PRIORITY CLAIM This application is a continuation of application Ser. No. 10/021,284 filed Oct. 29, 2001, which is hereby incorporated by reference.
CROSS REFERENCE TO RELATED PATENT This application is related to U.S. Pat. No. 6,518,876, filed Apr. 25, 2000 and patented Feb. 11, 2003, in the names of Emmanuel Marguet and William David Stewart and commonly assigned to the owner of the present application. The U.S. Pat. No. 6,518,876 is incorporated herein in its entirety by this reference.
BACKGROUND OF THE INVENTION The present invention relates generally to a remote tire monitoring system. More particularly, the present invention relates to a method and apparatus for automatically updating position information for tire monitors in such a system.
Systems have been developed to monitor a characteristic such as tire pressure of a vehicle and to report the characteristic to a receiver at a central monitoring station using radio transmissions. A monitor is located at each tire and periodically takes a measurement of the tire characteristic. The monitor then transmits the results of the measurement in a radio frequency transmission to the central monitoring station which produces an alarm or a display in response to the measurement.
One problem with such systems has been the need to program the location of the transmitters at the central station. To be fully useful, the tire characteristic data is preferably associated with the tire which originated the measurement when presenting a display or alarm. Each monitor includes identification information which can be transmitted with the measurement. The tire monitor is preferably activated to produce this information and the information is then conveyed to the central station and associated with the position of the tire.
In the technique of U.S. Pat. No. 5,600,301, the tire monitors each include a reed switch or other magnetic device. A magnet is passed near the reed switch, causing the monitor to transmit a radio frequency transmission that includes identification data. A service technician repeats this process at each wheel and then loads the identification and position information into the central monitoring station. Another method provides a printed bar code on each tire monitor which contains the identification information and which may be read with a suitable bar code reader.
In U.S. Pat. No. 5,880,363, an activation signal is provided from the central controller to a low frequency transmitter at each wheel well. The transmitter generates a low frequency signal to activate the tire monitor. The tire pressure monitor responds by generating a long wave identification signal and transmitting that signal with tire pressure and identification data directly to the control unit. The long wave identification signal is used to identify the position of the tire by distinguishing this transmission from other transmissions received by the controller.
U.S. Pat. No. 5,883,305 discloses two-way communication of data by radio signals. A tire pressure monitor is activated by a radio frequency signal transmitted by an antenna in the wheel well adjacent the tire. The tire pressure monitor transmits a second radio frequency signal which is detected by the wheel well antenna. The second signal is demodulated to detect that tire pressure data.
These previous techniques have been limited in effectiveness. The magnetic programming technique may be subject to interference and crosstalk, for example in a factory where many such tire monitors are being assembled with tires and vehicles. The bar code label system requires a label at each tire which can be lost or become dirty or illegible. The apparatus for transmitting a long wave activation signal and generating a long wave identification signal therefrom is too expensive for some applications. The two-way data communication techniques requires demodulation of the received radio signals at the wheel well and coaxial cabling back to the central controller, both of which add to the cost of the system.
A further limitation of some of these prior techniques is the manual operation requiring activation by a service technician. A system is desired which automatically conveys wheel position data to the receiver. Such a system would be particularly useful after any change in tire position, such as tire rotation or replacement of a tire.
U.S. patent application Ser. No. 09/557,682, commonly assigned with the present application, discloses a system and method in which tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier. Four small, inexpensive RF detectors are located near each wheel. Each RF detector is connected to the central control unit by a power line and a ground line. When a tire monitor transmits data by emitting an RF transmission, the RF detector that is closest to the transmitter will detect the burst of RF energy. The RF detector responds to the RF energy by modulating the power line to the control unit with the envelope of the transmitted data. The control unit detects this modulation on one of its power lines. Also, the RF receiver of the control unit receives and demodulates the data transmitted by the tire monitor. The control unit associates the received data with the position indication provided by the modulation on the power line. When the positions of the wheels on the vehicle are changed, the control unit can determine the new position using the modulated power line in association with the tire monitor identifier in the transmitted data.
While this system has been very successful in application, a system featuring reduced cost and weight is desired. The cables that must be run from the control unit to all four RF detectors add substantially to the cost and weight of an installation. Accordingly, there is a need for a system and method which provide the operational advantages of the earlier system in a system offering reduced complexity, parts count, weight and cost.
SUMMARY By way of introduction only, a remote tire monitor method and apparatus provide a central control unit in the cockpit or trunk of a vehicle. The control unit includes a radio frequency (RF) receiver and a controller. Tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier. Two small radio frequency (RF) detectors are positioned in proximity to two wheels on the vehicle. The RF detectors give an indication of the location of a transmitting tire monitor to the controller.
The present embodiments of a tire monitor system and method rely on only two RF detectors mounted on the vehicle, one in close proximity to one of the front wheels and the other in close proximity to one of the rear wheels. An RF detector can distinguish between its local transmitter and the other transmitter on the same axle by the amount of signal received. For example, if an RF detector is positioned in close proximity to the left rear wheel, then it can ideally expect to receive 100 percent reception from the transmitter on the left rear wheel and ideally around fifty percent reception from the right rear wheel's transmitter. The amount of false triggering from the front wheel transmitters is substantially zero. Every time the controller decodes transmitted RF data, the controller looks to see if and which RF detector has detected the transmission. The controller can then determine over a short period of time which sensor identifier belongs to which corner of the vehicle.
