FIELD OF THE INVENTIONThe present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
BACKGROUND OF THE INVENTIONElectronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes.
There is presently a large demand for conventional irrigation controllers that are easy for users to set up in terms of entering and modifying the watering schedules. One example is the Pro C® irrigation controller commercially available from Hunter Industries, Inc., the assignee of the subject application. The user simply enters the start times for a selected watering schedule, assigns a station to one or more schedules, and sets each station to run a predetermined number of minutes to meet the irrigation needs of the site. The problem with conventional irrigation controllers is that they are often set up to provide the maximum amount of irrigation required for the hottest and driest season, and then either left that way for the whole year, or in some cases the watering schedules are modified once or twice per year by the user. The result is that large amounts of water are wasted. Water is a precious natural resource and there is an increasing need to conserve the same.
In one type of prior art irrigation controller the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons. Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer. The ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering. The seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program. When the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
In the past, irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions. Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users. The typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity. The controller then receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed. The typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and landscaping.
While conventional ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller. For these reasons, most ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
SUMMARY OF THE INVENTIONThe system of the present invention may take the form of stand alone irrigation controller connected to a stand alone ET unit that is connectable to a specially configured stand alone weather station. Alternatively, the system may take the form of a stand alone irrigation controller with a removable ET module that is connectable to a specially configured stand alone weather station. In yet another embodiment, the system may take the form of a stand alone ET based irrigation controller with all the components mounted in a single box-like housing that is connectable to a specially configured stand alone weather station.
In accordance with one aspect of the present invention an ET based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a specially configured stand alone weather station including at least one environmental sensor. The ET based irrigation system further includes a stand alone ET unit operatively connected to the irrigation controller and the weather station. The ET unit includes programming configured to calculate an estimated ET value using a signal from the environmental sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated ET value to thereby conserve water while maintaining plant health.
In accordance with another aspect of the present invention an ET based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule. The system further includes at least one sensor for generating a signal representative of an environmental condition. A processor is included in the system that is capable of calculating an estimated ET value based at least in part on the signal from the sensor. The system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule. The program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated ET value to thereby conserve water while maintaining plant health.
The present invention also provides a unique method of controlling a plurality of valves on an irrigation site using ET data. The method includes the step of calculating an estimated ET value based in part on a signal from an environmental sensor. The method further includes the step of automatically modifying a watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
The present invention also provides a weather station for use with an irrigation controller. The weather station includes a housing that supports a rain sensor, a solar radiation sensor and a temperature sensor. A micro-controller is also supported by the housing and is connected to the sensors. A communications interface permits communications between the micro-controller and an irrigation controller. Firmware is executable by the micro-controller for periodically sampling the output of the sensors and providing representative sensor data to the irrigation controller.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a simplified block diagram of an irrigation system in accordance with an embodiment of the present invention.
FIG. 2 is a front elevation view of the stand alone irrigation controller of the system ofFIG. 1 with its front door open to reveal its removable face pack.
FIG. 3 is an enlarged perspective view of the back panel of the stand alone irrigation controller ofFIG. 2 illustrating one base module and one station module plugged into their respective receptacles in the back panel.
FIG. 4 is a block diagram of the electronic portion of the stand alone irrigation controller ofFIG. 2.
FIG. 5 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in the face pack of the controller.
FIG. 6 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in the base module.
FIG. 7 is a block diagram illustrating further details of the electronic portion of the stand alone irrigation controller ofFIG. 2 that resides in each of the station modules.
FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the stand alone irrigation controller ofFIG. 2.
FIG. 9 is a perspective view of the stand alone ET unit of the system ofFIG. 1.
FIG. 10 is a block diagram of the electronic portion of the stand alone ET unit ofFIG. 9.
FIGS. 11A-11D are flow diagrams illustrating the operation of the stand alone ET unit ofFIG. 9.
FIG. 12A is an enlarged vertical cross-section of the stand alone weather station of the system ofFIG. 1.
