RELATED APPLICATIONSThis application is related to and claims priority to U.S. Provisional Application Ser. No. 61/286,760, filed Dec. 15, 2009 and to U.S. Provisional Application Ser. No. 61/286,771 filed Dec. 15, 2009, and is related to U.S. patent application Ser. No. 12/770,557, filed Apr. 29, 2010. The entire contents of the aforementioned applications are expressly incorporated herein by reference in their entirety.
BACKGROUNDAutomatic injection devices offer an alternative to manually-operated syringes for delivering therapeutic agents into patients' bodies and allowing patients to self-administer injections. Automatic injection devices have been used to deliver medications under emergency conditions, for example, to administer epinephrine to counteract the effects of a severe allergic reaction. Automatic injection devices have also been described for use in administering anti-arrhythmic medications and selective thrombolytic agents during a heart attack (See, e.g., U.S. Pat. Nos. 3,910,260; 4,004,577; 4,689,042; 4,755,169; and 4,795,433). Various types of automatic injection devices are also described in, for example, U.S. Pat. Nos. 3,941,130; 4,261,358; 5,085,642; 5,092,843; 5,102,393; 5,267,963; 6,149,626; 6,270,479; and 6,371,939; and International Patent Publication No. WO/2008/005315.
Conventionally, an automatic injection device houses a syringe and, when operated, causes the syringe to move forwardly and a needle to project from the housing so that a therapeutic agent contained in the syringe is ejected into a patient's body. An automatic injection device typically includes a plunger with a distal end that is seated on a firing body before firing. In order to fire the device, a patient depresses a firing button which disengages the distal end of the plunger from the firing body and that allows the plunger to move the syringe forwardly.
Certain conventional devices may fail to fire or may fire after a delay if the firing button is not depressed with sufficient force, for example in the case of a rheumatic patient who is unable to exert high forces on the firing button. Even when a sufficient force is applied to the firing button, certain conventional devices may fail to fire or may fire after a delay due to conventional configurations of one or more structural components of the devices. These problematic firing patterns or misfires, i.e., failing to fire or firing with a delay, may be referred to as delayed delivery of an injection.
SUMMARYIn accordance with one exemplary embodiment, a firing button is provided for use in an automatic injection device that prevents or eliminates a misfiring of the automatic injection device that causes a delay in the delivery of an injection to the user. The firing button avoids a misfiring of the automatic injection device, the misfiring causing a delayed delivery of an injection. The unacceptable delay in the delivery of the injection can range from one second to several hours. The firing button includes an outer portion configured for contact by a user of the automatic injection device to allow the user to depress the outer portion toward a distal end of the automatic injection device. The firing button also includes an inner ring coupled to the outer portion and provided in proximity to a bifurcated end of a plunger in the automatic injection device. The inner ring is configured to engage the bifurcated end of the plunger when the outer portion is depressed by the user. The inner ring has an inner diameter of between 6.0 mm and 6.7 mm.
In accordance with another exemplary embodiment, an automatic injection device free of delayed delivery of an injection is provided. The automatic injection device avoids a misfiring, the misfiring causing a delayed delivery of an injection. A proximal end of the device is configured to deliver a dose, and a distal end of the device may be configured to be controllable by a user. The automatic injection device includes a firing body provided at the distal end of the automatic injection device. The firing body includes a hollow tubular member having a bore, and a radial surface extending from a distal portion of the hollow tubular member. The automatic injection device includes a plunger having a longitudinally extending plunger arm and a radially extending plunger foot, the plunger arm extending through the bore of the hollow tubular member of the firing body, and the plunger foot seated on the radial surface of the firing body. The automatic injection device includes a firing button provided at the distal end of the automatic injection device. The firing button has an inner ring having an inner diameter of between 6.0 mm and 6.7 mm provided in proximity to the plunger foot. The inner ring is configured to contact the plunger foot and to disengage the plunger foot from the radial surface of the firing body to allow the plunger to move through the bore of the hollow tubular member of the firing body, when the firing button is activated by the user.
In accordance with another exemplary embodiment, a firing button is provided for use in an automatic injection device free of delayed delivery of an injection. The firing button avoids a misfiring of the automatic injection device, the misfiring causing a delayed delivery of an injection. The firing button includes an outer portion configured for contact by a user of the automatic injection device to allow the user to depress the outer portion toward a distal end of the automatic injection device. The firing button includes an inner ring coupled to the outer portion and provided in proximity to a bifurcated end of a plunger in the automatic injection device. The inner ring is configured to engage the bifurcated end of the plunger when the outer portion is depressed by the user. The inner ring has a minimum wall thickness configured to reduce deformation of the inner ring when the inner ring engages with the bifurcated end of the plunger.
In accordance with another exemplary embodiment, a method for forming a firing button for use in an automatic injection device free of delayed delivery of an injection. The firing button avoids a misfiring of the automatic injection device, the misfiring causing a delayed delivery of an injection. The method includes forming an outer portion for contact by a user of the automatic injection device to allow the user to depress the outer portion toward a distal end of the automatic injection device. The method includes forming an inner ring having an inner diameter of between 6.0 mm and 6.7 mm. The inner ring is configured to engage the bifurcated end of the plunger when the outer portion is depressed by the user. The method includes coupling the inner ring to the outer portion in proximity to a bifurcated end of a plunger in the automatic injection device.
In accordance with another exemplary embodiment, a method is provided for forming an automatic injection device free of delayed delivery of an injection. The automatic injection device avoids a misfiring, the misfiring causing a delayed delivery of an injection. The method includes providing a firing body at the distal end of the automatic injection device. The firing body includes a hollow tubular member having a bore and a radial surface extending from a distal portion of the hollow tubular member. The method includes extending a longitudinally extending plunger arm of a plunger through the bore of the hollow tubular member of the firing body, and seating a plunger foot provided at a distal end of the plunger on the radial surface of the firing body. The method includes providing a firing button at the distal end of the automatic injection device in proximity to the plunger foot, the firing button comprising an inner ring having an inner diameter of between 6.0 mm and 6.7 mm, the inner ring of the firing button configured to contact the plunger foot and to disengage the plunger foot from the radial surface of the firing body to allow the plunger to move through the bore of the hollow tubular member of the firing body, when the firing button is activated by the user.
In accordance with another exemplary embodiment, a method is provided for using an automatic injection device free of delayed delivery of an injection to deliver a dose. The automatic injection device avoids a misfiring, the misfiring causing a delayed delivery of an injection. The method includes depressing a firing button provided at a distal end of the automatic injection device, and engaging an inner ring of the firing button with a plunger foot to disengage the plunger foot from a surface of a firing body. The inner ring has an inner diameter ranging between 6.0 mm and 6.7 mm. The method includes moving the plunger through a bore of a hollow tubular member of the firing body when the plunger foot is disengaged from the firing body, transmitting an expulsion force to a bung using the moving plunger, and expelling the dose from a syringe using the expulsion force applied to the bung.
BRIEF DESCRIPTION OF THE DRAWINGSThe foregoing and other objects, aspects, features and advantages of exemplary embodiments will be more fully understood from the following description when read together with the accompanying drawings, in which:
FIG. 1 illustrates a perspective view of an exemplary automatic injection device in which caps that cover proximal and distal ends of the housing are removed.
FIG. 2 illustrates a perspective view of the exemplary automatic injection device ofFIG. 1 in which the housing is capped.
FIG. 3 (prior art) illustrates a cross-sectional schematic view of an exemplary automatic injection device prior to use.
FIG. 4 (prior art) illustrates a cross-sectional schematic view of the exemplary automatic injection device ofFIG. 3 during a subsequent stage of operation.
FIG. 5 (prior art) illustrates a cross-sectional schematic view of the exemplary automatic injection device ofFIGS. 3 and 4 during an additional stage of operation.
FIG. 6 illustrates a perspective view of an exemplary automatic injection device with a syringe housing assembly and a firing mechanism assembly.
FIG. 7 illustrates a perspective view of the firing mechanism assembly of the exemplary automatic injection device ofFIG. 6.
FIG. 8 illustrates a perspective view of a syringe actuation component of the exemplary firing mechanism assembly ofFIG. 7.
FIG. 9 illustrates a perspective view of the syringe housing assembly of the exemplary automatic injection device ofFIG. 6.
FIGS. 10A and 10B illustrate cross-sectional views of an exemplary assembled automatic injection device at 90° offset angles from each other, in which the syringe housing assembly and the firing mechanism assembly are coupled together, provided in accordance with exemplary embodiments.
FIGS. 11A-11C illustrate cross-sectional views of the syringe actuation component of the firing mechanism assembly ofFIG. 7, provided in accordance with exemplary embodiments, showing the position of the plunger arms at various stages of actuation.
FIG. 12 illustrates a cross-sectional view of an exemplary automatic injection device, provided in accordance with exemplary embodiments.
FIG. 13 illustrates a cross-sectional schematic view of the distal end of the firing mechanism assembly ofFIG. 7, provided in accordance with exemplary embodiments.
FIG. 14 illustrates a cross-sectional schematic outline of a plunger arm at the distal end of the firing mechanism assembly ofFIG. 13, provided in accordance with exemplary embodiments.
FIG. 15A provides a perspective view of a control plunger with an initial contact surface (ICS) angle of about 38°.
FIG. 15B provides a perspective view of an exemplary plunger with a mid point fixed (MPF) configuration and an ICS angle of about 48°.
FIG. 16A provides a perspective view of a control plunger with an ICS angle of about 38°.
FIG. 16B provides a perspective view of an exemplary plunger with a top point fixed (TPF) configuration and an ICS angle of about 48°.
FIG. 17A illustrates a schematic diagram of an exemplary plunger arm having an MPF configuration and an ICS angle of about 48°. In this example, the plunger arm has a secondary contact surface (SCS) angle of about 23°.
FIG. 17B illustrates a schematic diagram of an exemplary plunger arm having a TPF configuration and an ICS angle of about 48°. In this example, the plunger arm has an SCS angle of about 9.4°.
FIG. 18A illustrates an external perspective view of an exemplary firing button.
FIG. 18B illustrates an internal perspective view of an exemplary firing button.
FIG. 18C illustrates a cross-sectional view of an exemplary firing button taken along the longitudinal axis.
FIG. 18D illustrates a frontal view of an exemplary firing button.
FIG. 19A illustrates a cross-sectional view of an exemplary firing body taken along the longitudinal axis.
FIG. 19B illustrates a cross-sectional view of an exemplary distal end of the firing body ofFIG. 19A.
FIG. 20 illustrates an exemplary force profile illustrating forces in N (y-axis) against the distance in mm (x-axis).
FIG. 21 illustrates four exemplary force profiles illustrating forces in N (y-axis) against the distance in mm (x-axis).
FIG. 22 illustrates four exemplary force profiles illustrating forces in N (y-axis) against the distance in mm (x-axis).
FIG. 23 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times (x-axis), for theWaterShed™ 11120 resin plunger and the firing button ring inner diameter of about 6.6 mm.
FIG. 24 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times (x-axis), for theWaterShed™ 11120 resin plunger and the firing button ring inner diameter of about 6.8 mm.
FIG. 25 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring inner diameters (x-axis) for theWaterShed™ 11120 resin plunger.
FIG. 26 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin plunger.
FIG. 27 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin plunger.
FIG. 28 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin plungers.
FIG. 29 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring inner diameters (x-axis) for theWaterShed™ 11120 resin plunger.
FIG. 30 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin plunger.
FIG. 31 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin plungers.
FIG. 32 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring lengths (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin plungers.
FIG. 33 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring lengths (x-axis) for theWaterShed™ 11120 resin plunger.
FIG. 34 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times and against different firing button ring lengths (x-axis) for theProtoTherm™ 12120 resin plunger.
FIG. 35 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring lengths (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin plungers.
FIG. 36 illustrates a 3D scatterplot of delayed delivery times in seconds (z-axis) against different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis).
FIG. 37 illustrates a 2D section ofFIG. 36 viewed from the x-z plane along the y-axis, which shows that the delayed delivery times decrease with increasing firing button ring lengths.
FIG. 38 illustrates a 2D section ofFIG. 36 viewed from the y-z plane along the x-axis, which shows that the delayed delivery times decrease with decreasing firing button ring inner diameters.
FIG. 39 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring inner diameters in mm (x-axis). A delayed delivery of about 1 second occurred at about 6.86 mm inner diameter.
FIG. 40 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring inner diameters in mm (x-axis).
FIG. 41 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring lengths in mm (x-axis).
FIG. 42 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring lengths in mm (x-axis).
FIG. 43 illustrates a scatterplot of firing button ring lengths in mm (y-axis) against firing button ring inner diameters in mm (x-axis).
FIG. 44 illustrates a scatterplot of tested devices with different firing button ring lengths in mm (y-axis) and firing button ring inner diameters in mm (x-axis).
FIG. 45 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.45 mm.
FIG. 46 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.55 mm.
FIG. 47 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.65 mm.
FIG. 48 illustrates a histogram of the threshold strain in mm (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for SIM firing buttons.
FIG. 49 illustrates a sectional view taken through a firing body along the longitudinal axis, in which exemplary conical surface angles of about 6, about 12 and about 18 degrees are shown.
FIG. 50A illustrates a perspective view of the design of a tabbed foot of a commercial plunger with an ICS angle of about 38 degrees.
FIG. 50B illustrates a perspective view of the design of a tabbed foot of a MPF SIM plunger with an ICS angle of about 48 degrees.
FIG. 50C illustrates a perspective view of the design of a tabbed foot of a TPF SIM plunger with an ICS angle of about 48 degrees.
FIG. 51 illustrates a histogram of the number and percentage of devices that experienced delayed delivery (y-axis) over different CSA values and different plunger types (x-axis).
FIG. 52 illustrates a sectional view of an exemplary tunnel of a firing body taken along a longitudinal axis
FIG. 53 illustrates a histogram of designed and actual tunnel entrance diameters in mm (y-axis) against different firing body materials (x-axis).
FIG. 54 illustrates a histogram of the number of devices (y-axis) against different actual (measured) tunnel entrance diameters in mm (x-axis) for exemplary firing bodies.
FIG. 55 illustrates a scatterplot of different exemplary firing button ring lengths in mm (y-axis) against different exemplary firing button ring inner diameters in mm (x-axis) for devices tested to determine the effect of the firing body tunnel entrance diameter on delayed delivery.
FIG. 56 illustrates a contour plot of firing body tunnel entrance diameters in mm (represented in the legends) against firing button ring lengths in mm (y-axis) and firing button ring inner diameters in mm (x-axis).
FIG. 57 illustrates a sectional view of a tunnel of a firing body taken along a longitudinal axis, showing the tunnel and the tunnel entrance of the firing body.
FIG. 58 illustrates a histogram of designed and actual tunnel entrance diameters in mm (y-axis) against different firing body materials (x-axis).
FIG. 59 illustrates a histogram of the number of devices (y-axis) against different actual (measured) tunnel entrance diameters in mm (x-axis) for exemplary firing bodies.
FIG. 60 illustrates a scatterplot of different exemplary firing button ring lengths in mm (y-axis) against different exemplary firing button ring inner diameters in mm (x-axis) for devices tested to determine the effect of the firing body tunnel entrance diameter on delayed delivery.
FIG. 61A illustrates a plunger with a rounded or blunt tip.
FIG. 61B illustrates a plunger with an ICS angle of about 38 degrees and a sharp tip.
FIG. 61C illustrates a plunger with an ICS angle of about 48 degrees and a sharp tip.
FIG. 62 illustrates force profiles generated by testing the plungers ofFIG. 61A-61C.
FIG. 63 illustrates a scatterplot of different firing button ring lengths in mm (y-axis) and ring inner diameters in mm (x-axis).
FIG. 64 illustrates a frontal view of a control firing button ring with an inner diameter of about 6.80 mm.
FIG. 65 illustrates a frontal view of the “G” firing button ring with an inner diameter of about 6.50 mm.
FIG. 66 illustrates a frontal view of the “H” firing button ring with an inner diameter of about 6.65 mm.
FIG. 67 illustrates a frontal view of the “I” firing button ring with an inner diameter of about 6.95 mm.
FIG. 68 illustrates a scatterplot of force to fire (FtF) values in N (y-axis) against plunger width values in mm (x-axis) for plungers formed of theHostaform™ C 13031 acetal (POM) copolymer plastic material at different mold temperatures and different cooling times.
FIG. 69 illustrates a histogram of mean FtF values in N (y-axis) and standard deviation of FtF values in N (y-axis) against combinations of different plunger materials, different mold temperatures in F and different cooling times in seconds (x-axis).
FIG. 70 illustrates a cubic data plot of FtF values in N (provided in boxes) for different plunger materials, different mold temperatures in F and different cooling times in seconds.
FIG. 71 illustrates a scatterplot of FtF values in N (y-axis) against different plunger weights in grams (x-axis).
FIG. 72 illustrates a scatterplot of plunger width values in mm (y-axis) against different plunger weights in grams (x-axis).
FIG. 73 illustrates a cubic data plot of FtF values in N and plunger width values in mm for different plunger weights in grams.
FIG. 74 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 750×103psi and a second stage injection pressure of about 500×103psi.
FIG. 75 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 1600×103psi and a second stage injection pressure of about 800×103psi.
FIG. 76 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 900×103psi and a second stage injection pressure of about 750×103psi.
FIG. 77 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 1600×103psi and a second stage injection pressure of about 900×103psi.
DETAILED DESCRIPTIONExemplary embodiments minimize or eliminate a misfire of an automatic injection device that causes a delay in the delivery of an injection to a user. Exemplary automatic injection devices ensure consistent successful firing of the automatic injection devices. Exemplary embodiments provide, in part, firing mechanism assemblies that minimize or eliminate a misfire that causes a delay in delivery of an injection. In some cases, the unacceptable delay in delivery can range from four seconds to several hours. Exemplary embodiments provide, automatic injection devices including firing mechanism assemblies that minimize or eliminate the delayed delivery of an injection once the firing button is depressed, methods for minimizing or eliminating the delayed delivery of an injection in automatic injection devices once the firing button is depressed, and methods for using automatic injection devices that minimize or eliminate delayed delivery of an injection to deliver a substance into a patient's body. Automatic injection devices provided in accordance with exemplary embodiments may be used for administering any type of substance into a patient's body including, but not limited to, liquid therapeutic agents, e.g., adalimumab (HUMIRA®), golimumab, etc.
The delayed delivery of an injection once the firing button is depressed exhibited by a misfired automatic injection device may be affected by one or more factors associated with the device, the patient activating the device, the manufacturing process of the device, the environment in which the device is stored, etc. Exemplary factors associated with the misfire of the device may include the structure, configuration and/or material of one or more of the following components: the inner ring of a firing button ring, the length of a firing button ring, the diameter of a firing body tunnel, the angle of a firing body conical surface, the height of a plunger foot, the width of a plunger foot, etc.
Exemplary factors of the misfire of the device associated with the patient activating the device may include, but are not limited to, the force applied by the patient on the firing button of the device, the distance from a starting position over which the patient depresses the firing button of the device, etc. Exemplary factors of the misfire of the device associated with the manufacturing process of the device may include, but are not limited to, the mold temperature used in molding one or more components (e.g., the plunger) of the device, the cooling time used in molding one or more components (e.g., the plunger) of the device, etc. Exemplary factors of the misfire of the device associated with the environment in which the device is stored may include, but are not limited to, the age of the device or the components of the device, the post-assembly time of the device, the temperature of the environment, the humidity of the environment, etc.
Exemplary embodiments may configure one or more of the above factors and optionally additional factors to minimize or eliminate misfiring or the delay in delivery of an injection to a user of an exemplary automatic injection device. For example, in a surprising result, the inner diameter of the firing button ring may be decreased to minimize or eliminate the delay in delivery of an injection in exemplary automatic injection devices. In another surprising result, the length of the firing button ring may be increased to minimize or eliminate the delay in delivery of an injection in exemplary automatic injection devices.
I. DEFINITIONSCertain terms are defined in this section to facilitate understanding of exemplary embodiments.
The automatic injection device, e.g., autoinjector pen, of exemplary embodiments may include a “therapeutically effective amount” or a “prophylactically effective amount” of an antibody or antibody portion of the invention. A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the antibody, antibody portion, or other TNFα inhibitor may vary according to factors such as the disease state, age, sex, and weight of the patient, and the ability of the antibody, antibody portion, or other TNFα inhibitor to elicit a desired response in the patient. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody, antibody portion, or other TNFα inhibitor are outweighed by the therapeutically beneficial effects. A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in patients prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
The term “substance” refers to any type of drug, biologically active agent, biological substance, chemical substance or biochemical substance that is capable of being administered in a therapeutically effective amount to a patient employing exemplary automatic injection devices. Exemplary substances include, but are not limited to, agents in a liquid state. Such agents may include, but are not limited to, adalimumab (HUMIRA®) and proteins that are in a liquid solution, e.g., fusion proteins and enzymes. Examples of proteins in solution include, but are not limited to, Pulmozyme (Dornase alfa), Regranex (Becaplermin), Activase (Alteplase), Aldurazyme (Laronidase), Amevive (Alefacept), Aranesp (Darbepoetin alfa), Becaplermin Concentrate, Betaseron (Interferon beta-1b), BOTOX (Botulinum Toxin Type A), Elitek (Rasburicase), Elspar (Asparaginase), Epogen (Epoetin alfa), Enbrel (Etanercept), Fabrazyme (Agalsidase beta), Infergen (Interferon alfacon-1), Intron A (Interferon alfa-2a), Kineret (Anakinra), MYOBLOC (Botulinum Toxin Type B), Neulasta (Pegfilgrastim), Neumega (Oprelvekin), Neupogen (Filgrastim), Ontak (Denileukin diftitox), PEGASYS (Peginterferon alfa-2a), Proleukin (Aldesleukin), Pulmozyme (Dornase alfa), Rebif (Interferon beta-1a), Regranex (Becaplermin), Retavase (Reteplase), Roferon-A (Interferon alfa-2), TNKase (Tenecteplase), and Xigris (Drotrecogin alfa), Arcalyst (Rilonacept), NPlate (Romiplostim), Mircera (methoxypolyethylene glycol-epoetin beta), Cinryze (C1 esterase inhibitor), Elaprase (idursulfase), Myozyme (alglucosidase alfa), Orencia (abatacept), Naglazyme (galsulfase), Kepivance (palifermin) and Actimmune (interferon gamma-1b).
A protein in solution may also be an immunoglobulin or antigen-binding fragment thereof, such as an antibody or antigen-binding portion thereof. Examples of antibodies that may be used in an exemplary automatic injection device include, but are not limited to, chimeric antibodies, non-human antibodies, human antibodies, humanized antibodies, and domain antibodies (dAbs). In an exemplary embodiment, the immunoglobulin or antigen-binding fragment thereof, is an anti-TNF
and/or an anti-IL-12 antibody (e.g., it may be a dual variable domain immunoglobulin (DVD) Ig™). Other examples of immunoglobulins or antigen-binding fragments thereof that may be used in the methods and compositions of exemplary embodiments include, but are not limited to, 1D4.7 (anti-IL-12/IL-23 antibody; Abbott Laboratories); 2.5(E)mg1 (anti-IL-18; Abbott Laboratories); 13C5.5 (anti-IL-13 antibody; Abbott Laboratories); J695 (anti-IL-12; Abbott Laboratories); Afelimomab (
Fab 2 anti-TNF; Abbott Laboratories); HUMIRA (adalimumab) Abbott Laboratories); Campath (Alemtuzumab); CEA-Scan Arcitumomab (fab fragment); Erbitux (Cetuximab); Herceptin (Trastuzumab); Myoscint (Imciromab Pentetate); ProstaScint (Capromab Pendetide); Remicade (Infliximab); ReoPro (Abciximab); Rituxan (Rituximab); Simulect (Basiliximab); Synagis (Palivizumab); Verluma (Nofetumomab); Xolair (Omalizumab); Zenapax (Daclizumab); Zevalin (Ibritumomab Tiuxetan); Orthoclone OKT3 (Muromonab-CD3); Panorex (Edrecolomab); Mylotarg (Gemtuzumab ozogamicin); golimumab (Centocor); Cimzia (Certolizumab pegol); Soliris (Eculizumab); CNTO 1275 (ustekinumab); Vectibix (panitumumab); Bexxar (tositumomab and I
131tositumomab); and Avastin (bevacizumab).