A method in accordance with one embodiment provides for detecting transmissions from two or more tire monitors at a detector. Then, based on a signal parameter associated with the transmission, the method provides for identifying a source tire monitor position. In one embodiment, the method further includes determining the amount of signal received from the two or more tire monitors and determining the signal parameter based thereon. In one example, a signal strength may be used as the signal parameter or to determine the signal parameter. In another, the number of transmissions received at a detector from two or more tire monitors may be used as the signal parameter or to determine the signal parameter. In another example, signal to noise ratio may be used as the signal parameter or to determine the signal parameter. In still another example, instead or in addition to the number of transmissions received, the rate of transmission reception may be used as the signal parameter or to determine the signal parameter.
In other embodiments, the signal parameter may be determined for a first tire monitor and for a second tire monitor. The respective signal parameters may then be compared to determine the source tire monitor position.
In another embodiment, transmissions are received at a central control unit of the vehicle and at the same time are detected either by a front RF detector positioned near one of the front wheels or a rear RF detector positioned near one of the rear wheels. The number of transmissions received from each tire monitor are counted and counts are maintained. After receipt of a sufficient number of transmissions, the counts are compared to determine the position of each tire monitor in the system.
An RF detector will detect almost all the transmissions from an adjacent tire monitor (e.g., in the same wheel well) and some of the transmissions from a tire monitor at the same end (front or rear) of the vehicle, and substantially none of the transmissions from tire monitors at the other end of the car. Therefore, based on the number of received transmissions after a time and using the tire monitor identification embedded in the transmissions, the tire monitor positions can be deduced from the counts of the received transmissions.
The foregoing discussion of the preferred embodiments has been provided only by way of introduction. Nothing in this section should be taken as a limitation on the following claims, which define the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGFIG. 1 is a block diagram of one embodiment of a remote tire monitor system shown in conjunction with portions of a vehicle;
FIG. 2 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system ofFIG. 1;
FIG. 3 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system ofFIG. 1;
FIG. 4 is a block diagram of a vehicle with a remote tire monitor system; and
FIGS. 5 and 6 and are a flow diagram illustrating one embodiment of a remote tire monitor system.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS Referring now to the drawing, it is a block diagram of a remotetire monitor system100 shown in conjunction with portions of avehicle102. Thevehicle102 includes in this example fourtires104. Other numbers of tires may be included, such as a fifth tire as a spare or additional tires if the vehicle is a truck, trailer or other multi-wheeled vehicle.
Associated with each of thetires104 is a transmitter ortire monitor106. Each of the tire monitors106 includes a battery powered, radio frequency (RF) transmitter. Any suitable tire monitor may be used. U.S. patent application Ser. No. 09/245,938, entitled “Method And Apparatus For A Remote Tire Pressure Monitor System,” filed Feb. 5, 1999 in the name of McClelland et al., and commonly assigned with the present application is incorporated herein by reference and illustrates one suitable tire monitor for use in the remote tirepressure monitor system100. Each tire monitor106 includes a sensor such as a pressure sensor for measuring a tire characteristic. The tire monitor106 converts the measured tire characteristic to tire data. The tire data is encoded for transmission from thetire monitor106.
The tire monitor further includes a transmitter configured to transmit RF signals including the tire data. In some embodiments, the transmissions are encoded or randomized to minimize clashes at a receiver. For example, U.S. patent application Ser. No. 09/245,577, entitled “Method For Communicating Data In A Remote Tire Pressure Monitoring System,” filed Feb. 5, 1999 in the name of Bailie, et al., and commonly assigned with the present application is incorporated herein by reference. This application shows a technique in which data words are transmitted separated by a time delay. The time delay for each respective data word is defined according to a repeating pattern common to the tires so that data words are transmitted during a plurality of aperiodic time windows. Transmission parameters such as modulation techniques, transmission frequency and transmission power are chosen according to local regulations and to assure reliable reception of the RF signals.
The tire monitor106 includes amotion switch139. Themotion switch139 closes upon detection of movement of thevehicle100. Themotion switch139 provides a signal to theprocessor124 indicating closure of theswitch139 and motion of the vehicle. In response to closure of the switch, thetire monitor system100 begins operating, for example, by transmitting tire data. In the illustrated embodiment, during normal operation, the tire monitor106 transmits supervisory tire pressure information once every minute. Any suitable motion switch may be used for theswitch139.
The remotetire monitor system100 includes acontrol unit110 and a plurality of radio frequency (RF)detectors112. In alternative embodiment, the remotetire monitor system100 additionally includes a user display for providing user information such as tire pressure information and low tire pressure alarms. In the illustrated embodiment, eachRF detector112 is mounted on thevehicle102 proximate an associated tire monitor106 to detect the RF signals from the associated tire monitor106 and produce a transmission indication in response to detected RF signals. Each of theRF detectors112 is electrically coupled by aconductor114 to thecontrol unit110. Structure and operation of theRF detectors112 will be described in greater detail below.