FIG. 12B is a fragmentary perspective view illustrating the spring biased arm of the stand alone weather station ofFIG. 12A.
FIG. 13 is a block diagram illustrating the electronic portion of the stand alone weather station ofFIG. 12.
FIG. 14 is a flow diagram illustrating the operation of the stand alone weather station ofFIG. 12.
DETAILED DESCRIPTIONThe entire disclosures of the following U.S. patents and U.S. patent applications are hereby incorporated by reference: U.S. Pat. No. 5,097,861 granted Mar. 24, 1992 of Hopkins et al. entitledIRRIGATION METHOD AND CONTROL SYSTEM;U.S. Pat. No. 5,444,611 granted Aug. 22, 1995 of Peter J. Woytowitz, et al. entitledLAWN AND GARDEN IRRIGATION CONTROLLER;U.S. Pat. No. 5,829,678 granted Nov. 3, 1998 of Richard E. Hunter et al. entitled SELF-CLEANING IRRIGATION REGULATOR VALVE APPARATUS;U.S. Pat. No. 6,088,621 granted Jul. 11, 2000 also of Peter J. Woytowitz et al. entitledPORTABLE APPARATUS FOR RAPID REPROGRAMMING OF IRRIGATION CONTROLLERS;U.S. Pat. No. 6,721,630 granted Apr. 13, 2004 also of Peter J. Woytowitz entitledEXPANDABLE IRRIGATION CONTROLLER WITH OPTIONAL HIGH-DENSITY STATION MODULE;U.S. Pat. No. 6,842,667 granted Jan. 11, 2005 of Beutler et al. entitledPOSITIVE STATION MODULE LOCKING MECHANISM FOR EXPANDABLE IRRIGATION CONTROLLER;U.S. patent application Ser. No. 10/883,283 filed Jun. 30, 2004 also of Peter J. Woytowitz entitledHYBRID MODULAR/DECODER IRRIGATION CONTROLLER,now U.S. Pat. No. 7,069,115 granted Jun. 27, 2007; pending U.S. patent application Ser. No. 10/985,425 filed Nov. 9, 2004 also of Peter J. Woytowitz et al. and entitledEVAPOTRANSPIRATION UNIT CONNECTABLE TO IRRIGATION CONTROLLER;pending U.S. patent application Ser. No. 11/288,831 filed Nov. 29, 2005 of LaMonte D. Porter et al. and entitledEVAPOTRANSPIRATION UNIT FOR RE-PROGRAMMING AN IRRIGATION CONTROLLER;U.S. patent application Ser. No. 11/045,527 filed Jan. 28, 2005 also of Peter J. Woytowitz entitledDISTRIBUTED ARCHITECTURE IRRIGATION CONTROLLER,now U.S. Pat. No. 7,245,991 granted Jul. 17, 2007; U.S. Pat. No. 7,289,886 of Peter J. Woytowitz granted Oct. 30, 2007 entitledMODULAR IRRIGATION CONTROLLER WITH SEPARATE FIELD VALVE LINE WIRING TERMINALS;U.S. Pat. No. 7,225,058 of Lamonte D. Porter granted May 29, 2007 entitledMODULAR IRRIGATION CONTROLLER WITH INDIRECTLY POWERED STATION MODULES;pending U.S. patent application Ser. No. 11/458,551 filed Jul. 19, 2006 of Lamonte D. Porter et al. entitledIRRIGATION CONTROLLER WITH INTERCHANGEABLE CONTROL PANEL;and pending U.S. patent application Ser. No. 12/042,301 filed Mar. 4, 2008 of Peter J. Woytowitz et al. entitledIRRIGATION CONTROLLER WITH SELECTABLE WATERING RESTRICTIONS.The aforementioned U.S. patents and applications are all assigned to Hunter Industries, Inc., the assignee of the subject application.
The present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller. The irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary. The user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals. Therefore, a large percentage of users of the irrigation system of the present invention will have a much more beneficial environmental impact than a near perfect solution provided by complex prior art ET based irrigation controllers that might at best be adopted a small percentage of users. Even within the small percentage of users that adopt the full ET device, many of them may not be set up correctly because of the complexities of ET, and may therefore operate inefficiently.
