TECHNICAL FIELD The invention relates generally to elongate medical devices. More specifically, the invention relates to an elongate medical device having a continuous reinforcement member.
BACKGROUND Elongated medical devices are commonly used to facilitate navigation through and/or treatment within the anatomy of a patient. A variety of elongate medical devices for intraluminal use, such as catheters, endoscopes, guidewires and the like, have been developed over the past several decades. Because the anatomy of a patient may be very tortuous, it is often desirable to combine a number of performance features in such devices. For example, it is sometimes desirable that the device have a relatively high level of pushability and torqueability, particularly near its proximal end. It is also sometimes desirable that a device be relatively flexible, particularly near its distal end. A number of different elongated medical device structures and assemblies are known, each having certain advantages and disadvantages. However, there is an ongoing need to provide alternative elongated medical device structures, assemblies, and methods.
SUMMARY The invention provides design, material, and manufacturing method alternatives for medical devices, such as catheters, guidewires, and the like. Some embodiments may relate to alternative shaft structures, assemblies, and methods for elongated medical devices, such as catheters or guidewires.
Accordingly, some embodiments may include an inner elongate member, a continuous wire disposed about at least a portion of the inner elongate member, and an outer tubular member disposed about at least a portion of the inner elongate member including the continuous wire. In one preferred embodiment, the outer tubular member has a generally constant inside diameter and does not conform to or fill the spaces between turns of the continuous wire. In some embodiments, the continuous wire may include a first section having a first cross-sectional profile, a second section having a second cross-sectional profile different from the first section, and a transition region between the first section and the second section. The first cross-sectional profile may or may not have a cross-sectional area different from the cross-sectional area of the second cross-sectional profile.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and Detailed Description which follow more particularly exemplify these embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
FIG. 1 is a partial side plan view of a medical device in accordance with one example embodiment of the invention shown as a catheter, for example a delivery, guide or diagnostic catheter;
FIG. 2 is a partial cross-sectional view of a portion of the medical device ofFIG. 1;
FIG. 3 is a partial cross-sectional view of a portion of the shaft of the medical device ofFIG. 1, including one example of a distal tip configuration;
FIG. 4A is a plan view of a portion of the medical device ofFIG. 1 with any layers overlaying a reinforcing layer removed, thus exposing a continuous reinforcement member helically wound about a portion of an inner elongate member of the shaft;
FIG. 4B is a partial cross-sectional view of the portion of the medical device shown inFIG. 4A and including additional tubular members overlaying the continuous reinforcement member;
FIG. 5A is a plan view of a portion of the medical device ofFIG. 1 with any layers overlaying a reinforcing layer removed, thus exposing an alternative continuous reinforcement member helically wound about a portion of an inner elongate member of the shaft;
FIG. 5B is a partial cross-sectional view of the portion of the medical device shown inFIG. 5A and including additional tubular members overlaying the continuous reinforcement member;
FIG. 6 is a perspective view of a portion of a continuous reinforcement member including a transition region in accordance with the invention as shown inFIGS. 4A and 4B; and
FIG. 7 is a perspective view of a portion of a continuous reinforcement member including a transition region in accordance with the invention as shown inFIGS. 5A and 5B.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
DETAILED DESCRIPTION For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
Refer now toFIGS. 1 and 2, which illustrate amedical device10 in accordance with one example embodiment. In general, the medical device may be acatheter10, and can include a generallyelongate shaft12 extending along a central or longitudinal axis x. The axis x extends along the length of thecatheter10 and necessarily follows the shape and/or curvature of theshaft12. Theshaft12 can include aproximal portion16 having aproximal end18, and adistal portion20 having adistal end22. Adistal tip28 may be disposed at thedistal portion20, and amanifold assembly14 may be connected at theproximal portion16 nearproximal end18.
As an initial matter, it should be appreciated that while themedical device10 is depicted as anintravascular catheter10, and in particular, an intravascular delivery, guide and/ordiagnostic catheter10, this is for the purposes of illustration only. Other medical devices embodying aspects of the invention may relate to virtually any medical device including an elongate shaft. For example, other embodiments may relate to medical devices such as a balloon catheter, an atherectomy catheter, a drug delivery catheter, a stent delivery catheter, an endoscope, an introducer sheath, a fluid delivery device, other infusion or aspiration devices, device delivery (i.e., implantation) devices, guidewires and the like. Thus, while the Figures and descriptions below are directed toward a delivery, guide, and/or diagnostic catheter, in other applications the structure and/or sizes in terms of diameter and length may vary widely, depending upon the desired properties of a particular device.
Additionally, it should be appreciated that theshaft12,manifold assembly14, anddistal tip28 can generally include any of a broad variety of structures and/or configurations. It should be understood that the particular configurations and structures shown and described herein are by way of example only, and that a broad variety of alternative structures and/or configurations may be used without departing from the spirit and scope of the invention as claimed.
Theshaft12 can be manufactured, include structure, and be made of materials so as to provide the desired characteristics of thecatheter10, depending upon the intended use. For example, theshaft12 can be provided and/or manufactured so as to maintain a desired level of flexibility, torqueability and/or other characteristics appropriate for maneuvering thecatheter10 as desired, for example, through the vasculature of a patient. As such, it should be understood that there is a broad range of possible shaft constructions that may be used, including those particularly discussed herein and others. Some other examples of suitable catheter shaft constructions and materials can be found in U.S. Pat. Nos. 5,569,218; 5,603,705; 5,674,208; 5,680,873; 5,733,248; 5,853,400; 5,860,963; 5,911,715; and 6,866,665, all of which are incorporated herein by reference. Some additional examples of shaft constructions include those disclosed in U.S. patent application Ser. No. 10/238,227 (Publication No. US-2004/0045645), which is also incorporated herein by reference.
Theshaft12 may have a length and an outside diameter appropriate for its desired use, for example, to enable intravascular insertion and navigation. For example, in some embodiments, theshaft12 may have a length in the range of about 1 cm to about 300 cm or more, or in some embodiments in the range of about 20 cm to about 250 cm, and an outside diameter in the range of about 1 F to about 20 F, or in some embodiments, in the range of about 1 F to about 10 F. Additionally, although depicted as including a generally round outer diameter and a round cross-sectional shape, it can be appreciated that theshaft12 can include other outer diameter and/or cross-sectional shapes or combinations of shapes without departing from the spirit of the invention. For example, the outer diameter and/or cross-sectional shape of the generallytubular shaft12 may be oval, rectangular, square, triangular, polygonal, and the like, or combinations thereof, or any other suitable shape, depending upon the desired characteristics.
In some embodiments, thecatheter10 can be a microcatheter including ashaft12 that is adapted and/or configured for use within small anatomies of the patient. For example, some embodiments are particularly useful in treating target sites located in tortuous and/or narrow vessels. Some examples of such vessels may include those in the neurovascular system, or in certain sites within the coronary vascular system, or in sites within the peripheral vascular system such as superficial femoral, popliteal, or renal arteries. The target site in some embodiments is a neurovascular site, such as a site in the brain, which is accessible only via a tortuous vascular path, for example, a vascular path containing a plurality of bends or turns which may be greater than about 90° turns, and/or involving vessels which are in the range of about 8 mm or less, and in some cases as small as about 2 to about 3 mm or less, in diameter. As such, in some embodiments, theshaft12 can include an outside diameter in the range of approximately 1 F-4 F.
However, in other embodiments, thecatheter10 may be used in other target sites within the anatomy of a patient, in which case theshaft12 would be so adapted. For example, thecatheter10 may be suited for other uses in the digestive system, soft tissues, or any other use including insertion into an organism for medical uses, and theshaft12 could be appropriately adapted for such uses. For example, in some embodiments, thecatheter10 may be used as an introducer sheath, in which case theshaft12 may be significantly shorter. Thecatheter10 may also include additional structure and materials adapted for a particular use and/or procedure. For example, in some other embodiments, theshaft12 may include additional devices or structures such as inflation or anchoring members, device deployment members, sensors, optical elements, ablation devices, or the like, or any of a broad variety of other structures, depending upon the desired function and characteristics of thecatheter10.
