. 2E-2G,cannula10 may be designed to allow introduction of acatheter25 withballoon26 to the site of interest. In an example where theundesirable material24 may be entrapped withinfunnel20,catheter25 withballoon26 may be directed along the lumen orpathway12 ofcannula10 and intofunnel20. Oncecatheter25 has been advanced past theundesirable material24 withinfunnel20,balloon26 may be inflated to a size sufficient to pull on the undesirable material entrapped withinfunnel20. Asballoon26 is pulled down thefunnel20 towardspathway12,balloon26 can dislodge the entrapped material and can eventually partially or substantially occlude apathway12, distal to theundesirable material24, which in essence occludes the fluid communication betweencannula10 and the vessel. The suction force withinpathway12, as a result, can be enhanced to better remove the undesirable material. Similarly, as shown inFIG. 2H, in a situation whereundesirable material24 may be firmly lodged in the vessel at the site ofinterest23 and the suction applied bycannula10, spatially situated away from the site ofinterest23, may insufficient to dislodge theundesirable material24,catheter25 andballoon26 may be advanced past the distal end ofcannula10 and past theundesirable material24 at the site ofinterest23. Once past theundesirable material24 theballoon26 may be inflated and as balloon is withdrawn back towards thedistal end11 ofcannula10, it can dislodge the undesirable material and allow the suction to draw it into the distal end ofcannula10. Of course, this approach can also be applied whencannula10 is situated directly at the site ofinterest23 and the suction force may be insufficient to dislodge theundesirable material24.
In certain embodiments, theundesirable material24 may be attached to or associated with the vascular wall or a foreign object (e.g., an implant, such as a pacemaker lead, a defibrillation lead, a central line, etc.), such that the suction force may be insufficient to dislodge the attached undesirable material off of the vascular wall or the foreign object. In that case, afunnel20, such as that illustrated inFIGS. 2I-2L, capable of being made sufficiently rigid can be used to assist capture and removal of the undesirable material. To providefunnel20 with the necessary rigidity, funnel20 may be provided withdouble walls27 and a plurality of spherical beads, microbeads, ormicrospheres28 dispersed betweendouble walls27.Funnel20 can also have a fluid channel orport29 for providing fluid communication between thefunnel20 and thecannula10. With such a design, when there is substantially no suction force applied fromcannula10,double walls27 may be in a substantially malleable state with excess fluid (e.g., gas, liquid, etc.) betweendouble walls27. In this malleable state,double walls27 can be folded or collapsed into a minimum profile to facilitate delivery and maneuvering of thedistal end11 ofcannula10. When a sufficiently strong suction force is applied viaport29 to doublewalls27, excess fluid can be removed from withindouble walls27, andmicrospheres28 may engage one another and may be pressed against one another. Together, the engagement of the plurality ofmicrospheres28 can form a substantially continuous, rigid structure, thereby turning thedouble walls27 from a substantially malleable state to a sufficiently rigid state. This stiffening process can also be reversed. That is, fluid can be reintroduced intodouble walls27 to disengagemicrospheres28, so as to permitdouble walls27 to return to the malleable state.
It should be appreciated that in order to dislodge the attached undesirable material, it may not be necessary to stiffenentire funnel20, as long as a portion offunnel20 can be made sufficiently rigid to apply a distal force to dislodge the attached undesirable material. For example, funnel20 may include a mechanism designed to be made sufficiently rigid so as to apply a distal force to the undesirable material. The mechanism may be an atraumatic tip or edge offunnel20, an extension from funnel20 (e.g., one or more rib, arm, leg, or other protrusion), a ring or spiral situated above or aboutfunnel20, or any other suitable designs known in the art.
Microsphere28, in an embodiment, can be small spherical particles, with diameters in the micrometer to millimeter range (e.g., from about 1 μm to about 1000 μm or larger).Microspheres28 can be made from any suitable materials known in the art. For example, suitable microspheres for use in connection with the present invention can be manufactured from various natural and synthetic materials, including without limitation, glass, polymers (e.g., polyethylene and polystyrene), ceramics, fluorescent and/or radioopaque materials.Microspheres28 can also be solid or hollow, where hollow microspheres may provide a lightweighted funnel20 and/or be filled with fluorescent material for imaging purpose.
Sheath21, as discussed above, may also be provided circumferentially about thedistal end11 ofcannula10, includingfunnel20, to compressdistal end11 and/or funnel20. When thedistal end11 is positioned at the site ofinterest23,sheath21 can be retracted, and funnel20 may be exposed and expanded into the desired shape.Funnel20 may simultaneously or thereafter be provided with the desired rigidity, as discussed above, in order to dislodgeundesirable material24. Such rigidity can also help resist substantial deformation offunnel20 under radial stress from surrounding tissues (e.g., vascular walls). It should also be appreciated that to the extent desired, funnel20 can also have sufficient flexibility and/or elasticity, to avoid damages to vascular walls while maneuvering in the vessel. After capturing and removing theundesirable material24, funnel20 can be returned to the malleable state by reintroducing fluid thereinto as discussed above.