Referring toFIG. 1, in accordance with an embodiment of the present invention, anirrigation system10 comprises a standalone irrigation controller12 connected viacable14 to a standalone ET unit16 that is in turn connected viacable18 to a standalone weather station20. Thecontroller12 andET unit16 would typically be mounted in a garage or other protected location, although they can have a waterproof construction that allows them to be mounted out of doors. Theweather station20 is typically mounted on an exterior wall, gutter, post or fence near the garage. Thecables14 and18 typically include copper wires so that power can be supplied to theET16 unit and theweather station20 from theirrigation controller12. Data and commands are sent on other copper wires in the cables. Fiber optic cables can also be utilized for sending data and commands. Thecontroller12,ET unit16 andweather station20 may exchange data and commands viawireless communication links22 and24. Atransformer25 that plugs into astandard household 110 volt AC duplex outlet supplies twenty-four volt AC power to the standalone irrigation controller12. In its preferred form, theirrigation system10 employs a hard wiredcommunication link14 between the standalone irrigation controller12 and the standalone ET unit16 that are normally mounted adjacent one another, such as on a garage wall, and awireless communication link24 between the standalone ET unit16 and the standalone weather station20.
Referring toFIG. 2, the standalone irrigation controller12 may be the Pro-C modular irrigation controller commercially available from Hunter Industries, Inc. Theirrigation controller12 includes a wall-mountable plastic housing structure in the form of a generally box-shapedfront door26 hinged along one vertical edge to a generally box-shaped back panel28 (FIG. 3). A generally rectangular face pack30 (FIG. 2) is removably mounted over theback panel28 and is normally concealed by thefront door26 when not being accessed for programming. Theface pack30 has an interface in the form of a plurality of manually actuable controls including arotary knob switch31 and push button switches32a-32gas well as slide switch34 which serves as a sensor by-pass switch. Watering schedules consisting of various run and cycle times can be entered by the user by manipulating therotary knob switch31 and selected ones of the push button switches32a-32gin conjunction with observing numbers, words and/or graphic symbols indicated on a liquid crystal display (LCD)36. Pushbuttons32c and32d are used to increase or decrease the seasonal adjust value. The watering schedules can be a complicated set of run time and cycle algorithms, or a portion thereof, such as a simple five minute cycle for a single station. Alternatively, existing pre-programmed watering schedules can be selected, such as selected zones every other day. Any or sub-combination of manually actuable input devices such as rotary switches, dials, push buttons, slide switches, rocker switches, toggle switches, membrane switches, track balls, conventional screens, touch screens, etc. may be used to provide an interface that enables a user to select and/or enter a watering schedule. Still another alternative involves uploading watering schedules through the SMART PORT (Trademark) feature of theirrigation controller12, more details of which are set forth in the aforementioned U.S. Pat. No. 6,088,621.
The face pack30 (FIG. 2) encloses and supports a printed circuit board (not illustrated) with a processor for executing and implementing a stored watering program. An electrical connection is made between theface pack30 and the components in theback panel28 through a detachable ribbon cable including a plurality of conductors38a-g(FIG. 4). The circuitry inside theface pack30 can be powered by a battery to allow a person to remove theface pack30, un-plug the ribbon cable, and walk around the lawn, garden area or golf course while entering watering schedules or altering pre-existing watering schedules.
A processor40 (FIG. 5) is mounted on the printed circuit board inside theface pack30. A watering program stored in amemory42 is executable by theprocessor40 to enable the processor to generate commands for selectively turning a plurality of solenoid actuated irrigation valves (not illustrated) ON and OFF in accordance with the selected or entered watering schedule. An example of such an irrigation valve is disclosed in U.S. Pat. No. 5,996,608 granted Dec. 7, 1999 of Richard E. Hunter et al. entitledDIAPHRAGM VALVE WITH FILTER SCREEN AND MOVEABLE WIPER ELEMENT,the entire disclosure of which is hereby incorporated by reference. Said patent is also assigned to Hunter Industries, Inc. Typically the solenoid actuated valves are mounted in subterranean plastic boxes (not illustrated) on the irrigated site.
