CROSS-REFERENCE TO RELATED APPLICATIONThis application claims the priority benefit of Taiwan application serial no. 95143313, filed Nov. 23, 2006. All disclosure of the Taiwan application is incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a heat-dissipation device, and more particularly to a heat-dissipation device with dust-disposal function.
2. Description of Related Art
Recently, with the rapid progress of computer science and technology, the operation speed of the computer is improved increasingly, and the heat-generating rate of electronic devices in the computer host is increased accordingly. In order to prevent overheat of the electronic devices in the computer host, which may result in temporary or permanent failure of electronic devices, a sufficient heat-dissipation performance must be provided for the electronic devices in the computer.
Generally speaking, a heat-dissipation device mainly includes a fan, cooling fins, and a heat pipe. The cooling fins are disposed at an air outlet of the fan, and are connected to the heat pipe, so as to absorb the waste heat conducted by the heat pipes. The cooling fins include a plurality of metallic fins arranged in parallel with a certain gap existing between adjacent metallic fins, so as to dissipate the waste heat to air through convection. Therefore, when the fan is operating, a cooling airflow flows to the cooling fins via the air outlet and passes the gaps between the metallic fins, so as to dissipate the waste heat to the outside of the case through convention, thereby lowering the operating temperature of the internal electronic devices.
It should be noted that after the heat-dissipation device is used for a long time, dust in the air is gradually accumulated between the metallic fins of the cooling fins. If not being cleaned, excessive dust accumulated on the metallic fins may result in that the airflow blown by the fan cannot remove the waste heat from the cooling fins easily, thereby significantly reducing the heat-dissipation capability of the heat-dissipation device.
SUMMARY OF THE INVENTIONThe present invention is directed to providing a heat-dissipation device with dust-disposal function for removing the dust accumulated on the cooling fins.
The present invention provides a heat-dissipation device with dust-disposal function, which comprises a heat-conducting module and at least one vibrator. The heat-conducting module comprises a plurality of metallic fins arranged in parallel, and the vibrator is connected to the heat-conducting module for providing a vibrating source for the metallic fins.
The present invention further provides a heat-dissipation device with dust-disposal function, which comprises a heat-conducting module and at least one vibrator. The heat-conducting module comprises a plurality of metallic fins arranged in parallel, and the vibrator is disposed near the heat-conducting module for providing a non-contact vibrating source for the metallic fins.
According to an embodiment of the present invention, the vibrator comprises a piezoelectricity element which is deformed to generate the vibrating source.
According to an embodiment of the present invention, the vibrator comprises an eccentric motor, in which the eccentric motor has an eccentric element that rotates to generate the vibrating source.
According to an embodiment of the present invention, the heat-dissipation device further comprises a controller coupled to the vibrator for controlling the vibrator to provide the vibrating source. In addition, the controller comprises a timer that is set to calculate the time at which the vibrator provides the vibrating source.
According to an embodiment of the present invention, the heat-conducting module further comprises at least one heat pipe with one end connected to the metallic fins and the other end connected to a heat source, such that the heat generated by the heat source is conducted to the metallic fins through the heat pipe.
According to an embodiment of the present invention, the heat-dissipation device further comprises a fan module having an air outlet corresponding to the metallic fins for providing a cooling airflow passing through the metallic fins.
The present invention adopts the heat-dissipation device with dust-disposal function, and thus the dust on the metallic fins is shook off by vibration of the vibrator. Since the heat-dissipation device can automatically clean the dust on the metallic fins periodically or nonperiodically, the airflow generated by the fan can quickly remove the waste heat from the metallic fins, thereby significantly improving the heat-dissipation capability of the heat-dissipation device.
In order to make the aforementioned and other objects, features and advantages of the present invention comprehensible, preferred embodiments accompanied with figures are described in detail below.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGSThe accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
FIG. 1 is a schematic view of the heat-dissipation device with dust-disposal function according to an embodiment of the present invention.
FIGS. 2-4 are schematic views of the present invention implemented by different vibrators.
DESCRIPTION OF EMBODIMENTSReferring toFIG. 1, a schematic view of a heat-dissipation device with dust-disposal function according to an embodiment of the present invention is shown. The heat-dissipation device100 mainly includes a heat-conductingmodule110 and at least onevibrator120, and the heat-conductingmodule110 is used to dissipate heat of electronic devices with high heat-generating rate, so as to reduce the operating temperature of the electronic devices in a system. The heat-conductingmodule110 is generally made of metallic material with high heat conductivity such as Cu and Al, and is disposed on the electronic devices and connected to an air-cooling heat-dissipation module or water-cooling heat-dissipation module in the system, so as to achieve the purpose of heat dissipation.
