CLAIM TO PRIORITYThis application claims priority to all of the following applications including: U.S. Provisional Application No. 61/029,830, filed Feb. 19, 2008, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNGI-06013US0);
U.S. Provisional Application No. 61/032,877, filed Feb. 29, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNGI-06001US0);
U.S. Provisional Application No. 61/038,371, filed Mar. 20, 2008, entitled “SURGICAL PROCEDURE AND INSTRUMENT TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06000US0);
U.S. Provisional Application No. 61/082,892, filed Jul. 23, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSMETIC AND/OR PROTECTIVE COVER” (Attorney Docket No. LUNG1-06008US0);
U.S. Provisional Application No. 61/083,573, filed Jul. 25, 2008, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA” (Attorney Docket No. LUNG1-06003US0);
U.S. Provisional Application No. 61/084,559, filed Jul. 29, 2008, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT” (Attorney Docket No. LUNG1-06011US0);
U.S. Provisional Application No. 61/088,118, filed Aug. 12, 2008, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06004US0);
U.S. Provisional Application No. 61/143,298, filed Jan. 8, 2009, entitled “METHODS AND APPARATUS FOR THE CRYOTHERAPY CREATION OR RE-CREATION OF PNEUMOSTOMY” (Attorney Docket No. LUNG1-06006US0); and
U.S. Provisional Application No. 61/151,581, filed Feb. 11, 2009, entitled “SURGICAL INSTRUMENTS AND PROCEDURES TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06002US0).
All of the afore-mentioned applications are incorporated herein by reference in their entireties.
CROSS-REFERENCE TO RELATED APPLICATIONSThis application is related to all of the above provisional applications and all the patent applications that claim priority thereto including:
This application is related to all of the following applications including U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06013US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06001US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT METHOD FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06001US2);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “TWO-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06000US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06000US3);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “PERCUTANEOUS SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06000US4);
U.S. patent application Ser. No. 12/______, filed Feb. 13, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSMETIC AND/OR PROTECTIVE COVER” (Attorney Docket No. LUNG1-06008US1)
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA” (Attorney Docket No. LUNG1-06003US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT” (Attorney Docket No. LUNG1-06011US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “ASPIRATOR AND METHOD FOR PNEUMOSTOMA MANAGEMENT” (Attorney Docket No. LUNG1-06011US2);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06004US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “METHODS AND DEVICES FOR FOLLOW-UP CARE AND TREATMENT OF A PNEUMOSTOMA” (Attorney Docket No. LUNG1-06006US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “SURGICAL INSTRUMENTS FOR CREATING A PNEUMOSTOMA AND TREATING CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06002US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “ONE-PIECE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06017US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM WITH SECRETION MANAGEMENT FEATURES FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06019US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “MULTI-LAYER PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06022US1);
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “VARIABLE LENGTH PNEUMOSTOMA MANAGEMENT SYSTEM FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06023US1); and
U.S. patent application Ser. No. 12/______, filed Feb. 18, 2009, entitled “SELF-SEALING DEVICE AND METHOD FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA” (Attorney Docket No. LUNG1-06025US1).
All of the afore-mentioned applications are incorporated herein by reference in their entireties. This patent application also incorporates by reference all patents, applications, and articles discussed and/or cited herein.
BACKGROUND OF THE INVENTIONIn the United States alone, approximately 14 million people suffer from some form of Chronic Obstructive Pulmonary Disease (COPD). However an additional ten million adults have evidence of impaired lung function indicating that COPD may be significantly underdiagnosed. The cost of COPD to the nation in 2002 was estimated to be $32.1 billion. Medicare expenses for COPD beneficiaries were nearly 2.5 times that of the expenditures for all other patients. Direct medical services accounted for $18.0 billion, and indirect cost of morbidity and premature mortality was $14.1 billion. COPD is the fourth leading cause of death in the U.S. and is projected to be the third leading cause of death for both males and females by the year 2020.
Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease of the airways that is characterized by a gradual loss of lung function. In the United States, the term COPD includes chronic bronchitis, chronic obstructive bronchitis, and emphysema, or combinations of these conditions. In emphysema the alveoli walls of the lung tissue are progressively weakened and lose their elastic recoil. The breakdown of lung tissue causes progressive loss of elastic recoil and the loss of radial support of the airways which traps residual air in the lung. This increases the work of exhaling and leads to hyperinflation of the lung. When the lungs become hyperinflated, forced expiration cannot reduce the residual volume of the lungs because the force exerted to empty the lungs collapses the small airways and blocks air from being exhaled. As the disease progresses, the inspiratory capacity and air exchange surface area of the lungs is reduced until air exchange becomes seriously impaired and the individual can only take short shallow labored breaths (dyspnea).
The symptoms of COPD can range from the chronic cough and sputum production of chronic bronchitis to the severe disabling shortness of breath of emphysema. In some individuals, chronic cough and sputum production are the first signs that they are at risk for developing the airflow obstruction and shortness of breath characteristic of COPD. With continued exposure to cigarettes or noxious particles, the disease progresses and individuals with COPD increasingly lose their ability to breathe. Acute infections or certain weather conditions may temporarily worsen symptoms (exacerbations), occasionally where hospitalization may be required. In others, shortness of breath may be the first indication of the disease. The diagnosis of COPD is confirmed by the presence of airway obstruction on testing with spirometry. Ultimately, severe emphysema may lead to severe dyspnea, severe limitation of daily activities, illness and death.
There is no cure for COPD or pulmonary emphysema, only various treatments, for ameliorating the symptoms. The goal of current treatments is to help people live with the disease more comfortably and to prevent the progression of the disease. The current options include: self-care (e.g., quitting smoking), medications (such as bronchodilators which do not address emphysema physiology), long-term oxygen therapy, and surgery (lung transplantation and lung volume reduction surgery). Lung Volume Reduction Surgery (LVRS) is an invasive procedure primarily for patients who have a localized (heterogeneous) version of emphysema; in which, the most diseased area of the lung is surgically removed to allow the remaining tissue to work more efficiently. Patients with diffuse emphysema cannot be treated with LVRS, and typically only have lung transplantation as an end-stage option. However, many patients are not candidates for such a taxing procedure.
A number of less-invasive surgical methods have been proposed for ameliorating the symptoms of COPD. In one approach new windows are opened inside the lung to allow air to more easily escape from the diseased tissue into the natural airways. These windows are kept open with permanently implanted stents. Other approaches attempt to seal off and shrink portions of the hyperinflated lung using chemical treatments and/or implantable plugs. However, these proposals remain significantly invasive and are still in clinical trails in 2008. None of the surgical approaches to treatment of COPD is widely accepted. Therefore, a large unmet need remains for a medical procedure that can sufficiently alleviate the debilitating effects of COPD and emphysema.
SUMMARY OF THE INVENTIONIn view of the disadvantages of the state of the art, Applicants have developed a method for treating COPD in which an artificial passageway is made through the chest wall into the lung. An anastomosis is formed between the artificial passageway and the lung by creating a seal, adhesion and/or pleurodesis between the visceral and parietal membranes surrounding the passageway as it enters the lung. The seal, adhesion and/or pleurodesis prevent air from entering the pleural cavity and causing a pneumothorax (deflation of the lung due to air pressure in the pleural cavity). The pleurodesis is stabilized by a fibrotic healing response between the membranes. The artificial passageway through the chest wall also becomes epithelialized. The result is a stable artificial aperture through the chest wall which communicates with the parenchymal tissue of the lung.
The artificial aperture into the lung through the chest wall is referred to herein as a pneumostoma. A pneumostoma provides an extra pathway that allows air to exit the lung while bypassing the natural airways which have been impaired by COPD and emphysema. By providing this ventilation bypass, the pneumostoma allows the stale air trapped in the lung to escape from the lung thereby shrinking the lung (reducing hyperinflation). By shrinking the lung, the ventilation bypass reduces breathing effort (reducing dyspnea), allows more fresh air to be drawn in through the natural airways and increases the effectiveness of all of the tissues of the lung for gas exchange. Increasing the effectiveness of gas exchange allows for increased absorption of oxygen into the bloodstream and also increased removal of carbon dioxide from the bloodstream. Reducing the amount of carbon dioxide retained in the lung reduces hypercapnia which also reduces dyspnea. The pneumostoma thereby achieves the advantages of lung volume reduction surgery without surgically removing a portion of the lung or sealing off a portion of the lung.
Pneumonostomy is a general term for the surgical creation of an artificial opening into the pleural cavity or lung such as for drainage of an abscess. The procedure for creating a pneumostoma is a type of pneumonostomy. However, to differentiate it from other types of pneumonostomy procedures, the term pneumostomy will be used herein to refer to procedures for creating a pneumostoma.
In accordance with embodiments, the present invention provides surgical techniques, procedures and instruments for pneumostomy.
In accordance with one embodiment, the present invention provides a two-phase pneumostomy technique in which a pleurodesis is created in a first procedure and a pneumostoma is created as a second procedure after a delay for creation of the pleurodesis.
In accordance with one embodiment, the present invention provides an accelerated two-phase pneumostomy technique in which a pleurodesis is created acutely at the first phase of a procedure and a pneumostoma is created as a second phase of the same procedure after creation of the pleurodesis.
In accordance with one embodiment, the present invention provides a single-phase pneumostomy technique for creating a pneumostoma in which a pleurodesis and a pneumostoma are created concurrently.
In accordance with specific embodiments, the present invention provides minimally-invasive approaches for performing a pneumostomy.
In accordance with specific embodiments, the present invention provides a percutaneous approach for performing a pneumostomy.
In accordance with specific embodiments, the present invention provides a mini-thoracotomy approach for performing a pneumostomy.
In accordance with specific embodiments, the present invention provides an intercostal approach for performing a pneumostomy.
In accordance with specific embodiments, the present invention provides perioperative procedures associated with performing pneumostomy.
Thus, various pneumostomy techniques, procedures and instruments are provided for creating a pneumostoma and thereby treating COPD. Other objects, features and advantages of the invention will be apparent from drawings and detailed description to follow.
BRIEF DESCRIPTION OF THE DRAWINGSThe above and further features, advantages and benefits of the present invention will be apparent upon consideration of the present description taken in conjunction with the accompanying drawings.
FIG. 1A shows the chest of a patient indicating alternative locations for pneumostoma that may be created using pneumostomy procedures and surgical tools of the present invention.
FIG. 1B shows a sectional view of the chest illustrating the relationship between the pneumostoma, lung and natural airways.
FIG. 1C shows a detailed sectional view of the pneumostoma.
FIG. 2 shows the general steps for pneumostomy in accordance with an embodiment of the present invention.
FIGS. 3A-3C show views of a pneumostomy catheter for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIGS. 3D-3E show views of an alternative pneumostomy catheter assembled with a percutaneous insertion tool for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIG. 3F shows a sectional view of an alternative component of the pneumostomy catheters ofFIGS. 3A-3E.
FIG. 3G shows a section view of the tip of an alternative pneumostomy catheter in accordance with an embodiment of the present invention.
FIG. 4A shows the steps of a two-phase pneumostomy technique in accordance with an embodiment of the present invention.
FIGS. 4B-4C illustrate the first phase of the two-phase pneumostomy technique ofFIG. 4A.
FIGS. 4D-4E illustrate the second phase of the two-phase pneumostomy technique ofFIG. 4A.
FIG. 4F illustrates an optional step of the second phase of the two-phase pneumostomy technique ofFIG. 4A.
FIG. 5A shows the steps of an accelerated two-phase pneumostomy technique in accordance with an embodiment of the present invention.
FIG. 5B illustrates the first part of the procedure of the accelerated two-phase pneumostomy technique ofFIG. 5A.
FIG. 5C illustrates the second part of the procedure of the accelerated two-phase pneumostomy technique ofFIG. 5A.
FIG. 6A shows the steps of a single-phase pneumostomy technique in accordance with an embodiment of the present invention.
FIGS. 6B-6C illustrate steps of the single-phase pneumostomy technique ofFIG. 6A.
FIG. 7A shows the steps of a percutaneous single-phase pneumostomy technique in accordance with an embodiment of the present invention.
FIGS. 7B-7C illustrate steps of the percutaneous single-phase pneumostomy technique ofFIG. 7A.
FIG. 7D illustrates a lung retraction instrument for use in a pneumostomy procedure in accordance with an embodiment of the present invention.
FIG. 7E illustrates a lung anchor for use in a pneumostomy procedure in accordance with an embodiment of the present invention.
FIGS. 7F-7H illustrate a lung anchor and applicator for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIGS. 8A and 8B show use of a pneumostoma management device after removal of a pneumostomy catheter in accordance with any one of the above procedures.
FIGS. 9A-9G show alternative pneumostomy instruments and accessories for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIGS. 10A-10F show views of an alternate pneumostomy instrument for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIGS. 11A-11C show views of a percutaneous insertion instrument for use in pneumostomy procedures in accordance with embodiments of the present invention.
FIGS. 12A-12E show views of an external support for a pneumostomy instrument in accordance with embodiments of the present invention
FIGS. 13A-13C show steps for pneumostomy procedures in accordance with embodiments of the present invention.
DETAILED DESCRIPTION OF THE INVENTIONThe following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout. In addition, the first digit of a reference number identifies the drawing in which the reference number first appears.
Pneumostoma AnatomyFIG. 1A shows the chest of patient indicating alternative locations for creating a pneumostoma that may be managed using the system and methods of the present invention. Afirst pneumostoma110 is shown on the front of thechest100 over the right lung101 (shown in dashed lines). The pneumostoma is preferably positioned over the second or third intercostal space on the mid-clavicular line. Thus thepneumostoma110 is located on the front of the chest between the second and third or third and fourth ribs. Although thepneumostoma110 is preferably located between two ribs, in alternative procedures a pneumostoma can also be prepared using a minithoracotomy with a rib resection.
InFIG. 1A asecond pneumostoma112 is illustrated in a lateral position entering the left lung103 (shown in dashed lines). Thepneumostoma112 is preferably positioned over the second, third, fourth or fifth intercostal space on the mid-axillary line under thearm104. InFIG. 1A athird pneumostoma114 is illustrated on the front of the chest over the left lung103 (shown in dashed lines). Thepneumostoma114 is oval rather than round which allows a larger cross-section for the pneumostoma while still fitting within the intercostal space. In general, one pneumostoma per lung is created; however, more or less than one pneumostoma per lung may be created depending upon the needs of the patient. In most humans, the lobes of the lung are not completely separate and air may pass between the lobes. Although thepneumostoma112 and114 are preferably located between two ribs, in alternative procedures a pneumostoma can also be prepared using a minithoracotomy with a rib resection.
A pneumostoma is surgically created by forming an artificial channel through the chest wall and joining that channel with an opening through the visceral membrane of the lung into parenchymal tissue of the lung. The joining of two separate hollow cavities, vessels or organs to form a continuous channel is termed anastomosis. In this case the anastomosis is the joining of the artificial channel and the opening in the visceral membrane. Anastomosis seals the channel from the pleural cavity and can be achieved using adhesives, mechanical sealing and/or pleurodesis. General methods for forming the channel, forming the opening, anastomosis and pleurodesis are disclosed in applicant's pending and issued patents and applications including U.S. patent application Ser. No. 10/881,408 entitled “Methods and Devices to Accelerate Wound Healing in Thoracic Anastomosis Applications” and U.S. patent application Ser. No. 12/030,006 entitled “Variable Parietal/Visceral Pleural Coupling” which are incorporated herein by reference in their entirety.