Theprocessor40 communicates withremovable modules44 and46a-c(FIG. 3) each containing a circuit that includes a plurality of solid state switches, such as triacs. These switches turn twenty-four volt AC current ON and OFF to open and close corresponding solenoid actuated valves via connected to dedicated field valve wires and a common return line to screwterminals48 on themodules44 and46a-c.
InFIG. 3, themodules44 and46a are shown installed in side-by-side fashion in station module receptacles formed in theback panel28. Themodule44 serves as a base module that can turn a master valve ON and OFF in addition to a plurality of separate station valves. Each module includes an outer generally rectangular plastic housing with a slot at its forward end. A small printed circuit board (not illustrated) within the module housing supports the station module circuit that includes conductive traces that lead to thescrew terminals48 and to V-shaped spring-type electrical contacts (not illustrated) that are accessible via the slot in the forward end of the module housing. These V-shaped electrical contacts register with corresponding flat electrical contacts on the underside of a relatively large printed circuit board49 (FIG. 4) mounted inside theback panel28 when themodule44 is slid into its corresponding receptacle. The relatively large printedcircuit board49 is referred to as a “back plane.” Thebase module44 and station modules46a-cand theback plane49 are thus electrically and mechanically connected in releasable fashion through a so-called “card edge” connection scheme when thebase module44 and station modules46a-care inserted or plugged into their respective receptacles.
An elongate locking bar50 (FIG. 3) can be manually slid up and down inFIG. 4 between locked and unlocked positions to secure and un-secure themodules44 and46a-cafter they have been fully inserted into their respective receptacles. Opposing raisedprojections52 formed on the lockingbar50 facilitate sliding the lockingbar50 with a thumb. Apointer54 extends from one of the raisedprojections52 and serves as a position indicator that aligns with LOCKED and UNLOCKED indicia (not illustrated) molded into the upper surface of anotherplastic support structure56 mounted insideback panel28.
The receptacles for the modules such as44 and46a-care partially defined by vertical walls58 (FIG. 3) formed on theback panel28.Vertical walls60 also formed on theback panel28 to provide support to themodules44 and46a-c.An auxiliary terminal strip providesadditional screw terminals62 for connecting remote sensors and accessories. The term “receptacles” should be broadly construed as defined in one or more of the patents and pending applications incorporated by reference above.
FIGS. 4 and 5 are block diagrams of the electronic portion of the standalone irrigation controller12. The electronic components are mounted on printed circuit boards contained within theface pack30, backpanel28,base module44 and station modules46a-c.The processor40 (FIG. 4) is mounted on the printed circuit board inside theface pack30 and executes the watering program stored in thememory42. By way of example, theprocessor40 may be a Samsung S3F8289 processor that executes a program stored in theseparate memory42 which can be an industry standard designation Serial EEPROM 93AA6A non-volatile memory device. Alternatively, theprocessor40 andmemory42 may be provided in the form of a micro-computer with on-chip memory. The manually actuable controls31,32a-32gand34 and theLCD display36 of theface pack30 are connected to theprocessor40. Theprocessor40 sends drive signals throughbuffer64 and backplane49 to thebase module44. By way of example thebuffer64 may be an industry standard designation 74HC125 device. Theprocessor40 sends data signals to the modules46a-cthroughbuffer66. Thebuffer66 may be an H-bridge buffer including industry standard 2N3904/3906 discrete bipolar transistors.