Thecontrol unit110 includes anRF receiver120, anRF decoder122, and acontroller124. TheRF receiver120 is configured to receive RF signals conveying tire data from at least one transmitting tire monitor106 of the plurality of tire monitors106 associated with the wheels ortires104 of thevehicle102. Any suitable RF receiver circuit may be used. The design and implementation of theRF receiver120 will depend on the type of modulation used for the RF signals, transmission frequency for the RF signals, and physical limitations such as permitted size, weight and power dissipation.
TheRF decoder122 is configured to receive a transmission indication from at least one receivingRF detector112 of a plurality ofRF detectors112 associated with wheels ortires104 of thevehicle102. Thus, atire monitor106 will transmit RF signals which are detected by theRF detector112 associated with the transmittingtire monitor106. The receivingRF detector112 signals its detection of the RF signals by providing the transmission indication on its associatedconductor114.
TheRF decoder122 is further configured to identify a position of a transmitting tire monitor on the vehicle in response to the transmission indication received from an RF detector. Accordingly, theRF decoder122 includes a plurality ofinput circuits123 coupled to theconductors114 which are in turn coupled to theRF detectors112. A transmission indication impressed on aconductor114 is detected by an associatedinput circuit123. In the illustrated embodiment, there is a one-to-one relationship betweeninput circuits123 andRF detectors112. In this manner, theRF detector112 which originated the transmission indication may be identified by the RF decoder determining whichinput circuit123 detects the transmission indication. In alternative embodiments, theRF decoder122 may include fewer than fourinput circuits123 which are multiplexed in some manner among the plurality ofRF detectors112. For example, asingle input circuit123 may be time shared among the plurality ofRF detectors112 to reduce the cost and complexity of theRF decoder122.
TheRF decoder122 is electrically coupled with theRF circuit120. Upon receipt of RF signals at theRF circuit120, the RF signals are demodulated to extract the tire data contained within the RF signals. In some applications, additional data decoding may be required after demodulation. The tire data in one exemplary embodiment includes a tire monitor identifier, or unique identification code which uniquely identifies the tire monitor106 which transmitted the RF signals. In addition, in this exemplary embodiment, the tire data also includes tire pressure data related to a sensed tire pressure of thetire104 at which the transmittingtire monitor106 is located. Alternative tire data may be included or substituted for the tire pressure data, such as a number of tire revolutions, tire temperature, and so forth.
After extracting the tire data from the RF signals, the tire data is conveyed from theRF receiver120 to theRF decoder122. TheRF decoder122 associates the tire data with a position of the transmitting tire monitor106 on thevehicle102. Position information is determined using theinput circuit123 and a transmission indication received over aconductor114 fromRF detector112. The tire data and associated tire position are conveyed from theRF decoder122 to thecontroller124.
Thecontroller124 controls the operation of the remotetire monitor system100. Thecontroller124 is preferably a microcontroller including aprocessor128 and amemory126. Theprocessor128 operates in response to data and instructions stored in thememory126 to control overall operation of thesystem100.
In the illustrated embodiment, theprocessor128 stores position data for a plurality of tire monitors106 of the remotetire monitor system100. Thecontroller124 is electrically coupled to theRF decoder122 to receive tire data and position data from theRF decoder122. In the illustrated embodiment, when tire data and position data are received at themicrocontroller124, theprocessor128 retrieves stored position data from thememory126. In one embodiment, the position data are stored in association with a position on the vehicle, such as left front, left rear, right front or right rear. The received position data is compared with the stored position data. If there is no change, the position data is not updated and further processing may occur using the received tire data. However, theprocessor128 updates the position data for the transmitting tire monitor106 when the position of the transmittingtire monitor106 varies from the stored position data for the transmitting tire monitor. Thus, thecontroller124 includes amemory126 and a processor configured to store in thememory126 position of the plurality of tire monitors106 including the position of the transmitting tire monitor which originated the received position data.
In an alternative embodiment, thememory126 is not used for storage of position data. Rather, the received tire data is associated by thecontrol unit110 with the position information provided by the transmission indication from aRF detector112. The tire data and the position information from theinput circuit123 are used together to produce a display or alarm, if appropriate, by thesystem100. Additionally, in still another embodiment, the tire data omits any identifying information for the transmittingtire monitor106 and again, the tire data and the position information from theinput circuit123 are used together to produce the appropriate display or alarm.
Completing the identification of the elements inFIG. 1, thevehicle102 further includes aCAN driver130, avoltage regulator132, powerline noise suppressor134, and abattery136. Thebattery136 provides operating power for electrical systems of thevehicle102 including the remotetire monitor system100. Thebattery136 is a portion of the electrical power system of the vehicle, which typically also includes an alternator and other components. Such electrical power systems for vehicles are well known. Thepower line suppressor134 reduces noise on the power line from thebattery136. Noise may originate in other electrical components of thevehicle102, such as the ignition system. Thevoltage regulator132 receives the battery voltage or other operating voltage from thepower line suppressor134 and produces a well regulated voltage for components such as thecontrol unit110 and CANdriver130. TheCAN driver130 provides electrical interface with other elements of a Controlled Area Network. Controlled Area Network or CAN is a serial communication protocol for data commonly used in automotive and other applications. TheCAN bus138 accessed by theCAN driver130 is used to interconnect a network of electronic nodes or modules. The CAN bus operates according to an adopted standard. In conjunction with a remote tirepressure monitor system100, theCAN bus138 may be used to convey tire monitor data to other locations in thevehicle102. For example, an alarm or a display (not shown) may be controlled to provide a visual or audible indication to an operator of thevehicle102 that the tire data indicates an out-of-range condition, such as low tire pressure.