FIG. 1B shows a sectional view ofchest100 illustrating the position of thepneumostoma110 relative to the lung and natural airways. Theparenchymal tissue132 of thelung130 is comprised principally ofalveoli134. Thealveoli134 are the thin walled air-filled sacs in which gas exchange takes place. Air flows into the lungs through the natural airways including thetrachea136,carina137, andbronchi138. Inside the lungs, the bronchi branch into a multiplicity of smaller vessels referred to as bronchioles (not shown). Typically, there are more than one million bronchioles in each lung. Each bronchiole connects a cluster of alveoli to the natural airways. As illustrated inFIG. 1B,pneumostoma110 comprises a channel through thethoracic wall106 of thechest100 between tworibs107.Pneumostoma110 opens at anaperture126 through theskin114 ofchest100.Aperture126 may be round, oval or another suitable shape that allows air flow while fitting within a desirable anatomical position.
FIG. 1C shows a detailed sectional view of thepneumostoma110 and the tissue of thelung130. As illustrated inFIG. 1C, thethoracic wall106 is lined with theparietal membrane108. The surface of thelung130 is covered with a continuous sac called thevisceral membrane138. Theparietal membrane108 andvisceral membrane138 are often referred to collectively as the pleural membranes. Between theparietal membrane108 andvisceral membrane138 is the pleural cavity (pleural space)140. The pleural cavity usually only contains a thin film of fluid that serves as a lubricant between the lungs and the chest wall. As illustrated inFIG. 1C,pneumostoma110 comprises achannel120 through thethoracic wall106 of thechest100 between theribs107. Thechannel120 is joined tocavity122 in theparenchymal tissue132 oflung130. Although shown inFIG. 1C, having a particular shape, thechannel120 andcavity122 will typically conform to the shape of a device inserted into thepneumostoma110. Thechannel120 may be round, oval or another suitable shape that allows air flow while fitting within a desirable anatomical position. An adhesion orpleurodesis124 surrounds thechannel120 where it enters thelung130. Inpleurodesis124 the pleural membranes are fused and/or adhered to one another eliminating the space between the pleural membranes in that region.
An important feature ofpneumostoma110 is the seal or adhesion surrounding thechannel120 where it enters thelung130 which may comprise apleurodesis124.Pleurodesis124 is the fusion or adhesion of theparietal membrane108 andvisceral membrane138. A pleurodesis may be a complete pleurodesis in which the entirepleural cavity140 is removed by fusion of thevisceral membrane138 with theparietal membrane108 over the entire surface of thelung130. However, as shown inFIG. 1C, the pleurodesis is preferably localized to the region surrounding thechannel120. Thepleurodesis124 surrounding thechannel120 prevents air from entering thepleural cavity140. If air is permitted to enterpleural cavity140, a pneumothorax will result and thelung130 may collapse.
When formed,pneumostoma110 provides an extra pathway for exhaled air to exit thelung130 reducing residual volume and intra-thoracic pressure without the air passing through the major natural airways such as thebronchi138 andtrachea136. Collateral ventilation is particularly prevalent in an emphysemous lung because of the deterioration of lung tissue caused by emphysema. Collateral ventilation is the term given to leakage of air through the connective tissue between the alveoli134. Collateral ventilation may include leakage of air through pathways that include the interalveolar pores of Kohn, bronchiole-alveolar communications of Lambert, and interbronchiolar pathways of Martin. This air typically becomes trapped in the lung and contributes to hyperinflation. In lungs that have been damaged by COPD and emphysema, the resistance to flow in collateral channels (not shown) of theparenchymal tissue132 is reduced allowing collateral ventilation to increase. Air fromalveoli134 ofparenchymal tissue132 that passes into collateral pathways oflung130 is collected incavity122 ofpneumostoma110.Pneumostoma110 thus makes use of collateral ventilation to collect air incavity122 and vent the air outside the body viachannel120 reducing residual volume and intra-thoracic pressure and bypassing the natural airways which have been impaired by COPD and emphysema.
By providing this ventilation bypass, the pneumostoma allows stale air trapped in theparenchymal tissue132 to escape from thelung130. This reduces the residual volume and intra-thoracic pressure. The lower intra-thoracic pressure reduces the dynamic collapse of airways during exhalation. By allowing the airways to remain patent during exhalation, labored breathing (dyspnea) and residual volume (hyperinflation) are both reduced.Pneumostoma110 not only provides an extra pathway that allows air to exit thelung130 but also allows more fresh air to be drawn in through the natural airways. This increases the effectiveness of all of the tissues of thelung130 and improves gas exchange. Increasing the effectiveness of gas exchange allows for increased absorption of oxygen into the bloodstream and also increased removal of carbon dioxide from the bloodstream. Reducing the amount of carbon dioxide retained in the lung reduces hypercapnia which also reduces dyspnea.Pneumostoma110 thus achieves many of the advantages sought by lung volume reduction surgery without surgically removing, disabling and/or sealing off a portion of the lung.
Applicants have found that pneumostomy procedures carried out with the techniques, procedures, and instruments of the present invention are desirable to create the pneumostoma. The pneumostomy procedures may also advantageously utilize one or more of the associated kits and perioperative methods described herein.
Perioperative Procedure & General ProcedureFIG. 2 provides a flowchart illustrating the general steps of apneumostomy procedure200 including diagnosis, scanning, pneumostomy and perioperative procedures.
Thefirst step202 of the procedure is functional testing and diagnosis. Preliminary diagnosis of COPD is considered where a patient has symptoms of a chronic cough, sputum production, dyspnea (difficult or labored breathing) and a history of exposure to risk factors for the disease—the most significant risk factor being a history of smoking. Clinical diagnosis of COPD requires confirmation by pulmonary function testing.
There are four components to pulmonary function testing: spirometry, post-bronchodilator spirometry, lung volumes, and diffusion capacity. Spirometry is the most reliable way to determine reversible airway obstruction. Spirometry is therefore often performed to assess progression of disease and to determine the effectiveness of medication. Spirometry measures the amount of air entering and leaving the lungs using a spirometry machine. The patient inhales as deeply as possible and then exhales, as forcefully and rapidly as they can into a port in the machine. The machine measures airflow that passes through the port. Usually, several exhalations are measured. The machine provides several metrics. They are expressed as percentages of what is predicted for normal lung function. Those most commonly used diagnostics of COPD are (1) forced expiratory volume after 1 second [FEV1], (2) forced vital capacity [FVC], and (3) forced expiratory flow at 25%-75% of maximal lung volume [FEF25-75]. Peak expiratory flow rate (PEFR) also can be obtained. PEFR can be compared with readings the patient obtains at home with a peak flow meter.
In a patient with COPD, the amount of air exhaled (forced vital capacity, or FVC) is reduced, compared to a person with normal lung function. Furthermore, the amount of air exhaled during the initial 1 second (FEV1) is reduced and is reduced to a greater degree than the entire FVC. Therefore, the ratio of air exhaled after 1 second is low compared to the total amount of air exhaled. In healthy lungs, 70%-75% of all the air exhaled after maximum inhalation (FVC) is exhaled within the first second (FEV1), known as the FEV1/FVC ratio. In lungs with COPD, the FEV1/FVC ratio falls below 70%-75%. The absolute value of the FEV1 is also reduced and the extent of the reduction in FEV1 is used to quantify the severity of obstruction. FEV1<70% of what is predicted for age, height, weight and race is considered mild COPD; <50% to 69%, moderate COPD; <35%-49%, severe COPD; and <35%, very severe COPD.
Post-bronchodilator Spirometry uses the same spirometry testing after giving the patient a bronchodilator, such as an inhaled beta-agonist. This procedure provides information regarding whether the airway obstruction is reversible and the potential responsiveness of the airways to medication. It is also useful for determining whether steroid treatment has been beneficial, a few weeks after initiating therapy.
Lung volumes are measured in two ways, gas dilution or body plethysmography. The gas dilution method is performed after the patient inhales a gas, such as nitrogen or helium. The amount of volume in which the gas is distributed is used to calculate the volume of air the lungs can hold. Body plethysmography requires the patient to sit in an airtight chamber (usually transparent to prevent claustrophobia) and inhale and exhale into a tube. The pressure changes in the plethysmograph are used to calculate the volumes of air in the lungs. The most important lung volume measurements obtained are residual volume and total lung capacity (TLC). These measurements vary with age, height, weight, and race and are usually expressed as an absolute number and a percentage of what is predicted for a person with normal lung function. A high TLC demonstrates hyperinflation of the lungs, which is consistent with emphysema. Increased residual volume signifies air trapping. This demonstrates an obstruction to exhalation.
Blood gas analysis determines the effectiveness of gas exchange in the lungs by observing concentrations in the blood. Various non-invasive oxymetric methods may be used for measuring blood gas concentrations. Alternatively, arterial blood can be drawn and analyzed. Arterial blood gases are measured to determine the amount of oxygen dissolved in the blood (pO2), the percentage of hemoglobin saturated with oxygen (O2 sat), the amount of carbon dioxide dissolved in the blood (pCO2), and the amount of acid in the blood pH. The carbon dioxide and oxygen measures may be used to determine whether a patient needs oxygen therapy. Gas exchange can also be measured using diffusion capacity which is a measurement of gases transferred from the alveoli to the capillary. Diffusion capacity is measured by examining the uptake of a very small amount of inhaled carbon monoxide. A reduced diffusion capacity is consistent with emphysema.
Referring again toFIG. 2, lung scanning atstep204 may be used to confirm the diagnosis of COPD developed during thefunctional testing step202. The CT scan may be useful to more accurately diagnose emphysema. This is usually not necessary, however, and abnormal lung anatomy is not always detected. The development of multi-channel CT scanning allows for the quantitative assessment of both the airway and parenchymal processes. CT scanning is also useful to provided images of the lung as an aid to the planning of surgical interventions such as pneumostomy. Lung scanning such as CT scanning may also be used to assess collateral ventilation in the lung including the extent of collateral ventilation both within and between lobes of the lung. The results of the pneumostomy procedure are improved by placing the pneumostoma in a region of high collateral ventilation. Thus, the extent of collateral ventilation observed by lung scanning may be used to determine the patients that will benefit most of pneumostomy and the best placement of a pneumostoma in a particular patient. Lung scanning is therefore typically performed to confirm the COPD diagnosis and determine a suitable placement for the pneumostoma.
Based upon the functional testing and lung imaging, it may be determined atstep206 whether a particular patient meets the criteria for pneumostoma creation. As a general rule, pneumostoma creation is suitable for patients with COPD that is not reversible using pharmaceuticals and pulmonary rehabilitation therapy. Pneumostomy will be most advantageous for patients with severe and very severe COPD as indicated by functional testing though patients with moderate COPD may also benefit. The general health of the patient and their ability to tolerate the procedure should also be taken into account.
For patients who will benefit from pneumostomy, several weeks ofpulmonary rehabilitation therapy208 should be performed before the procedure.Pulmonary rehabilitation therapy208 combines exercise training and behavioral and educational programs designed to help patients with COPD control symptoms and improve day-to-day activities. The main goals of pulmonary rehabilitation therapy are to help patients improve their lung health and function. Pulmonary rehabilitation may reduce and control breathing difficulties and other symptoms; provide coping strategies and maintain healthy behaviors such as smoking cessation, good nutrition, and exercise. Pulmonary rehabilitation can reduce the number and length of hospital stays and increase the patient's chances of living longer. Pulmonary rehabilitation improves the likelihood of a successful outcome in a procedure to create a pneumostoma and maintain a pneumostoma after the procedure.
Inprocedure planning step210, the physician determines a suitable placement for the pneumostoma based upon the results of the lung scanning, patient anatomy and physical abilities of the patient. It is desirable that the patient be able to undertake the long-term management of the pneumostoma. Thus, it is important that the patient be able to comfortably view (with a mirror) and reach the location of the pneumostoma in order to clean the pneumostoma and insert or remove pneumostoma management devices. Other factors to consider in determining placement include the thickness of muscle and/or fat at the possible location sites, the disease state of the lung, any abnormal lung anatomy, and cosmetic considerations. Also, in planning the procedure the physician may choose one of several different approaches to the procedure. In particular there are open, minimally invasive and percutaneous approaches. Which approach is selected will depend upon the selected placement, the results of the CT scan, patient anatomy and patient procedure tolerance. One important aspect of procedure tolerance is the need for general anesthetic and ventilation. COPD patients are often highly sensitive to anesthesia and ventilation and thus it is desirable to avoid them if possible. In general the physician will select the least invasive procedure with good probability of success.
After planning the placement, procedure and approach, thepneumostomy procedure212 may be performed. The pneumostomy procedure creates a pneumostoma as described with respect toFIGS. 1A-1C above. The goal of the procedure is to form a stable epithelialized channel through the chest wall connected with a cavity in the parenchymal tissue of the lung inside the visceral membrane with a seal between the visceral and parietal membranes surrounding the channel such as a pleurodesis. There are four different techniques for the pneumostomy procedure which differ primarily in the time and/or manner in which a pleurodesis is created. In a two-phase technique, a pleurodesis is formed in a preliminary procedure and after one or more days, when the pleurodesis has developed, the pneumostoma is created utilizing a pneumostomy catheter in a second procedure. (SeeFIGS. 4A-4E). In an accelerated two-phase technique, a pleurodesis is formed in an acute manner at the beginning of a procedure. After a short period, when the pleurodesis is secure, the pneumostoma is created using a pneumostomy catheter as a second step in the same procedure. (SeeFIGS. 5A-5C). In a single-phase technique the pleurodesis is formed at the same time as the pneumostoma and does not require a separate step. The thoracic cavity is accessed to visualize the lung, the pneumostomy catheter is inserted into the lung and then the lung is secured to the channel through the chest wall creating a sealed anastomosis which matures into a pleurodesis after the procedure. (SeeFIGS. 6A-6C). In a percutaneous single-phase technique, an instrument including the pneumostomy catheter is inserted percutaneously through the thoracic wall and into the lung. The pneumostomy catheter is then used to secure the lung to the channel through the chest wall creating a sealed anastomosis which matures into a pleurodesis after the procedure. (SeeFIGS. 7A-7C). Each of these procedures is described in detail below.
In each procedure, the patency of the channel is maintained in the immediate post-operative period utilizing a pneumostomy catheter. (SeeFIGS. 3A-3C). When the channel has healed sufficiently—usually between one and two weeks post-operatively—the pneumostomy catheter is removed and replaced with a pneumostoma management device (PMD) (SeeFIGS. 8A-8B). The procedure then progresses to long-term pneumostoma management214.
After the procedure it is important that the patient continues withpulmonary rehabilitation therapy216 to maximize the benefit of the procedure and ensure compliance with the pneumostoma management protocols. At follow-up visits the pneumostoma is inspected for injury and/or infection. Additionally, the pneumostoma is checked for continued patency. In some cases it may be necessary to intermittently reestablish the patency of the channel. Follow-up on spirometry testing may be used to monitor the benefits of the pneumostoma.
Pneumostomy CatheterA specialized pneumostomy catheter is utilized to create a cavity in the parenchymal tissue of the lung and maintain the patency of the channel through the chest wall into the lung in each technique. The pneumostomy catheter keeps the lung apposed to the interior of the thoracic wall to safely and properly allow the pneumonostomy to heal and form. In general the aperture and channel of the pneumostoma will conform to the exterior dimensions of the pneumostomy catheter. The pneumostomy catheter may be round, oval or another suitable shape that allows air flow while fitting within a desirable anatomical position. The pneumostomy catheter is used by the physician during the procedure to safely create the pneumonostomy channel through the chest wall and cavity in the parenchymal tissue of the lung. The pneumostomy catheter secures the lung by means of an inflatable pneumoplasty balloon on the distal end of the catheter. The pneumoplasty balloon is inflated within the parenchymal tissue to create a chamber and engage the tissue. With the pneumoplasty balloon inflated, the pneumostomy catheter can be used to position the lung against the inner thoracic wall. The catheter will be placed under a slight tension by the physician in order to hold the lung up against the inner thoracic wall. A flange sliding on the catheter acts as the counterforce member to keep the lung and the device/pneumoplasty balloon apposed to the thoracic wall. The position of the catheter and pneumoplasty balloon and the apposition of the tissues guide the formation of the transthoracic pneumostoma.