Additional examples of immunoglobulins, or antigen-binding fragments thereof, that may be used in the methods and compositions of exemplary embodiments include, but are not limited to, proteins comprising one or more of the following: the D2E7 light chain variable region (SEQ ID NO: 1), the D2E7 heavy chain variable region (SEQ ID NO: 2), the D2E7 light chain variable region CDR3 (SEQ ID NO: 3), the D2E7 heavy chain variable region CDR3 (SEQ ID NO:4), the D2E& light chain variable region CDR2 (SEQ ID NO: 5), the D2E7 heavy chain variable region CDR2 (SEQ ID NO: 6), the D2E7 light chain variable region CDR1 (SEQ ID NO: 7), the D2E7 heavy chain variable region CDR1 (SEQ ID NO: 8), the 2SD4 light chain variable region (SEQ ID NO: 9), the 2SD4 heavy chain variable region (SEQ ID NO: 10), the 2SD4 light chain variable CDR3 (SEQ ID NO: 11), the EP B12 light chain variable CDR3 (SEQ ID NO: 12), the VL10E4 light chain variable CDR3 (SEQ ID NO: 13), the VL100A9 light chain variable CDR3 (SEQ ID NO: 14), the VLL100D2 light chain variable CDR3 (SEQ ID NO: 15), the VLL0F4 light chain variable CDR3 (SEQ ID NO: 16), the LOE5 light chain variable CDR3 (SEQ ID NO: 17), the VLLOG7 light chain variable CDR3 (SEQ ID NO: 18), the VLLOG9 light chain variable CDR3 (SEQ ID NO: 19), the VLLOH1 light chain variable CDR3 (SEQ ID NO: 20), the VLLOH10 light chain variable CDR3 (SEQ ID NO: 21), the VL1B7 light chain variable CDR3 (SEQ ID NO: 22), the VL1C1 light chain variable CDR3 (SEQ ID NO: 23), the VL0.1F4 light chain variable CDR3 (SEQ ID NO: 24), the VL0.1H8 light chain variable CDR3 (SEQ ID NO: 25), the LOE7. A light chain variable CDR3 (SEQ ID NO: 26), the 2SD4 heavy chain variable region CDR (SEQ ID NO: 27), the VH1B11 heavy chain variable region CDR (SEQ ID NO: 28), the VH1D8 heavy chain variable region CDR (SEQ ID NO: 29), the VH1A11 heavy chain variable region CDR (SEQ ID NO: 30), the VH1B12 heavy chain variable region CDR (SEQ ID NO: 31), the VH1E4 heavy chain variable region CDR (SEQ ID NO: 32), the VH1F6 heavy chain variable region CDR (SEQ ID NO: 33), the 3C-H2 heavy chain variable region CDR (SEQ ID NO: 34), and the VH1-D2.N heavy chain variable region CDR (SEQ ID NO: 35).
The term “human TNFα” (abbreviated herein as hTNFα, or simply hTNF) refers to a human cytokine that exists as a 17 kD secreted form and a 26 kD membrane associated form, the biologically active form of which is composed of a trimer of noncovalently bound 17 kD molecules. The structure of hTNFα is described further in, for example, Pennica, D., et al. (1984)Nature312:724-729; Davis, J. M., et al. (1987) Biochem. 26:1322-1326; and Jones, E. Y., et al. (1989)Nature338:225-228. The term human TNFα is intended to include recombinant human TNFα (rhTNFα), which can be prepared by standard recombinant expression methods or purchased commercially (R & D Systems, Catalog No. 210-TA, Minneapolis, Minn.). TNFα is also referred to as TNF.
The term “TNFα inhibitor” refers to an agent that interferes with TNFα activity. The term also includes each of the anti-TNFα human antibodies (used interchangeably herein with TNFα antibodies) and antibody portions described herein as well as those described in U.S. Pat. Nos. 6,090,382; 6,258,562; 6,509,015; 7,223,394; and 6,509,015. In one embodiment, the TNFα inhibitor used in the invention is an anti-TNFα antibody, or a fragment thereof, including infliximab (Remicade®, Johnson and Johnson; described in U.S. Pat. No. 5,656,272); CDP571 (a humanized monoclonal anti-TNF-alpha IgG4 antibody); CDP 870 (a humanized monoclonal anti-TNF-alpha antibody fragment); an anti-TNF dAb (Peptech); CNTO 148 (golimumab; Centocor, see WO 02/12502 and U.S. Pat. No. 7,521,206 and U.S. Pat. No. 7,250,165); and adalimumab (HUMIRA® Abbott Laboratories, a human anti-TNF mAb, described in U.S. Pat. No. 6,090,382 as D2E7). Additional TNF antibodies that may be used in the invention are described in U.S. Pat. Nos. 6,593,458; 6,498,237; 6,451,983; and 6,448,380. In another embodiment, the TNFα inhibitor is a TNF fusion protein, e.g., etanercept (Enbrel®, Amgen; described in WO 91/03553 and WO 09/406,476). In another embodiment, the TNFα inhibitor is a recombinant TNF binding protein (r-TBP-I) (Serono).
In one embodiment, the term “TNFα inhibitor” excludes infliximab. In one embodiment, the term “TNFα inhibitor” excludes adalimumab. In another embodiment, the term “TNFα inhibitor” excludes adalimumab and infliximab.
In one embodiment, the term “TNFα inhibitor” excludes etanercept, and, optionally, adalimumab, infliximab, and adalimumab and infliximab.
In one embodiment, the term “TNFα antibody” excludes infliximab. In one embodiment, the term “TNFα antibody” excludes adalimumab. In another embodiment, the term “TNFα antibody” excludes adalimumab and infliximab.
The term “antibody” refers to immunoglobulin molecules generally comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The antibodies of the invention are described in further detail in U.S. Pat. Nos. 6,090,382; 6,258,562; and 6,509,015.
The term “antigen-binding portion” of an antibody (or simply “antibody portion”) refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., hTNFα). Fragments of a full-length antibody can perform the antigen-binding function of an antibody. Examples of binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. (1989)Nature341:544-546), which consists of a VH or VL domain; (vi) an isolated complementarity determining region (CDR); and (vii) a dual variable domain immunoglobulin (DVD-Ig). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988)Science242:423-426; and Huston et al. (1988)Proc. Natl. Acad. Sci. USA85:5879-5883). Such single chain antibodies are also encompassed within the term “antigen-binding portion” of an antibody. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger et al. (1993)Proc. Natl. Acad. Sci. USA90:6444-6448; Poljak et al. (1994)Structure2:1121-1123). The antibody portions of the invention are described in further detail in U.S. Pat. Nos. 6,090,382; 6,258,562; and 6,509,015.
The term “recombinant human antibody” refers to all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described further below), antibodies isolated from a recombinant, combinatorial human antibody library (described further below), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992)Nucl. Acids Res.20:6287) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germ line immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germ line VH and VL sequences, may not naturally exist within the human antibody germ line repertoire in vivo.
Such chimeric, humanized, human, and dual specific antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT International Application No. PCT/US86/02269; European Patent Application No. 184,187; European Patent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No. 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Cancer Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559; Morrison (1985) Science 229:1202-1207; Oi et al. (1986) BioTechniques 4:214; U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060, Queen et al. (1989) Proc. Natl. Acad. Sci. USA 86:10029-10033 (1989); U.S. Pat. No. 5,530,101; U.S. Pat. No. 5,585,089; U.S. Pat. No. 5,693,761; U.S. Pat. No. 5,693,762; WO 90/07861; and U.S. Pat. No. 5,225,539.
The term “isolated antibody” refers to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds hTNFα and is substantially free of antibodies that specifically bind antigens other than hTNFα). An isolated antibody that specifically binds hTNFα may have cross-reactivity to other antigens, such as TNFα molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.
The term “neutralizing antibody” (or an “antibody that neutralized hTNFα activity”) refers to an antibody whose binding to hTNFα results in inhibition of the biological activity of hTNFα. This inhibition of the biological activity of hTNFα can be assessed by measuring one or more indicators of hTNFα biological activity, such as hTNFα-induced cytotoxicity (either in vitro or in vivo), hTNFα-induced cellular activation and hTNFα binding to hTNFα receptors. These indicators of hTNFαbiological activity can be assessed by one or more of several standard in vitro or in vivo assays known in the art (see U.S. Pat. No. 6,090,382). Preferably, the ability of an antibody to neutralize hTNFα activity is assessed by inhibition of hTNFα-induced cytotoxicity of L929 cells. As an additional or alternative parameter of hTNFα activity, the ability of an antibody to inhibit hTNFα-induced expression of ELAM-1 on HUVEC, as a measure of hTNFα-induced cellular activation, can be assessed.
The term “surface plasmon resonance” refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). For further descriptions, see Example 1 of U.S. Pat. No. 6,258,562 and Jönsson et al. (1993)Ann. Biol. Clin.51:19; Jönsson et al. (1991)Biotechniques11:620-627; Johnsson et al. (1995)J. Mol. Recognit.8:125; and Johnnson et al. (1991)Anal. Biochem.198:268.
The term “Koff” refers to the off rate constant for dissociation of an antibody from the antibody/antigen complex.
The term “Kd” refers to the dissociation constant of a particular antibody-antigen interaction.
The term “IC50” refers to the concentration of the inhibitor required to inhibit the biological endpoint of interest, e.g., neutralize cytotoxicity activity.
The term “dose” or “dosage” refers to an amount of a substance, such as a TNFαinhibitor, which is administered to a patient preferably using the automatic injection device of the invention. In one embodiment, the dose comprises an effective amount, for example, including 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, and 160 mg, of the TNFα inhibitor adalimumab.
The term “dosing” refers to the administration of a substance (e.g., an anti-TNFα antibody) to achieve a therapeutic objective (e.g., treatment of rheumatoid arthritis).
The term “dosing regimen” describes a treatment schedule for a substance, such as a TNFα inhibitor, e.g., a treatment schedule over a prolonged period of time and/or throughout the course of treatment, e.g. administering a first dose of a TNFα inhibitor atweek 0 followed by a second dose of a TNFα inhibitor on a biweekly dosing regimen.
The term “biweekly dosing regimen”, “biweekly dosing”, and “biweekly administration” refer to the time course of administering a substance (e.g., an anti-TNFα antibody) to a patient to achieve a therapeutic objective, e.g., throughout the course of treatment. The biweekly dosing regimen is not intended to include a weekly dosing regimen. Preferably, the substance is administered every 9 to 19 days, more preferably, every 11 to 17 days, even more preferably, every 13 to 15 days, and most preferably, every 14 days. In one embodiment, the biweekly dosing regimen is initiated in a patient atweek 0 of treatment. In another embodiment, a maintenance dose is administered on a biweekly dosing regimen. In one embodiment, both the loading and maintenance doses are administered according to a biweekly dosing regimen. In one embodiment, biweekly dosing includes a dosing regimen wherein doses of a TNFα inhibitor are administered to a patient every other week beginning atweek 0. In one embodiment, biweekly dosing includes a dosing regimen where doses of a TNFα inhibitor are administered to a patient every other week consecutively for a given time period, e.g., 4 weeks, 8 weeks, 16, weeks, 24 weeks, 26 weeks, 32 weeks, 36 weeks, 42 weeks, 48 weeks, 52 weeks, 56 weeks, etc. Biweekly dosing methods are also described in U.S. 2003/0235585.
The term “combination” as in the phrase “a first agent in combination with a second agent” includes co-administration of a first agent and a second agent, which for example may be dissolved or intermixed in the same pharmaceutically acceptable carrier, or administration of a first agent, followed by the second agent, or administration of the second agent, followed by the first agent.
The term “concomitant” as in the phrase “concomitant therapeutic treatment” includes administering an agent in the presence of a second agent. A concomitant therapeutic treatment method includes methods in which the first, second, third, or additional substances are co-administered. A concomitant therapeutic treatment method also includes methods in which the first or additional agents are administered in the presence of a second substance or additional substances, wherein the second or additional agents, for example, may have been previously administered. A concomitant therapeutic treatment method may be executed step-wise by different patients. For example, one subject may administer to a patient a first agent and a second subject may to administered to the patient a second substance, and the administering steps may be executed at the same time, or nearly the same time, or at distant times, so long as the first substance (and additional substances) are after administration in the presence of the second substance (and additional substances). The actor and the patient may be the same entity (e.g., human).
The term “combination therapy” refers to the administration of two or more therapeutic substances, e.g., an anti-TNFα antibody and another drug. The other drug(s) may be administered concomitant with, prior to, or following the administration of an anti-TNFα antibody.
The term “treatment” refers to therapeutic treatment, as well as prophylactic or suppressive measures, for the treatment of a disorder, such as a disorder in which TNFα is detrimental, e.g., rheumatoid arthritis.
The term “patient” or “user” refers to any type of animal, human or non-human, that may be injected a substance using exemplary automatic injection devices.
The term “automatic injection device” or “autoinjector” refers to a device that enables a patient to self-administer a dose of a substance, such as a liquid medication, wherein the automatic injection device differs from a standard syringe by the inclusion of a firing mechanism assembly for automatically delivering the substance into the patient's body by injection when the firing mechanism assembly is engaged. In an exemplary embodiment, the automatic injection device may be wearable on the patient's body.
The term “firing mechanism” refers to a mechanism that, when engaged by a firing engagement mechanism, automatically delivers a substance contained in an automatic injection device into a patient's body. A firing engagement mechanism may be any type of mechanism that engages and triggers the firing mechanism including, but not limited to, a firing button that may be pushed by a patient to trigger the firing mechanism.
The term “force to fire” (or “FtF”) refers to the minimum force that must be delivered to a firing engagement mechanism of an automatic injection device in order to trigger the firing mechanism so that it expels the substance contained in the device. Delivery of a force equal to or greater than the required FtF to a firing engagement mechanism causes the firing engagement mechanism to trigger the firing mechanism so that it expels the substance from the device. The FtF may be delivered to the firing engagement mechanism manually by a patient or automatically by an actuation mechanism. An exemplary FtF for an automatic injection device may range between about 5 N and about 25 N. Another exemplary FtF for an automatic injection device may range between about 10 N and about 15 N. Another exemplary FtF for an automatic injection device may range between about 8 N and about 12 N. Another exemplary FtF for an automatic injection device has a minimum value of about 25 N. Another exemplary FtF for an automatic injection device has a maximum value of about 25 N.
The term “flexural modulus” (or “flex modulus” or “flexural modulus of elasticity”) refers to the ratio of maximum stress to maximum strain of a material within the elastic limit of the material, as determined from a stress-strain diagram obtained in a flexure test. The flex modulus of a material is a measure of the material's elasticity, or the ability of the material to be deformed and to subsequently return to its original shape.
The term “tabbed foot” or “tab foot” refers to a material attached to or radially projecting from one or both arms of a bifurcated end of a syringe plunger, and is configured to contact and engage a firing engagement mechanism.
The term “initial contact surface” (or “ICS”) refers to a portion of the outer surface of a tabbed foot formed at the bifurcated end of a syringe plunger. The ICS is formed between a top surface of the tabbed foot and a secondary contact surface (SCS) of the tabbed foot, and is configured to contact a firing engagement mechanism, e.g., a firing button.
The term “secondary contact surface” (or “SCS”) refers to a portion of the outer surface of a tabbed foot formed at the bifurcated end of a syringe plunger. The SCS is formed between the ICS of the tabbed foot and a bottom surface of the tabbed foot.
The term “initial contact surface angle” or “ICS angle” refers to the angle formed by the ICS relative to the longitudinal axis of the plunger arm.
The term “initial contact surface length” or “ICS length” refers to the length of the tabbed foot at a transition point between the ICS and the SCS as measured along an axis transverse to the longitudinal axis.
The term “plunger arm width” refers to the distance between the arms of a bifurcated end of a syringe plunger.
The term “plunger base bridge angle” or “PBB angle” refers to the angle formed between the arms of a bifurcated end of a syringe plunger. For example, a PBB angle of 0° means that the plunger arms are parallel to each other. There is a direct relationship between the PBB angle and the plunger arm width in that increasing the PBB angle increases the plunger arm width and decreasing the PBB angle decreases the plunger arm width.
The term “pre-filled syringe/device” refers to a syringe/device that is filled with a substance immediately prior to administration of the substance to a patient, or a syringe/device that is filled with a substance and stored in this pre-filled form for a period of time before administration of the substance to a patient.
The term “thermoplastic material” refers to a material that has the property of softening or fusing when heated and of hardening and becoming rigid when cooled. A thermoplastic material is a polymer that turns into a liquid state or a molten state when heated sufficiently, and that freezes into a very glassy state when cooled sufficiently. Thermoplastic materials can be re-melted and cooled repeatedly without the materials undergoing any appreciable chemical change.
Most thermoplastics are high-molecular-weight polymers whose chains associate through weak Van der Waals forces (polyethylene), stronger dipole-dipole interactions and hydrogen bonding (nylon), or even stacking of aromatic rings (polystyrene). Thermoplastic polymers differ from thermosetting polymers (vulcanized rubber) as they, unlike thermosetting polymers, can be re-melted and re-molded.
Many thermoplastic materials are formed by addition polymers or by condensation polymers. An addition polymer is a polymer formed by an addition reaction in which many monomers bond together via rearrangement of bonds without the loss of any atoms or molecules. Exemplary addition polymers include, but are not limited to, vinyl chain-growth polymers such as polyethylene and polypropylene. An condensation polymer is a polymer formed by a condensation reaction in which a molecule, usually water, is lost during formation of the polymer.
The term “thermosetting material” refers to a polymeric material that softens when initially heated and then condenses (often cross-linking) into a hard permanent form. A thermosetting material cannot be softened or reprocessed through the subsequent application of heat.
Thermosetting materials are polymer materials that cure irreversibly. Curing may be performed by applying heat (generally above 200° C.) by a chemical reaction (two-part epoxy, for example), or by irradiation (electron beam processing, for example). Thermosetting materials are made of long-chain polymers that cross-link with each other after they have been cured by thermal radiation, ultraviolet (UV) radiation and/or visible radiation and/or after they have been heated. The curing process renders the material permanently hard. Thermosetting plastics are polymer materials that are usually liquid or malleable prior to curing and designed to be molded into their final form or used as adhesives. Some thermosetting plastics are solids, like the molding compounds typically used in semiconductors and integrated circuits.
The term “delayed delivery” of an injection refers to a misfire or misfiring that causes delay of the injection, beyond an acceptable range, in the delivery of a therapeutic agent or a failure to deliver the therapeutic agent from an automatic injection device after activation of the firing engagement mechanism, e.g., the firing button, of the device. In an exemplary embodiment, an acceptable delay may range from about zero to about three seconds. Delay greater than three seconds is a misfiring of the automatic injection device.
The term “strain” or “actual strain” refers to the force with which the firing engagement mechanism, e.g., the firing button, of an automatic injection device is depressed or the distance relative to a starting position over which the firing engagement mechanism is depressed for firing the device.
The term “threshold strain” refers to the minimum strain applied to depress a firing engagement mechanism, e.g., the firing button, during firing at or above which no delayed delivery of an injection is observed. In an exemplary embodiment, the threshold strain may be provided as the distance relative to a starting position over which the firing button must be depressed to cause the automatic injection device to fire. In exemplary embodiments, if the firing button of an automatic injection device is compressed over a distance equal to or greater than the threshold strain value, the automatic injection device does not experience any delayed delivery of an injection. In exemplary embodiments, if the firing button of an automatic injection device is compressed over a distance less than the threshold strain value, the automatic injection device may experience delayed delivery of an injection.
The term “distal” refers to a portion or end or component of an exemplary automatic injection device that is farthest from an injection site on the patient's body when the device is held against the patient for an injection or for mimicking an injection.
The term “proximal” refers to a portion or end or component of an exemplary automatic injection device that is closest to an injection site on a patient's body when the device is held against the patient for an injection or for mimicking an injection.
II. EXEMPLARY AUTOMATIC INJECTION DEVICESExemplary embodiments will be described below with reference to certain illustrative embodiments. While exemplary embodiments are described with respect to using an automatic injection device to provide an injection of a dose of a liquid medication, one of ordinary skill in the art will recognize that exemplary embodiments are not limited to the illustrative embodiments and that exemplary automatic injection devices may be used to inject any suitable substance into a patient. In addition, components of exemplary automatic injection devices and methods of making and using exemplary automatic injection devices are not limited to the illustrative embodiments described below.
FIGS. 1 and 2 illustrate an exemplaryautomatic injection device10 suitable for injecting a dose of a substance, such as a liquid drug, into a patient.
FIG. 1 illustrates a perspective view of the exemplaryautomatic injection device10 in which caps that cover proximal and distal ends of the housing are removed.
FIG. 2 illustrates a perspective view of the exemplaryautomatic injection device10 ofFIG. 1 in which the proximal and distal ends of the housing are capped.
Referring toFIG. 1, theautomatic injection device10 includes ahousing12 for housing a container, such as a syringe, which may contain a dose of a substance to be injected into a patient's body. Thehousing12 preferably has a tubular configuration, although one of ordinary skill in the art will recognize that thehousing12 may have any suitable size, shape and configuration for housing a syringe or other container. While exemplary embodiments will be described with respect to a syringe mounted in thehousing12, one of ordinary skill in the art will recognize that theautomatic injection device10 may employ any suitable container for storing and dispensing a substance.
The exemplary syringe is preferably slidably mounted in thehousing12, as described in detail below. When the device is in an inactivated position, the syringe is sheathed and retracted within thehousing12. When thedevice10 is actuated, a needle of the syringe projects from a firstproximal end20 of thehousing12 to allow ejection of the substance from the syringe into the patient's body. As shown, the firstproximal end20 of thehousing12 includes anopening28 through which the needle of the syringe projects during actuation of thedevice10.
Referring still toFIG. 1, a seconddistal end30 of thehousing12 includes a firing engagement mechanism, e.g., afiring button32, for actuating a firing mechanism. Thehousing12 also houses the firing mechanism, e.g., one or more actuators or one or more bias/biasing members, that moves the syringe from a sheathed position with thehousing12 to a projecting position and subsequently expels the substance from the syringe into the patient's body.
The exemplaryautomatic injection device10 may also include a first removable cap24 (or needle cap) for covering thefirst end20 of thehousing12 to prevent exposure of the needle prior to an injection. In the illustrative embodiment, thefirst cap24 may include aboss26 for locking and/or joining thecap24 of thedevice10 until the patient is ready to activate thedevice10. Alternatively, thefirst cap24 may include a threaded screw portion, and the internal surface of thehousing12 at opening28 may include a screw thread. Any suitable mating mechanism may be used in accordance with the teachings of exemplary embodiments.
Thehousing12 and caps24,34 may further include graphics, symbols and/or numbers to facilitate use of theautomatic injection device10. For example, thehousing12 includes anarrow125 on an outer surface pointing towards thefirst end20 of thedevice10 to indicate how thedevice10 should be held relative to the patient (i.e., with thefirst end20 adjacent to the injection site), as shown inFIG. 2. In addition, thefirst cap24 is labeled with a “1” to indicate that a patient should remove thefirst cap24 of the device first, and the second cap is labeled with a “2” to indicate that thesecond cap34 should be removed after thefirst cap24 is removed during preparation for and subsequent injection using the illustrativeautomatic injection device10. One of ordinary skill in the art will recognize that theautomatic injection device10 may have any suitable graphics, symbols and/or numbers to facilitate patient instruction, or the automatic injection device may omit such graphics, symbols and/or numbers.
As shown inFIG. 2, thefirst end20 of thehousing12 may have a wider diameter than thesecond end30. Astep29 may be formed at the transition between the two diameters to accommodate thesecond cap34 and to facilitate seating of thesecond cap34 on thesecond end30 of the housing.
Thehousing12 may also preferably include adisplay window130 to allow a patient to view the contents of the syringe housed within thehousing12. Thewindow130 may include an opening in the sidewall of thehousing12, or may include a translucent material in thehousing12 to allow viewing of the interior of thedevice10.
Thehousing12 may be formed of any suitable surgical material including, but not limited to, plastic and other known materials.
FIGS. 3-5 (prior art) are schematic views of interior components of an exemplaryautomatic injection device10.
FIG. 3 (prior art) illustrates a cross-sectional schematic view of an exemplary automatic injection device prior to use.
FIG. 4 (prior art) illustrates a cross-sectional schematic view of the exemplary automatic injection device ofFIG. 3 during an intermediate stage of operation.
FIG. 5 (prior art) illustrates a cross-sectional schematic view of the exemplary automatic injection device ofFIGS. 3 and 4 during a post-injection stage of operation.
Still referring toFIGS. 3-5, asyringe50 or other suitable container for a substance is disposed within the interior of thehousing12. Anexemplary syringe50 may include ahollow barrel portion53 for holding a dose of a liquid substance to be injected into a patient's body. Anexemplary barrel portion53 is substantially cylindrical in shape, although one of ordinary skill in the art will recognize that thebarrel portion53 may have any suitable shape or configuration. A seal, illustrated as abung54, seals the dose within thebarrel portion53. Thesyringe50 may also include ahollow needle55 connected to and in fluid communication with thebarrel portion53, through which the dose can be ejected by applying pressure to thebung54. Thehollow needle55 extends from a firstproximal end53aof thebarrel portion53. The seconddistal end53bof thebarrel portion53 includes aflange56, or other suitable mechanism, for abutting a stop (represented schematically as123) in thehousing12 to limit the movement of thesyringe50 within thehousing12, as described below. One of ordinary skill in the art will recognize that exemplary embodiments are not limited to the illustrative embodiment of thesyringe50 and that any suitable container for containing a dose of a substance to be injected may be used in accordance with the teachings of exemplary embodiments.
