This application cross-references related copending application “Medical Device for Providing Access” filed on even date herewith and having attorney docket number END5255.
FIELD OF THE INVENTION This invention is related to medical devices and methods, and more specifically to methods useful in performing vacuum assisted surgery, such as laparascopic surgery without insufflation.
BACKGROUND OF INVENTION A conventional minimally invasive procedure requires the use of gas (such as carbon dioxide) insufflation to lift the tissue or body wall from internal organs, thereby separating the body wall from the internal organs to create an operative space to introduce various surgical instruments to conduct the procedure.
The following patents disclose various tools for medical or surgical applications: US20030065358A1, U.S. Pat. No. 6,120,437A1, U.S. Pat. No. 6,099,550A1, U.S. Pat. No. 5,865,802A1, U.S. Pat. No. 5,823,947A1, U.S. Pat. No. 5,797,939A1, U.S. Pat. No. 5,766,169A1, U.S. Pat. No. 5,456,684A1, U.S. Pat. No. 5,336,220A1, U.S. Pat. No. 5,186,714A1, EP0614646B1, WO0193742A2.
The following patents disclose examples of medical devices, including trocar and instrument assemblies: US200383628A1, US20030060770A1, US20030023257A1, US20030004529A1, US20030004528A1, U.S. Pat. No. 6,582,441B1, US20020198554A1, US20020183775A1, WO9410898A1, JP11089851A, JP07047076A, JP05228160A, JP04263849A, JP04253852A.
Though insufflation is commonly used, non-gas based methods have been proposed. For example, such methods may use mechanical devices wherein the tissue is lifted externally or by provided internal stirrup like supports of different mechanical assemblies to lift the tissue to create the operative space without the use of gas. One method employs a vacuum actuated tissue lifting device. The following U.S. patents are incorporated herein by reference for disclosure related to lifting devices and methods, including vacuum lifting devices and methods: U.S. Pat. No. 6,042,539, U.S. Pat. No. 5,938,626, U.S. Pat. No. 5,893,368.
The method described in U.S. Pat. No. 6,042,539 describes a vacuum shell and provides a “dome” like operative field within the patient. An optical trocar having an obturator and cannula sleeve may be employed with such a vacuum shell. However, there can be difficulties related to use of such a trocar with vacuum assisted surgery and/or surgery without insufflation.
For instance, conventional trocars can have a working length that is not sufficient for such an application (working length can be defined as the actual length of the tubular section of a trocar below the sealing surface of the trocar). On the other hand, a trocar with an increased length may be difficult to maneuver and may restrict movement during the surgical procedure.
Additionally, it may not be desirable to use a conventional bladed trocar with a vacuum shell or other vacuum lift device, due to the possibility of accidental contact with internal organs during a first “blind” entry into the body cavity. Even if an optical obturator is employed, skill is still required to introduce and monitor the position of the trocar tip simultaneously. Also, introducing the camera assembly into the trocar obturator can result in a bulky (difficult to handle) assembly during the step of penetrating the body tissue.
Moreover, a conventional trocar which has a fixed length may not be suitable for all patients. Different patients can have different thicknesses of the abdominal wall and/or the fatty layers associated with the abdominal wall. For example, a thin or normal weight patient may require a trocar having a certain length, while a relatively obese patient may require a longer trocar.
Another problem with using a conventional trocar in vacuum assisted surgery is that when the trocar is inserted after the vacuum shell is placed on the tissue, the trocar will first cut through the perforable membrane of the shell, then pass into the patient's tissue. If the user attempts to penetrate the body wall without the application of vacuum to the vacuum shell, body wall will tend to buckle under the penetration force, and it is possible that internal organs could be injured. On the other hand, if the conventional trocar is inserted after applying vacuum and obtaining a partial or full lift of the abdominal wall from the internal organs, the internal body cavity and organs below the abdominal wall may also “lift”. Movement of the bowels under peristalsis can become sluggish due to the effects of anesthesia, which may lead to the formation of pockets of trapped gases. These trapped gases can expand under vacuum, and may result in reduced operative space and increased gas pressure in the lumens of the bowel. Also, in the case of abdominal surgery, the time during which the intra abdominal cavity is under vacuum can lead to pulling of the diaphragm into the abdominal cavity, and can create a negative pressure in the thoracic cavity.