As is commonly with respect to medical devices, the proximal end of the device is that end that is closest to the user, typically an EMT, paramedic, surgeon, or emergency physician. The distal end of the device is that end closest to the patient or that is first inserted into the patient. The diameter of a catheter is often measured in “French Size” which is 3 times the diameter of a round catheter in millimeters (mm). For example, a 15 French catheter is 5 mm in diameter. The French size is designed to approximate the circumference of the catheter in mm and is often useful for catheters that have non-circular cross-sectional configurations.
A pneumostomy catheter in accordance with one embodiment of the present invention is illustrated inFIGS. 3A-3C. As shown inFIG. 3A,pneumostomy catheter300 comprises atube302 having an atraumaticdistal tip304. The tube may be from 5 to ten inches from length and is preferably between 6 and seven inches in length. The tube may be from one quarter to three quarters of an inch in diameter and is preferably between one quarter and one half an inch in diameter. Apneumoplasty balloon306 is located adjacentdistal tip304. Anaccess flange308 is connected by acollar309 fitted aroundtube302 and can slide up and downtube302.Markings310 ontube302 indicate the distance fromtip304. A radio-marker or radiopaque material may be incorporated in the distal tip so that the tip may be visualized during insertion of the pneumostomy catheter.Tube302 is also connected to aninflation tube320. At the proximal end of theinflation tube320 is apilot balloon322, a check valve324 acoupling326 andcap328. Coupling326 is designed to receive a syringe so that air, water or saline may be injected throughinflation tube320 intopneumoplasty balloon306.Pilot balloon322 is also connected toinflation tube320 such that a physician may palpatepilot balloon322 in order to gauge the level to whichpneumoplasty balloon306 is inflated. Additionally, a contrast medium may be injected into the balloon during inflation so that the inflation of the balloon may be visualized fluoroscopically or using ultrasound.
Pneumoplasty balloon306 is preferably an elastic balloon made of silicone or its equivalent that has a low profile when not inflated.Pneumoplasty balloon306 can alternatively be formed of a relatively inelastic material, such as polyurethane or its equivalent so that, upon injection of air water or saline, it takes on a fixed shape. In somecase pneumoplasty balloon306 may be made of, impregnated with or coated with a material that promotes pleurodesis. For example use of a latex balloon, without another pleurodesis agent, can cause inflammation leading to pleurodesis.Pneumoplasty balloon306 is designed to push aside the parenchymal tissues of the lung when inflated thereby creating a cavity within the parenchymal tissue.Pneumoplasty balloon306 is also designed to anchorpneumostomy catheter300 within the parenchymal tissue of the lung. Alternative expanding devices may be used so long as they achieve these same functions.
Pneumoplasty balloon306 is formed as a tube, then assembled overtube302 and sealed totube302 at aproximal seal305 anddistal seal307.Pneumoplasty balloon306 is designed to be inflated within the parenchymal tissue of the lung.Pneumoplasty balloon306 is designed to create a cavity with the parenchymal tissue. After the cavity is created,pneumoplasty balloon306 is designed to anchortube302 within the lung. Upon inflation the diameter ofpneumoplasty balloon306 is sized as needed to create a chamber within the parenchymal tissue of the lung and anchor the pneumostomy catheter within the lung. The diameter ofpneumoplasty balloon306 may be between three quarters of an inch and two inches in diameter and is preferably between one inch and one and a quarter inches in diameter
FIG. 3B shows a sectional view oftube302 along line B-B ofFIG. 3A.Tube302 has two lumens.Main lumen330 which passes along the entire length oftube302 and is open at the proximal end and distal end oftube302.Inflation lumen332 is located on the side oftube302.Lumen332 is open at a slit along most of the length oftube302.Inflation lumen332 is connected toinflation tube320adjacent pneumoplasty balloon306. The distal tip ofinflation tube320 is secured intoinflation lumen332 andinflation tube320 is removably received in the open portion ofinflation lumen332. As shown inFIG. 3C, the distal end ofinflation lumen332 is sealed. However,tube302 is skived atlocation336 betweenproximal seal305 anddistal seal307 creating anaperture338 penetrating intoinflation lumen332. Theaperture338 allows air, water or saline to be forced intopneumoplasty balloon306 frominflation lumen332. The components may be secured to each other using adhesive, welding, melting or other techniques appropriate to the materials to be secured.
The pneumostomy catheter may be round, oval or another suitable shape that allows air flow while fitting within a desirable anatomical position.FIG. 3F shows a sectional view of analternative tube303 having an oval cross-section. The cross-sectional area oftube303 andinflation lumen330 is increased relative totube302. There is no need to increase the size ofinflation lumen332 as theinflation tube320 remains the same size. The minor dimension oftube303 is selected such that it will fit in the intercostal space. Thisoval tube303 creates an oval pneumostoma allowing for the creation of a larger cross-section pneumostoma in the intercostal space than may be achieved using a round pneumostomy catheter. Whereoval tube303 is used instead oftube302, the other components of the pneumostomy catheter (such as flange308) are shaped as necessary to accommodateoval tube303.
FIG. 3G shows a sectional view of an alternative distal tip of apneumostomy catheter360. In the design shown inFIG. 3G,tube302 is necked down in thevicinity362 ofpneumoplasty balloon306. The necking down oftube302 allows additional space forpneumoplasty balloon306 in its deflated state. This is particularly useful for non-porous inelastic balloons which may be bulky when deflated. By necking downtube302, towards the distal tip inregion362 the exterior profile ofpneumoplasty balloon306 when deflated approaches the diameter of the main length oftube302. This allows for easier insertion and removal ofpneumostomy catheter360.
Referring again toFIG. 3A,access flange308 is designed such that it may be secured against the skin of the chest of the patient andcollar309 may be secured totube302 thereby fixingtube302 in position relative to the chest of the patient.Access flange308, is slidable along the length of thetube302. The flange is designed to be positioned against the skin. Theflange308 can be sutured to the main shaft to secure the flange in position along the catheter or fixed in place by other means such as tape, adhesive, clips and staples and the like or by having a built-in securing mechanism, such as a cam, ratchet, lock or the like. Thepneumostomy catheter300 is designed to maintain a tension between the pneumoplasty balloon embedded in the lung and the thoracic wall. Onceaccess flange308 is secured to the main shaft,access flange308 provides the necessary counterforce for thepneumoplasty balloon306.Access flange308 may also be provided with an adhesive coating to temporarily secure the flange to the skin of the patient and thereby preclude accidental dislodgment of the catheter.
Afteraccess flange308 has been secured to the catheter, the excess length oftube302 can be trimmed. However, prior to cutting the excess length of thetube302, theinflation tube320 must be separated from thetube302 in order to maintain the inflation of thepneumoplasty balloon306. Theinflation tube320 fits inlumen332 oftube302.Lumen332 has a tear-away feature that allowsinflation tube320 to be separated fromtube302 by pulling it through the slit in the inflation lumen along the excess length. Wheninflation tube320 has been separated along the excess length oftube302, thetube302 can be trimmed safely.Inflation tube320 with the check valve/pilot balloon assembly is wrapped aroundcollar309 ofaccess flange308 and taped down so as not to inconvenience the patient.
For certain applications it is desirable to assemble a pneumostomy catheter with a percutaneous insertion tool so that the pneumostoma catheter can penetrate through the pleural membranes and the parenchymal tissue without previous incision or dissection. The percutaneous insertion tool is a device that permits the rapid deployment of the pneumostomy catheter through the parietal and visceral membranes into the lung. The insertion tool preferably prevents deflation of the lung by rapid deployment of the pneumostomy catheter and subsequent inflation of the pneumoplasty balloon. The percutaneous insertion tool may comprise a trocar, mandrel or the like designed to fit through the main lumen of the pneumostomy catheter and dissect tissue in a minimally traumatic way thereby allowing the pneumostomy catheter to penetrate the pleural membranes and enter the parenchymal tissue of the lung.
FIG. 3D shows apneumostomy catheter350 assembled with apercutaneous insertion tool370.Percutaneous insertion tool370 is sized to fit through the main lumen ofpneumostomy catheter350. A dissectingtip372 ofpercutaneous insertion tool370 protrudes beyond the distal tip ofpneumostomy catheter350. Dissectingtip372 is preferably a blunt dissecting tip that pushes tissue aside rather than cutting through tissue. Ashoulder374 engages the proximal end ofpneumostomy catheter350 such that dissectingtip372 is correctly positioned relative to the distal tip ofpneumostomy catheter350. Thepercutaneous insertion tool370 has ahandle376 at the proximal end. Thehandle376 is used by a physician to position thepercutaneous insertion tool370.Pneumostomy catheter350 is similar in design topneumostomy catheter300 ofFIG. 3A.
As shown inFIGS. 3D and 3E, thepneumoplasty balloon356 ofpneumostomy catheter350 is preferably low profile. Likewise,tube352 ofpneumostomy catheter350 is also preferably low profile such that the diameter oftube352 is preferably only slightly greater than the diameter of dissectingtip372 ofpercutaneous insertion tool370. The low profile ofpneumoplasty balloon356 andtube352 facilitate the passage ofpneumostomy catheter350 into the parenchymal tissue of the lung following the dissectingtip372 ofpercutaneous insertion tool370. In addition, as shown inFIGS. 3D and3E balloon356 is attached at its distal end insidemain lumen353 oftube352. This allowspneumostomy catheter350 to have a lower profile at its distal end. This also allows the inflation profile ofballoon356 shown by dashedline358 to overlap somewhat the position of dissectingtip372.
Two-Phase Pneumostomy TechniqueFIG. 4A is a flowchart showing the steps of the two-phase pneumostomy technique. The two-phase technique is divided into two separate procedures. In the first procedure420 a pleurodesis is created at the site of each planned pneumostoma. The pleurodesis can be created using chemical methods including introducing into the pleural space irritants such as antibiotics (e.g. Doxycycline or Quinacrine), antibiotics (e.g. iodopovidone or silver nitrate), anticancer drugs (e.g. Bleomycin, Mitoxantrone or Cisplatin), cytokines (e.g. interferon alpha-2β and Transforming growth factor-β); pyrogens (e.g.Corynebacterium parvum, Staphylococcus aureussuperantigen or OK432); connective tissue proteins (e.g. fibrin or collagen) and minerals (e.g. talc slurry). A pleurodesis can also be created using surgical methods including pleurectomy. For example, the pleural space may be mechanically abraded during thoracoscopy or thoracotomy. This procedure is called dry abrasion pleurodesis. A pleurodesis may also be created using radiotherapy methods, including radioactive gold or external radiation. These methods cause an inflammatory response and or fibrosis, healing, and fusion of the pleural membranes.
In preferred embodiments the pleurodesis procedure is performed under local anesthetic as an out-patient procedure. The pleurodesis is created between the visceral membrane of the lung and the parietal membrane on the inner wall of the thoracic cavity. Atstep422, a small incision is made at the target location under local anesthesia. Atstep424, a catheter is introduced into the pleural cavity to deliver a pleurodesis agent to the localized area surrounding the target location. A guide-wire may optionally be used to guide the catheter or other delivery mechanism into the pleural cavity while avoiding perforation of the lung. The pleurodesis agent is preferably a solid, mesh or gel which can be localized to the target location. Alternatively or in combination, a device may be introduced through the incision to perform a pleurectomy of the target location by e.g. mechanical abrasion of the parietal membrane. Localized pleurodesis may be enhanced by insertion of an absorbable polyglactin mesh in combination with localized pleurodesis. The mesh may be anchored in place with a suture to the chest wall. The absorbable mesh also serves to reinforce the pleural membranes at the site of the pleurodesis which may be advantageous in the second phase of the technique.
A pleurodesis may also be created atstep422 without entering the thoracic cavity or penetrating the parietal pleura. The physician makes a small incision to visualize the parietal membrane without penetrating the parietal membrane. Once the parietal membrane is exposed, an irritant is packed against the parietal membrane external to the pleural cavity. Over time the irritant causes inflammation of the parietal membrane and pleurodesis between pleural membranes. Pleurodesis agents may be utilized as described above.
The location of the pleurodesis should either be recorded with respect to a stable anatomic feature, or marked on the skin of the patient (if the time between the first and second procedures is to be short). Alternatively, an implantable marker may be used that can be located fluoroscopically or under ultrasound. Where an implantable mesh is used as part of the pleurodesis procedure, the mesh may be provided with markers including, for example, radiopaque fibers for radiographic imaging, or echogenic cavities for ultrasound imaging. Echogenic cavities may be readily formed when extruding polyglactin and can be incorporated in the polyglactin mesh used to help generate pleurodesis. Alternatively, markers such as RFID tags or metal components may be used which may be located from out side of the device with simple handheld devices, for example, RFID antenna and/or metal detector. The marker is preferably readily localized in order to guide placement of the channel for the pneumostoma in the second phase of the procedure.
FIG. 4B, illustrates the delivery of amesh450 through adelivery catheter452 into thepleural cavity140 between thevisceral membrane138 andparietal membrane108. After initiating the pleurodesis,catheter452 is removed and the opening closed with a suture. Alternatively, a catheter or other device may be left in place to continue delivery of a pleurodesis-inducing agent until the pleurodesis is formed. Mesh450 may be anchored in place with a suture and/or adhesive. Applicant's copending U.S. patent application Ser. No. 12/030,006 entitled “VARIABLE PARIETAL/VISCERAL PLEURAL COUPLING” discloses methods such as pleurodesis for coupling a channel through the chest wall to the inner volume of the lung without causing a pneumothorax and is incorporated herein by reference for all purposes.
Referring again toFIG. 4A, the formation of a stable pleurodesis may take two or more days depending upon the method used. The second procedure of the first technique should not be performed until sufficient time has passed for the pleurodesis to be secure. Thus, atstep425 of the first technique, there is a waiting period having a duration of48 hours or more. This wait step is acceptable because the initial pleurodesis procedure can be performed on an outpatient basis and the patient may therefore resume their regular activities between the first procedure and second procedure.FIG. 4C illustrates the formation of a stable pleurodesis. Note that in the localized region ofpleurodesis124, thevisceral membrane138 is fused with theparietal membrane108 and there is no longerpleural space140 between the pleural membranes in the localized target area.
Referring again toFIG. 4A, the second procedure begins atstep426. The patient is prepared using local anesthesia at the target site in addition to a sedative or general anesthesia. A chest tube may optionally be inserted into the pleural cavity in a standard manner. An incision is then opened over the pleurodesis atstep428 and the physician performs dissection to reach the parietal membrane. Atstep430, the physician may palpate and/observe the parietal membrane to verify the existence of a stable pleurodesis at the incision. Atstep432 the physician creates an incision through the fused parietal and visceral membranes within the pleurodesis. If the pleurodesis has been formed correctly, the incision should not leak air into the pleural cavity and the lung will remain inflated and pushed against the chest wall. Atstep434, the physician inserts thepneumostomy catheter300 into the lung through the incision. The insertion may alternatively be accomplished using thepercutaneous insertion tool370 ofFIGS. 3D-3E instead of making an incision.Pneumostomy catheter300 should be inserted until the distal tip of the pneumostomy catheter and the entirety ofpneumoplasty balloon306 is located within the parenchymal tissue.FIG. 4D shows thepneumostomy catheter300 correctly positioned through thechest wall106 and passing throughpleurodesis124 so that thedistal tip304 of thepneumostomy catheter300 and the entirety of deflatedpneumoplasty balloon306 is located within theparenchymal tissue132 oflung130.