In an exemplary embodiment, theneedle55 may be a fixed twenty-seven gauge one-half inch needle. The tip of an exemplaryhollow needle55 may include a number of bevels, e.g., five bevels, to facilitate insertion. However, theneedle55 may have any suitable size, shape and configuration suitable for piercing a patient's skin to deliver a substance to the patient's body, and is not limited to the illustrative embodiment. Suitable types of needles are well-known in the art.
Theautomatic injection device10 shown inFIGS. 3-5 may include anexemplary syringe actuator70, illustrated as a plunger, for selectively moving and actuating thesyringe50 to inject the dose contained in thesyringe50 into a patient's body. In an exemplary embodiment, theplunger70 may weigh more than about 1.93 grams. In another exemplary embodiment, theplunger70 may weigh between about 1.93 grams and about 2.02 grams.
Theexemplary plunger70 may include arod portion71 having a first end71aintegral with, e.g., connected to and/or in fluid communication with, thebung54 for selectively applying pressure to the bung54 to expel the dose from theneedle55. Theplunger70 may include a flangedsecond end72. In an exemplary embodiment, theplunger70 may include multiple components than those illustrated inFIGS. 3-5. In an exemplary embodiment, thedevice10 may include more or fewer actuators than those illustrated inFIGS. 3-5.
Theplunger70 may be biased forward towards thefirst end20 of thedevice10 by a first biasing mechanism, illustrated as acoil spring88, disposed about or above the flangedsecond end72 of theplunger70. Aproximal end88aof the coiledspring88 may abuts the flangedsecond end72 of theplunger70 to selectively apply pressure to theplunger70 and to move theplunger70 proximally. Alternatively, theplunger70 may extend through the center of thespring88.
As illustrated inFIG. 3, prior to use of thedevice10, the coil spring88 (or another suitable mechanism) may be compressed between theplunger70 and thehousing12, thus storing energy. Atrigger91, which may be activated by any suitable actuation means such as thefiring button32, may retain theplunger70 and thefirst biasing mechanism88 in a retracted, latched position before thefiring button32 is activated. Thetrigger91 may latch the flangedsecond end72 of theplunger70. When thefiring button32 or other actuation means is activated, thetrigger91 may release the flangedsecond end72 of theplunger70, allowing thecoil spring88 to propel theplunger70 towards the first end of thedevice10.
A second biasing mechanism, illustrated as anexemplary coil spring89, may hold thesyringe50 in a retracted position within thehousing12 prior to use, as shown inFIG. 3. In the retracted position, theneedle55 may be preferably sheathed entirely within thehousing12. The exemplarysyringe coil spring89 may be disposed about the proximal portion of thebarrel portion53 and may be seated in ashelf121 formed within the housing interior. The top end of thecoil spring89 may abut the flangedsecond end56 of thesyringe50. The spring force of thesecond biasing mechanism89 may push the flangedsecond end56 of thesyringe50 away from thefirst end20 of thehousing12, thereby holding thesyringe50 in the retracted position until activated. Other components of thedevice10 may also position thesyringe50 relative to thehousing12.
Thefirst biasing mechanism88 and thesecond biasing mechanism89 may have any suitable configuration and tension suitable for use in biasing certain components of the device. For example, thefirst biasing mechanism88 may have any suitable size, shape, energy and properties suitable for moving theplunger70 and thesyringe50 forward when released. Thesecond biasing mechanism89 may have any suitable size, shape, energy and properties suitable for retracting thesyringe50 prior to activation. Other suitable means for facilitating movement of theplunger70 and/orsyringe50 may also be used.
Referring still to the illustrative embodiment ofFIGS. 3-5, theplunger70 may include an exemplary radially compressible expandedportion76, e.g., in the center of theplunger70. In an illustrative embodiment, therod71 may be split, e.g., in a central portion and expanded to form a pair of projectingelbows78 that define the radially compressible expandedportion76. The projectingelbows78 may be pre-formed as part of the moldedplunger70 or, alternatively, may be attached to theplunger70 separately. The projectingelbows78 may be compressible so that they can be moved radially inwardly to cause that portion of therod71 to adopt a circumference similar to the rest of therod71. The compressible expandedportion76 facilitates movement of thesyringe50, followed by expulsion of the dose in two substantially separate stages, as described below.
Referring toFIG. 4, when an activation means320 activates thetrigger91 to release theplunger70, the spring force of thecoil spring88 propels theplunger70 forward (proximally). During a first operational stage, the movingplunger70 pushes thesyringe50 forward such that the tip of theneedle55 projects from thefirst end20 of thehousing12. The initial biasing force provided by thefirst coil spring88 is sufficient to overcome the biasing force of thesecond coil spring89 to allow movement of thesyringe50 against the backward biasing force of thesecond coil spring89. In the first operational stage, the expandedregion76 of theplunger70, formed by the projectingelbows78, rests against thesecond end56 of thebarrel portion53. This prevents theplunger70 from traveling within thesyringe barrel portion53. In this manner, all biasing force from thefirst coil spring88 is applied to move thesyringe50 forward towards thefirst end20 of thedevice10.
The activation means320 may have any suitable size, shape, configuration and location suitable for releasing theplunger70 or otherwise activating thedevice10. For example, the activation means320 may include afiring button32 formed on adistal end30 of thehousing12, and/or may include another suitable device, such as a latch, twist-activated switch and other devices known in the art. While the illustrative activation means320 is located towards adistal end30 of thedevice10, one of ordinary skill in the art will recognize that the activation means320 may be positioned in any suitable location on thedevice10.
The forward motion of thesyringe50 towards theproximal end20 of thedevice10 may continue against the biasing force of thecoil spring89 until theflanged end56 of thebarrel portion53 abuts thestop123, such as a protrusion or flange, on thehousing12, as shown inFIG. 4, thereby forming a stoppingmechanism56,123. One of ordinary skill in the art will recognize that alternate stopping mechanisms may be employed and that exemplary embodiments are not limited to the illustrative stopping mechanism.
As further shown inFIG. 4, the first operational stage may propel the tip of theneedle55 through theopening28 at thefirst end20 of thedevice10, so that theneedle55 may pierce the patient's skin. During this stage, thesyringe barrel portion53 may preferably remain sealed without expelling the substance through theneedle55. The interference caused by the stoppingmechanism56,123 may maintain theneedle55 in a selected position extending from the proximalopen end28 of thedevice10 during subsequent steps. Until the stoppingmechanism56,123 stops the movement of thesyringe50, the compressible expandedportion76 of theplunger70 may prevent movement of theplunger70 relative to thebarrel portion53. The stoppingmechanism56,123 may be positioned at any suitable location relative to the openfirst end20 to allow thesyringe50 to penetrate the skin by any suitable depth suitable for an injection.
The second operational stage commences after thestop123 of thehousing12 catches theflanged portion56, stopping further movement of thebarrel portion53. During this stage, the continued biasing force of thecoil spring88 may continue to push theplunger70 relative to thehousing12, as shown inFIG. 5. The biasing force may cause theelbows78 of theplunger70 to compress radially inward and slide into the interior of thebarrel portion53. While the interference betweencomponents123 and56 may retain thebarrel portion53 in a selected position (with theneedle55 exposed) and with theelbows78 in a collapsed stage, thecoil spring88 may push theplunger70 within thebarrel portion53. After theplunger70 overcomes the necessary force to allow theelbows78 to compress and extend into thebarrel portion53, theplunger70 may apply pressure to the bung54, causing ejection of the substance contained in thesyringe50 through the projectingneedle55. Because theneedle55 was made to penetrate the patient's skin in the first operational stage, the substance contained in thebarrel portion53 of thesyringe50 is injected directly into a portion of the patient's body.
FIG. 6 illustrates a perspective view of an exemplaryautomatic injection device10 including a syringe housing assembly and a firing mechanism assembly. In an exemplary embodiment, theautomatic injection device10 may include two interlocking components: asyringe housing assembly121 containing the proximal components of the device10 (e.g., thesyringe barrel53,coil spring89,needle55 and other proximal components), and afiring mechanism assembly122 containing the distal components of the device10 (e.g., the means for actuating the syringe50). Thesyringe housing assembly121 and thefiring mechanism assembly122 may be coupled through any suitable means. In an exemplary embodiment, aproximal end122aof thefiring mechanism assembly122 may be sized and configured to be inserted into adistal end121bof thesyringe housing assembly121. In addition, one ormore tabs127 on theproximal end122aof thefiring mechanism assembly122 may snap-fit into correspondingopenings126 on thedistal end121bof thesyringe housing assembly122 to ensure alignment and coupling of the twoassemblies121,122 and the components housed therein.
FIG. 7 illustrates a perspective view of the firing mechanism assembly of the exemplary automatic injection device ofFIG. 6. Thefiring mechanism assembly122 may include theexemplary firing button32, theexemplary actuator cap34, the exemplarydistal housing component12b(firing body), and theexemplary coil spring88 or other biasing mechanism. Thefiring mechanism assembly122 may also include a syringe actuator, illustrated as asyringe actuation component700′, which extends from theproximal end122aof thedistal housing component12bfor moving thesyringe50 forward within thehousing12 in a first stage, and for actuating thesyringe50 to expel its contents in a second stage.
Thesyringe actuation component700′ ofFIGS. 2 and 8 further may include anindicator190 in asolid rod portion70 distal from theelbows78. During operation of thedevice10 and after completion of an injection, theindicator190 is configured to align with thewindow130 on thehousing12 to indicate at least partial completion of the injection. Theindicator190 preferably has a distinctive color or design to represent completion of an injection.
As shown inFIG. 8, the illustrativesyringe actuation component700′ further includes a retainingflange720′ for holding theactuating coil spring88 in a compressed position until actuation. The retainingflange720′ is sized, dimensioned and formed of a material that preferably allows thesyringe actuation component700′ to slidably and easily move within thehousing12 when thedevice10 is actuated. Extending distally from the retainingflange720′, thesyringe actuation component700′ forms a base788′, for theactuating coil spring88. The base788′ terminates in atrigger anchoring portion789′. Theillustrative base788′ may compriseflexible arms788a′,788b′ around which thespring88 coils. Thetrigger anchoring portion789′ may comprise tabbedfeet7891′ extending from the base788′ and configured to selectively engage the anchoringcap12cand/ordistal housing component12b. Thefiring button32 coupled to the distal end of thedistal housing component12bis configured to hold thetrigger anchoring portion789′ until activation. When activated, thefiring button32 releases thetrigger anchoring portion789′, allowing thecoil spring88 to propel thesyringe actuation component700′ towards theproximal end20 of thedevice10 in an operation described above.
In a retracted, anchored position shownFIGS. 7 and 8 (corresponding to the schematic ofFIG. 3), thetrigger anchoring portion789′ interacts with thehousing12, which holds the tabbedfeet7891′ in a latched position, against the biasing force of thecoil spring88, to maintain thesyringe actuation component700′ in a retracted position. In this position, theflange720′ retracts thespring88 against the back, distal wall712′ of thedistal housing component12b. An opening713′ in the anchoringcap12callows thefiring button32 access to the anchoringportion789′. In the retracted position, thepressurizer754′ of thesyringe actuation component700′ extends out of anopening228 on theproximal end122aof thedistal housing component12b.
Also referring toFIG. 9, when thedistal housing component12bcouples to a correspondingsyringe actuation mechanism121, thepressurizer754′ extends into the barrel portion of a syringe housed therein. Thepressurizer754′ may be integral with, the same as, connected to, or otherwise in communication with thebung54 of asyringe50 housed in thedevice10 and may have any suitable size, shape and configuration suitable for applying pressure to thebung54. In one embodiment, thepressurizer754′ has a cross-section corresponding to the shape of thebarrel portion53 of a correspondingsyringe50 so as to substantially seal thebarrel portion53, and thepressurizer754′ is configured to slidably move within thebarrel portion53 to apply pressure to thebung54 and actuate thesyringe50.
In the illustrative embodiment ofFIGS. 7 and 8, thesyringe actuation component700′ constitutes a single, integrated mechanism for anchoring a correspondingsyringe50,spring88 and other components, actuating and moving thesyringe50 to a protracted position, and separately expelling the contents of thesyringe50.
FIG. 9 is an exploded view of thesyringe housing assembly121 of an illustrative embodiment of the invention, which is configured to couple to and interact with theFM assembly122 ofFIGS. 7 and 8. The illustrativesyringe housing assembly121 includes aproximal housing component12a, theproximal cap24, a proximal,second biasing mechanism89, asyringe carrier500 and a steppedshroud12dforming aproximal portion20 of thehousing12 when assembled and includes theproximal opening28, as also shown inFIG. 2. Thecomponents12a,12d,89,500 and24 cooperate to house asyringe50 containing a substance to be injected and facilitate operation of thedevice10 in the two different operational stages as described above.
Referring now toFIGS. 1,2, and9, thesyringe carrier500 of the illustrative embodiment envelopes the distal half of asyringe50 used in thedevice10. Thesyringe50 rests in thecarrier500 and both are contained in thehousing12. During operation, thesyringe50 and thecarrier500 move forward (e.g., proximally) within thehousing12. Thehousing12 stops and limits the movement of thecarrier500, and thecarrier500 in turn stops and limits the movement of thesyringe50. Theillustrative syringe carrier500 has a substantially tubular structure includingwindow cutouts501 preferably aligned with thewindow130 on thehousing12ato allow a patient to view the contents of thesyringe50 prior to operation. Thesyringe carrier500 may include a flangeddistal end562 configured to interface with a flanged distal end56 (shown inFIG. 3) of thesyringe50.
Referring toFIG. 9, the flangeddistal end562 may serve as a damper for thesyringe50. Thesyringe carrier500 may further include anintermediate flange563, which in the illustrative embodiment forms a stop for thesyringe50 that interacts with an interior stop256 (shown inFIGS. 10A and 10B) on theproximal housing component12ato limit forward motion of thesyringe50. Referring again toFIG. 9, theillustrative syringe carrier500 may further include aproximal anchor portion503 that limits movement of thesyringe50 in a distal, rearward direction. In the illustrative embodiment, theproximal anchor portion503 includes a radial groove configured to engage theinterior stop256. Asyringe carrier coupler504 extends forward past theproximal anchor portion503 to facilitate coupling of thesyringe carrier500 with the distal end of thespring89 and the steppedshroud12d. In one embodiment, thesyringe carrier500 is stationary within thehousing12 and thesyringe50 selectively and controllably slides within and relative to thesyringe carrier500. Alternatively, thesyringe carrier500 is slidably disposed within thehousing12 and selectively carries thesyringe50 within thehousing12. Thesyringe carrier500 may have any suitable configuration and size suitable for carrying or guiding thesyringe50 within thehousing12.
Referring again toFIG. 9, the illustrative steppedshroud12dforms aproximal end20 of thehousing12. The illustrative steppedshroud12dhas a substantially tubular body, including aproximal boss112 defining theproximal opening28 of thedevice10, through which thesyringe needle55 projects during operation of thedevice10. Astep113 from the maintubular body portion116 forms theproximal boss112 of smaller diameter than the maintubular body portion116 of the steppedshroud12d.
As shown inFIG. 10A, thestep113 forms a forward stop for thespring89 to confine thespring89 and prevent forward movement of thespring89 towards theproximal end20 of thedevice10. In the illustrative embodiment, shown inFIG. 10A, thedistal rim115 of the steppedshroud12dabuts the proximal side of thestop256 of theproximal housing component12a. Referring now toFIG. 9,distal arms114 extend from the steppedshroud12dto lock in the steppedshroud12dto prevent accidental needle sticks.
FIGS. 10A and 10B are cross-sectional views at 90° offset angles from each other, illustrating an assembledautomatic injection device10, wherein thesyringe housing assembly121 and aFM assembly122 ofFIG. 6 are coupled together, such that thepressurizer754′ of thesyringe actuation component700′ extends into thebarrel portion53 of asyringe50 housed in thesyringe housing assembly121 and in communication with abung54 of thesyringe50.
Referring again toFIGS. 8 and 10B, thesyringe actuation component700′ includes, at its proximal end, a pressurizingend754′ for applying pressure to the bung54, aplunger rod portion70 with a compressible expanded portion76 (illustrated as the plunger elbows78), as well as other components, such as components for anchoring thecoil spring88 to thesyringe actuation component700′, as described below. The compressible expandedportion76 facilitates movement of a correspondingsyringe50 into a protracted position and expulsion of the contents of thesyringe50 in two separate steps, as described herein. Alternatively, thesyringe actuation component700′ may comprise multiple actuators for moving and/or promoting expulsion of thesyringe50.
As shown, inFIG. 10B, thetrigger anchoring portion789′ of thesyringe actuation component700′ is anchored towards the distal end of thehousing12 by thefiring button32. When a patient depresses thefiring button32, aninternal ring32aconnected to thefiring button32 compresses the tabbedfeet7891′ of thetrigger anchoring portion789′ inwards, thereby decreasing the distance (plunger arm width) between the tabbed feet of theplunger arms788a′,788b′, releasing thesyringe actuation mechanism700′ and releasing thespring88. Prior to operation, the compressible expandedportion76, illustrated aselbows78, of thesyringe actuation component700′ rests above theflange56 of thesyringe50 to allow the compressible expandedportion76, when pushed by a releasedcoil spring88, to apply pressure to thesyringe barrel portion53, thereby moving thesyringe50 forward within thehousing12 when actuated.
As described above, once a stop, such as astop256 on theproximal housing component12ashown inFIG. 10B, catches thesyringe50 and halts additional forward motion of the projectingsyringe50, the continued biasing force on thespring88 will continue to move thesyringe actuation component700′ forward, causing the compressible expandedportion76 to compress and move into thebarrel portion53 of thesyringe50. The forward motion of thesyringe actuation component700′ within thebarrel portion53 causes thepressurizer754′ to apply pressure to the bung54, causing expulsion of the syringe contents into an injection site.
As also shown inFIGS. 10A and 10B, theactuator cap34 may include a stabilizingprotrusion340 that extends through theactivator button32 and between the feet tabbed7891′ of thesyringe actuation component700′ to stabilize the components of the device prior to activation.
FIGS. 11A-11C illustrate cross-sectional views of the syringe actuation component of the firing mechanism assembly ofFIG. 7, provided in accordance with exemplary embodiments, showing the position of the plunger arms at various stages of actuation.
InFIG. 11A, thesyringe actuation component700′ is preloaded by thefirst biasing mechanism88 before actuation of the firing button. The plunger arms are spread apart with the plunger arm width being a first, larger width.
InFIG. 11B, the plunger arms are pushed together at the start of actuation of the firing button.
InFIG. 11C, the plunger is released during actuation of the firing button. The plunger arms are disposed closer to each other with the plunger arm width being a second, smaller width.
FIG. 12 is a cross-sectional view of an assembledautomatic injection device10′ according to an illustrative embodiment of the invention. The illustrative embodiment of theautomatic injection device10′ includes two mating proximal anddistal housing components12a,12b. The proximal anddistal housing components12a,12bmate to form acomplete housing12. As shown, aproximal housing component12a, forming a proximal end of thehousing12, receives a proximal end of thedistal housing components12b. A cooperatingprojection312 andgroove313, or a plurality of cooperatingprojections312 andgrooves313, facilitate mating of the proximal anddistal housing components12a,12bin the illustrative embodiment. Other suitable mating mechanisms may alternatively be employed. Ashelf29 formed on an outer surface of thedistal housing component12bmay form a stop for the secondremovable cap34.
As shown, thefiring button32′ may be a cap covering the distal end of thedistal housing component12b. Theillustrative firing button32′ slides relative to thedistal housing component12bto actuate a syringe actuator, such as theplunger70. Theillustrative firing button32′ releasably retains flexible anchoringarms172 of theplunger70′. When depressed, thefiring button32′ releases the flexible anchoringarms172 to allow a first biasing mechanism, illustrated asspring88′ to propel theplunger70′ towards the proximal end of thedevice10′.
In the embodiment ofFIG. 12, theplunger70′ further includes aflange72′ located between the compressible expandedportion78′ and the distal end of theplunger rod71′. Afirst biasing mechanism88′ is seated between an interior distal end of thehousing12 and theflange72′ to bias theplunger70 towards the proximal end of thehousing12′. As described above, when thefiring button34′ releases the anchoringarms172, thecoil spring88′, or other suitable biasing mechanism propels theplunger70′ towards theproximal end20 of thedevice10.
Theillustrative embodiment10′ further includes anindicator190 formed at an intermediate portion of theplunger rod71′ between theflange72′ and the compressible expandedportion76, illustrated asflexible elbows78′.
Thesyringe50′ ofFIG. 12 may include protrusions or other suitable component to facilitate controlled movement of the syringe within thehousing12′. For example, with reference toFIG. 12, thesyringe50′ includes asleeve157 forming aproximal protrusion158 for abutting a proximal side of afirst protrusion168 formed on an inner surface of thehousing12′ for limited movement of thesyringe50′ in the distal direction within thehousing12′. Thesleeve157 may also form aflange159 that may abut the distal side of thefirst protrusion168 to limit movement of thesyringe50′ in the proximal direction during an injection.
In the embodiment ofFIG. 12, the second biasing mechanism, illustrated ascoil spring89′ is disposed about a proximal portion of thesyringe50′. Ashelf169 formed at a proximal inner surface of thehousing12′ receives a proximal end of thecoil spring89′. Theproximal protrusion158 of thesyringe sleeve157, or another suitably disposed mechanism, receives the distal end of thecoil spring89′. As described above, thesecond biasing mechanism89′ biases thesyringe50′ in a retracted position within thehousing12′ until activation of thedevice10.
As shown inFIGS. 10A,10B and12, theautomatic injection device10′incorporates anindicator190 to indicate to the patient of thedevice10′ when the dose from thesyringe50 has been fully or substantially fully ejected. In the illustrative embodiment, theindicator190 is formed on a portion of theplunger rod71′ between the compressible expandedcentral portion76 and theflange72′. As theplunger rod71 moves during operation, theindicator190 advances towards and aligns withwindow130 as the dose empties from the syringe. Theindicator190, which is preferably a different color or pattern from the substance being injected, fills thewindow130 entirely to indicate that the dosage has been ejected. Any suitable indicator may be used.
After injection of the dose from thedevice10′ via theneedle55, aneedle sheath112, which may be formed by theproximal end20 of theshroud12dmay automatically advance over the exposedneedle55 extending from the housingproximal end20 to prevent accidental needle sticks.
Thesyringe actuation component700′, or distal portion thereof, may be composed at least partially of any suitable material, such as an acetal-based plastic, though other suitable materials may also be used. In exemplary embodiments, thesyringe actuation component700′ may be made at least partially of a thermoplastic material or a thermosetting material.
Thermoplastic materials include polyacetal, polycarbonate, polyacrylate, polyamide, acryonitrile-butadiene-styrene (ABS), polyvinyl chloride (PVC) and their copolymers, terpolymers, and filled composites thereof. Polyacetal materials include acetal homopolymers, copolymers, and filled materials thereof. Hostaform™ C is an exemplary acetal polyoxymethylene (POM) copolymer. Acetal copolymers, e.g., Hostaform™ C copolymer, may be filled materials and may be glass sphere filled and glass fiber filled materials thereof.
Thermosetting materials include epoxy, acrylic, urethane, ester, vinyl ester, epoxy-polyester, acrylic-urethane, and fluorovinyl. In exemplary embodiments, acrylic materials may include a reactive functionality such as an acid and a hydroxyl. In an embodiment, the epoxy material includes a reactive functionality that can be cured by a method selected from the group consisting of visible, UV and thermal crosslinking. Exemplary thermosetting materials include, but are not limited to, different kinds of stereolithography resins that may be photopolymers (e.g., theSomos® 9420 photopolymer, the Somos® ProtoGen™ O-XT 18420 photopolymer, the Somos® WaterShed™ 11120 resin, the Somos® DMX-SL™ 100 resin, the Somos®ProtoTherm™ 12120 resin, the Somos® Nanoform™ 15120 plastic material, the Waterclear® Ultra 10122 resin, and the Somos® ProtoCast™ AF 19120 resin). In an embodiment, the thermosetting material is an epoxy homopolymer, copolymer or filled composite thereof.
In an exemplary embodiment, the material composing thesyringe actuation component700′ may have a flex modulus of between about 1000 MPa and about 6000 MPa. In another exemplary embodiment, the material may have a flex modulus of between about 2000 MPa and about 5500 MPa. In another exemplary embodiment, the material may have a flex modulus of between about 3000 MPa and about 5000 MPa. In another exemplary embodiment, the material may have a flex modulus of about 3800 MPa.