SUMMARY OF INVENTION Applicants have recognized the drawbacks of the use of conventional trocars with vacuum lift devices, and that there is a need for an improved device for providing access to the inside of the body when vacuum lift devices are employed. Applicants have recognized the need for a multicomponent passageway for use as a fluid (e.g. air) conduit with a vacuum shell. Applicants have also recognized the desirability of such an assembly to be of sufficient length to take into account the gap between the tissue's external surface and the vacuum shell before vacuum application (approx. 75-100 mm) plus the tissue wall thickness to be penetrated to access the intra operative space.
In one embodiment, the invention provides a medical device comprising a multicomponent passageway for providing access to an internal space in a patient, the device comprising a first elongate, hollow member having proximal end, a distal end, and an internal lumen; a second elongate member having an open proxinal end, an open distal end, and an internal lumen providing a passagweay extending therethrough; and wherein the first member is releasably attachable to the second member to provide a generally continuous internal lumen. The distal end of the first member can be positioned intermediate the proximal and distal ends of the second member upon attachment of the second member to the first member.
In another embodiment, the invention provides an assembly comprising a vacuum device for providing an operative space within a patient; and a multicomponent device for providing access from a point external of the vacuum device to a point within the patient. The multicomponent device can comprise detachable first and second members, the first member for providing a first portion of an access passageway, and the second member for providing a second portion of an access passageway.
In another embodiment, the invention provides a method for performing a medical procedure. The method can comprise the steps of separating one portion of a patient's body from another portion of the patient's body to provide an operative space within the patient's body; and accessing the operative space through a multicomponent passageway.
The multifunctional, multicomponent passageway device can provide bi directional movement of air. The device and its method of use is such that it allows placement and access to the body cavity below the body wall before the application of vacuum with a vacuum lift device, thereby avoiding the problems related to the body cavity being under vacuum, or bowel dilation. The multimember design can provide flexibility to vary the length of the device. The device and method of the present invention can avoid potential difficulties of a first blind entry by not requiring a forced penetration or use of a sharp or pointed end to penetrate through the tissue.
A multicomponent passageway device of the present invention can help assure that the operative space created by lifting is maintained at ambient conditions (e.g. ambient pressure conditions). The device, due to its inner lumen, can also be used for passage of camera and or instruments including but not restricted to laparoscopic hand instruments during a procedure. The bi directional passage of air to maintain the ambient conditions in the body cavity may be maintained even when an instrument is passed through the device. The device of the present invention can accommodate insertion of diagnostic probes, such as, but not limited to, ultrasonic laparoscopic probes or catheter based probes through its inner lumen for intra-operative diagnostic procedures. The device can also allow removal of excised or extirpated tissue through its inner lumen during the surgical procedure (as it offers an unobstructed pathway which is devoid of any valve or flow control assembly such as is typically present in an conventional trocar) and without loss of operative space. The device according to the present invention, due to its open communication with the external ambient environment, can also provide venting of fumes which may be generated during use of electro surgical equipments for cutting or coagulation of internal tissue.
Upon release of vacuum and removal of the vacuum lift shell, the multicomponent passageway device of the present invention can also provide a channel for easy release of any air trapped in pockets of the internal body cavity. After release of vacuum and removal of the shell, the device can provide a channel for placement of a drainage catheter to drain body fluids post operatively. Also, if desired, a cannula component can be left in the incision and closed with a substantially tight cap, post operatively, to provide a port to the internal body cavity for visualization for possible bleeding or any such post operative complications.
Without being limited by theory, the multifunctional, multi member conduit device provided by the present invention can be used in medical procedures such as but not limited to gasless minimally invasive procedures using an external vacuum actuated tissue lifting device, to provide a passage way for bi directional movement of air to maintain the operative field at ambient conditions of temperature and pressure, for introducing instruments and medical camera etc, that may be used during the operative procedure i.e. diagnostic, therapeutic or surgical, for removal of extirpated/excised tissue, for clearance of fumes generated during use of electro surgical device, for cutting or coagulation etc, and for drainage of body fluids intra-operative or post operatively.
BRIEF DESCRIPTION OF DRAWINGSFIG. 1 is a schematic plan view illustration of a medical device according to one embodiment of the present invention.
FIG. 2 is a cross section view along the long axis of the device inFIG. 1.
FIG. 3 is a schematic plan view illustration of a cannula extension according to one embodiment of the invention, wherein the distal piercing tip is closed.
FIG. 3A is schematic illustration of the distal end of the cannula extension according to an alternative embodiment of the present invention, the cannula extension having a flexible distal portion with an open distal end, such as along a slit, to provide for instrument passage.
