CROSS-REFERENCE TO RELATED APPLICATIONThis application is a continuation of U.S. patent application Ser. No. 11/603,843 filed Nov. 22, 2006 which is a continuation of Ser. No. 10/693,045 filed Oct. 24, 2003 which is a continuation-in-part of U.S. patent application Ser. No. 10/167,711, entitled “METAL MAKING LANCE WITH DISPOSABLE SENSORS”, filed Jun. 11, 2002, which claims the benefit of U.S. Patent Provisional Application Ser. No. 60/297,339, entitled “METAL MAKING LANCE WITH DISPOSABLE SENSORS”, filed Jun. 11, 2001.
FIELD OF THE INVENTIONThe present invention relates in general to metal making lances and, more particularly, to metal making lances that are also capable of monitoring conditions within a metal making vessel.
BACKGROUND OF THE INVENTIONIt has long been known to use probes, monitors or other sensor means to determine characteristics of metal that is being treated in a metal making vessel as well as the operating conditions of the vessel itself. The sensed data, which may include temperature, gas or other constituent concentration, or some other condition, are gathered and processed at or near real-time, typically by computer, and provide the vessel operator with important information about the progress or status of the metal making process occurring in the vessel. Metal making systems incorporating such technology often include means for automatically correcting the metal making process, e.g., by adding more or less of heat, gas and/or particulate matter to the vessel, if the sensed data do not correspond with expected conditions at a particular phase of the process.
The sensors may be either intended for repeated use or they may be disposable and expended after a single use. If designed for repeated use, they may be used in association with metal making equipment such as refining lances that discharge combustible gases, inert gases and/or particulate matter into the metal making vessel during metal heating and refining processes. Under these circumstances, the sensors are incorporated into the lance structure itself whereby the lance structure serves as protection for the sensor. However, the lance structure must be specially designed and specifically adapted to accommodate the sensor which results in increased lance development and assembly time and cost. And, since the sensor is internal to the lance, if the sensor needs repair or replacement, the lance must be disassembled, thereby resulting in considerable lance downtime and maintenance costs. An example of a basic oxygen furnace (BOF) lance possessing an internal sensor assembly is shown in U.S. Pat. No. 4,106,756.
A variety expendable or disposable sensors for metal making applications are marketed by Heraeus Electro-Nite of Houthalen, Belgium and others. As is known, expendable sensors are typically tethered to suitable hardware, instrumentation and calibration equipment by flexible communications cables. Such sensors, together with their associated hardware, instrumentation and calibration equipment offer a comprehensive control system for the online recording of temperatures and constituent elements such as carbon, oxygen, hydrogen, nitrogen, and aluminum in hot steel or other metal.
Expendable sensors may be categorized as sublance sensors and drop sensors. Sublance sensors are suspended by an auxiliary lance or sublance that is separate from the metal making lance. A dedicated sensing sublance adds considerable cost to the metal making operation. In addition, the presence of a separate sensing lance adds instrumentality to the metal making vessel that occupies valuable space that might be employed for other useful purposes. Further, a sublance mounted sensor is not an optimal means of reproducibly sensing characteristics in the metal making vessel occurring closely adjacent the metal making lance. Examples of such lances may be found in U.S. Pat. Nos. 3,574,598; 3,869,369 and 4,272,989.
Drop sensors do not require a separate sublance for their placement in a metal making vessel and therefore consume less space in operation. However, they are difficult to position at targeted sites within a metal making vessel and cannot be reliably placed and maintained closely adjacent the metal making lance. Consequently, drop sensors, like sublance sensors, are less than desirable apparatus by which to monitor conditions close to the metal making lance. Examples of such sensors may be found in U.S. Pat. Nos. 3,574,598; 5,275,488 and 5,610,346.
An advantage exists, therefore, for a system wherein disposable sensor means may be used in conjunction with a metal making lance in order to reliably sense conditions in a steel making vessel close to the metal making lance.
SUMMARY OF THE INVENTIONThe present invention provides a metal making lance assembly wherein disposable sensors means may be used in conjunction with a metal making lance. More particularly, the assembly includes a sensor feed tube disposed interiorly or exteriorly of a metal making lance that is adapted to accommodate passage of at least one disposable sensor. The sensor means may be selected to detect one or more characteristics of a molten metal being treated and/or operating conditions of a metal treatment vessel, especially those in close proximity to the metal making lance.
