This is a continuation-in-part application entering the National Stage based upon PCT/GB2008/000079 having an International filing date of Jan. 9, 2008, entitled Beverage Dispenser, and whose inventor is Richard John Nighy for which priority is claimed and relates to beverage dispensers, in particular to dispensers of post mix beverages in closed containers, and for which the new matter relates to a dispenser as described above including money and/or credit card vending and/or ice dispense.
Traditionally there are two types of beverage dispensers, those which dispense a beverage into an open drinking receptacle and those which dispense a pre-closed container of beverage, for example a can, commonly known as beverage vending machines.
Beverage dispensers which produce a beverage from a concentrate and a diluent are advantageous in that they require only shipping of concentrate, not of diluted beverage. These type of dispensers are known to dispense a variety of beverages from different concentrates. These machines typically either have one dispense nozzle per beverage or have a single nozzle and the user manually places a cup under said nozzle.
In some circumstances it is desirable to locally produce a beverage, package it in a closed container, and then dispense the container containing the beverage. Such machines are generally limited to a single product, e.g. water, and do not offer the variety of product demanded by customers. To do so would either require a complex positional mechanical solution to place a packet under the desired dispense nozzle or alternatively use a common nozzle. Any miss alignment of package and nozzle will result in spillages inside the machine where they are not visible and could possibly sit for some time before being cleaned. Furthermore, the use of a common nozzle is undesirable due to cross contamination of flavours.
In addition, in such a vending machine application the parts of the machine used to produce the beverage are not easily cleaned as they are generally enclosed within the machine which is only opened by a service engineer resulting in a machine that is hard to maintain in a clean and safe condition.
It is the purpose of the present invention to provide a sanitary beverage dispenser for filling and dispensing containers of different flavoured beverage.
According to a first aspect of the invention there is provided an apparatus for introducing a selected beverage into a container, sealingly closing said container and dispensing said closed container, the apparatus comprising:
a housing adapted to, in use, accept a plurality of containers of beverage concentrate each container having a concentrate pump and flexible conduit, terminating in a nozzle, associated therewith;
a plurality of drivers adapted to drive said concentrate pumps;
a means of, in use, introducing diluent to the pumped concentrate to produce a beverage;
a multiple dispense head for accepting the plurality of nozzles;
a means for, in use, selecting a flexible pouch and bringing it into alignment with a nozzle in a filling position where it is filled via an opening therein; and
a means for, in use, sealingly closing said opening and dispensing said filled sealed flexible pouch from said apparatus, wherein the filling position is a fixed position and, in use, said nozzles are movable relative to the filling position such that any one of said plurality nozzles can be presented at said filling position.
The pump and drive and driver constructions are set forth and shown in PCT/GB2008/000080 having an International filing date of Jan. 9, 2008 and for which a National Stage application Ser. No. ______, was filed on the same date as the present application and which PCT and U.S. National Stage application is hereby incorporated by reference as if fully set forth herein.
Preferably, in use, the multiple dispense head maintains the nozzles in an array.
In a first preferred arrangement, in use, the multiple dispense head maintains the nozzles in a linear array and the apparatus is provided with means for linearly indexing said multiple dispense head so as to, in use, present the nozzle associated with the required beverage above the opening in the flexible pouch.
According to a second preferred arrangement, in use, the multiple dispense head maintains the nozzles in a circular or radial array and the apparatus is provided with means for radially indexing said multiple dispense head so as to, in use, present the nozzle associated with the required beverage above the opening in the flexible pouch.
According to a third preferred arrangement, in use, the nozzles associated with each mixed beverage are maintained in a horizontal array, and the apparatus is provided with means to move each nozzle in both the horizontal and vertical axis from its stored position to the filling position.
In all three arrangements the apparatus preferably further comprises means for, in use, bringing into selective co-operation the opening of the flexible pouch and the required nozzle. Preferably the means for bringing into selective co-operation the opening of the flexible pouch and the required nozzle comprises providing relative vertical movement between said pouch and said nozzle thereby bringing them into contact with one another.
In one preferred arrangement the apparatus has a single fixed filling position to which the pouches are presented and at which the opening of the flexible pouch and the required nozzle are brought into selective co-operation.
Preferably, the apparatus comprises at least one source of diluent which may include a valve controlling flow of diluent from the source. In a preferred arrangement the apparatus comprises at least two sources of diluent, at least one of which is carbonated and one of which is un-carbonated. Preferably the apparatus includes a carbonator to carbonate one source of diluent.