The processor40 (FIG. 4) controls thebase module44 and the station modules46a-cin accordance with one or more watering schedules. Serial or multiplexed communication is enabled via theback plane49 to thebase module44 and to each of the output modules46a-c.Suitable synchronous serial data and asynchronous serial data station module circuits are disclosed in the aforementioned U.S. Pat. No. 6,721,630. The location of each module in terms of which receptacle it is plugged into is sensed using resistors on theback plane49 and a comparator68 (FIG. 5) which may be an industry standard LM393 device. Theface pack30 receives twenty-four volt AC power from thetransformer25 through theback plane49 and regulates the same via a power supply circuit70 (FIG. 5). Thepower supply circuit70 includes a National Semiconductor LM7906 voltage regulator, a Microchip Technology MCP101-450 power supervisor, and a Samsung KA431 voltage regulator. Alithium battery72 such as an industry standard CR2032 battery is included in thepower supply circuit70 and provides backup power to the micro controller to maintain the internal clock in the event of a power failure. The face pack ribbon cable38a-g(FIG. 4) that connects theface pack30 and theback plane49 can be disconnected, and a nine volt battery (FIG. 5) then supplies power to theface pack30. This allows a user to remove theface30 pack from theback panel28 and enter or modify watering schedules as he or she walks around the irrigation site.
Themodules44 and46a-chave contacts74 (FIG. 4) on the top sides of their outer plastic housings. When the modules are first plugged into their receptacles, only a communication path is established with theprocessor40 via theback plane49. At this time the locking bar50 (FIG. 3) is in its UNLOCKED position. Thereafter, when the locking bar is slid to its LOCKED position finger-like contacts76 (FIG. 4) on the underside of the lockingbar50 register with thecontacts74 on the tops of themodules44 and46a-cto supply twenty-four volt AC power to the modules that is switched ON and OFF to the valves that are connected to the modules. The finger-like contacts76 are connected to acommon conductor78 carried by the lockingbar50. When the lockingbar50 is slid to its LOCKED position projections and tabs that extend from the lockingbar50 and the modules are aligned to prevent withdrawal of the modules. See the aforementioned U.S. Pat. No. 7,225,058 for further details.
FIG. 6 is a block diagram illustrating details of the electronic circuit of thebase module44. The base module circuit includestransistor drivers80 andtriacs82 for switching the twenty-four volt AC signal ON and OFF to different solenoid actuated valves. By way of example, thetransistor drivers80 may be industry standard 2N4403 transistors and the triacs may be ST Microelectronics (Trademark) T410 triacs. The twenty-four volt AC signal is supplied to thetriacs82 viacontact74 andline83. The twenty-four volt AC signal from each of thetriacs82 is routed through an inductor/MOV network84 for surge suppression to four field valve lines86a-d,each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to a valvecommon return line88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit90. The unregulated DC signal from the rectifier/filter circuit90 is supplied to a National Semiconductor LM7905 voltage regulator92 which supplies five volt DC power to theface pack30 via aconductor38c(FIG. 4) in the ribbon cable.
FIG. 7 is a block diagram illustrating details of the electronic circuit in each of the station modules46a-c.The station module circuit includes a microcontroller such as the Microchip (Trademark)PIC 12C508 processor94. The station module circuit further includestriacs96 for switching the twenty-four volt AC signal ON and OFF to three different solenoid actuated valves. The twenty-four volt AC signal is supplied to thetriacs96 viacontact74 andline98. The twenty-four volt AC signal from each of thetriacs94 is routed through an inductor/MOV network98 including Epcos Inc. S10K35 MOV's for surge suppression to three field valve lines100a-c,each of which can be connected to a corresponding solenoid actuated valve. The valves are each connected to the valvecommon return line88. The twenty-four volt AC signal is also supplied to a rectifier/filter circuit90. The unregulated DC signal from the rectifier/filter circuit102 is supplied to a National SemiconductorLM7905 voltage regulator104 which supplies five volt DC power to the microcontroller through a conductor (not illustrated).