Referring now toFIG. 2, in at least some embodiments, theshaft12 can have a generally tubular construction that includes at least onelumen15 extending the length of theshaft12 along the longitudinal axis x. This can also be seen with reference toFIG. 3, which is a partial cross-sectional view of the shaft. Thelumen15 can be defined by aninner surface11 of theshaft12, and can have an inner diameter capable of transmitting fluids, or in some cases, receiving another medical device, such as a guidewire, a stent, a coil (such as an embolic coil, or the like), treatment particles (such as embolic particles, or the like), an ablation device, or another catheter, for example, a diagnostic catheter, a balloon catheter, a stent delivery catheter, or the like, or others. In some embodiments, thelumen15 can be adapted and/or configured to accommodate another medical device having an outer diameter in the range of about 1 F to about 10 F.
In one embodiment, theshaft12 includes a generally tubular construction including an inner tubular assembly and/ormember24, and an outer tubular assembly and/ormember26 disposed about at least a portion of theinner tubular member24; however it should be understood that this is by way of example only. Theinner tubular member24 at least partially defines theinner surface11 of theshaft12, and thus defines thelumen15.
Theinner tubular member24 can extend from a point within thedistal portion20 to a point within theproximal portion16 of theshaft12. The length of theinner tubular member24 can vary depending upon, for example, the length of theshaft12, the desired characteristics and functions of theinner tubular member24, and other such parameters. In some embodiments, theinner tubular member24 can extend substantially the entire length of theshaft12, for example, from a point adjacent theproximal end18 to a point adjacent thedistal end22. For example, the length of theinner tubular member24 can be in the range of about 1-300 centimeters or more, or in some embodiments in the range of about 20 cm-250 cm.
Referring toFIG. 3, theinner tubular member24 can include aproximal portion33 and adistal portion35. The proximal anddistal portions33/35 can be any proximal or distal sections of theinner tubular member24. However, in some cases theportions33/35 can be defined with regard to the relative position of the inner and outertubular members24/26. For example, thedistal portion35 can be any portion of theinner tubular member24 that extends distally beyond thedistal end39 of the outertubular member26, while theproximal portion33 can be any portion of theinner tubular member24 that is disposed within, or is proximal of adistal end39 of the outertubular member26. In some embodiments innertubular member24 may extend proximal of the proximal end of the outertubular member26 to provide a length of tubing to facilitate attachment of theshaft12 with ahub assembly14, or the like. In some embodiments, thedistal portion35 may be the portion of theinner tubular member24 distal of the transition region (FIGS. 4A, 5A) of the continuous wire of a reinforcinglayer31, and theproximal portion33 may be the portion of theinner tubular member24 proximal the transition region. In some embodiments, thedistal portion35 can have a length in the range of about 0.5 cm or greater, or in the range of about 1 cm or greater, or in the range of about 2 cm or greater, and in some embodiments in the range of about 3 to about 20 cm or in the range of about 1.0 to about 1.5 cm. In some embodiments, thedistal portion35 can be disposed within, and/or be a part of, or otherwise include adistal tip28 construction, some examples of which will be discussed in more detail below.
Theinner tubular member24 may have an inner diameter, for example, defining thelumen15, that is in the range of about 0.01 to about 0.05 inch in size, or in the range of about 0.015 to about 0.03 inch in size, or in the range of about 0.016 to about 0.026 inch in size. As indicated above, however, the lumen15 (defined by the inner diameter of the inner tubular member24) can be adapted and/or configured (e.g., sized) to accept other material, fluids, or medical devices, therein, and as such, the size of thelumen15 can vary, depending upon the desired characteristics and intended use.
Additionally, theinner tubular member24 can have an outer diameter that is in the range of about 0.011 inch to about 0.055 inch in size, or in the range of about 0.015 inch to about 0.03 inch in size, or in the range of about 0.019 inch to about 0.029 inch in size. It should be understood, however, that these dimensions are provided by way of example embodiments only and that in other embodiments, the size of the inner and outer diameter of theinner tubular member24 can vary greatly from the dimensions given, depending upon the desired characteristics and function of the device.
Theinner tubular member24, or other portions of theshaft12, may define one or more additional lumens depending upon the desired characteristics and function of thecatheter10, and such additional lumens can be shaped, sized, adapted and/or configured the same as or different fromlumen15, depending upon the desired characteristic and functions.
Theinner tubular member24 may include and/or be made of any of a broad variety of materials and/or structures. Theinner tubular member24 may have a single-layer tubular construction or a multi-layer tubular construction, or a combination thereof. For example, theinner tubular member24 may be a single tubular member formed by a single layer of material, or in other embodiments, may be formed by a plurality of tubular members and/or a plurality of layers of material that may be the same and/or different, but in combination form theinner tubular member24. In yet other embodiments, some portions of theinner tubular member24 can include a single layer construction, while other portions may include a multi-layer construction. Some examples of suitable materials can include, but are not limited to, polymers, metals, metal alloys, or composites or combinations thereof.
Some examples of some suitable polymers can include, but are not limited to, polyoxymethylene (POM), polybutylene terephthalate (PBT), polyether block ester, polyether block amide (PEBA), fluorinated ethylene propylene (FEP), polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane, polytetrafluoroethylene (PTFE), polyether-ether ketone (PEEK), polyimide, polyamide, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysulfone, nylon, perfluoro(propyl vinyl ether) (PFA), polyether-ester, some adhesive resin, such as modified polyolefin resin, polymer/metal composites, etc., or mixtures, blends or combinations thereof, and may also include or be made up of a lubricous polymer. Some other potentially suitable polymer materials may include those listed below with reference to the outertubular member26. One example of a suitable polyether block ester is available under the trade name ARNITEL, and one suitable example of a polyether block amide (PEBA) is available under the trade name PEBAX®, from ATOMCHEM POLYMERS, Birdsboro, Pa. In some embodiments, adhesive resins may be used, for example, as tie layers and/or as the material of the structures. One example of a suitable adhesive resin is a modified polyolefin resin available under the trade name ADMER®, from Mitsui Chemicals America, Inc. Additionally, polymer material can in some instances be blended with a liquid crystal polymer (LCP). For example, in some embodiments, the mixture can contain up to about 5% LCP. This has been found in some embodiments to enhance torqueability.
Some examples of suitable metals and metal alloys can include stainless steel, such as 304V, 304L, and 316L stainless steel; nickel-titanium alloy such as a superelastic (i.e., pseudoelastic) or linear elastic nitinol; nickel-chromium alloy; nickel-chromium-iron alloy; cobalt alloy; tungsten or tungsten alloys; tantalum or tantalum alloys, gold or gold alloys, MP35-N (having a composition of about 35% Ni, 35% Co, 20% Cr, 9.75% Mo, a maximum 1% Fe, a maximum 1% Ti, a maximum 0.25% C, a maximum 0.15% Mn, and a maximum 0.15% Si); or the like; or other suitable metals, or combinations or alloys thereof. In some embodiments, it is desirable to use metals, or metal alloys that are suitable for metal joining techniques such as welding, soldering, brazing, crimping, friction fitting, adhesive bonding, etc.
Referring toFIG. 3, at least a portion of theinner tubular member24 can have a multi-layer tubular construction. The example shown includes aninner layer34, anintermediate layer32 disposed about theinner layer34, a reinforcinglayer31 disposed about theintermediate layer32, and anouter layer30 disposed about the reinforcinglayer31 and theintermediate layer32. It should be understood that more or fewer layers can be used, with or without one or more reinforcing layers, depending upon the desired characteristics of theinner tubular member24. Additionally, in other embodiments, the layers could be arranged differently to achieve desired properties. For example, the reinforcinglayer31 could be disposed at a different radial location, could be disposed entirely within another layer, could be disposed on the outer surface of theinner tubular member24, or, as indicated above, could simply be absent. For example,inner tubular member24 may be a single or multi-layer member having a discrete reinforcinglayer31 such as a wire coil disposed aboutinner tubular member24 along at least a portion of the length of theinner tubular member24. Furthermore, while thelayers30,32 and34 are described, these layers may be provided separately but form a single and/or unitary layer and/or structure. Some or all of the plurality of layers, for example layers30,31,32,34, may be made of any suitable material, for example, those discussed above for use in theinner tubular member24.
In some embodiments, theinner layer34 may include a lubricious polymer such as HDPE or PTFE, for example, or a copolymer of tetrafluoroethylene with perfluoroalkyl vinyl ether (PFA) (more specifically, perfluoropropyl vinyl ether or perfluoromethyl vinyl ether), or the like. In some particular embodiments, a PTFE tube is used as theinner layer34, which can extend the length of theinner tubular member24.