FIG. 3B is a schematic illustration showing the flexible distal portion ofFIG. 3A joined to a proximal tubular portion of the cannula extension.
FIG. 4 is the bottom view from the distal end of the cannula extension ofFIG. 3
FIG. 5 is a side elevation view of the cannula extension ofFIG. 3 of the device.
FIG. 6 is a cross section view along the long axis ofFIG. 5.
FIG. 7 is a top view from proximal end of a cannula according to one embodiment of the present invention.
FIG. 8 is a schematic side elevation view of a cannula according to one embodiment of the present invention.
FIG. 9 is the front elevation view of the cannula ofFIG. 8.
FIG. 10 is the cross section view of the cannula along its long axis.
FIG. 11 is a schematic cross-sectional illustration of an alternate embodiment of a cannula extension member according to the present invention, the cannula extension having a non-circular, generally oval cross-section.
FIG. 12 is the top view from the proximal end, showing the generally oval cross section of the cannula extension inFIG. 11.
FIG. 13 is a side elevation view of a cannula extension having a non-circular cross-section.
FIG. 14 is a bottom view from the distal end of the cannula extension ofFIG. 13.
FIG. 15 is a schematic illustration of a cannula having a non-circular, generally oval cross section.
FIG. 16 is a bottom view from the distal end of the cannula ofFIG. 15, showing a schematic representation of a laparoscope passing through the inner lumen of the cannula, and illustrating the resulting gap to the left and right of the laparoscope due to the non-circular cross-section, thereby providing channels to the left and right of the laparoscope through which air or another instrument may pass.
FIG. 17 is a front elevation of the cannula ofFIG. 15, and also schematically illustrating a laparoscope entering the proximal end of the cannula and passing through the internal lumen along the entire length of the body and exiting out at the distal beveled tip of the cannula.
FIG. 18 is a top view of a cap according to one embodiment of the present invention.
FIG. 19 is a front elevation of the cap ofFIG. 18.
FIG. 20 is a cross section of the cap ofFIG. 18.
FIG. 21 is a perspective view of a patient lying on a procedure table and an incision made through a body wall such as the abdominal wall to gain access to a body cavity such as the abdominal cavity wherein the operative space is to be provided.
FIG. 22 is a schematic illustration showing a cannula of the present invention positioned to extend through the incision in the body wall with the beveled end of the cannula positioned in the body cavity, and with air passageways in the form of eyelets disposed proximally of the beveled end also positioned below the body wall and in the body cavity.
FIG. 23 is a perspective view of the vacuum shell to be used to lift the body wall/tissue positioned over a portion of the patient through which the cannula extends, wherein the distal piercing tip of the cannula extension is depicted as being used to penetrate a perforable membrane of the vacuum shell, and showing positioning the distal tip of the cannula extension to align with the proximal end of the cannula, such that the distal tip of the cannula extension can be positioned within the cannula, and such that the cannula extension can be releasably attached to the cannula.
FIG. 24 is a schematic illustration of the multiple component device of the present invention assembled and in operative association with the vacuum shell, with vacuum being provided to lift the patients body wall and provide an operative space intermediate the body wall and internal organs, with arrows in various locations depicting the direction of flow of air, such as for instance, air entering the body cavity through the air passageway provided through the assembled cap, cannula extension, and cannula of the present invention.
FIG. 25 is a perspective view, which schematically illustrates the operative space created by the use of vacuum shell and the multifunctional access device of the present invention,FIG. 25 illustrating detaching the cannula extension from the cannula once lift is provided, and the cannula partially withdrawn in a proximal direction to position the beveled distal end of the cannula extension just below the body wall.
FIG. 26 is a perspective view illustrating the cap releasably attached to the cannula, and the cannula being used to provide access through the vacuum shell and the patient's body wall into the body cavity, and with a sleeve employed about the cannula to maintain an air seal between the cannula and the exterior of the patient's body such that operative space may be maintained.
FIG. 27 is a bottom view of a sealing sleeve showing a flange surface area which can be provided with an adhesive.
FIG. 28 is the front elevation of the sealing sleeve.
FIG. 29 is a cross section view of the sealing sleeve.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By the term “elongate” or “elongated” it is meant that a component or member has a length at least three times its width (e.g. a cylinder with a length at least three times the outer diameter).
The terms “procedure” or “operative procedure” mean medical procedures, including without limitation exploratory, diagnostic, therapeutic, surgical, ambulatory or mobile, emergency, and post mortem procedures, either open or laparoscopic or laparoscopically assisted.