In one preferred arrangement the means of introducing the diluent to the concentrate introduces said diluent immediately downstream of the concentrate pump.
In an alternative preferred arrangement the means of introducing the diluent to the concentrate introduces said diluent immediately prior to the nozzle.
Preferably, the apparatus further comprises a means for receiving a cartridge or bandolier containing a plurality of flexible pouches. More preferably the apparatus comprises means for receiving a plurality of cartridges or bandoliers containing a plurality of flexible pouches. Preferably the flexible pouches are interlinked so as to form a chain.
Preferably, flexible pouches from each cartridge or bandolier are fed to the filling position. In one preferred arrangement each bandolier or cartridge has its own fixed filling position. Preferably the filling positions are adjacent each other and the array of nozzles are movable such that each nozzle can be presented at any one of said fixed filling positions.
Preferably the apparatus comprises a means for opening a closure in said pouch prior to it being filled. In one preferred arrangement the means opening a closure comprises removing the a cap from an opening in the pouch, preferably by unscrewing it. In an alternative preferred arrangement means for opening a closure comprises rotating or moving a first part of the closure respective a second part of the closure, the relative movement opening a flowpath therethrough.
According to a second aspect of the invention there is provided an apparatus in accordance with the first aspect of the invention in combination with a plurality of concentrate reservoirs, each having a concentrate pump and flexible conduit, terminating in a nozzle, associated therewith.
Preferably the concentrate pump, conduit and nozzle are disposable.
Preferably the concentrate pump, conduit and nozzle comprise a unitary component.
According to a third aspect of the invention there is provided an apparatus in accordance with the first or second aspect of the invention in combination with at least one cartridge or bandolier of flexible pouches.
Preferably each flexible pouch has a rigid spout comprising a mixing element. More preferably the mixing elements extend into the pouch.
In one preferred embodiment of the third aspect of the invention, the apparatus according to further comprising a controller, the controller configured to control the loading of a concentrate reservoir into the apparatus by driving the apparatus in the following steps:
a) controlling the apparatus to arrange a flexible pouch at the filling position;
b) operating the driver to couple it with the concentrate pump;
c) operating the driver to draw fluid into the concentrate pump to substantially fill pump cavities therein;
d) continuing to operate the driver to pump fluid through the concentrate pump, flexible conduit and nozzle to substantially eliminate any air or other gasses from any of the cavities therein, the pumped fluid emitting into the flexible pouch;
e) controlling the apparatus to sealingly close the flexible pouch; and
f) releasing the flexible pouch for disposal.
In another preferred embodiment of the third aspect of the invention, the concentrate pump comprises at least one barrel having an inlet valve and an outlet valve associated therewith and a piston, movable within the barrel to change the enclosed volume of the barrel between a minimum and a maximum volume to draw fluid into, and pump fluid from, said barrel via said inlet valve and outlet valve respectively, and further comprises a controller, the controller configured to control the disengagement of a concentrate pump from the apparatus by driving the apparatus in the following steps:
a) controlling the apparatus to arrange a flexible pouch at the filling position;
b) operating the driver to return each piston to its position wherein the enclosed volume of the barrel is substantially at its minimum thereby ejecting any fluid contained within the enclosed volume into the flexible pouch to substantially empty said concentrate pump; and
c) operating the driver to de-couple the drive mechanism from the removable concentrate pump to allow for its removal.
Preferably the controller is further configured to:
d) operate the apparatus to sealingly close the flexible pouch; and
e) release said flexible pouch for disposal.
In yet another preferred embodiment of the third aspect of the invention the concentrate pump comprises at least one barrel having an inlet valve and an outlet valve associated therewith and a piston, movable within the barrel to change the enclosed volume of the barrel between a minimum and a maximum volume to draw fluid into, and pump fluid from, said barrel via said inlet valve and outlet valve respectively, and further comprises a controller, the controller configured to control the changing of a concentrate reservoir driving the apparatus in the following steps:
a) operating the apparatus to arrange a flexible pouch at the filling position;
b) operating the driver to return each piston of a first concentrate pump to its position wherein the enclosed volume of the barrel is substantially at its minimum thereby ejecting any fluid contained within the enclosed volume into the flexible pouch to substantially empty said first concentrate pump;
c) operating the driver to de-coupling itself from the first concentrate pump and associated concentrate reservoir enabling it to be removed and a concentrate reservoir and associates second concentrate pump to be inserted;
d) operating the drive mechanism to couple the drive mechanism to the second concentrate pump;
e) operating the drive mechanism to draw fluid into the second concentrate pump to substantially fill the cavities therein;
f) operating the drive mechanism to pump fluid through the second concentrate pump to substantially eliminate any air or other gasses from the cavities therein, the fluids expelled from the second concentrate pump collecting in said flexible pouch;
g) operating the apparatus to sealingly close the flexible pouch; and
h) releasing the flexible pouch from the apparatus for disposal.