InFIG. 1, theRF decoder122 and thecontroller124 are shown as separate elements of thecontrol unit110. In alternative embodiments, they may be combined in a single processor or logic block or circuit. Any other illustrated elements or additional elements included to enhance the functionality of thesystem100 may be integrated or combined with other components of thesystem100.
Further, thesystem100 should not be restricted to use in conjunction with a CAN bus. In alternative embodiments, any other communications medium may be employed for interconnecting thesystem100 with other elements of thevehicle102. For example, communication buses in accordance with the J-1850 or USB standards may be substituted, or thecontrol unit110 may be directly hard wired with other elements of thevehicle102. Still further, external communications may be omitted entirely so that thesystem100 is completely self-contained.
FIG. 1 further shows a detailed view of one embodiment of anRF detector112 for use in the remotetire monitor system100. TheRF detector112 includes anantenna140 to sense radio frequency (RF) signals transmitted from thetire monitor106, anamplifier142, an envelope detector coupled to theantenna140 through theamplifier142 and anoutput circuit146 coupled to the envelope detector144. The envelope detector144 includes a filter149, adiode150, acapacitor152 coupled to ground and anamplifier154. TheRF detector112 is powered from apower line156 and aground line158 provided on theconductor114 which couples theRF detector112 to theinput circuit123 of theRF decoder122. To isolate the operational circuitry of theRF detector112 from noise on thepower line156, theRF detector112 further includes aresistor160 and acapacitor162 to ground.
The envelope detector144 responds to the input signals received at the antenna and amplified by theamplifier142 to produce at theoutput circuit146 data corresponding to the envelope of the RF signals transmitted by the tire monitors106. Thus, thefilter148,diode150 andcapacitor152 together form a circuit coupled with theantenna140 to detect an envelope of electrical signals produced by the antenna in response to the RF signals. The envelope is itself an electrical signal which is amplified in theamplifier154. The output signal from theamplifier154 is applied to the base of atransistor164. In response to this signal at its base, thetransistor164 modulates a wire line signal on theconductor114 in response to the envelope of the RF signals received at theRF detector112. That is, the signals applied at the base of thetransistor164 control turn-on of thetransistor164, conducting current from its collector at the power node of theconductor114 to its emitter at the ground node of theconductor114. As a result, the current in theconductor114 will be modulated in response to the RF signals received at theantenna140 of theRF detector112.
In one embodiment, to detect the modulated current, theinput circuits123 of the RF decoder in the illustrated embodiment may include a current mirror which duplicates the current drawn from the input stage of theinput circuit123, coupled to theconductor114. The output current from the current mirror in theinput circuit123 is provided to a resistor which converts the current signal into a voltage signal which can be read by themicrocontroller124. Suitable current mirror circuits are within the purview of those ordinarily skilled in the art of circuit design.
In this manner, then, the signal provided on theconductor114 forms a transmission indication indicating that the tire monitor106 associated with theRF detector112 has transmitted an RF signal which was detected by theRF detector112. Producing the transmission indication includes detecting the envelope of the RF signals transmitted by thetire monitor106 and producing a wireline signal on theconductor114 in response to the envelope of the RF signals. In particular, in the illustrated embodiment, the wireline signal is produced by modulating a current in aconductor114 coupled with thecontrol unit110. Thecontrol unit110 detects the modulation of the current to locate the transmittingtire monitor106.
Significantly, theRF detector112 does not demodulate the data transmitted by thetire monitor106. Only theRF circuit120 of thecontrol unit110 demodulates the data to extract the contents of theRF signal106. The RF detector only senses the presence of the transmitted RF signals. This reduces the cost of theRF detectors112 and the overall cost of the remotetire monitor system100.
Also, by modulating the current in theconductor114, the RF detector's sensitivity to noise is reduced. Noise will occur in the form of voltage spikes or pulses on theconductor114. However, this noise will have little effect on the operation of theRF detector112 and will have little effect on the current levels in the conductor. As a result, theconductor114 can be, for example, a twisted pair of wire or any other inexpensive two-wire cable. Coaxial cable or other shielded cable is not necessary for implementing thesystem100 usingRF detector112.
In alternative embodiments, theRF circuit120 may be omitted. In such an embodiment, theRF detectors112 are used to detect the variations in the radio frequency signals and modulate a wire line signal on theconductors114. TheRF decoder122 in such an embodiment is configured to demodulate the data in conjunction with themicrocontroller124. Current pulses on theconductor114 are detected by theRF decoder122 and converted to voltage pulses. The voltage pulses can be read by themicrocontroller124. In this manner,microcontroller124 obtains the data from the RF detectors and the RF decoder, without use of anRF circuit120. This has the advantage of eliminating the relatively expensive RF circuit. Further, this permits reduction in the transmit power used by the tire monitors106 to transmit the radio frequency signals conveying the entire data. In some jurisdictions, substantially attenuated transmit power is required for applications such as tire monitors. These low transmit power requirements may be satisfied while still providing reliable performance in the remotetire monitoring system100 by use of theRF detectors112.
