CROSS-REFERENCE TO RELATED APPLICATIONSThis application is related to U.S. patent application Ser. No. ______ entitled “An Active Antenna System for a Mobile Communications Network as well as a Method for Relaying a Plurality of Radio Signals through the Active Antenna System “(Attorney Docket No. 4424-PO4973US0) filed concurrently herewith. The entire contents of the foregoing application are incorporated herein by reference.
FIELD OF THE INVENTIONThe field of the invention relates to an active antenna array for a mobile communications network as well as a method for relaying a plurality of radio signals through the active antenna array.
BACKGROUND OF THE INVENTIONIn a typical base station of the prior art, local oscillator signals are provided for each one of the transceivers in the base station. Likewise, in a remote radio head application, individual local oscillator signals are also provided individually for each one of the transceivers located in the remote radio head application. It is necessary to provide multiple numbers of individual local oscillator signals, since each one of the transceivers may be operating on different channels. Multiple local oscillators may also be included to improve reliability through the removal of the single point of failure which a single local oscillator would provide.
One issue associated with the approach of utilizing a multiple number of individual local oscillators is the expense and real estate on a chip associated with providing the plurality of local oscillators and the possible need to calibrate the different ones of the oscillators. This can be an issue during a start-up phase. For example, if the individual local oscillators are not correctly calibrated at the start-up, this may lead to difficulties in ensuring that the required beam forming operations for the radio signals are undertaken correctly. In particular, this may mean that the correct beam shapes for the radio signal in the required directions are not correctly calculated.
FIG. 1 shows an example of an active antenna array as known in the prior art and comprising a plurality of transmission paths. Only a first signal path at the top, a second signal path in the middle and a last or n'th signal path at the bottom are illustrated inFIG. 1 (as well as in the subsequent figures). The third to the (n-1)th transmission paths are not illustrated for the sake of clarity.
A radio signal in the digital domain to be transmitted reaches the active antenna array from the left and is fed to thedigital signal processor15. Thedigital signal processor15 distributes the radio signals to be transmitted to a plurality ofoutput paths16a,16b,. . . ,16n.In the prior art example illustrated the radio signals to be transmitted by the plurality ofoutput paths16a,16b,. . . ,16nare digital IF transmission signals which have undergone upconversion in thedigital signal processor15. Other processes may also take place indigital signal processor15 and these include, but are not limited to: crest factor reduction, digital predistortion and digital beamforming The inclusion or omission of these processes has no impact on the teachings of the disclosure as described herein. For simplicity the letters relating to all of the paths will be left out in future reference numerals.
Only the passage of the transmission signal through the top one of theoutput paths16awill be described in detail. It will be appreciated that all of theother output paths16b,. . . ,16nare identical. Theoutput path16ais connected to a digital-to-analogue converter20awhich converts the digital IF transmission signals from thedigital signal processor15 to analogue signals prior to passing the analogue signals through afirst filter25ato obtain those filtered transmission signals in the desired frequency band. The filtered transmission signals in the desired frequency band are forwarded to afirst mixer30a.Thefirst mixer30aupconverts the filtered transmission signals by means of afirst oscillator35ato an analogue intermediate frequency band. Thefirst oscillator35ais clocked by a signal from afirst reference clock100a.
The output of thefirst mixer30ais filtered in asecond filter40aand passed to anintermediate frequency amplifier45a.The output of theintermediate frequency amplifier45ais passed to asecond mixer50aat which it is upconverted with an oscillator signal from the secondlocal oscillator55a.The secondlocal oscillator55ais also clocked from thefirst reference clock100a.
The transmission signals from thefirst mixer50aare now at a transmission frequency band (the radio frequency) and are passed through athird filter60ainto aradio frequency amplifier65abefore entering atransmission filter70aand being passed to theradio frequency output80a.Theradio frequency output80ais connected to one of the plurality of antenna elements from the antenna array (not shown). Atap75aprovides a feedback loop to thedigital signal processor15 throughpaths85 which allow calibration and updating of the predistortion processing, of the radio signals to be taken into account.
