CROSS-REFERENCE TO RELATED APPLICATIONS N/A
STATEMENTS REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT NA
REFERENCE TO A MICROFICHE APPENDIX NA
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to removable surface coverings. In particular, this invention is a structural improvement of floor tiles, sheets, or planks, including floor tiles, sheets, and planks or sections of varying sizes and shapes and surface types including those made from polyvinyl chloride, rubber, linoleum, polymeric resins, reinforced resins, vinyl composite, or other resilient materials, carpet, stones, ceramic, metals, glass, textiles, wood, composites thereof in desired combinations, veneers thereof in desired combinations, and laminates thereof in desired combinations. More specifically, the invention is the enabling of loose-lay application, via the addition onto the conventional floor tiles, sheets or planks, a dual backing layer comprised of a foam layer and a cured adhesive layer. This dual layer, when added onto the back of a conventional floor tile, sheet, or plank, allows the flooring to be installed directly only with a slight application of pressure, without any additional application of glue or underlayment systems. In the meantime, this dual backing layer-enhanced flooring can be removed readily from the subfloor without any glue residue or any damage done to the subfloor or to the flooring substrate. Because of this backing-enhancement, the very same flooring tile, sheet, or plank may be reinstalled again without losing the effectiveness of its original tack. The current invention thereby makes possible a loose-lay flooring that is “stick, peel, stick”, or that is self-adhesive, removeable and relayable.
In the need for efficiency, economy and speed in our accelerated construction industry, the surface-covering business has witnessed the challenge of escalating cost incurred by the labor, material, and time associated with installation and removal procedures. The waste of time, labor, and material is particularly evident in the flooring industry where the needs for durability and replaceability co-exist as constantly conflicting demands. For any floor to be durable and slip-resistant, it needs to be securely installed onto the earth. But the more solidly it is secured onto the earth, the harder and more costly it is to install the flooring and the harder and more costly it is to remove it and replace it with something else.
Prior to a conventional flooring installation, much labor, time and material is wasted in the removal of existing flooring and the recovery of the damaged subfloor to ideal conditions for the re-installation of the new floor. The removal of existing flooring causes residue of glue to be stuck on the subfloor. It also damages the subfloor itself and the old flooring substrate, yielding the old flooring material to be no longer re-useable after removal. When the removal is complete, additional labor, time and material are required to install the new floor securely onto the earth. Unnecessary environmental cost is also incurred in the wasteful discarding of the old flooring material, and in the repeated use of another new set of the cement, adhesive or underlayment system required for the new flooring.
So far, the surface-covering industry, in particular, the flooring industry, has seen innovations developed to increase the efficiency and reduce the cost of the conventional installation process. Self-adhesive tiles, produced with or without release paper, have been developed to eliminate the re-application of glue when installing the flooring material. Interlocking flooring systems have been developed to eliminate the application of glue altogether by making the adjacent tiles interlock through built-in features. Underlayment systems have been developed to eliminate the faulty subfloor conditions altogether and enable the new flooring to be fastened onto the underlayment systems directly instead of the subfloor. However, all of the existing developments, while being improvements, retain certain defects and create new ones in course. It is also notable that none of the existing solutions in the field make significant progress on removal segment of the use cycle.
Existing self-adhesive tiles in the industry make progress by way of a pressure-sensitive glue that bonds the flooring to the earth with only a slight use of pressure, and without any additional glue application on the job site. In removal, however, the self-adhesive tile damages the subfloor easily via glue residue and delaminates and destroys the substrate of the flooring material, yielding it no longer useable. The cost of renovation and upkeep is thereby increased significantly.
The existing solution of Interlocking flooring systems, especially those commonly found in laminates, create the defects of its own. After installation, the interlocked floor becomes a unitary and leveled surface that is locked in place against the seams of each tile or plank. As a result, an interlocked floor installed wall-to-wall cannot tolerate the contraction and expansion of each of the plank or tile. Over time, a severe campering problem inevitably results. In addition, interlocked flooring also suffers from an increased level of noise pollution due to the noticeable space left to echo traffic sounds between the subfloor and the interlocked floor. In removal, the interlocked flooring solutions create extra environmental burdens and incur more material and labor cost since a significant portion of it must be destroyed in order for the entire floor to be removed.
