CROSS-REFERENCE TO RELATED APPLICATIONSThis application is a divisional of U.S. application Ser. No. 12/252,253, filed Oct. 15, 2008, which claims the benefit of U.S. Provisional Application No. 60/980,708, filed Oct. 17, 2007, the entire disclosure of each of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This application generally relates to a biological valve for the replacement of a venous valve of the deep venous system of the leg or other veins of comparable caliber.
2. Description of the Related Art
Patients with chronic deep vein insufficiency may require the repair or replacement of at least one of the venous valves of the deep veins of the leg. Also, in some cases the venous valve replacement may involve the iliac veins.
Present therapy involves either the surgical repair of the valve leaflets or external banding of the vein to decrease the diameter and bring the weakened leaflets to a geometry which may allow for improved function. The incompetent venous valves of patients with advanced chronic disease are usually not amenable to repair and may be replaced.
Currently, venous valve replacement and therapy is limited to allograft or cryopreserved valves. Allograft valves are difficult to harvest and cryopreserved valves can elicit a deleterious immune response.
SUMMARY OF EXEMPLARY EMBODIMENTSIn accordance with one embodiment, a monocusp bioprosthetic valve for implantation into a host vein of a subject is described. The bioprosthetic valve comprises biological tissue from a xenogeneic source. The biological tissue comprises a single leaflet from a heart valve and a patch comprising tissue contiguous with the single leaflet. In one aspect of the embodiment, the xenogeneic source is porcine. In a further aspect, the single leaflet is attached to the patch at natural margins of attachment. In a still further aspect, the heart valve is an aortic valve. In such an aspect, the patch may include a segment of the aortic annulus. In the same aspect, the single leaflet may be a noncoronary leaflet. In yet another aspect of the embodiment, the patch has a generally rectangular shape. In a further aspect, the patch has a generally ovoid shape. In a still further aspect, the patch extends circumferentially on either side of the leaflet so as to provide a region for attachment to the host vein. In another aspect, the patch extends axially above and below the leaflet so as to provide a region for attachment to the host vein. In any of these aspects, at least a portion of the patch may be covered with a synthetic fabric. Also, in any of these aspects, the subject may be human.
In accordance with another embodiment, a bioprosthetic valve for implantation into a host vein of a subject consisting essentially of a single leaflet from a xenogeneic heart valve attached at natural margins of attachment to a patch of valve wall tissue from the xenogeneic heart valve is provided. In one aspect of this embodiment, the xenogeneic heart valve is porcine. In a further aspect, the patch extends circumferentially on either side of the leaflet to provide a region for attachment to the host vein. In another aspect, the patch extends axially above and below the leaflet to provide a region for attachment to the host vein. In yet another aspect, the xenogeneic heart valve is an aortic valve. In the preceding aspect, the leaflet may be a noncoronary leaflet.
In accordance with yet another embodiment, a method of manufacturing a replacement venous valve for a subject is described. The method comprises providing a xenogeneic heart valve which has at least one leaflet and a valve wall, and which has been subjected to a fixation treatment. The method further comprises excising a portion of the heart valve. The portion comprises at least a selected leaflet attached at natural margins of attachment to a patch of valve wall tissue, such that said excised portion comprises a single leaflet. In one aspect of the embodiment, the xenogeneic heart valve is porcine. In another aspect, the patch extends circumferentially on either side of the selected leaflet to provide a region for attachment to the host vein. In a further aspect, the patch extends axially above and below the selected leaflet to provide a region for attachment to the host vein. In a still further aspect, the xenogeneic heart valve is an aortic valve. In such an aspect, the selected leaflet may be a noncoronary leaflet. In yet another aspect of the embodiment, the method further comprises cutting through each of the natural commissures and shaving off tissue of any leaflets adjacent to the selected leaflet. In any of these aspects, the subject may be human.