SUMMARY OF THE INVENTIONAn active antenna array for a mobile communications network is disclosed herein. The active antenna array comprises a plurality of antenna elements for relaying radio signals at a first frequency band. The plurality of antenna elements is connected to a plurality of signal paths. The active antenna signal system has a plurality of signal inputs which are connected to the plurality of signal paths. A plurality of first mixers is present in the plurality of the signal paths which convert the frequencies of the radio signals between the first frequency band and a second frequency band. A plurality of first local oscillators are connected to the plurality of first mixers and a single reference clock is connected to different ones of the plurality of first local oscillators through a plurality of first oscillator signal paths and also to a digital signal processor.
The term “relaying” or “relay” in this description is intended to encompass both the transmission of radio signals and the reception of radio signals.
It will be further appreciated that the single reference clock may not be directly connected to the digital signal processor. There may be a separate clock generator for the digital signal processor which is connected to the single reference clock.
The use of a single reference clock enables the plurality of first local oscillators to be accurately calibrated with each other, since there is only a single reference clock. This allows additionally real estate to be saved on the chip.
The active antenna array may also comprise a plurality of second mixers which are connected to the output of the plurality of first mixers and which convert the frequency of the radio signals between the second frequency band, for example an intermediate frequency, and a third frequency band, for example the radio frequency. The plurality of second mixers is connected to a plurality of second oscillators which are clocked by the single reference clock through a plurality of second oscillator signal paths. It will be appreciated that the output of the first mixers is not (necessarily) connected to the input of the second mixers. There may—and generally will—be additional elements, such as filters and/or amplifiers, present between the outputs and inputs
In one aspect of the invention, dispersion elements are included in the first oscillator signal paths or the second oscillator signal paths which allow the delay and/or phase of the clock signal to the plurality of the first local oscillators and/or the second local oscillators to be changed to take into account delays of the radio signals along the signal paths or of the local oscillator signals along the first local oscillator signal path and the second local oscillator signal path.
A method for relaying of a plurality of radio signals is also disclosed. This method comprises inputting a plurality of radio signals at a first frequency band, for example a base band, generating a plurality of first oscillator signals from a single reference clock signal, generating a DSP clocking signal from the single reference clock signal and converting the plurality of the radio signals from the first frequency band to a second frequency band using the plurality of first local oscillator signals.
It will be appreciated that the first local oscillator signals and DSP clocking signal may be generated either directly or indirectly from the single reference clock signal.
The method may also include adjusting the dispersion of at least one of the plurality of first oscillator signals.
The method may also comprise generating a plurality of second local oscillator signals from the signal reference clock signal and converting the plurality of radio signals from the second frequency band to a third frequency band, for example the radio frequency, using the plurality of second local oscillator signals. In one aspect of the invention one or of the plurality of second local oscillator signals can be adjusted using dispersion elements.
A chip set for use in the antenna system is also disclosed. The chip set comprises a plurality of signal inputs for inputting the radio signals at a second frequency band and being connected to the plurality of signal paths. The chip set further comprises a plurality of first mixers in the plurality of the signal paths for converting the frequency of the radio signals between the first frequency band and the second frequency band. A plurality of first local oscillators is connected to the plurality of first mixers and a single reference clock is connected to different ones of the plurality of first local oscillators and to a digital signal processor.
A computer program provides comprising a computer-useable medium having control logic stored in the computer-useable medium is also disclosed. The control logic is able to code a computer and associated manufacturing apparatus to manufacture an active antenna array for the mobile communications network. The active antenna array comprises a plurality of antenna elements for relaying radio signals at a first frequency band, wherein the plurality of antenna elements are connected to a plurality of signal paths. A plurality of signal inputs for inputting the radio signals at a second frequency band is also connected to the plurality of signal paths. The active antenna array further includes a plurality of first mixers in the plurality of the signal paths for converting the frequency of the radio signals between the first frequency band and the second frequency band. A plurality of first local oscillators is connected to the first mixers and a single reference clock is connected to the plurality of first local oscillators and to a digital signal processor.