Furthermore, in some embodiments, the intermediate andouter layers32/30 may each individually include a flexible polymer, for example a polymer material having a durometer in the range of about 5 D to about 90 D. For example, the intermediate and/orouter layers32/30 can include or be made up of one or more tubular segments of a PEBA, a polyether-ester elastomer, or other like material. The durometer of the material used to form the intermediate and/orouter layers32/30 may be the same, or may vary from one another, depending upon the characteristics desired. For example, theintermediate layer32 may be made of a material having a higher durometer than the material of the outer30 layer along at least a portion of theinner tubular member24. In other embodiments, the reverse may be true, and in yet other embodiments, the twolayers30/32 may include the material having the same or similar flexibility characteristics.
In some embodiments, one or both of thelayers30/32 can be made up of a plurality of tubular segments including materials having different flexibility characteristics to impart varying degrees of flexibility to different longitudinal sections of the intermediate and/orouter layers32/30. For example, in some embodiments, one or both of thelayers30/32 can include one or more proximal segments (e.g.,43/47) and one or more distal segments (e.g.,45/45). In some cases, the one or more proximal segments (e.g.,43/47) in either one or bothlayers30/32 may include material having a higher durometer than the material included in the distal segment (e.g.,45/45) of each or bothrespective layer30/32. Such a construction may be used, for example, to render a more distal portion of theinner tubular member24 more flexible. Such an arrangement can also be helpful, for example, in providing a flexible distal tip construction, or a portion thereof.
For example, referring to the embodiment shown inFIG. 3, theintermediate layer32 may include aproximal portion43 including and/or made of a flexible polymer, such as a PEBA, a polyether-ester elastomer, or other like material, having a durometer in the range of about 40 D to about 70 D. Theintermediate layer32 may also include adistal portion45 including and/or made of a flexible polymer having a durometer in the range of about 15 D to about 35 D. Additionally, theouter layer30 may include aproximal portion47 including and/or made of such a flexible polymer having a durometer in the range of about 25 D to about 55 D. Theouter layer30 may also include adistal portion49 including and/or made of such a flexible polymer having a durometer in the range of about 15 D to about 35 D.
Theinner tubular member24 can be constructed using any one or a combination of appropriate methods and/or techniques, for example, extrusion, co-extrusion, interrupted layer co-extrusion (ILC), heat bonding techniques, heat shrink techniques, fusing, winding, disposing, adhesive bonding, mechanical bonding, soldering, welding, molding, casting, or the like, or others. In some embodiments, one or more of the layers and/orstructures30/31/32/34 can be formed separately, and thereafter coupled and/or connected together, while in some embodiments, one or more of the layers and/orstructures30/31/32/34 can be formed together using suitable techniques.
For example, in some embodiments, the layers and/orstructures30/31/32/34 can be formed separately, such as by extrusion, co-extrusion, interrupted layer co-extrusion (ILC), casting, molding, heat shrink techniques, fusing, winding, or the like, and thereafter coupled or connected together using suitable techniques, such as heat shrink techniques, friction fitting, mechanically fitting, chemically bonding, thermally bonding, welding (e.g., resistance, Rf, or laser welding), soldering, brazing, adhesive bonding, crimping, or the use of a connector member or material, or the like, or combinations thereof, to form theinner tubular member24.
In some other embodiments, one or more of the layers and/or structures of the inner tubular member may be formed together at the same or similar times using suitable techniques, such as extrusion, co-extrusion, interrupted layer co-extrusion (ILC), or the like. In some other embodiments, one or more layers, for example theinner layer34 and the reinforcinglayer31, can be formed and/or provided separately, and thereafter additional layers, for example layers32 and30, can be formed onto, over, or with thelayers31 and34 by suitable techniques to form theinner tubular member24.
Theinner tubular member24 may have a uniform stiffness, or may vary in stiffness along its length. For example, a gradual reduction in stiffness from the proximal end to the distal end thereof may be achieved, depending upon the desired characteristics. The gradual reduction in stiffness may be continuous or may be stepped, and may be achieved, for example, by varying the structure, such as the size, thickness, or other physical aspect of one or more of thelayers30/31/32/34, or for example, by varying the materials used in one or more of thelayers30/31/32/34. Such variability in characteristics and materials can be achieved, for example, by using techniques such as ILC, by fusing together separate extruded tubular segments, or in some cases, varying the characteristics and/or even the very presence or absence of certain structures and/or layers.
The one or more reinforcinglayer31, if present, can be constructed with any suitable materials and structures to impart the desired characteristics to theinner tubular member24. The reinforcinglayer31 can include one or more support members that can comprise, for example, a braid, a coil, a filament or wire, or series of such structures, or the like, including material and/or structure adapted to provide the desired characteristics. Examples of suitable materials for constructing the reinforcing layer include polymers, metals, or metal alloys such as those discussed above, or the like, or any of a broad variety of other suitable materials.
In some embodiments, the reinforcinglayer31 can be acoil31. Thecoil31 may be formed of an elongated filament (e.g., wire, ribbon, or the like) having appropriate dimensions and shape to achieve the desired torque, flexibility, and/or other characteristic. For example, the filament used to form thecoil31 may be circular or non-circular. For instance, the filament may be flattened, ribbon, oval, rectangular, square, triangular, trapezoidal, polygonal, and the like, or any other suitable shape. In describing the filament as being a suitable shape, such as rectangular, square, triangular, or the like, it is the intention not to limit the filament to having a true rectangular, square, triangular, etc., shape. The intention is to include shapes that resemble such shapes. For example, the filament may have rounded corners, nonlinear sides, and/or non-characteristic angles. Thecoil31 can be wrapped in a helical fashion by conventional winding techniques. The pitch of adjacent turns ofcoil31 may be tightly wrapped so that each turn touches the succeeding turn, or the pitch may be set such thatcoil31 is wrapped in an open fashion maintaining a gap between successive turns. The pitch can be constant throughout the length of thecoil31, or can vary, depending upon the desired characteristics, for example flexibility. For example, in some embodiments, thecoil31 can include a distal portion including a relatively open pitch, and a proximal portion having a relatively more closed pitch, such that the coil is more flexible in the distal portion than in the proximal portion. The reinforcinglayer31 may extend the entire length of theinner tubular member24, or may extend only along a portion of the length thereof. In some embodiments, the reinforcinglayer31 may extend from a point distal of the proximal end to the distal end of theinner tubular member24. In another embodiment, the reinforcinglayer31 may extend from the proximal end to a point proximal of the distal end of theinner tubular member24. In still another embodiment, the reinforcinglayer31 may extend from a point distal of the proximal end to a point proximal of the distal end.
One embodiment of the reinforcinglayer31 may be more clearly described herein. Referring toFIG. 4A, reinforcinglayer31 may be acontinuous wire75. A continuous wire is a single filament that extends from one end of the wire to the opposite end of the wire without splicing, welding, brazing or other means of joining two wires together. Acontinuous wire75 may overcome challenges associated with initiating and/or terminating a reinforcement member at a location other than the proximal region or distal region of a catheter construction. Using two or more discrete coil sections to achieve dissimilar flexibilities throughout the length of a shaft may be disadvantageous. Terminating and initiating adjacent coil sections at an intermediate location may encourage kinking of the shaft, may allow separation of a reinforcing layer from an inner/outer member, or may create an uneven transition through the shaft, for example.
Continuous wire75 may be helically wound about at least a portion ofinner member24.Continuous wire75 may be helically wound at a constant pitch about a portion ofinner member24, or the pitch ofcontinuous wire75 may be varied step-wise or gradually along a portion ofinner member24. For instance,continuous wire75 may be tightly wound (i.e., successive turns are placed closer together) along aproximal portion80 ofinner member24 andcontinuous wire75 may be more loosely wound (i.e., successive turns are spaced farther apart) along adistal portion82 ofinner member24.Continuous wire75 may be wound from the proximal end ofinner member24 to the distal end ofinner member24 or any portion thereof. For example,continuous wire75 may be wound from a point distal of the proximal end ofinner member24 to the distal end ofinner member24,continuous wire75 may be wound from the proximal end ofinner member24 to a point proximal of the distal end ofinner member24, orcontinuous wire75 may be wound from a point distal of the proximal end ofinner member24 to a point proximal of the distal end ofinner member24.