With reference toFIG. 2K, to expand funnel20 (microspheres therein not shown) to its desired shape, aballoon dilator22, such as an angioplasty dilation balloon, may be introduced through cannula10 (or a lumen therewithin as discussed below) and directed intofunnel20, using methods well known in the art. Theballoon dilator22 may have a built-in funnel shape. Thereafter,balloon dilator22 may be inflated to a dilatedstate22′ so as to dilate or expandfunnel20. In one example, funnel20 can be pushed outwardly byballoon dilator22′ till the funnel wall is against the walls of the vessel, for better engagement of undesirable materials that are attached to the walls of the vessel. After dilatingfunnel20 to a desired shape,balloon dilator22′ can be deflated and retracted. Thereafter, to securely placedistal end11 ofcannula10 at the site ofinterest23, a portion of distal end11 (e.g., about 1 to 20 centimeters, about 2 to 15 centimeters, about 3 to 10 centimeters, or about 5 centimeters) may be provided with an angle (e.g., about 1 to 45 degrees, about 5 to 30 degrees, about 10 to 20 degrees, or about 15 degrees) or be in an arcuate form. The angle or arcurate form, in an embodiment, may be heat set.
Funnel20 can be stiffened by applying a suction force tomicrospheres28 as discussed above. The stiffening step can be performed at the same time asfunnel20 is being dilated or expanded bydilator balloon22, resulting in a sufficientlyrigid funnel20 having the same or substantially similar shape asdilator balloon22. The stiffening step can also be performed afterfunnel20 has been dilated or expanded to its desired shape. It should be noted that after stiffening, the sufficiently rigid state offunnel20 can be maintained for as long as it is desired, for example, by providing a continuous suction force from withincannula10, untilundesirable material24 becomes dislodged and captured (e.g., by applying a distal force viafunnel20 or a part thereof to undesirable material24). The continuous suction force from withincannula10 can also act directly uponundesirable material24 to help dislodge and remove it. As such, mechanical sheering and suction force may simultaneously act onundesirable material24, to achieve fast, efficient removal of undesirable materials en bloc.
Funnel20, in an embodiment shown inFIG. 2L, can also be designed to include a network ofveins210 andwalls220 connecting adjacent veins. Although illustrated to have a substantially frustoconical shape in its open state, funnel20 can also be provided with other geometric shapes, including tubular. In an embodiment,veins210 can be filled with microspheres (not shown) to provide the necessary rigidity (e.g., in the presence of a suction force). Aport29 can be provided and can be in fluid communication with theveins210 for providing the suction force, whereupon the microspheres can be pulled to engage one another, so as to form a continuous network of microspheres to provideveins210 with sufficient rigidity.
Veins210 can be a network of thin walled, small caliber channels to form a ribbed scaffolding. Suitable materials forveins210 can include substantially inelastic or semi-inelastic materials so that they can withstand the pressure from the suction force and can be sufficiently rigid or semi-rigid when pressurized (e.g., at about 5-20 atm). In addition,veins210 can be made from a sufficiently stiff material or can be reinforced with a sufficiently stiff material, so as to not collapse significantly under the suction force. In one embodiment,veins210 can be constructed from a biocompatible material, such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, polyether block amide (Pebax®), silicone, or a combination thereof.
The network ofveins210 can be interconnected or separated, in a variety of designs suitable for use in connection with the present invention. In addition to the quilt with proximal and distal hoops design illustrated inFIG. 2L, the network ofveins210 can also be designed, for example, to include hoops, spirals, zigzags, quilt with a proximal hoop, corduroy quilt, or any combination thereof. The geometry/structure ofveins210 may be a complex network with a plurality of intersections, and can be designed in such a way that the structure is sufficiently robust in resisting radial and longitudinal deformation.
Walls220, in an embodiment, can extend betweenadjacent veins210 to definefunnel20.Walls220 can also act to direct theundesirable material24 throughfunnel20 and intocannula10. In some embodiments,walls220 can be substantially impermeable. Wall material between veins can be a thin membrane. In some embodiments, wall material can be sufficiently flexible or pliable such that funnel20 can be collapsed down to a minimum profile. Wall material can also be substantially inelastic or semi-elastic so as to maintainfunnel20 in the desired shape in its open state.
In accordance with an embodiment of the present invention, any part offunnel20, includingveins210 andwalls220, can include a radioopaque material or any material capable of being visualized using fluoroscopy or echocardiography. This can allow visualization offunnel20 to facilitate its maneuver, position, and/or deployment under image guidance.
In another embodiment, looking now atFIGS. 3A-3B, funnel20 located atdistal end11 ofcannula10 may be created by providing a plurality ofindependent strips31, each coupled at one end todistal end11 ofcannula10. In the embodiment shown inFIG. 3A, threestrips31 are illustrated. However, it should be appreciated that two ormore strips31 may be used, if so desired.Strips31, in an embodiment, may be designed to pivot between a closed position, where strips31 may be substantially adjacent one another, and an open position, where strips may be flared into afunnel20, shown inFIG. 3A. To deploystrips31, and thus funnel20, between an open and closed position,cannula10 may include aballoon33 positioned circumferentially aboutcannula10 and proximal to strips31. In addition, an attachment mechanism, such as astring34 or any similar mechanisms (e.g., rod, chain etc.), may be provided for each of thestrips31, with one end attached to onestrip31 and an opposite end attached toballoon33. In this way, whenballoon33 is inflated and expands radially,balloon33 may pull on eachattachment mechanism34, so as to deploystrips31 into a flared open position.Balloon33, in one embodiment, may be inflated throughopening37 through the use of any fluid, including water, air, or radioopaque contrast material. It should be noted that securing of the attachment mechanism to thestrips31 andballoon33 can be accomplished using any methods or mechanisms known in the art. For instance, adhesives, knots, or soldering etc. may be used. Moreover, to the extent desired, strips33 andballoon31 may be designed to expand to a diameter larger than that of the vessel within which cannula10 is being deployed. In that way,cannula10 may be securely positioned at the site of interest for removal of the undesirable material substantially en bloc.