In accordance with a further embodiment, a method of treating a malfunctioning valve in a host vein of a subject is described. The method comprises providing a replacement biological valve comprising a single leaflet from a xenogeneic heart valve attached at natural margins of attachment to a patch of contiguous tissue from the xenogeneic heart valve. The method further comprises inserting said replacement biological valve into said host vein. In one aspect of the embodiment, the method further comprises creating a fenestration in the host vein in the region of the malfunctioning valve, the fenestration having a shape generally corresponding to the patch. In the preceding aspect, the fenestration may be created generally in the region of the malfunctioning valve, generally above the region of the malfunctioning valve, or generally below the region of the malfunctioning valve. In the same aspect, the method may further comprise attaching the replacement biological valve to the host vein at the fenestration. In another aspect, the method further comprises removing at least one leaflet from the malfunctioning valve of the host vein. In a further aspect, the xenogeneic heart valve is a porcine aortic valve. In such an aspect, the single leaflet may be a noncoronary leaflet. In a still further aspect, the leaflet and patch have been subjected to a fixation treatment. In such an aspect, the fixation treatment may include exposing the leaflet and patch to glutaraldehyde solution. In any of these aspects, the subject may be human.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1A is a front perspective view of a bioprosthetic valve according to an embodiment.
FIG. 1B is a front perspective view of a bioprosthetic valve according to an alternative embodiment.
FIG. 1C is a front perspective view of a bioprosthetic valve according to a further embodiment.
FIG. 1D is a front perspective view of a bioprosthetic valve according to another alternative embodiment.
FIG. 1E is a front perspective view of a bioprosthetic valve according to another alternative embodiment.
FIG. 1F is a front perspective view of a bioprosthetic valve according to a further embodiment.
FIG. 2 is an axial cross-sectional view of an aortic valve in closed position, illustrating the trileaflet configuration of the aortic valve.
FIG. 3 is a front view of the aortic valve ofFIG. 2 showing the valve cut along a commissure and laid open.
FIG. 4A is a longitudinal cross-sectional view of a vein with a normally functioning venous valve shown in open position.
FIG. 4B is a longitudinal cross-sectional view of the vein ofFIG. 4A with the valve shown in closed position.
FIG. 5 is a longitudinal cross-sectional view of a vein with a malfunctioning venous valve. The vein is shown with a fenestration in which embodiments of the present invention may be implanted.
FIG. 6 is a longitudinal cross-sectional view of the host vein ofFIG. 5 with an embodiment of the present invention implanted therein.
FIG. 7 is a longitudinal cross-sectional view of another vein with a malfunctioning venous valve. The vein is shown with a fenestration in which alternative embodiments of the present invention may be implanted.
FIG. 8 is a longitudinal cross-sectional view of the host vein ofFIG. 7 with an alternative embodiment of the present invention implanted therein.
DETAILED DESCRIPTION OF CERTAIN INVENTIVE ASPECTSThe features, aspects and advantages of the present invention will now be described with reference to the drawings of various embodiments, which are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the invention not being limited to any particular embodiment(s) disclosed.
Various embodiments provide a replacement venous valve comprising a single biological valve leaflet configured to function under low-flow, low-pressure conditions of the deep venous system. Embodiments advantageously utilize the structural properties of biological valve leaflet tissue, preferably xenogeneic aortic valve leaflet tissue, to provide a replacement venous valve offering hemodynamics matching the hemodynamics of the veins of the lower extremities.
Embodiments using tissue from an aortic valve in particular also take advantage of the unique shape of the aortic sinus to mimic the natural flexibility and curvature of a normally functioning vein in the region of a venous valve. These and other embodiments provide a desirable geometry for opening and closing of a bioprosthetic valve in a host vein, providing sufficient obstruction of the host vein in the closed position and allowing for improved washing of the leaflet surface when the bioprosthetic valve is opened.
