CROSS REFERENCE TO RELATED APPLICATIONSThis application is a divisional application of U.S. patent application Ser. No. 11/571,464, filed on Sep. 11, 2007, entitled SYSTEMS AND METHODS FOR MANAGING INFORMATION RELATING TO MEDICAL FLUIDS AND CONTAINERS THEREFOR which is hereby incorporated in its entirety by reference herein, which claims the benefit of the PCT Application PCT/US2006/012620, filed on Apr. 4, 2006, entitled SYSTEMS AND METHODS FOR MANAGING INFORMATION RELATING TO MEDICAL FLUIDS AND CONTAINERS THEREFOR which is hereby incorporated in its entirety by reference herein, which claims the benefit of the following U.S. Provisional Applications that are hereby incorporated in their entireties by reference herein:
U.S. Provisional Application Ser. No. 60/668,647, filed 6 Apr. 2005 and entitled SYSTEM AND METHOD FOR TRACKING INFORMATION RELATING TO A PHARMACEUTICAL CONTAINER AND/OR PHARMACEUTICAL DISPOSED THEREIN;
U.S. Provisional Application Ser. No. 60/716,166, filed 12 Sep. 2005 and entitled SYSTEM AND METHOD OF TRACKING INFORMATION RELATING TO A PHARMACEUTICAL CONTAINER IN A CT SCANNING SUITE;
U.S. Provisional Application Ser. No. 60/668,681, filed 6 Apr. 2005 and entitled APPARATUS AND METHOD FOR LABELING RADIOPHARMACEUTICALS;
U.S. Provisional Application Ser. No. 60/681,252, filed 16 May 2005 and entitled APPARATUS AND METHOD FOR LABELING RADIOPHARMACEUTICALS; and
U.S. Provisional Application Ser. No. 60/718,545, filed 19 Sep. 2005 and entitled ANTENNA SYSTEM AND METHOD OF READING A DATA TAG ON A CONTRAST MEDIA CONTAINER.
FIELD OF THE INVENTIONThe present invention relates generally to medical fluids (e.g., radiopharmaceuticals, contrast media) and, more particularly, to tracking and/or managing information relating to medical fluids, containers therefor, and/or medical fluid administration devices used to administer such medical fluids.
BACKGROUNDProper administration of pharmaceuticals (e.g., contrast media, radiopharmaceuticals) is dependent on human reliability to insure the correct drug is administered properly. In the case of injectable pharmaceuticals, the consequences of mistakes can be severe. Statistically the accuracy of the health care system in providing correct injections is excellent. However, with millions of injections per year, there is a continuing effort to further reduce mistakes, a great majority of which are the result of human error.
Of particular interest is the packaging, distribution and use of contrast media or a contrast agent. As used herein, a contrast media or agent is a substance that is introduced into, on, or around a physiological structure (e.g., tissue, vasculature, cell); and because of the differences in absorption by the contrast media and the surrounding tissues, the contrast media allows a radiographic visualization of the structure. Contrast media is used in x-ray computed tomography (CT), magnetic resonance imaging (MR), ultrasound imaging, angiographic imaging, and other procedures. Often, a container, for example, a syringe, is filled with a desired quantity of the contrast media by an independent supplier; and the filled syringes of contrast media are sold or otherwise provided to a hospital, imaging service provider or other health care facility.
Over the useful life of the contrast media and its associated syringe, there are three principal areas of interest for tracking purposes: 1) the location where the contrast media is packaged in a container (e.g., a syringe); 2) the distribution and storage of the filled syringe; and 3) the use and disposal of the syringe. The filling of a syringe with contrast media can occur at a supplier's facility separate from a health care facility; or in some circumstances, within a pharmacy of the health care facility. Contrast media comes in many types and concentrations and can be filled in syringes of different sizes that also vary with the type of injector to be used. Further, the contrast media has a limited shelf life and a more limited life when open to atmosphere or when heated in preparation for injection. Thus, in order to properly fill a syringe with contrast media, knowledge of the contrast media's use, the injector and sometimes an identity of a patient are required. In addition, proper use of the contrast media requires knowledge of its age and other information relating to when the syringe was filled.
Currently, all this information is manually collected by pharmacists and X-ray technologists. The technologist then uses this information to manually set up the injection; and currently, this information must be manually transposed onto various records. Known systems for managing pharmaceuticals provide filled syringes with bar codes having SKUs and other indicia relating to various filled sizes and concentrations of contrast media. But this system is limited in use and does not provide an efficient management of all of the parameters needed in a medical environment and particularly in connection with the use of contrast media. There is a need for a more automated system for entering information relating to contrast media upon filling a syringe. There is a further need to automatically track a particular syringe through a distribution system whether from a supplier external to a health care facility and/or from a pharmacy within the facility.
A typical X-ray department has an X-ray contrast warming device or box. This device is used to raise the temperature of the contrast media to body temperature before it is manually injected or installed in an injector. Additionally, it is considered normal for X-ray departments to store more than the day's requirement of contrast media in the warmer box. This creates a complex situation for an X-ray technologist responsible for manually keeping track of sometimes dozens of contrast media syringes. The syringes have to be tracked by quantity, type and time in the warmer box; and the contrast media syringes should be used on a first-in first-out basis. As a result, a situation may result where there is too much of one type or not enough of another type. This manual tracking of contrast media syringes may also result in some syringes staying in the warmer box too long, and others being mistakenly removed before they have been properly warmed. Therefore, there is a need for a more automated system for tracking contrast media syringes in a warmer box.
Power injectors are frequently used to inject X-ray contrast media into patients receiving X-ray imaging procedures. X-ray technologists may encounter distractions in the course of executing an X-ray procedure thus leading to the possibility of injecting a patient using an empty syringe. An empty syringe injection often occurs when a technologist retracts a plunger of a syringe with the power injector after an injection but inadvertently does not replace the empty syringe with a new full syringe—when the next patient is prepared for imaging the technologist fails to recognize the empty syringe loaded in the power injector because the fully retracted empty syringe looks like a full syringe with contrast media. To reduce the risk of using an empty syringe, power injectors often prompt the technologist with a message asking the technologist to confirm that air has been purged out of the syringe and tubing. However, a technologist may answer “yes” to the prompt without carefully checking the syringe and tubing with the result that air is injected into a patient. Therefore, there is a need for a more automated system for preventing use of an empty syringe.
It is possible to refill almost any empty syringe with contrast media. Some syringes are intended to be refilled, whereas others are not. However, some engage in a practice of refilling syringes that are not intended to be refilled and/or refill a syringe improperly with a risk of trapping air within the syringe. Therefore, there is a need for an automated system for tracking the use of a syringe and preventing its subsequent unauthorized re-use.
The installed base of power injectors in the world is very large due to their reliability and long useful life. Throughout the life of a power injector, the diameter and length of syringes used in that injector may vary due to tooling, material or process changes over time, or even normal variations from batch-to-batch. Known power injectors have fixed programming for syringe sizes and are not setup to automatically make adjustments for minor variations in the diameter and length of a syringe. By assuming a diameter and length for a syringe, the volume delivery accuracy of a power injector is limited. For example, variations in syringe size result in a typical volume accuracy specification for a power injector of about ±2 milliliters (“ml”) per injection, even though the electronics and mechanical transmission are capable of much better. Therefore, there is a need for an automated system for determining variations in syringe size, so that better volume delivery accuracy can be achieved.
When a power injector fails to operate correctly, a service engineer must be called. In analyzing a power injector experiencing operating problems, the injector is operated in a “service” mode, which is often achieved by installing electrical jumpers in an injector control. The service mode makes testing and troubleshooting the power injector easier, but the service mode often disables some safety features of the injector. Use of a jumper is simple technology; and it is relatively easy for a customer to invoke service mode without authorization, for example, to avoid the inconvenience of various safety checks when using the injector. Furthermore, service mode may also be accidentally left enabled. Since a jumper is located on rear connection panels, it is not readily visible; and it is possible for the jumper to be mistakenly left in the power injector, in which case the injector is left in service mode. If the service mode is used for a medical procedure, either deliberately or mistakenly, the injector may not perform in a safe manner. Therefore, there is a need for a better system for placing a power injector in a service mode and preventing normal use of the power injector while it is in the service mode.
Sometimes, when a power injector is not operating properly, the improper operation cannot be repeated, is intermittent or just cannot be solved by the service engineer. In such cases the power injector is temporarily replaced and returned to the factory for a more thorough examination. Upon the power injector being returned, factory personnel sometimes do not receive sufficient information about the power injector's defective operation to effectively resolve the problem. Therefore, there is a need for a better system of communicating defective operating conditions to factory personnel for service purposes.
Often power injector manufacturers embed all possible features into the injector's software, even though some customers do not want particular features. Manufacturers do this to reduce the development cost and the complexity of installations. However, when the manufacturer has a very high value feature, the manufacturer must find a cost-effective and reliable method of activating that feature for only those customers who have paid for it. Therefore, there is a need for a better system that permits a manufacturer to embed all operating features but automatically activate only those features that a particular customer has purchased.
There is also a need for an automated system that tracks syringes from the time they are filled with a contrast media, through their distribution to a health care facility and/or an imaging suite, through the injection of the contrast media from the syringe and then the disposal or authorized refilling of the syringe. There is a further need for such an automated system to communicate information regarding the injection of contrast media to patient records.
Similar problems and needs also exist with respect to the manufacture, storage and use of other pharmaceuticals such as radioactive pharmaceuticals or radiopharmaceuticals. Radiopharmaceuticals, are often prepared at a radiopharmacy in which a syringe or vial may be filled with a desired quantity of the radiopharmaceutical. The syringe or vial may then be placed into a container called a “pig” that generally includes lead and/or other radiation shielding material to protect handlers from exposure to radiation from the radiopharmaceutical. After delivery, the pig may be opened; the syringe or vial may be removed; and the radiopharmaceutical may be administered to a patient. The used syringe or vial may then be put back in the pig, and pig and syringe or vial may be returned to the radiopharmacy for disposal of the syringe and reuse or disposal of the pig. For purposes of this document, the term “container” means a structure for holding a radiopharmaceutical and from which the radiopharmaceutical may be dispensed, for example, a syringe, vial, etc.
Some radiopharmacies have nuclear medicine tracking systems that use bar code readers to read bar codes on prescription labels to facilitate shipment and receipt of the radiopharmaceutical pig and syringe or vial. Therefore, a person in a receiving nuclear medicine department can scan the prescription label on the pig to enter data into a procedural data system. While this known use of bar codes has improved the reliability of passing prescription information through a distribution channel, bar codes have a significant disadvantage. Bar codes store only a limited amount of information, are “read only” devices and therefore, do not permit coded information to be changed or updated or new data to be added to the prescription labels. Further, a bar code must be in a “line of sight” of a reader to be useful.
While a syringe or vial may be disposed of after use, the radiopharmaceutical pig is cleaned and reconditioned for reuse. Therefore, instead of using adhesives to attach a pharmaceutical label to a pig, it is known to attach the label to the pig with elastic bands, resilient clear plastic sleeves, etc. While such techniques make a pig easier to clean for reuse, they do have a disadvantage in that reliably maintaining a label and pig together may require substantial human effort in initially applying the label and then checking and double checking the correctness of the label and pig combination over the life of the prescription.
The proper handling and use of radiopharmaceuticals may be said to require highly disciplined processes—and while the occurrence of mistakes is statistically small, errors still occur in the handling and delivery of radiopharmaceuticals. Thus, there is a need to provide a prescription label for a radiopharmaceutical that addresses the disadvantages described above.
SUMMARYThe present invention is generally directed to managing information relating to a medical fluid, a container therefor, and/or a medical fluid administration device. Containers of the invention typically have a data tag associated therewith to enable information to be read from and/or written to the data tag of the container. This allows information regarding the container and/or the medical fluid associated therewith to be ascertained, and optionally updated, for example, during and/or between various stages of manufacture, transport, storage, use, and/or disposal.
As used herein, a “medical fluid” generally refers to a fluid that is designed to be administered (e.g., intravenously) to a medical patient as a part of a medical procedure (e.g., diagnostic procedure, therapeutic procedure). Examples of medical fluids include, but are not limited to, contrast media, radiopharmaceuticals, and saline. A “container” of the invention generally refers to any container designed to have a medical fluid disposed therein. Examples of containers of the invention include, but are not limited to, syringes, IV bags, and bulk contrast media containers. An “administration device” of the invention refers to any electronic device designed to at least assist in transferring medical fluid from a container to a patient. Examples of medical fluid administration devices of the invention include, but are not limited to, infusion pumps and power injectors.