Preferably, subsequent to coupling the drive mechanism to the second concentrate pump and prior to sealingly closing the flexible pouch the controller is further configured to simultaneously operate the driver to pump concentrate through the concentrate pump to substantially eliminate any air or other gasses from the cavities therein, and control the diluent valve to add diluent into the pumped concentrate such that the downstream of the pump cavities, the flexible conduit and nozzle becomes primed with a diluted mixture of concentrate and diluent.
Preferably the controller is configured to operate the diluent valve such that sufficient mixture of concentrate and diluent are passed through the concentrate pump and into the flexible pouch such that the flexible conduit and nozzle are primed with a substantially homogeneous mixture of diluent and concentrate at a required concentrate:diluent ratio.
Preferably the removable concentrate pump has a diluent inlet downstream of its outlet valves and the controller is further configured to control the diluent valve such that, once both pistons are returned to the position wherein the enclosed volume of the barrels is substantially at its minimum, diluent is passed through the concentrate pump to substantially flush the concentrate from the flexible conduit and nozzle, downstream of the diluent inlet, into the flexible pouch.
In a further preferred embodiment of the third aspect of the invention, wherein the dispenser has a supply of carbonated diluent and a supply of non carbonated diluent, the controller is configured to control dispense of a carbonated beverage into a flexible pouch in the following steps:
a) controlling the apparatus to arrange a flexible pouch at the filling position;
b) operating the driver to pump fluid through the concentrate pump;
c) introducing carbonated diluent to the concentrate flow downstream of the concentrate pump and upstream of the flexible conduit, such that the pouch is filled; via the flexible conduit, with a diluted carbonated beverage;
d) prior to completion of the dispense, controlling the apparatus to stop the flow of carbonated diluent and to start a flow of non-carbonated diluent such that at least the flexible conduit becomes filled with non carbonated diluted concentrate;
e) controlling the apparatus to stop the flow of concentrate and non carbonated diluent;
f) controlling the apparatus to sealingly close the flexible pouch; and
g) releasing the flexible pouch.
In this way, after dispensing a carbonated beverage into the pouch, the residual fluid left in the flexible conduit is non carbonated. This helps to prevents drips from the nozzle as, were the flexible conduit left with residual carbonated fluid therein, over time the dissolved gasses would break out of the fluid and expand in volume thereby forcibly ejecting fluid out of the nozzle.
According to a fourth aspect of the invention there is provided a method of loading a concentrate reservoir into the apparatus according to the third aspect of the invention comprising the steps of
a) aligning the nozzle of the concentrate reservoir with the filling position;
b) arranging a flexible pouch at the filling position;
c) coupling the drive mechanism to the concentrate pump;
d) operating the driver to draw fluid into the concentrate pump to substantially fill pump cavities therein;
e) pumping fluid through the concentrate pump, flexible conduit and nozzle to substantially eliminate any air or other gasses from cavities therein;
f) collecting any fluids expelled from the nozzle in said flexible pouch;
g) sealingly closing the flexible pouch; and
h) disposing of said flexible pouch.
Preferably the concentrate pump has a diluent inlet downstream of the pump cavities and the method further comprises the step of, simultaneously operating the drive mechanism to pump concentrate through the concentrate pump to substantially eliminate any air or other gasses from the cavities therein, adding diluent into the pumped concentrate such that, downstream of the pump cavities, the flexible conduit and nozzle becomes primed with a diluted mixture of concentrate and diluent.
Preferably sufficient mixture of concentrate and diluent is passed through the concentrate pump and into the flexible pouch such that the flexible conduit and nozzle are primed with a substantially homogeneous mixture of diluent and concentrate at a required concentrate:diluent ratio.