To better capture the undesirable material and direct it into thecannula10, amembrane35 may be placed across a space betweenadjacent strips31 when thestrips31 are in the open position. In one embodiment, acontinuous membrane35 may be used to circumferentially stretch across each of the space betweenadjacent strips31.Membrane35 may also act to enhance suction at the site of interest, as it can cover up any open space between thestrips31. To that end,membrane35, in an embodiment, may be made from a non-permeable material. It should be appreciated thatmembrane35 and strips31, as illustrated, together definefunnel20 atdistal end11 ofcannula10.
Furthermore, to protect the vessel from irritation or damage that may be caused by the presence ofballoon33 and/or strips31, jacket36, as shown inFIG. 3B, may be provided circumferentially about the distal11 ofcannula10. In an embodiment, jacket36 may extend substantially from a tip of eachstrip31 toballoon33. Jacket36, however, can be affixed anywhere along eachstrip31, if necessary. Since jacket36 attaches at one end tostrips31 and at an opposite end to balloon33, jacket36, in an embodiment, may be used instead ofattachment mechanism34 to deploystrips31 into an open position whenballoon33 is expanded. Of course, jacket36 may also be used in conjunction withattachment mechanism34 to deploystrips31 into an open position. Furthermore, in one embodiment, jacket36 may be lengthened, so that the end connected tostrips31 may instead be pulled overstrips31, intofunnel20, and attached substantially to a base of each strips31 (i.e., base of funnel20). With such a design,membrane35 may not be necessary, as jacket36 may serve the purpose ofmembrane35 to cover the space between each of strips31. In such an embodiment, at least that portion of jacket36 extending overstrips31 and into thebase funnel20 can be impermeable.
In certain instances,balloon33 may act to enhance the suction force being applied at the site of interest when removing the undesirable material. For instance, whencannula10 is deployed downstream of the undesirable material, rather than substantially adjacent to the undesirable material, within a vessel having a venous circulation (i.e., flow toward the heart),balloon33, when expanded radially, can substantially occlude the vessel, such that collateral fluid flow within the vessel can be minimized, thereby increasing the suction force that can be applied to the undesirable material. Additionally, the occlusion of such a vessel byballoon33 can better direct the material being removed into thefunnel20 and prevent the material from being carried by the flow of blood past the funnel.
Alternatively, whencannula10 is deployed upstream of the undesirable material within a vessel having an arterial circulation (i.e., flow away from the heart), rather than substantially adjacent to the undesirable material,balloon33, when expanded radially, can substantially occlude the vessel, such that pressure being exerted on the downstream material by the fluid flow can be lessened. By lessening the pressure on the material to be removed, the suction force being applied at the site of interest can act to remove the material more easily.
Assuction cannula10 may be made from a pliable material, in order to efficiently direct it along a vessel to the site of interest,cannula10 may be reinforced with wire or other material to optimize maneuverability within the vessel without kinking. Referring now toFIG. 4A,suction cannula10 may, in addition topathway12, be provided with one or more additional pathway orlumen41. In this multi-lumen design,pathway12 may act, as noted above, to provide a passage along which the captured material may be transported and directed away from the site of interest.Lumen41, on the other hand, can provide a passage along which a fluid can be directed to inflateballoon33 through opening37 (FIGS. 3A-3B). In certain embodiments,lumen41 may also be used to accommodate other devices, such as other catheters or surgical instruments, for use in connection with a variety of purposes. For example, a device may be inserted and advanced alonglumen41 through thedistal end11 ofsuction cannula10 to dislodge the undesirable material. An angiography catheter can be inserted and advanced alonglumen41 through thedistal end11 ofsuction cannula10 to perform an angiogram to confirm the location of the undesirable material or confirm that it has been successfully removed. A balloon embolectomy catheter can be inserted alonglumen41 toward thedistal end11 ofsuction cannula10 to remove any material which may have clogged the cannula or past the any undesirable material firmly lodged in the vessel to draw it into the cannula. Although illustrated with such a multi-lumen design, any other multi-lumen design may be possible.
To introduce other devices, such asdilator balloon22 and/orcatheter25 withballoon26, intolumen41 orpathway12,cannula10 may be provided with aport51, as shown inFIG. 5A, located at theproximal end13 ofcannula10. It should be appreciated that in the embodiment wherecannula10 has only pathway12 (i.e., single lumen cannula),port51 may similarly be provided at theproximal end13 ofcannula10 to allow the introduction of other devices intopathway12.
Two or more ports similar toport51 can also be provided for simultaneous introduction of two or more devices or instruments. In an embodiment, a Y-shapedconnector50 ofFIG. 5B may be provided for connecting the ports andcannula10.Y connector50 may also have three or more channels connecting toproximal end13 ofcannula10. For example,channel51 may be a sealable port that allows a surgical instrument (e.g., an angiography catheter, a balloon embolectomy catheter, etc.) to be introduced thereinto.Channel52, in an embodiment, may be balloon dilator centric and may also be sealable. Bothchannels51 and52 may have the ability to be sealed air tight with or without ancillary device inside channel lumen. Channel53 may attach to cannula10 and in fluid communication withsystem1, through whichundesirable material24 may exit.