As shown inFIG. 4A,inner member24 may have alumen15 extending therethrough. However, in some embodiments, such as a guidewire,inner member24 may be a core wire not including a lumen, such aslumen15.Lumen15, if present, may be sized to provide access to the distal end of the elongate shaft throughlumen15, for example, to accommodate advancing an additional medical device therethrough.
Continuous wire75 may include afirst portion77, asecond portion79, and atransition region78 located betweenfirst portion77 andsecond portion79. Althoughcontinuous wire75 is shown with onetransition region78, one or more additional transition regions may be included incontinuous wire75.Transition region78 may provide a transition betweenfirst portion77 andsecond portion79.Transition region78 may include a tapered transition, a step-wise transition, or other such transition betweenfirst portion77 andsecond portion79. For example,transition region78 may alternatively be a region of rotation ofcontinuous wire75.Continuous wire75 having different transverse dimensions may be rotated, for instance by 45, 90, or 180 degrees, throughtransition region78 in order to vary the flexibility ofcontinuous wire75. For example,continuous wire75 may be flattened, rectangular, or otherwise have different transverse dimensions, wherein one of two shorter sides is in contact with theinner member24 in theproximal portion80 ofinner member24. Intransition region78,continuous wire75 may be rotated 90 degrees such that one of two longer sides is in contact with theinner member24 in thedistal portion82 ofinner member24. By rotating thecontinuous wire75, the radial extent of thecontinuous wire75 from the longitudinal axis x of the elongate shaft is changed between theproximal portion80 and thedistal portion82 ofinner member24. The radial extent of thecontinuous wire75 is intended to mean the distance from the longitudinal axis x of the elongate shaft to the outermost point of the helically woundcontinuous wire75 in a radial direction. As shown inFIG. 4A, the radial extent R1of thefirst portion77 ofcontinuous wire75 is greater than the radial extent R2of thesecond portion79 ofcontinuous wire75.Continuous wires75 of other shapes having different transverse dimensions may be rotated in a similar manner in order to achieve two or more regions of different flexibility. By reducing the radial extent of thecontinuous wire75 in thedistal portion82 of theinner member24, the flexibility of thedistal portion82 is increased. Thus, thesecond portion79 ofcontinuous wire75 having a reduced radial extent may provide a distal tip portion of the shaft with a higher degree of flexibility and a lower profile than a portion of the shaft proximal of thetransition region78.
As can be better seen inFIG. 4B, afirst portion77 ofcontinuous wire75 may have a first cross-sectional profile having a first cross-sectional area, and asecond portion79 ofcontinuous wire75 may have a second cross-sectional profile having a second cross-sectional area. The first cross-sectional profile may be constant throughout thefirst portion77 ofcontinuous wire75 and the second cross-sectional profile may be constant throughout thesecond portion79 ofcontinuous wire75. Transition region78 (FIG. 4A) may provide transition between the cross-sectional profile of thefirst portion77 and the cross-sectional profile of thesecond portion79 ofcontinuous wire75. The first cross-sectional profile may be dissimilar from the second cross-sectional profile. For example, thefirst portion77 may have a circular cross-sectional profile and thesecond portion79 may have a non-circular cross-sectional profile, such as a ribbon, oval, flattened, square, or rectangular profile. The cross-sectional area of the circular cross-sectional profile may or may not be different from the cross-sectional area of the non-circular cross-sectional profile. In other embodiments, thefirst portion77 may have a circular or non-circular cross-sectional profile having a first cross-sectional area and thesecond portion79 may have a circular or noncircular cross-sectional profile having a second cross-sectional area different from the first cross-sectional area. For example,continuous wire75 may include aproximal portion77 having a first circular cross-sectional profile and adistal portion79 having a second circular cross-sectional profile. The cross-sectional area of the first circular cross-sectional profile may be different from the cross-sectional area of the second circular cross-sectional profile. For instance, the first cross-sectional area may be greater than or less than the second cross-sectional area. Differences in the cross-sectional profile and/or cross-sectional area of the proximal portion relative to the cross-sectional profile and/or cross-sectional area of thedistal portion79 may enhance the flexibility characteristics of the elongate shaft. For example, thedistal portion79 having a dissimilar profile may provide the elongate shaft with a very flexible, lower profile distal tip portion.
Proximal portion77 ofcontinuous wire75 may be helically wound around a length ofinner member24. For instance, helically woundproximal portion77 may extend a majority of the length ofinner member24. In some embodiments, helically woundproximal portion77 may extend a length of about 20 cm or more, about 50 cm or more, about 75 cm or more, or about 100 cm or more, for example.Distal portion79 ofcontinuous wire75 may be helically wound around a length ofinner member24. For instance, helically wounddistal portion79 may extend proximally alonginner member24 from the distal end ofinner member24, or helically wounddistal portion79 may extend distally from the proximal end ofdistal tip portion28 to a point withindistal tip portion28. In some embodiments,distal portion79 may extend for a length of about 5 cm or less, about 3 cm or less, about 2 cm or less, about 1.5 cm or less, or about 1 cm or less along a distal portion ofinner member24, for example.Distal portion79 may be positioned within adistal tip portion28 of the shaft.
As mentioned previously, the radial extent R1of theproximal portion77 of the helically woundcontinuous wire75 alongproximal portion80 ofinner member24 may be greater than the radial extent R2of thedistal portion79 of the helically woundcontinuous wire75 alongdistal portion82 ofinner member24. Therefore, the portion of the shaft including thedistal portion79 ofcontinuous wire75 may have a lower profile and/or a higher degree of flexibility than the portion of the shaft including theproximal portion77. Additionally or alternatively, a change in the flexibility of the shaft may be achieved by varying the pitch of thecontinuous wire75 between theproximal portion77 and thedistal portion79.
As shown inFIG. 4B, anouter tubular member26 may be disposed about at least a portion ofinner member24 including thecontinuous wire75. Outertubular member26 may be disposed about a proximal portion ofinner member24 including thecontinuous wire75. For reasons of clarity, an additional layer(s) overlayingcontinuous wire75 and disposed within the lumen of outertubular member26 as shown inFIG. 3 is not illustrated inFIG. 4B. However, some embodiments may include at least one layer ofinner member24 or an additional layer interposed betweencontinuous wire75 and outertubular member26, or along a portion thereof. In some embodiments, no additional layer may be located betweencontinuous wire75 and outertubular member26.
Distal end39 of outertubular member26 may be locatedproximate transition region78. For example,distal end39 may be positioned about 2 cm or less, about 1 cm or less, or about 0.5 cm or less fromtransition region78 ofcontinuous wire75. Outertubular member26 may extend proximally from a pointproximate transition region78 to the proximal region of the elongate shaft. In some embodiments, outertubular member26 may extend over the entireproximal portion77 of helically woundcontinuous wire75. In some embodiments, outertubular member26 may extend from the proximal end of the elongate shaft to thetransition region78. However, outertubular member26 may extend distal of the transition region in some embodiments and may extend to the distal end of the elongate shaft in some embodiments. Outertubular member26 may include a plurality of slots orapertures44 cut through the wall of outertubular member26 to provide a degree of flexibility to the elongate shaft. In a preferred embodiment, the outer tubular member has a generally constant diameter over a substantial portion of its length. Thus, the inside surface does not conform to or fill the spaces between successive turns of the reinforcing layer. Outertubular member26 will be further described hereinafter.
Adistal tip portion28 may be disposed about a distal portion ofinner member24 including thecontinuous wire75.Proximal end29 ofdistal tip28 may be locatedproximate transition region78 such thatproximal end29 ofdistal tip28 may abut or mate withdistal end39 of outertubular member26. For example,proximal end29 may be positioned about 2 cm or less, about 1 cm or less, or about 0.5 cm or less fromtransition region78 ofcontinuous wire75. In some embodiments,distal tip28 may extend over and surround a distal portion of outertubular member26.Distal tip28 may extend to the distal end of the elongate shaft to provide a flexible atraumatic tip to the elongate shaft.