FIG. 13 illustrates a cross-sectional schematic view of adistal end700b′ of thesyringe actuation component700′, i.e., the end disposed farther away from thebung54. Thedistal end700b′ of thesyringe actuation component700′ may be bifurcated into a pair ofplunger arms788a′ and788b′. Eachplunger arm788a′,788b′ may have a tabbedfoot7891′ at a distal end closest to thefiring button32.
FIG. 14 illustrates a cross-sectional schematic outline of aplunger arm788a′/788b′ disposed at thedistal end700b′ of thesyringe actuation component700′.FIG. 14 also pictorially indicates the ICS angle, the SCS angle, and the ICS length L which is the length of the tabbedfoot7891′ along the transverse axis X at its second transition edge221 (ICS-SCS transition edge).
Along the longitudinal axis Y of thesyringe actuation component700′, each tabbedfoot7891′ may have adistal end211 closest to thefiring button32 and aproximal end213 farthest from thefiring button32. Each tabbedfoot7891′ may have atop surface215 disposed at thedistal end211 that is substantially flat along the transverse axis X of thesyringe actuation component700′, and abottom surface219 disposed at theproximal end213 that is substantially flat along the transverse axis X.
Each tabbedfoot7891′ may have a first outer conical surface—initial contact surface (ICS)216—formed between thetop surface215 and the secondary contact surface (SCS)218 of the tabbedfoot7891′ that is configured to initially contact thefiring button32. The ICS may form an angle—the ICS angle—relative to the longitudinal axis Y of thesyringe actuation component700′. In an exemplary embodiment, the ICS angle is between about 0° and about 90°. In another exemplary embodiment, the ICS angle is between about 40° and about 80°. In another exemplary embodiment, the ICS angle is about 28°. In another exemplary embodiment, the ICS angle is about 38°. In still another exemplary embodiment, the ICS angle is about 48°. The tabbedfoot7891′ may have afirst transition edge217 formed between thetop surface215 and theICS216. The tabbedfoot7891′ may have a second outer conical surface—SCS218—disposed between theICS216 and thebottom surface219 of the tabbedfoot7891′ that is configured to subsequently contact thefiring button32 after thefiring button32 has contacted theICS216. TheSCS218 may form an angle—the SCS angle—relative to the longitudinal axis Y. In an exemplary embodiment, the SCS angle is between about 0° and about 90°. In another exemplary embodiment, the SCS angle is between about 6° and about 38°. In another exemplary embodiment, the SCS angle is between about 8° and about 25°. The tabbedfoot7891′ may have asecond transition edge221 disposed between theICS216 and theSCS218, and athird transition edge223 disposed between theSCS218 and thebottom surface219.
In an exemplary embodiment, a first contact surface is formed by the first outerconical surfaces ICS216 of the twotabbed feet7891′ of the twoplunger arms788a′ and788b′. The first contact surface includes at least one open segment between the twoplunger arms788a′ and788b′, such that the twoICS216 are non-contiguous. A conical contact surface is formed by the second outerconical surfaces SCS218 of the twotabbed feet7891′ of the twoplunger arms788a′ and788b′. The second contact surface includes at least one open segment between the twoplunger arms788a′ and788b′, such that the twoSCS218 are non-contiguous. The first and second contact surfaces are configured to contact thefiring button32. The first contact surface makes initial contact with thefiring button32, and the second contact surface makes subsequent contact with thefiring button32 after the first contact surface has made initial contact with thefiring button32.
In an exemplary embodiment, the ICS and SCS angles may be different. In another exemplary embodiment, the ICS and SCS angles may be the same.
In an exemplary embodiment, the tabbedfoot7891′ may have a thirdouter surface225 that protrudes from thebottom surface219 in the proximal direction along the longitudinal axis L, which may or may not be conical. In exemplary embodiments including thirdouter surface225, theSCS218 is disposed between theICS216 and thethird surface225, and the third surface is disposed between theSCS218 and thebottom surface29 of the tabbedfoot7891′. Thethird surface225 may be configured to contact the firingbody12b. Thethird surface225 may form an angle—the protrusion angle—relative to the longitudinal axis Y. In an exemplary embodiment, the protrusion angle may range between about 0° and about 90°. In another exemplary embodiment, the protrusion angle may range between about 62° and about 82°. In another exemplary embodiment, the protrusion angle may range between about 65° and about 79°. In another exemplary embodiment, the protrusion angle may range between about 68° and about 76°.
Thethird surface225 may project from and extend beyond theSCS218 to a particular height—the protrusion height—as measured along the longitudinal axis Y. In an exemplary embodiment, the protrusion height ranges between about 0.17 mm and about 0.47 mm. In another exemplary embodiment, the protrusion height ranges between about 0.20 mm and about 0.42 mm. In another exemplary embodiment, the protrusion height ranges between about 0.23 mm and about 0.37 mm.
The firingbody12bmay include a firing body conical surface (FBCS)212 that is configured to contact the thirdouter surface225. When thefiring button32 is pushed down, the contact between the thirdouter surface225 and theFBCS212 causes the plunger to move up slightly.
During activation of thefiring mechanism assembly122, thespring88 which holds theplunger70 in place does not move when thebutton32 is depressed. The angle of the firingbody12band the underside of theplunger70 interact, while thefiring button32 andICS216 interact. Thefiring button32 moves down along the longitudinal axis Y of the firing mechanism assembly, and the tabbedfoot7891′ bends inward. When the tabbedfoot7891′ enters thefiring button32, theplunger70 collapses in a bending motion.
An exemplarytabbed foot7891′ of aplunger arm788a′/788b′ may be configured in mid point fixed (MPF) configuration or a top point fixed (TPF) configuration. In the MPF configuration, the transition point between theICS216 and theSCS218 is kept fixed as the ICS angle is varied. In the TPF configuration, the transition point between the topflat surface215 and theICS216 is kept fixed as the ICS angle is varied. The distance traveled by the firing button along theICS216 during firing of the automatic injection device is higher in the TPF configuration than in the MPF configuration. This distance is the distance from the initial contact point between the firing button and theICS216 to the ICS-SCS transition point221.
FIG. 15A provides a perspective view of a control plunger with an ICS angle of about 38°.
FIG. 15B provides a perspective view of an exemplary plunger with an MPF configuration and an ICS angle of about 48°.
FIG. 16A provides a perspective view of a control plunger with an ICS angle of about 38°.
FIG. 16B provides a perspective view of an exemplary plunger with a TPF configuration and an ICS angle of about 48°.
FIG. 17A illustrates a schematic diagram of an exemplary plunger arm having an MPF configuration and an ICS angle of about 48°. In this example, the plunger arm had an SCS angle was about 23°.
FIG. 17B illustrates a schematic diagram of an exemplary plunger arm having a TPF configuration and an ICS angle of about 48°. In this example, the plunger arm had an SCS angle of about 9.4° because the diameter of the plunger arm was kept constant between the MPF and TPF configurations. An exemplary diameter of the plunger arm was about 8.9 mm.
FIGS. 18A-18D illustrate anexemplary firing button32 provided in accordance with exemplary embodiments. Anexemplary firing button32 provided in accordance with exemplary embodiments may serve as an external cap with a contact surface configured for contact by a patient in order to depress thefiring button32. Anexemplary firing button32 provided in accordance with exemplary embodiments may also include an inner ring orinternal driving portion32aconfigured to contact the tabbed feet of the plunger arms in order to activate or fire the device when thefiring button32 is depressed by a patient.
FIG. 18A illustrates an external perspective view of thefiring button32, showing anend wall32dof the firing button configured as a contact surface that, when assembled with the automatic injection device, protrudes from the distal end of thedistal housing component12b(not shown). In an exemplary embodiment, anexternal cap portion32b, when assembled with the automatic injection device, covers part or the entirety of the distal end of thedistal housing component12b.
Thefiring button32 may take any suitable shape or form including, but not limited to, a substantially cylindrical shape with a circular cross-section, a substantially box shape with a rectangular or square cross-section, etc. In an exemplary embodiment in which thefiring button32 has a substantially cylindrical shape with a circular cross-section, as illustrated inFIGS. 18A and 18B, thefiring button32 includes a tubular or substantially cylindricalouter wall32chaving a substantially circular cross-section. The tubularouter wall32cextends substantially along the longitudinal axis L.
A terminal end the tubularouter wall32cis coupled to theend wall32dthat forms the contact surface. The end wall may partly or entirely cover the terminal end of theouter wall32c. Theend wall32dextends substantially along the transverse axis T. The end wall may take any suitable shape or form. In an exemplary embodiment, as illustrated inFIG. 18A, theend wall32dmay be flat and planar. In another exemplary embodiment, theend wall32dmay have an upward or downward arcing surface as opposed to a planar surface. In an exemplary embodiment, theend wall32dmay have a regular or irregular textured surface to allow for a more secure and dexterous handling of the firing button by a patient during activation or firing of the device. In an exemplary embodiment, as illustrated inFIG. 18A, theend wall32dmay include a throughhole32ffor accommodating a safety mechanism that prevents accidental firing of the device before intended use.
In an exemplary embodiment, the terminal end of the tubularouter wall32cmay be directly coupled to theend wall32d. In another exemplary embodiment, the terminal end of the tubularouter wall32c, theend wall32dor both may include abeveled surface32e. Thebeveled surface32emay lie between and couple theend wall32dto the tubularouter wall32c, and may be oriented at an angle less than 90° in relation to theupper wall32dand also in relation to the longitudinal axis L. Thebeveled surface32emay take any suitable shape or form. In an exemplary embodiment, as illustrated inFIG. 18A, thebeveled surface32emay be flat and planar. In another exemplary embodiment, thebeveled surface32emay have an upward or downward arcing surface as opposed to a planar surface.
FIG. 18B illustrates an internal perspective view of theexemplary firing button32 ofFIG. 18A, showing the inner ring orinternal driving portion32a. Theinternal driving portion32amay be coupled to the inner surface of theend wall32dof thefiring button32. Theinternal driving portion32amay protrude in the proximal direction along the longitudinal axis L from the inner surface of theend wall32d. When assembled in the automatic injection device, theinternal driving portion32amay be disposed in close proximity to or in contact with the distal end of theplunger arms788a′,788b′ so that depressing thefiring button32 causes theinternal driving portion32ato engage one or more surfaces of the distal end of theplunger arms788a′,788b′, e.g., the initial contact surface (ICS) and the secondary contact surface (SCS), etc.
Theinternal driving portion32amay take any suitable shape or form including, but not limited to, a substantially cylindrical shape with a circular cross-section, a substantially box shape with a rectangular or square cross-section, etc. Theinternal driving portion32amay be formed from any suitable thermoplastic material and/or any suitable thermosetting material.
In exemplary embodiments, one or moremechanical support structures32j, e.g., buttresses, are formed against and project from the outer surface of theinternal driving portion32a, and are coupled to the inner surface of theexternal cap portion32b. Thesupport structures32jsupport and reinforce theinternal driving portion32aon the inner surface of theexternal cap portion32b.
FIG. 18C illustrates a cross-sectional view of theexemplary firing button32 taken along the longitudinal axis L.FIG. 18D illustrates a frontal view of the inner surface of theexemplary firing button32.
In an exemplary embodiment, as illustrated inFIGS. 18C and 18D, the exemplaryinternal driving portion32aof thefiring button32 is configured as a tubular or substantially cylindrical ring with a circular cross-section.
The ring has an inner diameter, Rdiameter, measured relative to theinner edge32iof the ring. Exemplary inner diameters, Rdiameter, include, but are not limited to, about 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0 mm, etc. In an exemplary embodiment, the inner diameter, Rdiameter, ranges from about 6.4 mm to about 6.8 mm. In an exemplary embodiment, the inner diameter, Rdiameter, ranges below about 6.7 mm. In an exemplary embodiment, the inner diameter, Rdiameter, is about 6.4 mm. In an exemplary embodiment, the inner diameter, Rdiameter, is about 6.5 mm. In an exemplary embodiment, the inner diameter, Rdiameter, is about 6.6 mm. In an exemplary embodiment, the inner diameter, Rdiameter, is about 6.7 mm. In an exemplary embodiment, the inner diameter, Rdiameter, is about 6.75 mm.
In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.30 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.35 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.40 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.45 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.50 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.55 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.60 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.65 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.70 mm. In an exemplary embodiment, a maximum ring inner diameter, Rdiameter, is about 6.75 mm.
The ring has a wall thickness, Rthickness, measured as half of the difference between the outer diameter of the ring and the inner diameter, Rdiameter, of the ring. Exemplary wall thicknesses, Rthickness, include, but are not limited to, about 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.0 mm, etc. An exemplary wall thickness, Rthickness, may range from about 0.60 mm to about 2.00 mm. An exemplary wall thickness, Rthickness, may range from about 0.80 mm to about 2.00 mm. An exemplary wall thickness, Rthickness, may be about 0.90 mm.
The ring has a length, Rlength, measured from thedistal end32gof theinternal driving portion32ato theproximal end32hof theinternal driving portion32a. Exemplary ring lengths, Rlength, include, but are not limited to, about 6.70, 6.71, 6.72, 6.73, 6.74, 6.75, 6.76, 6.77, 6.78, 6.79, 6.80, 6.81, 6.82, 6.83, 6.84, 6.85, 6.86, 6.87, 6.88, 6.89, 6.90 mm, etc. In an exemplary embodiment, the ring length, Rlength, ranges from about 6.73 mm to about 6.83 mm. In an exemplary embodiment, the ring length, Rlength, ranges from about 6.75 mm to about 6.90 mm. In an exemplary embodiment, a minimum ring length, Rlength, is about 6.60 mm. In an exemplary embodiment, a minimum ring length, Rlength, is about 6.65 mm. In an exemplary embodiment, a minimum ring length,
Rlength, is about 6.70 mm. In an exemplary embodiment, a minimum ring length, Rlength, is about 6.75 mm. In an exemplary embodiment, a minimum ring length, Rlength, is about 6.80 mm.
In operation, a patient depresses thefiring button32 by contacting and depressing theend wall32dof thefiring button32. As a result, thefiring button32 slides in a proximal direction along the longitudinal axis L relative to thedistal housing component12b. This causes theinternal driving portion32aof thefiring button32 to engage with and compress the tabbedfeet7891′ of theplunger arms788a′,788b′. Compression of the tabbedfeet7891′ of theplunger arms788a′,788b′ decreases the distance between the tabbed feet, i.e., the plunger arm width, which results in a release of thesyringe actuation mechanism700′ and a release of thespring88. Release of thesyringe actuation mechanism700′ and of thespring88 culminates in the successful activation or firing of the automatic injection device.
FIG. 19A illustrates a cross-sectional view of anexemplary firing body12btaken along the longitudinal axis. In an exemplary embodiment, a proximal portion of the firingbody12bis configured as atunnel1904 that forms a hollow bore extending substantially along the longitudinal axis. The hollow bore of thetunnel1904 is configured to allow theplunger arms788a′,788b′ to move downward along the longitudinal axis through the hollow bore when the device is fired. In an exemplary embodiment, thetunnel1904 is substantially cylindrical with a circular cross-section. Thetunnel1904 has an inner diameter, Tdiameter, which is the inner diameter of the circular cross-section. Exemplary inner diameters, Tdiameter, include, but are not limited to, about 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80, 7.90, 8.00 mm, etc.
Thetunnel1904 forms an entrance region oraperture1908 at its distal end, which has an inner diameter, TunnelEntrancediameter. In an exemplary embodiment, theentrance region1908 has the same inner diameter as the inner diameter of thetunnel1904. In another exemplary embodiment, theentrance region1908 has a different inner diameter, smaller or larger, than the inner diameter of thetunnel1904.
Exemplary entrance inner diameters, TunnelEntrancediameter, include, but are not limited to, about 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80, 7.90, 8.00 mm, etc. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TunnelEntrancediameter, is about 6.70 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TunnelEntrancediameter, is about 6.60 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TunnelEntrancediameter, is about 6.50 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TunnelEntrancediameter, is about 6.40 mm.
FIG. 19B illustrates a cross-sectional view of theentrance region1908 of thetunnel1904 ofFIG. 19A. In an exemplary embodiment, theentrance region1908 of thetunnel1904 closest to thefiring button32 may be configured as a conical flange that forms aconical surface212 on which a plunger foot may rest before the device is fired. Theconical surface212 may extend radially outwardly from the distal end of thetunnel1904. Theconical surface212 is configured to seat thebottom surface219 and/or thethird surface225 of the tabbed feet ofplunger arms788a′,788b′ (not shown). In operation, when the tabbed feet of the plunger arms are disengaged from theconical surface212, the plunger arms move downward through thetunnel1904 of the firingbody12b.
Theconical surface212 may form an angle, the conical surface angle (CSA), relative to the transverse axis T. In an exemplary embodiment, theconical surface212 may be substantially flat along the transverse axis T, i.e., the CSA is about 0 degrees. In other exemplary embodiments, theconical surface212 may form an angle from the transverse axis T, i.e., the CSA is greater than 0 degrees. Exemplary CSA values include, but are not limited to, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 degrees, etc. In an exemplary embodiment, the CSA is configured to range from about 12 degrees to about 18 degrees. Exemplary CSA values include, but are not limited to, about 12, 13, 14, 15, 16, 17, 18, 19, 20 degrees, etc.
Theconical surface212 may have a height, h, measured along the longitudinal axis L. Exemplary conical surface heights may include, but are not limited to, about 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70 mm, etc. In an exemplary embodiment, the conical surface height is about 0.50 mm. In an exemplary embodiment, the conical surface height ranges from about 0.24 mm to about 0.28 mm. In one exemplary embodiment, the minimum conical surface height is about 0.20 mm. In another exemplary embodiment, the minimum conical surface height is about 0.3 mm. In another exemplary embodiment, the minimum conical surface height is about 0.4 mm. In another exemplary embodiment, the minimum conical surface height is about 0.5 mm.
III. CONFIGURING MOLDING PARAMETERS TO INCREASE FORCE TO FIRE (FtF)Certain conventional automatic injection devices can prematurely activate or fire if the Force to Fire (FtF) is below a first optimal level. Certain conventional automatic injection devices may require too much force to fire when the FtF is above a second optimal level. Exemplary systems, devices and methods overcome these problems by providing automatic injection devices with improved FtF and methods of making and using the same, as described herein.
An exemplary FtF for an automatic injection device may range between about 5 N and about 25 N. Another exemplary FtF for an automatic injection device may range between about 10 N and about 15 N. Another exemplary FtF for an automatic injection device may range between about 10 N and about 20 N. Another exemplary FtF for an automatic injection device may range between about 8 N and about 12 N. Another exemplary FtF for an automatic injection device may range above about 5 N. Another exemplary FtF for an automatic injection device may range above about 25 N. Exemplary FtF values include, but are not limited to, about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 N, etc.
Exemplary embodiments may configure one or more molding parameters used to mold one or more components of an automatic injection device firing assembly, e.g., the plunger. Molding parameters may affect the physical properties of the molded plunger, and may, in turn, affect the minimum force required to activate the firing mechanism so that a substance is expelled from the syringe into the patient's body. As such, molding parameters may have an effect on the FtF of a firing mechanism assembly. Exemplary molding parameters configurable by exemplary embodiments include, but are not limited to, the mold temperature, the cooling time, the shot/plunger weight, the injection pressure, the injection speed, etc.
In an exemplary embodiment, an exemplary plunger may be molded using a one-stage injection molding process. In another exemplary embodiment, an exemplary plunger may be molded using a two-stage injection molding process. In an exemplary embodiment, the injection pressure used during the first stage of the injection molding process may range from about 750×103psi to about 900×103psi. In another exemplary embodiment, the injection pressure used during the first stage of the injection molding process may range from about 1600×103psi to about 1800×103psi. In an exemplary embodiment, the injection pressure used during the second stage of the injection molding process may range from about 500×103psi to about 750×103psi. In another exemplary embodiment, the injection pressure used during the second stage of the injection molding process may range from about 800×103psi to about 900×103psi.
In an exemplary embodiment, the mold temperature used in the molding process may be reduced in order to increase the plunger width which, in turn, increases the FtF. In an exemplary embodiment, the cooling time used in the molding process may be increased in order to increase the plunger width which, in turn, increases the FtF. In an exemplary embodiment, the mold temperature may be reduced and the cooling time may be increased to increase the FtF. That is, a lower mold temperature and/or a longer cooling time may be used to increase the FtF.
In an exemplary embodiment, the mold temperature may range from about 100 F to about 200 F. In an exemplary embodiment, the mold temperature may be below about 200 F. In another exemplary embodiment, the mold temperature may be below about 100 F.
In an exemplary embodiment, the cooling time may range from about 10 seconds to about 25 seconds. In an exemplary embodiment, the cooling time may be above about 10 seconds. In another exemplary embodiment, the cooling time may be above about 20 seconds. In another exemplary embodiment, the cooling time may be above about 25 seconds. Exemplary cooling times include, but are not limited to, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 seconds, etc.
In an exemplary embodiment, the flexural modulus of the material forming the plunger may be increased to increase the FtF. Exemplary plungers discussed herein are formed at least partly of acetal polyoxymethylene (POM) copolymers, e.g., from Ticona, theHostaform™ C 13031 acetal (POM) copolymer plastic material, unless otherwise stated. Exemplary plungers may also be formed of other thermoplastic and thermosetting materials.
In an exemplary embodiment, the weight of the plunger may be increased to increase the FtF. Exemplary plunger weights may include, but are not limited to, about 1.90, 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.10 grams, etc. Exemplary plunger weights may range from about 1.92 grams to about 2.04 grams, but are not limited to this exemplary range. In an exemplary embodiment, the plunger weight may be above about 2 grams. In an exemplary embodiment, the plunger weight may be above about 1.93 grams.
IV. CONFIGURING EXEMPLARY AUTOMATIC INJECTION DEVICES TO MINIMIZE OR ELIMINATE DELAYED DELIVERY OF AN INJECTIONExemplary embodiments may configure one or more structural features of automatic injection devices including, but not limited to, the firing button, the firing body, the plunger, etc., in order to minimize or eliminate delayed delivery of an injection.
Certain terms are defined in this section to facilitate understanding of exemplary embodiments with reference toFIG. 20.
The term “force profile” refers to a graph of the force applied during the automatic injection device firing process against the distance moved by the firing button during the firing process.
FIG. 20 illustrates an exemplary force profile illustrating forces in N (y-axis) against the distance in mm (x-axis).
The term “initial contact point” refers to a point on a force profile at which a force is first experienced during the automatic injection device firing process. This corresponds to the point at which theinternal driving portion32aof thefiring button32 contacts the tabbedfoot7891′ of theplunger arms788a′,788b′.
The term “ICS/SCS transition point” refers to a subsequent point on a force profile at which the force reaches a peak. This corresponds to the point at which theinternal driving portion32aof thefiring button32 passes from the initial contact surface (ICS)216 to the secondary contact surface (SCS)218 of the tabbedfoot7891′ of theplunger arms788a′,788b′.
The term “fired point” refers to a subsequent point on a force profile at which the force returns to substantially zero. This corresponds to the point at which theplunger70 is disengaged and is no longer in contact with theinternal driving portion32aof thefiring button32.
The term “firing button/body contact point” refers to a subsequent point on a force profile at which the force increases, i.e., spikes. This corresponds to the point at which theinternal driving portion32aof thefiring button32 contacts theconical surface212 of the firingbody12b, as illustrated inFIG. 13.
The term “d” refers to the difference in distance along the x-axis between the fired point and the firing button/body contact point.
A. Inner Diameter, Rdiameter, of Internal Driving Portion of Firing ButtonIn exemplary automatic injection devices, delayed delivery of an injection tends to decrease with a decreasing inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32. In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is reduced to minimize or eliminate delayed delivery of an injection.
The relationship between a decreasing inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32 and delayed delivery of an injection is described in this section with reference toFIG. 21.
FIG. 21 illustrates four exemplary force profiles—“G,” “H,” “Cnl” and “I”—illustrating forces in N (y-axis) against the distance in mm (x-axis) forinternal driving portions32aof firingbuttons32 having a length, Rlength, of about 6.53 mm.
Force profile “G” corresponds to aninternal driving portion32aof afiring button32 with an inner diameter, Rdiameter, of about 6.50 mm. Force profile “H” corresponds to aninternal driving portion32aof afiring button32 with an inner diameter, Rdiameter, of about 6.65 mm. Force profile “Cnl” corresponds to aninternal driving portion32aof afiring button32 with an inner diameter, Rdiameter, of about 6.80 mm. Force profile “I” corresponds to aninternal driving portion32aof afiring button32 with an inner diameter, Rdiameter, of about 6.95 mm.