Certain embodiments incorporate a noncoronary leaflet of an aortic valve in a bioprosthetic valve, desirably providing a “clean” leaflet containing significant amounts of collagen and elastin with minimal muscle tissue attached thereto. Further, as the unique configuration of the aortic wall in the region of the noncoronary leaflet includes no exiting coronary arteries, these and other embodiments offer a continuous surface for use as a patch in the wall of the host vein.
A Bioprosthetic ValveWith reference now toFIG. 1A, abioprosthetic valve100 according to an embodiment is illustrated. Thebioprosthetic valve100 generally includes asingle leaflet102 attached to apatch104 at natural commissures106(a),106(b). Theleaflet102 has afree edge103 which responds to differing pressures in the host vein to open and close thevalve100.
As shown in the figure, thepatch104 may extend axially (with respect to the source vessel and the host vein) above and below theleaflet102 to provide upper and lower regions108(a),108(b) for attaching thebioprosthetic valve100 to a host vein. Thus, in embodiments using an aortic valve source, thepatch104 may include a segment of the aortic annulus and/or a segment of the aortic wall.
Thepatch104 may also extend circumferentially on either side of theleaflet102, to provide lateral regions110(a),110(b) for attaching thebioprosthetic valve100 to a host vein. The regions110(a),110(b) may extend only minimally beyond the region of theleaflet102, as shown inFIG. 1, or may extend further so as to partially or entirely encircle the host vein upon implantation. Thepatch104 may be generally rectangular, as shown inFIG. 1, or may have any other suitable shape (such as circular, oval, or oblong) for implantation into a host vein. Although illustrated with the regions108(a),108(b) and110(a),110(b) extending substantially symmetrically above and below and on either side of theleaflet102, thepatch104 can of course extend about theleaflet102 by different lengths in different directions.
Thebioprosthetic valve100 and itscomponent leaflet102 may be selected and configured so that, with thevalve100 in a closed position, theleaflet102 provides adequate obstruction of the host vein at or near the site of the malfunctioning venous valve. Theleaflet102 need not completely obstruct the host vein in the closed position, however, as some degree of backflow is acceptable in the venous system. Accordingly, with thevalve100 in a closed position, thefree edge103 of theleaflet102 may (but need not) contact an opposite wall of the host vein continuously along the length of thefree edge103.
Thebioprosthetic valve100 may comprise tissue from any suitable xenogeneic source, such as a porcine, bovine, or equine heart valve. Theleaflet102 may comprise a single leaflet from a heart valve, such as a noncoronary leaflet of an aortic valve. Thepatch104 may comprise valve wall tissue which is contiguous with the leaflet. In certain embodiments, thepatch104 may include a segment of the aortic annulus and/or a segment of the aortic wall from the source valve. Thepatch104 may include part or all of that portion of the aortic wall which defines the natural sinus for theleaflet102. Including a portion of the natural sinus advantageously provides a spatial buffer between theleaflet102 and the valve wall when thevalve100 is in the open position, both preventing or reducing adherence of theleaflet102 to the valve wall and facilitating closing of thevalve100 when flow pressure is reduced. Additionally, thepatch104 may be partially or entirely covered with a synthetic liner, such as a flexible synthetic fabric. Additionally or alternatively, thepatch104 may be sewn or otherwise attached to a larger backing or liner, or to a conduit or tube configured for attachment to an external surface of the native vein. Such a backing or conduit can be used to coarct the vessel or otherwise remodel the vessel wall. Such a backing or conduit may comprise a flexible biological and/or nonbiological material, depending on the needs of the particular application.
With reference now toFIG. 1B, abioprosthetic valve150 according to an alternative embodiment is illustrated. Thevalve150 has asingle leaflet152 attached to apatch154 at natural margins of attachment156(a),156(b). Theleaflet152 has afree edge153 which responds to differing pressures in the host vein to open and close thevalve150.