Cannula10 of the present invention may be of any sufficient size, so long as it can be accommodated within a predetermined vessel, such as a medium to large size blood vessel. The size ofcannula10 may also be determined by the size of the undesirable material to be removed, so long as the undesirable material can be removed substantially en bloc without significant fragmentation. In some instances, the diameter of the undesirable material can range from a few millimeters to a few centimeters and the length can be a few centimeters or more. In one embodiment,suction cannula10 may be designed to remove at least 10 cm3of undesirable material substantially en bloc. Of course,cannula10 can be scaled and adapted for use within smaller vessels in the body and for removing a relatively smaller volume or amount undesirable material, if so desired.
Looking again atFIG. 1,system1 can also includefilter device14 in fluid communication with theproximal end13 ofcannula10.Filter device14, in one embodiment, may include aninlet141 through which fluid removed from the site of interest along with the captured undesirable material can be directed fromcannula10.Filter device14 may also include anoutlet142 through which filtered fluid from withindevice14 may be directed downstream ofsystem1. To prevent the undesirable material captured from the site of interest from moving downstream ofsystem1,filter device14 may further include apermeable sheet143 positioned within the fluid flow between theinlet141 and theoutlet142.
Permeable sheet143, in an embodiment, may include a plurality of pores sufficiently sized, so as to permit fluid from the site of interest to flow therethrough, while preventing any undesirable material captured from the site of interest from moving downstream ofsystem1. Examples ofpermeable sheet143 includes coarse netting, fine netting, a screen, a porous filter, a combination thereof, or any other suitable filter material capable of permitting fluid to flow through while impeding movement of the captured undesirable material. It should be noted that, rather than just one, a plurality ofpermeable sheets143 may be used. Alternatively, onepermeable sheet143 may be folded to provide multiple surfaces, similar to an accordion, for use in connection withfilter device14. By using a plurality ofpermeable sheets143 or by foldingsheet143, the number of filtration surfaces through which the fluid must flow increases to enhance filtration and further minimize any occurrence of any undesirable material from moving downstream ofsystem1.
Although apermeable sheet143 is described, it should be appreciated thatfilter device14 may be provided with any design capable of entrapping the undesirable material, while allowing fluid to move therethrough. To that end,filter device14 may include a mechanical trap to remove the undesirable material from the fluid flow. Such a mechanical trap may be any trap known in the art and may be used with or withoutpermeable sheet143.
Still looking atFIG. 1,system1 may also be provided with apump15 designed to generate negative pressure, so as to create a necessary suction force throughcannula10 to pull any undesirable material from the site of interest. In one embodiment, pump15 may include anintake port151 in fluid communication withoutlet142 offilter device14.Intake port151, as illustrated, may be designed to receive filtered fluid fromfilter device14.Pump15 may also be designed to generate the positive pressure, so as to create a necessary driving force to direct fluid throughexit port152 and downstream ofsystem1 for reinfusion of fluid removed from the site of interest back into the body. In an embodiment, the suction force and the drive force may be generated bypump15 simultaneously and may take place continuously or intermittently for a set duration.Pump15, as it should be appreciated, may be any commercially available pump, including those for medical applications and those capable of pumping fluids, such as blood. Examples of such a pump includes a kinetic pump, such as a centrifugal pump, and an active displacement pump, such as a rollerhead pump.
In an alternate embodiment, an independent vacuum device (not shown), may be provided for generating the necessary suction force at the site of interest, while apump15 may act to generate the necessary driving force for reinfusion purposes. In such an embodiment, pump15 may be in fluid communication with thefilter device14, while the vacuum device may be in fluid communication withsuction cannula10 upstream to thefilter device14. Theindependent pump15 and vacuum device may operate intermittently for a set duration, and if desired, either the vacuum device or pump15 may operate continuously, while the other operates intermittently.
Downstream ofpump15,system1 may further include a second orreinfusion cannula16 in fluid communication with theexit port152 ofpump15.Reinfusion cannula16, in an embodiment, may be designed to permit filtered fluid, directed fromfilter device14 by way ofpump15, to be reinfused back into a patient at a desired site. To that end,reinfusion cannula16 may be designed for placement within the same or different vessel within whichsuction cannula10 may be located.
Reinfusion cannula16, in one embodiment, may be an elongated tube and includes adistal end161 through which cleansed or filtered fluid can be reinfused back into the body. In an embodiment,distal end161 ofreinfusion cannula16 may be designed so that it can be situated in spaced relation to thedistal end11 of thesuction cannula10 whensystem1 is in operation.Reinfusion cannula16 may also include a lumen orpathway162 extending along its body portion to provide a passage along which the filtered fluid, such as blood, may be transported to a reinfusion site.Reinfusion cannula16 may further include aproximal end163 in opposing relations to thedistal end161, and through which the filtered fluid frompump15 may enter into thecannula16.