Aninternal driving portion32aof afiring button32 with a smaller inner diameter sits higher above the tabbedfoot7891′ of theplunger arms788a′,788b′ and makes an earlier contact with the tabbedfoot7891′ of theplunger arms788a′,788b′, as compared to aninternal driving portion32aof afiring button32 with a larger diameter. Since theinternal driving portion32aof afiring button32 makes an earlier contact with the tabbedfoot7891′ of theplunger arms788a′,788b′, the force profile is initiated earlier, i.e., after a shorter distance of depression of the firing button. As a result, for a decreasing inner diameter, the initial contact point on the force profile occurs earlier, i.e., at shorter distances on the x-axis. Decreasing the inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32 therefore reduces the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
In some exemplary embodiments, the ICS/SCS transition point is unchanged and occurs at substantially the same distance on the x-axis.
In some exemplary embodiments, the firing button/body contact point is unchanged and occurs at substantially the same distance on the x-axis. This is because, in the exemplary embodiments, the length, Rlength, of theinternal driving portion32aof afiring button32 is held constant over the different force profiles. In other exemplary embodiments, the length of theinternal driving portion32aof thefiring button32 may be varied.
Because of the structural configuration of the different components in exemplary automatic injection devices, the distance “d” on the x-axis of the force profile increases with a decreasing inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32. The distance “d” corresponds to a farther distance over which theinternal driving portion32aof afiring button32 may be pushed even after the plunger has disengaged from theinternal driving portion32a, until theinternal driving portion32acontacts the firing bodyconical surface212 of the firingbody12band is stopped from moving farther. If the pressing of the firing button fails to fire the automatic injection device until the fired point, the firing button may be depressed farther over the distance “d” in order to fire the automatic injection device. As such, an increasing distance “d” reduces delayed delivery of an injection and increases the probability of a successful firing. Decreasing the inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32 therefore reduces delayed delivery of an injection.
In summary, decreasing the inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32 reduces delayed delivery of an injection, increases the probability of successful firing, and reduces the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device. Exemplary embodiments may decrease the inner diameter, Rdiameter, of theinternal driving portion32aof afiring button32, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
In an exemplary embodiment, the inner diameter, Rdiameter, may be decreased while also decreasing the outer diameter of theinternal driving portion32aof thefiring button32. This exemplary embodiment may leave the wall thickness (i.e., the difference between the outer diameter and the inner diameter) of theinternal driving portion32aof thefiring button32 unchanged.
In another exemplary embodiment, the inner diameter, Rdiameter, may be decreased while leaving unchanged the outer diameter of theinternal driving portion32aof thefiring button32. This exemplary embodiment may increase the wall thickness (i.e., the difference between the outer diameter and the inner diameter) of theinternal driving portion32aof thefiring button32. The increased wall thickness tends to reduce the extent of deformation of theinternal driving portion32aof thefiring button32 when thefiring button32 is depressed. The reduction in deformation of theinternal driving portion32aof thefiring button32 advantageously minimizes delayed delivery of an injection.
In exemplary embodiments, the length of exemplary automatic injection device along the longitudinal axis L may be kept constant or limited to within a certain range. In these exemplary embodiments, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 may not be reduced beyond a certain minimum inner diameter. This is because reducing the inner diameter beyond the minimum inner diameter may result in the firing button sitting too high in the device, which increases the difficulty in assembling the components of the device. In certain exemplary embodiments, the minimum inner diameter beyond which the inner diameter is not reduced may range from about 5.0 mm to about 5.9 mm.
In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be below about 6.80 mm. In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be below about 6.70 mm. In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be below about 6.60 mm. In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be below about 6.50 mm. In an exemplary embodiment, the inner diameter, Rdiameter, of theinner driving portion32aof thefiring button32 is configured to be about 6.50 mm. In an exemplary embodiment, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be about 6.40 mm. In exemplary embodiments, the inner diameter, Rdiameter, of theinternal driving portion32aof thefiring button32 is configured to be, but is not limited to, about 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0 mm, etc.
B. Length, Rlength, of Internal Driving Portion of Firing ButtonIn exemplary automatic injection devices, delayed delivery of an injection tends to decrease with an increasing length, Rlength, of theinternal driving portion32aof thefiring button32. In an exemplary embodiment, the length, Rlength, of theinternal driving portion32aof thefiring button32 is increased to minimize or eliminate delayed delivery of an injection.
The relationship between an increasing length, Rlength, of theinternal driving portion32aof afiring button32 and delayed delivery of an injection is described in this section with reference toFIG. 22.
FIG. 22 illustrates four exemplary force profiles—“C,” “B,” “Cnl” and “A”—-illustrating forces in N (y-axis) against the distance in mm (x-axis) forinternal driving portions32aof firingbuttons32 having an inner diameter, Rdiameter, of about 6.80 mm.
Force profile “C” corresponds to aninternal driving portion32aof afiring button32 with a length, Rlength, of about 6.83 mm. Force profile “B” corresponds to aninternal driving portion32aof afiring button32 with a length, Rlength, of about 6.73 mm. Force profile “Cnl” corresponds to aninternal driving portion32aof afiring button32 with a length, Rlength, of about 6.53 mm. Force profile “A” corresponds to aninternal driving portion32aof afiring button32 with a length, Rlength, of about 6.33 mm.
Aninternal driving portion32aof afiring button32 with a longer length makes an earlier contact with the tabbedfoot7891′ of theplunger arms788a′,788b′, as compared to aninternal driving portion32aof afiring button32 with a shorter length. Since theinternal driving portion32aof afiring button32 makes an earlier contact with the tabbedfoot7891′ of theplunger arms788a′,788b′, the force profile is initiated earlier, i.e., after a shorter distance of depression of the firing button. The forces profiles shift to the left with an increasing length, Rlength, of theinternal driving portion32aof afiring button32. As a result, the initial contact point on the force profile occurs earlier, i.e., at shorter distances on the x-axis, for an increasing length. Increasing the length, Rlength, of theinternal driving portion32aof afiring button32 therefore reduces the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
The distance “d” on the x-axis of the force profile is unchanged.
In summary, increasing the length, Rlength, of theinternal driving portion32aof afiring button32 reduces delayed delivery of an injection, increases the probability of successful firing, and reduces the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device. Exemplary embodiments may increase the length, Rlength, of theinternal driving portion32aof afiring button32, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
In an exemplary embodiment, the length, Rlength, of theinternal driving portion32aof afiring button32 is configured to be above about 6.75 mm. In an exemplary embodiment, the length, Rlength, of theinternal driving portion32aof afiring button32 is configured to range from about 6.73 mm to about 6.83 mm. In exemplary embodiments, the length, Rlength, of theinternal driving portion32aof afiring button32 is configured to be, but is not limited to, about 6.70, 6.71, 6.72, 6.73, 6.74, 6.75, 6.76, 6.77, 6.78, 6.79, 6.80, 6.81, 6.82, 6.83, 6.84, 6.85, 6.86, 6.87, 6.88, 6.89, 6.90 mm, etc.
C. Conical Surface Angle, CSA, of Conical Surface of Firing BodyIn exemplary automatic injection devices, delayed delivery of an injection tends to decrease with an increasing Conical Surface Angle (CSA) value of theconical surface212 of the firingbody12b. In an exemplary embodiment, the CSA is increased to minimize or eliminate delayed delivery of an injection.
The tabbedfoot7891′ of theplunger arms788a′,788b′ sits higher on aconical surface212 of a firingbody12bthat has a larger CSA. This allows theinternal driving portion32aof afiring button32 to collapse theplunger70 at an earlier time when thefiring button32 is depressed. Increasing the CSA of theconical surface212 of the firingbody12btherefore reduces delayed delivery of an injection.
Exemplary embodiments may increase the CSA of theconical surface212 of the firingbody12b, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
In an exemplary embodiment, the CSA is configured to be range from about 12 degrees to about 18 degrees. Exemplary CSA values include, but are not limited to, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 degrees, etc.
D. Height of Conical Surface of Firing BodyIn exemplary automatic injection devices, delayed delivery of an injection tends to decrease with an increasing height of theconical surface212 of the firingbody12b. In an exemplary embodiment, the height of theconical surface212 of the firingbody12bis increased to minimize or eliminate delayed delivery of an injection. The conical surface height may be reduced over time due to deformation of theconical surface212 caused by engagement of theconical surface212 of the firingbody12bwith the plunger feet. In an exemplary embodiment, the extent of deformation of theconical surface212 of the firingbody12bmay be reduced to minimize or eliminate delayed delivery of an injection.
A decreasing height and/or greater deformation of theconical surface212 corresponds to a decrease in the Conical Surface Angle (CSA) of theconical surface212 of the firingbody12b. The tabbedfoot7891′ of theplunger arms788a′,788b′ sits lower on aconical surface212 of a firingbody12bthat has a smaller CSA. This causes theinternal driving portion32aof afiring button32 to collapse theplunger70 at a later time when thefiring button32 is depressed. Decreasing the conical surface height and/or decreasing deformation of theconical surface212 of the firingbody12btherefore increases delayed delivery of an injection.
Exemplary embodiments may decrease the extent of deformation of theconical surface212 of the firingbody12b, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device. Deformation of theconical surface212 may result from engagement of the conical surface212 (formed of a soft material like polypropylene in an exemplary embodiment) of the firingbody12bwith the plunger feet (formed of a polyacetal material in an exemplary embodiment). In an exemplary embodiment, the firingbody12bis formed of a relatively high rigidity material to reduce the extent of deformation of the conical surface.
Exemplary embodiments may increase the height of theconical surface212 of the firingbody12b, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
Exemplary conical surface heights may include, but are not limited to, about 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70 mm, etc. In an exemplary embodiment, the conical surface height is about 0.50 mm. In an exemplary embodiment, the conical surface height ranges from about 0.24 mm to about 0.28 mm. In one exemplary embodiment, the minimum conical surface height is about 0.20 mm. In another exemplary embodiment, the minimum conical surface height is about 0.3 mm. In another exemplary embodiment, the minimum conical surface height is about 0.4 mm. In another exemplary embodiment, the minimum conical surface height is about 0.5 mm.
E. Tunnel Entrance Inner Diameter, TEntrancediameter, of Firing BodyIn exemplary automatic injection devices, delayed delivery of an injection may be observed when the tunnel entrance inner diameter, TEntrancediameter, of the firingbody12bfalls below a certain minimum diameter. In an exemplary embodiment, the tunnel entrance inner diameter, TEntrancediameter, of the firingbody12bis configured to range above a minimum tunnel entrance inner diameter to minimize or eliminate delayed delivery of an injection.
For a tunnel entrance inner diameter, TEntrancediameter, that is too narrow, theplunger70 may not move all the way down the tunnel of the firing body. The narrow tunnel may cause greater dragging of the plunger feet against the tunnel walls as the plunger travels down the tunnel. Decreasing the tunnel entrance inner diameter, TEntrancediameter, below a certain minimum inner diameter may therefore increase delayed delivery of an injection.
Exemplary embodiments may maintain the tunnel entrance inner diameter, TEntrancediameter, of the firingbody12babove a minimum inner diameter, alone or in combination with one or more additional factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
Exemplary entrance inner diameters, TEntrancediameter, include, but are not limited to, about 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80, 7.90, 8.00 mm, etc. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TEntrancediameter, is about 6.70 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TEntrancediameter, is about 6.60 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TEntrancediameter, is about 6.50 mm. In an exemplary embodiment, the minimum exemplary entrance inner diameter, TEntrancediameter, is about 6.40 mm.
F. Mid Point Fixed (MPF) or Top Point Fixed (TPF) Plunger DesignIn exemplary automatic injection devices, delayed delivery of an injection may be lower for the top point fixed (TPF) plunger design as compared to the mid point fixed (MPF) plunger design. The TPF plunger design allows the tabbedfoot7891′ of theplunger arms788a′,788b′ to sit higher on theconical surface212 of a firingbody12b. This allows theinternal driving portion32aof afiring button32 to collapse theplunger70 at an earlier time when thefiring button32 is depressed. The TPF plunger design may therefore reduce delayed delivery of an injection as compared to the MPF plunger design. This effect is observed as an increased distance “d” on the force profile of the TPF plunger design, as compared to the MPF plunger design.
In an exemplary embodiment, the plunger feet may be configured in accordance to the TPF plunger design, alone or in combination with one or more additional other factors, to minimize or eliminate delayed delivery of an injection, increase the probability of successful firing, and reduce the strain required to achieve adequate collapse in the plunger for a successful firing of the automatic injection device.
In another exemplary embodiment, the plunger feet may be configured in accordance to the MPF plunger design for suitability in assembling the firing mechanism.
V. EXEMPLIFICATIONExemplary systems, devices and methods for making and using at least exemplary firing buttons and exemplary automatic injection devices are described in more detail below with reference to the following experimental examples.
A. Testing of Exemplary Rapid Prototype Technology (RPT) Firing Buttons and Exemplary Commercial PlungersExemplary automatic injection devices were produced by assembling exemplary Rapid Prototype Technology (RPT) firing buttons with exemplary commercial plungers and other components. The exemplary RPT firing buttons were formed of one or more thermosetting materials. The exemplary plungers each had an initial contact surface (ICS) angle of about 38 degrees. The assembled automatic injection devices were tested to quantitatively determine the impact of different component features on the delayed delivery of an injection, if any, of the devices.
(i) Relationship Between Inner Diameter of Firing Button Ring and Delayed Delivery of an InjectionThe impact of the combination of the firing button material and the inner diameter of the firing button ring on delayed delivery times was tested. The different combinations tested included: aWaterShed™ 11120 resin and a firing button ring inner diameter of about 6.60 mm, aWaterShed™ 11120 resin and firing button ring inner diameter of about 6.80 mm (used as the control), aWaterShed™ 11120 resin and a firing button ring inner diameter of about 7.00 mm, aProtoTherm™ 12120 resin and a firing button ring inner diameter of about 6.60 mm, aProtoTherm™ 12120 resin and a firing button ring inner diameter of about 6.80 mm (used as the control), and aProtoTherm™ 12120 resin and a firing button ring inner diameter of about 7.00 mm.
| TABLE 1 |
|
| Summary of the specifications of the exemplary components tested |
| Firing Button Ring Inner Diameter | FiringButton Ring Length |
| |
| 11120 Resin - 6.60mm | 11120 Resin - 6.33mm |
| 11120 Resin - 6.80mm | 11120 Resin - 6.53mm |
| 11120 Resin - 7.00mm | 11120 Resin - 6.73mm |
| 12120 Resin - 6.60mm | 12120 Resin - 6.33mm |
| 12120 Resin - 6.80mm | 12120 Resin - 6.53mm |
| 12120 Resin - 7.00mm | 12120 Resin - 6.73 mm |
| |
In a first set of tests, the firing button of the devices was depressed by a tester to a Zwick strain of about 2.4 mm. The strain was not sufficient to fully depress the firing button and, therefore, the strain in pressing down the firing button was determined to have contributed to the delayed delivery of an injection of the devices.
FIG. 23 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times (x-axis), for theWaterShed™ 11120 resin and the firing button ring inner diameter of about 6.6 mm. The histogram shows that none of the devices showed delayed delivery of an injection.
FIG. 24 illustrates a histogram of the percentage of devices that showed delayed delivery (y-axis) against different delayed delivery times (x-axis), for theWaterShed™ 11120 resin and the firing button ring inner diameter of about 6.8 mm. The histogram shows that about 20% of the devices showed no delayed delivery of an injection, and about 80% of the devices showed a delayed delivery of an injection ranging from about 1 second to about 60 seconds.
FIG. 25 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring inner diameters for theWaterShed™ 11120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was highest (100%) for the firing button ring inner diameter of about 6.6 mm, was intermediate (20%) for the firing button ring inner diameter of about 6.8 mm, and was lowest (0%) for the firing button ring inner diameter of about 7.0 mm.
FIG. 26 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring inner diameters for theProtoTherm™ 12120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was highest (100%) for the firing button ring inner diameter of about 6.6 mm, was intermediate (60%) for the firing button ring inner diameter of about 6.8 mm, and was lowest (0%) for the firing button ring inner diameter of about 7.0 mm.
FIG. 27 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was highest (100%) for the firing button ring inner diameter of about 6.6 mm, was intermediate (60%) for the firing button ring inner diameter of about 6.8 mm, and was lowest (0%) for the firing button ring inner diameter of about 7.0 mm. The histogram also shows that about 20% of the devices with the 6.8 mm firing button ring inner diameter showed delayed delivery times ranging from about 1 second to about 60 seconds, and about 20% showed delayed delivery times ranging from about 1 minute to about 60 minutes. The histogram further shows that 50% of the devices with the 7.0 mm firing button ring inner diameter showed delayed delivery times ranging from about 1 minute to about 60 minutes, and about 40% showed delayed delivery times above about 60 hours.
FIG. 28 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was highest (100%) for the firing button ring inner diameter of about 6.6 mm (for both resins), was intermediate (60% for theProtoTherm™ 12120 resin and 20% for theWaterShed™ 11120 resin) for the firing button ring inner diameter of about 6.8 mm, and was lowest (0%) for the firing button ring inner diameter of about 7.0 mm (for both resins).
In a second set of tests, the firing button of the devices was depressed by a tester to a Zwick strain of about 2.6 mm. This strain was sufficient to fully depress the firing button and, therefore, the strain in pressing down the firing button was determined to not have contributed to the delayed delivery of an injection of the devices.
FIG. 29 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring inner diameters for theWaterShed™ 11120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring inner diameters of about 6.6 mm and about 6.8 mm, and was lower (80%) for the firing button ring inner diameter of about 7.0 mm.
FIG. 30 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring inner diameters for theProtoTherm™ 12120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring inner diameters of about 6.6 mm and about 6.8 mm, and lower (70%) for the firing button ring inner diameter of about 7.0 mm.
FIG. 31 illustrates histograms of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring inner diameters (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin. The strains used were about 2.4 mm and about 2.6 mm. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring inner diameters of about 6.6 mm and about 6.8 mm (at a strain of 2.6 mm), and lower (70% for theProtoTherm™ 12120 resin and 80% for theWaterShed™ 11120 resin) for the firing button ring inner diameter of about 7.0 mm (at a strain of 2.6 mm).
In the experimental results shown inFIG. 31, at a sufficient strain of about 2.6 mm, certain exemplary firing buttons formed of theWaterShed™ 11120 resin resulted in reduced delayed delivery of an injection compared to certain exemplary firing buttons formed of the ProtoTherm™ resin at a 7.0 mm firing button ring inner diameter (at a strain of 2.6 mm). TheWaterShed™ 11120 resin had a flex modulus ranging from about 2,865 MPa to about 2,880 MPa, and the ProtoTherm™ resin had flex modulus of about 3,520 MPa. In some exemplary embodiments, a decrease in the flex modulus of the material forming the firing button reduces deformation in the firing button ring during firing, and thereby reduces or eliminates delayed delivery of an injection.
In some exemplary embodiments, insufficient strain applied to the firing button contributes to delayed delivery of an injection. In some exemplary embodiments, the percentage of certain exemplary tested devices that showed delayed delivery of an injection increased with decreasing strain on the firing button. In addition, for certain exemplary tested devices that showed delayed delivery of an injection, the delayed delivery times increased with decreasing strain on the firing button. In some exemplary embodiments, a strain of about 2.6 mm was sufficient in pressing down the firing button and did not contribute to delayed delivery of an injection. Thus, in these exemplary embodiments, delayed delivery of an injection tested with a strain of about 2.6 mm did not reflect factors introduced by a patient pressing the firing button.
Based on the experimental results, the percentage of certain exemplary tested devices that showed delayed delivery of an injection increased with increasing firing button ring inner diameters for both firing button materials (theWaterShed™ 11120 resin and theProtoTherm™ 12120 resin). In some exemplary embodiments, a firing button ring inner diameter of about 6.6 mm resulted in no delayed delivery of an injection in all tested devices, a firing button ring inner diameter of about 6.8 mm resulted in delayed delivery of an injection for a percentage of the tested devices, and a firing button ring inner diameter of about 7.0 mm resulted in delayed delivery of an injection in all of the tested devices. In addition, for certain exemplary devices that showed delayed delivery of an injection, the delayed delivery times increased with increasing firing button ring inner diameters for both firing button materials (theWaterShed™ 11120 resin and theProtoTherm™ 12120 resin).
(ii) Relationship Between Length of Firing Button Ring and Delayed Delivery of an InjectionThe relationship between the combination of the firing button material and the length of the firing button ring and delayed delivery times was tested. The different combinations tested included: aWaterShed™ 11120 resin and a firing button ring length of about 6.33 mm, aWaterShed™ 11120 resin and firing button ring length of about 6.53 mm (used as the control), aWaterShed™ 11120 resin and a firing button ring length of about 6.73 mm, aProtoTherm™ 12120 resin and a firing button ring length of about 6.33 mm, aProtoTherm™ 12120 resin and a firing button ring length of about 6.53 mm (used as the control), and aProtoTherm™ 12120 resin and a firing button ring length of about 6.73 mm. Table 1 summarizes the specifications of the exemplary components tested.
In a first set of tests, the firing button of the devices was depressed by a tester to a Zwick strain of about 2.4 mm. This strain was not sufficient to fully depress the firing button and, therefore, the strain in pressing down the firing button was determined to have contributed to the delayed delivery of an injection of the devices.
FIG. 32 illustrates a histogram of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring lengths (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin forming the firing button. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was highest (100%) for the firing button ring length of about 6.73 mm (for both resins), was intermediate (20%) for theWaterShed™ 11120 resin with a firing button ring length of about 6.53 mm, and was lowest (0%) for the firing button ring length of about 6.33 mm (for both resins) and for theProtoTherm™ 12120 resin with a firing button ring length of about 6.53 mm.
In a second set of tests, the firing button of the devices was depressed by a tester to a Zwick strain of about 2.6 mm. This strain was sufficient to fully depress the firing button and, therefore, the strain in pressing down the firing button was determined to not have contributed to the delayed delivery of an injection of the devices.
FIG. 33 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring lengths for theWaterShed™ 11120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring length of about 6.53 mm and about 6.73 mm, and was lower (70%) for the firing button ring length of about 6.33 mm.
FIG. 34 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) against different delayed delivery times and against different firing button ring lengths for theProtoTherm™ 12120 resin. The histogram shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring lengths of about 6.53 mm and about 6.73 mm, and was lower (10%) for the firing button ring length of about 6.33 mm.
FIG. 35 illustrates histograms of the percentage of devices that showed different delayed delivery times (y-axis) against different firing button ring lengths (x-axis) for theProtoTherm™ 12120 resin and theWaterShed™ 11120 resin forming the firing button. The strains used were about 2.4 mm and about 2.6 mm. The histogram for the 2.6 mm strain shows that the percentage of devices that showed no delayed delivery of an injection was high (100%) for the firing button ring lengths of about 6.53 mm and about 6.73 mm (for both resins), and lower (10% for theProtoTherm™ 12120 resin firing button and 70% for theWaterShed™ 11120 resin firing button) for the firing button ring length of about 6.33 mm.
In the experimental results shown inFIG. 35, at a sufficient strain of about 2.6 mm, certain exemplary firing buttons formed of theWaterShed™ 11120 resin resulted in reduced delayed delivery compared to certain exemplary firing buttons formed of the ProtoTherm™ resin at a 6.33 mm firing button ring length. TheWaterShed™ 11120 resin had a flex modulus ranging from about 2,865 MPa to about 2,880 MPa, and the ProtoTherm™ resin had flex modulus of about 3,520 MPa. In some exemplary embodiments, a decrease in the flex modulus of the material forming the firing button reduces deformation in the firing button ring during firing, and thereby reduces or eliminates delayed delivery of an injection.
Based on a comparison betweenFIGS. 32 and 35, insufficient strain on the firing button contributed to delayed delivery of an injection in certain exemplary tested devices. The percentage of certain exemplary tested devices that showed delayed delivery of an injection increased with decreasing strain on the firing button. In addition, for certain exemplary tested devices that showed delayed delivery of an injection, the delayed delivery times increased with decreasing strain on the firing button. In some exemplary embodiments, a strain of about 2.6 mm was sufficient in pressing down the firing button and did not contribute to delayed delivery of an injection. Thus, in some exemplary embodiments, delayed deliveries tested with a strain of about 2.6 mm did not reflect factors introduced by a patient pressing the firing button.
Based on the experimental results, the percentage of certain exemplary tested devices that showed delayed delivery of an injection increased with decreasing firing button ring lengths for both firing button materials (theWaterShed™ 11120 resin and theProtoTherm™ 12120 resin). More specifically, for some exemplary tested embodiments, a firing button ring length of about 6.73 mm resulted in no delayed delivery of an injection in all tested devices, a firing button ring length of about 6.53 mm resulted in delayed delivery of an injection for a percentage of the tested devices, and a firing button ring length of about 6.33 mm resulted in delayed delivery of an injection in all of the tested devices. In addition, for certain exemplary tested devices that showed delayed delivery of an injection, the delayed delivery times increased with decreasing firing button ring lengths for both firing button materials (theWaterShed™ 11120 resin and theProtoTherm™ 12120 resin).