According to a fifth aspect of the invention there is provided a method of disengaging a concentrate pump from an apparatus according to the third aspect of the invention, the concentrate pump comprising at least one barrel having an inlet valve and an outlet valve associated therewith and a piston, movable within the barrel to change the enclosed volume of the barrel between a minimum and a maximum volume to draw fluid into, and pump fluid from, said barrel via said inlet valve and outlet valve respectively, said method comprising the steps of:
a) aligning the nozzle associated with the concentrate pump with the filling position;
b) arranging a flexible pouch at the filling position;
c) returning each piston to its position wherein the enclosed volume of the barrel is substantially at its minimum thereby ejecting any fluid contained within the enclosed volume into the flexible pouch to substantially empty said concentrate pump;
d) de-coupling the drive mechanism from the concentrate pump; and
e) removing the substantially empty concentrate pump from the drive mechanism.
In a preferred arrangement the method further includes the steps of:
f) sealingly closing the flexible pouch; and
g) disposing of said flexible pouch.
Preferably the concentrate pump has a diluent inlet downstream of its outlet valves and the method further comprises the step of, once both pistons are returned to the position wherein the enclosed volume of the barrels is substantially at its minimum, passing diluent through the concentrate pump to substantially flush the pumped fluid from the flexible conduit and nozzle, downstream of the diluent inlet, into the flexible pouch.
According to a sixth aspect of the invention there is provided a method of changing a concentrate pump of the third aspect of the invention, the concentrate pump comprising at least one barrel having an inlet valve and an outlet valve associated therewith and a piston, movable within the barrel to change the enclosed volume of the barrel between a minimum and a maximum volume to draw fluid into, and pump fluid from, said barrel via said inlet valve and outlet valve respectively, said method comprising the steps of:
a) aligning the nozzle of the concentrate reservoir with the filling position;
b) arranging a flexible pouch at the filling position;
c) returning each piston to its position wherein the enclosed volume of the barrel is substantially at its minimum thereby ejecting any fluid contained within the enclosed volume into the flexible pouch to substantially empty said first concentrate pump;
d) de-coupling the drive mechanism from the first concentrate pump;
e) removing the substantially empty first concentrate pump from the drive mechanism.
f) inserting a second concentrate pump into the drive mechanism;
g) coupling the drive mechanism to the second concentrate pump;
h) operating the drive mechanism to draw fluid into the second concentrate pump to substantially fill the cavities therein;
i) operating the drive mechanism to pump fluid through the second concentrate pump to substantially eliminate any air or other gasses from the cavities therein;
j) collecting any fluids expelled from the second concentrate pump in said flexible pouch;
k) sealingly closing the flexible pouch; and
l) disposing of said flexible pouch.
Preferably the concentrate pump has a diluent inlet downstream of the outlet valves and the method further comprises the step of, once both pistons are returned to the position wherein the enclosed volume of the barrels is substantially at its minimum, passing diluent through the concentrate pump to substantially flush any concentrate downstream of the concentrate pump through the flexible conduit and nozzle and into the flexible pouch.
Preferably the concentrate pump has a diluent inlet downstream of the outlet valves and the method further comprises the step of, simultaneously to operating the drive mechanism to pump concentrate through the concentrate pump to substantially eliminate any air or other gasses from any the cavities therein, adding diluent into the pumped concentrate such that, downstream of the diluent inlet, the pump, flexible conduit and nozzle become primed with a diluted mixture of concentrate and the diluent.
Preferably sufficient mixture of concentrate and diluent is passed through the concentrate pump and into the flexible pouch such that the flexible conduit and nozzle are primed with a substantially homogeneous mixture of diluent and concentrate at the required diluent:concentrate ratio.
By operating in the method as described in relation the fourth, fifth and sixth aspects of the invention, a reservoir of concentrate, together with its associated concentrate pump, flexible conduit and nozzle, can be removed and/or inserted ready for use in a manner in which any waste fluids emitted from the apparatus as a result thereof are captured in a flexible pouch which is then sealed and disposed of. In this manner a reservoir of concentrate, together with its associated concentrate pump, flexible conduit and nozzle can be changed in a clean manner.
According to a seventh aspect of the invention there is provided a flexible pouch for containing a liquid comprising at least two sides of flexible material, sealed along their edges to form a pouch and a rigid spout in an opening of the container, wherein said spout comprises a mixing element to assist the mixing of any fluid entering said flexible pouch via said spout.
Preferably the mixing element extends into said pouch.
