CROSS-REFERENCE TO RELATED APPLICATION(S)The present application is a divisional of U.S. patent application Ser. No. 10/833,603, filed Apr. 28, 2004 by Craig A. VanZante, the disclosure of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to computers and more particularly to charging batteries of laptop computers.
2. Description of the Background Art
Computer systems come in many shapes, sizes and computational ability. For persons who work in designated locations, a standard desktop computer may be sufficient to fulfill that person's needs. However, for a user who travels frequently and needs computing power in those travels, a portable or laptop computer is desirable.
Laptop computers are characterized in that the entire computing functionality is incorporated into a single package. That is, the motherboard, hard drive, disk drives, CD ROM drives, keyboard and display are all packaged in a compact device typically weighing less than ten pounds. Laptop computers are fully functional in that they may execute the very same programs, for example word processors and spreadsheet programs, as full sized or desktop computers. Laptop computers have a battery that allows for remote operation of the laptop even in locations where alternating current (AC) wall socket power is not available.
While laptop computers may address portable computing needs, they are not without their limitations. For example, the keyboards of most laptop computers are a non-standard size. That is, the keys may be slightly closer together and not as ergonomically placed as a standard keyboard. A further limitation of laptops, given the relatively small size, is they only have a limited number of communication ports available. Also, the display devices for laptop computers are typically small, as compared to desktop monitors, to keep the overall size of the laptop computer small.
Of particular relevance to this disclosure, a laptop computer can only operate for a limited time using battery power. This is because a laptop computer's microprocessor, display screen, and other components require significant power to run, and the laptop battery can only hold a limited amount of power. In order to counteract the limited operating time using battery power, many users carry a second charged-up battery. Many users also carry around a somewhat cumbersome AC-to-DC power converter along with the laptop so as to be able to plug into a conventional power socket when available.
SUMMARYOne embodiment disclosed relates to a laptop computer system including a display casing, having display circuitry and a display screen, and a main computer casing coupled to the display casing. The main computer casing includes a battery power source, a charging regulator, and an Ethernet-type connector. The battery power source is coupled to a motherboard switching regulator. The charging regulator is coupled to the battery power source and configured to recharge the battery power source. The Ethernet-type connector coupled to the charging regulator and configured to provide power thereto.
Another embodiment disclosed relates a portable computer system including at least a battery power source, a charging regulator, a first Ethernet-type connector, and a second Ethernet-type connector. The battery power source is coupled to a motherboard switching regulator, and the charging regulator coupled to the battery power source and configured to recharge the battery power source. The first Ethernet-type connector coupled to the charging regulator and configured to provide power thereto. The second Ethernet-type connector is also coupled to the charging regulator and configured to provide power thereto.
Another embodiment disclosed relates to a method of extending an operating time of a battery-powered notebook computer. An Ethernet-type connector of the notebook computer is coupled to a network port that provides power. Power is received from the network port and is stepped-down from a higher voltage level to a lower voltage level. The power at the lower voltage level is provided to a charging regulator. The power provided from the network port is insufficient for full operation of the notebook computer and so is used to extend the operating time of the notebook computer running on battery power.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a perspective view of a notebook or laptop computer in accordance with an embodiment of the invention.
FIG. 2 is a block diagram of the electrical power system of the laptop computer ofFIG. 1 in accordance with an embodiment of the present invention.
FIG. 3 depicts a portion of the electrical power system ofFIG. 2 in greater detail in accordance with an embodiment of the present invention.
FIG. 4 is a perspective view of a notebook or laptop computer in accordance with another embodiment of the invention.
FIG. 5 is a block diagram of the electrical power system of the laptop computer ofFIG. 4 in accordance with an embodiment of the present invention.
FIG. 6 depicts a portion of the electrical power system ofFIG. 5 in greater detail in accordance with an embodiment of the present invention.
FIG. 7 depicts a networked power demultiplexer device in accordance with an embodiment of the present invention.