There have been floating floors developed with interconnected panels or sections to form a single unitary floor that can contract and expand as a unit. This typically requires that there be a space between the periphery of the unit and the walls of a room. The interconnected panels may be tongue and groove and glued. The interconnected panel may utilize a self locking joint that does not require the use of glue. However, such types of flooring are not ideal in aesthetics due to the gaps between the floor and the walls of the room. Their floating nature also make them limited and suitable for only temporary usages.
Underlayment systems, pre-glued or not, are also limited in their benefits. While eliminating the need for subfloor preparation by acting as a medium between the new flooring material and the subfloor, underlayment systems are in and of itself a complicated assembly. It is costly to produce, cumbersome and complicated to install. The extra labor in applying fasteners, stables, and or other forms of structural support elements to hold the flooring in place actually end up creating additional cost in the installation process. For most underlayment systems, specialized tools are also needed in the installation.
Aside from the limitations mentioned above, all of the existing solutions in the market create extra environmental burdens in the installation and removal procedures (i.e. the material waste as a by-product, the messy clean-up process, and the inability to recycle the used flooring after it is removed).
There remains, therefore, a need for a flooring solution that is durable and slip-resistant against foot traffic in its adhesion on the subfloor, but that can be installed and removed readily without additional investment in time, labor, cost, tools or energy. There remains also a need for a flooring solution with a 100% clean removeability (will not damage the subfloor, leave any glue residue, nor become delaminated or damaged in its removal) and that retains all of its beneficial features and original adhesion tack in place so that it can be repositioned or reused after repeated installations and removals. It is also likewise advantageous and desirable to provide a method of flooring installation and replacement that is efficient and clean without the burden of glue residue removal and the creation of material waste in course.
Similarly, it is desirous to provide a moisture release enhancement as an additional feature in the flooring to minimize the dirt and grime collection in and under the tile seams and to release the pressure built-up due to moisture in the subfloor.
Additionally, it is desirous to provide a method of floor adhesion that is not “tacky” or “sticky” to the touch, does not leave a glue residue, is slip resistant and suitable for both permanent and temporary tile installations.
At last, it is desirous to provide a solution in flooring that can be installed, removed, and re-installed with a Do-It-Yourself “Stick, Peel, Stick” ease so the flooring can be transferred intact from one place to another by an untrained person, much like a piece of furniture.
2. Description of the Related Art
U.S. Pat. No. 6,623,840 discloses a rubber-surfaced protective flooring tile and method of manufacturing the same which provides a covering over hard floor surfaces. The tile consists of two layers. The top has a bottom surface which has voids which extend from the bottom surface towards the top surface. The bottom layer is of granulated rubber and has a prepolymer material that binds to the voids in the top layer during the manufacture of the tile. The rubber tile provides cushion on hard surfaces to minimize injury in playgrounds, factory floors, fitness rooms, and physical therapy facilities.
U.S. Pat. No. 6,129,967 discloses a system for securing brittle ceramic tiles to the sub-floor without a supporting adhesive substrate. A liner is used to provide structural support and an energy absorbent layer is present which allows for the tile to withstand greater forces of abrasion without breaking. The liner is adhered to the sub-floor and the tiles are placed inside and are anchored to the liner and an impact resistant ceramic layer.
U.S. Pat. No. 6,694,689 discloses a modular flooring system which utilizes a free-lay support baseplate. Replaceable wear surface tiles fit within the baseplate. The baseplate allows for the maintenance of a level floor surface when placed over a preexisting worn floor and for the removal and replacement of flooring within the baseplate superstructure. The composite baseplate structure permits independent temporary displacement of each of the tiles.
U.S. Pat. No. 4,654,244 discloses a loose-lay and adhered to floor structure comprised of two layers of reinforced material suitable for use over stable and unstable sub-floors. The rigidity in the flooring is achieved by two layers of reinforced material sandwiching a cushion layer. Surface layers are placed on the outside of the reinforced layers. This reinforcement is designed to prevent buckling, curling and doming under a rolled load. As an alternative, the reinforcing layer may be pre-modified such that, when used to provide a surface covering the covering will have acceptable buckling characteristics.
U.S. Pat. No. 6,751,917 discloses a floor tile structure without an adhesive coating at the bottom. Each tiles surface layer and bottom layer are attached respectively on the upper and the lower surfaces of the soft double sided adhesive tape with pressure sensitivity. The surface layer is possibly made of rock, metal, or other hard material and the periphery is a smooth cross-section. Tiles are joined by placing the adhesive on the middle protruding convex layer of one tile onto the convex edge of the adjoining one and bonding the two together in the middle, leaving no need for bottom adhesion.