In this embodiment, the heat-conductingmodule110 includes a plurality ofmetallic fins112 arranged in parallel, and themetallic fins112 in regular arrangement are stacked with a gap existing therebetween, so as to increase the heat-dissipation area of the heat-conducting module. Themetallic fins112 are, for example, disposed at anair outlet132 of afan module130, such that a cooling airflow generated by thefan module130 can easily pass through the gaps between themetallic fins112. In addition, the heat-conductingmodule110 further includes aheat pipe114 connected between themetallic fins112 and a heat source (e.g., an integrated circuit chip)10. A capillary structure is provided on an inner pipe wall of theheat pipe114, such that the cooling water flows in theheat pipe114 by capillary phenomenon, and the waste heat generated by theheat source10 at one end of theheat pipe114 is conducted to eachmetallic fin112 at the other end of theheat pipe114, so as to achieve the purpose of reducing the temperature of theheat source10.
It should be noted that thevibrator120 can generate a vibrating source for the heat-conductingmodule110 to dispose dust, such that excessive dust will not be accumulated on the heat-dissipation surface of themetallic fins112 and/or theheat pipe114. As shown inFIG. 1, thevibrator120 can be directly disposed on the heat-conductingmodule110, so as to generate a contact vibrating source. With the vibration of thevibrator120, themetallic fins112 suffer a shaking force to shake off dust on themetallic fins112. In this embodiment, the dust tends to be accumulated between themetallic fins112 and/or between themetallic fins112 and theheat pipe114 after a period of time, especially on the end portions of the fins near thefan module130, and thus thevibrator120 is preferably disposed near the end portions ofmetallic fins112, so as to generate the maximum vibration effect. However, the drawings of this embodiment are not intended to limit the present invention, and other preferred arrangements obtained from design, experiment or simulation can be applied in the present invention. In addition, the number of thevibrator120 can be one or more optionally.
Moreover, thefan module130 is disposed at one side of themetallic fins112. With a centrifugal force generated by the rotation ofblades134, the external cold air enters via an air inlet (not shown, in the same direction as the rotation axis of the blades134), and the air around theblades134 flows along the rotation direction, and flows to themetallic fins112 arranged in the same direction of the airflow via theair outlet132. In this embodiment, the air inlet is vertical to the normal vector of theair outlet132, but in another embodiment, the air inlet can be in parallel to the normal vector of theair outlet132.
Referring toFIG. 2, thevibrator120 has, for example, apiezoelectricity element120a,which is configured to be disposed on the heat-conductingmodule110 of theFIG. 1. Thepiezoelectricity element120ais deformed by the volume change under a piezoelectric effect, and thus when a high-frequency voltage signal is input from the exterior of thepiezoelectricity element120a,a high-frequency mechanical vibration is generated, thereby generating a vibrating source. Furthermore, referring toFIG. 3, thevibrator120 has, for example, aneccentric motor120b.Theeccentric motor120bhas aneccentric element122, for example, an eccentric cam or an eccentric shaft. When power energy is input from the exterior of theeccentric motor120b,an eccentric vibrating source is generated by the high-speed rotation of theeccentric element122, such that the dust accumulated on themetallic fins112 cannot be attached thereon and is shook off.
In addition to the implementation of the piezoelectricity element and eccentric motor to generate contact vibrating source, thevibrator120 can be further disposed near the heat-conductingmodule110 in a non-contact manner to generate a non-contact vibrating source. Referring toFIG. 4, the vibrator is, for example, anultrasonic generator120c,and the generated ultrasonic wave is transmitted to the heat-conductingmodule110 through the air. With the vibration of the air, the dust cannot be attached on the surface of themetallic fins112, thus achieving the dust-disposal efficiency. The frequency of the ultrasonic vibrating source is beyond the frequency that can be received by human ear, so no noise is sensed by the human.
Moreover, referring toFIG. 1, thevibrator120 operated together with acontroller140 can provide functions such as automatic timing, turning on, and turning off functions, such that thevibrator120 is set to automatically turn on when the heat-dissipation system or the electronic device is turned on, and to automatically turn off when the heat-dissipation system or the electronic device is turned off. Definitely, in the present invention, a hot key or a built-in dust-disposal managing unit may be used to inform the user, such that the user may choose the opportunity to dispose dust. In addition, thevibrator120 together with a timer (not shown) can calculate the time at which thevibrator120 provides the vibrating source, such that thecontroller140 can set the working time of dust-disposal.
In view of the above, the present invention provides a heat-dissipation device with dust-disposal function after research and development, and simulation, which can reduce the dust attached on the heat-conducting module and provides a perfect dust-disposal efficiency for metallic fins (cooling fins) arranged in parallel, so as to prevent excessive dust from being accumulated on the metallic fins near the air outlet of the fan module and thus influencing the heat-dissipation performance of the metallic fins. Meanwhile, the cooling airflow generated by the fan module can easily take away the waste heat on the metallic fins, and the heat-dissipation capability of the heat-dissipation device is improved accordingly.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.