A computer program product comprising a computer-useable medium having control logic for causing an active antenna to execute a method for relaying a plurality of individual radio signals is also disclosed. The computer program product has first computer readable code means for inputting a plurality of radio signals at a first frequency band and second computer readable code means for generating a plurality of first oscillator signals from a single reference clock signal. The computer program product further comprises third computer readable code means for converting the plurality of radio signals from a first frequency band to a second frequency band using the plurality of first local oscillator signals.
DESCRIPTION OF THE FIGURESFIG. 1 shows a prior art method for an antenna system for mobile communications network.
FIG. 2 shows an active antenna system employing a common clock for all of the local oscillators and also for the digital signal processing apparatus.
FIG. 3 shows an active antenna system employing a common clock with phase compensation.
FIG. 4 shows an overview of a method for relaying a plurality of radio signals employing the common clocks.
DETAILED DESCRIPTION OF THE INVENTIONThe invention will now be described on the basis of the drawings. It will be understood that the embodiments and aspects of the invention described herein are only examples and do not limit the protective scope of the claims in any way. The invention is defined by the claims and their equivalents. It will be understood that features of one aspect can be combined with a feature of a different aspect or aspects.
FIG. 2 shows a first aspect of the invention. It would be appreciated that many of the elements inFIG. 2 are identical with the elements inFIG. 1 and have been allocated the same reference numerals. This disclosure outlines in detail aspects of the disclosure relating to the transmission of radio signals. Modifications of the circuit required for the reception of radio signals will be disclosed later.
The aspect of the invention shown inFIG. 2 differs from the prior art method inFIG. 1 in that the first oscillators35 and the second local oscillators55 are not connected to a plurality of reference clocks100, but to a single reference clock110 through afirst combiner115 and/or asecond combiner120. This has the advantage that a single reference clock110 is used in theactive antenna array1, rather than a plurality oflocal reference clocks100a,100b,. . . ,100nfor each one of the signal paths16 used in the prior art active antenna array as shown inFIG. 1. As noted above three signal paths are shown. The disclosure is equally applicable to more than three signal paths.
It will be noted that the single reference clock110 also supplies aclock signal128 to adigital clock generator130 which is used to generate aDSP clocking signal132 for thedigital signal processor15. It should be noted that the frequency of theDSP clocking signal132 which supplies thedigital signal processor15 is not constrained to be the same as the frequency of the single reference clock110. It will be appreciated, by those skilled in the art, that the generation of a very wide range of digital clock frequencies is possible, based upon a frequency of thesingle reference clock115, and that a frequency appropriate to the needs of thedigital signal processor15 can easily be derived, either directly or indirectly, from the frequency of thereference clock115.
FIG. 3 shows a second aspect of the invention in whichdispersion elements140 and145 are connected between thesecond combiner120 and the plurality of second local oscillators55. Thedispersion elements140 and145 are shown here as phase shifters but could also be implemented as delay elements. The function of thedispersion elements140 and145 is to take into account that the length of the paths of the transmission signals through the complete transmission signal paths or the lengths of the local oscillator signal paths (i.e. between the single reference clock110 and the second local oscillators55) may vary slightly between different ones of the transmission signal paths. Thedispersion elements140 and145 can therefore slightly change the time of arrival of the clock signal supplied to the second local oscillators55 in order to take this change of path length into account. It will also be appreciated that it is possible to do without one of the dispersion elements in the path supplying the clock signal to one of the second local oscillators55.
Thedispersion elements140 and145 are shown here as only being connected between thesecond combiner120 and the plurality of second local oscillators55. It is possible to also add further dispersion elements between thefirst combiner115 and the plurality of first local oscillators35. It is also possible to have digital dispersion elements at thedigital signal processor15 to provide any necessary correction the digital signals on the signal path16.
