TECHNICAL FIELDThe present invention relates to a light-emitting module in which a light-emitting element such as LED is arranged, and also relates to a lighting apparatus provided with the light-emitting module.
BACKGROUND ARTConventionally, there has been provided a lighting equipment including an LED module having a power feeding terminal and mounted with an LED chip disposed thereon and an apparatus body provided with a holding member for detachably holding the LED module (refer to Patent Document 1). There is also provided a lighting equipment also including a terminal for connecting a power feeding line directly to the LED module so as to easily exchange the LED module or to use the LED module in various equipments (refer to Patent Document 2).
Patent Document 1: Japanese Patent Laid-Open Publication No. 2003-68129
Patent Document 2: Japanese Patent Laid-Open Publication No. 2003-59330
DISCLOSURE OF THE INVENTIONIn the equipment disclosed inPatent Document 1, however, though not specifically described, at least LED chips and circuit components are disposed on a surface of the LED module in a mixed manner. Therefore, thePatent Document 1 fails to disclose any technical idea performing excellent distribution of light radiated from the LED chip, and moreover, the rear surface of the LED module is not positively used as a heat dissipating surface. Furthermore, it is evident from the configuration of the power feeding terminal and the holding member that the disclosed LED module has a specific structure for attachment and connection, which requires a specified adaptor, thus lacking versatility.
In the equipment disclosed inPatent Document 2, LED chips and circuit components are similarly disposed on a surface of the LED module in a mixed manner. Therefore,Patent Document 2 also fails to disclose any specific technical idea performing excellent distribution of light radiated from the LED chip.
The present invention has been made in view of the above circumstances, and has an object to provide a light-emitting module having excellent light emission efficiency and excellent light distribution characteristics and also provide a lighting apparatus using the light-emitting module.
A light-emitting module of the present invention includes: a substrate having a front surface side constituted as a component mounting surface and a rear surface side constituted as a heat dissipating surface flat in shape; a plurality of light-emitting elements mounted at a central portion of a component mounting surface of the substrate in a manner protruding therefrom and emitting light at least in an upper surface direction and in a direction along the component mounting surface; a lighting circuit component which is electrically connected to the light emitting elements by a wiring pattern arranged on the substrate and which is arranged on a peripheral edge side of the substrate than the light emitting elements, on the component mounting surface of the substrate; and a connector for connecting with a power supply, which is arranged on the peripheral edge side of the substrate than the light emitting elements, on the component mounting surface of the substrate, and which is electrically connected to the lighting circuit component.
According to the present invention, a light emitting module having wide applicable range can be provided with excellent light distribution characteristics and made optimized. Moreover, heat dissipation effects can be promoted and the wiring pattern on the substrate can be shortened and simplified, thus being effective.
Furthermore, in the present invention of the above aspect, it may be desired that the plurality of light-emitting elements are arranged at even intervals in rotational symmetry except at a central point of the central portion of the component mounting surface of the substrate. According to this arrangement, since the plurality of light emitting elements are arranged, it becomes possible to perform heat radiation in a concentrated manner from a portion near the center point of the substrate toward the rear surface side thereof, thus realizing substantially even light distribution characteristics in the horizontal direction.
Furthermore, in the present invention of the above aspect, it may be desired that when it is supposed that a minimum distance between light-emitting portions of the plurality of the light-emitting elements arranged is c, a width of the light-emitting portion on a line of the minimum distance c is a, and a height from the mounting surface of the substrate to an upper surface of the light-emitting portion is b, the light-emitting elements are arranged so as to satisfy a dimensional relationship of b<c<4a. According to this arrangement, the light-emitting module having suppressed luminance irregularity is obtainable, thus providing excellent light emission efficiency.
Still furthermore, in the present invention, the lighting apparatus is desirable to be provided with an apparatus body, and the light-emitting module according to any one ofclaims1 to3. Here, the “lighting apparatus” may include a light source having a cap, and lighting equipment used indoors or outdoors.
According to the above structure, the lighting apparatus provided with the light-emitting module can achieve the effects obtainable by the light-emitting module.
BRIEF DESCRIPTION OF THE DRAWINGS[FIG. 1] is a plan view illustrating a first embodiment of a light-emitting module according to the present invention.
[FIG. 2] is a partial side view, in an enlarged scale, illustrating the light-emitting module according to the present invention.