Because thepneumostomy catheter300 will likely fill the incision throughchest wall106, the pneumostomy catheter is provided withmarkings310 so that the physician may gauge the placement of thecatheter300. The physician should measure the distance from the skin to the parietal membrane and then insert the catheter to the appropriate depth. The physician may conduct a dissection of the parenchymal tissue prior to insertion of the pneumostomy catheter—however, the parenchymal tissue is generally rather friable especially in patients with advanced COPD and so dissection may not be necessary. If a large incision in the pleural membranes was made then a purse-string suture should be made around the opening prior to incision of the catheter. The purse-string suture may be tightened after insertion ofpneumostomy catheter300.
Referring again toFIG. 4A, atstep436, afterpneumoplasty balloon306 has been correctly positioned within the parenchymal tissue, a water-filled, saline-filled or air-filled syringe is connected to the coupling of the pneumostomy catheter and material is injected into the pneumoplasty balloon. Although the filling of the pneumoplasty balloon may not be directly observed, the physician may palpate thepilot balloon322 as a marker for pneumoplasty balloon inflation. Additionally, the amount of air, water or saline required to inflate the pneumoplasty balloon to the desired shape is relatively predictable. A contrast medium may be used to inflate the pneumostomy balloon thereby allowing the position and size of the balloon to be observed and verified, for example, with X-ray or ultrasound visualization. Inflation ofpneumoplasty balloon306 pushes asideparenchymal tissue132 withinlung130 creating a cavity with the parenchymal tissue. The cavity should be approximately the same size and shape aspneumoplasty balloon306. Theinflated pneumostomy balloon306 secures the distal end of thepneumostomy catheter300 within the parenchymal tissue of thelung130.
When thepilot balloon322 indicates that the pneumoplasty balloon is inflated, the syringe is removed and thecap328 inserted incoupling326. Atstep438, after thepneumoplasty balloon306 is inflated, the incision through the chest wall is closed around the pneumostomy catheter using one or more sutures as necessary. A suture technique suitable for a straight incision is preferred over a, purse-string suture.Access flange308 is then pushed against the skin of the chest wall. A slight tension is applied to thepneumostomy catheter300. In the event of air leakage around the incision, this tension will serve to occlude the leak and prevent a pneumothorax from developing. When the desired degree of tension has been achieved, thecollar309 is fixed totube302 with, for example, a suture, a clamp, a hose clamp, locking collar, pin, and/or surgical tape.Access flange308 is also secured to the skin of the patient. Withaccess flange308 pushed against the skin and secured,inflation tube320 can be pulled out of the open portion ofinflation lumen332 oftube320 up to the back ofcollar309.Tube302 can then be shortened leaving enough length to connectmain lumen330 to a water seal.Inflation tube320 is then wrapped aroundcollar309 and secured. The pneumostoma site is dressed and the patient provided with standard postoperative care.FIG. 4E, illustratespneumostomy catheter300, with theinflated pneumoplasty balloon306 properly located within theparenchymal tissue132, theaccess flange308 against theskin114 of thechest100 and theinflation tube320 secured.
In some cases it may be desirable to connecttube302 to a water seal, Heimlich valve or similar sealing device during the immediate postoperative period to trap air or discharge fromtube302 and prevent entry of material into thelung130 throughtube302.FIG. 4F, illustratespneumostomy catheter300, with theinflated pneumoplasty balloon306 properly located within theparenchymal tissue132, theaccess flange308 against theskin114 of thechest100 and thetube302 connected to asealing device460.Access flange308 may be temporarily secured to the skin of the patient using adhesive470. As shown inFIG. 4F, a right-angle adapter462 is connected to the proximal end oftube302 ofpneumostomy catheter300. Aflexible tube464 connects right-angle adapter464 to sealingdevice460. Right-angle adapter462 reduces the profile/trajectory oftube464 away from thechest100 of the patient.Tube464 may be taped or secured to the chest of the patient.Sealing device460 may be secured to the patient but will more likely be secured bedside during the immediate postoperative period.
As shown inFIG. 4F, sealingdevice460 may comprise a water seal which maintains the outlet of atube466 underwater468. The use of a water seal for sealingdevice460 allows for direct observation of any air that may exit throughtube302. Air exiting the lung viatube302 is visible asbubbles leaving tube466 and passing throughwater468. Although a water seal in shown, sealingdevice460 may alternatively comprise any suitable sealing device including a Heimlich valve, flapper valve vacuum bottle and the like. After the immediate post-operative period, thesealing device460 may be removed andpneumoplasty catheter300 protected with a dressing or protective cover as shown, for example, inFIGS. 9D-9G.
The patient may be discharged after a short period of observation so long as there is no evidence of air leakage into the pleural cavity and consequent pneumothorax. If a chest tube has been inserted, the chest tube may be removed when no gases are being expelled from the pleural cavity. The chest tube opening is closed and dressed after removing the chest tube. The pneumostoma catheter is left in place from seven days to two weeks as the pneumostoma heals. Air flow out through themain lumen330 ofpneumostomy catheter300 is expected and is not an indicator of pneumothorax. It is, however, preferable to prevent air flow into the lung through the main lumen during the immediate postoperative. Thus during this time the proximal end ofmain lumen330 may be sealed with a check valve, water seal or provided with slight vacuum. The patient may be observed on an outpatient basis during this period until the pneumostoma has healed. The dressing may be changed periodically and the pneumostoma observed to ensure that thepneumostomy catheter300 is not disturbed andpneumoplasty balloon306 remains inflated.
When the physician considers that the pneumostoma has healed adequately, thepneumostomy catheter300 is removed and the pneumostoma is inspected. The physician will then confirm the size of the pneumostoma as preliminarily indicated by themarkings310 on thepneumostomy catheter300. The physician will then provide a pneumostoma management device (PMD) of the appropriate size. PMD's are described in applicant's provisional patent applications, Ser. No. 61/029,826 titled “Pneumostoma Management Device And Methods For Treatment Of Chronic Obstructive Pulmonary Disease” filed Feb. 19, 2008; Ser. No. 61/29,830 titled “Enhanced Pneumostoma Management Device And Methods For Treatment Of Chronic Obstructive Pulmonary Disease” filed Feb. 19, 2008; and Ser. No. 61/032,877 titled “Pneumostoma Management System And Methods For Treatment Of Chronic Obstructive Pulmonary Disease” filed Feb. 29, 2008. The application of the PMD to the pneumostoma upon removal of pneumostomy catheter is described in more detail with respect toFIGS. 8A and 8B, below.
Accelerated Two-Phase Pneumostomy TechniqueFIG. 5A is a flowchart showing the steps of an accelerated two-phase pneumostomy technique. This pneumostomy technique is similar to the two-phase technique with the primary difference that the accelerated two-phase technique is performed as a single procedure. Because there is a limited time for the pleurodesis to form in this technique, different pleurodesis technology is utilized. The patient is prepared using local anesthesia at the target site in addition to a sedative or general anesthesia. A chest tube may optionally be inserted into the pleural cavity in a standard manner. Atstep522, an incision is opened at the target location and the physician performs dissection to expose the parietal membrane. A larger incision may be required than in the first technique to permit use of the acute pleurodesis technology.
Atstep524, a material or device is delivered to the localized area surrounding the target location to create a seal between the visceral and parietal membranes in an acute manner. The seal is created in an acute manner between the pleural membranes using biocompatible glues, adhesive meshes or mechanical means such as clamps, staples, clips and/or sutures. A range of biocompatible glues are available that may be used on the lung, including light-activatable glues, fibrin glues, cyanoacrylates and two part polymerizing glues. The application of energy such as RF energy may also be used to weld the visceral and parietal membranes to each other in an acute manner. The membranes are heated to an adequate temperature using the directed energy to sufficiently denature the collagen and/or other connective tissue fibers. The membranes are then pushed into contact allowing the partially denatured fibers of the parietal and visceral membrane to contact one another mingle and bind to each other. In a preferred embodiment, RF energy is used to denature the collagen fibers which are then pressed together using a vacuum device. The adhesive, mechanical seal or tissue weld preferably develops into a pleurodesis over time. One or more of the pleurodesis agents discussed above may be used in conjunction with the sealing agent in order to promote pleurodesis formation following the procedure.
As shown inFIG. 5B, anincision552 is created over anintercostal space554 betweenribs107. Dissection is used to expose theparietal membrane108. Thevisceral membrane138 should be visible through theparietal membrane108. One ormore retractors550 may be used to aid visualization of theintercostal space554. Apolyglactin mesh torus556 may be coated with an adhesive and introduced between thevisceral membrane138 and theparietal membrane108 as shown.
After insertion of thepolyglactin mesh torus556, further steps may optionally be taken to secure thevisceral membrane138 to theparietal membrane108 surrounding the target site. For example, anautomated device558 such as automated purse-string suturing device may be used to place a ring ofsuture560 around the target site and mesh (seeFIG. 5C). A suitable automated purse-string suturing device may be found in U.S. Pat. No. 5,891,159 which is incorporated herein by reference. Alternatively,suture560 may be placed by hand. Although a purse-string suture is preferred, other tissue approximation devices such as tissue anchors, staples and clips may be used instead of or in addition to the adhesive and mesh in order to create an interpleural seal in an acute manner at the target location. Depending on the technology/adhesive used the interpleural seal may be stable immediately or after a period of a few minutes.
Referring again toFIG. 5A, atstep530, the physician palpates and/or observes the parietal membrane to verify the existence of a stable interpleural seal at the incision. Atstep532 the physician creates an incision through the parietal and visceral membranes within the sealed region. If the interpleural seal has been formed correctly, the incision should not leak significant amounts of air into the pleural cavity and the lung will remain inflated and pushed against thechest wall106. A purse-string suture may be placed by hand in the visceral membrane around the incision. Atstep534, the physician inserts thepneumostomy catheter300 into the lung through the incision. The insertion may alternatively be accomplished using thepercutaneous insertion tool370 ofFIGS. 3D-3E instead of making an incision.
As before, thepneumostomy catheter300 should be inserted until the distal tip of thepneumostomy catheter300 and the entirety ofpneumoplasty balloon306 are located within the parenchymal tissue.FIG. 5C illustrates the insertion ofpneumostomy catheter300 through thehole557 in the center ofpolyglactin mesh torus556 and through theparietal membrane108 andvisceral membrane138. As described above, a purse string suture may be placed in the visceral membrane in addition to any suture of anchoring device that may be introduced to hold the visceral membrane to the parietal membrane. Where a mesh is used, the mesh is provided with a central opening which constrains the aperture through the visceral membrane without the use of a purse-string suture. Where the technology used to form the adhesion/pleurodesis does not constrain the opening through the visceral membrane with a two-dimensional structure, a purse-string suture may be useful around the opening in the visceral membrane. The purse-string suture560 may be tightened prior to inflation ofpneumoplasty balloon306.
Referring again toFIG. 5A, atstep536, afterpneumoplasty balloon306 is located within the parenchymal tissue, a saline, air or water-filled syringe is connected to the coupling of the pneumostomy catheter and the pneumoplasty balloon is inflated as in the first technique. Atstep538, after thepneumoplasty balloon306 is inflated, theincision552 through the chest wall is closed around thepneumostomy catheter300 using one or more sutures as necessary. A suture technique suitable for a straight incision is preferred over a, purse-string suture.Flange308 is then pushed against the skin of the chest and secured and dressed as in the two-phase technique. (SeeFIG. 4E and accompanying text).
The patient is provided with the same postoperative treatment as with the two-phase technique. When the physician considers that the pneumostoma has healed adequately, thepneumostomy catheter300 is removed and the pneumostoma is inspected. The physician will then verify the size of the pneumostoma and provide a pneumostoma management device (PMD) of the appropriate size. The application of the PMD to the pneumostoma upon removal ofpneumostomy catheter300 is described in more detail with respect toFIGS. 8A and 8B, below.
Percutaneous Approach For Two-Phase Pneumostomy TechniquesThe two-phase pneumostomy techniques described inFIGS. 4A-4F and5A-5C and accompanying text may be performed, in whole or in part using a percutaneous approach. In an exemplary procedure, a catheter is introduced to the pleural cavity using a technique such as the Seldinger technique. A needle is passed percutaneously into the pleural cavity. A guidewire is placed into the pleural cavity through the needle. The needle is then removed. A catheter is then percutaneously introduced into the pleural cavity over the guidewire. The catheter is guided fluoroscopically to the desired position for creating a pleurodesis between the visceral and parietal membranes. The catheter delivers an agent or device for forming an adhesion/pleurodesis between the visceral and parietal membranes at the desired location. The device may be, for example, an adhesive, adhesive mesh, tissue welding device, pleurodesis agent or other agent or device for bonding the visceral and parietal membranes to each other in an acute manner. In the second step of the technique the pneumostomy catheter is introduced through the adhesion/pleurodesis into the lung. The introduction of the pneumostomy catheter may also be carried out percutaneously. The introduction of the pneumostomy catheter may be performed in as separate procedure (two-phase technique) or in the same procedure (accelerated two-phase technique) depending upon the technology used to form the adhesion/pleurodesis.
As part of the percutaneous approach a percutaneous catheter may be used to apply energy such as RF energy may to weld the visceral and parietal membranes to each other in an acute manner. The catheter is introduced to the pleural cavity using a technique such as the Seldinger technique and guided to the desired site of the pleurodesis using e.g. fluoroscopic visualization. The catheter then heats the membranes to an adequate temperature using directed energy to sufficiently denature the collagen and/or other connective tissue fibers. In a preferred embodiment, RF energy is used as the heat source. The catheter then applies vacuum to the parietal and visceral membranes, pushing them into contact, and allowing the partially denatured fibers of the parietal and visceral membrane to contact one another, mingle and bind to each other.
Single-Phase Pneumostomy TechniqueFIG. 6A is a flowchart showing the steps of the single-phase pneumostomy technique. This technique is similar to the accelerated two-phase technique with the exception that no interpleural seal is created prior to entering the pleural space and lung. Because no preliminary interpleural seal is created the lung may deflate during the procedure resulting in a temporary pneumothorax. Thetechnique612 begins with the patient given a general anesthetic, intubated and ventilated via the other lung. A chest tube is inserted into the pleural cavity in a standard manner at a location away from the target area to assist with re-inflation of the lung after the procedure. Atstep622, an incision is opened at the target location and the physician performs dissection to expose theparietal membrane108. A larger incision may be required than in the first two techniques to permit access to the pleural cavity. In some cases a minithoracotomy may be performed, in other cases, a smaller rib resection may be used instead of a minithoracotomy. In other cases sufficient access may be obtained by retracting the ribs without resection. Atstep624, a small incision is made in the parietal membrane at the target location. The incision in the parietal membrane allows air to enter the pleural space causing the lung to shrink away from theparietal membrane108. Atstep624, a lung manipulation device is inserted through the incision to grasp the visceral membrane of the lung and approximate it to the opening in the parietal membrane. A pleurodesis agent may be applied between the visceral membrane and parietal membrane surrounding the opening at this time to promote pleurodesis after the procedure.