Thepatch154 has a generally ovoid shape which extends axially (with respect to the source vessel and the host vein) above and below theleaflet152 to provide upper and lower regions158(a),158(b) for attaching thebioprosthetic valve150 to a host vein. Thepatch154 also extends circumferentially on either side of theleaflet152, to provide lateral regions160(a),160(b) for attaching thebioprosthetic valve150 to a host vein.
With reference now toFIG. 1C, abioprosthetic valve170 according to a further embodiment is illustrated. Thevalve170 has asingle leaflet172 attached to apatch174 at natural margins of attachment176(a),176(b). Theleaflet172 has afree edge173 which responds to differing pressures in the host vein to open and close thevalve170.
Thepatch174 has a generally lenticular shape which extends axially (with respect to the source vessel and the host vein) above and below theleaflet172 to provide upper and lower regions178(a),178(b) for attaching thebioprosthetic valve170 to a host vein. Thepatch174 also extends circumferentially on either side of theleaflet172, to provide lateral regions180(a),180(b) for attaching thebioprosthetic valve170 to a host vein. As shown in the figure, the upper and lower regions178(a),178(b) may include pointed or angled sections allowing a practitioner to secure thevalve170 in an appropriate position and then use a continuous stitching pattern to close the anastomosis.
FIGS. 1D-1F illustrate additional embodiments.FIG. 1D shows abioprosthetic valve182 having asingle leaflet186 attached to apatch184. As shown in the figure, thepatch184 has a shape that generally follows the contour of the interface between theleaflet186 and the source valve wall. Below theleaflet186 and circumferentially on either side of theleaflet186, thepatch184 extends beyond this contour to provide an attachment region for thevalve182. Above the leaflet, thepatch184 extends axially to approximately the same height as theleaflet186 in an open position, so as to avoid interaction between theleaflet186 and the natural wall of the host vessel.FIG. 1E shows abioprosthetic valve188 having asingle leaflet192 attached to apatch190. Thepatch190 has a similar shape to thepatch184 ofFIG. 1D, but extends axially further above theleaflet192. Thepatch190 can thus include part or all of the tissue that defines the natural sinus for theleaflet192.FIG. 1F shows abioprosthetic valve194 having asingle leaflet198 attached to a substantiallyU-shaped patch196. Thepatch196 includes the natural interface between theleaflet198 and the source valve wall and extends slightly beyond this interface to provide an attachment region for thevalve194, without including the tissue that defines the natural sinus for theleaflet198.
In these and other embodiments, the inclusion of a contiguous wall portion that includes tissue taken from the donor vessel wall at an attachment region where the leaflet attaches to the vessel wall is considered advantageous at least because the attachment region includes a unique microstructure that is believed to enhance the ruggedness of the bioprosthetic valve. Retaining the natural margins of attachment between the leaflet and vessel wall in the contiguous wall portion is considered particularly advantageous. For example, in an aortic valve, the margins of attachment (i.e., the leaflet anchorages) are composed primarily of a dense collagenous tissue that provides a durable attachment between the leaflet and wall, which is expected to have a beneficial advantage on the longevity of a bioprosthetic valve that includes the margins of attachment.
Making a Bioprosthetic ValveIn some embodiments, after biological heart valve tissue to be used for the replacement valve is first harvested, it may be stored in a preservative solution. The heart valve tissue may then be subjected to a fixation or crosslinking treatment in order to preserve the material from natural decay. Suitable fixation methods include exposing the tissue to a glutaraldehyde solution. Such a solution may comprise, for example, 0.1%-1.0% glutaraldehyde in a buffer, such as a phosphate or citrate buffer, formulated to maintain pH at between 6.0 and 8.0. The tissue may be exposed to such a solution for a few minutes, up to several days, depending on the crosslinking reaction rate for a given solution. The tissue may be fixed in a zero-stress environment. Alternatively, the tissue may be reinforced during fixation so as to preserve or enhance the curvature of the patch tissue or the configuration of the leaflet tissue. Tissue processed using the same procedures used by Hancock-Jaffe Laboratories of Irvine, Calif., to fabricate prosthetic heart valves may be used in the preparation of bioprosthetic valves according to embodiments of the present invention. After crosslinking, the tissue can optionally be irradiated according to known procedures with high energy X-radiation or gamma radiation, in an amount sufficient to sterilize the tissue without significantly decreasing its tensile strength, so as to render the tissue more flexible and compliant, and less antigenic. For example, in some embodiments, the irradiation procedures provided in U.S. Pat. No. 4,798,611, the disclosure of which is incorporated herein by reference in its entirety, may be used. Next, a desired leaflet may be selected for use in a bioprosthetic valve, and a portion of the heart valve including at least the entire selected leaflet may be excised from the valve.