[FIG. 3] is a circuit diagram of the light-emitting module according to the present invention.
[FIG. 4] is a schematic diagram illustrating a structure of a first embodiment of a lighting apparatus according to the present invention.
[FIG. 5] is a schematic diagram illustrating a structure of a second embodiment of the lighting apparatus according to the present invention.
[FIG. 6] is a schematic diagram illustrating a structure of a third embodiment of the lighting apparatus of the present invention.
[FIG. 7] is a plan view illustrating a modification of the light-emitting module according to the first embodiment.
[FIG. 8] is a plan view (8(a) and a side view8(b)) illustrating the light-emitting element (LED package) according to the first embodiment of the light-emitting module.
[FIG. 9] is a graph showing a directional pattern of radiant light of the light-emitting element.
[FIG. 10] is a plan view illustrating an arrangement of the light-emitting elements.
[FIG. 11] is a schematic view showing illuminance distribution on a floor surface when the light-emitting module is lightened.
[FIG. 12] is a graph representing luminance irregularity and light emitting efficiency relative to the interval between the light-emitting elements.
[FIG. 13] is an explanatory view illustrating an example of another application of the light-emitting element.
BEST MODE FOR CARRYING OUT THE INVENTIONA first embodiment of the present invention will be described below with reference toFIGS. 1 to 3.FIG. 1 is a plan view illustrating a light-emitting module,FIG. 2 is a partial enlarged side view illustrating a light-emitting element, andFIG. 3 is a circuit diagram of the light-emitting module.
Referring toFIG. 1, a light-emitting module1 includes a disc-shaped substrate2, light-emitting elements3 mounted on thesubstrate2, alighting circuit components4, and aconnector5 for power source connection.
Thesubstrate2 is made of aluminum, which is formed into a disc plate shape, and having a thickness of about 1.5 mm and a diameter of about 70 mm. In thesubstrate2, afront surface side2ais used as a component mounting surface, and arear surface side2bis used as a flat-shaped heat dissipating surface. On the component mounting surface, eight light-emittingelements3 are mounted in a manner concentrated in the central portion of the component mounting surface in a pattern spaced with a predetermined interval from each other. When thesubstrate2 is made of metal, it is preferred to use a material such as aluminum or copper which is excellent in heat conductivity and heat dissipation characteristics. On the other hand, when an insulating material is used for thesubstrate2, a synthetic resin material or a ceramic material containing thermal conduction filler, which has relatively excellent heat dissipation characteristics and excellent durability, may be utilized. In the case of using the synthetic resin material, thesubstrate2 may be formed of glass epoxy resin or the like. Further, the shape of thesubstrate2 is not limited to circle and may be quadrangle or polygon.
The light-emittingelements3 are a surface-mounted LED package and are mainly constituted of amain body3aformed of ceramic, an LED chip mounted on the main body and atranslucent resin3bfor mold use, such as epoxy resin or silicon resin, which seals the LED chip (refer toFIG. 2). A pair of lead terminals, not shown, connected to the LED chip projects from themain body3ain a horizontal direction. In the LED package, four LED chips are mounted, which are connected in series between electrodes of the package, and accordingly, since eight LED packages each having four LED chips are arranged, totally, thirty two (32) LED chips are arranged. Needless to say, an LED package may also be used in which a single LED chip is mounted.
The LED chip is a blue LED chip emitting blue light. Thetranslucent resin3bfor mold use contains a fluorescent material which absorbs light emitted by the LED chip and generates yellow light. The LED chip is molded on an upper surface of themain body3aso as to form a flat plate with a predetermined thickness. Accordingly, light from the LED chip is irradiated from an upper surface and a side surface of thetranslucent resin3bof the LED package to the outside, and hence, the light from the LED chip has a white-base luminescent color such as white color or electric bulb color and has wide light distribution characteristics. That is, light is irradiated from the light-emittingelements3 in a direction of the upper surface thereof and in a direction along the component mounting surface. Further, the LED package is about 3.5 mm in breadth, 3.5 mm in width and 1.5 mm in height and has a shape of a substantially rectangular solid.