In still other embodiments, the functionality described herein may be implemented using a programmed computer or other processor operating in response to data and instructions stored in memory. The processor may operate in conjunction with some or all of the hardware elements described in the embodiments shown herein.
The disclosed tire monitor system may be used to provide an improved auto learn or auto train method for automatically identifying positions of a plurality of tire monitors on a vehicle. As noted above, previously devices such as a transponder or magnetic activation tools were used in the car plant to train the control unit of the remote tire monitor system with identifiers for the wheel sensors or tire monitors. With the vehicle located in a training booth or activation area at the factory, the wheel sensors were activated in sequence and the control unit, expecting activated pressure transmissions in a certain order, learned the identification and position on the vehicle of the wheel sensors. So as to prevent cross talk from other training booths, each activation area is required to be RF shielded. Another method of training the receivers was to use bar code readers to scan the identifiers of the wheel sensors and input this data into the receiver. All of these methods required an additional operation either manually or by automatic readers. These operations add cost and potential for downtime.
In the illustrated embodiment ofFIG. 1, no such tools are required. In the car plant at the end of the production line, a standard one to two minute dynamic test is used to test and calibrate steering, brakes etc. of the vehicle. For the illustrated embodiment, positions and identities of the four tire pressure monitor wheel sensors are automatically learned during this dynamic test.
This is achieved by placing the control unit or receiver in a “learn state” at a dynamic test booth. The wheel sensors transmit either once a minute as in the normal mode, or in a special initial mode corresponding to a brand new, right out of the box state, transmitting more often, for example every 30 seconds, or every 10 seconds.
For example, when the wheel sensors leave the manufacturer's production line, they are placed in off mode. This mode means that each wheel sensor is dormant until it is activated by the closing of its motion switch. Closing the motion switch is only achievable through centrifugal force caused by spinning the tire monitor on a rotating wheel. During normal operation, the wheel sensor, while driving, transmits tire information including supervisory tire pressure once every minute. However, in the illustrated embodiment, for the driving periods during the first 16 activations of the motion switch, the wheel sensor will transmit the supervisory pressure data once every 30 seconds (to conform to United States regulatory requirements) or 10 seconds outside the United States. Other time intervals may be used. After the initial 16 transmissions, or any other suitable number, the transmission interval is changed to its normal mode value, such as one minute. This initial mode is known as factory test mode.
At the time of the dynamic vehicle test, the vehicle is accelerated, causing the wheel sensors to activate with the rotation of the wheels and associated closure of their motion switches. When the wheel sensors begin transmitting tire pressure, say once every thirty seconds, each sensor's identifier is transmitted by the sensor and is received up by the RF circuit of the control unit. In this initial unlearned state, the receiver loads the new identifier into memory, associating the transmission with one of the four RF detectors. Only data received which also is synchronized to activity on one of the RF detector conductors is regarded as valid. Over the one to two minute duration of the dynamic test, each wheel sensor will transmit numerous times and the control unit can verify the tire information, such as each wheel sensor identifier, and associated wheel position. The control unit can then load this data into non-volatile memory for subsequent normal use.
Key advantages of this auto-learn technique is the lack of any additional labor or equipment at the vehicle assembly plant, and the lack of a need for a transponder component or magnetic switch in the wheel sensor. Also there is no possibility of learning the wrong wheels, from other vehicles due to cross talk or of getting the wrong position. Thus, cost is reduced, operation is simplified and reliability is increased. Using the illustrated embodiment of the tire monitor system, no additional activation or learning tools are required to train the control unit with the wheel sensors' position on the vehicle. The only device required to train the control unit is the standard dynamic vehicle test at the end of line test in the vehicle assembly plant. Because the training procedure can be carried out in parallel with the steering and braking tests on the rolling road, and because of the factory test mode feature, no extra time or cost is required to ‘auto learn’ the tire monitor system.
The illustrated embodiment further provides for automatic update of tire monitor position information in the control unit upon replacement of one of the tire monitors of the system. This would occur, for example, if one of the wheels or tires of the vehicle is replaced. Due to the nature of the current embodiment, where the RF detectors are continuously indicating the position of the wheel sensors, a wheel sensor may be replaced and detected by the control unit without the need for user intervention. In this case, where a new wheel sensor is put on a wheel, the control unit initially realizes it is receiving a wrong identifier for the tire monitor, but still getting RF detector pulses from a particular wheel position. In addition, the control unit detects that the previously stored identifier for that position is no longer being received. Over a period of time, say ten minutes driving, the receiver verifies it has stopped receiving a stored identifier and is now receiving a new ID for that position. After verification, the new identifier is stored for that position and operation continues as normal.
The big advantage of this is the lack of need for user intervention and elimination of the need for a service tool at each service location. Tire monitor position and identification is updated automatically.