DETAILED DESCRIPTIONFIG. 1 is a perspective view of a notebook orlaptop computer10 in accordance with an embodiment of the invention. Thelaptop computer10 includes adisplay panel11 and achassis12. Thechassis12 includes arechargeable battery13. Thedisplay panel11 includes adisplay screen16 of some type, such as an LCD display screen, and also has mounted therein alight source15 for delivering light as is known in the art. Thechassis12 also includes an Ethernet-type connector orjack17. The Ethernet-type connector17 is shown located at one side of thechassis12, but the connector may be located at the opposite side or at the back of the chassis12 (or at other locations of the laptop computer10) in alternate embodiments. The Ethernet-type connector17 is the port into which one end of an Ethernet cable18 (shown inFIG. 2) is inserted. The Ethernetcable18 connects thelaptop computer10 to a network19 (shown inFIG. 2) of computer systems and/or other networkable devices. There is also a conventional power connector21 (shown inFIG. 2) typically located on the back edge of thechassis12.
FIG. 2 is a block diagram of the electrical power system of thelaptop computer10 ofFIG. 1 in accordance with an embodiment of the present invention. As shown, the computer10 (which typically includes a microprocessor as CPU, associated chipset, display screen, and other logic) is capable of receiving power from multiple sources.
Thenotebook computer10 is configured to be connected (via aconventional power connector21 and a conventional cable22) to aconventional power adaptor23. Thepower adaptor23 is connected to and receives power from a conventional external power source (for example, a wall socket). Thepower adaptor23 performs any power conversions that may be necessary (for example, going from 110 volts AC to 15 volts DC), and the motherboard switching regulator of thecomputer10 is then supplied powered by this external source. At the same time, therechargeable battery13 may also be recharged (if necessary) by the external power source (via the charging regulator circuit20). And when the external power source is not available, thecomputer10 is powered by therechargeable battery13.
In accordance with an embodiment of the present invention, thelaptop computer10 is further configured to receive power from theEthernet network19 by way of the Ethernet-type connector17 and theEthernet cable18. In this case, theEthernet cable18 includes, in addition to data communications related lines, a pair of lines delivering electrical power. In one specific embodiment, a spare pair of lines (not used for data transmission by 10Base-T or 100Base-T Ethernet) in theEthernet cable18 is utilized to transmit the power. In another specific embodiment, a pair of the data lines are used to transmit the power (for example, at 50 volts DC), in addition to or instead of transmitting data. The power received from thenetwork19 may be used to recharge thebattery13.
FIG. 3 depicts a portion of the electrical power system ofFIG. 2 in greater detail in accordance with an embodiment of the present invention. As depicted inFIG. 3, theEthernet connector17 may be configured to connect to bothpower lines32 anddata lines34 within thenotebook computer10. In a particular embodiment, thepower lines32 connect to thebattery charging regulator20 by way of power sensing and voltage step-downcircuitry36. The power sensing circuitry is configured to sense whether or not the Ethernet connection provides power (in addition to or instead of data communications). If the power sensing circuitry determines power is not being provided, then the power lines may be kept disconnected from the chargingregulator20. The voltage step-down circuitry is configured to reduce the higher voltage level (for example, 50 volts) supplied by the Ethernet connection to a lower voltage level (for example, 15 volts) for the input to the chargingregulator20. Depending on the particular implementation, the power sensing and/or voltage step-down circuitry may be optional.
FIG. 4 is a perspective view of a notebook orlaptop computer40 in accordance with another embodiment of the invention. Thelaptop computer40 includes adisplay panel11 and achassis12. Thechassis12 includes arechargeable battery13. Thedisplay panel11 includes adisplay screen16 of some type, such as an LCD display screen, and also has mounted therein alight source15 for delivering light as is known in the art. Thechassis12 also includes a first Ethernet-type connector orjack17 and a second Ethernet-type connector orjack47. Both Ethernet-type connectors17 and47 are shown located at one side of thechassis12, but theseconnectors17 and47 may be located at the opposite side or at the back of the chassis12 (or at other locations of the laptop computer10) in alternate embodiments. In accordance with an embodiment on the invention, while thefirst Ethernet connector17 is designated for networking and/or power, thesecond Ethernet connector47 is designated for power only.