FIG. 4 shows a method for transmitting the plurality of radio signals according to the disclosure. InFIG. 4 instep400 the digital transmission signals are input into thedigital signal processor15 where beam forming operations are carried out on the transmission signals. The manipulated digital signals are output over the signal paths16 to the digital to analogue convertor20 instep405 at which point the manipulated digital signals are converted to analogue signals and instep410 the analogue signals are filtered to remove out-of-band frequencies. Instep415 the analogue radio signals from the first filter25 are modulated with a first local oscillator signal supplied by the first local oscillator35 which is clocked by the single reference clock110. This generates analogue signals at an intermediate frequency. The individual radio signals at the intermediate frequency band are filtered in the second filter40 to remove out-of-band signals and then amplified in an intermediate frequency amplifier45 before being passed to a second mixer50, where they are upconverted with a second oscillator signal instep430 to the transmission frequency. The second mixer55 receives the second oscillator signal from the second oscillator55 which, as noted above, is fed by the single reference clock110.
Instep435 out-of-band frequencies from the individual radio signals from the second mixer55 are filtered in thethird filter60 before the individual radio signals at the radio frequency are amplified once again in thesecond amplifier65 instep440. Instep445 out-of-band frequencies are filtered out of the individual radio signals in thefourth filter70. A feedback signal is generated instep450 which is supplied to calibration and pre-distortion feedback elements. Finally instep455 the individual radio signals are transmitted through individual ones of the antenna array elements.
The active antenna array of the current disclosure has been described with respect to the transmission of radio signals from the base station. It will, however, be appreciated that the provision of the single reference clock110 in the active antenna array can also be used for the receipt of individual radio signals through the plurality of antenna array elements and their down conversion to the base band frequency.
In this receive case, the first local oscillators35, the second local oscillator55, the first mixers30 and the second mixers50 are used to downconvert the plurality of receive signals incident upon theantenna elements80aand the plurality of receive signal paths will ultimately supply a plurality of digital IF signals to the digital signal processor15 (or to a separate receive digital signal processor, not shown). The same reference clock110 is used to supply both the transmit and receive ones of the first local oscillators35 and the second local oscillators55, and also to supply the receive DSP, in the event that this is a separate chip or subsystem to that used for the transmit portion of the active antenna array. The transmit and receive ones of the first local oscillators35 and the second local oscillators55, may, however, operate on different frequencies from one another, for example where a frequency split occurs between the transmit and receive bands in a duplex system. Thedispersion elements140 and145 may also be used in the plurality of receive paths or the plurality of local oscillator paths (or both) in the same manner and for the same purpose as was described above for the transmit aspects of the invention.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant arts that various changes in form and detail can be made therein without departing from the scope of the invention. In addition to using hardware (e.g., within or coupled to a central processing unit (“CPU”), micro processor, micro controller, digital signal processor, processor core, system on chip (“SOC”) or any other device), implementations may also be embodied in software (e.g. computer readable code, program code, and/or instructions disposed in any form, such as source, object or machine language) disposed for example in a computer useable (e.g. readable) medium configured to store the software. Such software can enable, for example, the function, fabrication, modelling, simulation, description and/or testing of the apparatus and methods describe herein. For example, this can be accomplished through the use of general program languages (e.g., C, C++), hardware description languages (HDL) including Verilog HDL, VHDL, and so on, or other available programs. Such software can be disposed in any known computer useable medium such as semiconductor, magnetic disc, or optical disc (e.g., CD-ROM, DVD-ROM, etc.). The software can also be disposed as a computer data signal embodied in a computer useable (e.g. readable) transmission medium (e.g., carrier wave or any other medium including digital, optical, analogue-based medium). Embodiments of the present invention may include methods of providing the apparatus described herein by providing software describing the apparatus and subsequently transmitting the software as a computer data signal over a communication network including the internet and intranets.
It is understood that the apparatus and method describe herein may be included in a semiconductor intellectual property core, such as a micro processor core (e.g., embodied in HDL) and transformed to hardware in the production of integrated circuits. Additionally, the apparatus and methods described herein may be embodied as a combination of hardware and software. Thus, the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.