Furthermore, similar tosuction cannula10, sincereinfusion cannula16 may be designed for introduction into the vasculature, and may need to be maneuvered therealong,reinfusion cannula16, in one embodiment, may be made from a pliable material. In one embodiment,reinfusion cannula16 may be constructed from a biocompatible material, such as polyvinyl chloride, polyethylene, polypropylene, polyurethane, polyether block amide (Pebax®), silicone, or a combination thereof. In certain instances, it may be desirable to maneuverreinfusion cannula16 to the reinfusion site using image guidance, for example, using fluoroscopy or echocardiography. To permitreinfusion cannula16 to be visualized,reinfusion cannula16, in an embodiment, may also be made to include a radioopaque material.
Sincereinfusion cannula16 may be made from a pliable material, in order to efficiently direct it along a vessel to the reinfusion site,reinfusion cannula16 may be reinforced to optimize maneuverability within the vessel without kinking. Moreover as shown inFIG. 4B,reinfusion cannula16 may be provided with one or more additional lumens. With a multi-lumen design,lumen162, as noted above, may act to provide a passage along which the filtered fluid may be transported and directed to the reinfusion site.Lumen42, on the other hand, can provide a passage through which a guide wire can be inserted to assist in the guiding thereinfusion cannula16 to the reinfusion site, or through which other instruments and devices may be inserted for various surgical procedures. With such a multi-lumen design,reinfusion cannula16 can serve as an introducer sheath by providinglumen42 through which these instruments can pass, while filtered blood can be reinfused throughlumen162. Although illustrated with such a multi-lumen design, any other multi-lumen design may be possible.
Although illustrated as a separate component fromsuction cannula10, in certain embodiments, thereinfusion cannula16 may be designed to be substantially integral withsuction cannula10. In one embodiment, as illustrated inFIG. 4C,reinfusion cannula16 may be incorporated as part of a double ormulti-lumen introducer sheath43 for insertion into the same vessel within which thesuction cannula10 may be situated. In particular,suction cannula10 may be inserted and maneuvered through onelumen44 ofsheath43, whilereinfusion cannula16 may be in fluid communication withlumen45 ofsheath43. In such an embodiment,lumen45 may include adistal end451 in spaced relations to thedistal end11 ofcannula10, so that cleansed or filtered fluid may be introduced to the reinfusion site away from the site of interest where thedistal end11 ofcannula10 may be positioned.
Alternatively, as illustrated inFIG. 4D,reinfusion cannula16 may be incorporated as part of a double ormulti-lumen introducer sheath43 where thereinfusion cannula16 and thesuction cannula10 may be concentrically aligned along a shared axis A. In the embodiment shown inFIG. 4D,reinfusion cannula16 may have a diameter that can be relatively larger than that ofsuction cannula10. To that end,reinfusion cannula16 can accommodatesuction cannula10 withinpathway162 of thereinfusion cannula16, and allowsuction cannula10 to extend from withinpathway162, such that thedistal end11 ofsuction cannula10 may be positioned in spaced relations relative to thedistal end161 ofreinfusion cannula16. The spaced relations betweendistal end161 anddistal end11 allows filtered fluid to be introduced to the reinfusion site away from the site of interest, where the removal of the undesirable material may be occurring.
In another embodiment,reinfusion cannula16 andsuction cannula10 can be integrated into a single multi-lumen suction-reinfusion cannula46, as shown inFIG. 4E. In the embodiment shown inFIG. 4E,multi-lumen cannula46 may include adistal suction port461 through which undesirable material from the site of interest can be removed, and aproximal reinfusion port462 through which cleansed or filtered fluid may be reinfused back into the body. The spaced relations between thesuction port461 andreinfusion port462 allows filtered fluid to be introduced to the reinfusion site away from the site of interest where the removal of the undesirable material may be occurring.
In an embodiment, the size of the reinfusion cannula, whether independent from the suction cannula, part of a multi-lumen introducer sheath, part of a multi-lumen combined suction-reinfusion cannula, or in concentric alignment with the suction cannula, may be designed so that it can handle a relatively rapid reinfusion of large volumes of fluid bypump15.
With reference now toFIG. 6,system1 may also include areservoir61.Reservoir61, in one embodiment, may be situated in fluid communication betweenfilter device14 and pump15, and may act to transiently collect fluid filtered from the site of interest, prior to the filtered fluid being directed intoreinfusion cannula16. By providing a place to transiently collect fluid,reservoir61 can allow the rate of suctioning (i.e., draining, aspirating) to be separated from rate of reinfusing. Typically, the rate of reinfusion occurs at substantially the same rate of suctioning, as the volume of fluid suctioned from the site of interest gets immediately directed along thesystem1 and introduced right back to the reinfusion site in a patient. However, the availability of a volume of transiently collected fluid inreservoir61 now provides a source from which the amount or volume of fluid being reinfused back into the patient can be adjusted, for example, to be less than that being suctioned from the site of interest, as well as the rate at which fluid can be reinfused back into the patient, for example, at a relatively slower rate in comparison to the rate of suctioning. Of course, if so desired or necessary, the reinfusion rate and volume can be adjusted to be higher, relative to the rate and volume of suction.
In accordance with one embodiment of the present invention,reservoir61 may be a closed or an open container, and may be made from a biocompatible material. In an embodiment wherereservoir61 may be a closed container,system1, likewise, will be a closed system. As a result, pump15 may be used as both a suction source and a driving force to move fluid from the site of interest to the reinfusion site. In such an embodiment, pump15 can generate a suction force independently of or alternately with a driving force to allowreservoir61 collect filtered fluid fromfilter device14. In one embodiment, pump15 may be provided with a gauge in order to measure a rate of flow of the fluid being reinfused.