Embodiments of the invention will now be described in detail, by way of example, with reference to the following drawings in which:
FIG. 1 is a perspective view of the apparatus with the door open;
FIG. 2 is a perspective view of the apparatus showing detail of the nozzle block;
FIG. 3 is a perspective view of the apparatus with the door open showing how the bandolier of flexible pouches are loaded.
FIG. 4 is an exploded view of a pump cartridge for use in the invention without the flexible conduit;
FIG. 5 is a perspective view of a pump cartridge for use in the invention; and
FIG. 6 is a pouch according to the seventh aspect of the invention.
FIG. 7 is a schematic view of the apparatus and method similar to that shown inFIGS. 1 to 6, but including vending in the form of one or more of coin, paper money, and credit or debit cards, which sends a signal to commence a dispense upon payment and, ice dispense means including one or more of an ice maker and ice hopper.
Referring to theFIGS. 1 and 2 adispenser2 is shown comprising anenclosure4 containing twobandoliers6 offlexible pouches8, thebandoliers6 are led so as to present theflexible pouches8 at a pick up point. Thebandoliers6 may contain the samesized pouches8 or alternatively thebandoliers6 may each containpouches8 of a different size. Also within the enclosure are a plurality ofconcentrate containers10 containing different flavoured beverage concentrates and attached to each container is aremovable pump12 which is advantageously disposable. Each disposable pump has a water inlet and a mixer attached thereto, the water being added to the pumped concentrate and mixed therewith in the mixer. Leading from eachdisposable pump12 is aflexible conduit14 terminating in a nozzle through which the mixed beverage can be dispensed. The pump, mixer, flexible conduit and nozzle are all disposable. Eachdisposable pump12 has associated therewith apump driver16 which is a permanent part of the dispenser. The pump driver operates at the required speed create a ratiometric mix of concentrate to water to dispense a beverage of the required concentration. The water flow through the machine has a control valve to control the flow of water and a flow sensor to measure the flow of water thereto. The signal, indicative of the water flow, is used to control the speed of thepump driver16 to achieve the required concentrate:diluent ratio.
Each flexible pouch has an opening therein containing a rigid spout having a removable screw cap thereover. Amechanical arm18 grips the rigid spout, detaches a flexible pouch from the bandolier, and moves it to a location where the cap is gripped and unscrewed. The pouch, without its top may then be moved to a filling position. The filling position and the cap removal location may be one and the same; this removes the necessity of moving a full pouch without a cap on between the two and therefore reduces the risk of contamination due to spills.
The dispenser has anozzle block20 which receives the nozzles from the various concentrate containers, the nozzles forming an array. Thenozzle block20 is movable so as to enable the required nozzle to be moved adjacent the open top of the spout of theflexible pouch8. As shown thenozzle block20 forms a three by two array and is indexable in two directions X, Y. The nozzles protrude through the base of thenozzle block20 so when the required nozzle is positioned above theflexible pouch8 in its filling position, thepouch8 can be moved so that its spout abuts the end of the nozzle such that when the pouch is filled via the nozzle the beverage only contacts the nozzle and the pouch, not any non disposable parts of the dispenser. In this way a sanitary dispenser can be achieved. Different arrays, e.g. four by two, six by one or rotary may of course be substituted for the array shown inFIG. 2 without departing form the invention.
When the pouch and nozzle are abutting one another the pump actuator pumps beverage concentrate and the water valve opens to dilute the concentrate. The diluent and concentrate pass through the mixer andflexible conduit14 and exit the nozzle directly into theflexible pouch8. Theflexible pouches8 are stored with their sides flat against one another on thebandolier6 and open when the beverage enters via the spout. In this manner there is negligible air within the pouch prior to filling and as such no venting of the pouch is required as it fills with beverage. When thepouch8 is full the water control valve shuts and the pump actuator stops thereby halting the flow of beverage into the pouch. The pouch is then either moved to the lid-off station where the lid is replaced on the spout and screwed so as to form a seal, or alternatively, if the lid-off station and filling station are one and the same, thenozzle block20 is moved clear of the top of the pouch and the lid replaced. Once the full pouch has been sealed by replacement of the lid it can be dispensed from thedispenser2 via a chute.