The first Ethernet-type connector17 is the port into which one end of a first Ethernet cable18 (shown inFIG. 5) is inserted. Thisfirst Ethernet cable18 connects thelaptop computer10 to a network19 (shown inFIG. 5) of computer systems and/or other networkable devices. Thenetwork19 may or may not be configured to supply power (for example, at 50 volts DC).
The second Ethernet-type connector47 is the port into which one end of a second Ethernet cable48 (shown inFIG. 5) is inserted. Thissecond Ethernet cable48 may connect thelaptop computer10 to a power adaptor (sometimes called a power “brick” because of its shape)49. Thispower adaptor49 is specially configured with an Ethernet-compatible output so as to be able to deliver power (for example, at 15 volts DC) via theEthernet cable48. The other end (not illustrated) of thepower adaptor49 may be connected to and receives power from a conventional external power source (for example, a wall socket supplying 110 volts AC).
Alternatively, thissecond Ethernet cable48 may connect thelaptop computer10 to an Ethernet network that supplies supplemental power (for example, at 50 volts DC). The Ethernet network may be the same as thenetwork19 connected to thefirst connector17 or it may be a different network.
FIG. 5 is a block diagram of the electrical power system of thelaptop computer40 ofFIG. 4 in accordance with an embodiment of the present invention. As shown, the computer40 (which typically includes a microprocessor as CPU, associated chipset, display screen, and other logic) is capable of receiving power from multiple sources.
In accordance with an embodiment of the present invention, thelaptop computer40 is configured to receive power from anEthernet network19 by way of the first Ethernet-type connector17 andEthernet cable18. In this case, thefirst Ethernet cable18 includes, in addition to data communications related lines, a pair of lines delivering electrical power. In one specific embodiment, a spare pair of lines (not used for data transmission by 10Base-T or 100Base-T Ethernet) in theEthernet cable18 is utilized to transmit the power. In another specific embodiment, a pair of the data lines are used to transmit the power (in addition to transmitting data). The power received from thenetwork19 may be used to recharge thebattery13.
In accordance with an embodiment of the present invention, thenotebook computer40 is further configured to be connected (via the second Ethernet-type connector47 and Ethernet cable48) to aspecial power adaptor49 that is configured with an Ethernet-compatible output. Thespecial power adaptor49 is connected to and receives power from a conventional external power source (for example, a wall socket) and outputs converted power via the Ethernet-compatible output. Thepower adaptor49 performs any power conversions that may be necessary (for example, going from 110 volts AC to 15 volts DC, or going from 110 volts AC to 50 volts DC), and thecomputer40 is then powered by this external source. At the same time, therechargeable battery13 may also be recharged (if necessary) by the external power source (via the charging regulator circuit20).
In accordance with one embodiment, if power via such anadaptor49 is not available (for example, a user did not bring theadaptor49 or a wall socket is not available), then the user may alternatively connect thesecond Ethernet connector47 to receive supplemental power (for example, at 50 volts DC) from an Ethernet network (either thesame network19 as connected to thefirst connector17 or a different network). The supplemental power may be used to recharge thebattery13.
FIG. 6 depicts a portion of the electrical power system ofFIG. 5 in greater detail in accordance with an embodiment of the present invention.
As depicted inFIG. 6, thefirst Ethernet connector17 is configured to connect to bothpower lines32 anddata lines34 within thenotebook computer40. In a particular embodiment, thepower lines32 connect to thebattery charging regulator20 by way of power sensing and voltage step-downcircuitry36. The power sensing circuitry is configured to sense whether or not the Ethernet connection provides power (in addition to or instead of data communications). If the power sensing circuitry determines power is not being provided, then the power lines may be kept disconnected from the chargingregulator20. The voltage step-down circuitry is configured to reduce the higher voltage level (for example, 50 volts) supplied by the Ethernet connection to a lower voltage level (for example, 15 volts) for the input to the chargingregulator20. Depending on the particular implementation, the power sensing and/or voltage step-down circuitry may be optional. In addition, signature circuitry may be included in the system so as to send a “signature” to the network to let the network know that the laptop computer can receive power via the network connection and also how much power is wanted by the laptop computer.