Alternatively, wherereservoir61 may be an open container,reservoir61, in such an embodiment, may be designed to accommodate both a volume of fluid, typically at the bottom ofreservoir61, and a volume of air, typically at the top ofreservoir61, to provide an air-fluid interface withinreservoir61. As a result, usingpump15 in fluid communication withreservoir61 may not provide the needed driving force and/or suction force to adequately remove the undesirable material and to subsequent reinfuse fluid back into a patient. To address this,system1, in an embodiment, may include a separate and independent vacuum source, in fluid communication with the volume of air at the top ofreservoir61, for providing the necessary suction force from the top area ofreservoir61 where air exists, throughfilter device14, through thedistal end11 ofcannula10, and to the site of interest. A port provided above the fluid level withinreservoir61 may be provided to allow the independent vacuum source to be in fluid communication with the volume of air withinreservoir61.Pump15, on the other hand, may be in fluid communication with the volume of fluid withinreservoir61, and may act to generate the necessary driving force for reinfusion purposes.
It should be appreciated that although shown as separate components, to the extent desired,reservoir61 andfilter device14 may be combined as a single unit.
Still referring toFIG. 6,system1 may further include asecond filter device62 positioned in fluid communication betweenpump15 andreinfusion cannula16.Second filter device62 may act to remove any debris or material (e.g., ranging from smaller than microscopic in size to relatively larger) that may have escaped and moved downstream fromfilter device14, so that the fluid may be substantially cleansed prior to reinfusion. In an embodiment,second filter device62 may include aporous membrane63 whose pores may be measurably smaller than that infilter device14, but still capable of allowing fluid to flow therethrough.
Since fluid such as blood needs to be filtered throughsystem1, it should be noted thatsystem1 and its components may be made from a biocompatible material to minimize any adverse reaction when fluid removed from the site of interest gets reinfused back into the body.
In operation,system1 of the present invention may be introduced into the vasculature, preferably through a peripheral blood vessel, to remove undesirable material, such as a clot, emboli, or thrombi, substantially en bloc and without significant fragmentation, and subsequently reinfusing fluid removed from the site of interest back into a patient. In particular,system1 and its components disclosed above can collectively form a substantially closed circuit through which fluid and an undesirable material from a site of interest can be removed by suction, cleared of the undesirable material, filtered to remove any additional debris, and actively introduced back into a patient at a reinfusion site.
With reference now toFIG. 7, there is shown one embodiment of the system of the present invention being utilized for removal of an undesirable material within apatient700.System70, as illustrated, includes asuction cannula71,filter device72, pump73,second filter device74 andreinfusion cannula75. It should be appreciated that depending on the procedure and to the extent desired,system70 may not need all of the components shown, or may need other components in addition to those shown.
In general the method of the present invention, in one embodiment, includes, initially accessing afirst blood vessel701 either by surgical dissection or percutaneously with, for instance, a needle and guide wire. The first blood vessel through whichsuction cannula71 may be inserted intopatient700 can be, in an embodiment, any blood vessel that can be accessed percutaneously or by surgical dissection such as femoral vein, femoral artery or jugular vein. Next,suction cannula71 may be inserted into thefirst blood vessel701 over the guide wire, and advanced toward a site ofinterest702, for instance, in a second vessel or aheart chamber703 where anundesirable material706 may be residing. The second blood vessel or heart chamber, in an embodiment, can be the main pulmonary artery, branch pulmonary arteries, inferior vena cavae, superior vena cavae, deep veins of the pelvic, legs, arms or neck, aorta, or any other medium to large blood vessel for which the use of a cannula is suitable for removing undesirable material without causing undesirable damage to the blood vessel. In addition, the advancement ofsuction cannula71 may be gauged or documented by fluoroscopic angiography, echocardiography or other suitable imaging modality.
In the case of pulmonary embolism, thesuction cannula71 may normally be introduced through the femoral, jugular or subclavian vein. Alternatively, thesuction cannula71 may be introduced, if desired, directly into the cardiac chambers using a minimally invasive surgical or endoscopic, thoracoscopic, or pericardioscopic approach.
Thereafter, athird blood vessel704 may be accessed either by surgical dissection or percutaneously with, for example, a needle and guide wire. Subsequently,reinfusion cannula75 may be inserted into thethird blood vessel703 using an open or over the guide wire technique. The third blood vessel through which thereinfusion cannula75 may be inserted, in one embodiment, can be any large vein, such as the femoral vein or jugular vein.Reinfusion cannula75 may then be advanced toward a reinfusion site, for example, within afourth blood vessel705. The fourth blood vessel, in one embodiment, can be the femoral vein, iliac vein, inferior vena cava, superior vena cava or right atrium.
Oncereinfusion cannula75 is in place and components ofsystem70 have connected, pump73 may be activated, andsuction cannula71 may then be placed against and in substantial engagement with theundesirable material706 at the site ofinterest702 for removal by suctioning through thesuction cannula71. Theundesirable material706 and circulatory fluid removed from the site ofinterest702 may thereafter be directed alongsuction cannula71 intofilter device72 where theundesirable material706 can be entrapped and removed from the fluid flow. The resulting filtered fluid may next be directed downstream by way ofpump73 into thesecond filter device74, where any debris or material (e.g., ranging from smaller than microscopic in size to relatively larger) that may have escaped and moved downstream fromfilter device74 can be further captured and removed from the fluid flow prior to reinfusion. The resulting cleansed fluid may then be directed into thereinfusion cannula75 and introduced back into thepatient700.