Another embodiment of reinforcinglayer31 comprising acontinuous wire175 disposed about at least a portion ofinner member24 is shown inFIGS. 5A and 5B.Continuous wire175 may be similar tocontinuous wire75 shown inFIGS. 4A and 4B.Continuous wire175 may include aproximal portion177 having first cross-sectional profile and adistal portion179 having a second cross-sectional profile different from the first cross-sectional profile. Atransition region178 may be located between theproximal portion177 and thedistal portion179 providing a transition between the two portions ofcontinuous wire175. The first cross-sectional profile may be a flattened wire (i.e., ribbon) having a first radial extent R1and the second cross-sectional profile may be a flattened wire (i.e., ribbon) having a second radial extent R2less than the first radial extent R1. The radial extent of thecontinuous wire175 is intended to mean the distance from the longitudinal axis x of the elongate shaft to the outermost point of the helically woundcontinuous wire175 in a radial direction. Thedistal portion179 having a reduced radial extent may provide the distal tip region of the shaft with a higher degree of flexibility and a lower profile segment than more proximal segments.
As shown inFIG. 5B, anouter tubular member26 may be disposed about a proximal portion ofinner member24 including thecontinuous wire175. As mentioned above, an additional layer(s) may or may not be interposed between outertubular member26 andcontinuous wire175.Distal end39 of outertubular member26 may be locatedproximate transition region178. For example,distal end39 may be positioned about 2 cm or less, about 1 cm or less, or about 0.5 cm or less fromtransition region178 ofcontinuous wire175. In some embodiments, outertubular member26 may extend overtransition region178 and/ordistal portion179 ofcontinuous wire175. Outertubular member26 may include a plurality of slots orapertures44 cut through the wall of outertubular member26 to provide a degree of flexibility to the elongate shaft. Outertubular member26 will be further described hereinafter.
Adistal tip portion28 may be disposed about a distal portion of innertubular member24 including thecontinuous wire175.Proximal end29 ofdistal tip28 may be locatedproximate transition region178 such thatproximal end29 ofdistal tip28 may abut or adjoindistal end39 of outertubular member26. For example,proximal end29 may be positioned about 2 cm or less, about 1 cm or less, or about 0.5 cm or less fromtransition region178 ofcontinuous wire175.Distal tip28 may extend to the distal end of the elongate shaft to provide a flexible atraumatic tip to the elongate shaft.
FIG. 6 shows a portion ofcontinuous wire75 including atransition region78 located between aproximal portion77 and adistal portion79 ofcontinuous wire75 as disclosed regardingFIGS. 4A and 4B.Proximal portion77 may have a circularcross-sectional profile72 having a diameter D1anddistal portion79 may have a non-circularcross-sectional profile73, which may be a profile having a width W1and a height H1. Width W1may be greater than height H1. For example, width W1may be two times, four times, or ten times greater than height H1. Additionally, diameter D1may be greater than H1such that whencontinuous wire75 is helically wound aboutinner member24, the radial extent R1of theproximal portion77 is greater than the radial extent R2of thedistal portion79. In some embodiments, the cross-sectional area of thecross-sectional profile72 may be equivalent to the cross-sectional area of thecross-sectional profile73. In alternative embodiments, the cross-sectional area ofprofile72 may be greater than or less than the cross-sectional area ofprofile73.
Distal portion79 may be formed incontinuous wire75 by grinding, cold working, drawing, pressing, shaping, chemical etching, electro-polishing, or otherwise deforming/alteringdistal portion79 ofcontinuous wire75 into the secondcross-sectional profile73. In deforming/alteringdistal portion79,transition region78 is formed, providing a transition betweenproximal portion77 anddistal portion79.Distal portion79 may have a specified length such that whendistal portion79 is helically wound aroundinner member24,distal portion79 extends along inner member24 a length of about 0.5 cm to about 5 cm, or about 1 cm to about 3 cm or about 1 cm to about 1.5 cm, for example. Thus, the chosen length ofdistal portion79 may be a function of the outer diameter ofinner member24, the pitch of helically woundcontinuous wire75, and/or the number of windings ofcontinuous wire75, for example.
Proximal portion77 may have a specified length such that whenproximal portion77 is helically wound aroundinner member24,proximal portion77 extends a majority of the length of theinner member24. In some embodiments,proximal portion77 may have a length such that helically woundproximal portion77 extends about 20 cm or more, about 50 cm or more, or about 100 cm or more, for example. Helically woundproximal portion77 may be sized to extend within about 10 cm or less, about 5 cm or less, about 2 cm or less, or about 1 cm or less of the proximal end ofinner member24, for example. Thus, the chosen length ofproximal portion77 may be a function of the outer diameter ofinner member24, the pitch of helically woundcontinuous wire75, and/or the number of windings ofcontinuous wire75, for example.
FIG. 7 shows atransition region178 located between aproximal portion177 and adistal portion179 ofcontinuous wire175 as disclosed regardingFIGS. 5A and 5B.Proximal portion177 may have a non-circularcross-sectional profile172, which may be a ribbon profile having a width W2and a height H2. Width W2and height H2may be different, thuscross-sectional profile172 may be substantially rectangular (e.g., flat wire), or width W2and height H2may be substantially equivalent, thuscross-sectional profile172 may be substantially square (e.g., flat wire). In describing the cross-sectional profile as square or rectangular, profiles are intended to resemble those of squares and rectangles. For example, the cross-sectional profiles may include rounded corners, nonlinear sides, and/or non-characteristic angles, thus not creating a true square or rectangular profile.Distal portion179 may have a non-circularcross-sectional profile173, which may be a ribbon profile having a width W3and a height H3. Width W3may be greater than height H3, such thatdistal portion179 ofcontinuous wire175 is a flattened ribbon portion. In some embodiments, width W3may be greater than width W2and/or height H2may be greater than height H3. For example, width W3may be two times, four times, or ten times greater than width W2and/or height H2may be two times, four times, or ten times greater than height H3. H2may be greater than H3such that the radial extent R1of theproximal portion177 is greater than the radial extent R2of thedistal portion179 when thecontinuous wire175 is helically wound aroundinner member24. In some embodiments, the cross-sectional area of the firstcross-sectional profile172 may be equivalent to the cross-sectional area of the secondcross-sectional profile173. In alternative embodiments, the first cross-sectional area ofprofile172 may be greater than or less than the second cross-sectional area ofprofile173.
Similar tocontinuous wire75,distal portion179 may be formed incontinuous wire175 by grinding, cold working, drawing, pressing, shaping, chemical etching, electro-polishing, or otherwise deforming/alteringdistal portion179 ofcontinuous wire175 into the secondcross-sectional profile173. In deforming/alteringdistal portion179,transition region178 is formed providing a transition betweenproximal portion177 anddistal portion179.Distal portion179 may have a specified length such that whendistal portion179 is helically wound aroundinner member24,distal portion179 extends along inner member24 a length of about 0.5 cm to about 5 cm, or about 1 cm to about 3 cm or about 1 cm to about 1.5 cm, for example. Thus, the chosen length ofdistal portion179 may be a function of the outer diameter ofinner member24, the pitch of helically woundcontinuous wire175, and/or the number of windings ofcontinuous wire175, for example.
Proximal portion177 may have a specified length such that whenproximal portion177 is helically wound aroundinner member24,proximal portion177 extends a majority of the length of theinner member24. In some embodiments,proximal portion177 may have a length such that helically woundproximal portion177 extends about 20 cm or more, about 50 cm or more, or about 100 cm or more, for example. Helically woundproximal portion177 may be sized to extend within about 10 cm or less, about 5 cm or less, about 2 cm or less, or about 1 cm or less of the proximal end ofinner member24, for example. Thus, the chosen length ofproximal portion177 may be a function of the outer diameter ofinner member24, the pitch of helically woundcontinuous wire175, and/or the number of windings ofcontinuous wire175, for example.
Referring again toFIGS. 1-3, theouter member26 can also be a generally tubular member including aproximal region36 having a proximal end37 and adistal region38 having adistal end39. The outertubular member26 can be disposed about at least a portion of theinner tubular member24 at a location along the length of theshaft12 betweenproximal end18 anddistal end22. In the embodiment shown, theouter member26 is disposed about theinner tubular member24 along theproximal portion16 of theshaft12, but it should be understood that other locations are possible.
The length of the outertubular member26 can also vary, depending upon, for example, the length of theshaft12, the desired characteristics and functions of thecatheter10, and other such parameters. In some embodiments, theouter member26 has a length that allows it to be disposed over the majority of the length of theinner tubular member24, and in some embodiments, is disposed about all but up to the distal most 15 cm or less of theinner tubular member24 and/or all but the proximal most 15 cm or less of theinner tubular member24. In some embodiments, the distal end of the outertubular member26 is disposed about 3.0 cm or less, 2.0 cm or less, 1.5 cm or less or 1.0 cm or less proximal the distal end of theinner member24. In some embodiments, the length of the outertubular member26 can be in the range of about 1 cm to about 299 cm or more, or in some embodiments in the range of about 19 cm-249 cm.