A first aspect of the invention is directed to a syringe having a medical fluid disposed therein. The syringe includes a data tag for storing data, such as data relating to a software update for a powered fluid injector, a product promotion, and/or an electronic coupon code for sales of further products. Incidentally, a “data tag” herein refers to any device capable of having data electromagnetically read therefrom and/or written thereto (e.g., RFID tag).
A second aspect of the invention is directed to a medical fluid administration device capable of at least assisting in delivering a medical fluid from a container to a patient in a medical procedure. The container includes a data tag for storing data, and the administration device includes an electromagnetic device. Herein, an “electromagnetic device” refers to any device capable of electromagnetically reading data from and/or writing data to a data tag. The data read from the data tag may relate to configuration information for the administration device, a software update for the administration device, a product promotion, and/or an electronic coupon code for purchases of further products. In the case of the data tag including data relating to configuration information, and upon the data being read from the data tag by the electromagnetic device, the configuration information may be used by the administration device to execute a self-configuration cycle.
A third aspect of the invention is directed to a system for use in association with a medical fluid administration device. The system includes a service data tag (e.g., as a component of a badge or card) that may be used by service personnel, and an electromagnetic device associated with the administration device. This electromagnetic device is operable to read data from and/or write data to the service data tag (e.g., to provide data relating to an identity of the service person and/or configuration information for that particular administration device).
With regard to this third aspect of the invention, the administration device of some embodiments may enable a service mode upon the electromagnetic device detecting data from the service data tag. In some embodiments, the electromagnetic device may write data to the service data tag that relates to service activity information, administration device configuration information and/or administration device use information (e.g., fluid administration protocol statistics, container identifications, medical fluid use information).
A fourth aspect of the invention is directed to a warmer for warming a container having a medical fluid disposed therein. The container has a data tag for storing data associated therewith. The warmer includes both a heating element for elevating the temperature of the medical fluid and an electromagnetic device operable to read data from and/or write data to the data tag associated with the container. The data tag may contain data (which may be read by the electromagnetic device) relating to the amount of medical fluid in the container, the concentration of the medical fluid, manufacturing information regarding the medical fluid and/or the container, the container capacity, the container dimensions, a use code for the medical fluid, and configuration information for a medical fluid administration device to be used in administering the medical fluid to a patient.
With regard to this fourth aspect of the invention, some embodiments may include a user interface (e.g., touch screen) for facilitating user selection of a container in the warmer. In some embodiments, the electromagnetic device may be used to write data relating to use of the medical fluid to the data tag. For example, the electromagnetic device may be used to write data to (and/or read data from) the data tag that relates to a date the container was placed in the warmer, an expiration data for contrast media in the container, and/or administration information for an administration device to be used in administering the medical fluid in the container.
Still a fifth aspect of the invention is directed to a container having a medical fluid disposed therein and a data tag associated therewith. In the case that the medical fluid is a radiopharmaceutical, the data on the data tag of some embodiments may relate to an identity of the radiopharmaceutical, a radioactivity level of the radiopharmaceutical, manufacturing information for the radiopharmaceutical, a use code for the radiopharmaceutical (e.g., identifying whether a radiopharmaceutical container has previously been used in a radiopharmaceutical administration procedure), and/or configuration information for an administration device to be utilized in administering the radiopharmaceutical (e.g., a code that is required by the administration device prior to use of the container, a software update for the administration device, a product promotion, references to information).
Yet a sixth aspect of the invention is directed to a radiopharmaceutical administration device for use in administering a radiopharmaceutical to a patient. This administration device is designed to at least assist in delivering a radiopharmaceutical from a container to a patient. The container has a data tag associated therewith, and the administration device includes an electromagnetic device for reading data from and/or writing data to the data tag. In some embodiments, the data included on the data tag identifies the amount and/or identity of radiopharmaceutical in the container, manufacturing information for the radiopharmaceutical in the container, the radioactivity level of the radiopharmaceutical in the container, a use code for the radiopharmaceutical in the container, configuration information for the administration device to be used in administering the radiopharmaceutical from the container, and/or particular data regarding a radiopharmaceutical container previously used with the administration device. In some embodiments, the data tag may store data indicative of configuration information for the administration device that includes a code required by the administration device prior to use of the radiopharmaceutical container (e.g., data used by the administration device in self-configuration upon reading of the data tag), a software update for the administration device, a product promotion, and/or references to information. For instance, in some embodiments, the administration device may utilize an electronic coupon code included in the data tag in purchases of further products.
A seventh aspect of the invention is directed to a system for use in a medical procedure with respect to a patient The system includes a hospital information system, a container having a medical fluid disposed therein, and an administration device for administering the medical fluid to a patient. Associated with the container is a data tag that is readable by electromagnetic signals and that stores signals representing product promotions, coupons, Internet links of the supplier, and/or recommended software updates for administration devices with which the container is intended for use. The system also includes an electromagnetic device for reading data from and/or writing data to the data tag associated with the container. This electromagnetic device may be mounted on the administration device and is preferably in electrical communication with both the hospital information system and the administration device (e.g., the control thereof).
Still further, the system includes an imaging apparatus (e.g., CT scanner) that includes an imaging control, which is preferably in electrical communication with the hospital information system, the control of the administration device, and the electromagnetic device. Incidentally, “electrical communication” or the like herein refers to objects that are directly and/or indirectly connected in a manner such that electricity (e.g., data in the form of electronic signals) can be conveyed between them. Data associated with administration (e.g., injection, infusion) of the medical fluid may be transferred between the hospital information system, the data tag, the control of the administration device, and the imaging control. Some embodiments of this seventh aspect may include a printer in electrical communication with the administration device (e.g., the control thereof.
An eighth aspect of the invention is directed to an administration device for use with a container having medical fluid disposed. In some embodiments, the medical fluid is metallic and/or diamagnetic. The container has a data tag that is readable by electromagnetic signals associated therewith, and the administration device includes an electromagnetic device adapted to read data from and/or write data to the data tag. In some embodiment, this electromagnetic device includes first and second antenna loops, each of which forms one side of a V-shape and is tuned to a radio frequency. Each of the first and second antenna loops may include a signal lead and a ground lead.
Still referring to the eighth aspect of the invention, the electromagnetic device of some embodiments may include first and second tuning circuits that correspond with the first and second antenna loops. These tuning circuits may each include an input and an output. The output of the first tuning circuit may be connected to the signal lead of the first antenna loop and may function to tune the first antenna loop to a radio frequency. Similarly, the output of the second tuning circuit may be connected to the signal lead of the second antenna loop and may function to tune the second antenna loop to a radio frequency (e.g., the same radio frequency as the first antenna loop). The second antenna loop of the electromagnetic device may be nonparallel (e.g., form an angle of less than 180 degrees) with the first antenna loop.
Some embodiments of this eighth aspect may include additional antenna loops beyond the first and second antenna loops. For instance, some embodiments may include a third antenna loop having both a signal lead and a ground lead, and a third tuning circuit that includes an input and an output. As with the outputs of the first and second tuning circuits, the output of the third tuning circuit may be connected to the signal lead of the third antenna loop and may function to tune the third antenna loop to a radio frequency (e.g., the same radio frequency as the first and/or second antenna loop).
In some embodiments of the eighth aspect of the invention, the administration device may be utilized to support the container. For instance, in some embodiments, the administration device is an electronic fluid injector, and the electromagnetic device is mounted in association with the injector. The administration device may include both a first printed circuit board that supports the first antenna loop and the first tuning circuit, and a second printed circuit board that supports the second antenna loop and the second tuning circuit. The first printed circuit board may be oriented in any of a number of appropriate orientations relative to the second circuit board. For instance, in some embodiments, the first circuit board forms an angle of less than about 180 degrees with the second printed circuit board. The first printed circuit board may support a driver circuit electrically connectable to the first antenna loop, the second antenna loop, the first tuning circuit, and/or the second tuning circuit. This driver circuit may include a power terminal and a ground terminal.
In some embodiments of this eighth aspect, the input of the first tuning circuit is connected to the power terminal, and the ground lead of the first antenna loop is connected to the ground terminal. In addition, the input of the second tuning circuit is not connected to the power terminal or the ground terminal, and the ground lead of the second antenna loop is connected to the ground terminal.
In other embodiments of the eighth aspect, the input of the first tuning circuit is not connected to the power terminal or the ground terminal, and the ground lead of the first antenna loop is connected to the ground terminal. In addition, the input of the second tuning circuit is connected to the power terminal, and the ground lead of the second antenna loop is connected to the ground terminal.
In still other embodiments of the eighth aspect, the input of the first tuning circuit is connected to the power terminal, and the ground lead of the first antenna loop is connected to the ground terminal. In addition, the input of the second tuning circuit is connected to the ground terminal, and the ground lead of the second antenna loop is connected to the ground terminal.
In yet other embodiments of the eighth aspect, the input of the first tuning circuit is connected to the ground terminal, and the ground lead of the first antenna loop is connected to the ground terminal. In addition, the input of the second tuning circuit is connected to the power terminal, and the ground lead of the second antenna loop is connected to the ground terminal.
Some embodiments of the eighth aspect may be equipped with a switching circuit including first and second switches. The first switch may include a first contact connected to the input of the first tuning circuit, a second contact connected to the ground terminal, a third contact connected to the power terminal, and a fourth contact not connected to the ground terminal or the power terminal. This first switch is preferably operable to electrically connect the first contact with at least one of the second contact, the third contact and the fourth contact. Similarly, the second switch may include a fifth contact connected to the input of the second tuning circuit, a sixth contact connected to the ground terminal, a seventh contact connected to the power terminal, and an eighth contact not connected to the ground terminal or the power terminal. This second switch is preferably operable to electrically connect the fifth contact with at least one of the sixth contact, the seventh contact and the eighth contact.
In a ninth aspect, the invention is directed to a method of using a medical fluid administration device that includes an electromagnetic device operable to read data from and/or write data to a data tag. This data tag is associated with a container that has medical fluid disposed therein. In this method, first and second antenna loops of the electromagnetic device are electrically connected in a first circuit configuration and are tuned to a substantially identical radio frequency. These first and second antenna loops may be oriented in a nonparallel relationship relative to one another. An electromagnetic (e.g., RF) communication may be attempted between the electromagnetic device and the data tag, at least in part, by providing electromagnetic power to the first circuit configuration. A determination may be made as to whether or not electromagnetic communication is or was established between the electromagnetic device and the data tag. If it is determined that electromagnetic communication is/was not made, the first and second antenna loops may be electrically reconnected in a further (e.g., second) circuit configuration different from the first circuit configuration. Then, another electromagnetic communication between the electromagnetic device and the data tag may be attempted, at least in part, by providing electromagnetic power to the further circuit configuration. The process of determining whether or not an electrical communication exists, electrically reconnecting the first and second antenna loops, and attempting another electromagnetic communication may be repeated as desired (e.g., until determining that a successful electromagnetic communication has been established between the electromagnetic device and the data tag).
A tenth aspect of the invention is directed to a method of using a medical fluid administration device that includes an electromagnetic device operable to read data from and/or write data to a data tag. In this method, a data tag is disposed near an antenna system of the electromagnetic device, and a material that interferes with electromagnetic signals (e.g., metallic material, diamagnetic material) is disposed between the data tag and the antenna system. Even though the material is disposed between the data tag and the antenna system, data may still be electromagnetically read from and/or written to the data tag using the electromagnetic device and the antenna system thereof.
In some embodiments of this tenth aspect, the data tag is a component of a container that has medical fluid (which, in this case, is or includes the material) disposed therein. In such embodiments, the medical fluid may be, for example, water, saline, contrast media, or a combination thereof. In such embodiments, the container may be placed near (e.g., in contact with) the administration device in a manner such that the data tag of the container is located near the antenna system and such that the material in the container is located between the data tag and the antenna system. While not always the case, the electromagnetic device and the antenna system thereof may be components of the administration device.
Some embodiments of the antenna system of this tenth aspect may include first and second antenna loops. In these embodiments, the first and second antenna loops may be electrically connected in a first antenna configuration, and electromagnetic signals from this first antenna configuration may be emitted to at least attempt to electromagnetically read data from and/or electromagnetically write data to the data tag. In response to a failure to electromagnetically read data from and/or electromagnetically write data to the data tag when the first and second antennas are in the first configuration, the first and second antenna loops may be electrically reconnected in another (e.g., second) antenna configuration, and electromagnetic signals from the new antenna configuration may be emitted to again at least attempt to electromagnetically read data from and/or electromagnetically write data to the data tag.
In an eleventh aspect, the invention is directed to a container assembly that includes a medical fluid container that is enclosable inside an enclosure. Associated with the container are both a data tag that includes a data store and an antenna system that is electrically connectable to the data tag. The construction of the enclosure of this eleventh aspect is such that a frequency of electromagnetic signal necessary to read data from and/or write data to the data tag is substantially prevented from passing through the material of the enclosure. The antenna system of this eleventh aspect is designed so that an antenna thereof is located outside the enclosure while the container and the data store of the data tag are enclosed in the enclosure. This antenna system permits data to be read from and/or written to the data store while the container and the data store of the data tag are enclosed within the enclosure.