FIG. 6B shows a minithoracotomy in which a section of arib107 has been resected to provide access to thepleural cavity140 through anincision650. Dissection is used to expose theparietal membrane108. Theparietal membrane108 has been retracted around opening650 to provide access to thelung130. One ormore retractors654 may be used to aid with visualization of thepleural cavity140. Note that thelung130 has pulled back from the parietal membrane because air has entered thepleural cavity140. Alung manipulation device652 is therefore inserted through theopening650 to manipulate thevisceral membrane138 of the surface oflung130. The lung manipulation device may be a blunt forceps or a suction device or similar tool designed to grip the visceral membrane without tearing the visceral membrane. One or more of the pleurodesis agents discussed above may be applied to theparietal membrane108 or visceral membrane at this time to promote pleurodesis formation following the procedure.
Referring again toFIG. 6A, atstep630, the physician may choose to secure thevisceral membrane108 to theparietal membrane138 around the opening into thepleural cavity140. The lung manipulation device is used to approximate the visceral and parietal membranes. When the membranes are approximated, the visceral membrane is fixed to the parietal membrane using several sutures distributed around the perimeter of the opening in the parietal membrane. Although sutures are preferred, other materials and methods may be used, such as, e.g. adhesives, staples, clips, tissue anchors and the like.
Atstep632 the physician creates a small incision through the visceral membrane. The surgeon may additionally put a purse-string suture around the site of the incision. Atstep634 the physician inserts the distal tip of thepneumostomy catheter300 through the incision into the lung. If the visceral membrane was not secured to the parietal membrane atstep630, it will be necessary to provide counter-pressure with the lung manipulation tool during introduction of thepneumostomy catheter300 into the lung. As before, thepneumostomy catheter300 should be inserted until the distal tip of thepneumostomy catheter300 and the entirety ofpneumoplasty balloon306 is located within the parenchymal tissue of the lung. The purse-string suture may be tightened prior to inflation ofpneumoplasty balloon306. Atstep636, after thepneumoplasty balloon306 is located within the parenchymal tissue, a saline, water or air-filled syringe is connected to the coupling of thepneumostomy catheter300 and thepneumoplasty balloon306 is inflated as in the first technique.
FIG. 6C illustrates apneumostomy catheter300 inserted through thevisceral membrane138 into the parenchymal tissue oflung130. A purse-string suture656 is shown around thepneumostomy catheter300. Thelung130 shown inFIG. 6C was not fixed to the parietal membrane prior to insertion ofpneumostomy catheter300. However, now that the pneumostomy catheter is secured within the lung by the pneumoplasty balloon and the purse-string suture, the visceral membrane may be approximated to the parietal membrane during the closing of the opening.
Referring again toFIG. 6A, atstep638, after thepneumoplasty balloon306 is inflated, the incision through the chest wall is closed around the pneumostomy catheter using one or more sutures as necessary. If the pleural membranes were not previously secured to one another, the visceral membrane is drawn into contact with the parietal membrane using thepneumostomy catheter300. After the opening through the chest wall has been closed,flange308 is pushed against the skin of the chest wall and secured as in the two-phase technique. (SeeFIG. 4E and accompanying text). Slight tension is applied to thepneumostomy catheter300 prior to securingflange308 to ensure that the pleural membranes are in good contact with each other. The pneumostoma site is dressed. At this point, the chest should be sealed and there should be little air leaking into the pleural cavity at the site of the pneumostomy catheter. However, some air may continue to leak until a pleurodesis forms between the visceral and parietal membranes surrounding the pneumostomy catheter. The chest drain should therefore be left in to apply negative pressure to the pleural cavity to re-inflate and then maintain the inflation of the lung until there is no longer any leakage into the pleural cavity. This may take from one to three days. After any air leakage into the pleural cavity is resolved, the chest tube is removed. The pneumostomy catheter is left in place from one to two weeks while the pneumostoma heals as in the two-phase pneumostomy techniques.
Although this procedure has been illustrated using a minithoracotomy for access to the lung, other approaches may be used. For example, the procedure may also be performed in a less invasive fashion by entering the pleural cavity through the intercostal space and retracting the ribs rather than removing a section of rib. The procedure may also be performed using a minimally invasive approach under thorascopic guidance.
The patient is provided with the same postoperative treatment as with the two-phase pneumostomy techniques. When the physician considers that the pneumostoma has healed adequately, the pneumostomy catheter is removed and the pneumostoma is inspected. The physician will then verify the size of the pneumostoma and provide a pneumostoma management device (PMD) of the appropriate size. The application of the PMD to the pneumostoma upon removal of pneumostomy catheter is described in more detail with respect toFIGS. 8A AND 8B, below.
Percutaneous Single-Phase Pneumostomy TechniqueFIG. 7A is a flowchart showing the steps of a percutaneous single-phase pneumostomy technique. This pneumostomy technique is similar to the accelerated two-phase technique with the primary difference that no prior pleurodesis is formed. Because no pleurodesis is formed in this technique, different technology is utilized to deliver the pneumostomy catheter into the lung. The pneumostomy catheter is assembled with a percutaneous insertion tool and delivered into the parenchymal tissue of the lung through the pleural cavity. Tension on the pneumostomy catheter after the balloon is inflated serves to hold the visceral and parietal pleural membranes in opposition and seal any leakage during pneumostoma formation. A chest tube may be inserted prior to the procedure in order to extract any air that may leak into the pleural cavity during the procedure.
Referring again toFIG. 7A, prior to the procedure, the patient is prepared using local anesthesia at the target site in addition to a sedative or general anesthesia. A chest tube is preferably inserted into the pleural cavity as a prophylactic measure. Atstep722, an incision is opened at the target location and the physician performs dissection to expose the parietal membrane. Atstep724, a material or device may be optionally delivered to the localized area surrounding the target location to promote pleurodesis between the visceral and parietal membranes after the procedure. One or more of the pleurodesis agents discussed above may be used in order to promote pleurodesis formation following the procedure however it is not expected that the pleurodesis will form during the procedure itself. Atstep726, the physician assembles thepneumostomy catheter350 with thepercutaneous insertion tool370 as described inFIGS. 3D and 3E and accompanying text. Atstep734, the physician inserts thepneumostomy catheter350 into the lung through the parietal and visceral membranes using thepercutaneous insertion tool370. As before, thepneumostomy catheter350 should be inserted until the distal tip of thepneumostomy catheter350 and the entirety ofpneumoplasty balloon356 are located within the parenchymal tissue.FIG. 7B illustrates the insertion ofpneumostomy catheter350 through theparietal membrane108 andvisceral membrane138 through thepleural cavity140. Because there is no pleurodesis between theparietal membrane108 andvisceral membrane138, a small amount of air may leak into the pleural cavity aroundtube352. However, the chest tube should be able to extract the small amount of air and thelung130 will remain inflated and pushed against thechest wall106.
Referring again toFIG. 7A, atstep736, afterpneumoplasty balloon356 is located within theparenchymal tissue132 thepneumoplasty balloon356 is inflated as in the first technique. Atstep737, thepercutaneous insertion tool370 is removed from the main lumen of pneumostomy catheter350 (this step may alternatively be performed before balloon inflation). Atstep738, after thepneumoplasty balloon356 is inflated,flange308 is pushed against the skin of the chest as shown inFIG. 7C. Tension is applied totube352 ofpneumostomy catheter350 drawing thelung130 towardsthoracic wall106 and bringing theparietal membrane108 andvisceral membrane138 into contact. The contact between theparietal membrane108 andvisceral membrane138 should reduce or eliminate any air leak aroundtube352. Moreover, the contact between theparietal membrane108 andvisceral membrane138 should mature into a pleurodesis during the postoperative period. Theballoon356 andtube352 may be coated and/or impregnated with a pleurodesis agent to promote the formation of the pleurodesis. After the tension is applied totube352,pneumostomy catheter350 is secured and dressed as in the two-phase technique. (SeeFIG. 4E and accompanying text).
The patient is provided with the same postoperative treatment as with the two-phase technique. When the physician considers that the pneumostoma has healed adequately, thepneumostomy catheter350 is removed and the pneumostoma is inspected. The physician will then verify the size of the pneumostoma and provide a pneumostoma management device (PMD) of the appropriate size. The application of the PMD to the pneumostoma upon removal ofpneumostomy catheter350 is described in more detail with respect toFIGS. 8A and 8B, below.
Referring again toFIG. 7A, additional tools or devices may be used atstep724 to stabilize the parietal and visceral membranes in the region surrounding the target location for the pneumostoma. Such tools and/or device may be used to stabilize the visceral and parietal membranes before insertion of thepneumostomy catheter350. They may optionally remain in place after insertion of thepneumostomy catheter350. In some cases the devices may be implantable and/or absorbable such that they may be left in place and be absorbed by the body over time.
FIG. 7D shows an example of alung retraction tool740 inserted percutaneously throughthoracic wall106 into thelung130 prior to insertion of thepneumostomy catheter350.Retraction tool740 comprises a thintubular shaft742 in which is received arod744. At the proximal end ofshaft742 is mounted anactuator746. Operation ofactuator746 generates reciprocal movement ofrod744 andshaft742.
At the distal end ofshaft742 is mounted ananchor748.Anchor748 has a first low-profile configuration (not shown) in which it has approximately the same diameter asshaft742.Anchor748 may be readily introduced percutaneously into the lung in this first low-profile configuration. Afteranchor748 is positioned within the lung,actuator746 is operated to moverod744 withinshaft742. The movement ofrod744 relative toshaft742cause anchor748 to reconfigure into a second configuration (as shown) in which it extends laterally from the diameter ofshaft742. In this second configuration (as shown),anchor748 is designed to engage thevisceral membrane138 of thelung130.
Afteranchor748 has been deployed to the second configuration, a slight tension may be applied tolung retraction tool740 to drawvisceral membrane138 into contact withparietal membrane108.Lung retraction tool740 may then be secured into position using alocking flange747 mounted onshaft742.Lung retraction tool740 is preferably positioned laterally displaced and adjacent the target site for the pneumostoma in the same intercostal space. A secondlung retraction tool740 may be positioned on the other side of the target site with sufficiency space between the lung retraction tools for introduction ofpneumostomy catheter350. After introduction and deployment of the pneumostomy catheter (as described above), theanchor748 is returned to the first low-profile configuration and the lung retraction tool(s) is(are) removed.
A number of different devices may be delivered percutaneously to stabilize the visceral and parietal membranes, including for example, suture, clips, staples, adhesive and/or adhesive patches.FIG. 7E shows an example of alung anchor750 inserted percutaneously throughthoracic wall106 into thelung130 prior to insertion of thepneumostomy catheter350.Lung anchor750 comprises anelongate body752. At the distal end ofbody752 isanchor head758. Along theelongated body752 are arrayed a plurality ofbarbs754 oriented so as to prevent distal movement ofelongate body752 through tissue in the direction ofanchor head758.
Lung anchor750 is inserted into a thin walled needle/cannula760 for insertion through the chest wall. Needle/cannula760 holdsanchor head758 in a low profile configuration during introduction intolung130. Whenanchor head758 is correctly positioned within thelung130, needle/cannula760 is withdrawn.Anchor head758 springs into a wide profile configuration designed to engage the visceral membrane of the lung—see anchor head758a.After needle/cannula has been withdrawn,barbs754 are also able to engage the tissue ofchest wall130. As light tension may be applied toelongate body752 to drawvisceral membrane138 into contact withparietal membrane108.Barbs754 engage the tissue ofchest wall130 to maintain the tension inelongate body752. One or more lung anchors750 may be introduced adjacent the target site for the pneumostoma in the same intercostal space to stabilize the visceral and parietal membranes during insertion ofpneumostomy catheter350.
Lung anchor750 may be made from biocompatible metals and/or polymers. Inparticular lung anchor750 may be made from a superelastic metal, for example NITINOL. Alternatively,lung anchor750 maybe made of an absorbable material, for example polyglactin. Where the anchoring device is made of an absorbable material it may be left in place and absorbed following the introduction and securing orpneumostomy catheter350.
FIGS. 7F-7H illustrate analternative lung anchor778 which may be used to stabilize thevisceral membrane138 andparietal membrane108 prior to and during the pneumostomy procedure. As shown inFIG. 7F,lung anchor778 is implanted with anapplicator770.Applicator770 has a thintubular shaft772 in which is receivedlung anchor778.Shaft772 is inserted percutaneously untillung anchor778 is correctly positioned. At the proximal end ofshaft772 is mounted anactuator776. Operation ofactuator776 operates to ejectlung anchor778 fromshaft772 into tissue adjacent the distal end ofshaft772 in the manner of a surgical staple or clip applier.Actuator776 is then removed leaving the lung anchor in position to stabilize theparietal membrane108 andvisceral membrane138—see deployedanchor778aofFIG. 7F. On or more lung anchors778 are preferably positioned laterally displaced and adjacent the target site for the pneumostoma in the same intercostal space prior to the pneumostomy procedure.
FIG. 7G shows an enlarged view oflung anchor778.Lung anchor778 includes alongitudinal body780, a first set ofretainers782 and a second set ofretainers784. As shown inFIG. 7G, theretainers782,784 lie flat against thebody780 in the undeployed configuration. The lung anchor is place inapplicator770 in this undeployed configuration. After insertion into thetissue retainers782,784 move away frombody780 to engage tissue as shown inFIG. 7G.FIG. 7H shows alung anchor778awithretainers782,784 in the deployed configuration.Retainers782,784 are oriented in opposite directions so that one set of retainers may engage theparietal membrane108 and the other set may engage thevisceral membrane138 and thereby secure the two pleural membranes to one another.
The transition from undeployed configuration to deployed configuration may be achieved in a number of ways. Forexample lung anchor778 may be mechanically constrained in the undeployed configuration bytubular shaft772 such that, when released,retainers782,784 spring out into the deployed configuration. Alternatively,lung anchor778 may be formed of a shape memory polymer or metal such that upon insertion into the tissue, the material of the anchor transitions from the undeployed configuration778 (FIG. 7G) to the stored deployedconfiguration778a(FIG. 7H).Lung anchor778 may be made from biocompatible metals and/or polymers. Inparticular lung anchor778 may be made from a superelastic metal, for example NITINOL. Alternatively,lung anchor778 maybe made of an absorbable material, for example polyglactin. Where the anchoring device is made of an absorbable material it may be left in place and absorbed following the pneumostomy procedure.
Pneumostoma Management DeviceAs described above, a pneumostoma may be created to treat the symptoms of chronic obstructive pulmonary disease. A patient is typically provided with a pneumostoma management system to protect the pneumostoma and keeps the pneumostoma open on a day-to-day basis. In general terms a pneumostoma management device (“PMD”) comprises a tube which is inserted into the pneumostoma and an external component which is secured to the skin of the patient to keep the tube in place. Gases escape from the lung through the tube and are vented external to the patient. The pneumostoma management device may, in some, but not all cases, include a filter which only permits gases to enter or exit the tube. The pneumostoma management device may, in some, but not all cases, include a one-way valve which allows gases to exit the lung but not enter the lung through the tube.
FIGS. 8A and 8B illustrate application of a pneumostoma management device (“PMD”)800 to apneumostoma110 formed in accordance with a pneumostomy procedure of the present invention.PMD800 includes achest mount802 which may be mounted to thechest100 of the patient and apneumostoma vent804 which is fitted to thechest mount802.Pneumostoma vent804 is mounted through anaperture824 inchest mount802.Chest mount802 has a first coupling that engages a second coupling of the pneumostoma vent to releasably secure thepneumostoma vent804 to thechest mount802. A patient will typically wear a PMD at all times after formation of the pneumostoma and thus the materials should meet high standards for biocompatibility. A pneumostoma management device and system for use with such a pneumostoma management device is described in provisional patent application 61/032,877 entitled “Pneumostoma Management System And Methods For Treatment Of Chronic Obstructive Pulmonary Disease” filed Feb. 29, 2008, which is incorporated herein by reference.