FIGS. 8A-8W are detailed flow diagrams illustrating the operation of the standalone irrigation controller12 ofFIG. 2. Those skilled in the art of designing and programming irrigation controllers for residential and commercial applications will readily understand the logical flow and algorithms that permit theprocessor40 to execute the watering program stored in thememory42. This watering program enables theprocessor40 to generate commands for selectively turning the plurality of valves ON and OFF in accordance with the selected or entered watering schedules. The watering program includes a seasonal adjustment feature that provides the capability for automatically modifying the watering schedules to thereby conserve water while maintaining plant health. By actuating one of thepush buttons32cor32dthe user can increase or decrease the run types for all stations by a selected scaling factor, such as ten percent, to account for seasonal variations in temperature and rainfall.
Referring toFIG. 9, the standalone ET unit16 includes a rectangular outerplastic housing106 enclosing a printed circuit board (not illustrated) which supports the electronic circuit of theET unit16 that is illustrated in the block diagram ofFIG. 10. Amicrocontroller108 such as a Microchip PIC18F65J90 processor executes firmware programming stored in amemory110 such as an industry standard 93AA66A EEPROM memory. Themicrocontroller108 can receive DC power from alithium battery112 such as an industry standard CR2032 battery, which allows accurate time keeping in the event of a power failure. Insulating strip113 (FIG. 9) must be manually pulled out to establish an operative connection of thebattery112. External power for theET unit16 is supplied from the transformer25 (FIG. 1) via thecable14. The twenty-four volt AC power from thetransformer25 is supplied to a rectifier/filter circuit114 (FIG. 10) which supplies twenty-four volt DC power to apower regulation circuit116 which may be an ST Microelectronics L78M24CDT-TR regulator. Power from thepower regulation circuit116 is fed to amicrocontroller power regulator118 which may be a Microchip MCP 1702T-25021/CB regulator. Power from thepower regulation circuit116 is also fed to a wired or wirelesssensor communications device120 that may include, by way of example, an industry standard MMBTA92 for the signal transmitter and an industry standard LM393 comparator for the receiver.
The microcontroller108 (FIG. 10) interfaces with the SmartPort (Trademark) connector of theirrigation controller12 with a combination interface/optocoupler122 which may be provided by an industry standard 4N26S device. Themicrocontroller108 interfaces with the weather station illustrated inFIG. 12. AnLCD display126 is mounted in thehousing106. Three manually actuable controls in the form ofpush buttons128a-c(FIG. 9) are mounted in thehousing106 for enabling the user to make selections when setting up and modifying the operation of theET unit16 in conjunction with information indicated on thedisplay126 which is facilitated by column and rowindicia130 and132, respectively, affixed to thehousing106 adjacent the horizontal and vertical margins of thedisplay126. Rowindicia132 include, from top to bottom, AM, PM, 24 hr, START and END which are printed, painted, molded or otherwise applied to the outerplastic housing such as by a sticker.Column indicia130 are illustrated diagrammatically as A-E inFIG. 9 due to space constraints in the drawing. A-E correspond, respectively, to TIME, TYPE, REGION, NO WATER and WATER ± with associated icons which are printed, painted, molded or otherwise applied to the outerplastic housing106 such as by a sticker.
FIGS. 11A-11D are flow diagrams illustrating the operation of the standalone ET unit16. A watering schedule typically includes inputted parameters such as start times, run times and days to water. TheET unit16 can automatically set the seasonal adjustment of theirrigation controller12 to reduce watering time, or increase watering times, depending on the weather conditions at the time. TheET unit16 utilizes actual ET data as its basis for making the modifications to the watering schedules implemented by theirrigation controller12. However, to simplify the system and reduce the costs, some of the ET parameters may be pre-programmed into theET unit16 as constants. These constants may be selected from a group of geographical areas to approximately assimilate the local conditions and estimate a maximum ET value. Other climatic factors are monitored on a daily basis and are the variables. The variables may include one or more pieces of environmental data such as temperature, humidity, solar radiation, wind, and rain. In the preferred embodiment of the present invention, the measured variables are temperature and solar radiation. The variables and any constants are used by theprocessor108 to calculate an estimated ET value. This estimated ET value is then used by theET unit16 to automatically set the seasonal adjustment feature of theirrigation controller12. Theweather station20 can also include a sensor that indicates a rain event. A rain event does not effect calculation of an estimated ET value. However, it does shut of the irrigation during, and for a period of time following, the rain event as a further conservation measure.