The term “operative space” means any working space created within the body, such as below any tissue or an organ by relative separation, such as by lifting partially or fully one body structure relative to another.
By “releasable attachment” and “releasably attachable” it is meant two or more components can be repeatedly joined and separated without breaking, distorting, damaging, or impairing the function or form of the components.
The term “distal” is used to refer to the portion, part, end, or tip of a component or member which is away from the user, while the term “proximal” is used to describe the portion, part, end, or tip which is closer to the user of the device.
For purposes of explanation, the figures and the description are provided with respect to an example of a procedure employing lifting of the abdominal wall, but it will be understood the invention can have applicability to other parts of the patient's body. In particular, but without limitation, the present invention can have applicability to procedures in which external portions of the body are lifted with respect to internal portions of the body to create an operative space.
While the vacuum shell and vacuum are described as examples of a mean of lifting the body tissue, it will be understood the appended claims are not limited to applications involving the vacuum shell disclosed and illustrated below. For example, other lifting methods, including mechanical, electromechanical, gas based or non gas based can be employed with the device of the present invention.
While the description and figures depict threaded engagement features for releasably attaching components, it will be understood other suitable engagement features can be employed, including without limitation friction fitting, snap fit features, press fit features, and electrical or electro mechanical attachment means.
An assembledmedical device30 according to one embodiment of the present invention is shown inFIGS. 1 and 2. Themedical device30 can include a first elongate, hollow member and a second elongate, hollow member which are releasably attachable, one to the other. The first elongate member can comprise acannula extension132. The second elongate member can comprise acannula233. Themedical device30 can also include a third member, which can be releasably attacheable to one or both of thecannula extension132 and thecannula233. InFIGS. 1 and 2, the third element can comprise acap331. Thedevice30 can also include asleeve434 for providing sealing.
Each of thecannula extension132,cannula233, and cap331 can be formed of any suitable biocompatible material. In one embodiment, themembers132,233, and331 can be formed of a relatively rigid or semi rigid non collapsible biocompatible material which can be translucent, transparent, or opaque. In one embodiment, each of themembers132,233, and331 can be transparent. Each member may be made by extrusion or injection molding or any suitable plastic processing method or other suitable manufacturing method. In one embodiment, each of themembers132,233, and331 can be formed of polycarbonate, impact modified acrylic, actyl butydene styrene (ABS), or polyethyl ether ketone (PEEK).
Themedical device30 can also comprise the fourth member, sealingsleeve434.Sealing sleeve434 can be formed of a relatively flexible material, such as a flexible polyurethane, silicone, polypropylene, polyisoprene, or rubber.Sealing sleeve434 can be disposed about the outer surface ofcannula233, such thatsleeve434 fits snugly about the outer diameter of thecannula233.
Referring toFIGS. 3-6 andFIGS. 11-14, thecannula extension132 can have any suitable cross-section, including circular and non-circular cross-sections. Thecannula extension132 can have an openproximal end142 and adistal end144 which may be open or closed. The cannula extension can include aninternal lumen140 which extends from aproximal end142 to adistal end144 of thecannula extension132. Both the cannula extension and the internal lumen can have circular cross sections, as shown inFIG. 3-6, or non-circular, generally oval cross-sections as shown inFIGS. 11-14. Alternatively, thecannula extension132 could have a generally cylindrical outer surface, and theinner lumen140 could have a non-circular cross-section. Thecannula extension132 is shown as a single, unitary component, butcannula extension132 could be in the form of multiple components if desired.
Thecannula extension132 can have a length (as measured from the proximal end to the pointed tip138) of at least about 100 mm (millimeters), and in one embodiment the length of the cannula extension can be between about 100 mm and about 175 mm, and can be at least about six times the outer diameter of thecannula extension132. The outer diameter of thecannula extension132 can be about 15 mm, and the inside diameter oflumen140 can be about 12.75 mm, such as to accommodate 10 mm sized hand instruments. Without being limited by theory, when 10 mm sized instruments are to be employed, it is believe that it can be desirable to have an inner diameter of at least about 12.75 mm to provide flow area around instruments introduced throughlumen140. If a non-circular lumen is employed, a inside lumen with an inside dimension of at least 12.75 mm can be employed to provide flow around such an introduced instrument (e.g. if an oval or elliptical shaped cross section is employed, it can be desirable to have the major axis be at least about 12.75 mm, and the minor axis to be at least about 11 mm). It will be understood that the outside and inside diameters may be varied for different applications (e.g. reduced for smaller diameter 5 mm or 3 mm minimally invasive instrument sets).