Still a twelfth aspect of the invention is directed to a radiopharmaceutical assembly that includes a radiopharmaceutical container (e.g., a syringe having a radiopharmaceutical disposed therein) and a radiopharmaceutical pig that is enclosable about the container to fully surround and support the container. In addition, this twelfth aspect includes a data tag that includes a data store and that is attached to the radiopharmaceutical container. An antenna system is electrically connectable to the data tag upon the radiopharmaceutical container (and the data tag attached thereto) being placed in the radiopharmaceutical pig. This antenna system permits data to be read from and/or written to the data store of the data tag while the radiopharmaceutical pig is closed around the radiopharmaceutical container and the data tag.
In some embodiments of this twelfth aspect, the radiopharmaceutical pig may be characterized as having both a first pig component (e.g., a base) adapted to support the radiopharmaceutical container with the data tag and a second pig component (e.g., a cap) that is attachable to the first pig component and adapted to fully enclose the radiopharmaceutical container with the data tag within the radiopharmaceutical pig. In such embodiments, the antenna system may be adapted to be electrically connectable to the data tag upon the radiopharmaceutical container being placed in the first pig component of the radiopharmaceutical pig. The antenna system of these embodiments permits data to be read from and/or written to the data store of the data tag while the first pig component is attached to the second pig component and while the radiopharmaceutical container and the data tag are enclosed inside the radiopharmaceutical pig. In some of these embodiments the antenna system may be include an antenna electrically connected to the data tag, an inner antenna adjacent an inner surface of one of the first pig component and the second pig component, an outer antenna adjacent an outer surface of one of the first pig component and the second pig component, and a conductive lead electrically connecting the inner antenna with the outer antenna. The antenna of some embodiments of the twelfth aspect may be attached to (e.g., fixed to) the radiopharmaceutical container.
Still referring to the twelfth aspect of the invention, some embodiments of the antenna system may be characterized as having an antenna locatable outside the radiopharmaceutical pig, and a conductive lead that has one end connected to the data tag within the radiopharmaceutical pig and an opposite end connected to the antenna located outside the radiopharmaceutical pig.
In yet a thirteenth aspect, the invention is directed to a power injector capable of supporting a syringe that has a medical fluid disposed therein. Particularly, the medical fluid is located between a plunger and a discharge tip of the syringe. The syringe includes a data tag for storing data that is electromagnetically readable from the data tag. The injector of this thirteenth aspect includes a powerhead having a plunger drive adapted to interface with (e.g., be connected to) the plunger of the syringe. An injector control of the injector is operatively connected to the powerhead. Further, an electromagnetic device of the injector is mounted on the powerhead and is in electrical communication with the injector control. This electromagnetic device includes a plurality of antennas operative to transmit electromagnetic signals to and receive electromagnetic signals from the data tag (e.g., to read data stored in the data tag).
In some embodiments of this thirteenth aspect, the electromagnetic device may include a plurality of tuning circuits electrically connected to respective antennas for tuning the respective antennas to a desired frequency(ies). For instance, in some embodiments, the tuning circuits may be utilized to tune the respective antennas to a frequency of about 13.56 Megahertz. A driver circuit of the electromagnetic device may be electrically connectable to the tuning circuits and the injector control. This driver circuit may function to provide drive signals to the tuning circuits causing the respective antennas to transmit electromagnetic signals to and receive electromagnetic signals from the data tag (e.g., to read data stored in the data tag). Some embodiments may include a switching circuit electrically connected between the driver circuit and the tuning circuits. This switching circuit may be utilized to connect the antennas in different circuit configurations. In some embodiments, at least one of the switching circuit and the driver circuit are located in the powerhead of the injector.
Still referring to the thirteenth aspect of the invention, some embodiments of the powerhead may include a forward end adapted to receive and support the syringe. In some embodiments, this forward end may include or be characterized as a mount of sorts adapted to accommodate (e.g., receive and support) the syringe. In some embodiments, the mount may include a pressure jacket for supporting the syringe. In such embodiments, the antennas may be mounted on the pressure jacket. Some embodiments of the mount may not include a pressure jacket. Some embodiments of the mount may include what may be referred to as a cradle to support the syringe. In such embodiments, the antennas may be supported by and/or located within the cradle.
Some embodiments of the thirteenth aspect may have a pressure jacket that includes an inner sleeve and an outer sleeve disposed about the inner sleeve. One or more antennas may be located between the inner sleeve and the outer sleeve of the pressure jacket. For instance, in some embodiments, a plurality of antennas may be disposed between the inner and outer sleeves and equally spaced about a circumference of the pressure jacket. In some embodiments, one or more tuning circuits may be located between the inner sleeve and the outer sleeve.
Some embodiments of the injector of the thirteen aspect of the invention may include a heater (e.g., for heating the medical fluid disposed in the syringe). For example, in some embodiments, the heater may be attached to or a component of a pressure jacket of the injector. As another example, in some embodiments, the heater may be attached to or a component of a cradle of the injector. In embodiments equipped with a heater, the heater may be electrically connected to the injector control.
The syringe employed in this thirteen aspect of the invention may be exhibit any of a number of appropriate structural designs/configurations. For instance, in some embodiments, the plunger of the syringe is substantially wholly contained within a barrel of the syringe. Further, the syringe employed in this thirteen aspect of the invention may be exhibit any of a number of appropriate sizes (e.g., volume capacities). As an example, the syringe of some embodiments exhibits a volumetric capacity capable of accommodating a volume of fluid in excess of about 90 ml.
A fourteenth aspect of the invention is directed to a system for managing data relating to a container and/or a medical fluid disposed therein. The container includes a data tag operable to have data written thereto and read therefrom. A filling station of the system may be utilized to place the medical fluid in the container. This filling station includes an electromagnetic device operable to at least write data (e.g., relating to the fluid in the container) to the data tag. Further, a disposal station of the system may be utilized in disposing of and/or preparing for disposal of the container (which may or may not still have medical fluid therein). This disposal station also includes an electromagnetic device operable to write data (e.g., relating to disposal of the container) to the data tag. The system may also include a hospital information system in electrical communications with one or more electromagnetic devices of the system.
In some embodiments of this fourteenth aspect, the system may include a warmer that may be utilized to heat the fluid in the container. This warmer is generally equipped with an electromagnetic device operable to write data (e.g., relating to placing the container in and/or removing the container from the warmer) to the data tag.
Some embodiments of the fourteenth aspect may include a medical fluid administration device. For example, in some embodiments, the administration device is a power injector for use with a syringe. The power injector generally includes both a control and an electromagnetic device that is electrically connected to the control and operable to write data (e.g., relating to administration of the medical fluid into the patient) to the data tag.
In some embodiments, the system of the fourteenth aspect may include a packaging station that may be used in placement of the container into a package. This packaging station may include an electromagnetic device operable to write data (e.g., relating to the package, the fluid and/or the container) to the data tag.
Some embodiments of the system may include a storage area for storing the container (which may or may not already have the medical fluid disposed therein). This storage area generally includes an electromagnetic device operable to write data (e.g., relating to placing the syringe in and/or removing the syringe from the storage area) to the data tag.
In some embodiments of the fourteenth aspect, the medical fluid that is in or is to be placed in the container is a radiopharmaceutical. In such embodiments, a packaging station (e.g., radiopharmacy) of the system may be used during placement of the container into a radiopharmaceutical pig. Further, the packaging station may be utilized when placing the radiopharmaceutical pig in a package (e.g., a transport package). This packaging station may include an electromagnetic device operable to write data (e.g., relating to the radiopharmaceutical, the container, the pig, and/or the package) to the data tag.
Some embodiments of the system may include a calibration station that includes an electromagnetic device operable to write data (e.g., relating to radioactivity level of the radiopharmaceutical in the container) to the data tag. Some embodiments of the system may include a treatment room where the radiopharmaceutical pig may be received and the container having the radiopharmaceutical disposed therein is removed for administration of the radiopharmaceutical to a patient. This treatment room may include an electromagnetic device operable to write data (e.g., relating to administration of the radiopharmaceutical to the patient) to the data tag. A storage area of the system may include an electromagnetic device operable to write data (e.g., relating to placing the pig into and/or removing the pig from the storage area) to the data tag.
Various refinements exist of the features noted in relation to the above-mentioned aspects of the present invention. Further features may also be incorporated in the above-mentioned aspects of the present invention as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the exemplary embodiments of the present invention may be incorporated into any of the aspects of the present invention alone or in any combination.
BRIEF DESCRIPTION OF THE FIGURESThe accompanying figures, which are incorporated herein and constitute a part of this specification, illustrate exemplary embodiments of the invention and, together with a general description of aspects of the invention given above, and the detailed description of various exemplary embodiments given below, serve to explain various principles of the invention.
FIG. 1A is a schematic drawing of a system for tracking a syringe filled with contrast media over a syringe life cycle.
FIG. 1B is a schematic drawing of a system for tracking a container filled with a radiopharmaceutical over a container life cycle.
FIG. 1C is a schematic drawing of a system for tracking an IV bag filled with a medical fluid over an IV bag life cycle.
FIGS. 2A-2D are perspective views of a syringe that illustrate different manners of applying a tracking device to a syringe filled with contrast media in the system shown inFIG. 1A.
FIG. 3A is a schematic block diagram of components associated with the system illustrated inFIG. 1A.
FIG. 3B is a schematic block diagram of components associated with the system illustrated inFIG. 1B.
FIG. 3C is a schematic block diagram of components associated with the system illustrated inFIG. 1C.
FIG. 4 is a schematic drawing illustrating activities and operations associated with use and disposal of a container of contrast media in an imaging suite.
FIG. 5A is a perspective view of one embodiment of an injector that may be used in the system ofFIG. 1A.
FIG. 5B is a perspective view of an embodiment of an injector and a field engineer identification card that may be used in the system ofFIG. 1A.
FIG. 6 is a flowchart of an exemplary method of manufacturing and distributing a syringe or other container as shown inFIGS. 1A and 1B.
FIG. 7 is a flowchart of an exemplary method of stocking and preparing for use of a syringe or other container as shown inFIGS. 1A and 1B.
FIG. 8 is a flowchart of an exemplary method of using a syringe or other container as shown inFIGS. 1A and 1B.
FIG. 9 is a flowchart of an exemplary method of a field maintenance process for a syringe filled with contrast media as shown inFIG. 1A.
FIG. 10 is a schematic drawing illustrating a variation in RF signal strength in coupling a transmitting antenna with a receiving antenna angled with respect to the transmitting antenna.
FIG. 11 is perspective view of a contrast media power injector having an RF data tag on a syringe mounted in a power injector.
FIG. 12 is a perspective view of an exemplary embodiment illustrating a syringe positioned above a faceplate of a contrast media power injector having multiple, nonparallel antenna loops for a read/write device in accordance with the principles of the present invention.
FIGS. 13A-13D are schematic drawings of four different circuit configurations for the multiple, nonparallel antenna loops ofFIG. 12.
FIG. 14 is a schematic drawing of the multiple, nonparallel antenna loops ofFIG. 11 with switches for connecting the antenna loops in the four different circuit configurations ofFIGS. 13A-13D.
FIG. 15 is schematic drawing of a flowchart illustrating a communications cycle utilizing the multiple, nonparallel antenna loops ofFIG. 12.
FIG. 16 is a cross-sectional drawing of a pressure jacket for a contrast media power injector as shown inFIG. 11, which is equipped with a multiple loop, nonparallel antenna system for the contrast media power injector similar to that illustrated inFIG. 12.
FIG. 17 is a schematic drawing of an electromagnetic radio frequency R/W device utilizing the multiple loop, nonparallel antenna system ofFIG. 16.
FIG. 18 illustrates different manners of applying a tracking device to a radiopharmaceutical container and respective pig in the system shown inFIG. 1.
FIG. 19 is a flowchart of an exemplary method of post-processing a radiopharmaceutical container and associated pig.
FIG. 20 is a perspective view of an exemplary embodiment of an RF tag and antenna system that is applicable to a radiopharmaceutical syringe and associated radiopharmaceutical pig in accordance with the principles of the present invention.
FIG. 21 is a perspective view of another exemplary embodiment of an RF tag and antenna system that is applicable to a radiopharmaceutical syringe and associated radiopharmaceutical pig in accordance with the principles of the present invention.
FIG. 22 is a perspective view of a further exemplary embodiment of an RF tag and antenna system that is applicable to a radiopharmaceutical syringe and associated radiopharmaceutical pig in accordance with the principles of the present invention.