The user can modify the run and cycle times for individual stations in the usual manner in theirrigation controller12. As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then theET unit16 continues modifying the watering schedules executed by theirrigation controller12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. Thecontroller12 may have features in it such that theET unit16 only modifies the watering schedules of theirrigation controller12.
One of the difficulties with conventional weather-based controllers is attributable to the difficulty of fine-tuning the weather data being received. The environmental sensors may not always be able to be placed in an optimum location on the irrigation site. As an example, a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value. The entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET. If a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
An advantage of the present invention is the ability to globally modify the watering schedules of the standalone irrigation controller12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature. The overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of thepush buttons128a-c.This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by theET unit16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments. The overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site. The overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water ±,” or similar naming conventions.
The overall watering adjustment feature of theET unit16 directly alters the station run times executed by theirrigation controller12. This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value. When the user makes overall watering adjustments by pressing plus or minus push buttons on theET unit16, this directly affects the ET value that is used to reset the seasonal adjustment in thehost controller12. In calculating the estimated ET, themicrocontroller108 in theET unit16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site. Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET.
Another feature provided by theET16 is an automatic shut down feature for irrigation that overrides any scheduled run times. There are several times when this is important. A rain sensor in theweather station20 can send signals to the ET unit representing the occurrence of a rain event. TheET unit10 will then signal theirrigation controller12 to shut down and suspend any watering, irregardless of any scheduled irrigation running or not running at the time. As another example, during a freeze or near freeze condition, irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition. A temperature sensor in theweather station20 can detect a freeze or near freeze condition and theET unit16 will signal theirrigation controller12 to shut down, regardless of any scheduled irrigation running or not running at the time.
The automatic shut down feature of theET unit10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur. The user is able to enter a no-water window into theET unit16, which consists of the times when irrigation is not allowed to take place. When a no-water window is entered by the user, theET unit16 will signal theirrigation controller12 to shut down, irregardless of any scheduled irrigation running or not running at the time. TheET unit16 will then allow theirrigation controller12 to return to its normal run mode after the selected no-water window time has elapsed. Theirrigation controller12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from theET unit16.
FIG. 12A is an enlarged vertical cross-section of an embodiment of the standalone weather station20 of the system ofFIG. 1. The compact andinexpensive weather station20 measures solar radiation, ambient air temperature, and detects a rain event. Theweather station20 is a one-piece unit that readily attaches to an exterior side of a building structure, a fence, or a rain gutter. Theweather station20 can be hard wired to theET unit16 viacable18, or the communications between theweather station20 and theET unit16 may take place via wireless communications link24. The basic construction of theweather station20 is similar to that disclosed in U.S. Pat. No. 6,570,109 granted May 27, 2003 to Paul A. Klinefelter et al. entitledQUICK SHUT-OFF EXTENDED RANGE HYDROSCOPIC RAIN SENSOR FOR IRRIGATION SYSTES,and U.S. Pat. No. 6,977,351 granted Dec. 20, 2005 to Peter J. Woytowitz entitledMOISTURE ABSORPTIVE RAIN SENSOR WITH SEALED POSITION SENSING ELEMENT FOR IRRIGATION WATERING PROGRAM INTERRUPT,the entire disclosures of both of which are incorporated herein by reference. Both of the aforementioned U.S. patents are assigned to Hunter Industries, Inc.
The weather station20 (FIG. 12A) includes an outer injection moldedplastic housing134 that encloses a pair of moisture absorbing members in the form of alarger stack136 of moisture absorbing hygroscopic discs and asmaller stack138 of moisture absorbing hygroscopic discs. These discs are typically made of untreated wood fibers pressed together into a material that resembles cardboard in appearance. One suitable commercially available hygroscopic material is Kraft Press Board which is made from cellulose pulp.