The concentrate reservoir, pump, mixer, flexible conduit and nozzle form one unit which is placed in the machine. The pump assembly comprising pump, mixer, conduit and nozzle forms one integral disposable part which is disposed of each time the concentrate reservoir is changed. The pump assembly and the concentrate reservoir may be supplied as one unitary piece or alternatively may be attached to one another before being inserted into the dispenser. The pump may be of a known type, for example a diaphragm pump or alternatively may be a piston pump as described below.
Referring toFIG. 3, when thedoor22 is open aslide24 enables thebandolier6 ofpouches8 to be slid forwards out of theenclosure4. Thebandolier6 is then simply slid off anaxis26 on which it is held and a replacement slid on. Theslide24 is then pushed back into theenclosure4 and the end of thebandolier6 ofpouches8 is fed into aguide28 from which one can be selected to be filled.
Referring toFIG. 4 an exploded view of aremovable pump unit30 is shown. Theunit30 is manufactured of a number of parts: abody section32, a cover section34 (which may be integral to the body section moulding), twopistons36,38 and valve closures (omitted for clarity). Thebody section32 is a simple plastics moulding of a suitable material, for example low density polypropylene or medium or low density polyethylene (alternative longer lasting materials, for example metal could be used in situations where the pump was intended to be re-usable but not removable). Thecover34 is ultrasonically welded to thebody section32 so as to enclose an open face thereof. The body section comprises aninlet40 connected in use to a reservoir containing the substance to be pumped. Theinlet40 opens into aninlet valving chamber42 from which twoinlet valves44,46 lead into the end faces of thebarrels48,50 of thepump unit30. The pump barrels48,50 each have apiston36,38 therein. At the highest most position on the end face of eachbarrel48,50 is situated anoutlet valve52,54 leading from thebarrels48,50 into anoutlet valve chamber56. By placing theoutlet valves52,54 at the very top of the barrels and having them situated above theinlet valves44,46 the system is essentially self bleeding as any air within thebarrels48,50 will rise to the top of the barrel and be expelled therefrom via theoutlet valves52,54 and dead space in which air can collect at the top of the barrels is avoided. As the volume of air trapped in any dead space will vary from use to use, and even from stroke to stroke, good priming and eliminating dead space enables a highly repeatable pump to be effected. Theinlet valves44,46 and theoutlet valves52,54 are umbrella or flap type check valves and allow flow in the direction from theinlet46 to theoutlet58 but not in the reverse direction. Thepump unit30 has adiluent inlet60 to which diluent can be supplied. Situated in the mouth of thediluent inlet60 is adiluent check valve62 to prevent flow of concentrate from thebarrels48,50 into the diluent inlet. In addition the check valve operates to prevent drips from the pump via the diluent inlet when the pump is disconnected from the machine. The fluid being pumped, i.e. the beverage concentrate, and the diluent mix in theoutlet valve chamber56 and pass together through astatic mixer64 before exiting thepump unit30 via theoutlet58.
Referring toFIG. 5 apump cartridge30 with a unitaryflexible conduit66 andnozzle68 is shown. The pump cartridge is suitable for use in the dispenser shown inFIGS. 1 to 3 and the nozzle is adapted to fit into a multiple dispense head as shown inFIG. 3.
Referring toFIGS. 1 to 5, when it is required to load aconcentrate reservoir10 with associatedpump12/30,flexible conduit14/66 andnozzle68 onto thedispenser2 then the dispenser places aflexible pouch8 at the filling position for alignment with the nozzle. Theconcentrate reservoir10 is placed in situ and theconcentrate pump12/30 andnozzle68 are located in their desired positions. It will be noted that theflexible pouch8 may be located at the filling point prior to, or after, thenozzle68 of theconcentrate reservoir10 is located in the nozzle block20.
Thepump driver16 is then operated to engage theconcentrate pump12/30 and to reciprocate thepistons36,38 thereof such that fluid is drawn into the pump barrels48,50 via theinlet valves44,46 at the bottom of the end face of the piston barrels48,50 and ejected via theoutlet valves52,54 at the top of the pump barrels48,50. In this manner any air trapped in the barrels will rise to the top and be ejected via theoutlet valves52,54 thereby priming theconcentrate pump12/30. Prior to use for dispensing a volumetric amount from theconcentrate pump12/30, thepistons36,38 are reciprocated sufficiently to substantially eliminate all the air from the pump barrels52,54 and valve areas. Any concentrate that passes through thepump12/30 during this priming process passes through theflexible conduit14/66 andnozzle68 and is collected in theflexible pouch8 positioned at the filling position. During this priming process diluent is supplied into theconcentrate pump12/30 via thediluent inlet60 to admix with the concentrate. Sufficient concentrate and diluent are passed through theconcentrate pump12/30 in the priming process that any fluid retained in thepump12/30,flexible conduit14/66 ornozzle68, downstream of thediluent inlet60, is substantially at the required ratio of concentrate to diluent. Again any fluid passing through theconcentrate pump12/30,flexible conduit14/66 andnozzle68 to achieve this is collected in theflexible pouch8. In this manner when theflexible pouch8 is removed, thedispenser2 is ready to pump the required product at the required ratio without the inclusion of any substantial amounts of air.