FIG. 22A is an exploded view showing a path of an antenna lead in the further embodiment of the radiopharmaceutical syringe and associated radiopharmaceutical pig shown inFIG. 22.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTSReferring toFIG. 1A, an exemplary embodiment of acontainer life cycle18arelates to medical fluid containers, for example, asyringe20 suitable for storing contrast media. Thesyringes20 may be manufactured at asupplier facility24 that is remote from afacility42 in which asyringe20 is to be used. Within thesupplier facility24, thesyringe20 is first filled with a contrast media at a fillingstation28, and thereafter, labels30 may be applied torespective syringes20 at alabeling station32. Thesyringes20 may then be packaged either singularly or as a batch in anappropriate shipping carton34 at a packaging station and theshipping cartons34 may be temporarily queued or stored in a shipping/receiving department38.
Orders for thesyringes20 can be received from various sources, for example, a purchasingoffice25 within ahealth care facility42, or a doctor'soffice27 that may be part of, or independent from, thehealth care facility42. Further, the orders may or may not be associated with a particular patient.
Based on the orders, theshipping cartons34 may enter adistribution channel40 by which they may be delivered tovarious facilities42, for example, hospitals, image service providers, and/or other health care facilities. In the example ofFIG. 1A, thefacility42 is a hospital that has a shipping/receivingarea44 for receiving thecartons34 ofprefilled syringes20. Incidentally, “prefilled” herein describes a container that is designed to be sold and/or delivered to a user with at least some medical fluid already disposed in the container. Often, thecartons34 are temporarily stored in aroom46 that may or may not be associated with a pharmacy within thehospital42. As desired, thecartons34 may be transferred to apreparation room48 at which thesyringes20 may be unpacked and placed in a warmingoven36 to raise the temperature of the contrast media up to about body temperature (e.g., between about 97° F. and about 100° F.). At appropriate times, one ormore syringes20 may be removed from the warmingoven36, carried to the imaging suite26aand loaded into apowered fluid injector50. Theinjector50 operates to inject the contrast fluid into an examination subject orpatient52. After use, the spentsyringe20 may be processed for an authorized refilling or disposed of (e.g., in a disposal area112) in a known manner. For purposes herein, the term “prefilled syringe” means asyringe20 prefilled with a medical fluid (e.g., contrast media) at a location remote from thepreparation room48 and imaging suite26a.
As with any substance to be injected into an animal, there are a great many regulated practices as well as unregulated common practices that are desirable to be followed in the filling, distribution, preparation and use of a prefilled syringe. Further, the regulated and common practices may differ depending on the type of contrast media being used. Consequently, it is generally desirable to generate and provide a substantial amount of data relating to the handling of thesyringe20 throughout its life cycle, for example, at substantially every step from its filling to its disposal. Further, it is generally preferred that the data be transferable from one location, for example, the respective filling andlabeling stations28,32, to another location, for example, the respective preparation andimaging rooms48,26a.Today, such data has been known to be recorded and transferred utilizing typed and/or hand-written information located on thesyringes20 and/orcartons34 as well as typed and/or hand-written records associated therewith. However, during the life of asyringe20, the data is desired to be utilized in computer systems that may, most often, not be integrated and sometimes, in databases that may not be compatible.
In order to provide a common data acquisition and storage system for eachsyringe20, which can be utilized during any portion, and at every stage, of thecontainer life cycle18a,a system of radio frequency identification device (“RFID”) tags and readers is used.
The object of an RFID-based system is to carry data in transponders, generally known as tags, and to retrieve data, by machine-readable means, at a suitable time and place to satisfy a particular application need. Thus, a tag or transponder may typically include an RF driver circuit and associated antenna. The RF driver circuit often utilizes an integrated circuit chip having a programmable processor and associated memory, which are capable of storing the data and performing necessary demodulation and, if applicable, modulation functions. Data within a tag may provide any manner of information relating to a prefilled syringe that is useful over the life of the syringe. It is generally preferred that an RFID system include a means for reading data from, and in some applications, writing data to, the tags, as well as a means for communicating the data to a computer or information management system. Thus, an RFID system preferably has the versatility to permit data to be written into, and read from, a tag at different times and at different locations,
Wireless communication is most often used to transfer data between a tag and a reader. Such communication is often based upon propagating electromagnetic waves, for example, radio frequency waves, by antenna structures present in both tags and readers. It is known to use either a common antenna or different antennas with an RFID tag to read data from, and write data to, the tag; closed loop, open loop, stripline, dipole and/or other antennas may be used. Further, RFID tags may be passive, that is, without an independent power supply, or active, that is, with a power supply such as a battery. In applications described herein, the choice of a particular antenna configuration and whether to use an active or passive RFID tag may or may not be application dependent.
An exemplary embodiment of a syringe manufacturing process implemented at asupplier facility24 is illustrated inFIG. 6. First, at502, asyringe20 is filled withcontrast media22 at a fillingstation28. Thereafter, at504, alabel30 containing human readable and/or machine-readable indicia is applied to thesyringe20 at thelabeling station32. As part of the labeling process, anRFID tag60 is applied to thesyringe20. TheRFID tag60 incorporates an RFID chip and associated antenna in a known manner, for example, as shown inFIG. 5A by theRFID chip212 andantenna210; and theRFID tag60 may be a part of or separate from thelabel30. As shown inFIGS. 2A-2D, the RFID tag can be applied at any suitable location on thesyringe20. For example, as shown inFIG. 2A, theRFID tag60 can be applied to arear surface55 of asyringe flange56; and as shown inFIG. 2B, theRFID tag60 can be applied to an outercylindrical surface57 of the syringe. In another embodiment shown inFIG. 2C, prior to thesyringe20 being loaded into a power head of an injector, theRFID tag60 can be peeled off of thesyringe20 and applied to the injector. Upon removing thesyringe20 from the injector power head, the RFID tag may be reapplied to thesyringe20. In a still further embodiment shown inFIG. 2D, theRFID tag60 can be applied to arear surface58 of a plunger59. The plunger59 may have a core61 covered by a moldedmaterial63, and an RFID tag can be applied to or integrated into the plunger structure at various locations65a,65b,65c,etc. As shown inFIG. 2D, an RFID tag may be applied as shown at60′ on the discharge extension (e.g., nozzle) extending from the distal end of thesyringe20, or as shown at60″, an RFID tag can be applied to a front wall (e.g., tapering front wall) of thesyringe20.
Within thesupplier facility24 ofFIG. 1A, a read/write (“R/W”)device62 is connected to alabeling computer64 and, at506 (FIG. 6), is operative to write data in theRFID tag60 relating to contrast media or other pharmaceutical and its associated prefilled syringe orother container20. Data that can be written to theRFID tag60 includes, but is not limited to, the following:
A unique container identification number.
A security code that limits access to the RFID tag to those R/W devices that are able to provide the security code.
A volume of the pharmaceutical filled in the container.
A total available volume and/or physical dimensions of the available volume in the container.
An identity, or type, of the pharmaceutical in the container.
A concentration of the pharmaceutical.
A formula of the pharmaceutical.
A manufacturing date.
An identity of a factory, production line, filling station machine, and/or batch number associated with the container.
A date and time at which the container is filled.
An expiration time and/or date and/or a shelf life of the pharmaceutical.
NDC codes.
One or more vendor specific inventory codes, for example, an SKU code.
An identity of the country in which the container was filled.
An identity of the container and/or container packaging.
Product promotions and/or coupons and/or Internet links of the supplier
Recommended software updates for power injectors in which the container is intended for use.
Thereafter, at508, thesyringe20 is loaded into ashipping carton34; and, at510, thecartons34 are stocked as inventory in a shipping/receiving department38. Based on orders received, as indicated at512, thecartons24 may be further combined or palletized into a case orbatch67 for shipment to a customer; and alabel66 can be optionally applied to anindividual shipping carton34 or a unified case orbatch67 of cartons. Thelabel66 can include human readable, machine-readable indicia and/or be an RFID tag. Such indicia or RFID tag data may include but is not limited to an identification of the supplier and the product, the product expiration date and the packaging. The packaging code identifies whether the package is a single syringe, a carton of syringes or a case of syringes. In preparing one or a batch ofcartons34 for shipment, an R/W device68 connected to ashipping computer70 may be used to read data from, and write data to, the RFID tags60 on thesyringes20 within thecartons34. In addition, if applicable, the R/W device68 may be used to read data from, and write data to, RFID tags associated with thelabels66. Thus, theshipping computer70 is able to identify parameters, for example, type of syringe, type of contrast media, contrast media concentration, etc., and confirm that those parameters meet the specifications of a particular order. Thus, the R/W device68 can be used to write into either the RFID tags60 on thesyringes20, and/or the RFID tags onlabels66, data including, but not limited to, the following:
An identity of the customer.
Purchase invoice and tracking numbers.
Purchase and/or shipment dates.
Customer specific marketing data.
Customer specific software updates for power injectors owned by the customer.
Thecartons34 then enter thedistribution channel40 and are received by a receivingdepartment44 of an imaging facility such as thehospital42. An example of a syringe stocking and preparation process is illustrated inFIG. 7. Upon receiving thecartons34, a R/W device72 connected to a shipping/receivingcomputer74 reads, at602, the syringe RFID tags60 and/or the shipping carton RFID tags66. As shown inFIG. 3A, the shipping/receivingcomputer74 stores the read data in aninventory database76. The shipping/receivingcomputer74 is connected via a communications link, for example, an Ethernet LAN, etc., to ahospital administration computer78 and other computers; and one or more versions of theinventory database76 can be maintained in any of those computers. Thus, the receivingcomputer76, or another computer, is able to confirm that the delivered syringes conform to hospital purchase orders and, if applicable, automatically authorize payment of invoices therefor. Further, via the shipping/receivingcomputer74, the syringe RFID tags60 within thecartons34 can, at604, be updated with other data including, but not limited to:
A time and date that the container was received.
A hospital SKU code.
Doctor related information.
Patient related information.
An identity of a stock room or other storage area.
An identity of a particular preparation room and/or imaging suite in which the pharmaceutical is to be used.
An identity of a particular power injector, which is to be used.
Thereafter, at606, cartons are delivered to aroom46. As seen inFIGS. 3A and 1A, within theroom46, a R/W device77 connected to acomputer79 can be used to read the syringe RFID tags60 and update a database within thecomputer79. Further, or alternatively, as shown inFIG. 3A, thecomputer79, via the communications link80, can be used to update theinventory database76 withinadministration computer78, thereby confirming delivery of the syringes to theroom46 from the shipping/receivingarea44.
The communications link80 may be implemented by an Ethernet, USB, RS-232, RS-422, or other interface that uses a standard PC-based communications protocol, for example, BLUETOOTH, parallel, IrDA, ZigBee, 802.11b/g, or other comparable wired or wireless connection.
Subsequently, instructions are provided to move ashipping carton34 from theroom46 to apreparation room48. The R/W device77 is used to read the RFID tags, at606, and find thecartons34 containing the desired syringes. Further, reading the RFID tags permits an identification of the oldest inventory. (Since contrast media has a shelf life, it may be appropriate to follow a first-in/first-out inventory procedure.) Thereafter, at608, an identifiedshipping carton34 is delivered to thepreparation room48.
In thepreparation room48, thesyringes20 are removed from acarton34 and placed in the warmer36 to bring the contrast media up to about body temperature. As shown inFIGS. 1A,3A and4, an R/W device81 is connected to awarmer control82 having auser interface86. Thewarmer control82 is electrically connected to animaging information system87 that, in turn, is connected to the communications link80, and hence, to the other computers in thehospital42. Upon placing a syringe in the warmer36, the R/W device81 reads, at610, arespective RFID tag60 and transmits data with respect to thesyringe20 to a work-in-process database84 in theimaging information system87 as illustrated nFIG. 3A. Further, or alternatively, theimaging information system87, via the communications link80, can be used to update theinventory database76, thereby allowing other computers to track information written to and read from the syringe RFID tags60 in the warmer36. R/W device81 may also write to eachRFID tag60 the time and date eachrespective syringe20 is placed in the warmer36. Further, upon a technologist requesting, via theuser interface86, a particular contrast media, thewarmer control82 can, via theuser interface86, identify to the technologist a particular syringe inside the warmer36, such as the syringe that has been in the warmer for the longest period of time. (Not only does contrast media have a limited shelf life, but the time spent in the warmer36 should also be limited. Thus, inventory in the warmer36 may also be handled on a first-in/first-out basis.) Upon removing asyringe20 from the warmer, at612, the R/W device81 writes the removal time and date to arespective RFID tag60 and reads data identifying the syringe being removed. The work-in-process database84 and other databases are appropriately updated; and thewarmer control82 via theuser interface86 confirms to the technologist that the correct syringe has been removed.