The tubularouter member26 defines alumen40 that can be adapted and/or configured to house or surround a portion of theinner tubular member24. In some embodiments, thelumen40 can have an inner diameter that is in the range of about 0.015 inch to about 0.06 inch in size, and in some embodiments, in the range of about 0.02 inch to about 0.035 inch in size. In some embodiments, the outertubular member26 can have an outer diameter that is in the range of about 0.016 inch to about 0.07 inch in size, or in the range of about 0.02 inch to about 0.04 inch in size. It should be understood however, that these, and other dimensions provided herein, are by way of example only.
In at least some embodiments, the outertubular member26 can have an inner diameter that is greater than the outer diameter of theinner tubular member24. As such, the outertubular member26 can be disposed about the inner tubular member24 (i.e., a portion of theinner tubular member24 is disposed within thelumen40 of the outer member) such that a space orgap42 is defined between at least a portion of theouter surface25 of theinner tubular member24 and theinner surface27 of theouter member26. In some embodiments, the space orgap42 can be in the range of about 0.0002 to about 0.004 inch in size, and in some embodiments, in the range of about 0.0005 to about 0.003 inch in size. Again, it should be understood that these dimensions are provided by way of example only. In some embodiments, space orgap42 may be substantially filled by reinforcinglayer31. For example,continuous wire75 may be disposed ingap42 betweeninner member24 and outertubular member26. However, in some embodiments the outertubular member26 is substantially contiguous with theinner tubular member24 such that no gap or space is formed between theinner tubular member24 and the outertubular member26.
Typically, relatively large portions of the gap orspace42 remain open or unfilled by any other structure of thecatheter10 along a substantial portion of the length thereof, and in some cases along a substantial portion of the length of the outertubular member26. For example, in some embodiments, 50% or more, 75% or more, 90% or more, or 95% or more of the gap orspace42 remains open and/or unfilled by any other structure of the catheter.
In some embodiments, attachment points along the length of the outertubular member26 may be used to attach to theinner tubular member24. As a result, the gap orspace42 may be partially or totally filled at these attachment points, and as such, divided up into what may be considered multiple and/or a plurality of separate gaps or spaces that are unfilled. Additionally, other structures, such as coils, bands, braids, polymer layers, or the like, may fill portions of the gap orspace42. Even so, such multiples of the gap orspace42, or the so defined multiple gaps orspaces42 may still collectively extend along a substantial portion of the length of the outertubular member26 and remain overall substantially unfilled over the majority of the length thereof, for example, in percentages of the total length as given above. As such, the outertubular member26 can act to reinforce or impart desired properties, such as torsional and lateral rigidity, to thecatheter shaft12, and may allow at least the portion of theinner tubular member24 surrounded by the gap orspace42 to be separate from, and in some cases bend and/or move laterally within, thelumen40. Some examples of structure, methods, and techniques of coupling the tubularouter member26 to theinner tubular member24 will be discussed in more detail below.
The outertubular member26 can be adapted and/or configured to have a desired level of stiffness, torqueability, flexibility, and/or other characteristics. Those of skill in the art and others will recognize that the dimensions, structure, and materials of the outertubular member26 are dictated primarily by the desired characteristics, and the function of thefinal catheter10, and that any of a broad range of the dimensions, structure, and materials can be used.
The desired stiffness, torqueability, lateral flexibility, bendability or other such characteristics of theouter member26 can be imparted or enhanced by the structure of the outertubular member26. For example, the outertubular member26 may include a thin wall tubular structure, including one or a plurality ofapertures44, such as grooves, cuts, slits, slots, or the like, formed in a portion of, or along the entire length of, the tubularouter member26. Such structure may be desirable because it may allow outertubular member26, or portions thereof, to have a desired level of lateral flexibility as well as have the ability to transmit torque and pushing forces from theproximal region36 to thedistal region38. In some embodiments, slots orapertures44 may extend substantially transverse to the longitudinal axis x of the outertubular member26. Theapertures44 can be formed in essentially any known way. For example,apertures44 can be formed by methods such as micro-machining, saw-cutting, laser cutting, grinding, milling, casting, molding, chemically etching or treating, or other known methods, and the like. In some such embodiments, the structure of the outertubular member26 is formed by cutting and/or removing portions of the tube to formapertures44.
In some embodiments, theapertures44 can completely penetrate the outertubular member26 such that there is fluid communication between thelumen40 and the exterior of the outertubular member26 through theapertures44. In some embodiments, theapertures44 may only partially extend into the structure of the outertubular member26, either on the interior or exterior surface thereof. Some other embodiments may include combinations of both complete andpartial apertures44 through the structure of the outertubular member26. The shape and size of theapertures44 can vary, for example, to achieve the desired characteristics. For example, the shape ofapertures44 can vary to include essentially any appropriate shape, such as square, round, rectangular, pill-shaped, oval, polygonal, elongate, irregular, or the like, and may include rounded or squared edges, and can be variable in length and width, and the like.
Additionally, the spacing, arrangement, and/or orientation of theapertures44, or in some embodiments, associated spines or beams that may be formed, can be varied to achieve the desired characteristics. For example, the number or density of theapertures44 along the length of the outertubular member26 may be constant or may vary, depending upon the desired characteristics. For example, the number or proximity ofapertures44 to one another near one end of theouter member26 may be high, while the number or proximity of slots to one another near the other end of the outertubular member26 may be relatively low and/or non existent, or vice versa. For example, in the embodiment shown inFIGS. 1, 2, and3, thedistal region38 of the outertubular member26 includes a plurality ofapertures44 having a relatively high density relative to the plurality ofapertures44 located in theproximal region36. As such, thedistal region38 can have a greater degree of lateral flexibility relative to theproximal region36. The density of theapertures44 can vary gradually or in a stepwise fashion over the length of the outer tubular member. And as suggested above, certain portions of the outertubular member26 may not include any such apertures.
In some embodiments, the distal about 10% to about 50% of the total length of the outertubular member26 can includeapertures44 defined therein at a relatively high density, while the proximal about 50% to about 90% of the total length of the outertubular member26 includeapertures44 defined therein at a relatively low density, and/or is free ofsuch apertures44. For example, in some embodiments, thedistal region38 having a length in the range of about 30 cm to about 70 cm includesapertures44 defined therein at a relatively high density to provide for relatively greater flexibility, while the remaining length in theproximal region36 of the outertubular member26 includeapertures44 defined therein at a relatively low density, and/or is free ofsuch apertures44, to provide for relatively greater stiffness. It should be understood however, that these, and other dimensions provided herein, are by way of example embodiments only, and that in other embodiments, the disposition ofapertures44 can vary greatly from the dimensions given, depending upon the desired characteristics and function of the device.
As suggested above, theapertures44 may be formed such that one or more spines or beams50 are formed in the tubularouter member26. Such spines or beams50 (FIG. 1) could include portions of thetubular member26 that remain after theapertures44 are formed in the body of the outertubular member26. Such spines or beams50 may act to maintain a relatively high degree of torsional stiffness, while maintaining a desired level of lateral flexibility. In some embodiments, someadjacent apertures44 can be formed such that they include portions that overlap with each other about the circumference of the tube. In other embodiments, someadjacent apertures44 can be disposed such that they do not necessarily overlap with each other, but are disposed in a pattern that provides the desired degree of lateral flexibility. Additionally, theapertures44 can be arranged along the length of, or about the circumference of, the outertubular member26 to achieve desired properties. For example, theapertures44 can be arranged in a symmetrical pattern, such as being disposed essentially equally on opposite sides about the circumference of the outertubular member26, or equally spaced along the length of the outer tubular member, or can be arranged in an increasing or decreasing density pattern, or can be arranged in a non-symmetric or irregular pattern.
Collectively, these Figures and this Description illustrate that changes in the arrangement, number, and configuration of slots may vary without departing from the scope of the invention. Some additional examples of shaft constructions and/or arrangements of cuts or slots formed in a tubular body are disclosed in U.S. Pat. No. 6,428,489 and in published U.S. patent application Ser. Nos. 09/746,738 (Pub. No. US 2002/0013540), and 10/400,750 (Pub. No. US-2004/0193140), all of which are incorporated herein by reference. Also, some additional examples of shaft constructions and/or arrangements of cuts or slots formed in a tubular body for use in a medical device are disclosed in U.S. patent application Ser. Nos. 10/375,493, and 10/400,750, which are also incorporated herein by reference.