FIG. 2 is a flow diagram illustrating an auto learn method for the remote tire monitor system ofFIG. 1. The method begins atblock200. Atblock202, one or more tires with new tire monitors are mounted on a vehicle which includes a remote tire monitor system. In this embodiment, the tire monitors are in unused, out of the box condition from the manufacturer. The installation ofblock202 may occur as part of the final assembly of the vehicle at the factory. Alternatively, the installation may occur when new tires are installed on the vehicle or when a remote tire monitor system is added to the vehicle.
Atblock204, the dynamic vehicle test is initiated and, in response, atblock206, the tire monitors begin transmitting radio frequency (RF) signals. The dynamic vehicle test is a test to check proper functionality of the systems of the vehicle, including drive train and brakes. Alternatively, any activity which causes the tire monitors to begin transmitting may be substituted atblock204 to initiate transmission atblock206. For example, the process of driving the vehicle from the end of the assembly line to a storage area or a final checkout area inblock204 may be adequate to begin transmission atblock206. It is contemplated that the tire monitors each include a motion switch which activates the tire monitor in response to motion of the tire monitor on the wheel of the vehicle.
Further, atblock206, the tire monitor begins transmitting at a test mode interval, such as once every 30 or 60 seconds. This aspect may be omitted but adds convenience for initializing the tire monitor system. After initialization, the interval may be reduced to reduce power drain from the battery which powers the tire monitor.
After transmission of the RF signals atblock206, the RF signals are received by a receiver of the remote tire monitor system atblock208. The RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals. For example, the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier. The receiver of the remote tire monitor system demodulates the received RF signals to receive the data. Atblock212, the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
Meanwhile, the same RF signals received and demodulated atblocks208,210 are detected at block214. In the preferred embodiment, the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction withFIG. 1. Other suitable RF detectors may be used. Atblock216, in response to the detected RF signals, a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver atblock208.
Atblock218, identification information associated with the tire monitor is stored. In one embodiment, the data forming the identifier transmitted by the tire monitor and received by the receiver of the remote tire monitor system is stored in memory. Other types and formats of identification information may be stored. For example, the control unit may store an RF detector indicator which indicates which RF detector detected the received RF signals.
In this manner, the described method provides automatic learn capability in a remote tire monitor system. No manual intervention is necessary for the control unit to identify and store the identities and locations of individual tire monitors on the vehicle. This reduces time and cost associated with initiating operation of the remote tire monitor system.
FIG. 3 is a flow diagram illustrating an auto learn method for the remote tire monitor system ofFIG. 1. The method ofFIG. 3 starts atblock300.
Atblock302, RF signals transmitted by a tire monitor associated with a wheel of a vehicle are received by a receiver of the remote tire monitor system. Atblock304, the RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals. For example, the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier. The tire monitor identifier may be a serial number or other unique or nearly-unique data associated with the tire monitor. For example, the tire monitor identifier may be multiple bit data stored in the tire monitor at the time of manufacture of the tire monitor. The receiver of the remote tire monitor system demodulates the received RF signals to receive the data. At block306, the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
Meanwhile, the same RF signals received and demodulated atblocks302,304 are detected at block308. In the preferred embodiment, the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction withFIG. 1. Other suitable RF detectors may be used. Atblock310, in response to the detected RF signals, a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver atblock302.
Atblock312, stored identification information is retrieved from memory at the control unit. In the illustrated embodiment, the identification information is stored at a memory location associated with the transmission indication or RF detector. Thus, the control unit receives a wireline indication from a receiving RF detector that a transmission has been received. Using the wireline indication, the control unit selects the memory location from which previous identification information is retrieved.
Atblock314, the control unit determines if the identifier received from the transmitting tire monitor matches the stored identification information. In this application, a match may mean a bit-by-bit match of received and stored data or some other level or association between the received data and the stored data. If the data match, atblock316, the tire information such as pressure data are updated. For example, in one embodiment, tire pressure data are stored along with the identification information for the tire monitor. If the received tire pressure data varies by a predetermined amount from the stored tire pressure data, the received tire pressure data is stored and an alarm or other user indication is generated.
Atblock318, if there is no match between the received identifier and the stored identification information, the method waits for receipt of an additional transmission associated with this RF detector. Preferably, the tire monitor transmits pressure data and a tire monitor identifier periodically, such as once per minute. Upon receipt of a subsequent transmission, atblock320, the method attempts to verify the previously received tire monitor identifier. This is done by comparing the newly received tire monitor identifier and the previously received tire monitor identifier to determine if there was an error in communication of the previously received tire monitor identifier. In some embodiments, multiple subsequent transmissions may be received for comparison. If there is no verification, atblock322, the mismatched transmission received atblock302 is discarded. This condition indicates that the same tire monitor continues to transmit, and the mismatched transmission was received with an error.
If atblock320 the newly received data verify the previously received data, the identification information stored for this RF detector is updated with the tire monitor identifier from the received transmission. This condition indicates that the tire monitor has been changed and is communicating reliably. In this manner, the illustrated system and method provide automatic update capability after a tire monitor has been changed. This may occur if the tires of the vehicle are rotated or if one or more tires is replaced. There is thus no need to manually intervene for the remote tire monitor system to update the identities and locations of the tire monitors on the vehicle.