Referring toFIGS. 1A,3A,4 and5A, one ormore syringes20a,20bare then carried into an imaging suite26aand loaded into respectively one or both of the mounts orfaceplates88a,88bthat are attachable on apowerhead90 of apowered fluid injector50 in a known manner. An exemplary injector is shown and described in U.S. patent application Ser. No. 10/964,003, the entirety of which is hereby incorporated by reference. Although thepowerhead90 discussed herein is a dual head injector, embodiments of the present invention explicitly contemplate single head injectors as well. A suitable single-head injector is shown in U.S. Pat. No. 5,300,031, the entirety of which is hereby incorporated by reference.
In the illustrated application, in which the injector receives multiple syringes, a user-filled syringe having a volume of about 200 ml is mountable in apressure jacket250 offaceplate88a.Further, a pre-filled syringe having a volume in excess of about 90 ml or more may also be mountable infaceplate88b.Theinjector powerhead90 includes hand-operatedknobs92aand92bthat are operative via an injector control circuit to control motors within respective plunger drives95a,95b.The plunger drives95a,95bare operable to move plungers within therespective syringes20a,20bin a known manner. Exemplary operations of apowerhead90 andinjector control93 are shown and described in U.S. patent application Ser. No. 10/964,002, the entirety of which is hereby incorporated herein by reference. Additional exemplary operations are described in U.S. Pat. Nos. 5,662,612, 5,681,286 and 6,780,170, the entirety of which are hereby incorporated by reference. As seen inFIG. 3A, theinjector control93 is electrically connected to thehospital information system78 via the communications link80, and/or may be otherwise electrically connected to theimaging information system87 by a communications link that uses a technology such as those noted above with reference to the communications link80.
Theinjector powerhead90 has auser interface94, for example, a touch screen, for displaying current status and operating parameters of theinjector50.Powerhead90 is often mounted to awheeled stand100, which permits easy positioning of thepowerhead90 in the vicinity of theexamination subject52. Theinjector50 also has a remotely locatedconsole96 withremote user interface97, for example, a touch screen, apower supply98 and other switches and components (not shown). Theconsole96 may be used by an operator to enter programs and control the operation of theinjector50 from a remote location in a known manner. It will be appreciated that elements of theinjector control93 may be incorporated into thepowerhead90 or may be incorporated in other elements of the injector such as thepower supply98 orconsole96, or may be distributed among these elements.
Thefaceplate88bhas an outward extendingcradle99 that supports aheater106 mounted on a printed circuit (“PC”)board102. Theheater106 is electrically connected to the injector control via a cable or connector and is operable by theinjector control93 to heat thesyringe20bin a known manner. ThePC board102 further supports a R/W device104band an associatedantenna system229b.The R/W device104bis also electrically connected to theinjector control93 andconsole96. Further, the R/W device104bmay be activated by theinjector control93 to read data from anRFID tag60bon arespective syringe20b.Data may be written to, and/or read from, theRFID tag60bat any specified time when asyringe20bis in proximity of a respective faceplate88. Thus, the system has the ability to determine whensyringes20a,20bare mounted in therespective faceplates88a,88b.The data may be encrypted, and the data and data transfer may comply with 21 CFR 11, JCAHO, and HIPAA requirements.
One example of a process for utilizing thesyringe20bwithin the imaging suite26ais shown inFIG. 8. This example is described principally with respect to thesyringe20bloaded infaceplate88b;however the description is equally applicable to thesyringe20aloaded infaceplate88a.The description is further applicable to an injection process in which media is dispensed from bothsyringes20a,20b,either sequentially or simultaneously. Simultaneous dispensing from both syringes may be done at controlled and selected flow rates to achieve any desired concentration of the resulting mixture of media and/or media and saline in the two syringes.
Referring to the process ofFIG. 8, first, at702, the R/W device104bis activated to read data stored in theRFID tag60brelating to contrast media or other pharmaceutical and its associated prefilled syringe orother container20b.As shown at704, that information includes, but is not limited to:
A container identification and/or serial number that is checked against a database of previously used containers to block, if appropriate, a potential reuse of the container.
A container security code, which may be matched with the security code of the injector being used.
Information relating to container volume and volume delivery to assist the technologist in setting up the injector.
Container volume and/or dimension information in order to provide a more precise real time dispensing control of volume.
Pharmaceutical type and concentration data to confirm it is correct for a selected protocol.
ID, batch and lot numbers that can be used to test the container and/or pharmaceutical against recall data.
Shelf life data and fill date, which is compared to a current date to determine whether a recommended shelf life has been exceeded.
The R/W device104balso writes the current time and date to theRFID device60bto permit tracking of open-to-atmosphere time for thesyringe20b,which is also limited. During the contrast media injection process, the displacement of the syringe plunger is precisely controlled in accordance with data read from theRFID tag60brelating to available syringe volume and/or dimensions thereof. Further, plunger feed is tracked, so that the contrast media remaining in the syringe can be continuously determined.
Thefaceplates88a,88bhave a bidirectional communications link with theinjector control93, which may be used to transfer any of the above information between thesyringes20a,20band theinjector control93. Thus, theinjector control93 may have syringe and drug information that may facilitate a procedure setup and result in reduced time and error. In addition, theinjector control93 may read or write other information to and from thefaceplates88a,88b,which is not directly pertinent to syringe information. Examples of this may include, but are not limited to:
Enabling or disabling of the faceplate electronics.
Heating of the faceplate for contrast media warming.
Instep706 ofFIG. 8, the media is used in connection with a procedure. As seen inFIG. 4, before, during and after injection of the contrast media, a technologist operates aCT scanner control101 that is effective to cause aCT scanner103 to scan apatient105 shown in phantom. Theinjector control93 may have one or more interfaces to aCAN communications bus111, which is a known interface for theCT scanner control101. The protocol is defined by the scanner manufacturers. Data and data transfer between the injector and scanner comply with 21 CFR 11, JCAHO, and HIPAA requirements.
Returning toFIG. 8, as shown at706, data transfer between theinjector control93 andCT scanner control101 may be bi-directional and may relate to the contrast media or other pharmaceutical and its associated prefilled syringe orother container20b.Such data includes, but is not limited to, the following:
Pharmaceutical brand name, concentration, lot number.
Pharmaceutical expiration date, volume.
Injected volume, flow rate (achieved, target).
Injection time.
Patient name, weight, age, ID number, for example, SS no., hospital ID, etc.
Injector serial number, firmware version.
Procedure number and/or name.
Technologist name and/or identification number.
Hospital name and/or identification number.
Used or unused status of container.
CT scanner setup and procedure information.
CT scanner ID and/or serial no.
CT images.
Hospital information system data.
Injector functional control.
CT scanner functional control.
Upon theinjector control93 determining that the desired volume of contrast media has been delivered, the injection process is stopped. At the end of the injection process, as shown inFIG. 8 at708, theinjector control93 is operative to determine an exact volume of contrast media injected; and the injector control writes to theRFID tag60band/or updates theimaging information system87 with data and information that includes, but is not limited to the following:
Time and date that the injection process was finished.
Injected volume, flow rate (achieved, target).
Volume of pharmaceutical remaining in the container.
Injection time.
Patient name, weight, age, ID number, for example, SS no., hospital ID, etc.
Injector serial number, firmware version.
Procedure number and/or name.
Technologist name and/or identification number.
Hospital name and/or identification number.
Used or unused status of syringe.
CT Scanner Information.
As illustrated inFIG. 4, theinjector control93 has an interface providing a communications link107 to a hard-copy printer109. Theprinter109 may be, but is not limited to, a thermal, ink-jet, or laser based printer. Theprinter109 may be used to print pages and/or labels of various sizes and colors at specified times upon requests of a user, theCT scanner control101, thehospital information system78, or theinjector control93. The labels may be made part of patient records, requisition sheets, or other forms. Data output and data transfer may comply with 21 CFR 11, JCAHO, and HIPAA requirements/
Returning toFIG. 8, as shown at710, a label or page may be printed to provide information relating to the contrast media or other pharmaceutical, its associated prefilled syringe orother container20b,and the use thereof. Such information includes, but is not limited to, the following:
Pharmaceutical brand name, concentration, lot number.
Pharmaceutical expiration date, volume.
Injected volume, pressure, flow rate (achieved, target).
Injection time.
Patient name, weight, age, ID number, for example, SS no., hospital ID, etc.
Injector serial number, firmware version.
Procedure number and/or name.
Technologist name and/or identification number.
Hospital name and/or identification number.
Used or unused status of syringe.
Graphs or charts, for example, pressure, flow rate, etc.
CT scanner information.
CT scan information.
Open (white) space or blanks for tech initials, drawings, etc.
Thus, any of the above information can be exchanged between theinjector control93 andhospital information system78. Potential uses for this capability include but are not limited to:
Electronic inclusion of volume of contrast media injected and other procedure information in patient record.
Electronic re-ordering of supplies.
Automated billing.
Automated scheduling.
After the injection process, theinjector control93 can write to theRFID tag60bto set a syringe-used flag that will help to prevent a reuse of thesyringe20b.Thesyringe20bis then removed from thefaceplate88b;and if the procedure was aborted and the syringe was not used, it can be placed back into the warmer36. In that process, information is read from, and written to, theRFID tag60bas previously described. Further, theimage information system87 is also able to track the open-to-atmosphere time of the syringe and warn the technologists when an open-to-atmosphere time is exceeded.
If thesyringe20bremoved from thefaceplate88bis empty, the syringe is typically transported to a disposal area112 (FIGS. 1A,3A and4); and prior to disposal, another R/W device114 connected to one of theother computers75 reads theRFID tag60b.Theinventory database76 can thus track the identity of thesyringe20 being destroyed. Further, the syringe disposal information can be communicated to asupplier computer116 via acommunications link118 as seen inFIG. 3A, for example, via the Internet83, a telephonic connection, or other comparable wired or wireless connection.
In an alternative embodiment, empty syringes, instead of being destroyed, are returned to thesupplier24 for further processing, for example, disposal or refilling. In the latter example, thesyringes20 pass through the hospital shipping/receivingarea44 and the RFID tags are again read to identify the syringes leaving the hospital; and theinventory database76 is updated accordingly. Upon entering the supplier shipping/receivingarea38, the RFID tags60bare again read to update a supplier inventory database120 tracking syringes within the supplier's facilities. The RFID tags60bon thesyringes20 are updated or replaced depending on whether the syringe is destroyed or reconditioned and refilled by the supplier.
In the system shown and described herein, theinjector control93 facilitates information collection and transfer throughout a CT procedure. The RFID-enabled syringes provide quicker and more accurate data recording, as well as an automated transfer of drug information. The printer allows for a hard copy of selected information to be incorporated into the patient or hospital record. The CT interface via CAN, facilitates information flow and collection at a single point, either the CT scanner system or the injector. The hospital information system interface improves this information flow a step further, potentially creating an all-electronic system with minimal user intervention; this provides the opportunity for reduced error and efficiency in the CT scanning suite.
With respect to another exemplary embodiment, on occasion, field engineers make service calls to a power injector, e.g. for routine maintenance or to diagnose failed operation. During such service calls, the field engineer is able to operate the injector in a “service” mode without having to install electrical jumpers in the injector control. Instead, referring toFIG. 5B, the service mode function is initiated by a field engineer using an intelligent identification (“ID”) card122. Such an ID card122 has anRFID tag124 that incorporates an RFID chip and associated antenna in a known manner.
An exemplary process for using the ID card122 for injector maintenance is shown inFIG. 9. As indicated at802, theRFID tag124 is loaded at thesupplier facility24 with data including, but not limited to, the following:
An identification of the field engineer.
Latest updates and software information.
Specific software revisions.
To initiate service of a power injector, the field engineer places the ID card122 on anempty faceplate88b,thereby allowing the R/W device104bto read and write to theRFID tag124. As indicated at804 ofFIG. 9, upon reading an appropriate identification and security code from theRFID tag124, a field engineer identification and service time and date are stored in theinjector control93. Thereafter, theinjector user interfaces94,97 (seeFIG. 5A) are effective to switch theinjector50 into a service mode, thereby disabling several operational checks and features that are used in a normal injection cycle but which inhibit operating theinjector50 for service purposes. The R/W device104 continues to periodically read the identification and security codes from theRFID tag124. Upon failure to successfully read theRFID tag124, for example, because the ID card122 has been removed from thefaceplate88b,theinjector control93 automatically switches theinjector50 out of the service mode. Thus, the previously disabled operational checks and features are re-enabled, and the injector is ready to operate in a normal injection cycle. Further, at804, theinjector control93 is operative to read from theRFID tag124 information and data relating to factory updates to the injector components and software.