U.S. Pat. No. 6,751,912 discloses a modular interlocking tile and flooring system. Each tile is adapted to be coupled to another interlocking tile. Each tile includes a body having a playing surface and two male and two female interlocking sides. The interlocking mechanism is adapted to allow the modular interlocking tiles to connect together in a staggered fashion.
U.S. Pat. No. 6,802,159 discloses a roll-up tile system. Individual tiles lock together in a manner to form a plurality of non-bendable tile joints. The tile includes a hinge or fold line along a second axis. The hinges allow the multi-tile surface to be rolled up into a hollow tube from any direction along one of the axes. The rolled up floor panel consists of a plurality of tile panels.
U.S. Pat. No. 6,769,217 discloses an interconnecting disengageable flooring system. The system includes two or more flooring panels comprised of a top wear surface and a bottom surface for contact with the support structure. The panels have at least three edges and all edges have recesses formed therein. The system also comprises a connector having a base and a projection extending vertically from the base. The projection extending from the base is shaped to be received in a disengageable vertical connected fashion into the recesses of the panels.
U.S. Pat. No. 6,803,099 discloses a self-adhering surface covering having a wear surface and a pressure-sensitive adhesive layer on the lower surface of the wear surface and a barrier layer disposed on the adhesive layer. The surface covering has substantially no tack at about 10 psi at 140 degrees F. but has tack at about 20 psi at 75 degrees F. An adhesive which is substantially non-stringing may also be employed in the adhesive layer. The barrier layer includes substantially non-adhesive particles which have a crash resistance of at least about 10 psi while disposed on the adhesive layer. The method of making the self-adhering surface covering includes applying an adhesive to a substrate to form an adhesive layer having an adhesive surface, and applying a barrier layer comprising substantially non-adhesive particles to the adhesive surface to form the surface covering. The particles have a crush resistance of at least about 10 psi while disposed on the adhesive layer.
U.S. published patent application No. 20040129365 discloses a preglued underlayment assembly for a floor covering system having a substantially rigid underlayment. The underlayment has an upper and a lower surface and a pressure sensitive adhesive layer disposed on the upper surface and a release layer disposed on the adhesive layer.
BRIEF SUMMARY OF THE INVENTION The present invention is a structural improvement of a removable and relayable surface covering, preferably flooring, including but not limited to floor tiles, sheets, and planks or sections of varying sizes and shapes and surface types including those made from polyvinyl chloride, rubber, linoleum, polymeric resins, reinforced resins, vinyl composite, or other homogeneous or heterogeneous resilient materials, in-laid floors, cushioned floors, carpet, stones, ceramics, metals, glass, textiles, wood, composites thereof in desired combinations, veneers thereof in desired combinations, and laminates thereof in desired combinations. The present invention makes such a structural improvement possible via the addition of an innovative backing layer onto any such flooring types. The backing layer may come in at least two varieties: without moisture-release channels and with moisture-release channels.
The structure of this backing without moisture-release channels to be affixed onto any variety of floor-covering tile, sheet, or planks is comprised of two layers. The top layer, which is adhered onto the conventional floor tile, sheet, or planks via any conventional glue used in flooring is composed of a soft, resilient, or foam material about 0.5 mm to 3.0 mm in thickness. The bottom layer of this backing, or the side that faces the earth in installation, is composed of any type of curable adhesive that has undergone curing or cross-linked process.
The soft, resilient, cushioned or foam material of the present invention can be any conventional foam layer used in surface covering, such as a foam layer used in flooring. In particular, the foam layer can be any suitable material known in the art for producing foam layers such as chemical blown polyvinyl chloride plastisols/organosols, acrylics, polyurethane foams, froth foams such as polyvinyl chloride plastisol, acrylics, melt processed foams such as polyvinyl chloride, polyethylene, ethylene vinyl acetate, metallocene polyolefin's, elastomeric polyolefin copolymers. Additionally, any soft, resilient or cushioned material which are non-foamed may also be employed. The method of foaming via blowing agents and the specification of soft, cushioned or foam material required for the use in flooring is well-known in the art.