(iii) Relationship Between Combination of Firing Button Ring Inner Diameter and Firing Button Ring Length and Delayed Delivery of an Injection
The relationship between the combination of the inner diameter of the firing button ring and the length of the firing button ring and delayed delivery times was tested.
The firing button of the devices was depressed by a tester to a Zwick strain of about 2.4 mm. This strain was not sufficient to fully depress the firing button in certain exemplary tested devices and, therefore, the strain in pressing down the firing button was determined to have contributed to the delayed delivery of an injection of the devices.
FIG. 36 illustrates a 3D scatterplot of delayed delivery times in seconds (z-axis) against different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis).
FIG. 37 illustrates a 2D section ofFIG. 36 viewed from the x-z plane along the y-axis, which shows that the delayed delivery times decrease with increasing firing button ring lengths. The delayed delivery of an injection was eliminated at ring lengths at about 6.75 mm and above about 6.75 mm.
FIG. 38 illustrates a 2D section ofFIG. 36 viewed from the y-z plane along the x-axis, which shows that the delayed delivery times decrease with decreasing firing button ring inner diameters. The delayed delivery of an injection was eliminated at firing button ring inner diameters at about 6.60 mm and below about 6.60 mm.
(iv) Summary of ResultsResults for the combination of the RPT firing buttons and the commercial plungers having an ICS angle of about 38 degrees indicate that, for a sufficient strain, delayed delivery of an injection was eliminated for firing button ring inner diameters at or below about 6.60 mm and for firing button ring lengths at or above about 6.75 mm.
B. Testing of Exemplary Rapid Prototype Technology (RPT) Firing Buttons and Exemplary Single Impression Mold (SIM) PlungersExemplary automatic injection devices were produced by assembling exemplary Rapid Prototype Technology (RPT) firing buttons with exemplary Single Impression Mold (SIM) plungers. The exemplary RPT firing buttons were formed of one or more thermosetting materials, and the exemplary SIM plungers were formed of one or more thermoplastic materials. The exemplary plungers each had an initial contact surface (ICS) angle of about 48 degrees. The assembled automatic injection devices were tested to quantitatively determine the impact of different component features on the delayed delivery of an injection, if any, of the devices.
The firing button of the devices was depressed by a tester to a Zwick strain ranging from about 3.2 mm to about 3.4 mm. This strain was sufficient to fully depress the firing button in certain exemplary tested devices and, therefore, the strain in pressing down the firing button was determined to not have contributed to the delayed delivery of an injection of the devices.
The firing button ring lengths were varied from about 6.30 mm to about 7.40 mm. The firing button ring inner diameters were varied from about 6.40 mm to about 7.10 mm.
(i) Testing of Mid Point Fixed (MPF) PlungersFIG. 39 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring inner diameters in mm (x-axis) for strains of about 3.2 mm to about 3.4 mm. The delayed delivery times were about 0 seconds, i.e., there was no delayed delivery of an injection, for all but one of the tested firing buttons. The delayed delivery time was about 1 second for one of the firing buttons having an inner diameter of about 6.86 mm.
FIG. 40 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring inner diameters in mm (x-axis) for strains of about 3.2 mm to about 3.4 mm. The delayed delivery times were about 0 seconds, i.e., there was no delayed delivery of an injection, for most of the tested firing buttons. Delayed delivery of an injection was exhibited by about three firing buttons, all having firing button inner diameters of about 7.1 mm.
Based on the experimental results, the firing button inner ring diameter in some exemplary embodiments may be maintained lower than about 6.8 mm at strains of between about 3.2 mm and about 3.4 mm to make exemplary automatic injection devices free of delayed delivery of an injection.
FIG. 41 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring lengths in mm (x-axis) for strains of about 3.2 mm to about 3.4 mm. The delayed delivery times were about 0 seconds, i.e., there was no delayed delivery of an injection, for all but one of the tested firing buttons. The delayed delivery time was about 1 second for one of the firing buttons having an inner diameter of about 6.58 mm.
FIG. 42 illustrates a scatterplot of delayed delivery times in seconds (y-axis) against firing button ring lengths in mm (x-axis) for strains of about 3.2 mm to about 3.4 mm. The delayed delivery times were about 0 seconds, i.e., there was no delayed delivery of an injection, for most of the tested firing buttons. Delayed delivery of an injection was exhibited by about three firing buttons, all having firing button lengths of below about 6.55 mm.
Based on the experimental results, the firing button length in some exemplary embodiments is maintained above about 6.60 mm at strains of between about 3.2 mm and about 3.4 mm to make exemplary automatic injection devices free of delayed delivery of an injection.
| TABLE 2 |
|
| Summary of experimental results showing firing button ring lengths and |
| inner diameters that eliminate delayed delivery of an injection in |
| automatic injection devices |
| | | Firing |
| DD-Free | Firing Button | Button |
| Dimension | Ring Inner | Ring Length |
| Plunger (SIM) | (mm) | Diameter (mm) | (mm) |
|
| ICS Angle = 38° | 2.4 mm strain | <6.60 mm | >6.75 mm |
| ICS Angle = 38° | 2.6 mm strain | <6.80 mm | >6.60 mm |
| MPF ICS Angle = 48° | 3.2-3.4 mm strain | <6.80 mm | >6.60 mm |
| TPF ICS Angle = 38° | 3.2-3.4 mm strain |
| Control | Spec/Study Range | 6.75-6.85 | 6.33-6.73 |
|
(ii) Testing of Top Point Fixed (TPF) PlungersSimilar results were obtained by testing TPF plungers.
(iii) Summary of Results
Results for the combination of the RPT firing button and the SIM plunger (MPF or TPF) having an ICS angle of about 48 degrees indicate that, for a strain ranging from about 3.2 mm to about 3.4 mm, delayed delivery of an injection was eliminated for firing button ring inner diameters below about 6.80 mm and for firing button ring lengths above about 6.60 mm.
C. Summary of Experimental Results for Rapid Prototype Technology (RPT) Firing ButtonsFor exemplary Rapid Prototype Technology (RPT) firing buttons, for both commercial and Single Impression Mold (SIM) plungers, delayed delivery of an injection was eliminated at firing button ring inner diameters below about 6.60 mm and for firing button ring lengths above about 6.75 mm. Exemplary embodiments may configure exemplary firing button ring inner diameters to be below about 6.60 mm and firing button ring lengths to be above about 6.75 mm to reduce or eliminate delayed delivery of an injection in the assembled automatic injection devices.
FIG. 43 illustrates a scatterplot of firing button ring lengths in mm (y-axis) against firing button ring inner diameters in mm (x-axis). Zone A inFIG. 43 indicates that there is some risk of delayed delivery of an injection for lower ring lengths (below about 6.50 mm) and for higher ring inner diameters (above about 6.80 mm). Exemplary embodiments may avoid selection of ring length and inner diameter combinations in Zone A in order to reduce or eliminate delayed delivery of an injection in the assembled automatic injection devices. Zone B inFIG. 43 indicates that there is very low risk of delayed delivery of an injection for higher ring lengths (above about 6.75 mm) and for lower ring inner diameters (below about 6.60 mm). Exemplary embodiments may select ring length and inner diameter combinations in Zone B in order to reduce or eliminate delayed delivery of an injection in the assembled automatic injection devices.
D. Testing of Exemplary Single Impression Mold (SIM) Firing Buttons and Exemplary Commercial Plungers Having an Exemplary Initial Contact Surface (ICS) Angle of about 38 Degrees
Exemplary automatic injection devices were produced by assembling exemplary Single Impression Mold (SIM) firing buttons and commercial plungers. The exemplary firing buttons were formed of one or more thermoplastic materials, e.g., polypropylene. The exemplary plungers each had an initial contact surface (ICS) angle of about 38 degrees. The assembled automatic injection devices were tested to quantitatively determine the impact of different component features on the delayed delivery of an injection, if any, of the devices.
FIG. 44 illustrates a scatterplot of tested devices with different firing button ring lengths in mm (y-axis) and firing button ring inner diameters in mm (x-axis).
The strain applied to the firing button was set to about 1.45 mm, 1.55 mm and about 1.65 mm to determine the effect of the varying the strain on the percentage of devices that show delayed delivery of an injection.
FIG. 45 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.45 mm. The actual strain of about 1.45 mm simulates a patient who does not or cannot push the firing button deep enough to activate firing of the device. The percentage of devices that showed delayed delivery of an injection ranged between about 0% and about 70% depending on the firing button ring length and inner diameter.
FIG. 46 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.55 mm. The actual strain of about 1.55 mm simulates a patient who pushes down the firing button to a greater extent than in the case of an actual strain of about 1.45 mm. The percentage of devices that showed delayed delivery of an injection was reduced and ranged between about 0% and about 10% depending on the firing button ring length and inner diameter.
FIG. 47 illustrates a histogram of the percentage of devices that showed delayed delivery (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for an actual strain of about 1.65 mm. The actual strain of about 1.65 mm simulates a patient who pushes down the firing button to a greater extent than in the case of an actual strain of about 1.55 mm. The percentage of devices that showed delayed delivery of an injection was reduced and was 0% for all firing button ring lengths and inner diameters.
Based on the experimental results, in some exemplary embodiments, for an actual strain of about 1.65 mm, a firing button ring inner diameter of below about 6.95 mm and a firing button ring length of above about 6.33 mm resulted in automatic injection devices that were free of delayed delivery of an injection. In some exemplary embodiments, for an actual strain of about 1.55 mm, a firing button ring inner diameter of below about 6.80 mm and a firing button ring length of above about 6.53 mm resulted in automatic injection devices that were free of delayed delivery of an injection. In some exemplary embodiments, for an actual strain of about 1.45 mm, a firing button ring inner diameter of below about 6.65 mm and a firing button ring length of above about 6.53 mm resulted in automatic injection devices that were free of delayed delivery of an injection. Based on the actual strains applied, exemplary embodiments may configure the firing button ring lengths and inner diameters based on the experimental results to reduce or eliminate delayed delivery of an injection.
FIG. 48 illustrates a histogram of the threshold strain in mm (z-axis) for different firing button ring inner diameters in mm (x-axis) and firing button ring lengths in mm (y-axis) for the firing buttons. The term “threshold strain” refers to the minimum actual strain applied in pressing down a firing button during firing of an automatic injection device at which no delayed delivery of an injection is observed. Based on the experimental results, in some exemplary embodiments, firing button ring lengths and inner diameters required for elimination of delayed delivery of an injection was affected by the actual strain applied by patients. Patients in high strain groups (i.e., patients who can push the firing button down over a sufficient distance) were able to eliminate delayed delivery of an injection at larger ring inner diameters and shorter ring lengths. However, for patients in lower strain groups (i.e., patients who cannot or do not push the firing button down over a sufficient distance) required smaller ring inner diameters and longer ring lengths for elimination of delayed delivery of an injection.
In an exemplary firing button, the firing button ring length may be set between about 6.73 and about 6.83 mm and the firing button ring inner diameter may be set between about 6.50 mm and about 6.65 mm in order to eliminate delayed delivery of an injection. As illustrated inFIG. 48, the exemplary selected ranges of inner diameters and lengths set the threshold strain at about 1.40 mm. One of ordinary skill in the art will appreciate from at leastFIG. 48 that other exemplary ranges of firing button ring inner diameters and lengths may be selected, which may change the associated threshold strain. One of ordinary skill in the art will appreciate that the threshold strain may be configured by configuring the associated firing button ring inner diameter and length.
E. Relationship Between Conical Surface Angle (CSA) of Firing Body and Delayed Delivery of an Injection(i) Testing of Commercial Firing BodiesExemplary automatic injection devices were produced by assembling exemplary commercial firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the conical surface angle (CSA) of the commercial firing bodies on the delayed delivery of an injection, if any, of the devices.
The CSA value of exemplary firing bodies was varied and the resulting delayed delivery of an injection was measured.
| TABLE 3 |
|
| Summary of different CSA values used to test the effect of the CSA on |
| delayed delivery of an injection |
| Experimental Conical | |
| Surface Angle for |
| Commercial | Commercial |
| DesignSpecification | Firing Bodies | |
|
FIG. 49 illustrates a sectional view taken through a firing body along the longitudinal axis, in which exemplary CSA values of theconical surface212 of about 6, about 12 and about 18 degrees are shown.
Three exemplary plunger configurations were used in conjunction with the exemplary firing bodies: a commercial plunger with an initial contact surface (ICS) angle of about 38 degrees, a mid point fixed (MPF) single impression mold (SIM) plunger with an ICS angle of about 48 degrees, and a top point fixed (TPF) SIM plunger with an ICS angle of about 48 degrees.
FIGS. 50A-50C illustrate perspective views of the design of a tabbed foot of an exemplary plunger.FIG. 50A illustrates a perspective view of the design of a tabbedfoot5004 of acommercial plunger5002 with an ICS angle of about 38 degrees.FIG. 50B illustrates a perspective view of the design of a tabbedfoot5008 of anMPF SIM plunger5006 with an ICS angle of about 48 degrees.FIG. 50C illustrates a perspective view of the design of a tabbedfoot5012 of aTPF SIM plunger5010 with an ICS angle of about 48 degrees.
In summary, four different exemplary CSA values (i.e., 0, 6, 12 and 18 degrees) for firing bodies were tested with three exemplary plunger types (i.e., commercial, MPF and TPF). Fifteen automatic injection devices were tested for each CSA value studied. The firing button ring inner diameter and firing button ring length were measured before each firing button was assembled with an associated firing body.
During the experiment, each firing body-firing button pairing in the automatic injection devices was fired three times, once with each plunger type. The devices were fired in a Zwick-Roell Force Tester applying high strains to eliminate the effect of strain on delayed delivery of an injection. At high strains, the firing button exerted force on the firing body near the end of firing.
| TABLE 4 |
|
| Summary of experimental results of the impact of different CSA values |
| on delayed delivery of an injection for different plunger types |
| Delayed Delivery Rates | Conical SurfaceAngle |
| |
| 0° | 6° | 12° | 18° |
| Commercial | 6 | 0 | 0 | 0 |
| Mid Point Fixed (MPF) | 9 | 1 | 0 | 0 |
| Top Point Fixed (TPF) | 3 | 0 | 0 | 0 |
| |
Table 4 shows the number of devices that experienced delayed delivery of an injection.
FIG. 51 illustrates a histogram of the number and percentage of devices that experienced delayed delivery (y-axis) over different CSA values and different plunger types (x-axis).
Experimental results for the commercial firing bodies showed that, in some exemplary embodiments, no delayed delivery of an injection was observed at CSA values of about 12 degrees and about 18 degrees for any plunger type. In some exemplary embodiments, at a CSA value of 0 degrees, delayed delivery times were longest for the MPF plungers, intermediate for the commercial plungers, and shortest for the TPF plungers. In some exemplary embodiments, the higher CSA values resulted in elimination of delayed delivery of an injection because the plunger sits higher on the conical surface of the firing body for the higher CSA values. When the plunger sits higher on the conical surface of the firing body, the firing button ring collapses the plunger at an earlier time when the firing button is pushed down.
Exemplary embodiments may increase the CSA values of the firing body, alone or in combination with configuring of the plunger type, to reduce or eliminate delayed delivery of an injection.
(ii) Testing of Rapid Prototype Testing (RPT) Firing BodiesExemplary automatic injection devices were produced by assembling exemplary Rapid Prototype Testing (RPT) firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the conical surface angle (CSA) of the RPT firing bodies on the delayed delivery of an injection, if any, of the devices.
The CSA value of exemplary firing bodies was varied and the resulting delayed delivery of an injection was measured.
| TABLE 5 |
|
| Summary of different CSA values used to test the effect of the CSA on |
| delayed delivery of an injection |
| | Experimental Conical |
| Commercial | Surface Angle for |
| Design Specification | RPT Firing Bodies |
| |
Three exemplary plunger configurations were used in conjunction with the exemplary firing bodies: a commercial plunger with an initial contact surface (ICS) angle of about 38 degrees, a mid point fixed (MPF) single impression mold (SIM) plunger with an ICS angle of about 48 degrees, and a top point fixed (TPF) SIM plunger with an ICS angle of about 48 degrees.
FIGS. 50A-50C illustrate perspective views of the design of a tabbed foot of an exemplary plunger.FIG. 50A illustrates a perspective view of the design of a tabbed foot of a commercial plunger with an ICS angle of about 38 degrees.FIG. 50B illustrates a perspective view of the design of a tabbed foot of an MPF SIM plunger with an ICS angle of about 48 degrees.FIG. 50C illustrates a perspective view of the design of a tabbed foot of a TPF SIM plunger with an ICS angle of about 48 degrees.
In summary, five different exemplary CSA values (i.e., 0, 8, 18, 28 and 38 degrees) for firing bodies were tested with three exemplary plunger types (i.e., commercial, MPF and TPF). The firing button ring inner diameter and firing button ring length were measured before each firing button was assembled with an associated firing body.
During the experiment, each firing body-firing button pairing in the automatic injection devices was fired three times, once with each plunger type. The devices were fired in a Zwick-Roell Force Tester applying high strains to eliminate the effect of strain on delayed delivery of an injection. At high strains, near the end of firing, the firing button exerted force on the firing body.
Experiments results for the RPT firing bodies showed that no delayed delivery of an injection was observed for any of the CSA values, even at 0 degrees. The higher CSA values resulted in elimination of delayed delivery of an injection because the plunger sits higher on the conical surface of the firing body for the higher CSA values. When the plunger sits higher on the conical surface of the firing body, the firing button ring collapses the plunger at an earlier time when the firing button is pushed down.
Exemplary embodiments may increase the CSA values of the firing body, alone or in combination with configuring of the plunger type, to reduce or eliminate delayed delivery of an injection.
The exemplary RPT firing bodies showed lower delayed delivery of an injection than the commercial firing bodies (tested in Section (i)). The RPT firing bodies were formed of high rigidity materials, while the commercial firing bodies (tested in Section (i)) were formed of relatively low rigidity materials such as polypropylene (PP). Because of the high rigidity material composition, the conical surface of the RPT firing bodies does not deform as easily as the lower rigidity commercial firing bodies. The lower friction between the plunger and the RPT firing body material also causes the plunger to slide off the conical surface of the RPT firing body more smoothly. These factors resulted in lower delayed delivery of an injection in the RPT firing bodies as compared to the commercial firing bodies.
Exemplary embodiments may configure the firing body material (e.g., use higher rigidity materials) and configuration (e.g., use RPT firing bodies rather than commercial firing bodies), alone or in combination with configuring of the CSA values and/or the plunger type, to reduce or eliminate delayed delivery of an injection.
F. Relationship Between Conical Surface Height of Firing Body and Delayed Delivery of an InjectionExemplary automatic injection devices were produced by assembling exemplary commercial firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the conical surface height of the firing bodies on the delayed delivery of an injection, if any, of the devices.
In the experiments described in Sections (i) and (ii), different Conical Surface Angle (CSA) values of the firing body corresponded to different conical surface heights.
| TABLE 6 |
|
| Summary of the correspondence between different exemplary CSA values |
| (in degrees) and their associated conical surface height values (in mm). |
| Conical | 0.000 mm | 0.159 mm | 0.321 mm | 0.491 mm |
| Surface Height |
|
Decreasing conical surface heights corresponded with decreasing CSA values. This conical surface height reduction represents an increasing deformation of the conical surface of the firing body.
Deformation in the conical surface may result from engagement of the conical surface (formed of a soft material like polypropylene in an exemplary embodiment) of the firing body with the plunger feet (formed of a polyacetal material in an exemplary embodiment). Different levels of deformation were noted at three stages in the lifetime of an assembled automatic injection device: upon assembly, at the end of a two-year shelf life, and after firing of the device. The deformation was determined to increase with increasing time. Deformation in the conical surface may also be affected by the temperature in which the automatic injection device is stored.
| TABLE 7 |
|
| Summary of exemplary deformation levels (taken to be the peak axial |
| displacement in mm) at the three stages in the lifetime of the devices |
| and for exemplary temperatures of about 23° C. and about 5° C. |
| Temperature | Peak Axial Displacement |
| Time | (° C.) | (mm) |
|
| Assembly (time zero) | 23 | 0.0865 |
| End of 2-year shelf (creep) | 23 | 0.2098 |
| Post device firing (firing) | 23 | 0.3173 |
| Assembly (time zero) | 5 | 0.0800 |
| End of 2-year shelf (creep) | 5 | 0.2507 |
| Post device firing (firing) | 5 | 0.3167 |
|
A conical surface height of about 0.491 mm (at a corresponding CSA value of about 18 degrees) was taken as the control.
At the end of the two-year shelf life, the conical surface height becomes about 0.281 mm (=0.491−0.2098) at a temperature of about 25° C. This deformed height corresponds to a CSA angle range of between about 6° C. and about 12° C. At the end of the two-year shelf life, the conical surface height becomes about 0.240 mm (=0.491−0.2507) at a temperature of about 5° C. This deformed height also corresponds to a CSA angle range of between about 6° C. and about 12° C.
Upon firing, the conical surface height becomes about 0.174 mm at temperatures of about 25° C. and about 5° C. This deformed height also corresponds to a CSA angle range of between about 6 degrees and about 12 degrees.
Thus, in some exemplary embodiments, the deformed heights of the conical surface at the end of the two-year shelf life and upon firing correspond to a CSA angle range of between about 6 degrees and about 12 degrees. This indicates that the extent of deformation of the conical surface may affect delayed delivery of an injection in some exemplary embodiments. More specifically, in some exemplary embodiments, greater deformation of the conical surface may result in shorter conical surface heights, which correspond to lower CSA values. This indicates that increasing deformation of the conical surface may lead to increased chances of delayed delivery of an injection and/or increased delayed delivery times in some exemplary embodiments.
Exemplary embodiments may reduce or eliminate delayed delivery of an injection by minimizing deformation of the conical surface of the firing bodies, alone or in combination with one or more additional factors. More specifically, exemplary embodiments may minimize deformation by forming the firing bodies from deformation-resistant materials.
G. Relationship Between Tunnel Entrance Inner Diameter of Firing Body and Delayed Delivery of an InjectionExemplary automatic injection devices were produced by assembling exemplary Rapid Prototype Technology (RPT) firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the tunnel entrance inner diameter of the firing bodies on the delayed delivery of an injection, if any, of the devices.
FIG. 52 illustrates a sectional view of anexemplary tunnel1904 of a firingbody12btaken along a longitudinal axis L, showing thetunnel1904 and thetunnel entrance1908 of the firingbody12b. The inner diameter of thetunnel entrance1908 ofexemplary firing bodies12bwas varied over seventy five automatic injection devices, and the resulting delayed delivery of an injection was measured.
| TABLE 8 |
|
| Summary of design specifications for different tunnel entrance inner |
| diameter values (in mm) used to test the effect of the CSA on delayed |
| delivery of an injection |
| RPT Designed Tunnel |
| Commercial Design Specification | Entrance Diameter (mm) |
|
| 6.90-7.05 mm | 6.70 | 6.80 | 6.90 | 7.02 | 7.12 |
|
However, the actual tunnel entrance inner diameters varied to some extent from the design specifications.
FIG. 53 illustrates a histogram of designed and actual tunnel entrance inner diameters in mm (y-axis) against different firing body materials (x-axis).
FIG. 54 illustrates a histogram of the number of devices (y-axis) against different actual (measured) tunnel entrance inner diameters in mm (x-axis) for RPT firing bodies.
FIG. 55 illustrates a scatterplot of different exemplary firing button ring lengths in mm (y-axis) against different exemplary firing button ring inner diameters in mm (x-axis) for devices tested to determine the effect of the firing body tunnel entrance inner diameter on delayed delivery of an injection. The dimensions of the firing button ring were within tolerance limits and were configured so that they did not contribute to delayed delivery of an injection, allowing the effect of the firing body tunnel entrance inner diameter to be tested in isolation.
FIG. 56 illustrates a contour plot of firing body tunnel entrance inner diameters in mm (represented in the legends) against firing button ring lengths in mm (y-axis) and firing button ring inner diameters in mm (x-axis).
In a first set of tests, all of the seventy five automatic injection devices with different tunnel entrance inner diameters were tested by hand. Of all the devices, onlySample #30 experienced delayed delivery of an injection. As illustrated inFIG. 56,Sample #30 has one of the smallest tunnel entrance inner diameters at about 6.63 mm. This dimension was smaller than the design dimension, and was not within the tolerance limits of between about 6.90 mm and about 7.05 mm.