In addition to, in combination with, or as an alternative to the structure of theouter member26, the materials selected for outertubular member26 may also be chosen so that may have the desired characteristics. The outertubular member26 may be formed of any materials suitable for use, dependent upon the desired properties of thecatheter10. For example, outertubular member26 may be formed of materials having a desired modulus of elasticity, given the structure used. Some examples of suitable materials include metals, metal alloys, polymers, or the like, or combinations or mixtures thereof.
Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316L stainless steel; alloys including nickel-titanium alloy such as linear elastic or superelastic (i.e., pseudoelastic) nitinol; nickel-chromium alloy; nickel-chromium-iron alloy; cobalt alloy; tungsten or tungsten alloys; MP35-N (having a composition of about 35% Ni, 35% Co, 20% Cr, 9.75% Mo, a maximum 1% Fe, a maximum 1% Ti, a maximum 0.25% C, a maximum 0.15% Mn, and a maximum 0.15% Si); hastelloy; monel 400; inconel 625; or the like; or other suitable material, or combinations or alloys thereof In some embodiments, it is desirable to use metals, or metal alloys that are suitable for metal joining techniques such as welding, soldering, brazing, crimping, friction fitting, adhesive bonding, etc.
Some examples of suitable polymeric materials may include, but are not limited to: poly(L-lactide) (PLLA), poly(D,L-lactide) (PLA), polyglycolide (PGA), poly(L-lactide-co-D,L-lactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/PGA), poly(D, L-lactide-co-glycolide) (PLA/PGA), poly(glycolide-co-trimethylene carbonate) (PGA/PTMC), polyethylene oxide (PEO), polydioxanone (PDS), polycaprolactone (PCL), polyhydroxylbutyrate (PHBT), poly(phosphazene), polyD,L-lactide-co-caprolactone) (PLA/PCL), poly(glycolide-co-caprolactone) (PGA/PCL), polyanhydrides (PAN), poly(ortho esters), poly(phoshate ester), poly(amino acid), poly(hydroxy butyrate), polyacrylate, polyacrylamid, poly(hydroxyethyl methacrylate), polyurethane, polysiloxane and their copolymers, or mixtures or combinations thereof. Some other potentially suitable polymer materials may include those listed above with reference to theinner tubular member24.
As indicated above, some embodiments may include linear-elastic or super-elastic nitinol in various structures and/or components of the shaft12 (e.g., outertubular member26,inner tubular member24, etc.). The word nitinol was coined by a group of researchers at the United States Naval Ordinance Laboratory (NOL) who were the first to observe the shape memory behavior of this material. The word nitinol is an acronym including the chemical symbol for nickel (Ni), the chemical symbol for titanium (Ti), and an acronym identifying the Naval Ordinance Laboratory (NOL). In some embodiments, nitinol alloys can include in the range of about 45 to about 60 weight percent nickel, with the remainder being essentially titanium. It should be understood, however, that in other embodiment, the range of weight percent nickel and titanium, and or other trace elements may vary from these ranges. Within the family of commercially available nitinol alloys, are categories designated as “superelastic” (i.e., pseudoelastic) and “linear elastic” which, although similar in chemistry, exhibits distinct and useful mechanical properties.
In some embodiments, a superelastic alloy, for example a superelastic nitinol, can be used to achieve desired properties. Such alloys typically display a substantial “superelastic plateau” or “flag region” in its stress/strain curve. Such alloys can be desirable in some embodiments because a suitable superelastic alloy will provide anouter member26 that exhibits some enhanced ability, relative to some other non-superelastic materials, of substantially recovering its shape without significant plastic deformation upon the application and release of stress, for example, during placement of the catheter in the body.
In some other embodiments, a linear elastic alloy, for example a linear elastic nitinol, can be used to achieve desired properties. For example, in some embodiments, certain linear elastic nitinol alloys can be generated by the application of cold work, directional stress, and/or heat treatment, such that the material fabricated does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve. Instead, in such embodiments, as recoverable strain increases, the stress continues to increase in a somewhat linear relationship until plastic deformation begins. In some embodiments, the linear elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by DSC and DMTA analysis over a large temperature range. For example, in some embodiments, there are no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60° C. to about 120° C. The mechanical bending properties of such material are therefore generally inert to the effect of temperature over a broad range of temperature. In some particular embodiments, the mechanical properties of the alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature. In some embodiments, the use of the linear elastic nickel-titanium alloy allows the outer member to exhibit superior “pushability” around tortuous anatomy. One example of a suitable nickel-titanium alloy exhibiting at least some linear elastic properties is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Additionally, some examples of suitable nickel-titanium alloy exhibiting at least some linear elastic properties include those disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference.
In some embodiments, the outertubular member26, or other portions of theshaft12, can be formed of a shape-memory material, for example a shape memory alloy such as a shape memory nitinol. In such embodiments, the shape memory effect can be used in the deployment or use of the catheter, for example in causing the outertubular member26, or other portions of theshaft12, to move from a first insertion configuration to a second use configuration, or, for example, for the outertubular member26 to “remember” its desired shape after deformation to another shape.
For example, in some embodiments, the outertubular member26 can include or be made of a shape memory alloy that is martensite at room temperature, and has a final austenite transition temperature (Af) somewhere in the temperature range between room temperature and body temperature. For example, in some such embodiments, the shape memory alloy has a final austenite transition temperature in the range of about 25° C. and about 37° C. (e.g., about body temperature). In some such embodiments, it may be desirable that the final austenite transition temperature be at least slightly below body temperature, to ensure final transition at body temperature. This feature allows theouter member26 to be inserted into the body of a patient in a martensitic state, and assume its preformed, austenitic shape when exposed to the higher body temperature within the anatomy, or at the target site. In this embodiment, deployment of the outertubular member26 can be achieved by a shape memory effect; as the material warms, it undergoes a transition from martensite to austenite form, causing transformation of the outertubular member26 from the first configuration to the second configuration.
In other example embodiments, the outertubular member26 can include or be made of a shape-memory alloy that could have a transition temperature Md(wherein Md=highest temperature to strain-induced martensite) that is in the range of body temperature (e.g., about 37° C.) or greater, below which the alloy retains sufficient stress-induced martensitic property to allow placement of the outertubular member26 at or above its final austenite transition temperature (Af). In other words, this allows the catheter, including the outertubular member26 in its preformed austenitic state, to be inserted and navigated in the anatomy, where the outertubular member26 may be exposed to stress that may promote portions thereof to undergo stress-induced martensitic (SIM) transformation. Thereafter, the outertubular member26 may recover its preformed, austenitic shape when released from the stress of navigation, at a temperature that may be substantially above the final austenite transition temperature without significant plastic, or otherwise permanent deformation. Additionally, in some such embodiments, the outertubular member26 can be constrained, for example, in a delivery device, such as a guide catheter, in a stress-induced martensitic (SIM) state, and recover its preformed, austenitic shape when released from the constraints of the catheter, at a temperature that may be substantially above the final austenite transition temperature without significant plastic, or otherwise permanent deformation. In these embodiments, the final austenite temperature may be quite low, e.g., 4° C. or lower, or it may be up to room temperature or higher.
In yet other embodiments, the outertubular member26 can include or be made of a shape memory alloy that is martensite at body temperature, and has a final austenite transition temperature (Af) somewhere in the temperature range above body temperature. This feature allows the catheter including the outertubular member26 to be navigated in a martensitic state, and maintain a martensitic state until exposed to a temperature higher than body temperature. The outertubular member26 can then be heated to the necessary temperature above body temperature to make the transformation from martensite to austenite using an external heating means or mechanism. Such mechanisms may include the injection of heated fluid through the catheter or other device, the use of electrical or other energy to heat the outertubular member26, or other such techniques. In some such embodiments, the shape-memory alloy has a final austenite transition temperature in the range of about 37° C. to about 45° C. It may be desirable that the final austenite transition temperature be at least slightly above body temperature, to ensure there is not final transition at body temperature. Some examples of Nitinol cylindrical tubes having desired transition temperatures, as noted above, can be prepared according to known methods.