An insulating layer is formed on a surface of thesubstrate2, and on such insulating layer, a connection land connected to lead terminals of the surface-mounted components and a wiring pattern, not shown, are formed. In the central portion of thesubstrate2 except at a central point thereof, the light-emitting elements3 are arranged at a predetermined interval (3 mm to 15 mm, preferably 5 mm to 10 mm) in rotational symmetry (in the present embodiment, being 45° symmetry relative to the light emission center of the light-emitting elements3) around the central point along a direction of the front surface of thesubstrate2. Further, thelighting circuit components4 are arranged and mounted in an outer peripheral edge side of thesubstrate2, and in this case, thelighting circuit components4 are never mounted between the light-emitting elements3 and3. Thelighting circuit components4 are used for lighting control of the LED chip, and include a fuse F, a capacitor C, a rectifier REC, a constant voltage diode ZD, resistors R1 and R2, and a transistorQ. A connector5 for connecting with a power supply is similarly arranged in a position around the light-emitting elements3. Theconnector5 is arranged so that a connection opening5athereof faces the outer peripheral edge of thesubstrate2 and is disposed close to the outer peripheral edge. This is for the purpose of facilitating the connection with a power line of commercial power supply. Thelighting circuit components4 and theconnector5 are disposed closer to the outer peripheral edge side of thesubstrate2 than the light-emittingelements3, and arranged not in a dispersed manner but in a relatively concentrated manner (in a region disposed approximately ⅓ from the outer circumference of the substrate2) to shorten the wiring pattern of thesubstrate2. On the mounting surface of thesubstrate2, a white resist having a high reflectivity is printed, and three screw through-holes6 are formed on the mounting surface to be mounted onto an apparatus or the like.
The light-emittingelements3 protrude from the mounting surface of thesubstrate2 in a direction of height, and radiate, as indicated by the arrow inFIG. 2, light in a radial pattern from a protruding portion of thetranslucent resin3b.Accordingly, not only the light LV radiated in a direction perpendicular (upper surface direction) to the mounting surface, but also the light LH radiated from the side surface of thetranslucent resin3bof the LED package along the component mounting surface can be used.
Referring to the circuit diagram ofFIG. 3, the capacitor C is connected via the fuse F across a commercial power supply AC. The full-wave rectifier REC is connected across the capacitor C, and in the output terminal of the full-wave rectifier REC, a series circuit of the resistor R1 and the constant voltage diode ZD, and a series circuit of a plurality of the LED chips LED, the NPN transistor Q and the resistor R2 are connected in parallel. A base of the transistor Q is connected to a connecting point between the resistor R1 and the constant voltage diode ZD. In the LED package, four LED chips are, as described above, connected in series, and hence, a series circuit of the transistor Q and the resistor R2 may be constructed for each of the LED packages and then connected in parallel with each other.
A constant current circuit is constituted by the circuit mentioned above, and a current supplied from the commercial power supply AC is converted to a DC current, and such DC current flows, as constant current IF, in the series circuit of the LED chips LED, the transistor Q and the resistor R2. More specifically, a base voltage VB of the transistor Q is kept constant by the constant voltage diode ZD so that current IC flowing into a collector of the transistor Q is kept constant, and as a result, the current IF flowing in the LED chip is made constant.
According to the present embodiment described above, the light-emittingelements3 are arranged in the central portion of the component mounting surface of thesubstrate2, and thelighting circuit components4 and theconnector5 for connecting with power supply are arranged around the light-emittingelements3. Accordingly, the light LH radiated from the side surface of the light-emittingelements3, i.e., the LED packages, can be effectively used, making excellent light distribution and also optimizing light distribution. That is, when the light-emittingelements3, thelighting circuit components4 and theconnector5 for connecting with power supply are arranged in a mixed manner, particularly, the light LH radiated from the side surface of the LED package is interrupted by thelighting circuit components4 and the like, thus lowering light extraction factor of the radiant light, not allowing effective use of the radiant light, lowering the lighting efficiency and adversely affecting the optimization of light distribution.
According to the present embodiment, the lowering of light extraction factor of the radiant light by thelighting circuit components4 and the like is reduced, and hence, the light LH radiated from the side surface can be effectively used. For example, when a reflector is used, the radiant light LH may be radiated in a direction of a surface to be irradiated. In addition, the light-emittingelements3, thelighting circuit components4 and theconnector5 for connecting with power supply are arranged in a concentrated manner, and as a result, the wiring pattern of thesubstrate2 is shortened and simplified.