In a second set of tests, all of the seventy five automatic injection devices with different tunnel entrance inner diameters were tested using a Zwick-Roell Force Tester at a strain of about 2.4 mm. All of the devices fired normally and no delayed delivery of an injection was observed.
In summary, the experimental results showed that, in some exemplary embodiments, the firing body tunnel entrance inner diameter did not significantly affect delayed delivery of an injection, particularly for entrance inner diameters to be above about 6.70 mm. Exemplary embodiments may configure the firing body tunnel entrance inner diameters to be above about 6.70 mm to reduce or eliminate delayed delivery of an injection that may otherwise be caused by the tunnel entrance inner diameter.
H. Relationship Between Tunnel Entrance Inner Diameter and Tunnel Diameter of Firing Body and Delayed Delivery of an InjectionExemplary automatic injection devices were produced by assembling exemplary Rapid Prototype Technology (RPT) firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the tunnel entrance inner diameter and the tunnel inner diameter of the firing bodies on the delayed delivery of an injection, if any, of the devices.
FIG. 57 illustrates a sectional view of atunnel1904 of a firingbody12btaken along a longitudinal axis, showing thetunnel1904 and thetunnel entrance1908 of the firingbody12b. As illustrated inFIG. 57, the entire tunnel geometry (entrance portion and inside portion) was evenly offset about the longitudinal axis with increments corresponding to those shown in Table 9.
The inner diameter of the tunnel entrance of exemplary firing bodies was varied over seventy five automatic injection devices, and the resulting delayed delivery of an injection was measured. Forty automatic injection devices were tested by a Zwick-Roell Force Tester at high strains to ensure that any observed delayed delivery of an injection was not due to insufficient strain. Any devices that were not fired at high strain were removed from the Force Tester and tested by hand.
| TABLE 9 |
|
| Summary of design specifications for different tunnel entrance inner |
| diameter values (in mm) used to test the effect of the CSA on delayed |
| delivery of an injection |
| Tunnel Entrance Diameter | Designed Tunnel | |
| Design Specification | Entrance Diameter (mm) |
|
| 6.90-7.05 mm | 6.50 | 6.60 | 6.70 | 7.02 |
|
However, the actual tunnel entrance inner diameters varied to some extent from the design specifications.
FIG. 58 illustrates a histogram of designed and actual tunnel entrance inner diameters in mm (y-axis) against different firing body materials (x-axis).
FIG. 59 illustrates a histogram of the number of devices (y-axis) against different actual (measured) tunnel entrance inner diameters in mm (x-axis) for RPT firing bodies.
FIG. 60 illustrates a scatterplot of different exemplary firing button ring lengths in mm (y-axis) against different exemplary firing button ring inner diameters in mm (x-axis) for devices tested to determine the effect of the firing body tunnel entrance inner diameter on delayed delivery of an injection. The dimensions of the firing button ring were within tolerance limits and were configured so that they did not contribute to delayed delivery of an injection, allowing the effect of the firing body tunnel entrance inner diameter to be tested in isolation.
| TABLE 10 |
|
| Summary of experimental results showing the effect of different firing body tunnel entrance |
| inner diameters (at different firing button ring lengths and inner diameters and different |
| strains) on the firing of the devices and on delayed delivery of an injection |
| Designed | Measured | | Ring Inner | Ring | DIFFERENCE | RESULTS | |
| Tunnel Entrance | Entrance Tunnel | | Diameter | Length | Firing Button − | Strain | Zwick | Hand | |
| # | Diameter (mm) | Diameter (mm) | # | (mm) | (mm) | Firing Body | (mm) | Testing | Testing | NOTES |
|
| 76 | 6.50 | 6.38 | 1 | 6.79 | 6.51 | −0.41 | 2.6 | Not | Fired | |
| | | | | | | | Fired |
| 77 | 6.50 | 6.32 | 2 | 6.80 | 6.51 | −0.48 | 2.8 | Not | Fired | Fired after |
| | | | | | | | Fired | | pushed |
| | | | | | | | | | twice by |
| | | | | | | | | | hand |
| 78 | 6.50 | 6.36 | 3 | 6.80 | 6.53 | −0.44 | 3.0 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 79 | 6.50 | 6.36 | 4 | 6.81 | 6.52 | −0.45 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 80 | 6.50 | 6.37 | 5 | 6.78 | 6.54 | −0.41 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 81 | 6.50 | 6.39 | 6 | 6.80 | 6.51 | −0.41 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 82 | 6.50 | 6.38 | 7 | 6.81 | 6.52 | −0.43 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 83 | 6.50 | 6.36 | 8 | 6.81 | 6.55 | −0.45 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| 84 | 6.50 | 6.36 | 9 | 6.79 | 6.51 | −0.43 | 3.1 | Fired |
| 85 | 6.50 | 6.37 | 10 | 6.80 | 6.53 | −0.43 | 3.1 | Not | Not | Pushed |
| | | | | | | | Fired | Fired | twice by |
| | | | | | | | | | hand, not |
| | | | | | | | | | fired, then |
| | | | | | | | | | it fired by |
| | | | | | | | | | itself in |
| | | | | | | | | | about 5 sec |
| | Mean | | Mean | Mean |
| | 6.37 | | 6.80 | 6.52 |
| | StDev | | StDev | StDev |
| | 0.02 | | 0.01 | 0.01 |
| 86 | 6.60 | 6.45 | 11 | 6.81 | 6.53 | −0.36 | 3.1 | Fired | | Fired at the |
| | | | | | | | | | end |
| 87 | 6.60 | 6.55 | 12 | 6.81 | 6.51 | −0.26 | 3.1 | Fired |
| 88 | 6.60 | 6.47 | 13 | 6.79 | 6.51 | −0.32 | 3.1 | Fired |
| 89 | 6.60 | 6.44 | 14 | 6.60 | 6.53 | −0.36 | 3.1 | Fired |
| 90 | 6.60 | 6.45 | 15 | 6.60 | 6.51 | −0.35 | 3.1 | Not | | Fired after |
| | | | | | | | Fired | | 5 sec by |
| | | | | | | | | | itself while |
| | | | | | | | | | in the |
| | | | | | | | | | fixture |
| 91 | 6.60 | 6.45 | 16 | 6.78 | 6.54 | −0.33 | 3.1 | Fired |
| 92 | 6.60 | 6.46 | 17 | 6.79 | 6.50 | −0.33 | 3.1 | Not | Not | Fired after |
| | | | | | | | Fired | Fired | 25 sec by |
| | | | | | | | | | itself |
| 93 | 6.60 | 6.44 | 18 | 6.80 | 6.50 | −0.36 | 3.1 | Not | Not | Fired by |
| | | | | | | | Fired | Fired | itself after |
| | | | | | | | | | 10 min |
| 94 | 6.60 | 6.48 | 19 | 6.81 | 6.51 | −0.33 | 3.1 | Fired |
| 95 | 6.60 | 6.44 | 20 | 6.80 | 6.52 | −0.36 | 3.1 | Not | Not | Plunger |
| | | | | | | | Fired | Fired | collapsed |
| | | | | | | | | | on Fbody, |
| | | | | | | | | | Fbody |
| | | | | | | | | | touches |
| | | | | | | | | | Fbutton |
| | Mean | | Mean | Mean |
| | 6.46 | | 6.80 | 6.52 |
| | StDev | | StDev | StDev |
| | 0.03 | | 0.01 | 0.01 |
| 96 | 6.70 | 6.60 | 21 | 6.81 | 6.50 | −0.21 | 3.1 | Fired |
| 97 | 6.70 | 6.58 | 22 | 6.80 | 6.51 | −0.22 | 3.1 | Fired |
| 98 | 6.70 | 6.57 | 23 | 6.81 | 6.53 | −0.24 | 3.1 | Fired |
| 99 | 6.70 | 6.45 | 24 | 6.79 | 6.50 | −0.34 | 3.1 | Not | Not | Fired by |
| | | | | | | | Fired | Fired | itself after |
| | | | | | | | | | 60 sec |
| 100 | 6.70 | 6.59 | 25 | 6.81 | 6.51 | −0.22 | 3.1 | Fired |
| 101 | 6.70 | 6.57 | 26 | 6.79 | 6.52 | −0.22 | 3.1 | Fired |
| 102 | 6.70 | 6.56 | 27 | 6.79 | 6.53 | −0.23 | 3.1 | Fired |
| 103 | 6.70 | 6.55 | 28 | 6.78 | 6.53 | −0.23 | 3.1 | Fired |
| 104 | 6.70 | 6.55 | 29 | 6.79 | 6.53 | −0.24 | 3.1 | Fired |
| 105 | 6.70 | 6.58 | 30 | 6.82 | 6.53 | −0.24 | 3.1 | Fired |
| | Mean | | Mean | Mean |
| | 6.56 | | 6.80 | 6.52 |
| | StDev | | StDev | StDev |
| | 0.01 | | 0.01 | 0.01 |
| 106 | 7.02 | 6.92 | 31 | 6.78 | 6.51 | 0.14 | 3.1 | Fired |
| 107 | 7.02 | 6.87 | 32 | 6.79 | 6.51 | 0.08 | 3.1 | Fired |
| 108 | 7.02 | 6.89 | 33 | 6.79 | 6.54 | 0.10 | 3.1 | Fired |
| 109 | 7.02 | 6.91 | 34 | 6.79 | 6.54 | 0.12 | 3.1 | Fired |
| 110 | 7.02 | 6.93 | 35 | 6.79 | 6.52 | 0.14 | 3.1 | Fired |
| 111 | 7.02 | 6.92 | 36 | 6.81 | 6.52 | 0.11 | 3.1 | Fired |
| 112 | 7.02 | 6.90 | 37 | 6.81 | 6.53 | 0.09 | 3.1 | Fired |
| 113 | 7.02 | 6.92 | 38 | 6.79 | 6.52 | 0.13 | 3.1 | Fired |
| 114 | 7.02 | 6.92 | 39 | 6.81 | 6.53 | 0.11 | 3.1 | Fired |
| 115 | 7.02 | 6.92 | 40 | 6.80 | 6.53 | 0.12 | 3.1 | Fired |
|
At a tunnel entrance inner diameter of about 7.02 mm, all of the devices with fired in the Zwick-Roell Force Tester. At a tunnel entrance inner diameter of about 6.70 mm, only one device was delayed in the Zwick-Roell Force Tester. The same device also did not fire when the firing button was pushed by hand. The device subsequently fired by itself after about a minute. At a tunnel entrance inner diameter of about 6.60 mm, six of the devices fired in the Zwick-Roell Force Tester. One of the devices was delayed for about five seconds, but it fired by itself before the firing button was pushed by hand. Three of the devices did not fire in the Zwick-Roell Force Tester or by hand. Of these three devices that did not fire, two of them fired after about 25 seconds and about 10 minutes, respectively. One of the three devices that did not fire fired by itself overnight. However, in this device, the plunger did not move all the day down the device. At a tunnel entrance inner diameter of about 6.50 mm, one of the devices fired in the Zwick-Roell Force Tester. Two of the devices were not fired in the Zwick-Roell Force Tester, but were fired by hand. Seven of the devices did not fire in the Zwick-Roell Force Tester or by hand. Of these seven devices, one device fired about five seconds after it was pushed by hand, and six devices fired overnight. In the six devices that fired overnight, the plunger did not move all the way down the device in five of the devices.
In some exemplary devices the plunger did not move all the way down because the tunnel was narrow, as the narrow tunnel causes greater dragging of the plunger feet against the tunnel walls as the plunger travels down the tunnel.
| TABLE 11 |
|
| Summary of experimental results showing the effect of different firing |
| body tunnel entrance inner diameters (at different firing button ring |
| inner diameters) on the firing of the devices and on delayed |
| delivery of an injection |
| Measured | | | | |
| Tunnel | | Measured | Firing |
| Entrance | Firing | Ring | body - |
| Firing Body | Diameter | Button | Diameter | Firing | Zwick |
| Sample No. | (mm) | Sample No. | (mm) | Button | Testing |
|
| 77 | 6.32 | 2 | 6.80 | −0.48 | Not Fired |
| 79 | 6.36 | 4 | 6.81 | −0.45 | Not Fired |
| 83 | 6.36 | 8 | 6.81 | −0.45 | Not Fired |
| 78 | 6.36 | 3 | 6.80 | −0.44 | Not Fired |
| 82 | 6.38 | 7 | 6.81 | −0.43 | Not Fired |
| 84 | 6.36 | 9 | 6.79 | −0.43 | Fired |
| 85 | 6.37 | 10 | 6.80 | −0.43 | Not Fired |
| 76 | 6.38 | 1 | 6.79 | −0.41 | Not Fired |
| 80 | 6.37 | 5 | 6.78 | −0.41 | Not Fired |
| 81 | 6.39 | 6 | 6.80 | −0.41 | Not Fired |
| 86 | 6.45 | 11 | 6.81 | −0.36 | Fired |
| 89 | 6.44 | 14 | 6.80 | −0.36 | Fired |
| 96 | 6.44 | 18 | 6.80 | −0.36 | Not Fired |
| 95 | 6.44 | 20 | 6.80 | −0.36 | Not Fired |
| 90 | 6.45 | 15 | 6.80 | −0.35 | Not Fired |
| 99 | 6.45 | 24 | 6.79 | −0.34 | Not Fired |
| 91 | 6.45 | 16 | 6.78 | −0.33 | Fired |
| 92 | 6.46 | 17 | 6.79 | −0.33 | Not Fired |
| 94 | 6.48 | 19 | 6.81 | −0.33 | Fired |
| 88 | 6.47 | 13 | 6.79 | −0.32 | Fired |
| 87 | 6.55 | 12 | 6.81 | −0.26 | Fired |
| 104 | 6.55 | 29 | 6.79 | −0.24 | Fired |
| 105 | 6.58 | 30 | 6.82 | −0.24 | Fired |
| 98 | 6.57 | 23 | 6.81 | −0.24 | Fired |
| 102 | 6.56 | 27 | 6.79 | −0.23 | Fired |
| 103 | 6.55 | 28 | 6.78 | −0.23 | Fired |
| 97 | 6.58 | 22 | 6.80 | −0.22 | Fired |
| 100 | 6.59 | 25 | 6.81 | −0.22 | Fired |
| 101 | 6.57 | 26 | 6.79 | −0.22 | Fired |
| 96 | 6.60 | 21 | 6.81 | −0.21 | Fired |
| 107 | 6.87 | 32 | 6.79 | 0.08 | Fired |
| 112 | 6.90 | 37 | 6.81 | 0.09 | Fired |
| 108 | 6.89 | 33 | 6.79 | 0.10 | Fired |
| 111 | 6.92 | 36 | 6.81 | 0.11 | Fired |
| 114 | 6.92 | 39 | 6.81 | 0.11 | Fired |
| 109 | 6.91 | 34 | 6.79 | 0.12 | Fired |
| 115 | 6.92 | 40 | 6.80 | 0.12 | Fired |
| 113 | 6.92 | 38 | 6.79 | 0.13 | Fired |
| 106 | 6.92 | 31 | 6.78 | 0.14 | Fired |
| 110 | 6.93 | 35 | 6.79 | 0.14 | Fired |
|
Table 11 shows that even when the firing button ring inner diameter is about 0.32 mm larger than the firing body tunnel entrance inner diameter, the devices fire normally.
In summary, the experimental results showed that, in some exemplary embodiments, the firing body tunnel entrance inner diameter did not significantly affect delayed delivery of an injection, particularly for entrance inner diameters above about 6.70 mm. Exemplary embodiments may configure the firing body tunnel entrance inner diameters above about 6.70 mm to reduce or eliminate delayed delivery of an injection that may otherwise be caused by the tunnel entrance inner diameter.
I. Relationship Between Plunger Tip Protrusion and Delayed Delivery of an InjectionExemplary automatic injection devices were produced by assembling exemplary firing bodies and firing buttons with exemplary plungers. The assembled automatic injection devices were tested to quantitatively determine the impact of the protrusion of the tip of the plunger, i.e., the bluntness or sharpness of the tip, on the delayed delivery of an injection, if any, of the devices.
FIGS. 61A-61C illustrate exemplary tabbed feet of a plunger, in whichFIG. 61A illustrates aplunger6101 with a rounded orblunt tip6102,FIG. 61B illustrates aplunger6103 with an ICS angle of about 38 degrees and asharp tip6104, andFIG. 61C illustrates aplunger6105 with an ICS angle of about 48 degrees and asharp tip6106.
FIG. 62 illustratesforce profiles6202,6204 and6406 (in N) generated by testing the plungers6102 (FIG. 61A),6104 (FIG. 61B) and 6106 (FIG. 61C), respectively. The plungers with a rounded or blunt tip showed a larger distance “d” on the x-axis of the force profile (force profile6202), which minimizes delayed delivery of an injection. The plungers with a rounded or blunt tip showed a lower “fired strain” (force profile6202), which minimizes the risk of delayed delivery of an injection that may be introduced by insufficient strain.
In summary, the experimental results showed that, in some exemplary embodiments, a rounded or blunt tip of the tabbed feet of the plunger, as compared with a sharp tip, may minimize delayed delivery of an injection. Exemplary embodiments may configure the tabbed feet of the plunger to have a rounded or blunt tip in order to minimize delayed delivery of an injection.
J. Relationship Between Wall Thickness of Firing Button Ring and Delayed Delivery of an InjectionThe impact of the thickness of the firing button ring on delayed delivery of an injection was tested. Exemplary firing button rings were designed, molded and tested with a substantially constant outer diameter and a varying inner diameter. Since the outer diameter was kept constant, decreasing the inner diameter resulted in a thicker wall of the firing button ring, and increasing the inner diameter resulted in a thinner wall of the firing button ring.
| TABLE 12 |
|
| Summary of exemplary firing button ring inner diameters and lengths |
| used to determine the wall thickness and its effect on delayed |
| delivery of an injection |
| Designed Ring Inner | Design Ring | |
| SIM Model | Diameter (mm) | Length (mm) | Design Change |
|
| Control | 6.80 | 6.53 | |
| A | 6.80 | 6.33 | Ring length |
| B | 6.80 | 6.73 | Ring length |
| C | 6.80 | 6.83 | Ring length |
| G | 6.50 | 6.53 | Ring inner diameter |
| H | 6.65 | 6.53 | Ring inner diameter |
| I | 6.95 | 6.53 | Ring inner diameter |
| J | 6.50 | 6.83 | Combination of ring |
| | | length and inner |
| | | diameter |
| K | 6.95 | 6.33 | Combination of ring |
| | | length and inner |
| | | diameter |
|
FIG. 63 illustrates a scatterplot of different firing button ring lengths in mm (y-axis) and ring inner diameters in mm (x-axis) used in the tests.
FIG. 64 illustrates a frontal view of the controlfiring button ring32 showing the wall thickness of the ring. The control firing button had an exemplary inner diameter of about 6.80 mm, a wall thickness of about 0.75 mm and an exemplary length of about 6.53 mm.
FIG. 65 illustrates a frontal view of the “G”firing button ring32 showing the thick wall of the ring. The inner diameter of the “G” firing button ring was about 6.50 mm, and the wall thickness of the “G” firing button ring was about 0.90 mm which was greater than the wall thickness of the control firing button ring. The increased wall thickness of the “G” firing button ring, compared to the control firing button ring, decreased the extent of deformation of the firing button ring when the firing button was depressed. The reduction in deformation of the “G” firing button ring advantageously minimized delayed delivery of an injection compared to the control firing button ring. In addition, as the inner diameter of the firing button ring was reduced from about 6.80 mm to about 6.50 mm, the force to fire (FtF) required to activate or fire the automatic injection device advantageously increased by about 2 N.
FIG. 66 illustrates a frontal view of the “H”firing button ring32 showing the thick wall of the ring. The inner diameter of the “H” firing button ring was about 6.65 mm, and the wall thickness of the “H” was greater than the control firing button ring but lower than the “G” firing button ring. The increased wall thickness of the “H” firing button ring, compared to the control firing button ring, decreased the extent of deformation of the firing button ring when the firing button was depressed. The reduction in deformation of the firing button ring advantageously minimized delayed delivery of an injection compared to the control firing button ring. However, the decreased wall thickness of the “H” firing button ring, compared to the “G” firing button ring, increased the extent of deformation of the firing button ring when the firing button ring was depressed. The increase in deformation of the “H” firing button ring increased delayed delivery of an injection compared to the “G” firing button ring.
FIG. 67 illustrates a frontal view of the “I”firing button ring32 showing the thick wall of the ring. The inner diameter of the “I” firing button ring was about 6.95 mm, and the wall thickness of the “I” firing button ring was about 0.675 mm which was lower than the wall thickness of the control, “G” and “H” firing button rings. The decreased wall thickness of the “I” firing button ring, compared to the control, “G” and “H” firing button rings, increased the extent of deformation of the firing button ring when the firing button ring was depressed. The increase in deformation of the “I” firing button ring increased delayed delivery of an injection compared to the control, “G” and “H” firing button rings.
Exemplary embodiments may configure exemplary firing button rings to have a smaller inner diameter and a thick wall in order to minimize or eliminate delayed delivery of an injection. In an exemplary embodiment, an exemplary firing button ring is configured based on the specifications of the “G” firing button ring: an exemplary ring inner diameter of about 6.50 mm, an exemplary ring length of about 6.53 mm and an exemplary wall thickness of about 0.90 mm, but exemplary firing button rings are not limited to this configuration.
K. Relationship Between Mold Temperature and Force to Fire (FtF) and Between Cooling Time and FtFExemplary plungers were molded in a molding process for use in exemplary automatic injection devices. The plungers were formed of theHostaform™ C 13031 acetal (POM) copolymer plastic material which is an exemplary resin material. The mold temperature and the cooling time used during the molding process were varied, and the resulting effect on the plunger width, i.e., the distance between the plunger arms, and the FtF was determined.
In a first set of tests, the mold temperature was set at about 200 F and the cooling time was set at about 10 seconds. In a second set of tests, the mold temperature was set at about 100 F and the cooling time was set at about 10 seconds. In a third set of tests, the mold temperature was set at about 200 F and the cooling time was set at about 25 seconds. In a fourth set of tests, the mold temperature was set at about 100 F and the cooling time was set at about 25 seconds.
FIG. 68 illustrates a scatterplot of FtF values in N (y-axis) against plunger width values in mm (x-axis) for plungers formed of theHostaform™ C 13031 acetal (POM) copolymer plastic material at different mold temperatures in F and different cooling times in seconds.FIG. 68 indicates that, in some exemplary embodiments, increasing the cooling time increases the plunger width and, in turn, increases the FtF.FIG. 68 also indicates that, in some exemplary embodiments, decreasing the mold temperature increases the plunger width and, in turn, increases the FtF.
FIG. 69 illustrates a histogram of mean FtF values in N (y-axis) and standard deviation of FtF values in N (y-axis) against combinations of different plunger materials, different mold temperatures in F and different cooling times in seconds (x-axis).
FIG. 70 illustrates a cubic data plot of FtF values in N (provided in boxes) for different plunger materials, different mold temperatures in F and different cooling times in seconds.FIGS. 69 and 70 indicate that, in some exemplary embodiments, for the same plunger material, increasing the cooling time increases the plunger width and, in turn, increases the FtF.FIGS. 69 and 70 also indicate that, in some exemplary embodiments, for the same plunger material, decreasing the mold temperature increases the plunger width and, in turn, increases the FtF.
L. Relationship Between Plunger Weight and Force to Fire (FtF)Exemplary plungers were molded in a molding process for use in exemplary automatic injection devices. The plungers were formed of theHostaform™ C 13031 acetal (POM) copolymer plastic material which is an exemplary resin material. The plunger weight was varied between about 1.94 grams and about 2.01 grams, and the resulting effect on the FtF was determined.
FIG. 71 illustrates a scatterplot of FtF values in N (y-axis) against different plunger weights in grams (x-axis).FIG. 71 indicates that increasing the plunger weight increases the FtF. In an exemplary embodiment, a plunger weight of about 1.94 grams corresponds to an exemplary FtF of about 7.43 N. In an exemplary embodiment, a plunger weight of about 2.01 grams corresponds to an exemplary FtF of about 11.63 N.
FIG. 72 illustrates a scatterplot of plunger width values in mm (y-axis) against different plunger weights in grams (x-axis).
FIG. 73 illustrates a cubic data plot of FtF values in N and plunger width values in mm for different plunger weights in grams.
FIGS. 72 and 73 indicate that, in some exemplary embodiments, increasing the plunger weight increases the plunger width which, in turn, increases the FtF. In an exemplary embodiment, a plunger weight of about 1.94 grams corresponds to an exemplary plunger width of about 2.12 mm. In an exemplary embodiment, a plunger weight of about 2.01 grams corresponds to an exemplary plunger width of about 2.52 mm.