In the process of servicing theinjector50, as indicated at806, the field engineer initiates uploads of software upgrades from theRFID tag124 to theinjector control93. In addition, mechanical components are serviced, mechanical upgrades are installed and their operation is verified. As a final step of the service operation as indicated at808, theinjector control93 writes to theRFID tag124 on the ID card122 data including, but not limited to, the following:
The latest software revision installed.
A confirmation that mechanical and software upgrades have been installed.
The date of service and serial number of the injector.
Protocol, statistics or details relating to the injector operation since the last service.
Upon the field engineer returning to thesupplier facility24, theRFID tag124 is read; and the service information is stored in a history file associated with the particular injector that was serviced.
The use of an RF communications system between anRFID tag60 on acontainer20 and apower injector control93 provides for further exemplary embodiments of the RF communications system. Known RFID systems use electromagnetic (EM) fields to communicate between an R/W device that includes a tuned antenna and one or more RFID tags or transponders. In one exemplary embodiment, the R/W device sends out data using EM fields at a specific frequency; and with passive RFID tags, this EM energy powers the tag, which in turn enables processing of this received data. Following receipt of the data, the RFID tag may transmit data that is received and processed by the R/W device.
An RFID is difficult to implement around metallic or diamagnetic materials, for example, water, saline or a medical fluid in a container such as a contrast media in a syringe. These materials absorb and/or reflect RF energy, making successful read-write RFID operations difficult, especially with the low power regulations for RF frequencies. In addition, the angle between a plane of the RFID tag antenna and a plane of the R/W device antenna is critical. For optimum performance, the plane of the RFID tag antenna should be substantially parallel to the plane of the R/W device antenna. As shown inFIG. 10, for single plane antennas, as anacute angle200 between an RFIDtag antenna plane202 and an R/Wdevice antenna plane204 increases, a signal strength coupling the antennas in the twoplanes200,204 decreases. In other words, as theangle200 increases, the RF signal strength transferable from the R/W device antenna to the RFID tag antenna decreases. Similarly, the signal strength transferable from the RFID tag antenna back to the R/W device antenna also diminishes. Further, that signal strength is substantially equal to the output signal strength of the R/W device antenna minus any attenuation from metallic and diamagnetic materials divided by the cosine of theangle200.
Referring back toFIG. 5A, orientation of thesyringe20bplaces theRFID tag antenna210 relatively close to the R/W device104b;and therefore, coupling RF signals therebetween to facilitate reading data from, and/or writing data to, theRFID tag60b.However, with thesyringe20boriented as shown inFIG. 11, contrast media in thesyringe20bis between theRFID tag antenna210 and the R/W device104b.The contrast media attenuates the RF field strength from the antenna of the R/W device104band interferes with its RF coupling with theRFID tag antenna210.
In one exemplary embodiment of the invention, referring toFIG. 12, asyringe20bhaving alabel30bwith anantenna210 andRF driver212 is positioned abovefaceplate88b,ready to be loaded therein. Afirst PC board102 and asecond PC board103 are mounted infaceplate88b,so as to be nonparallel. ThePC boards102,103 form sides of a V-shape and thus, form an angle of less than 180 degrees therebetween.PC board102 supports afirst antenna loop220 and its associatedtuning circuit226, andPC board103 supports asecond antenna loop222 and its associatedtuning circuit228. The first andsecond antenna loops220,222 andrespective tuning circuits226,228 are connected to an R/WRF driver circuit224bthrough aswitching circuit241bto collectively form the electromagnetic R/W device104b.In an alternative embodiment, the R/WRF driver circuit224band switchingcircuit241bmay be mounted on aseparate PC board102b(shown in phantom), which is located beneath, and electrically connected to, thePC board102. In other embodiments, the R/WRF driver circuit224band/or theswitching circuit241bmay be mounted in thepower head90 in association with theinjector control93.
Further, as shown inFIGS. 13A-13D, anantenna system229bcomprising theantenna loops220,222,respective tuning circuits226,228 and switchingcircuit241bis connectable in different electrical configurations to achieve an optimum RF coupling between the R/W device104band theRFID tag60b.
Referring toFIG. 13A, power from the R/WRF driver circuit224bis applied to theinput230 of atuning circuit226 that is connected to asignal lead231 of theprimary antenna loop220 onPC board102. Further,input234 of thetuning circuit228, which is connected to asignal lead235 of thesecondary antenna loop222 onPC board103, is left open or floating. A primary antennaloop ground lead232 is connected to ground with the secondary antennaloop ground lead236. In this configuration, the poweredprimary antenna loop220 onPC board102 is tuned to a frequency indicated by a protocol of theRFID tag60b,for example, about 13.56 Megahertz, which permits propagation of the RF signal into the surrounding area. An RF signal from theprimary antenna loop220 is coupled with thesecondary antenna loop222 onPC board103, because thesecondary antenna loop222 is also tuned to resonate at about 13.56 Megahertz.
The angled, V-shape orientation of thePC boards102,103 and respective areas ofantenna loops220,222 provide an expanded or increased total antenna area for the R/W device104b.Thus, with the antenna configuration ofFIG. 13A, as shown inFIG. 12, an effective antenna area extends circumferentially around a substantially greater area of asyringe20bthan is possible with thesingle PC board102 shown inFIG. 5A. Further, the antenna power provided by theRF driver circuit224bis also spread over a larger area represented by the combined areas ofantenna loops220,222. Upon thesyringe20bbeing loaded onto thefaceplate88b,with some orientations of thesyringe20b,the larger antenna area shown inFIG. 13A improves the RF coupling with theantenna210 of theRFID tag60b.
As shown inFIG. 13B,antenna loop222 onPC board103 can be made the primary loop by disconnecting or opening aninput230 of thetuning circuit226 and connecting thetuning circuit input234 of theantenna loop222 to the power output of the R/WRF driver circuit224b.First antennaloop ground lead232 and second antennaloop ground lead236 continue to be connected to ground. Again, bothantenna loops220,222 are tuned to resonate at the RFID tag frequency, that is, about 13.56 Megahertz. The antenna configuration ofFIG. 13B may provide better RF coupling with theantenna210 of theRFID tag60bdepending on the orientation of thesyringe20band thus, the circumferential location of theRFID tag60b.
Another configuration of theantenna loops220,222 is shown inFIG. 13C wherein thetuning circuit input230 of thefirst antenna loop220 is connected to the power output of the R/WRF driver circuit224b;and first antennaloop ground lead232 is connected to ground. Thetuning circuit input234 and ground lead236 ofantenna loop222 are connected to ground, which prevents thesecond antenna loop222 from resonating at the RFID tag frequency, which, in this application, is 13.56 MHz. This effectively reduces the area of theantenna system229bto the area of theprimary antenna loop220, and all of the power from the R/WRF driver circuit224bis applied across the area of theprimary antenna loop220, which is tuned to resonate at the RFID tag frequency, that is, about 13.56 Megahertz. Upon thesyringe20bbeing loaded onto thefaceplate88b,depending on the orientation of thesyringe20band theRFID tag antenna210, the smaller antenna area of the circuit inFIG. 13C may improve the RF coupling with theantenna210 of theRFID tag60b.
Referring toFIG. 13D, alternatively toFIG. 13C, thetuning circuit input234 of thesecond antenna loop222 onPC board103 is connected to the power output of the R/WRF driver circuit224b;andtuning circuit input230 of thefirst antenna loop220 is connected to ground along with antenna loop ground leads232 and236. Thus, thefirst antenna loop220 does not resonate at the RFID tag frequency of 13.56 MHz; and only thesecond antenna loop222 is tuned to resonate at that frequency. With some orientations of thesyringe20b,this antenna configuration provides the best RF coupling with theantenna210 of theRFID tag60b.
In some applications, a user may be instructed to load thesyringe20bin thefaceplate88bso that thelabel30bis always in the same orientation. Or, in other applications, theRFID tag60bmay be removable from the syringe and mountable at a fixed location on theinjector50. In those applications, an R/W antenna can be designed and placed in a fixed location to have optimum RF coupling with an RFID tag. However, in still further applications, a user may have no limitations on where theRFID tag60bis located on thesyringe20bor how theRFID tag60bis oriented when thesyringe20bis mounted on afaceplate88b.In those applications, theRFID tag60bmay have any circumferential location around a barrel of thesyringe20bor within thefaceplate88b.Further, in such applications, it is difficult to precisely predict which of the antenna configurations inFIGS. 13A-13D will provide the best RF coupling with an RFID tag having an unknown orientation with respect to R/W device104b.This is due, in part, to the complex and somewhat unpredictable EM fields formed around materials that reflect and/or absorb such fields. Therefore, in another exemplary embodiment of the invention, all of the antenna configurations ofFIGS. 13A-13B may be utilized.
Referring toFIG. 14, switches238,240 onPC board102 comprise theswitching circuit241b,which is used to selectively connect respectivetuning circuit inputs230,234 to either a power output or terminal242 from R/WRF driver circuit224b,aground terminal244 or an open state represented bycontacts246. The ground leads232,236 ofrespective antenna loops220,222 are always connected to theground244. The contacts ofswitches238,240 have notations toFIGS. 13A-13D indicating the switch states corresponding to the antenna configurations ofFIGS. 13A-13D.
In use, referring toFIGS. 12 and 15, a communications cycle is initiated either automatically by theinjector control93 detecting asyringe20bbeing loaded into thefaceplate88b(such as by the movement of a mounting arm of thefaceplate88b,causing a magnet in the mounting arm to move into confronting relationship with a magnetic sensor in the injector), or manually by an operator providing an input to theinjector control93. In either event, the injector control, at900, operates theswitches238,240 to connect theantenna loops220,222 in a first of the four circuit configurations, for example, the circuit configuration shown inFIG. 13A. Thereafter, theinjector control93 initiates, at902, a communications protocol between the R/WRF driver circuit224band theRF driver circuit212 of theRFID tag60b.Initiating a communications protocol is a known process by which the R/WRF driver circuit224bcauses the R/W antenna system229bto emit an electromagnetic signal in order to establish a reliable RF coupling with thetag antenna210 and thus, establish an RF communications with theRFID tag60b.Upon establishing an RF communications, the R/W device104bcan read data from and/or write data to theRFID tag60b.
If, at904, theinjector control93 determines that the communications protocol and hence, the RF communications link, has been established, theinjector control93 commands, at906, the R/W drive104bto proceed with the reading of data from, and/or the writing of data to, theRFID tag60b.However, if, at904, theinjector control93 determines that the communications protocol failed, and a successful RF communications between the R/W device104band theRFID tag60bis not made, theinjector control93 determines, at908, whether all antenna loop configurations have been tried. If not, theinjector control93 operates, at910, theswitches238,240 to connect theantenna loops220,222 into another one of the four circuit configurations shown inFIGS. 13A-13B. Thereafter, theinjector control93 automatically iterates through the process steps902-908 to reconnect the antenna loops220-222 in different circuit configurations in an attempt to establish a successful RF communications protocol or link. If, at908, theinjector control93 has tried all of the antenna loop configurations without success, it sets, at912, a protocol failure flag or error message.
FIGS. 11-14 illustrate different embodiments of anantenna system229bthat may be employed with an electromagnetic R/W device104bto read adata tag60bapplied to asyringe20bmounted in anopen faceplate88b.In a further embodiment, referring toFIG. 5A, asyringe20a,that often is a user-filled disposable syringe, is mounted within a translucent ortransparent pressure jacket250 offaceplate88a.Thesyringe20ais secured in thepressure jacket250 by acap252 in a known manner. A data tag60ais integrated into alabel30aapplied to thesyringe20a,and the structure and operation of data tag60ais substantially identical to the data tag60bpreviously described. When utilizing thepressure jacket250 offaceplate88a,it is desirable that the data tag60abe readable regardless of its orientation inside thepressure jacket250.
Referring toFIGS. 5A and 16, in a further exemplary embodiment of an RFID communications system, to enhance readability of adata tag60a,thepressure jacket250 may be equipped with anantenna system229a,which includes of an array ofantenna loops254,256,258 spaced about a circumference of thesyringe20a.While equal spacing of the antenna loops is shown, other spacing may be used. Thepressure jacket250 has inner and outercylindrical sleeves260,262, respectively. As illustrated, theantenna loops254,256,258 may be molded between the inner andouter sleeves260,262. Referring toFIG. 17, theantenna loops254,256,258 haverespective tuning circuits264,266,268, which may be molded between the inner and outercylindrical sleeves260,262. Tuning circuit input leads270,272,274 and aground lead276 may be bundled into acable278 that extends from theface plate88ato a switching circuit241alocated in thepower head90. The switching circuit241amay operate in any appropriate manner, such as in a manner like that previously described with respect to theswitching circuit241bofFIG. 14. The switching circuit241amay be controlled by an R/W driver circuit224athat may be located in thepower head90. To exchange data with the data tag60a,the R/W driver circuit224amay execute a communications cycle utilizing theantenna loops254,256,258 in a manner similar to that described with respect toFIG. 15. Thus, in initiating communications with the data tag60a,the R/WRF driver circuit224amay connect theantenna loops254,256,258 in different circuit configurations in order to find a circuit configuration providing the most reliable communications with the data tag60a.By using more than two antenna loops, less power may be required to initiate a communications cycle with the data tag60a.In additional exemplary embodiments, while theantenna system229ais shown as including three antenna loops, other embodiments may include other appropriate quantities and/or arrangements of antenna loops. Further, while theantenna system229ais shown as a component of thepressure Jacket250, other embodiments may include an antenna system having a plurality of antenna loops that is not associated with a pressure jacket.