Further, since the light-emittingelements3 as the heat sources are not arranged at the central portion of thesubstrate2, and a rear surface side is formed as a flat heat dissipating surface, when the heat dissipating surface is in contact with another heat dissipating member, the heat is effectively transmitted from the central portion of thesubstrate2 to the rear surface side, thereby easily realizing a configuration improving the heat dissipation effects.
Furthermore, since a modular structure including theconnector5 for connecting with power supply is achieved, a lighting apparatus can be provided merely by incorporating thesubstrate module1 in the apparatus body and then connecting a commercial power supply to theconnector5. Thus, the light-emittingmodule1 can be handled as a single common part having a wide applicable field. Furthermore, since theconnector5 is arranged so that the connection opening5athereof is disposed close to the outer peripheral edge of thesubstrate2, the connection with a power line of a commercial power supply is readily made, and in addition, since the white resist is printed on the mounting surface of thesubstrate2, the excellent reflection efficiency can be provided.
Hereunder, a first embodiment of a lighting apparatus according to the present invention will be described with reference toFIG. 4.
FIG. 4 is an illustration showing schematic structure of a lighting apparatus. Referring toFIG. 4, alighting apparatus10 is, for example, a downlight and includes anapparatus body11. Included in theapparatus body11 are aheat dissipating member12 made of metal having heat dissipating fins, a light-emittingmodule1 attached to theheat dissipating member12, and areflector13. The light-emittingmodule1 is screwed to theheat dissipating member12 so that a heat dissipating surface on arear surface side2bof thesubstrate2 is closely attached to theheat dissipating member12 through a silicon rubber sheet. Needless to say, this mounting of the light-emittingmodule1 may be made by means of bonding or the like, instead of screw fastening. Thereflector13 has a shape of a bowl having a gently curved surface and has an opening in its upper and lower ends. The upper end constitutes a mountingopening13a,and the lower end constitutes a radiatingopening13b.
As for the positional relationship with the light-emittingmodule1, i.e., the positional relationship with the component mounting surface of thesubstrate2, the mountingopening13aof thereflector13 is disposed so as to separate the light-emittingelements3 from thelighting circuit components4 and theconnector5 for connecting with power supply, arranged around the light-emittingelements3. That is, the light-emittingelements3 are divided from thelighting circuit components4 and the like by thereflector13. Thus, the light radiated from the light-emittingelements3 is not interrupted by thelighting circuit components4 and the like and is reflected on thereflector13 and radiated downward. Further, since thelighting circuit components4 are not seen from the front surface side of thereflector13, the outer appearance of thelighting apparatus10 can be also improved.
According to the present embodiment, there is provided thelighting apparatus10 capable of achieving more effective distribution of the radiant light from the light-emittingelements3 in addition to the above described effects of the light-emittingmodule1.
The lighting apparatus is not limited to the above embodiment, and the light-emittingmodule1 may be mounted in a light source having a cap, or may be incorporated in lighting equipment used indoors or outdoors.
A second embodiment of the lighting apparatus according to the present invention will be described hereunder with reference toFIG. 5.
In this embodiment, a downlight type lighting apparatus, using an electric-bulb shaped LED lamp as the light source, is shown.
Referring toFIG. 5, the lighting apparatus mounted on a ceiling surface includes anapparatus body10 and alight source20 having a shape of an electric bulb, mounted to theapparatus body10.
Thelight source20 includes: a light-emittingmodule1 according to the first embodiment having the light-emittingelements3 mounted thereon; amain body21 thermally coupled to the light-emittingmodule1 and working as a heat dissipating member; and aglove22 attached, through an insulating member, to themain body21 so as to cover, for example, a cap of E26 and the light-emittingmodule1.
Theapparatus body10 includes a.case15 made of metal and having a box-shaped structure having an opening in formed in a lower surface thereof, and areflector16 made of metal fitted into the opening of thecase15. Thereflector16 is formed by a metal plate of aluminum or the like, for example, and adecorative frame16ais formed to a peripheral portion of the lower surface of thereflector16. Asocket17, in which the cap of thelight source20 is screwed, is arranged at the center of an upper surface plate of thereflector16. Thesocket17 is attached to thecase15 via asupport plate18 secured to the inner side of thecase15.
According to the present embodiment, there is provided a lighting apparatus with an LED lamp in the shape of an electric bulb, which achieves the effects mentioned above with reference to the light-emittingmodule1.