As further depicted inFIG. 6, the second Ethernet-type connector47 is configured to connect to the chargingregulator20 by way of voltage sensing and switchingcircuitry62 and voltage step-downcircuitry64. The voltage-sensing circuitry is configured to sense or determine whether power is being supplied at a higher voltage level (for example, at 50 volts DC from a network) that needs to be stepped-down, or at a lower voltage level (for example, at 15 volts DC from a special power adaptor49) that does not need to be stepped down. If the voltage supplied needs stepping-down, then the power may be switched by the switching circuitry to go through the voltage step-downcircuitry64. Otherwise, If the voltage supplied does not need stepping-down, then the power may be switched by the switching circuitry to bypass the step-downcircuitry64 and go directly to the charging regulator20 (and also to the motherboard switching regulator of the laptop40). Depending on the particular implementation, the above-discussed additional circuitry may be optional.
In an alternate embodiment, a same or similar voltage level is provided by thespecial power adaptor49 as the voltage level provided by a network port (for example, approximately 50 volts). In this embodiment, the voltage-sensing and switchingcircuitry62 is not needed. Instead, the voltage step-downcircuitry64 may be configured between the second Ethernet-type connector47 and charging regulator20 (without the voltage-sensing and switching circuitry62).
FIG. 7 depicts a networkedpower demultiplexer device700 in accordance with an embodiment of the invention. The networkedpower demultiplexer device700 includes aninput702 configured to connect to networked power. As such, theinput702 may receive both network signals and power. Thedevice700 further includes afirst output704 configured to provide the network signals to a conventional network port of a portable computer system and asecond output706 configured to provide DC power at a predetermined voltage level to a conventional DC power input of the portable computer system. Thedevice700 includesdemultiplexer circuitry708 configured to direct the network signals from theinput702 to thefirst output704 and to direct the power from theinput702 to thesecond output706. In addition, theadaptor device700 may include voltage-conversion circuitry710 configured to convert the DC power input to a pre-determined voltage level that is compatible with the power input of the portable computing device. Such a networkedpower demultiplexer device700 is advantageously backward-compatible with existing laptop computers.
In one embodiment of the invention, a laptop computer is configured to receive external power (from one or more connections to a network supplying power) that is insufficient to fully power the laptop computer (which may require, for example, 80 watts to fully power). Although the external power received (for example, 15 watts per network connection) is insufficient to fully power the laptop computer, the external power is utilized to provide some recharging of the battery30 such that the time period that the battery30 may power the laptop computer is extended. For example, if a battery30 normally would provide 3 hours of laptop operation, this method may enable the operation time to be advantageously extended to 4 hours, for example. Furthermore, if the laptop computer is idle or sleeping or hibernating or powered off, then the laptop computer could charge. For example, the laptop device may be left plugged into the network over night so that it may be fully charged the next morning.
In an embodiment of the invention, the power delivered by a network may be compatible with IEEE 802.3af (sometimes referred to as “Power over Ethernet” or PoE). The Ethernet cable may comprise, for example, Category-5 or other cable, and the Ethernet-type connector may comprise an RJ45 or other connector.
Although the above discussion focuses on recharging a laptop computer, alternate embodiments of the invention may involve adaptation of the invention so as to recharge a tablet or palmtop computer, or even personal digital assistant (PDA) devices.
In the above description, numerous specific details are given to provide a thorough understanding of embodiments of the invention. However, the above description of illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific details, or with other methods, components, etc. In other instances, well-known structures or operations are not shown or described in detail to avoid obscuring aspects of the invention. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of the invention is to be determined by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.