In its various embodiments, theantenna systems229a,229bmay advantageously incorporate one or more antenna loops that can be powered individually, or mutually coupled together, to produce several tuned antenna and EM field configurations. In some environments, theantenna systems229a,229bmay be characterized as providing an effective low power system for reading data from and/or writing data to a data tag that may be disposed at any location on a contrast media syringe. Moreover, that contrast media syringe may exhibit virtually any orientation relative to a faceplate of apower injector50 with which it may be associated. Thus, theantenna systems229a,229bmay positively address various challenges relating to use of an RF communications system around metallic or diamagnetic materials, e.g., water, saline, contrast media, or other fluids, and/or in a regulated environment that may mandate use of a relatively low power RF signal.
The exemplary embodiments described with respect toFIG. 1A relate generally to a life cycle of acontainer20 such as a syringe filled with a pharmaceutical such as a contrast media. However, referring toFIG. 1B, acontainer life cycle18bmay relate to other types of containers20cthat are used to store radiopharmaceuticals. While much of thecontainer life cycle18bofFIG. 1B is generally similar tocontainer life cycle18aofFIG. 1A, radiopharmaceuticals require different handling and storage. The container20cis schematically shown as a syringe, but the container20cmay be a vial or other container suitable for use with a radiopharmaceutical. Within thesupplier facility24, after the container20cis filled with a radiopharmaceutical at a drawing-up or fillingstation28, a quality control check of the radiopharmaceutical may be performed atquality control station31. Thereafter, the container20cis placed or loaded into apig33, which generally includes lead and/or other radiation shielding material to protect handlers from exposure to radiation from the radiopharmaceutical.
In a manner similar to that described with respect tocontainer20 ofFIG. 1A, as shown inFIG. 1B, the loadedpig33 may then be packaged either singularly or as a batch in anappropriate shipping carton34 and shipped to a customer or user. Often, thecartons34 are stored in anuclear medicine department29 within thehospital42, which generally includes aradiopharmacy48 andtreatment room26b.As required, a radiopharmaceutical container may be removed from a pig and placed in acalibration tool49 to calibrate an activity level of the radiopharmaceutical to a desired level prior to its use. The radiopharmaceutical container may then be placed back into the pig; and at an appropriate time, the pig may be carried to atreatment room26b.The radiopharmaceutical container may again be removed from the pig, and the radiopharmaceutical may be injected into a patient52 either manually or using a powered injector such as that shown and described herein. In various embodiments, different manual or powered injectors may utilize various principles of the invention, and are thus, included within the scope of this disclosure.
After use, the radiopharmaceutical container may be placed in the pig and returned to thesupplier facility24; and at apost processing station51, the radiopharmaceutical container may be disposed of and the pig may be cleaned for reuse.
An exemplary embodiment of a radiopharmaceutical container draw-up and packaging process implemented at asupplier facility24 is illustrated inFIG. 6. A radiopharmaceutical container20cis filled, at502, with a radiopharmaceutical at a draw-upstation28. Thereafter, at504, alabel30 and/orRFID tag60 are applied to the radiopharmaceutical container20cat thelabeling station32. TheRFID tag60 can be integrated with, or separate from, the label, and theRFID tag60 incorporates an RFID chip and associated antenna in a known manner.
As shown inFIG. 18, theRFID tag60 can be applied at any suitable location on a radiopharmaceutical container. For example, theRFID tag60 can be part of alabel30 that is applied to aradiopharmaceutical syringe20dor aradiopharmaceutical vial20e.In the example of theradiopharmaceutical syringe20d,an RFID tag can be applied to, or integrated into, the syringe structure at different locations as previously described with respect toFIGS. 2A-2D. In a further embodiment, thesyringe label30 may be removable; and immediately prior to thesyringe20dbeing loaded into a power injector, a portion of thelabel30 including the RFID tag can be peeled off and applied to the injector or an associated reader. Upon removing theradiopharmaceutical syringe20dfrom the injector, theRFID tag30 is reapplied to theradiopharmaceutical container20d.An identical ordifferent label30 can also or alternatively be applied to aradiopharmaceutical syringe pig33aor aradiopharmaceutical vial pig33b.Further, alabel30 with anRFID tag60 can be applied to acarton34, for example, a satchel, designed to transport a plurality of pigs.
Within thesupplier facility24 ofFIG. 1B, a read/write (“R/W”)device62 is connected to alabel computer64 and, at506 (FIG. 6), is operative to read data from and/or write data to theRFID tag60 for a particular radiopharmaceutical container20c.As shown inFIG. 3B, the draw-upstation28 may include a draw-up station computer41 in electrical communications with an R/W device43; and depending on the application, either or both of the R/W devices43,62 can be used to write data to theRFID tag60, which data includes but is not limited to the data previously described with respect to step506. With a radiopharmaceutical, the data may also include all of the dose and prescription information that is currently being printed on a prescription label and/or encoded into a bar code, measured radioactivity levels, for example, Tc-99 and Mo-99, and time when measured, an identity of radioactive elements used, for example, Tc-99 and Mo-99, their respective sources, and other suitable data.
Returning toFIG. 6, processes shown in phantom at507 and509 are performed that are unique to the radiopharmaceutical containers20c.First, at507, quality control checks may be performed (e.g., at a quality control station31) to determine, for example, a purity of the radiopharmaceutical, the correctness of information on the label, dosage information, etc. As shown inFIG. 3B, thequality control station31 may include aquality control computer45 and an associated R/W device47 that may be used to read data from and/or write data to theRFID tag60 depending on the quality control checks performed and/or other system specifications.
The container20cmay then, at509, be inserted into apig33 for handling, storage and transportation. Alabel65 can optionally be applied to thepig33. Thelabel65 can include human readable indicia, machine readable indicia and/or an RFID tag as described with respect to thelabel30. As part of the process of inserting the container20cinto the pig, either the R/W device62 or another R/W device can be used to read data from and/or write data to theRFID tag65. Data that can be written to theRFID tag65 may include data written to theRFID tag60 on the container20cas well as data that includes, but is not limited to, the following:
A unique identification number for the pig.
An identity of a factory, production line, and/or batch number associated with the pig.
A date and time at which the container was inserted into the pig.
Any other data associated with the order, the radiopharmaceutical, its container20cand associatedpig33.
At508 inFIG. 6 (in a manner similar to that previously described with respect toFIG. 1A), one ormore pigs33 may be loaded into a shipping carton34 (seeFIG. 1B). At510, thecartons34 may be stocked as inventory in a shipping/receiving department38. Based on orders received, as indicated at512, thecartons24 may be further combined or palletized into a case orbatch67 for shipment to a customer; and alabel66 can be optionally applied to anindividual shipping carton34 or a unified case orbatch67 of cartons.
Referring toFIGS. 1B and 7, thecartons34 may then enter thedistribution channel40 and may be received by a receivingdepartment44 of a treatment facility such as thehospital42. A stocking and preparation process may be executed in process steps602 and604, which are similar to those previous described. Also instep606, cartons may be delivered to a hospital radiopharmacy48 (or nuclear medicine department of a healthcare facility or other appropriate location), and within theradiopharmacy48, an R/W device77 connected to acomputer79 can be used to read data from and/or write data to the pig RFID tags65. As shown inFIG. 3B, thecomputer79, via the communications link80, can also be used to update themedicine tracking database76 within thehospital administration computer78.
Processes unique to radiopharmaceutical containers are shown in phantom at607 and609 inFIG. 7. Specifically, within theradiopharmacy48, acalibration tool49 is often used, at607, to check or validate a radioactivity level of the dosage of the radiopharmaceutical within a container. This check/validation can be performed using any appropriate process and/or calibration tool. As shown inFIG. 3B, thecalibration tool49 may have acalibration computer85 connected to an R/W device89 that, during the check/validation process, can be used to read data from and/or write check/validation data to the container RFID tags30 and/or the pig RFID tags65. This check/validation data may include but is not limited to
A check/validation time and date.
The decay factor or half life of the radiopharmaceutical.
The prescribed activity level (curie level of radiation) at injection time.
The activity level at another time, for example, the draw-up time.
A measured radioactivity level.
A desired radioactivity level at time of treatment.
An identity of the radioactive element injected.
An identity of the calibration tool and operator, etc.
Continuing inFIG. 7, at the appropriate time, at609, apig33 may be delivered to a treatment room for use. The radiopharmaceutical can be administered manually or using a power injector. In most, but not all cases, asyringe20dorvial20econtaining the radiopharmaceutical is removed from arespective pig33 for manual administration; but in other applications, a power injector and process as previously shown and described with respect toFIG. 8 may be used. With a radiopharmaceutical, the R/W device104 associated with the injector control93 (seeFIG. 3B) may write the current time and date to theRFID tag60 to permit tracking of out-of-pig time (e.g., the duration of time that a syringe or vial is not housed within the pig), if desired. During the radiopharmaceutical injection process, the displacement of the radiopharmaceutical container plunger may be precisely controlled, and plunger feed may be tracked (e.g., recorded and written to a tag associated with syringe and/or pig).
It should be noted that labeling systems described herein have potential for eliminating a need for thecalibration tool49. For example, the R/W device104 ofFIG. 3B can read a radioactivity level and time and date of measurement written into the RFID tag by the quality control station31 (FIG. 1B).Injector control93 can then calculate the time elapsed between the measured radioactivity level and the scheduled treatment time and date. Theinjector control93 can further calculate the decay in radioactivity level over the elapsed time; and then, being programmed with the prescribed radiopharmaceutical dose, the injector control can calculate the correct unit dose volume to be injected. Thus, acalibration tool49 may not be required. If the radiopharmaceutical is to be injected manually, thecomputer79 and associated R/W device77 can be used by a clinician or other appropriate personnel in a similar fashion to provide a display of the computed current unit dosage without using a calibration tool.
After the injection process, referring toFIGS. 1B,5A and19, the radiopharmaceutical container20cmay be removed from thefaceplate88band placed back into arespective pig33 as indicated at802 inFIG. 19. Thepig33 may then be placed in the same or a different carton and, at804, returned to theshipping department44 and, at806, returned to thesupplier facility24. As shown in807, the label associated with the radiopharmaceutical container may be read just prior to disposal to assist in determining how long the container will have to be stored in a radiation-shielding disposal and/or storage container before substantially all of its radioactivity has decayed. For instance, the initial radioactivity of the radiopharmaceutical may be written to the tag at the time of filling the container. Subsequent to that initial fill time, the radioactivity of that radiopharmaceutical decays. Since the rate of decay is generally known, one may utilize the rate of decay and the duration of time that has passed from the initial fill time to determine how much storage time may be needed to sufficiently ensure that the spent container no longer has a significant amount of radioactivity associated therewith. This calculation of storage time may be accomplished manually and/or electronically (e.g., using an appropriate computer interconnected with the reader utilized to read the tag just prior to disposal).
Atpost processing station51 within the supplier facility24 (FIG. 1B), at808, the used radiopharmaceutical container may undergo suitable processing for disposal and, at810, the associated pig may be cleaned for reuse. During post processing, any of the computers previously described can be used to read data from and/or write data to the RFID tags on the container20c,pig33,carton34 and/orpallet67. Such activity may be application dependent to fulfill the needs of a particular supplier, customer, doctor and/or hospital. As shown inFIG. 3B, apost processing computer53 may be connected to an R/W device55 that can be used to read data from and/or write data to the RFID tags60 on one or both the radiopharmaceutical container or the pig. Thepost processing computer53 may be able (via a communications link57) to update a supplier inventory database120 tracking radiopharmaceutical containers and pigs within the supplier's facilities. The RFID tags60 on theradiopharmaceutical pigs33 may be updated or replaced. Further, if desired, data relating to the radiopharmaceutical containers and pigs can be communicated from asupplier computer116 tocomputer79 within thehospital42 via acommunications link118, for example, an Internet connection, a telephonic connection, or other suitable link.