Thecannula extension132 can include apointed tip138 associated withdistal end144. Thepointed tip138 can be provided for piercing through a portion of a vacuum shell membrane. The main body portion ofcannula extension132 can have a generally cylindrical outer surface, and a distal portion ofcannula extension132 can have a tapered, generally conical outer surface as shown inFIGS. 3 and 5. One or more lateral openings137 (or “windows”) can extend through the wall of the tapered distal portion of thecannula extension132 to provide communication from theinner lumen140 through the outer surface of thecannula extension132. Theopenings137 can be positioned proximally of thepointed tip138 atdistal end144, just above thepointed tip138. InFIG. 3, twoopenings137 are positioned about 180 degrees apart around the outside surface of the tapered distal portion of thecannula extension132.
Theopenings137 can have any suitable shape. It can be desirable that theopenings137 have a combined surface area of at least about 30 square millimeters to provide sufficient air passage, such as to help in avoiding the occurrence of a negative pressure (vacuum) inside the body cavity.
Cannula extension132 can also include anattachment portion139 for releasably attaching thecannula extension132 to thecannula233. Theattachment portion139 can be in the form of external screw threads for allowing thecannula extension132 to be releasably attached to the cannula by threaded engagement in screw-like fashion, though other attachment means (e.g. latching mechanisms, press fits, snap fits, and other releasable fastening devices) could be employed. Theattachment portion139 can be provided to prevent leakage of air at the juncture of thecannula extension132 and thecannula233. Thecannula extension132 can also include anattachment portion141 positioned at theproximal end142 of thecannula extension132. Theattachment portion141 can be provided to releasably attach thecap331 to the proximal end of thecannula extension132. Theattachment portion141 can be in the form of internal screw threads, as shown inFIG. 6.
FIG. 3A illustrates an alternative embodiment of acannula extension132 having an open distal end. InFIG. 3A, thecannula extension132 is shown having a bifurcateddistal portion160 comprising afirst tip portion162 and asecond tip portion164. The bifurcateddistal portion160 can be formed by cutting or otherwise forming the distal end of thecannula extension132. For instance, the distal end of thecannula extension132 can be cut or formed to have aslit167 extending generally parallel to the axis of thecannula extension132 to generally bisect the distal end of thecannula extension132. Thedistal portion160 can be formed of a flexible material, such rubber, silicone rubber, or a suitable flexible polymeric material so thattip portions162 and164 can be easily spread apart (as shown in phantom inFIG. 3A).FIG. 3A illustrates how bifurcateddistal portion160 can be separated to allow introduction of a laparoscope1012 (shown in phantom) therethrough.
Referring toFIG. 3B, the proximal portion of thecannula extension132 can be formed from a generally cylindrical, relatively rigid and generallytransparent polycarbonate tube180, and thedistal portion160 can be formed of rubber or other relatively flexible material, withdistal portion160 being joined to thetube180 at aflexible hinge portion170.Hinge portion170 can have a corrugated or bellows-like wall construction to provide for bending ofdistal portion160 relative to thepolycarbonate tube180.Hinge portion170 can be attached totube180 by any suitable method, including without limitation by interference fit, press fit, snap fit, adhesive, or by threaded engagement. If desired, one or more surfaces on thedistal portion160 can be employed to provide sealing engagement with an abutting surface on thecannula233. For instance, one of the inclined surfaces on thehinge portion170 can be used to form a seal against an abutting surface on thecannula233. Also, in an alternative embodiment, the grooves of thehinge portion170 can be employed to mate with complimentary grooves which can be provided on thecannula extension132 to provide releasable attachment of thecannula extension132 and thecannula233.
FIGS. 2 and 7-10 illustrate acannula233 according to one embodiment of the present invention. Thecannula233 can have any suitable cross sectional shape (e.g. circular or non-circular, such as oval), which cross-sectional shape can be the same as, or different from the cross sectional shape of thecannula extension132. Thecannula233 can have aproximal end238 and adistal end236, with aninternal lumen242 extending from the proximal end to the distal end. Thecannula233 can have any suitable cross sectional shape, including circular and non-circular cross-sections (e.g. oval) as shown inFIGS. 7-10 andFIGS. 15,17. Thedistal end236 can be beveled to form a beveled tip, as shown inFIGS. 8-10, for easy entry through any incision. The wall thickness of the cannula can be uniform or can vary along the length of the cannula. For instance, the wall thickness at thedistal end236 may be varied for easy penetration through an incision.