Referring toFIG. 3, the outertubular member26 may be connected to theinner tubular member24 using any of a broad variety of suitable techniques, some examples of which may include adhesive bonding, friction fitting, mechanically fitting, crimping, chemically bonding, thermally bonding, welding (e.g., resistance, Rf, or laser welding), soldering, brazing, or the use of a connector member or material, or the like, or combinations thereof. As discussed above, in at least some embodiments, the outertubular member26 can be disposed about the inner tubular member24 (i.e., a portion of theinner tubular member24 is disposed within thelumen40 of the outer member) such that a space orgap42 is defined between at least a portion of theouter surface25 of theinner tubular member24 and theinner surface27 of the outertubular member26. In some embodiments, there may be no space between outertubular member26 andinner member24, or space orgap42 may be substantially filled with another member, such asreinforcement member31.
InFIG. 3, the outertubular member26 is attached to theinner tubular member24 at one or moreproximal attachment point53, one or moredistal attachment point59, and one or moreintermediate attachment point61. In some embodiments, such attachment points can be achieved, for example, using an adhesive material, for example, a cyanoacrylate, or other suitable type of adhesive. In at least some embodiments, only a relatively small portion of theouter member26 is connected to theinner tubular member24 at the attachment points. For example, the length of each individual bond joint, especially at the intermediate bond joints, may only be about 5 cm or less, or 3 cm or less, or 1 cm or less, or 0.5 cm or less. In some embodiments, where appropriate, the bonds extend under or within about five or fewer of theapertures44, or three or even two or fewer of theapertures44, along the length of the outer tubular member. Some embodiments may include a plurality ofintermediate attachment point61 spaced apart along the length of theshaft12. In some embodiments, the distance between attachment points along the length of theshaft12 may be in the range of about 5 cm and about 40 cm, or in the range of about 7 cm to about 30 cm, and may vary or be constant along the length of theshaft12. For example, the spacing between attachment points may be closer together near the distal end of the shaft, and may be farther apart near the distal portion of theshaft12.
As indicated above, thedistal portion20 of theshaft12 can include adistal tip28. Thedistal tip28 can be a structure, assembly, construction and/or arrangement adapted and/or configured to provide characteristics such as shapability, flexibility, steerability, atraumatic characteristics, or the like, for example, to the distal portion and/or distal end of theshaft12. A broad variety of distal tip constructions, configurations, and/or structures are generally known for use on medical devices, such as catheters, and may be used. In some embodiments, thedistal tip28 may be disposed at thedistal portion20 of theshaft12, and may extend distally beyond other portions of theshaft12. In some embodiments,distal tip28 may extend proximally from thedistal end22 ofshaft12 to transitionregion78 ofcontinuous wire75. Thus,distal tip28 may extend overdistal portion79 ofcontinuous wire75. The low profile ofdistal portion79 providesdistal tip28 with a higher degree of flexibility and lower profile than portions ofelongate shaft12 proximal oftransition region78 ofcontinuous wire75.
In some embodiments, thedistal tip28 is simply one or more portions of theshaft12, and/or components thereof (e.g. the inner and/or outertubular members24/26) that include materials and/or structures to provide the desired characteristics. For example, in the embodiment shown inFIG. 3, thedistal tip28 can include and/or extend about thedistal portion20 ofshaft12 including theinner tubular member24. In this regard, thedistal tip28 may include thedistal portion20 ofshaft12 including theinner tubular member24, and may additionally include one or more additional layers and/orstructures52 disposed about thedistal portion20 ofshaft12 including theinner tubular member24. In other embodiments, however, thedistal tip28 may include structure and/or material that may be considered to be separate and distinct from other portions of the shaft, but that is connected to the distal portion of theshaft12 to form the distal tip.
InFIG. 3, thelayer52 is disposed about thedistal portion20 ofshaft12 including theinner tubular member24. Thelayers30,32, and34 of theinner tubular member24 may include distal portions, for example45 and49, that include materials having desirable flexibility characteristics, for example, as discussed above. Additionally, thelayer52 may be made of or include any suitable material or structure, and may be disposed by any suitable process, the materials, structures, and processes varying with the particular application and characteristics desired. For example, in some embodiments, the one or more additional layers and/or structures may include a layer of polymer or other such material, or structures such as coils, braids, ribbons, wires, bands, or the like.
In this embodiment, theouter layer52 may include and/or be made of a polymer material disposed about thedistal portion35 of theinner tubular member24. For example, theouter layer52 may include a flexible polymer material having a durometer in the range of about 5 D to about 35 D. Some examples of suitable polymers may include those discussed above with regard to the layers of theinner tubular member24, with one example being a PEBA material, or the like. As can be appreciated, in some embodiments, thecoil layer31, such asdistal portion79 ofcontinuous wire75, extends partially into thedistal tip28, but ends and is spaced proximally from thedistal end22. In other embodiments, however, thecoil31, or other such reinforcing structure, or the like, may extend to thedistal end22. Additionally, it should be understood that one or more additional layers and/or constructions may be used in thedistal tip28.
Theouter layer52 may be sized appropriately so as to maintain a generally constant diameter in the transition between the outertubular member26 and theouter layer52, and may include aportion65 that abuts and/or overlaps thedistal end39 of the outertubular member26 to provide a smooth transition. Additionally, as in the embodiment shown, the outertubular member26 may include a recessed, or reduced diameter portion at thedistal end39 thereof, and theouter layer52 may overlap and/or mate with the recessed portion to provide for a smooth transition. In other embodiments, however, a tapered or step down transition may be provided.
Theouter layer52 can be constructed and/or disposed using any appropriate technique, for example, by extrusion, co-extrusion, interrupted layer co-extrusion (ILC), coating, heat shrink techniques, heat bonding, thermally bonding, casting, molding, fusing one or several segments of an outer layer material end-to-end, adhesive bonding, chemically bonding, crimping, friction fitting, mechanically fitting, or the like, or combinations thereof.
A lubricious, a hydrophilic, a protective, or other type of coating may be applied over portions of or theentire shaft12. Hydrophobic coatings such as fluoropolymers provide a dry lubricity which improves catheter handling and device exchanges. Lubricious coatings can aid in insertion and steerability. Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility. Some other examples of such coatings and materials and methods used to create such coatings can be found in U.S. Pat. Nos. 6,139,510 and 5,772,609, which are incorporated herein by reference.
It should also be understood that in some embodiments, a degree of MRI compatibility can be imparted intoshaft12. For example, to enhance compatibility with Magnetic Resonance Imaging (MRI) machines, it may be desirable to construct portions of the outertubular member26, portions of theinner tubular member24, or other portions of theshaft12, in a manner, or use materials, that would impart a degree of MRI compatibility. For example, the lengths of relatively conductive structures within theshaft12 may be limited to lengths that would not generate undue heat due to resonance waves created in such structures when under the influence of an MRI field generated by an MRI machine. Alternatively or additionally, portions, or theentire shaft12 may be made of a material that does not substantially distort the image and create substantial artifacts (artifacts are gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. Additionally, all or portions of theshaft12, may also be made of, impregnated with, plated or clad with, or otherwise include a material and/or structure that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, Elgiloy, MP35N, nitinol, and the like, and others. Additionally, some structures including or made of such materials, such as marker bands, marker coils, rings, impregnated polymer sections, or the like, may be added to or included in theshaft12. Those skilled in the art will recognize that these materials can vary widely without departing from the spirit of the invention.
Additionally, all or portions of theshaft12, or components or layers thereof, may be made of, impregnated with, plated or clad with, or otherwise include a radiopaque material and/or structure to facilitate radiographic visualization. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image may aid the user ofcatheter10 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with radiopaque filler, and the like.
For example, with reference toFIGS. 1-3, theinner tubular member24 can include one or moreradiopaque marker member55 disposed in thedistal portion35 between the intermediate andouter layers32/30, or at other positions and/or locations. Additionally, the outertubular member26 can include one or more marker members disposed thereon. In the embodiment shown, themarker member55 is a tubular marker band, but it should be understood that other marker structures and arrangements, such as marker coils, rings, impregnated polymer sections, or the like, may be used, and may be disposed at locations along and/or within theshaft12. Furthermore, theelongate shaft12, or portions thereof, may be curved and/or shaped as desired, or be adapted and/or configured to be curved and/or shaped as desired, depending on the particular application.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.