Pneumostoma vent804 includes atube840 sized and configured to fit within the channel ofpneumostoma110.Tube840 is stiff enough that it may be inserted intopneumostoma110 without collapsing.Tube840 may be round, oval or some other shape depending on the shape of the pneumostoma. Over time a pneumostoma may constrict and thePMD800 is designed to preserve the patency of thechannel120 ofpneumostoma110 by resisting the natural tendency of the pneumostoma to constrict.Pneumostoma vent804 includes acap842 and ahydrophobic filter848 over the proximal end oftube840.Hydrophobic filter848 is positioned and mounted such that material passing in and out ofpneumostoma110 throughtube840 ofpneumostoma vent804 must pass throughhydrophobic filter848.
Tube840 ofpneumostoma vent804 is sufficiently long that it can pass through thethoracic wall106 and into thecavity122 of a pneumostoma inside thelung130.Pneumostoma vent804 is not however so long that it penetrates so far into thelung130 that it causes injury. The length oftube840 required for apneumostoma vent804 varies significantly between different pneumostomas. Alonger tube840 is usually required in patients with larger amounts of body fat on the chest. Alonger tube840 is usually required where the pneumostoma is placed in thelateral position112 rather than thefrontal position110. Because of the variation in pneumostomas, pneumostoma vents804 are manufactured havingtubes840 in a range of sizes.Tube840 may be from 30 to 180 mm in length and from 5 mm to 20 mm in diameter depending on the size of a pneumostoma. Atypical tube840 may be between 40 mm and 100 mm in length and between 8 mm and 12 mm in diameter. When the pneumostomy catheter is removed, the physician should gauge the size of the pneumostoma that has been created for the particular patient and provide apneumostoma vent804 having atube840 of appropriate length for the pneumostoma. The markings on the side of thepneumostomy catheter300 may also assist the physician in determining the approximate length ofpneumostoma vent804.
To usePMD800,chest mount802 is first positioned over a pneumostoma and secured with adhesive to theskin114 of the patient.Chest mount802 may be positioned by manual alignment of theaperture824 ofchest mount802 with the aperture of thepneumostoma110. Alternatively apneumostoma vent804 or an alignment tool may be used to help align thechest mount802. As shown inFIG. 8B the low profile ofchest mount802 allows it to be inconspicuously positioned on thechest100 of a patient in either of the frontal110 or lateral112 locations illustrated inFIG. 1A.Cap842 ofpneumostoma vent804 is received in a recess inchest mount802 such thattube840 is secured inside thechannel120 of thepneumostoma110.
The removal of thepneumostomy catheter300 and application of thefirst PMD800 will be performed by the physician. However, the patient will subsequently be responsible for applying and removing thechest mount802 and the insertion, removal and disposal ofpneumostoma vent804. Thepneumostoma management device800 is preferably provided as part of a system which assists the patient in utilizing the chest mount and pneumostoma vent and keeping the pneumostoma clean and free of irritation/infection while trapping sputum, mucous and other discharge. The patient will exchange onepneumostoma vent804 for another and dispose of the usedpneumostoma vent804.Pneumostoma vent804 will be replaced periodically, such as daily, or when necessary. The patient will be provided with a supply of pneumostoma vents804 of the appropriate size by a medical practitioner or by prescription.Chest mount802 will also be replaced periodically, such as weekly, or when necessary. The patient will also be provided with a supply ofchest mount802 by a medical practitioner or by prescription. A one week supply of pneumostoma vent804 (such as seven pneumostoma vents804) may be conveniently packaged together with onechest mount802. Pneumostoma management devices of different design as discussed in the previously referenced patent applications may also be used.
Alternative Pneumostomy InstrumentsFIGS. 9A-E show alternative pneumostomy instruments for use in pneumostomy procedures in accordance with embodiments of the present invention. The instruments have an expanding mechanism (such as a balloon) for creating a cavity in the parenchymal tissue of the lung thereby engaging the parenchymal tissue and allowing the lung to be drawn towards the thoracic wall. The instruments have a tube connected to the expanding mechanism for drawing the expanding mechanism towards the chest wall and having a lumen to connect to the cavity in the parenchymal tissue. The instruments have a securing mechanism (such as a sliding flange) for securing the position of the expanding mechanism after applying tension to the tube. The function of the various components can be achieved in a variety of ways.
FIGS. 9A and 9B show different sectional views analternative pneumostomy instrument900 having anouter tube902 and aninner tube904 in a coaxial relationship. The inner tube is904 connected to theouter tube902 at the proximal end of the instrument by a fitting906. Aninflation lumen908 is defined by the space between theinner tube904 andouter tube906. Theinflation lumen908 is sealed at the proximal end of theinstrument900 by the fitting906. At the distal end, theinner tube904 protrudes beyond the end of theouter tube906. Aninflatable pneumoplasty balloon910 is connected between the end of theinner tube904 and the end of theouter tube906 as shown inFIG. 9A thereby sealing the distal end of theinflation lumen908. Thus air, water or saline inserted through fitting906 passes throughinflation lumen908 intopneumoplasty balloon910 thereby inflatingballoon910 to the position shown by dottedline911. Anaccess flange912 is provided in sliding engagement with the exterior of theouter tube902.FIG. 9B shows a sectional view ofpneumostomy instrument900 along the line B-B ofFIG. 9A.FIG. 9B showsouter tube902,inner tube904,inflation lumen908 andmain lumen914.Pneumostomy instrument900 is used in the same way aspneumostomy catheter300 ofFIGS. 3A through 3C with the exception that pneumostomyinstrument900 has no facility to be shortened after the pneumostomy procedure.Pneumostomy instrument900 may also be used with apercutaneous insertion instrument370 as shown inFIGS. 3D-3E.
FIG. 9C shows a perspective view of analternative pneumostomy instrument920 that uses an expanding pneumoplasty mechanism instead of a pneumoplasty balloon. As shown inFIG. 9C, the expandingpneumoplasty mechanism922, comprises apolymer skin924 covering a flexible expanding cage formed of sixbars926. The distal end of eachbar926 is fixed to the distal end ofinner tube928 adjacent atraumaticdistal tip931. The proximal end of eachbar926 is fixed to the distal end ofouter tube930.Outer tube930 is received overinner tube928 and can slide relative toinner tube928. At the proximal end ofouter tube930 is a threadednut932 which rides onthreads933 on the exterior ofinner tube928.Inner tube928 comprises amain lumen929 which runs from the proximal end to the distal end ofpneumostomy instrument920.
Expandingpneumoplasty mechanism922 is expanded by turningnut932 clockwise which drivesnut932 andouter tube930 distally relative toinner tube928. Whenouter tube930 moves distally relative toinner tube928,bars926, which are initially approximately parallel toinner tube928, bend outwards frominner tube928 as shown. Thebars926push polymer skin924 outwards in the ball shape shown.Nut932 may be provided with a stop to indicate when the expandingpneumoplasty mechanism922 is fully expanded.Nut932 may also be provided with a safety lock, such as a ratchet which locks the nut in position until removal of the pneumoplasty instrument is desired.
Pneumostomy instrument920 includes anaccess flange934 which slides on the exterior ofouter tube930 for engaging the chest of the patient. However, as shown inFIG. 9C,access flange934 is also driven by anut936 which rides onthreads938 on the exterior ofouter tube930. Turningnut936 clockwisedrives access flange934 distally thereby drawing the expandingpneumoplasty mechanism922 closer towards the chest wall.Nut936 may also be provided with a safety lock, such as a ratchet which locks the nut in position until removal of the pneumoplasty instrument is desired.Access flange934 and its driving and locking mechanism may be substituted foraccess flange912 oraccess flange308.
Pneumostomy instrument920 is used in the same way aspneumostomy catheter300 ofFIGS. 3A through 3C with the exceptions that expansion of expandingpneumoplasty mechanism922 is by turningnut932 rather than inflating a balloon and positioning ofaccess flange934 is by turningnut936 rather then sliding and suturing.Pneumostomy instrument920 may also be used with apercutaneous insertion instrument370 as shown inFIGS. 3D-3E.
FIGS. 9D and 9E show sectional and perspective views respectively of a post-operativeprotective cover940.Protective cover940 includesdome942 which is specially-shaped to protect the exterior components of thepneumostomy catheter300 during the post-operative period in which a pneumostoma is healing. As shown inFIGS. 9D and 9E,dome942 is pear-shaped to accommodate thepilot balloon322,check valve324 andcap328.Flange308 is shaped to fit snugly withincover940 and thus is also pear-shaped. The contact between the inside edge ofdome942 and the raisedlip950 offlange308 effectively seals the space betweendome942 andflange308.Dome942 should be relatively low-profile and smooth so as not to restrict movement of the patient or interfere with the patient's clothing.
Protective cover940 has twoclips944 for engagingaccess flange308. Each ofclips944 comprises acatch946 for engaging a detent in raisedlip950 offlange308. Each ofclips944 also has arelease lever948 for disengagingcatch946 fromflange308. In use,protective cover940 can be clipped toflange308 by pushingclips944 into position over raisedlip950.Protective cover940 is released by squeezinglever arms948 towardsdome942. In other embodiments,protective cover940 may be releasably secured toflange308 using other suitable mechanisms or by a releasable adhesive. Alternatively,protective cover940 may be secured to thechest100 of the patient directly as shown inFIGS. 9F-9G.
Dome942 is preferably made of a stiff hydrophobic material such that whenprotective cover940 is in position overpneumostomy catheter300,protective cover940 prevents entry of water or other foreign matter intotube302.Dome942 is also designed to capture any discharge fromtube302.Dome942 is also preferably porous either in whole or in part to allow air to circulate and pass in and out oftube302.Protective cover940 is a disposable component—like a dressing—and will typically be removed and exchanged for a replacement every day or few days as required.
FIGS. 9F and 9G shows sectional and perspective views respectively of an alternative post-operativeprotective cover960.Protective cover960 is similar in shape and function toprotective cover940, however,protective dome960 attaches directly to the skin of the patient rather than to the flange of thepneumostomy catheter300.Protective cover960 includesdome962 which is specially-shaped to protect the exterior components of thepneumostomy catheter300 during the post-operative period in which a pneumostoma is healing. As shown inFIGS. 9F and 9G,dome962 is pear-shaped and defines acavity964 sized to accommodate thetube302,pilot balloon322,check valve324,flange308 and cap328 ofpneumostomy catheter300. The flat edge ofdome962 is coated with an adhesive966, such as a hydrocolloid adhesive, to attachcover960 to thechest100 of the patient. The contact between the adhesive966 and theskin114 on thechest100 of the patient effectively seals the space surroundingpneumostomy catheter300.Dome962 should be relatively low-profile and smooth so as not to restrict movement of the patient or interfere with the patient's clothing during the postoperative period.
Dome962 is preferably made of a stiff hydrophobic material such that whenprotective cover960 is in position overpneumostomy catheter300,protective cover960 prevents entry of water or other foreign matter intotube302.Dome962 is also designed to capture anydischarge form tube302.Dome962 is also preferably porous either in whole or in part to allow air to circulate and pass in and out oftube302.Protective cover960 is a disposable component—like a dressing—and will typically be removed and exchanged for a replacement every day or every few days as required.
FIGS. 10A-10F show views of analternate pneumostomy instrument1000.FIGS. 10A-10Cshow pneumostomy instrument1000 in its expanded position in which the pneumostomy instrument is configured to secure the lung of a patient.FIGS. 10D-10Fshow pneumostomy instrument1000 in its expanded position in which the pneumostomy instrument is configured during insertion to and removal from the lung.
FIG. 10A shows a perspective view ofpneumostomy instrument1000.FIG. 10B shows a sectional view ofpneumostomy instrument1000 andFIG. 10C shows an enlarged sectional view of the distal end ofpneumostomy instrument1000. As shown inFIG. 10A,pneumostomy instrument1000 comprises atube1002 having at the distal end an expandingbasket1010 and having aproximal structure1020.
Thetube1002 is between five and ten inches in length and is preferably between six and seven inches in length. The tube may be from one quarter to three quarters of an inch in diameter and is preferably ⅜ of an inch in diameter. The tube has alumen1003. In a preferred embodiment, the tube is made from e.g. c-flex 50A). However other biocompatible thermoplastic elastomers may be used. The relatively soft material of thetube1002 allows thetube1002 to fold over outside the body in order that it may be secured during the immediate postoperative period. Reinforcing features may be added totube1002 to increase its column strength and tensile strength. However, it is preferred that the reinforcement does not prevent thetube1002 from bending. For example longitudinal inelastic reinforcing fibers may be embedded intube1002 or otherwise affixed thetube1002 in order to increase the tensile strength while still permitting bending. In another example,tube1002 may be spiral wound with wire (or be embedded with said wire) to increase its column strength while still permitting bending.
The material of the expandingbasket1010 is selected such that it can maintained the desired expanded profile when positioned within the lung but can be safely returned to a low profile for extraction. The harder durometer material of the basket allows it to maintain its expanded shape in the lung. In a preferred embodiment, the expandingbasket1010 is made from a harder durometer material, for example c-flex (e.g. c-flex 90A) than the tube (e.g. c-flex 50A). However other thermoplastic elastomers may be used.
The expandingbasket1010 may also be covered with a thin elastic covering that allows for expansion and collapse of the basket for example an elastic balloon material. See, for example,polymer skin924 covering the flexible expanding cage inFIG. 9C. The covering would assist the expandingbasket1010 in pushing aside parenchymal tissue of the lung during expansion of the basket. The covering would thus assist anchoring of the expandingbasket1010 within the lung while facilitating later removal of expanding basket after the pneumostoma has formed. The thin covering may also extend along the length oftube1002 to maintain a uniform outside diameter and to help with stabilization of thetube1002. As shown inFIG. 10A,pneumostomy instrument1000 is provided with amandrel1040.Mandrel1040 includes anelongated member1042 adapted to fit throughtube1002 into expandingbasket1010. Thedistal tip1046 ofmandrel1042 is adapted to engage expandingbasket1010 and stretch it into a linear configuration suitable for insertion and removal of the instrument. The mandrel also imparts extra stiffness topneumostomy instrument1000 during insertion and removal.Mandrel1040 has aluer fitting1048 attached to the proximal end. Luer fitting1048 engages the female luer fitting1026 to securemandrel1040 withinpneumostomy instrument1000 during insertion and removal.Mandrel1040 may be provided with a radio marker, radiopaque or echogenic material incorporated in thedistal tip1046 so that the tip may be visualized during insertion of the pneumostomy instrument.
As shown inFIG. 10A,pneumostomy instrument1000 may also be provided with anaccess flange1050.Access flange1050 is designed such that it may be secured against the skin of the chest of the patient andcollar1052 may be secured totube1002 thereby fixingtube1002 in position relative to the chest of the patient.Access flange1052, is slidable along the length of thetube1002. Theflange1052 is designed to be positioned against the skin. Theflange1050 can be sutured totube1002 to secure the flange in position along the catheter or fixed in place by other means such as tape, adhesive, clips and staples and the like or by having a built-in securing mechanism, such as a cam, ratchet, lock or the like. Theflange1052 is designed to maintain a tension between the expandingbasket1010 embedded in the lung and the thoracic wall. Onceaccess flange1050 is secured totube1002,access flange1050 provides the necessary counterforce for the expandingbasket1010.Access flange1050 may also be provided with anadhesive coating1054 to temporarily secure theflange1050 to the skin of the patient and thereby preclude accidental dislodgment of the catheter.