FIG. 4 is a block diagram of avehicle400 with a remotetire monitor system402. In the exemplary embodiment ofFIG. 4, thevehicle402 includeswheels404,406,408,410. Each wheel includes a tire mounted on a rim. In other embodiments, thevehicle400 may have other numbers of wheels. For example, in one particular embodiment, a truck has 18 wheels.
The remotetire monitor system402 includes acontrol unit412, afront detector414 and arear detector416. Thefront detector414 is electrically coupled to thecontrol unit412 by acable418. Similarly, therear detector416 is electrically coupled to thecontrol unit412 by acable420.
The remotetire monitor system402 further includes a tire monitor associated with each wheel of thevehicle400. Thus, atire monitor424 is associated withwheel404;tire monitor426 is associated withwheel406;tire monitor428 is associated withwheel408; and tire monitor430 is associated withwheel410. The tire monitors are generally of the type described herein and are configured to detect a tire condition such as tire pressure and to occasionally transmit a transmission including tire data, such as tire pressure data and identification information uniquely identifying the respective tire monitor.
In the illustrated embodiment, thefront detector414 is positioned proximate the leftfront wheel404. For example, thefront detector414 may be mounted in the wheel well adjacent thewheel404. Similarly, therear detector416 is positioned near the leftrear wheel408, such as in the wheel well adjacent thewheel408. With this mounting configuration, thefront detector414 is positioned to detect transmissions from the pair of tire monitors424,426 associated with thefront wheels404,406. Thefront detector414 is proximate the leftfront tire monitor424 and distal the rightfront tire monitor426. Similarly, therear detector416 is positioned to detect transmissions from the leftrear tire monitor428 and the rightrear tire monitor430. Therear detector416 is positioned proximate the leftrear tire monitor428 and distal the rightrear tire monitor430.
The illustrated embodiment is exemplary only. InFIG. 4, thedetectors414,416 are designated for detecting radio frequency transmissions from thefront wheels404,406 and therear wheels408,410, respectively. In alternate embodiments, theRF detectors414,416 may be positioned to detect RF transmissions from theleft side wheels404,408 and theright side wheels406,410 respectively. Similarly, while inFIG. 4 thefront detector414 is positioned in proximity to the leftfront wheel404, away from the rightfront wheel406, this positioning may be reversed so that thefront detector414 is positioned near the rightfront wheel406, such as in the left front wheel well. In the same way, therear detector416, shown inFIG. 4 in proximity to the leftrear wheel408, may be positioned in proximity to the rightrear wheel410. Actual positioning of theRF detectors414,416 is not important. Rather, the relative signal strength or frequency of reception of RF transmissions from tire monitors is what is measured by thedetectors414,416 in conjunction with thecontrol unit412. It is important that each RF detector be positioned on one side or end of the car, away from the centerline, so that the relative signal strength or number of transmissions received by the RF detector from each of its associated pair of tire monitors can be determined.
Thecontrol unit412 includes a receiver to receive radio frequency transmissions from tire monitors of thetire monitor system402, acontroller432 and amemory device434. Thecontroller432 forms a processing means and may be any suitable control device such as a microprocessor, microcontroller, application specific integrated circuit (ASIC) or logic device coupled together to perform the necessary functions described herein.
Thememory device434 forms a memory means for storing data and preferably is formed of semiconductor memory. In the illustrated embodiment, the memory device of thecontrol unit412 includes persistent memory or nonvolatile memory such as an E2PROM, and working memory such as random access memory (RAM). For example, the persistent memory may be used to stored tire identifiers and pressure data over extended periods of time, such as when thevehicle400 is parked. The RAM may be organized as an array which stores counter values associated with tire monitor identifiers and tire monitor positions, as will be described in greater detail below.
FIG. 5 is a flow diagram illustrating operation of one embodiment of a remote tire monitor system. The method illustrated in
FIG. 5 may be used in conjunction with a remote tire monitor system of the type illustrated in
FIG. 4. The method embodiment in
FIG. 5 allows a control unit of such a system to automatically learn the positions of the tire monitors of the system on the vehicle, referred to as a learn method or learn routine. This determination is made after receiving several transmitted frames of tire data from the respective tire monitors of the system. The control unit establishes an array of data in working memory and uses the data of the array to determine the position information for each tire monitor in the system. An example array of data is illustrated below.
| |
| |
| FrontRFD | Rear RFD | TotalRF_FrameCounter |
| |
|
| id1 | 22 | 2 | 22 |
| id2 | 12 | 4 | 23 |
| id3 | 2 | 20 | 20 |
| id4 | 1 | 10 | 20 |
| |
In this example, rows of the array are defined by the identification information for each tire monitor from which data are received. In the example above, the identification information is listed as “id1,” “id2,” etc. However, in a more typical example, the identification information will be a numeric value forming a unique identifier or identification code of a transmitting tire monitor. The identification code is typically transmitted along with the tire pressure or other tire data by the tire monitor in a transmission frame. The exemplary array is shown with four rows, one for each tire monitor of the vehicle in this example. The array may also be formatted with additional rows to record data for additional transmitting tire monitors whose transmissions are received by the controller.