Various curable adhesives are known and can be utilized in the present invention. There is no specific limitations to the chemistry or composition of the adhesive, as long as the adhesive is curable and provided sufficient adhesion and slip resistance and can be removed and relayed. A common variety would be rubber-type adhesives, PVC-type adhesives, acrylic adhesives, e-beam curable acrylic adhesives, vinyl acetate-type adhesives, urethane-type adhesives, and combinations thereof. The curable adhesive, after the curing process, may be applied onto the foam layer by a conventional coating apparatus such as a reverse roll coater, a forward roll coater, a doctor blade, an air knife, or other similar apparatus. The thickness of the adhesive may be conventionally determined. In view of adhesion strength and economy, the adhesive layer is typically around 0.1 mm in thickness but can be less or more depending on the adhesive employed.
When this dual backing comprised of the foam layer and the curable adhesive is affixed onto a conventional floor tile, sheet, or plank made of any material composition, the floor is made into a loose-lay flooring system with the ease of “stick-peel-stick” features as mentioned above.
Additional features of this current invention is that the embedded foam layer increases the tile's evenly distributed contact with the sub-floor and thereby increases the leveling adhesion of the tile onto the floor. The foam layer also makes the floor more comfortable and warm to walk on, being more shock-absorbent and acoustically sound.
The curable adhesive, in the meantime, has the additional feature of being non-stringing and non-sticky to the touch before installation and after removal. All of its original tack remains in place after the flooring removal and even more significantly, after the removed flooring is cleaned with water or a damp cloth.
The backing structure with moisture-release channels remains the same as the version without the moisture-release channels except that the soft, resilient, cushion or foam layer is molded with regular intervals of indented and protruded channels. This interval layer overrides a layer of cured adhesive. Strips of protruding and indented foam channels with cured adhesive follow and allow for moisture release. They also reinforce the surface tension of the tile's adhesion onto the subfloor and make the flooring only removeable from the sub-floor surface with a pull parallel to the vertical structural lining on the foam backing layer, but un-removeable when pulled with a horizontal or diagonal pull force.
By this construction each tile, sheet, or plank of any variety of flooring material as listed above is capable of being installed by a loose lay application which requires no glue, release paper, underlayment systems, interlocking mechanisms and with manual and clean removeability that allows the transferals and repositioning of such a floor with all of its original tack and features in place. The vertical lines of the cushion layer on the backing resist horizontal or diagonal pull force of tile removal from floor creating a 100% recyclable, slip resistant loose lay tile.
More specific features and advantages will become apparent with reference to the DETAILED DESCRIPTION OF THE INVENTION, appended claims, and the accompanying drawing figures.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGSFIG. 1 is a perspective view of a polyvinyl chloride floor tile without moisture-release channels according to the present invention.
FIG. 2 is a cross-sectional view of a polyvinyl chloride floor tile without moisture-release channels according to the present invention.
FIG. 3 is a perspective view of a polyvinyl chloride floor tile with moisture-release channels according to the present invention.
FIG. 4 is a cross-sectional view of a polyvinyl chloride floor tile with moisture-release channels according to the present invention.
FIG. 5 is a flowchart of the production process for the invention onto a vinyl tile.
DETAILED DESCRIPTION OF THE INVENTION As previously stated, conventional flooring is traditionally installed on sub-floors by either pre-glue or glue applications, interlocking mechanisms, or underlayment systems. This invention is an improved method upon removeable and relayable flooring as well as other advantages that will be more fully discussed below.
Floor section member10 shown inFIGS. 1 and 2 represents one section of a floor system that may take the form of a vinyl tile or other flooring material types including but not limited to from polyvinyl chloride, rubber, linoleum, polymeric resins, reinforced resins, vinyl composite, or other resilient materials, carpet, stones, ceramic, metals, glass, textiles, wood, composites thereof in desired combinations, veneers thereof in desired combinations, and laminates thereof in desired combinations The embodiment ofFIGS. 1 and 2 describe a section without moisture-releasing channels.Floor section member10 is a self-adhesive, loose-lay installed floor surface covering which may have multiple layers: an upper wear surface11 which is seen. An internaladhesive layer12 secures the surface layer to acushion material layer13. Another internaladhesive layer14 is provided by the backing coating of cured adhesive14. The surface layer11 inFIG. 1 and2 may be made of polyvinyl chloride (PVC) or other suitable surface material. The present invention is applicable to other surface layers of a variety of materials, including polymeric resins, rubber, linoleum, reinforced resin, in-aid floors, all resilient flooring, carpet, stone, ceramic, wood, wood parquet, composites, veneers, and laminates or combinations thereof. The surface layer can be of varying width, thickness, density and edge shape design, color, pattern, chemistry, or composition dependent on the specific material of which the surface layer is made.