FIG. 10C shows a sectional view of expandingbasket1010. Expandingbasket1010 comprises anouter section1012 and aninner section1014.Outer section1012 has aproximal tube1011 and adistal tube1013 connected by a plurality of expandingelements1016.Proximal tube1011 is bonded totube1002.Distal tube1013 end indistal aperture1018. Optional, side apertures may also be provided indistal tube1013 and orproximal tube1011. Expandingelements1016 are shaped such that they extend radially from the long axis of expandingbasket1010. Expanding elements are formed in the expanded configuration.Outer section1012 is butt joined to the distal end oftube1002. Expandingbasket1010 may be provided with a radio marker, radiopaque or echogenic material incorporated in thedistal tip1046 so that the tip may be visualized during insertion of the pneumostomy instrument. Expandingbasket1010 is designed to push aside the parenchymal tissues of the lung when expanded thereby creating a cavity within the parenchymal tissue. Expandingbasket1010 is also designed to anchorpneumostomy catheter1000 within the parenchymal tissue of the lung. Alternative expanding devices may be used so long as they achieve these same functions.
Inner section1014 is generally tubular and fits withinproximal tube1011 anddistal tube1013 ofouter section1012. In a preferred embodimentinner section1014 is a hollow metal tube having a reduceddiameter tip1017.Inner section1014 is bonded todistal tube1013.Inner section1014 also has a plurality ofbarbs1015 for securinginner section1014 todistal tube1013.Inner section1014 is slidingly received withinproximal tube1011.
A length ofsuture1004 is fixed to the proximal end ofinner section1014.Suture1004 may be used to secureinner section1014 in the position shown inFIG. 10C.Suture1004 runs through thelumen1003 oftube1004 and out throughproximal structure1020. As shown inFIG. 10B, twostops1006 and1007 are crimped and/or UV-bonded tosuture1004. Thedistal stop1007 is responsible for limiting the pull or throw of the suture, preventing the physician from over expanding the basket. Theproximal stop1006 is used to assure the basket stays expanded while in place in the body. The proximal end ofsuture1004 is securely fixed to a pull-ring1028 which helps the physician or user grasp and pull the suture.
FIG. 10B shows a sectional view ofproximal structure1020. The distal end ofinner section1014 and section1012 (as shown inFIG. 10C) suture1004 runs through thelumen1003.Proximal structure1020 includes a plastically Y-connector1022. The distal end of Y-connector1022 is bonded to the proximal end oftube1002 with a UV-cured adhesive. Thestraight arm1021 of the Y-connector1022 is attached to a high flow female luer fitting1026 with a UV-cured adhesive. Theside arm1023 of the Y-connector is attached to a Tuohy Borst connector (Tuohy)1024. The components may be secured to each other using adhesive, welding, melting or other techniques appropriate to the materials to be secured.Suture1004 passes through theTuohy1024.Stop1006 is sized such that whenTuohy1024 is open it may pass throughgrommet1023. However, whenTuohy1024 is closed (as shown inFIG. 10B)stop1006 may not pass throughgrommet1023.Stop1007 is too large to pass intoTuohy1024.
FIGS. 10D-10F show views ofpneumostomy instrument1000 configured for introduction or removal from the lung of a patient. In thisconfiguration mandrel1040 has been inserted intopneumostomy instrument1000. As shown inFIG. 10D the luer fitting1048 ofmandrel1040 has been secured tofemale luer1026 ofpneumostomy instrument1000. The insertion ofmandrel1040 has caused expandinghead1010 to assume a reduced diameter configuration in which expandingelements1016 are substantially flush with the surface ofproximal tube1011 anddistal tube1013.
As shown inFIGS. 10E and 10F,mandrel1040 passes throughfemale luer1026, throughlumen1003 oftube1002 and intoinner section1014 of expandingbasket1010.Tip1046 ofmandrel1040 engagestip1017 ofinner section1014.Mandrel1040 is of sufficient length that insertion ofmandrel1040 intopneumostomy instrument1000 pushesdistal tube1013 of expandingbasket1010 away fromproximal tube1012 thereby causing expandingelements1016 to be stretched out and assume the configuration shown inFIGS. 10D-10F.
Thepneumostomy instrument1000 may be utilized in any of the pneumostomy procedures described herein including those procedures described inFIGS. 4A-4F,5A-5C,6A-6C,7A-7C and accompanying text. For certain applications, it is desirable to assemblepneumostomy instrument1000 with a percutaneous insertion tool so that the pneumostoma catheter can penetrate through the chest wall and pleural membranes and the parenchymal tissue without need for previous incision or dissection. The percutaneous insertion tool is a device that permits the rapid deployment of the pneumostomy catheter through chest wall and the parietal and visceral membranes into the lung. The insertion tool preferably prevents deflation of the lung by rapid deployment of the pneumostomy catheter and subsequent expansion of expandingbasket1010. The percutaneous insertion tool may comprise a trocar designed to fit through lumen of the pneumostomy instrument in place ofmandrel1040 and dissect tissue in a minimally traumatic way thereby allowing the pneumostomy catheter to penetrate the pleural membranes and enter the parenchymal tissue of the lung.
FIGS. 11A-11C show apneumostomy instrument1000 assembled with apercutaneous insertion tool1100.FIG. 11A shows a perspective view of thepneumostomy instrument1000 assembled with thepercutaneous insertion tool1100.FIGS. 11B and 11C show detailed sectional views of the distal end of thepneumostomy instrument1000 andinsertion tool1100. Referring first toFIG. 11A,percutaneous insertion tool1100 is sized to fit through the main lumen ofpneumostomy instrument1000. Adissecting tip1102 ofpercutaneous insertion tool1100 protrudes beyond the distal tip ofpneumostomy instrument1000. Dissectingtip1102 is preferably a dissecting tip that pushes tissue aside rather than cutting through tissue. Ahandle1104 extends from the proximal end ofpneumostomy instrument1000 allowing the physician to control the instrument. Acoupling1106 temporarily secures thepercutaneous insertion tool1100 to the female luer1026 (shown inFIG. 11A) at the proximal end ofpneumostomy instrument1000.
FIG. 11B shows a sectional view of the distal tip ofpneumostomy instrument1000 andinsertion tool1100. As seen inFIG. 11B,percutaneous insertion tool1100 includes asleeve1101 in whichdistal tip1102 is received. The distal end ofsleeve1101 engages thedistal end1017 ofinner section1014 of expandingbasket1010. The dissecting tip extends through theaperture1018 in the end ofpneumostomy instrument1000. Anactuator1106 comprises a spring-loaded mechanism for withdrawingdissecting tip1101 back towards the proximal end of pneumostomy instrument. The actuator latches the dissecting tip in the forward position until triggered. The actuator is triggered by the insertion of dissectingtip1102 through the chest wall and then into the softer tissue of the lung. The retraction of the dissecting tip after passage of the instrument into the parenchymal tissue of the lung helps prevent injury to the lung caused by over insertion. The retraction of the dissecting tip may also be used, in some embodiments, to trigger deployment of expandingbasket1010, by, for example, releasingcoupling1106 and allowing thepneumostomy instrument1000 to relax and allowing the expandingbasket1010 to take on its expanded configuration.
FIG. 11C illustrates the configuration of thepercutaneous insertion tool1100 andpneumostomy instrument1000 after deployment into lung tissue. As shown inFIG. 11C,tip1102 has been retracted intoopening1018 in the distal end ofpneumostomy instrument1000. Expandingelements1016 have moved out radially from the axis ofpneumostomy instrument1000. The expanding elements push aside the parenchymal tissue to make a cavity and secure the end ofpneumostomy instrument1000 into the lung.Percutaneous insertion tool1100 may now be removed, leavingpneumostomy instrument1000 in place. After stabilization of the pneumostoma in 7 to 14 days a mandrel (such asmandrel1040 ofFIG. 10A) is inserted into the lumen of thepneumostomy instrument1000 again causing expandingelements1016 to return to their low profile configuration. Whenmandrel1040 is secured to pneumostomy instrument100 (see e.g.FIG. 10E) the instrument may be removed from the chest of the patient. A pneumostoma management device should then be placed in the pneumostoma (seeFIGS. 8A-8B and accompanying text).
Postoperative Pneumostomy Instrument SupportAs described above, the instrument used to create the pneumostoma remains in place in the patient for a period of time in order for the tissues displaced by the instrument to heal and to allow pleurodesis between the visceral and pleural membranes surrounding the instrument. During this immediate postoperative period it is desirable to maintain the comfort and/or mobility of the patient. Thus, it is desirable that the instrument used to perform the pneumostomy procedure be secured in a low-profile configuration that reduces inconvenience to the patient. It is also desirable that the instrument be aligned approximately perpendicular to the chest wall where it passes through the chest wall, so that pneumostoma forms in approximately this configuration. It is also desirable that the instrument be maintained under a slight tension to aid pleurodesis. In order to achieve and maintain the appropriate configuration of the pneumostomy instrument during the post-operative period while reducing inconvenience and discomfort to the patient, a postoperative pneumostomy instrument support is provided. The post-operative pneumostomy instrument support keeps the pneumostomy instrument aligned with the stoma, applies a slight tension to the pneumostomy instrument, prevents kinking of the instrument; and secures the instrument in a low-profile configuration for the post-operative period.
FIGS. 12A and 12B show a postoperativepneumostomy instrument support1200.FIG. 12A shows an exploded view of the components ofsupport1200.Support1200 has three main components:adhesive backing1202,strap1204 andblock1206.
Adhesive backing1202 is a compliant foam pad coated on each side with a thin layer of biocompatible adhesive. The compliant foam allows the pad to conform somewhat to the chest of the patient. The adhesive backing has aU-shaped opening1203 in one edge to allow it to fit around the pneumostomy instrument at the insertion site. Theopening1203 is large enough that theadhesive backing1202 does not interfere with the incision.
Block1206 is formed from light weight rigid and/or semi-rigid foam. The block has aflat surface1205 for attachment to theadhesive backing1202. The block has a curvedfront surface1207 for supporting the pneumostomy instrument. Thefront surface1207 has asemicircular channel1212 designed to receive the tube of the pneumostomy instrument. Thechannel1212 is aligned perpendicular to the patient-side1208 where thefront surface1207 meets theflat surface1205. Thefront surface1207 ofblock1206 andchannel1212 subsequently curve away from perpendicular until approximately parallel with theflat surface1205. The radius of curvature and shape of the channel is selected so as not to cause the tube of the pneumostomy instrument to kink. Anaperture1214 passes throughblock1206 from one side ofchannel1212 to the other.
Strap1204 is designed to hold instrument to block1206 and maintain a slight tension in the instrument.Strap1204 is sized to fit throughaperture1214 ofblock1206.Strap1204 may be provided with a releasable adhesive for securing the strap to itself and the pneumostomy instrument.Strap1204 may additionally or alternatively be provided with a fastener for securing the pneumostomy instrument.Strap1204 is preferably made of a somewhat elastic material to aid in fixing the instrument to block1206 and applying tension to the pneumostomy instrument without crushing the pneumostomy instrument.
FIG. 12B shows the assembledsupport1200.Strap1204 is positioned throughaperture1214 such that the free ends ofstrap1204 are available to secure a pneumostomy instrument intochannel1212.Adhesive backing1202 is secured to theflat surface1205 ofblock1206 by a layer of adhesive. Typically the remaining adhesive layer is protected with a removable layer of paper until ready for use. TheU-shaped opening1203 is aligned withchannel1212. Note thatadhesive backing1202 is preferably larger is area than theflat surface1205 ofblock1206 to facilitate removal ofsupport1200 by peeling up ofadhesive backing1202.
FIG. 12C shows a sectional view throughsupport1200 to illustrate the use ofsupport1200 in conjunction with apneumostomy instrument1000 positioned within apneumostoma110.Block1206 is secured to theskin114 ofchest100adjacent pneumostoma110 byadhesive backing1202. As shown inFIG. 12C,tube1002 is aligned perpendicular to the wall ofchest100 wheretube1002 exitschest100.Tube1002 follows the curvature ofblock1206 until approximately parallel withchest100. The shape ofchannel1212 and the radius of curvature ofblock1206 preventtube1002 from kinking.Tube1002 is releasably secured to block1206 and under tension bystrap1204. Usingsupport1200 in this manner allows thepneumostomy instrument1000 to be secured to the chest of the patient in a low profile configuration during the post operative period while maintaining the alignment of thepneumostoma110.
FIG. 12C also illustrates the use of adischarge trap1220 withpneumostomy instrument1000. During the immediate postoperative period, there may be drainage of blood and other fluids throughpneumostomy instrument1000 in addition to gases from the lung. It is desirable to contain such discharge using a passive of vacuum discharge trap.Discharge trap1220 has a fitting1224 to mate with the female luer fitting ofpneumostomy instrument1000. Gases and/or discharge flow though the fitting1224 into avessel1222 via avalve1226.Valve1226 is a one-way valve which prevents discharge from reentering the pneumostomy instrument fromvessel1222.Discharge1230 may collect invessel1222 which may be emptied or changed when necessary. Gases may escape fromvessel1222 throughoutlet1228.Outlet1228 preferably includes a hydrophobic filter element to prevent the exit of discharge fromvessel1222.Outlet1228 may vent to atmosphere or may alternatively be connected to a regulated vacuum source (such as a medical vacuum line).
Support1200 may be used instead of or in addition toflange1050 of pneumostomy instrument1000 (not shown but seeFIG. 10A).FIG. 12D shows a sectional view through asupport1200ato illustrate the use of asupport1200ain conjunction with apneumostomy instrument1000 having a flange1050 (SeeFIG. 10A).Support1200ais similar to support1200 but has adaptations to make it compatible withflange1050.Block1206ais secured to theskin114 ofchest100adjacent flange1050 byadhesive backing1202a.Block1206aandadhesive backing1202aare adapted to provide sufficient space forflange1050.Block1206amay also be provided with a clip, strap or other fastener to securesupport1200atoflange1050. As shown inFIG.12D tube1002 is aligned perpendicular to the wall ofchest100 wheretube1002 exitschest100.Flange1050 works in conjunction withblock1206ato aligntube1002 and apply tension totube1002. Usingsupport1200ain this manner again allows thepneumostomy instrument1000 to be secured to the chest of the patient in a low profile configuration during the post operative period while maintaining the alignment of thepneumostoma110.
FIG. 12D also illustrates the use of acap1240 withpneumostomy instrument1000. During the immediate postoperative period there may be drainage of blood and other fluids throughpneumostomy instrument1000 in addition to gases from the lung. After a few days however, there may be little further drainage. Thus, it may be possible to remove the discharge trap or vacuum source attached toinstrument1050. In order to prevent contaminants entering the lung throughpneumostomy instrument1000, acap1240 may be used to close the lumen of the instrument.Cap1240 has a fitting1244 to mate with the female luer fitting ofpneumostomy instrument1000.Cap1240 may optionally be provided with avent1242 to allow gases to escape.Cap1240 may be used to enhance patient mobility with occasional use of a discharge trap or vacuum aspiration to clear any discharge frominstrument1000.
Supports1200,1200amay be used in conjunction with asecond support1250.FIG. 12E shows a sectional view through asupport1200ato illustrate the use of asupport1200ain conjunction with apneumostomy instrument1000 having a flange1050 (SeeFIG. 10A) and with asecond support1250.Second support1250 comprises ablock1256 secured to theskin114 ofchest100adjacent flange1050 byadhesive backing1252.Block1256 andadhesive backing1252 are adapted to provide sufficient space forflange1050.Block1256 may also be provided with a clip, strap or other fastener (not shown) to securesecond support1250 toflange1050. As shown inFIG.12D tube1002 is aligned perpendicular to the wall ofchest100 wheretube1002 exitschest100.Second support1250 works in conjunction withsupport1200aandflange1050 to aligntube1002 and apply tension totube1002.Second support1250 helps constraintube1002 perpendicular to the wall ofchest100 while relieving strain intube1002 that might otherwise misalign thepneumostoma110.Second support1250 may in some cases be attached to support1200aor even formed in one piece withsupport1200a.In some embodiments, the distance betweensupport1250 andsupport1200amay be adjusted in order to adjust the radius of curvature of thetube1002.