Other details, objects and advantages of the present invention will become apparent as the following description of the presently preferred embodiments and presently preferred methods of practicing the invention proceeds.
BRIEF DESCRIPTION OF THE DRAWINGSThe invention will become more readily apparent from the following description of preferred embodiments shown, by way of example only, in the accompanying drawing wherein:
FIG. 1 is an elevational view of a first embodiment of a metal making lance assembly in accordance with the present invention;
FIG. 2 is an elevational view of a further embodiment of a metal making lance assembly in accordance with the present invention;
FIG. 3 is an enlarged view of the circled portion III ofFIG. 2;
FIG. 4 is an elevational view of a further embodiment of a metal making lance assembly in accordance with the present invention;
FIG. 5 is an enlarged view of the circled portion V and a sensor means ofFIG. 4;
FIG. 6 is an elevational view of a further embodiment of a metal making lance assembly in accordance with the present invention; and
FIG. 7 is an enlarged view of the circled portion VII and sensor means ofFIG. 6.
DETAILED DESCRIPTION OF THE INVENTIONReferring to the drawings, wherein like references indicate like or similar elements throughout the several views, there is shown inFIG. 1 a metal making lance assembly according to the present invention identified generally byreference numeral2.Lance assembly2 includes abarrel4 and atip6 fixedly attached to the barrel by welding, brazing or the like. As is known,tip6 oflance assembly2 discharges one or more gaseous and/or particulate materials through at least one nozzle at high velocities into a metal treatment vessel such as, for example, a furnace vessel (not shown) in order to melt, refine or otherwise treat metal, such as steel, aluminum, copper or alloy contained in the vessel.Tip6 may discharge the gaseous and/or particulate materials at a distance from the metal being processed.Tip6 may also be a so-called submergible (also known as immersible or submersible) tip adapted for insertion into a molten bath during metal processing.
All of the lance assemblies described herein function both as metal making lances and as sensing lances. In particular, they operate in a “metal making mode” wherein they function to heat and melt scrap metal, refine molten metal or otherwise actively treat metal and products in a metal treatment vessel. They are also capable of functioning in a “sensing mode” where they gather data about the conditions in the vessel or the metal and related products contained therein. The metal making and sensing modes may be performed concurrently or one may precede or follow the other.
Lance assembly2 additionally comprises asensor feed assembly8.Assembly8 includes asensor feed tube10 that is dimensioned, constructed and arranged to accommodate passage of disposable sensors means12 (discussed below).Sensor feed tube10 and its counterparts depicted in other embodiments of the present invention described later herein are separate from and isolated from fluid communication with the lance tip discharge nozzles.Sensor feed tube10 may be affixed to the outer wall ofbarrel4 by welding, brazing or the like. However, as described later herein, the sensor feed tube may alternatively be disposed interiorly of the lance barrel. In either case, the sensor feed tube is sized to accommodate passage of at least one disposable or expendable sensor means that is operable to detect one or more characteristics of the metal being treated and/or operating conditions within the metal treatment vessel. Among their advantages, expendable sensors are simple in design, relatively inexpensive and essentially maintenance free. In operation, they are consumed by the hostile environment of the metal making environment as they perform their dedicated sensing function. And, when exhausted, they are easily replaced by new sensors.