In methods as contemplated herein, RF tags60 may be applied to a radioactive pharmaceutical container20cthat is subsequently placed in a lead linedpig33. In such a circumstance, the pig limits the usability of the RF tags60 and may prevent use thereof unless the container20cis removed from thepig33. Therefore, it would be highly desirable to be able to read data from, and write data to, theRF tag60 on the radiopharmaceutical container20cwhen it is stored inside thepig33. Such is achieved by an exemplary embodiment of a pig-mounted antenna system shown inFIGS. 20-22.
Referring toFIG. 20, in a first embodiment, aradiopharmaceutical pig33bhas anelongated base322 and anelongated cap324. Thebase322 andcap324 can be formed in any of a wide variety of shapes and sizes, however, a substantially cylindrical shape is illustrated. Thecap324 is joined to thebase322 by a threadedinterconnection325 in a known manner. Acap shielding element326 within thecap324 and abase shielding element328 within thebase322 are used to block radiation that may be emitted from the radiopharmaceutical within a syringe20c.The shieldingelements326,328 can be formed from any material that is effective to block radiation, for example, lead, tungsten, a filled polymer composite material, etc. Thecap shielding element326 forms aprotrusion329 that overlaps thebase shielding element328 when thecap324 is mounted on thebase322. This overlap of theshields326,328 facilitates a blockage of radiation through a discontinuity in the shields caused by thecap324 being separable from thebase322.
Thecap324 further has acap shell330 comprised of anouter shell portion332 and aninner shell portion334. Similarly, thebase322 has acap shell336 comprised of anouter shell portion338 and aninner shell portion340. The base andcap shells328,330 are made from a plastic material, for example, a polycarbonate resin, etc.
Alabel30 is affixed to the radiopharmaceutical syringe22cby known means, for example, an adhesive, tape, elastic bands, etc. Indeed, thelabel30 may be affixed to the radiopharmaceutical syringe20cin any appropriate manner (e.g., so that it is not easily removable). Thelabel30 containsindicia346 that is in human readable and/or machine readable form. Thelabel30 further has anRFID tag60 that comprises an RFID integratedcircuit chip212 and at least oneradio frequency antenna210. The radiopharmaceutical syringe20cis often manufactured at a facility independent of the healthcare facility where it is to be used. Therefore, data relating to the radiopharmaceutical syringe20cis often collected at the point of its manufacture. Further, additional data is often collected at different points in a distribution channel at which theradiopharmaceutical pig33bcontaining the radiopharmaceutical syringe20cis handled. Data is also collected upon the radiopharmaceutical syringe20cbeing used and thereafter, upon its disposal or cleaning for an authorized reuse. Thus, over the life of the radiopharmaceutical syringe20cand associatedradiopharmaceutical pig33b,data that can be written into theRF ID tag60 at different times in the life cycle of the syringe20chas been previously described. Such data includes but is not limited to the decay factor for a radiopharmaceutical (e.g., half life of pharmaceutical), its prescribed activity level (curie level of radiation) at injection time, the activity level at another time (such as filling time), and/or the time at which the preparing physician or radiopharmacist assumed the radiopharmaceutical would be injected. The activity level is a function of time due to the short half life of most radiopharmaceuticals, so the activity level is designed for a specific injection time.
In order to obtain a maximum benefit from the data stored within theRFID tag60, it is necessary to be able to read the tag when the radiopharmaceutical syringe20cis housed within theradiopharmaceutical pig33b.In the embodiment ofFIG. 20, at least one radio frequencyinner antenna358 is applied over an inner surface of theinner base shell340; and at least one radio frequencyouter antenna364 is applied over an outer surface of theouter base shell338. Ahole360 extends through theinner base shell340, thebase shield328, and theouter base shell338. At least one connectinglead362, for example, a copper wire lead, extends through thehole360 and has one end connected to theinner antenna358 and an opposite end connected to theouter antenna364.
Theinner antenna358 is designed to couple with theRFID antenna210 connected to theRFID chip212. Theouter antenna364 is designed to electromagnetically couple with a read/write (“R/W”)device366 in the same way that theRFID antenna210 would couple with the R/W device366. The R/W device366 is connected to acomputer368 in a known manner. The R/W device366 electromagnetically couples with theRFID antenna210 via the inner andouter antennas358,364 respectively. Therefore, any time theradiopharmaceutical pig33bis handled in its life cycle, the R/W device366 can be used to read information from, and/or write information to, theRFID chip212 of theRFID tag60 on the radiopharmaceutical syringe20cvia an RFID antenna system comprising theantennas210,358,362,364. It should be noted that the antenna may simply comprise leads of a sufficient length to be used as an RFID antenna, in which case there may not be a coiledantenna section364.
Another exemplary embodiment of aradiopharmaceutical pig33band radiopharmaceutical syringe20cutilizing theRFID tag60 is shown inFIG. 21. In this embodiment, inner andouter antennas358,364 are located on respective inner andouter surfaces370,372 of a top of thecap324. Theantennas358,364 are electrically connected by at least onelead362 extending through ahole374 in the top of thecap324. The R/W device366 is able to electromagnetically couple with theRFID antenna210 via the inner andouter antennas358,364 respectively. Therefore, at any time theradiopharmaceutical pig33bis handled in its life cycle, the R/W device366 can be used to read information from, and/or write information to, theRFID chip212 of theRFID tag60 on the radiopharmaceutical syringe20cvia an RFID antenna system comprising theantennas210,358,364.
Placing theantennas358,362 in the top of thecap324 has some advantages. First, the top of thecap324 often experiences less radiation exposure than thebase shell336. Further, the capouter surface372 often experiences less physical contact than the baseouter shell338 during the handling of theradiopharmaceutical pig33b;and hence, theouter antenna362 on the capouter surface372 is less subject to physical damage.
A further exemplary embodiment of aradiopharmaceutical pig33band radiopharmaceutical syringe20cutilizing anRFID tag60 is shown inFIGS. 22 and 22A. In this embodiment, theRFID tag60 has anRFID chip212 on a first portion of a label30cthat is attached to the radiopharmaceutical syringe20cin a manner described earlier with respect toFIG. 20. A second portion of thelabel30dis located outside of theradiopharmaceutical pig33band has at least oneRFID antenna210 thereon. TheRFID chip212 on the first label portion30cis electrically connected to theantenna210 by at least one electricallyconductive lead376 integral with atether378. Theconductive lead376 andtether378 may be formed from any materials that provide the desired electrical and mechanical properties, for example, an insulated or uninsulated copper wire, a copper trace laminated on a substrate, etc. The threadedconnector325 is designed to provide a clearance for theconductive lead376 andtether378, so that thecap324 can be attached and removed from thebase322 without damaging theconductive lead376 andtether378. The R/W device366 is able to electromagnetically couple with theRFID antenna210, and theRFID antenna210 communicates data to and from theRFID chip212 via theconductive lead376. Therefore, at any time theradiopharmaceutical pig33bis handled in its life cycle, the R/W device366 can be used to read information from, and/or write information to, theRFID chip212 of theRFID tag60 on the radiopharmaceutical syringe20cvia an RFID antenna system comprising theantenna210 andconductive lead376.
In use, upon receiving an order for a radiopharmaceutical, alabel30 having anRFID chip212 and associatedantenna210 is applied to the radiopharmaceutical syringe20c,and the radiopharmaceutical syringe20ccan be placed in aradiopharmaceutical pig33b.At that time, data including but not limited to the identity of the syringe and pig can be written to theRFID tag60 in a manner previously described with respect toFIGS. 1A and 1B. The radiopharmaceutical syringe20candpig33bare then transported to a location where the syringe20cis filled with a desired radiopharmaceutical. This location may be at a radiopharmaceutical supplier or a location of a user of the radiopharmaceutical syringe20c.In either event, regardless of where the radiopharmaceutical syringe20cis filled, as previously described, data can be entered into theRFID tag60 relating to the filling process, the radiopharmaceutical being filled, and the how the radiopharmaceutical is to be used. After being filled, thepig33bholding the syringe20cfilled with the radiopharmaceutical may be transported and stored several times before it is delivered for use in a preparation and/or imaging room. During use, the syringe20cis removed from thepig33b,and the radiopharmaceutical is injected into an examination subject or patient. After use, the empty syringe20cis placed back in thepig33band returned to the pharmaceutical supplier or other location for proper disposal of the radiopharmaceutical syringe20cand reconditioning of theradiopharmaceutical pig33bfor reuse.
Every time theradiopharmaceutical pig33band/or radiopharmaceutical syringe20cis handled over their respective life cycles, in a manner as previously described, an R/W device366 can be used to read data from, and/or write data to, theRFID tag60, thereby providing complete chronological history of theradiopharmaceutical pig33band syringe radiopharmaceutical20cover the respective life cycles. The systems illustrated inFIGS. 1A,3A,1B,3B have an advantage in that almost any information is able to be transferred between all entities involved in a life cycle of asyringe20, which is any entity that can communicate with thecommunication link80. Therefore, data available from a website on the internet83 can be utilized during the life cycle of thesyringe20. Such internet communications capabilities permits remote service of apower injector50, downloading of an injection protocol, communication with a remotely located physician, media supplier or other entity of interest and other functions.
While the various principles of the invention have been illustrated by way of describing various exemplary embodiments, and while such embodiments have been described in considerable detail, there is no intention to restrict, or in any way limit, the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. For example, in the described embodiments ofFIGS. 20-22, anRFID chip212 may be positioned inside the pig. In some embodiments, thechip212 may be located outside the pig along with an associated antenna, and the chip may be physically attached to the syringe20cby a string or other attachment so that the radiopharmaceutical syringe20cand RFID information therein remain associated. Alternatively, thepig33bmay carry an RFID tag and antenna with no mechanical attachment to the syringe, but it may simply be known that the data therein relates to the syringe that is in the pig.
Further, in the exemplary embodiments shown and described herein, theantenna systems229a,229buse one, two and three antenna loops; however, in alternative embodiments, any number of antenna loops may be used. The antenna loops may be configured in any shape and be in the same plane or in different planes. Further, the antenna loops may or may not be overlapping. In may, however, be preferable that the antenna loops be individually tuned to resonate at a specific frequency used by the RFID protocol. Further, in the described embodiment, aswitching circuit241bis located on thesame PC board102 as anRF driver circuit224b;however, in alternative embodiments, a switching circuit may be located on thesecond PC board103, be split between the twoPC boards102,103 or located elsewhere, for example, with the power injector as shown inFIG. 17.
In addition, in the described embodiments, the R/W antenna systems229a,229bare applied to a pharmaceutical injection assembly; however, in alternative embodiments, the R/W antenna systems229a,229butilizing multiple nonparallel antennas may be applied to any devices that support a medical fluid container. Such devices include but are not limited to a warmer oven or warming box, a container filling station, a pig or other nuclear medicine container, a dose calibration station, a handheld powered medical fluid dispenser, a syringe disposal station, or other device.
The systems of the described embodiments relate to containers of medical fluids. Two examples described in detail relate to contrast media and respective syringes and radiopharmaceuticals and respective containers. In alternative embodiments, referring toFIG. 1C, the container may be anIV bag130 filled with a medical fluid.Tubing132 from theIV bag130 may interface with aninfusion pump134 so that a flow of medical fluid from theIV bag130 may be regulated via use of thepump134. While one end of thetubing132 is generally associated with theIV bag130, the other end of thetubing132 may be connected to a patient in a known manner. TheIV bag130 may have alabel30 with adata tag60 as previously described herein, for example, an RFID tag. Further, theinfusion pump134 may be in electrical communication with an electromagnetic device capable of reading data from and/or writing data to the data tag60 of theIV bag130. For example, the electromagnetic device may be attached to and/or located within theinfusion pump134. As shown inFIG. 3C, theinfusion pump134 may have acontrol136 connected to the communications link80 in a manner similar to that described with respect to theinjector control93 shown inFIGS. 1A and 1B. Thus, the systems ofFIGS. 1C and 3C may permit activity relating to theIV bag130, the medical fluid therein, and/or theinfusion pump134 to be tracked and recorded (e.g., over a life cycle of the IV bag130).
There are many known structures for mounting a syringe to a power injector, and the faceplates shown and described herein are only two such structures. Other mounting structures may not permit removal from the power head. The inventions claimed herein are can be applied to power heads having any type of structure for mounting a syringe thereto. In the shown and described embodiment, aheater106 is mounted on thePC boards102,103; however, in alternative embodiments, theheater106 may not be used and therefore, deleted fromPC boards102,103.
When introducing elements of the present invention or various embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Moreover, the use of “top” and “bottom”, “front” and “rear”, “above” and “below” and variations of these and other terms of orientation is made for convenience, but does not require any particular orientation of the components.
Therefore, the invention, in its broadest aspects, is not limited to the specific details shown and described herein. Consequently, departures may be made from the details described herein without departing from the spirit and scope of the claims, which follow.