When it is required to remove an empty or partiallyempty concentrate reservoir10, with associatedpump12/30,flexible conduit14/66 andnozzle68, from the dispenser then aflexible pouch8 is presented at the filling position for alignment with thenozzle68 prior to the disengagement of the drive means16 from thepiston36/38.
Thedrive mechanism16 is then operated to disengage from theconcentrate pump12/30. As thepistons36/38 are driven forward during the disengagement process an amount of concentrate contained in the pump will be driven out of the pump barrels48,50, down theflexible conduit14/66 and out thenozzle68 to be collected in theflexible pouch8. Prior to removal of theconcentrate pump12/30 from thedispenser2, diluent is pumped through thediluent inlet60 and into theflexible pouch8 via theflexible conduit14/66 andnozzle68 to flush any concentrate therefrom. This process removes any concentrate from theconcentrate pump12/30,conduit14/66 andnozzle68 leaving them containing diluent which, in case of drips, is easier to clean. After theconcentrate pump12/30 has been removed theflexible pouch8 may be sealed, removed and disposed of. Alternatively if the removedconcentrate reservoir10 and associatedpump12/30,conduit14/66 andnozzle68 are being replaced, theflexible pouch8 may be left in position and the sameflexible pouch8 used to collect any fluids passing through the new concentrate pump during the engagement and priming process as described above. The apparatus has a controller (omitted for clarity) of a known type, for example a micro-controller, associated with it programmed to control the various components of the apparatus, both during normal operation and to perform the apparatus functions during the steps of loading and unloading of concentrate reservoirs.
Referring toFIG. 6 apouch600 is shown comprising first602 and second604 panels made of a flexible material. The panels are attached to one another around their peripheral edges to form a pouch. During the forming process, spout606 is inserted between the edges of the panels so as to become fixed therebetween. Traditional fixing methods such as heat welding are used to attach the panels. Thespout606 has amixing element608 extending therefrom into the interior of thepouch600, when formed. The mixingelement608 comprises a channel having a torturous flowpath therein causing turbulence of fluid entering the pouch via the spout. The two panels may comprise sections of a single panel attached along one edge.
FIG. 7 is a schematic of flexible bottle filling machine or dispenser700, similar to thedispenser2 shown in the PCT and drawingsFIGS. 1-6, but is different in that it includes one or more of a coin operated, paper money operated and/or credit and debit card operated vending unit705, and also an ice dispense described below. When payment is made the vending unit705 sends a signal via line708 to the controller710 (here illustrated) to authorize the vending, disposal or dispense of a beverage into theflexible pouch8. The beverage comes from one or a selectedreservoir10 of flavoring and diluent which is dispensed through apump12 andconduit14 and the nozzle block720 (similar tonozzle block20 but different as noted below) into an openedflexible pouch8. The one end of the ice duct750 receives ice, and the other end delivers it to the pouch, and in this instance via the modified nozzle block720, which carries the other end. Alternatively, the ice could be provided in its own filling station prior to closing the pouch with the cap. This embodiment also includes a source of ice725, be it an ice maker730 and/or ice hopper735. If an ice maker730 is present, it could deliver ice to the hopper735 (as indicated by the arrow740) or directly to theflexible pouch8, via a controlled gate745 and ice duct750 controlled by the controller710, via line755. Likewise, the operation of the ice maker710 can be controlled by the controller710 via a line760. The controller710 also controls the operation of thepump12 via a line765 and the closure or cap770 remover, reinstaller775, via a line780. After the beverage, and if desired or selected ice, is dispensed into thepouch8 the cap770 is installed on thepouch8, and thepouch8 dispensed or disposed of to the customer, via the opening orbin72, as indicated by the dashed arrow785.