According to the embodiments of the invention shown inFIGS. 1-3, sensor means12 preferably comprise a plurality of consumable sensors that are stackable end-to-end whereby they form a continuous electronic circuit that transmits signals corresponding to the data being sensed from adjacent thelance tip6 to a data signal receiver18 (FIG. 2). Data signalreceiver18 may include or may be electrically connected to suitable hardware, software, instrumentation and/or calibration equipment (not illustrated) whereby the sensor circuitry may be calibrated and the sensed conditions may be observed and/or recorded. By way of example, but not limitation, sensor means12 may detect the temperature of the metal treatment vessel or the molten metal bath within the vessel and/or the concentration of one or more gases or other constituents, e.g., carbon, within the vessel or in the metal bath (not illustrated). For example, sensor means12 may be selected so as to detect the temperature of the metal treatment vessel or, iflance tip6 is submerged in a molten metal bath, the temperature of the bath. Alternatively, or in addition thereto, sensor means12 may be selected so as to detect the presence and, preferably, the concentration of one or more chemical constituents in the metal bath, in slag material above the bath or in the vessel itself. Representative although not limitative examples of consumable sensor means12 that would find beneficial use in the present invention in a steelmaking environment may include stackable, consumable and immersible sensors marketed by Heraeus Electro-Nite of Houthalen, Belgium or other manufacturers. Such sensors are preferably used in their typical manner in conjunction with hardware, instrumentation and calibration equipment marketed by Heraeus Electro-Nite or other manufacturers to provide a comprehensive control system for online recording of temperatures and/or constituent elements in the molten steel bath, slag and/or steel making vessel. It will be understood that, consistent with the present invention, similar sensors and hardware, instrumentation and calibration equipment also marketed by Heraeus Electro-Nite or other manufacturers may be used in aluminum, copper or other metal and metal alloy treatment processes.
Optionally, sensor means12 may include asampler14 for collecting a sample of the molten metal bath whereby compositional and other characteristics of the metal may be determined. Suitable sensors with samplers are available from Heraeus Electro-Nite and other manufacturers.
With sensor means12 being constructed as a plurality of individual consumable sensors,sensor feed assembly8 further preferably comprises sensor loading means16 for serially depositingsensors12 into the upper inlet end ofsensor feed tube10. A presently preferred sensor loading means16 may be a linearly or rotatably movable mechanical, hydraulic, pneumatic, electrical, electromechanical, and semi- or fully-automated magazine loader capable of serially depositingsensors12 into the inlet ofsensor feed tube10 as sensors are consumed at the lower or outlet end thereof. Sensor loading means16 also preferably applies downward force to each newly-deposited sensor whereby a fresh sensor is indexed into operative position at the bottom of the lance assembly and a spent sensor is discharged in the manner described below.
Although not shown inFIG. 1,lance assembly2 also includes means for firmly but yieldably gripping sensor means12 whereby they are not inadvertently discharged from the lance during operation. A suitable sensor clamp means may be an annular spring-biased clip such as a split-ring or the like having an internal diameter smaller than the outer diameter of the sensors. The sensor clamp means may be carried by thesensor feed tube10 or, as shown byreference numeral20 inFIG. 3, thelance tip6. Alternative sensor clamp means may be one or more yieldable collet fingers or similar means carried on the inner surface of thesensor feed tube10 or thelance tip6. As the lowermost one ofsensors12 is consumed, a new sensor is placed atop the stack and pressed downwardly, thereby forcing all sensors therebelow downwardly as well. When thebottom sensor12 passes the sensor clamp means, it falls into the metal bath and is replaced by the next sensor in the queue.
Referring toFIG. 2, there is shown another metal making lance assembly constructed according to the present invention, identified generally byreference numeral2a.Lance2amay, for example, be a fluid-cooled refining lance for use in a BOF or other metal treatment vessel. As is known, at the upper end of the lance assembly is ahousing22 comprising three or more housing sections. One of the sections includes acoolant inlet24 and another includes acoolant outlet26 for enabling circulation of coolant fluid such as water through the lance during operation. The housing also includes at least one additional section defining at least oneadditional inlet28 that is adapted for connection to at least one source of oxygen-containing gas, inert gas and/or particulate material, which gas and/or particulate material is ultimately discharged by the lance from one or more nozzles30 (FIG. 3) provided intip6awhen the lance in its metal making mode.