Thecannula233 can have a length of at least about 100 mm, and in one embodiment the cannula has a length between about 100 mm and about 175 mm. The length of thecannula233 can be greater than, less than, or substantially the same length as that of thecannula extension132. When 100 mm size instruments are to be introduced through thecannula233, the outside diameter of the cannula can be about 15 mm, and the inside diameter of theinternal lumen242 can be at least about 12.75 mm. The dimensions of thecannula233 can be varied, such as by being reduced for use with smaller 5 mm or 3 mm instrument sets. Generally, it is desirable that the outer diameter and shape of the cannula and the cannula extension be substantially the same to avoid leakage through the vacuum shell membrane. In one embodiment, the minimum inner diameter of both the cannula and the cannula extension can be at least about 12.75 mm to provide a continuous, uninterrupted air passageway with or without instruments extending through the cannula and cannula extension.
Thecannula233 can include one or more lateral openings through the wall of the cannula, such ascircular eyelets235. For instance, two or morecircular eyelets235 can be spaced at generally equal angular intervals around the circumference of outside surface ofcannula233. If desired, a relativelylarger eyelet235A can be positioned along the longest side of thebeveled tip236, as shown inFIG. 2. The eyelets extend through the wall of the cannula and provide fluid (e.g. gas such as air) communication frominternal lumen242 to the outside of the cannula. The eyelets can be positioned proximally of the beveled tip, and in one embodiment theeyelets235 can be spaced a maximum of about 5-10 mm from the edge of the beveled tip as measured parallel to the axis of thecannula233. The eyelets can provide an air passageway for air fromcannula extension132 throughcannula233 and into the internal body cavity in the event thedistal end236 of cannula is blocked for any reasons (e.g. such as byend236 being positioned against a tissue or organ mass).
The cannula can also include anattachment portion243, such as internal grooves or an internal threaded portion for releasably attaching the proximal end of thecannula233 to thecannula extension132.Attachment portion243 can have screw threads, grooves, or other features for releasably engaging with external surface features (such as external screw threads) oncannula extension132.Attachment portion243 can also be used for releasabley attaching thecap331 to the proximal end ofcannula233.
FIGS. 18-20 illustrate acap331. Thecap331 can include amain body portion357 and anattachment portion356 such as an external threaded portion. The relatively large outside diameter ofbody portion357 provides a handle for gripping by the user. External threadedportion356 can be formed to engage the threaded portions of thecannula extension132 and thecannula233, such thatcap331 can be releasably attached to the proximal end of eithercannula extension132 orcannula233. Thecap331 can have an internal, central-bore358 which can be of substantially the same size (e.g. same diameter) as theinternal lumen140 and theinternal lumen242. The central bore353 together withinternal lumen140 andinternal lumen242 can provide a continuous air passageway from outside the patient to the internal operative space within the body.
FIGS. 27-29 illustrate a sealingsleeve434 according to one embodiment of the present invention. Thesleeve434 has a generallycylindrical body portion436 and aflange portion468 extending radially from the distal end of thecylindrical body portion436. Acentral bore470 extends throughsleeve434. Central bore470 can be sized so thatsleeve434 can snugly fit around and slide along the length of the outside surface ofcannula233. The sleeve can be formed of a relatively flexible material such as rubber, so thatflange portion468 can contour to contours of the patient's body. Abottom surface469 of theflange468 can be coated with or otherwise provided with an adhesive, such as a pressure sensitive adhesive coating or other suitable adhesive. A release liner (not shown) can be used to cover the adhesive prior to time of use, and the release liner can be pealed from the flange surface at the time of use to expose the adhesive coating. The adhesive coating provided onsurface469 can be used to temporarily attach thesleeve434 to an outer surface of the patient's body, so thatflange468 helps in supporting thecannula233 when the cannula is inserted into an incision in the patient's body. Thesurface469 can also be provided with a medicinal substance, such as a medicinal substance selected from the group of substances consisting of hemostatic substances, anti-microbial substances, antibacterial substances, pain reducing agents, and combinations thereof.