FIG. 2 illustrates anaortic valve200 which may be used in various embodiments. As shown inFIG. 2, theaortic valve200 has a trileaflet configuration comprising a selectedleaflet202 and neighboringleaflets204 and206. The selectedleaflet202 may, for example, be the noncoronary leaflet of theaortic valve200, which tends to be the cleanest of the leaflets (i.e., tends to have the least muscle) and also has the most predictable shape. Theleaflets202,204, and206 are attached to avalve wall210 atnatural commissures212,214, and216.
Referring now toFIG. 3, theaortic valve200 ofFIG. 2 is shown cut along thecommissure216 and laid open to better illustrate the threeleaflets202,204, and206. According to various embodiments, thevalve wall210 and theleaflets204,206 may be cut, for example alonglines220,222, to separate the selectedleaflet202 and its contiguous valve wall tissue from the neighboringleaflets204,206. As can be seen by the position of thelines220,222 inFIG. 3, the excised portion may include a portion of thevalve wall210 extending circumferentially on either side of the selectedleaflet202, so as to provide attachment surfaces comprising valve wall tissue on either side of theleaflet202. The excised portion may include a portion of theaortic annulus230 and/or a portion of theaortic wall232. Next, thecommissures212,214 of the selectedleaflet202 may be sliced through and the tissue of theadjacent leaflets204,206 may be removed, for example by shaving off the adjacent leaflets, leaving theleaflet202 attached to theaortic wall232 at its natural margins of attachment. The valve wall tissue which is contiguous with theleaflet202 may then be further trimmed in any desired shape and configuration suitable for attachment to a host vein, such as, for example, the generally rectangular, generally ovoid, or generally lenticular shapes described above in connection withFIGS. 1A-1C. The thickness of the contiguous wall portion can also be reduced so as to better match the thickness of the host wall, increase compliance, and facilitate attachment of the wall portion to the host vessel (for example by suturing or clipping). Suitable techniques for reducing tissue thickness include shaving, manual dissection, delamination, and other techniques.
Using a Bioprosthetic ValveWith reference now toFIGS. 4A-4B, a normally functioningvenous valve400 is illustrated with valve leaflets402(a),402(b) shown in open (FIG. 4A) and closed (FIG. 4B) positions.FIG. 5, in contrast, illustrates amalfunctioning vein500 with a non-functioning valve leaflet502(a). A portion of thevein500, including an opposing valve leaflet (not shown), has been excised to create afenestration504 in the region of the incompetent valve leaflets. Thefenestration504 is shown extending through approximately half of the circumference of thevein500, but may extend through more or less of the vein circumference. Further, although shown in the region of the incompetent native valve of thehost vein500, thefenestration504 may be cut generally above or generally below the native valve. Additionally, depending on the requirements of the particular application, an entire segment of the malfunctioningvein500 may be excised to prepare the vein for implantation of various embodiments.
Referring now toFIG. 6, abioprosthetic valve600 according to an embodiment is shown implanted in thehost vein500. Thebioprosthetic valve600 includes asingle leaflet602 from a xenogeneic heart valve attached to apatch604 of valve wall tissue from the xenogeneic source. Theleaflet602 has afree edge603 which responds to differing pressures in thevein500, to open and close thevalve600. As shown in the figure, the weakened leaflet502(a) may be removed from thevein500 prior to implantation of thebioprosthetic valve600. Alternatively, depending on the condition of the weakened leaflet502(a) and its location with respect to the fenestration502, the weakened leaflet502(a) may be left in thehost vein500.