Thestacks136 and138 (FIG. 12A) of hygroscopic discs are supported on acommon pivot arm140 for vertical reciprocal motion relative to avertical shaft142 that extends through thearm140. Acoil spring144 surrounds theshaft142 and normally pushes thestack136 upwardly againststop146. A torsion spring147 (FIG. 12B) associated with the pivot axis of thearm140 lifts thearm140 and thestack138 upward to a fixed stop (not illustrated). When rain water enters the housing134 (FIG. 12A) viaaperture150 and funnel152 the hygroscopic discs of thestacks136 and138 absorb water and swell, pushing thearm140 downwardly. Amagnet154 is mounted on one end of thearm140. A stationary linearHall effect sensor156 mounted on a vertically mounted printedcircuit board158 generates a signal representative of the position of themagnet154 that is proportional to the amount of rain water that has entered theweather station20. TheHall effect sensor156 may be provided by part number A1395SEHLT-T manufactured by Alegro. Thesmall stack138 absorbs water quickly viafunnel148 so that a rain event will be quickly detected. Thelarge stack136 dries out slowly so that the rain interrupt signal from theweather station20 will not be terminated too quickly as the hydroscopic discs dry out. Asolar radiation sensor160 is mounted on one end of the printedcircuit board158 and receives solar radiation through a clearplastic dome162 snap fit over the uppermost part of thehousing134. Thesolar radiation sensor160 may be an industry standard PDB-C131 photodiode with low current leakage.
FIG. 13 is a block diagram illustrating the electronic circuit of the standalone weather station20 that is mounted on the printedcircuit board158. Thesolar radiation sensor160 which may comprise a PDB-C131 photodiode that is connected to a Microchip MCP6001T-I/LT transimpedance amplifier164 that is in turn connected to a Microchip PIC-16F684-I/SL microcontroller166. A Microchip MCP9700T-E/LT temperature sensor168 with an A/D interface is also connected to themicrocontroller166. Themicrocontroller166 also receives the output signal from theHall effect sensor156. TheHall effect sensor156 may comprise a Microchip A1395SEHLT-T Hall effect sensor and interface circuit. Thecommunications interface170 between themicrocontroller166 and theET unit16 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver. The transmitter sends signals representative of actual components of ET data across the irrigation site to theET unit16. Power for the hardwired weather station20 is derived from the communications link to theET unit16 and is fed to aninput conditioner172 which feeds a Microchip MCP1702T-3002E/CB power regulator174. Thepower regulator174 supplies three volt DC power to themicrocontroller166. Power for a wireless weather station is supplied by a dedicated battery (not illustrated) installed within the weather station.
FIG. 14 is a flow diagram illustrating the operation of the standalone weather station20 ofFIG. 12. Firmware executed by themicrocontroller166 allows theweather station20 to perform the logical operations illustrated in the flow diagram. These include periodic sampling of the outputs from thesolar radiation sensor162,temperature sensor168 andHall effect sensor156, averaging readings, and responding to requests for sensor data that are periodically transmitted by theET unit16.
In conclusion, theET unit16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into theirrigation controller12. The user also selects from one of a group of geographical regions in theET unit16. TheET unit16 then automatically takes over setting of the seasonal adjustment feature of theirrigation controller12 on a regular basis. Instead of a user changing that feature several times per year, theET unit16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, theET unit16 shuts down any scheduled watering by theirrigation controller12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the standalone weather station20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor.
The present invention also provides a unique method of controlling a plurality of valves on an irrigation site. The method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site. The method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule. Importantly, the method includes the further step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
While an embodiment of an irrigation system comprising a stand alone ET unit connected to stand alone irrigation controller and linked to a separate stand alone weather station has been described in detail, persons skilled in the art will appreciate that the present invention can be modified in arrangement and detail. The features and functionality described could be provided by combining the irrigation controller and the ET unit into a single integrated unit in which case a single microcontroller would replace themicrocontrollers40 and108. Alternatively, the ET unit could be packaged in an ET module designed for removable insertion into a receptacle in a stand alone irrigation controller. Therefore, the protection afforded the subject invention should only be limited in accordance with the scope of the following claims.