It should be appreciated that in certain instances, prior to connecting thesuction cannula71 and thereinfusion cannula75,system70 may need to be primed with fluid to minimize or eliminate any air and/or air bubbles from the system prior to the initiation of suction and reinfusion. To that end, thesuction cannula71 andreinfusion cannula75 can be primed separately with fluid or by allowing blood to backfill the cannulae after insertion. The remaining components of thesystem70 including all tubing, thefilter device72, thepump73 and any other components ofsystem70 may also need to be primed with fluid prior to connecting them to the cannulae. In one embodiment, this can be achieved by temporarily connecting these components in fluid communication with other as a closed circuit and infusing fluid through a port, similar toport51 inFIG. 5, while providing another port through which air can be displaced. Once these components have been fully primed with fluid, the circuit can be detached and connected to the primedsuction cannula71 andreinfusion cannula75 in the appropriate configuration. Examples of a priming fluid include crystalloid, colloid, autologous or heterologous blood, among others.
During operation, pump73, in one embodiment, may remain activated so that suction and continuous reinfusion of blood can occur continuously for a desired duration or until the removal of the undesirable material has been confirmed, for instance, by visualizing the captured undesirable material in thefilter device72. Alternatively pump73 can be activated intermittently in short pulses, either automatically or manually by an operator (e.g., surgeon, nurse or any operating room attendant), for a desired duration or until the removal of the undesirable material has been confirmed by visualization of the material withinfilter device72.
It should be appreciated that sincesuction cannula71 may be deployed within any vessel withinpatient700, depending on the procedure, in addition to being placed substantially directly against the undesirable material at the site of interest,suction cannula71 may be deployed at a location distant from the site of interest where direct engagement with the undesirable material may not be possible or desired.
In a situation where thesuction cannula71 is positioned within a vessel exhibiting a venous flow and at a distant location from the undesirable material, it may be desirable to place the distal end ofsuction cannula71 downstream of the undesirable material, so that the fluid flow can push the undesirable material from the site of interest intosuction cannula71 during suction. To the extent there may be some difficulties with suctioning the undesirable material from its location, if necessary, a catheter may be deployed throughsuction cannula71 and to the site of interest, where the undesirable material may be dislodged location for subsequent removal.
On the other hand, whensuction cannula71 is positioned within a vessel exhibiting arterial flow and at a distant location from the undesirable material, it may be necessary to place the distal end ofsuction cannula71 upstream of the undesirable material for the purposes of removal, even though the undesirable material must move against the fluid flow in order to enter into thesuction cannula71. In such a situation, since the fluid flow in the vessel tends to exert a pressure against the undesirable material at the site of interest, and thus may make the undesirable material difficult to remove,suction cannula71 may include a flow occlusion mechanism, similar toballoon33 shown inFIG. 3. When expanded radially, the mechanism can substantially occlude the vessel, such that pressure being exerted on the downstream material by the fluid flow can be lessened. By lessening the pressure on the undesirable material to be removed, the suction force being applied at the site of interest can act to remove the material more easily. Again, if necessary, a catheter may be deployed throughsuction cannula71 and to the site of interest, where the undesirable material may be dislodged or drawn back into the cannula to facilitate its removal.
The method of the present invention may also utilize a fluid reservoir, similar toreservoir61 shown inFIG. 6, in connection withsystem70. Such a reservoir may be placed in fluid communication betweenfilter device72 andpump73. The reservoir, in an embodiment, may be an independent reservoir or may be integrated withfilter device72 as a single unit, similar to that shown inFIG. 7. By utilizing a reservoir, a volume of transiently collected fluid may be used to independently control the rate or volume of suctioning (i.e., draining, aspirating) and/or the rate or volume of reinfusion.
In an embodiment where the reservoir may be an open container, it should be appreciated thatsystem70 may not be a substantially closed system. As a result, rather than utilizing a pump that can generate both a suction and a driving force for a closed system, anindependent vacuum device76 may be employed to generate the necessary suction force, from the top of the reservoir where a volume of air exists, for removal of the undesirable material, whileindependent pump73 may be employed to generate the necessary driving force, from the bottom of the reservoir where a volume of aspirated fluid exists, for reinfusion.
The method of the present invention may also utilize asuction cannula71 with a deployable funnel tip, similar to funnel20 inFIG. 2 or inFIG. 3. In such an embodiment, the funnel may be deployed aftersuction cannula71 has been positioned adjacent the site of interest. Thereafter, once the suction force has been activated, the funnel may be advanced to engage the undesirable material for removal. The funnel may remain deployed while the suction force is activated, and through multiple cycles, if necessary, until the undesirable material can be removed. Subsequently, the funnel may be retracted in order to reposition or removesuction cannula71. In instances where the undesirable material is attached to the vascular wall or a foreign object, or is difficult to remove for other reasons, the rigidity offunnel20 can be enhanced to help dislodge the undesirable material as shown inFIGS. 2I-2L. As discussed above, when the suction force (from suction cannula71) acts upon themicrospheres28 in funnel20 (betweenwalls27 or within veins210) to pull them together, a substantially continuous structure ofmicrospheres28 can be formed to providefunnel20 with enhanced rigidity. Aballoon dilator22 can also be used to help shape and/or reinforcefunnel20. When a sufficient level of rigidity and the desired shape are achieved, funnel20 can be used to mechanically sheer or dislodge the attached undesirable materials. In particular, funnel20 can be placed against undesirable material which can be pushed or scraped until it becomes dislodged. After the undesirable material is dislodged and removed, the funnel may be retracted in order to reposition or removesuction cannula71.