Disposed atop the housing is a sensorfeed tube inlet32 for receiving sensor means12a. The sensor means may be manually loaded intoinlet32 or they may be loaded from a sensor cartridge chamber or sensor loading means16asimilar to sensor loading means16 ofFIG. 1. Sensorfeed tube inlet32 communicates withsensor feed tube10a(FIG. 3) that resides interiorly of the lance.Sensor feed tube10aextends the length of the lance and is connected by welding, brazing or the like to lancetip6a. The lance tip, in turn, defines a sensorfeed tube outlet34 of substantially the same diameter assensor feed tube10afrom which the sensor means extend during operation and are discharged when spent.Sensor feed tube10aand those hereinafter described extend parallel to, and preferably are coaxial with, the central longitudinal axis “A” of the lance assembly. In this and other embodiments of the invention disclosed herein, the sensorfeed tube inlet32 is also preferably provided with a lateral inlet orcoupling36 for introducing a flow of pressurized inert purge gas such as nitrogen, argon, carbon dioxide or the like into the interior of the sensor feed tube. The purge gas is discharged from sensorfeed tube outlet34 to prevent slag ingestion that could cause clogging of the sensor feed tube.
FIGS. 4 and 5 depict a further embodiment of metal making lance assembly according to the invention. Certain reference numerals are provided in those figures and inFIGS. 6 and 7 for completeness of illustration but the structural components identified by those numerals are not described in detail since they correspond in structure and function to their counterparts inFIGS. 1-3. Only those elements inFIGS. 4-7 which materially depart in structure and/or function from previously discussed corresponding elements will be discussed in detail.
InFIGS. 4 and 5, sensor means12bare preferably constructed as so-called drop sensors which may be stored in a sensor cartridge chamber or sensor loading means16bsimilar to sensor loading means16 ofFIG. 1. Unlike thestackable sensors12 and12aofFIGS. 1-3, only one drop sensor is received at a time withinsensor feed tube10b. It is dropped into sensorfeed tube inlet32 and falls throughsensor feed tube10b, sensorfeed tube outlet34 and into the metal bath (not illustrated). Sensor means12bis tethered by electrical cable means38 which transmit signals corresponding to sensed metal bath data to adata signal receiver18 similar to that discussed in connection withFIG. 2. It is also possible that sensor means12band sensor means12cofFIGS. 6 and 7, discussed below, could be wireless sensors which transmit their data to a wireless data signal receiver by radio frequency signals or the like.
In current practice, drop sensors are dropped adjacent a metal making lance. A disadvantage arising from dropping sensors adjacent the metal making lance is that it is difficult to reproducibly place the sensors in the same position with respect to the lance with each drop. Accordingly, as presently deployed, drop sensors do not provide information that is as reproducible and reliable as it could be. The assembly illustrated inFIGS. 4 and 5 overcomes this problem by creating a reproducible metal bath impact area for sensor means16bthat lies within the perimeter of thelance barrel4band preferably is coextensive with the central longitudinal axis A of the lance assembly. It is also possible that sensor means12bcould be dropped through an exteriorly mounted sensor feed tube similar tosensor feed tube10 ofFIG. 1. Although not as preferred as the assembly shown inFIGS. 4 and 5, such an arrangement would still be superior to the current practice of dropping sensors adjacent the metal making lance with no meaningful guidance mechanism.
FIGS. 6 and 7 depict a further embodiment of a metal making lance and sensor system according to the invention. While the sensor means12cof these figures are also suspended by cable means38, they are not dropped through thesensor feed tube10c. Rather, they are inserted upwardly into the bottom of the sensor feed tube. More specifically, sensor means12ccomprises asensor portion40 and aconnector portion42. Theconnector portion42 is a male electrical connector which may be compression fit, threaded or otherwise releasably inserted into thesocket44 of a femaleelectrical connector46 that is carried by and is in electrical communication with cable means38.
After a metal treatment operation has been completed, thelance2cis raised from a furnace vessel by unillustrated hoisting equipment. When sufficiently clear of the furnace vessel top or hood, the spent portion of sensor means12cis preferably sawn or otherwise separated from thefemale connector44 and discarded (desirably via a spent sensor discard chute48 (FIG. 6). A new sensor means is then retrieved from a sensor loading means16cand inserted intofemale connector44 whereby it may await the next sensing operation. The aforementioned sensor removal and replacement process may be fully-manual, semi-automatic or fully-automatic.
From the foregoing, it will be appreciated that the present invention provides a combined metal making and sensing lance that obviates the need for separate, costly and space-consuming sensing sublances. It also successfully deploys economical and essentially maintenance-free disposable sensors in a uniform and reproducible way that cannot be duplicated by current unguided sensor dropping techniques.
Although the invention has been described in detail for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention as claimed herein.