A third embodiment of the lighting apparatus according to the present invention will be described hereunder with reference toFIG. 6. The like reference numerals are applied to portions or elements corresponding to those of the second embodiment, and repeated explanation thereof is omitted herein.
In this embodiment, there is provided a lighting apparatus illustrated as a downlight, using a thin LED lamp, as alight source20, having thickness smaller in a height direction of height. The light-emittingmodule1 of the first embodiment is mounted in thelight source20 in a similar manner, and amain body21 functioning as a heat dissipating member is thermally coupled to the light-emittingmodule1. A cap is provided with a connectingpin25 formed into GX53-shape. Asocket17 is mounted to acase15, and connectingpins25 for the cap are electrically and mechanically connected to thesocket17.
According to the present embodiment described above, there is provided a lighting apparatus with a thin-type LED lamp capable of achieving the effects of the light-emittingmodule1.
A modification of the light-emitting module according to the first embodiment will be described hereunder with reference toFIG. 7.FIG. 7 is a plan view illustrating a light-emitting module. The like reference numerals are added to portions or elements corresponding to those of the first embodiment, and repeated explanation thereof is omitted herein.
Lighting circuit components4 are mounted on a component mounting surface of asubstrate2 in a manner concentrated in the central portion thereof. Thelighting circuit components4 include a fuse F, a capacitor C, a rectifier REC, a constant voltage diode ZD, resistors R1 and R2, and a transistor Q.
On the other hand, the light-emittingelements3 are mounted around thelighting circuit components4 in a pattern spaced with a predetermined interval from each other. In aconnector5 for power supply connection is arranged so that aconnection opening5athereof is disposed close to the outer peripheral edge of thesubstrate2. In consideration of the connection with a power line, although it is preferred that theconnector5 for the power supply connection is disposed to a portion in the vicinity of the outer periphery of thesubstrate2, the connector may be arranged at the central portion together with thelighting circuit component4.
In this modified embodiment, the positional arrangement of the light-emittingelements3 and thelighting circuit components4 of the first embodiment are reversed, and since the mounting interval of the light-emittingelements3 is greater than that of the first embodiment, light LH radiated from the side surface of the LED package can be effectively utilized as like as in the first embodiment, and in addition, by increasing the interval between the light-emittingelements3,3 . . . , the heat of the light-emittingelements3 can be transmitted and dissipated to the rear side of thesubstrate2 by effectively utilizing the entire structure of thesubstrate2.
Hereunder, there will be explained an embodiment, with reference toFIGS. 8 to 13, in which the interval between the plurality of light-emittingelements3,3, . . . mounted on thesubstrate2, and degree of luminance irregularity and variation in light-emitting efficiency both dependent on the interval, have been studied with respect to the light-emittingmodule1 according to the first embodiment.
Referring toFIG. 8, the light-emittingelements3 constitute a surface-mounted LED package and are composed of amain body3a,an LED chip mounted on themain body3a,and atranslucent resin3bfor sealing the LED chip, and thistranslucent resin3bfunctions as a light-emitting unit L.
The light-emitting unit L is, as illustrated inFIG. 8(a), formed so as to have a substantially quadrate shape which is 2.8 mm on a side (W) and about 4 mm on a diagonal (a). As illustrated inFIG. 8(b), the light-emittingelement3 mounted on thesubstrate2 is 1.5 mm in height (b) from the mounting surface of thesubstrate2 to an upper surface of the light-emitting unit L and is 0.7 mm in height (h) of the light-emitting unit L.
FIG. 9 is a graph showing a directional characteristics or pattern of the light-emittingelements3. The light-emittingelement3 has a maximum illuminance in a direction perpendicular to the upper surface, i.e., at a radiation angle of 0°, and as for a direction of the side surface, has a illuminance 40 percent or greater relative to the maximum illuminance at a radiation angle of 80° and a illuminance 50 percent or greater relative to the maximum illuminance at a radiation angle of 70°, thus radiating a given amount of light in a direction along the component mounting surface.
The light-emittingelements3 having such configuration and characteristics were arranged in a pattern spaced at a predetermined interval from each other as shown inFIG. 10. Thereafter, luminance irregularity and light-emitting efficiency were measured and evaluated by changing the interval.