The method of the present invention may further utilizereinfusion cannula75 that has been incorporated into an introducer sheath, such assheath43 as a multi-lumen cannula (FIG. 4C) or as one which concentrically aligns the suction cannula and reinfusion cannula (FIG. 4D). In this embodiment, the sheath/reinfusion cannula75 may initially be inserted into a first blood vessel.Suction cannula71 may then be inserted into the introducer lumen of the sheath/reinfusion cannula75, and the assembly advanced together to a site of interest in a second blood vessel or heart chamber.
The method of the present invention may also further utilize a combined multi-lumen suction/reinfusion cannula, similar tocannula46 shown inFIG. 4E. In such an embodiment, the combined suction/reinfusion cannula may initially be inserted into a first blood vessel to a location where its distal suction lumen can be placed adjacent the site of interest within a second blood vessel, while its proximal located reinfusion lumen can be positioned at an appropriately spaced location from the suction lumen.
The method of the present invention may, in an embodiment, be employed to remove a plurality of undesirable materials, for instance, within the same vessel or its branches, from multiple vessels within the same vascular bed (e.g. left and right pulmonary arteries), from different vascular beds (e.g. pulmonary artery and iliofemoral veins), or a combination thereof. In such an embodiment, after the first undesirable material has been removed, the suction force may be deactivated. The next undesirable material to be removed may then be located, for example, using an appropriate imaging modality.Suction cannula71 may thereafter be advanced to the location of this second undesirable material, and the suction force reactivated as above until this second undesirable material may be removed. The cycle may be repeated until each undesirable material at the various identified locations has been removed. Once all undesirable material has been removed, an appropriate procedure to prevent the development of or migration of new material, such as placement of an inferior vena cava filter, may be performed.
The method of the present invention may also be employed in combination with a balloon embolectomy catheter or other devices suitable for dislodging clots or other undesirable material from a cannula or a vessel. For example, should an undesirable material be lodged withinsuction cannula71, a balloon catheter can be inserted through, for instance, a side port, similar toport51 inFIG. 5, ofsuction cannula71 and advanced past the lodged undesirable material. The balloon catheter may subsequently be inflated distal to the undesirable material. Once inflated, the suction force may be activated and the inflated catheter withdrawn along thesuction cannula71 to dislodge the undesirable material its location of obstruction. In a situation where the undesirable material may be adherent to a vessel wall, or for some other reason cannot be dislodged by simply applying suction to the site of interest, the balloon catheter can be inserted through the side port ofsuction cannula71, advanced past a distal end ofcannula71, and past the adherent undesirable material. The balloon catheter may then be inflated distal to the undesirable material. Once inflated, the suction force may be activated and the inflated catheter withdrawn along thesuction cannula71. As it is withdrawn, the balloon catheter can act to drag the undesirable material intosuction cannula71.
The method of the present invention may further be employed in combination with a distal protection device (not shown), such as a netting device, designed to be positioned downstream of the undesirable material, when removal may be performed within a vessel having arterial flow. In particular, withsuction cannula71 positioned upstream of the undesirable material, the netting device may be inserted through a side port insuction cannula71, advanced past the undesirable material to a downstream location. The netting device may then be deployed to an open position approximating the diameter of the vessel. The deployed netting device may then act to entrap any material that may be dislodged from the site of interest and pushed downstream by the fluid flow. In the absence of the netting device, a dislodged material may be pushed downstream and may be lodged in a more life threatening location.
It is evident from the above description that the systems, including the various components, and methods of the present invention can act to remove clots and other types of undesirable material from the circulation, particularly from medium to larger vessels and heart chambers. Important to achieving this includes the ability of the operator to perform substantially en bloc removal of the undesirable material without significant fragmentation from the site of interest. Such a protocol may only be achieved previously with invasive, open surgery. In addition, by providing a system with components to permit aspirated fluid from the site of interest to be reinfused back to the patient, the system of the present invention allows a sufficiently and relatively large suction cannula to be employed for the removal of a relatively largeundesirable material15 in substantially one piece, without fragmentation. Furthermore, by providing a definitive mechanical treatment to the problem, the systems and methods of the present invention provide an attractive alternative to treatments, such as thrombolysis, which may not be an option or may be ineffective for many patients, and which may carry a significant risk of major complications. As such, the systems and methods of the present invention now provide a significant contribution to the field of cardiovascular medicine and surgery, particularly thromboembolic disease.
Although references have been made in connection with surgical protocols, it should be appreciated that the systems and methods of the present invention may be adapted for use in connection with non-surgical protocols, and in connection with any vessel capable of permitting fluid flow therethrough and capable of being obstructed. For instance, the system of the present invention may be adapted for use in connection with clearing obstructed oil pipelines, water pipes, and air ducts, among others.
While the present invention has been described with reference to certain embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt to a particular situation, indication, material and composition of matter, process step or steps, without departing from the spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.