FIGS. 11-14 illustrate an alternative embodiment of a cannula extension labeled withreference number1044.Cannula extension1044 is shown having a generally oval shaped cross-section and aninternal lumen1045 having a generally oval shaped cross-section.FIGS. 15,16 &17 illustrate an alternative embodiment of a cannula labeled withreference number2049.Cannula2049 is shown having a generally oval shaped cross-section and having aninternal lumen2052 having a generally oval shaped cross-section. Thecannula extension1044 can be releasably joined tocannula2049
Employing internal lumens having oval cross-sections or other non-circular cross-sections may be advantageous for accommodating instruments having a large width dimension that can be inserted so that the large width dimension is aligned with the long axis of the oval cross-section. An oval cross-section may also be useful for simultaneously receiving multiple instruments, such as in side by side relationship. An oval cross-section may also be useful in retrieving larger tissue samples through thecannula2049. An oval cross-section may also aid in reducing the stretching of tissue around the incision in the patient. Referring toFIGS. 16 and 17, the non-circular cross-section oflumen2049 can also leavegaps2055 on either side of acircular instrument2050 inserted in the lumen, so that an air passage is maintained through thecannula2049 even when the instrument is positioned in thelumen2049. The relatively large cross-section provided by an oval shape can also provide for a larger flow volume through thelumen2049, which may be desirable in applications where fast air pass or a large quantity of air is required. For example, when the tissue is lifted with a vacuum shell using a very high capacity vacuum, if the air passageway is not large enough, a partial vacuum effect may be created inside the body cavity for a short period of time. A non-circular design such as an oval shaped cross-section can avoid such a partial vacuum effect by providinggaps2055 around theinstrument2050, as well as providing a large flow area when the instrument is not present.
An non-circular cross-section such as an oval cross-section can be employed to accommodate an instrument which would not pass through a circular cross-section having an internal diameter comparable to the minor dimension of the non circular cross-section. Alternatively, an oval cross section may also be employed to accommodate multiple instruments of smaller profiles simultaneously. An oval or non-circular cross-section may also be useful for use in extracting relatively large excised tissue through the cannula and cannula extension. The non-circular cross-section can cause the tissue to be squeezed in one direction while allowing it to expand in the other when passing through such a cannula and cannula extension. Without being limited by theory, an oval or similar non-circular cross-section may also reduce the stretching of the tissue around theincision59 through which it passes. Further, a non-circular shape may be employed to provide larger area for passage of air and thus help in applications where fast air pass or a larger quantity of air passage is desired (for example when the tissue is lifted by using a very high capacity vacuum, if the lumen of device is not large enough, a partial vacuum effect may be created inside the body cavity for a short period of time. A non-circular lumen cross-section can be employed to avoid such a partial vacuum by providing a relatively large flow area even when the instrument51 is present.
The method of use of themultifunctional device30 is illustrated inFIGS. 21-26. As shown inFIG. 21, with the patient lying on his/her back during the procedure, anincision59 can be made through the body wall60 (or other tissue which is to be lifted) to obtain access to theinternal body cavity67. Once the incision is made, it is kept open using artery forceps or retractors and thecannula233 of themultifunctional device30 can be introduced into thebody cavity67 such thatbeveled tip236 and themultiple eyelets235 are all disposed inside the body cavity. Markings can be provided on the external surface of thecannula233 to help the surgeon determine the depth of insertion to avoid leakage of air or slippage of the cannula extension into the body cavity. If desired, the outside surface of thecannula233 can include grooves or ridges (such as coaxial ring grooves along a length of the outside surface of the cannula233) to help prevent slipping of thecannula233 in the incision, and to help provide an air seal between the borders of the incision and the outer surface of thecannula233.
Once the cannula extension is inserted to the required depth, incision may be sutured using a purse string technique to make it air tight around thecannula extension233. Additional the sealingsleeve434 can be slid downwards over thecannula extension233 towards theincision59. The protective release liner can be removed from the adhesivecoated surface469 offlange468 on thesleeve434. Theflange468 can then be pressed onto the external surface ofbody wall60 surrounding theincision59 to make it airtight. In addition to the adhesive coating, thesurface469 may also be coated with other active agents such as anti microbial agents, wound healing agents, hemostatic agents, and the like for additional activity and use of the sealing sleeve. Alternatively instead of an adhesive coating a gel like coating may also be used to make the seal substantially air tight. In addition to providing sealing at the incision, thesleeve434 can also help stabilize thecannula extension233 in place.
Once the incision is made sufficiently airtight, thevacuum shell61 is placed on the outside surface of the body wall60 (e.g the outer skin off the abdomen) such that at least oneperforable membrane62 of the vacuum shell is above thecannula extension233 as shown inFIG. 23. Thepointed tip138 of thecannula extension132 can be used to penetrate theperforable membrane62 of the vacuum shell to form anopening63 in the membrane62 (FIG. 23). Thecap331 can be joined to thecannula extension132 and can serve as a handle to provide grip for advancement of thecannula extension132. Thecannula extension132 can then be pushed distally toward the incision and aligned with the proximal end of thecannula233. Thepointed tip138 can be inserted into thecannula233, and theextension132 can be releasably attached to themember233, such as by threaded engagement, friction fit, or any other suitable releasable attachment mechanism, thereby providing an assembly of thecannula233, theextension132, thesleeve434, and the cap. With the components assembled, vacuum can be provided to thevacuum shell61.