M. Relationship Between Molding Injection Pressure and Force to Fire (FtF)Exemplary plungers were molded in an exemplary two-stage molding process for use in exemplary automatic injection devices. The plungers were formed of theHostaform™ C 13031 acetal (POM) copolymer plastic material which is an exemplary resin material. In the two-stage molding process, the molding injection pressure was varied for the two stages of the process, and the resulting effect on the FtF was determined.
In a first set of tests, the injection pressure was set to be about 750×103psi during the first stage and was set to be about 500×103psi during the second stage. The mold temperatures and cooling times were varied for this set of injection pressure values.
FIG. 74 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 750×103psi and a second stage injection pressure of about 500×103psi.
In a second set of tests, the injection pressure was set to be about 1600×103psi during the first stage and was set to be about 800×103psi during the second stage. The mold temperatures and cooling times were varied for this set of injection pressure values.
FIG. 75 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 1600×103psi and a second stage injection pressure of about 800×103psi.
In a third set of tests, the injection pressure was set to be about 900×103psi during the first stage and was set to be about 750×103psi during the second stage. The mold temperatures and cooling times were varied for this set of injection pressure values.
FIG. 76 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 900×103psi and a second stage injection pressure of about 750×103psi.
In a fourth set of tests, the injection pressure was set to be about 1600×103psi during the first stage and was set to be about 900×103psi during the second stage. The mold temperatures and cooling times were varied for this set of injection pressure values.
FIG. 77 illustrates a scatterplot of FtF values in N (y-axis) against different plunger widths in mm (x-axis) for different mold temperatures in F and different cooling times in seconds, for a first stage injection pressure of about 1600×103psi and a second stage injection pressure of about 900×103psi.
VI. MATERIALS FOR USE IN FORMING EXEMPLARY FIRING BUTTONS AND PLUNGERSExemplary plungers and firing buttons discussed herein may be formed at least partly of thermosetting and/or thermoplastic materials with a flex modulus ranging from about 300 MPa to about 11,000 MPa. In an exemplary embodiment, the flex modulus of the exemplary material forming the firing button ranges from about 1,500 MPa to about 1,700 MPa. In an exemplary embodiment, the flex modulus of the exemplary material forming the firing button ranges from about 1,600 MPa to about 3,520 MPa.
Exemplary materials that may be used to form an exemplary firing button include, but are not limited to, theWaterShed™ 11120 resin (that may have an exemplary flex modulus of between about 2,865 MPa to about 2,880 MPa in an exemplary embodiment), theProtoTherm™ 12120 resin (that may have an exemplary flex modulus of about 3,520 MPa in an exemplary embodiment), a polypropylene (PP) thermoplastic polymer (that may have an exemplary flex modulus of about 1,600 MPa in an exemplary embodiment), etc.
Exemplary materials that may be used to form an exemplary plunger include, but are not limited to, acetal polyoxymethylene (POM) copolymers, e.g., from Ticona, theHostaform™ C 13031 acetal (POM) copolymer plastic material.
Exemplary plungers and firing buttons may also be formed of other thermoplastic and thermosetting materials, examples of which are provided in Table 13 (exemplary thermoplastic materials) and Table 14 (exemplary thermosetting materials).
Table 13 tabulates different thermoplastic materials that may be used to make exemplary plungers and exemplary firing buttons, the vendors of the materials, the material grades, the material densities, the melt volumes, the tensile modulus, and the flex modulus. The tensile modulus is a measure of the stiffness of the material, and the flex modulus is a measure of the tendency of the material to bend.
| TABLE 13 |
|
| Exemplary thermoplastic materials |
| | | | | Tensile Modulus | Flex Modulus |
| Material | | | Density | Melt Volume Rate | (Psi × 105/MPa | (Psi × 105/MPa) |
| ID | Vendor | Grade | (mg/cm3) | (cm3/10 minutes) | (ISO 527-2/1°) | (ISO 178) |
|
| 1 | Ticona | Hostaform C | 1.41 | 12 | 4.42/3,050 | 4.35/3,000 |
| | 13031 |
| | (copolymer) |
| 2 | Ticona | Hostaform C | 1.59 | 16 | 5.50/3,800 | 5.07/3,500 |
| | 27021 GV3/30 |
| | (30% glass |
| | spheres) |
| 3 | Ticona | Hostaform C | 1.53 | 8.5 | 4.93/3,400 | 4.64/3,200 |
| | 9021 GV3/20 |
| | (20% glass |
| | spheres) |
| 4 | Ticona | Hostaform C | 1.47 | 9.0 | 4.50/3,100 | 4.35/3,000 |
| | 9021 GV3/10 |
| | (10% glass |
| | spheres) |
| 5 | Ticona | Hostaform C | 1.60 | 4.0 | 13.35/9,200 |
| | 9021 GV1/30 |
| | (30% glass |
| | fibers) |
| 6 | Ticona | Hostaform C | 1.57 | 4.5 | 10.45/7,200 |
| | 9021 GV1/20 |
| | (20% glass |
| | fibers) |
| 7 | Ticona | Hostaform C | 1.48 | 6.0 | 6.97/4,800 |
| | 9021 GV1/10 |
| | (10% glass |
| | fibers) |
|
AdditionalHostaform™ C 13031 acetal (POM) copolymer plastic material grades of polyacetal beyond Table 13, sourced from:
http://tools.ticona.com/tools/mcbasei/product-tools.php?sPolymer=POM&sProduct=HOSTAFORM and
http://love8ff.diytrade.com/sdp/450410/4/pd-2493053/3735737-1249560.html include, but are not limited to, HOSTAFORM™ AM90S, HOSTAFORM™ AM90S Plus, HOSTAFORM™ C 13021, HOSTAFORM™ C 13021 RM,HOSTAFORM™ C 13031, HOSTAFORM™ C 13031 K,HOSTAFORM™ C 13031 XF, HOSTAFORM™ C 2521, HOSTAFORM™ C 2521 G, HOSTAFORM™ C 2552,HOSTAFORM™ C 27021,HOSTAFORM™ C 27021 AST,HOSTAFORM™ C 27021 GV3/30, HOSTAFORM™ C 52021, HOSTAFORM™ C 9021. HOSTAFORM™ C 9021 10/1570, HOSTAFORM™ C 9021 AW, HOSTAFORM™ C 9021 G, HOSTAFORM™ C 9021 GV1/10, HOSTAFORM™ C 9021 GV1/20, HOSTAFORM™ C 9021 GV1/20 XGM, HOSTAFORM™ C 9021 GV1/30, HOSTAFORM™ C 9021 GV1/30 GT, HOSTAFORM™ C 9021 GV3/10, HOSTAFORM™ C 9021 GV3/20, HOSTAFORM™ C 9021 GV3/30, HOSTAFORM™ C 9021 GV3/30 TF2, HOSTAFORM™ C 9021 K, HOSTAFORM™ C 9021 M, HOSTAFORM™ C 9021 SW, HOSTAFORM™ C 9021 TF, HOSTAFORM™ C 9021 TF5, HOSTAFORM™ C 9021 XAP®, HOSTAFORM™ CP15X, HOSTAFORM™ EC140CF10, HOSTAFORM™ EC140XF (POM), HOSTAFORM™ EC270TX, HOSTAFORM™ FK 1:25, HOSTAFORM™ FK 2:25, HOSTAFORM™ LM140LG, HOSTAFORM™ LM140LGZ, HOSTAFORM™ LM25, HOSTAFORM™ LM90, HOSTAFORM™ LU-02XAP®, HOSTAFORM™ LW15EWX, HOSTAFORM™ LW90BSX, HOSTAFORM™ LW90EWX, HOSTAFORM™ M15HP, HOSTAFORM™ M25AE, HOSTAFORM™ M90XAP®, HOSTAFORM™ MR130ACS, HOSTAFORM™ MT12R01, HOSTAFORM™ MT12U01, HOSTAFORM™ MT12U03, HOSTAFORM™ MT24F01, HOSTAFORM™ MT24U01, HOSTAFORM™ MT8F01, HOSTAFORM™ MT8F02, HOSTAFORM™ MT8R02, HOSTAFORM™ MT8U01, HOSTAFORM™ S 27063, HOSTAFORM™ S 27064, HOSTAFORM™ S 27072 WS10/1570, HOSTAFORM™ S 9063, HOSTAFORM™ S 9064, HOSTAFORM™ S 9243, HOSTAFORM™ S 9244, HOSTAFORM™ S 9364, HOSTAFORM™ TF-10×AP®, and HOSTAFORM™ WR140LG.
Table 14 tabulates different thermosetting materials that may be used to make exemplary plungers, exemplary firing buttons and their flex moduli, as measured, for example, per ASTM D790M (sourced from www.DSMSOMOS.com). The flex modulus is a measure of the tendency of the material to bend. The flex moduli of plungers produced from the resins identified in Table 14 depend, in part, on the type and level of curing, and, therefore, may vary and are reflected in the ranges provided.
| TABLE 14 |
|
| Exemplary thermosetting materials |
| Material (derived from DSM Somos | Flex Modulus (MPa)* by ASTM |
| which is an epoxy based material) | D790M |
|
| Somos |
| 9420 | 810 (768-900) |
| ProtoGen O-XT 18420 | 2060 (1990-2130) |
| Watershed 11120 | 2200 (2040-2370) |
| DMX-SL100 | 2290 (2282-2298) |
| ProtoTherm 12120 | 3320 (3060-3320) |
| Nanoform 15120 | 3630 (3630-4450) |
| Somos 8110 Epoxy Photopolymer | 310 |
| Somos 8120 Epoxy Photopolymer | 690 |
| Somos 9110 Epoxy Photopolymer | 1450 |
| Somos 9120 Epoxy Photopolymer | 1310-1455 |
| WaterShed 11110 | 2140 |
| Somos 14120 White | 2250 |
| ProtoTherm 12110 | 3350 |
| ProtoCast AF 19120 | 2430 |
| NanoTool | 10,500 |
|
VII. SUBSTANCES FOR USE IN EXEMPLARY AUTOMATIC INJECTION DEVICESThe methods and compositions of the invention can be used with automatic injection devices that administer essentially any substance or medication that is suitable for administration by injection. Typically, the substance or medication will be in a fluid, e.g., liquid form, although medications in other forms such as gels or semi-solids, slurries, particulate solutions, etc. also may suitable for use if the automatic injection device is designed to permit the administration of such forms of the medication.
Preferred medications are biological agents, such as antibodies, cytokines, vaccines, fusion proteins and growth factors. Methods of making antibodies are described above.
Non-limiting examples of other biological agents that can be used as the medication in the automatic injection device include but are not limited to antibodies to or antagonists of human cytokines or growth factors, for example, TNF, LT, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-15, IL-16, IL-18, IL-21, IL-23, interferons, EMAP-II, GM-CSF, FGF, and PDGF; antibodies to cell surface molecules such as CD2, CD3, CD4, CD8, CD25, CD28, CD30, CD40, CD45, CD69, CD80 (B7.1), CD86 (B7.2), CD90, CTLA or their ligands including CD154 (gp39 or CD40L); TNFα converting enzyme (TACE) inhibitors; IL-1 inhibitors (Interleukin-1-converting enzyme inhibitors, IL-1RA etc.); Interleukin 11; IL-18 antagonists including IL-18 antibodies or soluble IL-18 receptors, or IL-18 binding proteins; non-depleting anti-CD4 inhibitors; antagonists of the co-stimulatory pathway CD80 (B7.1) or CD86 (B7.2) including antibodies, soluble receptors or antagonistic ligands; agents which interfere with signaling by proinflammatory cytokines such as TNFα or IL-1 (e.g. IRAK, NIK, IKK, p38 or MAP kinase inhibitors); IL-1b converting enzyme (ICE) inhibitors; T-cell signaling inhibitors such as kinase inhibitors; metalloproteinase inhibitors; angiotensin converting enzyme inhibitors; soluble cytokine receptors and derivatives thereof (e.g. soluble p55 or p75 TNF receptors and the derivatives p75TNFRIgG (Enbrel™ and p55TNFRIgG (Lenercept)), sIL-1RI, sIL-1RII, sIL-6R); antiinflammatory cytokines (e.g. IL-4, IL-10, IL-11, IL-13 and TGF-beta); Rituximab; IL-1 TRAP; MRA; CTLA4-Ig; IL-18 BP; anti-IL-18; anti-IL15; IDEC-CE9.1/SB 210396 (non-depleting primatized anti-CD4 antibody; IDEC/SmithKline; see e.g., Arthritis & Rheumatism (1995) Vol. 38; S185); DAB 486-IL-2 and/or DAB 389-IL-2 (IL-2 fusion proteins; Seragen; see e.g., Arthritis & Rheumatism (1993) Vol. 36; 1223); Anti-Tac (humanized anti-IL-2Ra; Protein Design Labs/Roche); IL-4 (anti-inflammatory cytokine; DNAX/Schering); IL-10 (SCH 52000; recombinant IL-10, anti-inflammatory cytokine; DNAX/Schering); IL-10 and/or IL-4 agonists (e.g., agonist antibodies); IL-1RA (IL-1 receptor antagonist; Synergen/Amgen); anakinra (Kineret®/Amgen); TNF-bp/s-TNF (soluble TNF binding protein; see e.g., Arthritis & Rheumatism (1996) 39(9, supplement); 5284; Amer. J. Physiol.—Heart and Circulatory Physiology (1995) 268:37-42); R973401 (phosphodiesterase Type IV inhibitor; see e.g., Arthritis & Rheumatism (1996) 39(9, supplement); S282); MK-966 (COX-2 Inhibitor; see e.g., Arthritis & Rheumatism (1996) 39(9, supplement); S81); Iloprost (see e.g., Arthritis & Rheumatism (1996) 39(9, supplement); S82); zap-70 and/or lck inhibitor (inhibitor of the tyrosine kinase zap-70 or lck); VEGF inhibitor and/or VEGF-R inhibitor (inhibitors of vascular endothelial cell growth factor or vascular endothelial cell growth factor receptor; inhibitors of angiogenesis); TNF-convertase inhibitors; anti-IL-12 antibodies; anti-IL-18 antibodies; interleukin-11 (see e.g., Arthritis & Rheumatism (1996) 39(9, supplement), S296); interleukin-13 (see e.g., Arthritis & Rheumatism (1996) 39(9, supplement), S308); interleukin-17 inhibitors (see e.g., Arthritis & Rheumatism (1996) 39(9, supplement), S120); anti-thymocyte globulin; anti-CD4 antibodies; CD5-toxins; ICAM-1 antisense phosphorothioate oligo-deoxynucleotides (ISIS 2302; Isis Pharmaceuticals, Inc.); soluble complement receptor 1 (TP10; T Cell Sciences, Inc.); and anti-IL2R antibodies.
VIII. TNFα INHIBITORS FOR USE IN EXEMPLARY AUTOMATIC INJECTION DEVICESAccording to one embodiment of the invention, the illustrative automatic injection device may be used to deliver a dose of a TNF inhibitor used to treat arthritis and other diseases. In one embodiment, the solution contained in the syringe contains 40 or 80 milligrams of drug product (TNFα blocker or inhibitor)/1 mL, for example, 40 or 80 mg adalimumab, 4.93 mg sodium chloride, 0.69 mg monobasic sodium phosphate dehydrate, 1.22 mg dibasic sodium phosphate dehydrate, 0.24 mg sodium citrate, 1.04 mg citric acid monohydrate, 9.6 mg mannitol, 0.8mg polysorbate 50 and water for injection, with USP sodium hydroxide added as necessary to adjust pH to be about 5.2.
The present invention can be used to administer a dose of a substance, such as a liquid drug, e.g., a TNFα inhibitor, to a patient. In one embodiment, the dose delivered by the automatic injection device of the invention comprises a human TNFα antibody, or antigen-binding portion thereof.
In one embodiment, the TNF inhibitor used in the methods and compositions of the invention includes isolated human antibodies, or antigen-binding portions thereof, that bind to human TNFα with high affinity and a low off rate, and have a high neutralizing capacity. Preferably, the human antibodies of the invention are recombinant, neutralizing human anti-hTNFα antibodies, such as, e.g., the recombinant, neutralizing antibody referred to as D2E7, also referred to as HUMIRAò or adalimumab (Abbott Laboratories; the amino acid sequence of the D2E7 VL region is shown in SEQ ID NO: 1 of U.S. Pat. No. 6,090,382 the amino acid sequence of the D2E7 VH region is shown in SEQ ID NO: 2 of U.S. Pat. No. 6,090,382). Properties of D2E7 have been described in Salfeld et al., U.S. Pat. Nos. 6,090,382, 6,258,562, and 6,509,015. Other examples of TNFα inhibitors include chimeric and humanized murine anti-hTNFα antibodies that have undergone clinical testing for treatment of rheumatoid arthritis (see e.g., Elliott et al. (1994) Lancet 344:1125-1127; Elliot et al. (1994) Lancet 344:1105-1110; and Rankin et al. (1995) Br. J. Rheumatol. 34:334-342).
An anti-TNFα antibody (also referred to herein as a TNFα antibody), or an antigen-binding fragment thereof, includes chimeric, humanized, and human antibodies. Examples of TNFα antibodies that may be used in the invention include, but not limited to, infliximab (Remicade®, Johnson and Johnson; described in U.S. Pat. No. 5,656,272, incorporated by reference herein), CDP571 (a humanized monoclonal anti-TNF-alpha IgG4 antibody), CDP 870 (a humanized monoclonal anti-TNF-alpha antibody fragment), an anti-TNF dAb (Peptech), and CNTO 148 (golimumab; Medarex and Centocor, see WO 02/12502). Additional TNF antibodies that may be used in the invention are described in U.S. Pat. Nos. 6,593,458; 6,498,237; 6,451,983; and 6,448,380.
Other examples of TNFα inhibitors which may be used in the methods and compositions of the invention include etanercept (Enbrel, described in WO 91/03553 and WO 09/406,476), soluble TNF receptor Type I, a pegylated soluble TNF receptor Type I (PEGs TNF-R1), p55TNFR1gG (Lenercept), and recombinant TNF binding protein (r-TBP-I) (Serono).
In one embodiment, exemplary embodiments provide improved uses and compositions for treating a disorder in which TNFα is detrimental, e.g., rheumatoid arthritis, with a TNFα inhibitor, e.g., a human TNFα antibody, or an antigen-binding portion thereof, through an automatic injection device.
A TNFα inhibitor includes any agent (or substance) that interferes with TNFαactivity. In a preferred embodiment, the TNFα inhibitor can neutralize TNFα activity, particularly detrimental TNFα activity which is associated with disorders in which TNFαactivity is detrimental, including, but not limited to, rheumatoid arthritis, juvenile rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, and psoriatic arthritis.
IX. PHARMACEUTICAL COMPOSITIONS FOR USE IN EXEMPLARY AUTOMATIC INJECTION DEVICESPharmaceutical compositions may be loaded into the automatic injection device of the invention for delivery to a patient. In one embodiment, antibodies, antibody-portions, as well as other TNFα inhibitors, can be incorporated into pharmaceutical compositions suitable for administration to a patient using the device of the invention. Typically, the pharmaceutical composition comprises an antibody, antibody portion, or other TNFα inhibitor, and a pharmaceutically acceptable carrier. “Pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Pharmaceutically acceptable carriers may further comprise minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the antibody, antibody portion, or other TNFα inhibitor.
The compositions for use in the methods and compositions of the invention may be in a variety of forms in accordance with administration via the device of the invention, including, for example, liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions. In a preferred embodiment, the antibody or other TNFαinhibitor is administered by subcutaneous injection using the device of the invention. In one embodiment, the patient administers the TNFα inhibitor, including, but not limited to, TNFα antibody, or antigen-binding portion thereof, to himself/herself using the device of the invention
Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., antibody, antibody portion, or other TNFα inhibitor) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
In one embodiment, exemplary embodiments provide an automatic injection device, e.g., autoinjector pen, comprising an effective TNFα inhibitor and a pharmaceutically acceptable carrier. Thus, the invention provides a pre-filled automatic injection device comprising a TNFα inhibitor.
In one embodiment, the antibody or antibody portion for use in the methods of the invention is incorporated into a pharmaceutical formulation as described in PCT/IB03/04502 and U.S. Patent Publication No. 2004/0033228. This formulation includes aconcentration 50 mg/ml of the antibody D2E7 (adalimumab), wherein an automatic injection device contains 40 mg of antibody for subcutaneous injection. In one embodiment, the automatic injection device of the invention (or more specifically the syringe of the device) comprises a formulation of adalimumab having the following formula: adalimumab, sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol,polysorbate 80 and water, e.g., water for injection. In another embodiment, the automatic injection device comprises a volume of adalimumab including 40 mg adalimumab, 4.93 mg sodium chloride, 0.69 mg monobasic sodium phosphate dihydrate, 1.22 mg dibasic sodium phosphate dihydrate, 0.24 mg sodium citrate, 1.04 mg citric acid monohydrate, 9.6 mg mannitol, 0.8mg polysorbate 80 and water, e.g., water for injection. In one embodiment, sodium hydroxide is added as necessary to adjust pH.
The dose amount of TNFα inhibitor in the automatic injection device may vary according to the disorder for which the TNFα inhibitor is being used to treat. In one embodiment, the invention includes an automatic injection device comprising a dose of adalimumab of about 20 mg of adalimumab; 40 mg of adalimumab; 80 mg of adalimumab; and 160 mg of adalimumab. It should be noted that for all ranges described herein, including the dose ranges, all numbers intermediary to the recited values are included in the invention, e.g., 36 mg of adalimumab, 48 mg of adalimumab, etc. In addition, ranges recited using said numbers are also included, e.g. 40 to 80 mg of adalimumab. The numbers recited herein are not intended to limit the scope of the invention.
The TNFα antibodies and inhibitors used in the invention may also be administered in the form of protein crystal formulations that include a combination of protein crystals encapsulated within a polymeric carrier to form coated particles. The coated particles of the protein crystal formulation may have a spherical morphology and be microspheres of up to 500 micro meters in diameter or they may have some other morphology and be microparticulates. The enhanced concentration of protein crystals allows the antibody of the invention to be delivered subcutaneously. In one embodiment, the TNFα antibodies of the invention are delivered via a protein delivery system, wherein one or more of a protein crystal formulation or composition, is administered to a patient with a TNFα-related disorder. Compositions and methods of preparing stabilized formulations of whole antibody crystals or antibody fragment crystals are also described in WO 02/072636, which is incorporated by reference herein. In one embodiment, a formulation comprising the crystallized antibody fragments described in International Patent Application No. PCT/IB03/04502 and U.S. Patent Publication No. 2004/0033228 is used to treat rheumatoid arthritis using the methods of the invention.
Supplementary active compounds can also be incorporated into the compositions. In certain embodiments, an antibody or antibody portion for use in the methods of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents, including a rheumatoid arthritis inhibitor or antagonist. For example, an anti-hTNFα antibody or antibody portion may be co-formulated and/or co-administered with one or more additional antibodies that bind other targets associated with TNFα related disorders (e.g., antibodies that bind other cytokines or that bind cell surface molecules), one or more cytokines, soluble TNFα receptor (see e.g., PCT Publication No. WO 94/06476) and/or one or more chemical agents that inhibit hTNFα production or activity (such as cyclohexane-ylidene derivatives as described in PCT Publication No. WO 93/19751) or any combination thereof. Furthermore, one or more antibodies of the invention may be used in combination with two or more of the foregoing therapeutic agents. Such combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible side effects, complications or low level of response by the patient associated with the various monotherapies. Additional agents that may be used in combination with a TNFαantibody or antibody portion are described in U.S. patent application Ser. No. 11/800,531, which is expressly incorporated herein by reference in its entirety.
X. INCORPORATION BY REFERENCEThe contents of all references, including patents and patent applications, cited throughout this application are hereby incorporated herein by reference in their entirety. The appropriate components and methods of those references may be selected for the invention and embodiments thereof. Still further, the components and methods identified in the Background section are integral to this disclosure and can be used in conjunction with or substituted for components and methods described elsewhere in the disclosure within the scope of the invention.
XI. EQUIVALENTSIn describing exemplary embodiments, specific terminology is used for the sake of clarity. For purposes of description, each specific term is intended to at least include all technical and functional equivalents that operate in a similar manner to accomplish a similar purpose. Additionally, in some instances where a particular exemplary embodiment includes a plurality of system elements or method steps, those elements or steps may be replaced with a single element or step Likewise, a single element or step may be replaced with a plurality of elements or steps that serve the same purpose. Further, where parameters for various properties are specified herein for exemplary embodiments, those parameters may be adjusted up or down by 1/20th, 1/10th, ⅕th, ⅓rd, ½, etc., or by rounded-off approximations thereof, unless otherwise specified. Moreover, while exemplary embodiments have been shown and described with references to particular embodiments thereof, those of ordinary skill in the art will understand that various substitutions and alterations in form and details may be made therein without departing from the scope of the invention. Further still, other aspects, functions and advantages are also within the scope of the invention.