The surface layer11 is adhered to the thin cushioned backing ofcushion material layer13 by anadhesive layer12. Surface layer11 is defined by its upper surface11a, the uppermost surface of tile, and itslower surface11b, the bottommost surface of layer11. Internaladhesive layer12 adheres surface11bto surface13awhich is the uppermost surface ofcushion layer13.Cushion material layer13 is defined by itsupper surface13aand lower surface13b. Surface13badheres to a backing coating of cured adhesive likematerial14.Layer14 is defined by itsupper surface14aand lower14b.Layer14 is the bottommost layer of samplefloor section member10 with a lower surface14b.
The surface layer11 is any type of flooring material which may include but is not limited to polyvinyl chloride, rubber, linoleum, polymeric resins, reinforced resins, vinyl composite, or other resilient materials, carpet, stones, ceramic, metals, glass, textiles, wood, composites thereof in desired combinations, veneers thereof in desired combinations, and laminates thereof in desired combinations thereof. Thecushion material layer13 may be comprised of a variety of soft material layer including but not limited to foamable material in particular, the foam layer can be any suitable material known in the art for producing foam layers such as chemical blown polyvinyl chloride plastisols/organosols, acrylics, rubber foams, polyurethane foams, froth foams such as polyvinyl chloride plastisol, acrylics, melt processed foams such as polyvinyl chloride, polyethylene, ethylene vinyl acetate, metallocene polyolefins, elastomeric polyolefin copolymers. Additionally, any soft, resilient or cushioned material which are foamed or non-foamed may also be employed. The thickness of the cushion material layer is about 0.5 mm to 3.0 mm. The soft cushionedlayer13 increases the tile's evenly distributed contact with the sub-floor, and thereby increases the leveling adhesion of the tile onto the floor. It also enhances the acoustic absorption of the floor while making the floor more comfortable to walk on and more shock-absorbent.
Thebottom layer14 is a coating of cured-adhesive that adheres onto the sub-surface with very slight pressure and allows removal and repositioning with its original tack in place without glue residue or delaminating the substrate. The cured-adhesive that compriseslayer14 may be made of any adhesive that is curable, including rubber-type adhesives, PVC-type adhesives, acrylic adhesives, e-beam curable acrylic adhesives, vinyl acetate-type adhesives, urethane-type adhesives, and combinations thereof. The bottom layer must provide sufficient adhesive properties to maintain the floor section member in place during use. It should also be releasable so the floor section member can be removed and relayed repeatedly.
A common adhesive is made of modified acrylate, with viscosity of 3000-5000 cps/25 degrees Celsius, with density of 1.0-1.1 g/cm 3, with curing speed greater than 10 M/min/Lamp (80 Wcm-1) with 80% of active component. The coating method for this adhesive can be either a reverse roll coater, a forward roll coater, a doctor blade, an air knife, or other similar coating apparatus.
The criteria for the lower adhesive layer applied on the foam layer and exposed to the subfloor would be any curable adhesive which: (1) has undergone curing or cross-linked processing; (2) has initial tack that's sufficient to bond or hold the particles to the adhesive surface and maintain the back layer in contact with the subfloor, (3) be non-stringing and relatively resistant to penetration or compression of particles, (4) about 1 to 2 mil but can be less than 1 mil or greater than 2 mils depending on the adhesive used; (5) retains strong adhesion on subfloor when flooring is pulled vertically upwards.
The foam layer may have about 0.5 mm to 3.0 mm thickness but could vary depending on the foam material used. The curable adhesive thickness can be conventionally determined, typically between 0.01 mm to 0.3 mm, but preferably lower than a thickness of 0.1 mm.
Another embodiment of the invention shown inFIGS. 3 and 4 is the floor section member20 which represents a tile with the present invention with moisture-releasing channels. Floor section member20 has multiple layers: Asurface layer21 is the uppermost layer that is seen and is the contact and wear surface. An internaladhesive layer22 is adhered to thelower surface21a. Acushion material layer23 is positioned below thewear surface layer22. The lowermost layer includes the raised and lower alternation molding channels in regular intervals.Layer24 may be a curable adhesive layer that functions as the glue that holds the floor section member in place and allows it to be removed and relayed. Thelayer24 is preferably pressure-sensitive and may be made of rubber-type adhesives, acrylic adhesives, including e-beam curable acrylic adhesives, vinyl acetate-type adhesives, urethane-type adhesives, and combinations thereof, or any other adhesives commonly used that can be curable.Layer24 is comprised of alternating raised and lowered protrudingchannels members27 andindented channels26.