Thebioprosthetic valve600 is shown inFIG. 6 in a closed position, with thefree edge603 contacting the opposite wall of thehost vein500. However, thefree edge603 need not contact the opposite wall of thehost vein500 continuously, or even at all, in order for the valve to function properly.
Thepatch604 may generally match the size and shape of the fenestration502, and thus may be sutured or otherwise attached to thevein500 essentially flush with the fenestration502, as shown in the figure. Alternative embodiments may comprise a patch which is slightly larger than the fenestration, in which case the patch may be sutured or otherwise attached to the host vein in a generally overlapping configuration with the fenestration. Further, as mentioned above, embodiments may include a backing, liner, conduit, or tube secured to the patch. In these and other embodiments, the patch may be indirectly secured to the host vein via the backing, liner, conduit, or tube.
Referring now toFIGS. 7-8, another embodiment is illustrated.FIG. 7 shows another malfunctioningvein700 with a weakened valve leaflet702(a). A portion of thevein700, including an opposing valve leaflet (not shown), has been excised to create a generallyovoid fenestration704 in the region of the incompetent valve leaflets.FIG. 8 illustrates thevein700 having abioprosthetic valve800 according to an alternative embodiment implanted therein. Thebioprosthetic valve800 includes asingle leaflet802 from a xenogeneic heart valve attached to apatch804 of valve wall tissue from the xenogeneic source. Thepatch804 has a generally ovoid shape, corresponding to the ovoid shape of thefenestration704. Providing a generally ovoid oroblong patch804 may advantageously facilitate suturing and prevent leakage post-implantation.
A method of replacing a malfunctioning venous valve is also provided. From a standard approach, a practitioner may excise a portion of the host vein roughly corresponding in size and shape to a patch of a bioprosthetic valve. Alternative embodiments may incorporate a backing, liner, conduit, or tube attached to the patch, in which case the practitioner may excise a portion of the host vein roughly corresponding to the size and shape of the backing, liner, conduit, or tube. The patch of the bioprosthetic valve may comprise valve wall tissue which is naturally contiguous with a single leaflet of a xenogeneic heart valve. The patch may be attached to the host vein (directly via the valve wall tissue, or indirectly via the backing, liner, conduit, or tube) via suturing or other suitable attachment means in the region of the excised portion.
Depending on the particular circumstances, embodiments can be implanted either above, below, or generally in the region of the incompetent valve being replaced. Any of these embodiments may involve removal of one or more malfunctioning native leaflets prior to implantation of the bioprosthetic valve. Alternatively, depending on the circumstances, the native leaflets may be left in the host vein.
Although standard-approach surgical methods have been described, embodiments of the invention may also be used with minimally invasive techniques. For example, embodiments may be delivered and implanted endovascularly with the aid of an endovascular suturing device. Additionally, a practitioner could make a small inguinal incision and then, with the aid of a scope and a biological glue, secure the biological valve in place.
Embodiments can be used singularly or in multiples throughout the venous system, for example to repair deep vein insufficiencies below the inguinal ligament (i.e., for any vein in the leg) or in the common iliac vein. For example, in larger veins, two bioprosthetic valves according to embodiments may be implanted in opposing relationship to each other on either side of a host vein to create a bileaflet valve geometry. Such a configuration may be used in a region of the host vein away from a region of incompetent valve. To achieve such a bileaflet geometry, two monocusp valves can be implanted separately, with circumferential gaps between the valves. A composited bileaflet or trileaflet valve geometry can also be achieved by attaching together two or three monocusp valves as described above.