Here, it was supposed, as illustrated inFIG. 10, that character c denotes a minimum distance between the light-emitting units L1 and L2, and character a denotes a width of the light-emitting units L1 and L2 on a line of the minimum distance c. The method of evaluating luminance irregularity was made such that the light-emittingmodule1 was made to glow at a height of 2.5 m from the floor surface to illuminate the floor surface, and the state of illumination on the floor was observed to perform visual evaluation. This visual evaluation was, as illustrated inFIG. 11, performed by observing illuminance distribution on the floor. Further,FIG. 11 is a figure that schematically illustrates, with the solid line, a boundary line at which illuminance difference appears, more specifically, an image of light-emitting pattern (mounting pattern image of the light-emitting elements3) of the light-emittingelements3. Thus, the evaluation is ranked as follows. In pattern A, luminance irregularity is not noticed at all, in pattern B, luminance irregularity is hardly noticed, in pattern C, luminance irregularity is noticed, and in pattern D, luminance irregularity is clearly observed. Roughly speaking, when the interval between the light-emitting units L of the light-emittingelements3 is small, the luminance irregularity may be eliminated, the adjacent light-emittingelements3 interrupt the radiant light, thus lowering light emission efficiency. On the other hand, when the interval between the light-emitting units L is wide, the light emission efficiency becomes high, but the luminance irregularity tends to occur.
As a result of the above evaluation and measurement, evaluation and measurement values were obtained as shown inFIG. 12. Referring toFIG. 12, the abscissa indicates interval c between the light-emitting units L of the light-emittingelements3, and the ordinate indicates luminance irregularity evaluation and measurement values of light emission efficiency. Further, it was found that as the interval c exceeded 4 mm, the luminance irregularity gradually lowered and deteriorated and that as the interval c increased, the light emission efficiency raised. However, when the interval c exceeded 8 mm, it was found that the light emission efficiency saturated.
In consideration of the above results, it was confirmed that the permissible range of luminance irregularity lied around rank C, and in consideration of the light emission efficiency, it was also confirmed that the interval c between the light-emittingelements3 was preferably greater than b and smaller than 4a (b<c<4a). Furthermore, it was resulted that the optimum range in the above range for further enhancing luminance irregularity evaluation and improving the light emission efficiency was a range of 2b≦c≦3a. Still furthermore, in order to suppress effect due to heat generation between the light-emittingelements3, an optimum arrangement pattern was a<c. In the case of a<c, the temperature of the light-emittingelements3 during glowing could be suppressed from rising. A lower limit value of the above interval c may also be represented by height h of the light-emitting unit L, and when this height h is used, a relationship of approximately 2h<c, preferably, 4h≦c will be obtained.
In the above, the present embodiment, was described with reference to as an example by considering the relationship between the light-emitting units L1 and L2 of the light-emittingelements3 illustrated inFIG. 10. However, for example, the dimensional relationship of the interval c in the light-emitting units L2 and L3 is similar to that of the light-emitting units L1 and L2. The dimensions, the directional characteristics and the like of the light-emittingelements3 are not limited to the specific dimensions and characteristics described with reference to this embodiment. The mounting pattern of the light-emittingelements3 is not limited to the pattern in which light-emittingelements3 are, as illustrated inFIG. 10, arranged on the circumference, and it may be sufficient that minimum distance c between the light-emittingelements3 falls into the above prescribed range. For example, the light-emittingelements3 may be arranged in a matrix pattern.
A light-emittingelement30 illustrated inFIG. 13 may also be used as the light-emitting element. This light-emittingelement30 is a surface-mounted LED package, and this LED package is composed of amain body30aformed of ceramics, areflector30darranged on themain body30a,anLED chip30cmounted in a recess defined by themain body30aand thereflector30d,and asilicon resin30efor sealing theLED chip30c.Thissilicon resin30efunctions as the light-emitting unit L, and light is radiated from the light-emitting unit L in a radial pattern which is similar, as a whole, to the directional characteristics illustrated inFIG. 9, including an upper surface direction and a direction along the component mounting surface.
INDUSTRIAL APPLICABILITYAccording to the present invention, there is provided a light-emitting module having a wide applicable scope and improving and optimizing the distribution of light radiated from the light-emitting element. In addition, the heat dissipation effects can be raised, and an effect of shortening and simplifying a wiring pattern on a substrate can be also achieved.