Surface layer21 inFIGS. 3 and 4 may be made of polyvinyl chloride (PVC), however, the present invention can be applied tinder a surface layer of a variety of materials including but not limited to polyvinyl chloride, rubber, linoleum, polymeric resins, reinforced resins, vinyl composite, or other resilient materials, carpet, stones, ceramic, metals, glass, textiles, wood, composites thereof in desired combinations, veneers thereof in desired combinations, and laminates thereof in desired combinations. The surface layer can be of varying width, thickness, density and edge shape design, color, chemistry, or composition, dependent on the specific material of which the surface layer is made.
Surface layer21 is adhered to thecushion material layer23 by the internaladhesive layer22.Surface layer21 is defined by itsupper surface21awhich is the uppermost contact and wear surface of sample tile20 and its bottom surface21b. Internaladhesive layer22 adheres to surface21band surface23awhich is the uppermost surface ofcushion layer23.Cushion layer23 is comprised of a variety of ethylene vinyl acetate foam, polyethylene foam, rubber foam, polyvinyl foam or any other soft, cushioned, resilient foam material. The thickness of the cushion material layer is 0.5 mm to 3.0 mm. The soft cushionedlayer23 increases the floor section member's evenly distributed contact with the sub-floor, and thereby increases the leveling adhesion of the floor section member onto the floor.
Layer23 is defined by itsupper surface23aand lower surface23b.Molding layer24 may be comprised of acurable adhesive layer25 that is adhered or glued to the bottommost surface23bofcushion layer23.Layer24, the bottommost layer of floor section member20 may comprise a plurality of verticalprotruding channels26 alternated with adjacent verticalindented channels27. As shown inFIG. 3 which is a bottom view of the floor section member20,channels26 and27 extend parallel to each other for the length and width of the floor section member.
Molding layer24 molds to the sub-floor upon which it is laid and reinforces the surface tension of the tile's adhesion on the sub-floor. Such molding resists horizontal and diagonal pull forces and movement on the sub-floor. The floor section member can only be removed from the floor with a pull parallel to the vertical structural lining oil the foam backing-layer23 because of air channels on the grids. The floor section member remains intact and cannot be easily displaced with a horizontal or diagonal pull. The moisture releasingchannel layer24 allows water to evaporate from its point of contact with the sub-floor. Allowing for such evaporation helps to maintain the floor section member's adhesion to the sub-floor and to maintain the aesthetic value of the floor section member. Moisture in the floor section member collects unwanted particles soiling the floor section member and distressing the point of contact oflayer24 with the sub-floor.
FIG. 5 is a flowchart of a typical production process for a floor section member in the form of a vinyl tile. The production process follows generally conventional means of tile manufacturing either via extrusion, calendar or heat pressure lamination. With reference to schematic41, the process may begin with a top layer that may be a polyvinyl film that may be design printed. The polyvinyl chloride tile is then extruded into the tile by heat lamination and the process shown in schematic42. The process referenced in schematic42 begins with a polyvinyl chloride compound mixed with calcium carbonate and processed via a bumberly and extruded into the tile by a crushing machine. The tile surface may then be embossed, cooled, and annealed. Glue may then be applied to the tile back.
The foam layer, the first layer of the current invention is then combined to the tile material described above.Schematic43 shows the process for incorporation of the foam layer.Schematic43 begins with a foamable material compound processed via a bumberly, extruded, and cut to fit the tile material already produced.
As referenced in schematic41, after the foam layer is adhered onto the tile's backing and formed, the back surface of the tile is smoothed, and an optional ultraviolet coating may be added. The tile is then dried with ultraviolet lighting. The cured adhesive is then applied onto the foam layer and followed by drying with ultraviolet lighting. The production process is then complete, and the tile is ready for packing.
It is believed that the primary use of the invention would be with standard flooring. However, it also has application in analogous environment that call for the properties of the preferred embodiments. Flooring is used as a covering on surfaces other than floors.
Although the foregoing specific details describe various embodiments of the invention, persons reasonably skilled in the art will recognize that various changes may be made in the details of the apparatus of this invention without departing from the spirit and scope of the invention as defined in the appended claims. Therefore, it should be understood that, unless otherwise specified, this invention is not to be limited to the specific details shown and described herein.