ExampleHemodynamic Evaluation of Valve DeviceTo evaluate the hydrodynamic performance and leaflet motion characteristics of a venous valve device according to the disclosure, several valve devices of various sizes were constructed and tested in the aortic chamber of a pulsatile flow heart valve test apparatus. Hydrodynamic performance was observed under a range of conditions typical of the upper leg of a human being. Leaflet function (i.e., opening and closing) was confirmed for all valve devices under all test conditions studied.
Construction of Valve DevicesThree unconstrained diameters (10 mm, 12 mm, and 14 mm) believed to be suitable for valve devices intended to be implanted in a human vein were selected for evaluation. For each unconstrained diameter, three valve devices were constructed by attaching a gluteraldehyde crosslinked bioprosthetic valve to a support frame by suturing. All specimens were submerged in saline following construction and subjected to irradiation.
Simulation of Compression for Loading into Percutaneous Delivery System
All specimens were loaded into a delivery catheter as shown in the Table I, and held in the compressed delivery configuration for at least 60 (sixty) minutes prior to testing.
| TABLE I |
|
| Valve device unconstrained diameters and delivery sheath |
| French size for simulation of loading compression |
| Valve device unconstrained | Delivery sheath |
| diameter (mm) | French size (Fr) |
| |
| 10 | 14 |
| 12 | 16 |
| 14 | 18 |
| |
Test System and ParametersEach valve device was evaluated in the aortic chamber of a pulsatile flow apparatus from ViVitro Systems, Inc. (Victoria, British Columbia, Canada). Each valve device was sutured into a section of silicone tubing sized so as not to constrain the valve device. Arterial pressure was adjusted to achieve the desired static pressure. Table II provides detailed conditions under which the pulsatile flow analysis was conducted for each valve device.
| TABLE II |
|
| Pulsatile flow test conditions |
| Parameter | Condition |
| |
| Test solution | Physiological saline maintained at 37 ± 1° C. |
| Cycle rate | 30 bbm |
| Cardiac output | 1.2 L/min |
| Static pressure | 15 mmHG ± 1.35 mmHG ± 1.50 mmHg ± |
| | 1.100 mmHG ± 1 |
| Single stroke | 70% with leaflet in open position, 30% with |
| wave form | leaflet in closed position |
| |
ResultsThe valve devices were observed visually recorded on video taken from the outflow aspect of the valve device. At least ten measurements of each of the following variables were captured from ten consecutive cycles for each valve device under each static pressure condition: mean pressure difference across the valve device, mean and RMS flow rates through the valve device, stroke volume, cycle rate, mean static pressure over the entire cycle, duration of forward flow through the valve device (as a percentage of cycle time), and regurgitant volume (including the closing, volume, leakage volume, and the corresponding mean pressure difference across the closed valve device).
Also, confirmation of opening and closing of the leaflet of each valve device was made through visual review of video recordings of the pulsatile flow test. Table III presents a summary of the visual confirmations.
| TABLE III |
|
| Leaflet function based upon review of |
| video recording of pulsatile flow test |
| Valve | Diameter | Leaflet opening and closing confirmed |
| device No. | (mm) | 15 mmHg | 35 mmHg | 50mmHg | 100 mmHg |
|
| 1 | 10 | yes | yes | yes | yes |
| 2 | 10 | yes | yes | yes | yes |
| 3 | 10 | yes | yes | yes | yes |
| 4 | 12 | yes | yes | yes | yes |
| 5 | 12 | yes | yes | yes | yes |
| 6 | 12 | yes | yes | yes | yes |
| 7 | 14 | yes | yes | yes | yes |
| 8 | 14 | yes | yes | yes | yes |
| 9 | 14 | yes | yes | yes | yes |
|
CONCLUSIONBased on these results, it was concluded that the valve devices made in accordance with the disclosure and tested as detailed above demonstrated acceptable leaflet function over the range of hemodynamic conditions evaluated.
It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the invention described herein are illustrative only and are not intended to limit the scope of the invention.