Pneumostomy Techniques Using The Alternate Pneumostomy InstrumentThepneumostomy instrument1000 may be utilized in any of the pneumostomy procedures described herein including those procedures described inFIGS. 4A-4F,5A-5C,6A-6C,7A-7C and accompanying text.FIGS. 13A and 13B are flowcharts showing the steps of a single-phase pneumostomy technique utilizingpneumostomy instrument1000. In these single-phase techniques no prior pleurodesis is required ahead of the procedure. In the percutaneous single-phase procedure (FIG. 13A), thepneumostomy instrument1000 is introduced without collapsing the lung. In the open single-phase procedure (FIG. 13B). The lung may be allowed to inflate prior to insertion ofpneumostomy instrument1000 and then reinflated afterpneumostomy instrument1000 is secured within the lung.
Percutaneous TechniqueReferring firstFIG. 13A which shows the steps of the percutaneous single-phase technique1300 utilizingpneumostomy instrument1000.Pneumostomy instrument1000 is first assembled withpercutaneous insertion tool1100 as shown inFIG. 11A (step1302). In this configuration the expanding head is secured in a low-profile configuration ready for insertion into the lung. The patient is prepared (step1304) using local anesthesia at the target site in addition to a sedative or general anesthesia. A chest tube is preferably inserted into the pleural cavity as a prophylactic measure. The physician optionally makes an incision at the target location and dissects to the parietal membrane (step1306). The physician optionally introduces a pleurodesis agent to the outer surface of the parietal membrane or, by injection, through the parietal membrane into the pleural space at the target location (step1308) to promote pleurodesis between the visceral and parietal membranes after the procedure. One or more of the pleurodesis agents discussed above may be used in order to promote pleurodesis formation following the procedure however it is not expected that the pleurodesis will form during the procedure itself. Atstep1310, the physician inserts the pneumostomy instrument and percutaneous insertion tool through the parietal and visceral membranes using the percutaneous insertion tool. Insertion is made by way of the incision if made, or otherwise directly through the chest wall if no prior incision was made. The pneumostomy instrument is inserted until the expanding head is through the visceral membrane and embedded within the parenchymal tissue of the lung. Because there has been no pleurodesis between the parietal membrane and visceral membrane, a small amount of air may leak into the pleural cavity around tube pneumostomy instrument. However, the chest tube should be able to extract the small amount of air and the lung will remain inflated and pushed against the chest wall.
Referring again toFIG. 13A, atstep1312 the physician releases the expanding head and allows it to expand within the parenchymal tissue of the lung. Note that in some embodiments an actuator automatically deploys the expanding head after it is positioned with the lung. Atstep1314, the suture and stop may be pulled through the open Tuohy and the Tuohy closed to secure the expanding head in the expanded configuration. The percutaneous insertion tool is removed from the main lumen of pneumostomy instrument (this step may alternatively be performed before balloon inflation). Atstep1316, the flange or instrument support is secured to the skin of the chest of the patient adjacent the instrument. At step1318 a slight tension is applied to the tube of the pneumostomy instrument, drawing the expanding head and lung towards thoracic wall. The tension brings the parietal membrane and visceral membrane into contact. The contact between the parietal membrane and visceral membrane reduces or eliminates any remaining air leak around the instrument. Moreover, the contact between the parietal membrane and visceral membrane allows pleurodesis to occur resulting in adhesion between the pleural membranes and sealing of the pneumostoma from the pleural cavity. Some or the entirety of the pneumostomy instrument may be coated and/or impregnated with a pleurodesis agent to promote the formation of the pleurodesis. After the tension is applied, the pneumostomy instrument is secured to the flange or instrument support (step1320).
The remainder of the instrument is then secured to the chest/abdomen of the patient (step1322). In some procedures it may be desirable to apply a water seal or slight vacuum to the instrument during the immediate postoperative period to collect blood and discharge and reduce the opportunity for any infectious agents to enter the lung. If an incision was made, it is now closed using sutures, staples and/or tissue glue. The patient is then monitored to ensure that pneumothorax has not occurred. A chest tube is inserted or maintained as necessary until it is clear that there is no leakage of air into the pleural cavity. Air flow through the pneumostomy instrument is also monitored. Healing of the pneumostoma is monitored and the pneumostomy instrument is removed when the physician believes the pneumostoma is sufficiently stable to tolerate the removal of the instrument (seeFIG. 13C).
Open TechniqueReferring next toFIG. 13B which shows the steps of the open single-phase technique1330 utilizingpneumostomy instrument1000.Pneumostomy instrument1000 is first assembled withmandrel1040 as shown inFIG. 10A (step1332). In this configuration the expanding head is secured in a low-profile configuration ready for insertion into the lung. The patient is prepared (step1334) using local anesthesia at the target site in addition to a sedative or general anesthesia. If a general anesthesia is applied the patient will also be intubated and ventilated. A chest tube is inserted into the pleural cavity. The physician makes an incision at the target location and dissects to the parietal membrane (step1336). Atstep1338 the surgeon makes an incision through the parietal membrane and enters the pleural cavity. Atstep1340 the physician visualizes the lung, and engages it with a surgical tool, and secures the lung to the chest wall adjacent the incision. The surgeon may use sutures, staples, clips, surgical adhesive and/or a surgical adhesive patch to secure the visceral membrane of the lung to the chest wall instep1340. The physician optionally introduces a pleurodesis agent to the outer surface of the parietal membrane or, by injection, through the parietal membrane into the pleural space at the target location (step1338) to promote pleurodesis between the visceral and parietal membranes after the procedure. One or more of the pleurodesis agents discussed above may be used in order to promote pleurodesis formation following the procedure however it is not expected that the pleurodesis will form during the procedure itself.
Atstep1344, the physician makes an incision through the visceral membrane and inserts the pneumostomy instrument and mandrel through the incision into the parenchymal tissue of the lung. The pneumostomy instrument is inserted until the expanding head is through the visceral membrane and embedded within the parenchymal tissue of the lung. Counter pressure may need to be applied to secure the lung as the pneumostomy instrument is inserted.
Referring again toFIG. 13B, atstep1346 the physician releases the expanding head and allows it to expand within the parenchymal tissue of the lung. Atstep1348, the suture and stop may be pulled through the open Tuohy and the Tuohy closed to secure the expanding head in the expanded configuration. The mandrel may also be removed from the main lumen of pneumostomy instrument. Atstep1350, the incision in the chest wall is closed around the tube of the pneumostomy instrument. Atstep1352 the pneumostomy instrument is then tensioned and secured as described in steps1316-1322 ofFIG. 13A.
With the incision closed and slight tension applied to the pneumostomy instrument, the removal of air through the chest tube will be sufficient to reinflate the lung. The patient is then monitored to ensure that the lung inflates. A chest tube is inserted or maintained as necessary until it is clear that there is no leakage of air into the pleural cavity. Air flow though the pneumostomy instrument is also monitored. Healing of the pneumostoma is monitored (step1354) and the pneumostomy instrument is removed when the physician believes the pneumostoma is sufficiently stable to tolerate the removal of the instrument (seeFIG. 13C).
Removal Of Pneumostomy InstrumentWhen the physician considers that the pneumostoma has healed adequately, the pneumostomy instrument is removed and the pneumostoma is inspected. The physician will then verify the size of the pneumostoma and provide a pneumostoma management device (PMD) of the appropriate size. Removal of the pneumostomy instrument requires that the expanding basket be collapsed to the low profile configuration.
Referring next toFIG. 13C which shows the steps (1360) for removal of thepneumostomy instrument1000. The surgeon should first assess the healing and stability of the pneumostoma (step1362). The pneumostomy instrument should not be removed until the pneumostoma is sufficiently healed to tolerate the removal procedure. The patient is prepared (step1364). A local anesthesia may be applied and a sedative provided. A chest tube should be available in case removal of the pneumostomy instrument causes leakage of air into the pleural cavity. The pneumostomy instrument is first released from the flange and/or instrument support (step1366). The flange and/or support are then released from the chest of the patient (step1368) providing access to inspect and clean the stoma. The Tuohy is opened to release the stop which secured the expanding basket in the expanded position (step1370). A mandrel is then inserted into the pneumostomy instrument causing the expanding basket (within the lung) to collapse to a low profile configuration (step1372). The pneumostomy instrument is then withdrawn from the pneumostoma (step1374). The pneumostoma should be quickly assessed (step1376). A pneumostoma management device should then be inserted into the pneumostoma to preserve patency during the continued healing period (step1378). The patient should be observed to ensure that the procedure has not caused leakage of air into the pleural cavity. If leakage occurs a chest tube should be inserted into the pleural cavity (at another site) until the air leakage is resolved. The patient will be provided with standard postoperative care transitioning to outpatient care and continued pulmonary rehabilitation step1380). The first pneumostoma management device will typically be left in place till the first outpatient visit to a physician. At the first outpatient visit, the first pneumostoma management device will be removed, the pneumostoma inspected again. The physician or more typically the patient under the physician's direction will then insert the next PMD. The PMD's will thereafter be exchanged by the patient or a caregiver on a regular basis and/or as needed.
MaterialsIn preferred embodiments, the pneumostomy instruments and PMD are formed from biocompatible polymers or biocompatible metals. In a particularembodiment pneumostomy catheter300 andPMD800 are made from PEBAX, polypropylene and ABS. The balloon of thepneumostomy catheter300 is preferably made of polyurethane or the equivalent In a preferred embodiment,pneumostomy instrument1000 is made from C-FLEX® thermoplastic elastomer manufactured by Saint-Gobain Performance Plastics in Clearwater, Fla. A patient will typically have pneumostomy catheter implanted for from one to two weeks depending upon the time required for the pneumostoma to heal and form and thus the materials, particularly ofpneumostomy catheter300, should meet high standards for biocompatibility. In general, preferred materials for manufacturing a pneumostomy instrument or PMD are biocompatible thermoplastic elastomers that are readily utilized in injection molding and extrusion processing. As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polymer materials can be used without departing from the scope of the invention. Biocompatible polymers for manufacturing PMD may be selected from the group consisting of polyethylenes (HDPE), polyvinyl chloride, polyacrylates (polyethyl acrylate and polymethyl acrylate, polymethyl methacrylate, polymethyl-coethyl acrylate, ethylene/ethyl acrylate), polycarbonate urethane (BIONATEG), polysiloxanes (silicones), polytetrafluoroethylene (PTFE, GORE-TEX®, ethylene/chlorotrifluoroethylene copolymer, aliphatic polyesters, ethylene/tetrafluoroethylene copolymer), polyketones (polyaryletheretherketone, polyetheretherketone, polyetherether-ketoneketone, polyether-ketoneetherketoneketone polyetherketone), polyether block amides (PEBAX, PEBA), polyamides (polyamideimide, PA-11, PA-12, PA-46, PA-66), polyetherimide, polyether sulfone, poly(iso)butylene, polyvinyl chloride, polyvinyl fluoride, polyvinyl alcohol, polyurethane, polybutylene terephthalate, polyphosphazenes, nylon, polypropylene, polybutester, nylon and polyester, polymer foams (from carbonates, styrene, for example) as well as the copolymers and blends of the classes listed and/or the class of thermoplastics and elastomers in general. Reference to appropriate polymers that can be used for manufacturing a pneumostomy instrument or PMD can be found in the following documents: PCT Publication WO 02/02158, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275, entitled “Bio-Compatible Polymeric Materials;” and, PCT Publication WO 02/00270, entitled “Bio-Compatible Polymeric Materials” all of which are incorporated herein by reference. Other suitable materials for the manufacture of the pneumostomy instrument or PMD include medical grade inorganic materials such stainless steel, titanium, ceramics and coated materials.
Additionally, components of the PMD and/or pneumostomy instrument that are in contact with the pneumostoma before or after healing may be designed to deliver a pharmaceutically-active substance. For purposes of the present disclosure, an “active pharmaceutical substance” is an active ingredient of vegetable, animal or synthetic origin which is used in a suitable dosage as a therapeutic agent for influencing conditions or functions of the body, as a replacement for active ingredients naturally produced by the human or animal body and to eliminate or neutralize disease pathogens or exogenous substances. The release of the substance in the pneumostoma has an effect on the course of healing and/or counteracts pathological changes in the tissue due to the presence of the temporarily implanted medical devices. In particular, it is desirable in some embodiments to coat or impregnate the PMD with pharmaceutically-active substances that preserve the patency of pneumostoma and/or are antimicrobial in nature but that do not unduly irritate the tissues of the pneumostoma. In particular, it is also desirable in some embodiments to coat or impregnate the pneumostoma instrument with pharmaceutically-active substances that aid pleurodesis, healing and/or epithelialization of the pneumostoma and/or are antimicrobial in nature but that do not unduly irritate the tissues of the pneumostoma.
In particular cases, suitable pharmaceutically-active substances may have an anti-inflammatory and/or antiproliferative and/or spasmolytic and/or endothelium-forming effect, so that the functionality of the pneumostoma is maintained. Suitable pharmaceutically-active substances include: anti-proliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents such as G(GP) llb/llla inhibitors and vitronectin receptor antagonists; anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nirtosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes—dacarbazinine (DTIC); anti-proliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine}); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones (i.e. estrogen); anti-coagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory; antisecretory (breveldin); anti-inflammatory: such as adrenocortical steroids (cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6a-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin; para-aminophenol derivatives i.e. acetaminophen; indole and indene acetic acids (inaperturethacin, sulindac, and etodalac), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate); immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); angiogenic agents: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF); angiotensin receptor blockers; nitric oxide donors; antisense oligionucleotides and combinations thereof, cell cycle inhibitors, mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors; retenoids; cyclin/CDK inhibitors; HMG co-enzyme reductase inhibitors (statins); silver compound and protease inhibitors.
In some embodiments, the active pharmaceutical substance is selected from the group consisting of amino acids, anabolics, analgesics and antagonists, anaesthetics, anti-adrenergic agents, anti-asthmatics, anti-atherosclerotics, antibacterials, anticholesterolics, anti-coagulants, antidepressants, antidotes, anti-emetics, anti-epileptic drugs, anti-fibrinolytics, anti-inflammatory agents, antihypertensives, antimetabolites, antimigraine agents, antimycotics, antinauseants, antineoplastics, anti-obesity agents, antiprotozoals, antipsychotics, antirheumatics, antiseptics, antivertigo agents, antivirals, appetite stimulants, bacterial vaccines, bioflavonoids, calcium channel blockers, capillary stabilizing agents, coagulants, corticosteroids, detoxifying agents for cytostatic treatment, diagnostic agents (like contrast media, radiopaque agents and radioisotopes), electrolytes, enzymes, enzyme inhibitors, ferments, ferment inhibitors, gangliosides and ganglioside derivatives, hemostatics, hormones, hormone antagonists, hypnotics, immunomodulators, immunostimulants, immunosuppressants, minerals, muscle relaxants, neuromodulators, neurotransmitters and neurotrophins, osmotic diuretics, parasympatholytics, para-sympathomimetics, peptides, proteins, psychostimulants, respiratory stimulants, sedatives, serum lipid reducing agents, smooth muscle relaxants, sympatholytics, sympathomimetics, vasodilators, vasoprotectives, vectors for gene therapy, viral vaccines, viruses, vitamins, oligonucleotides and derivatives, saccharides, polysaccharides, glycoproteins, hyaluronic acid, and any excipient that can be used to stabilize a proteinaceous therapeutic.
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.