Vacuum applied using theshell61 results in air being drawn from thespace66, as illustrated by the arrows inFIG. 24. The vacuum causesbody wall59 to lift upwards towards theshell61. Simultaneously, air from the external ambient environment can enterbody cavity67 throughdevice30, by passing through the inner lumens of thehollow cannula233 and thehollow cannula extension132. Air can enter into thedevice30 through the cap31, pass through its inner lumen458, then throughinner lumen140 ofcannula extension132. The air can then pass through the distal end ofextension132 by passing through thefluid passage windows137, to enterlumen242 of thecannula233. The air can then flow into the body cavity through thebeveled tip236 and/or through the plurality ofeyelets235/235A.
The amount of air drawn into the body cavity depends, to some extent, on the size of the inner lumen of thedevice30 as assembled, as well as the size of thewindows137 and the opening at thebeveled tip236, and the rate and level of vacuum applied to the vacuum shell. By providing a continuous fluid passage through the assembleddevice30, the air drawn into thebody cavity67 will be sufficient to balance the effect of the vacuum applied by the vacuum shell and to maintainbody cavity67 at an ambient condition of pressure and also avoid any lifting or bloating or distension ofinternal organs65 below the body wall.
Cap31 can be employed to help avoid slippage of thedevice30 into the body cavity or below theshell61. During the entire procedure the multifunctional,multicomponent device30 can serve to provide communication path for fluids and/or devices from the external environment outside the patient to theinternal body cavity67.
As complete vacuum lift is obtained, the external surface of thebody wall60 can contact the internal surface of thevacuum shell61 as shown inFIG. 25. Due to this lift an operative space is created in thebody cavity67. Thedevice30 as assembled inFIG. 24 can then be retracted proximally as shown inFIG. 25 until the junction of thecannula233 and thecannula extension132 is positioned externally of theperforable membrane62 of theshell61.Cap331 can be grasped for pulling thedevice30 proximally. Depth markings on the external surface ofcannula233 can be used to a minimum desirable length of thecannula233 remains within the space in thebody cavity67.
Thecannula extension132 can be detached from thecannula233, and cap331 can be detached fromcannula extension132 and releasably attached tocannula233. The reconfigureddevice30 now comprises thecap331 releasably joined to the proximal end of thecannula233, as shown inFIG. 26.Cannula233 provides a flow passage for ambient air pressure tobody cavity67. Additionally, various medical devices, such as endoscopic medical devices, can be introduced intobody cavity67 through thecap331 andcannula233.
Thecannula233 positioned as shown inFIG. 26 can provide a number of functions, including without limitation: providing bi-directional passage of air to maintain an ambient condition inside operative space thebody cavity67; venting of fumes and odors that may be generated due to cauterization ofinternal organs65 to maintain good visibility inside the operative space; permitting multiple instrument exchange without loss of operative space; maintaining the incision open and thereby provide continuous access to theinternal body cavity67; permitting simultaneous passage of two or more instruments through thecannula233; removal of tissue or body fluid from the operative through the cannula233 (possible in part because a valve is not required as is needed in a typical cannula); and introducing medications or diagnostic probes through thecannula233 either during the procedure or post operatively.
When the procedure is complete, the vacuum associated with thevacuum shell61 can be released, so thatbody wall60 drops to its original configuration. Thecap331 can be detached, and theshell61 can be removed while keepingcannula233 in place in theincision59. Thecannula233 can be used to introduce a drainage catheter before final removal or closure ofincision59. Alternatively, it may be fitted with a new solid non-hollow cap similar to cap331 but without theinner lumen358 to provide an access conduit that is sealed from ambient conditions and which can then be used for visualization of the procedure site within the body cavity, such as for post operative inspection for any suspected bleeding or drainage until such time as the surgeon decides to close the incision.
While the present invention has been illustrated by description of several embodiments, it is not the intention of the applicant to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, but without limitation, the multicomponent access device can be provided with a vacuum shell in kit form. Moreover, the structure of each element associated with the present invention can be alternatively described as a means for providing the function performed by the element. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.