In the example array above, the columns of the array correspond to frame counter values which count the number of frames received at the respective RF detector of the system. Thus, in this example, a frame labeled with tire monitor identifier id1 has been received at the front RF detector 22 times. A frame with the same identifier id1 has been received at the rear RF detector two times, and so on. The count label TotalRF_FrameCounter is a count of the total number of frames received by the receiver of the controller from the identified tire monitor. The total frame counts recorded in this column is always greater than or equal to an RFD frame counter because the receiver has greater sensitivity than the RF detectors and detects transmissions that are missed by the RF detectors.
The method ofFIG. 5 begins atblock500. The method ofFIG. 5 shows the learn routine on the production line, when the tires of the vehicle are first assembled with the tire monitors and added to the remote tire monitor system. Atblock502, it is determined if tire identifiers are already stored in electrically erasable (E2) memory. This memory is nonvolatile or persistent memory which retains data stored therein even when power is removed from the memory. In the illustrated system, after installation on a vehicle, the persistent memory is empty. As soon as tire identifiers are received and verified according to the procedure ofFIG. 5, the tire monitors are stored in the persistent memory. Thus, block502 determines if this is the first time the tire monitor system has been operated after installation on a vehicle. If so, no tire monitor identifiers will be stored in the persistent memory and the “no” path will follow to block504. If tire identifiers are already stored in the persistent memory, the “yes” path is followed to block602.
Atblock504, it is determined if a frame of data has been received. If not, control remains in aloop including block504 until a frame of data have been received. As indicated above, each frame of data transmitted by a tire monitor typically includes data corresponding to the tire identifier which uniquely identifies the transmitting tire monitor and tire data, such as data corresponding to the measured tire pressure of the tire. Other information, such as a header or synchronization data may be transmitted as well.
Once a frame of data has been received atblock504, the tire monitor identifier contained in the frame of data is extracted and compared with other already-received identifiers stored in the list in working memory. If the extracted tire identifier is not present in the list, block506, it is added to the list, block508. Control then proceeds to block510, where the relevant wheel position counters are incremented. As noted above, each identifier has three associated counters. One counter each is associated with each RF detector of the system and stores data corresponding to the number of transmissions detected by that respective RF detector. The third counter counts the total frames received from an identified tire monitor, and is incremented after a frame is received at the receiver of the controller. Thus, the relevant wheel position counters that are incremented atblock510 include the total RF frame counter and the frame counter corresponding to the front RF detector or the rear RF detector.
Atblock512, a test is performed to determine if the specified criteria have been fulfilled. First, it is determined if four tire identifiers in the list have Total RF Frame counter values that are greater than a predetermined number, 20 in this example. That is, before applying the pass criteria, at least four tire identifier counters must have a value of 20 or greater. This test is implemented to ensure that there is a strong signal from a tire monitor and to eliminate any wrong or incorrect tire identifiers being added to the system. If the received signal from a tire monitor is weak, it will likely be received only a few times, rather than 20 or more times. Any other suitable number may be substituted for thepredetermined number 20. Reducing the number will increase the speed at which the tire monitor positioning is learned by the system, but may increase the likelihood of incorrect tire monitor position learning.
According to the second criterion of the illustrated embodiment, the counter for the front RF detector must be larger than the counter for the rear RF detector for two different tire identifiers out of the four. According to the third criterion, it is determined if the the frame counter for the rear RF detector stores a value larger than the front RF detector frame counter for the two remaining tire identifiers in the list. If these criteria are not fulfilled using the tire identifiers in the list, control returns to theblock504 to await receipt of additional frame of data.
If these three criteria are fulfilled, however, atblock514, two tire identifiers are selected from the list for the front axle of the vehicle, according to the second criterion above, and two tire identifiers are selected from the list for the rear axle, according to the third criterion above. Thus, atblock518, the method has chosen four tire identifiers with a total RF frame counter value higher than 20 and has distinguished the selected tire identifiers between the front of the vehicle and the rear of the vehicle by using the front frame counter value and rear frame counter value. For example, using the values shown in the example list above, the tire identifiers corresponding to the tire monitors positioned at the front of a vehicle are tire identifiers id1 and id2. The tire identifiers corresponding to tire monitors positioned at the rear of the vehicle are id3 and id4.
Beginning atblock516, the method identifies the right and left tire monitor for each axle. First it is determined if, among the identified tire identifiers from the list for each of the front and rear axles, one RF detector counter value has a higher frame counter value than the other. If not, the method cannot distinguish the two tire monitors on the axle. Control returns to block504 to await receipt of additional frames of data. If the criterion ofblock516 is met, atblock518 the tire indicator with the higher RF detector frame counter value is selected to be on the same side of the vehicle as the RF detector for that end of the vehicle. Thus, inFIG. 4, among thefront wheels404,406, the tire identifier associated with the larger valued RF detector counter is selected to correspond to tire monitor426. Similarly, the tire identifier having the lower valued RF detector counter value is selected to be associated with thetire monitor424. Alternatively, if, as is suggested inFIG. 5, thoseRF detectors414 and416 are positioned on the left side of thevehicle400, then of the tires of tire identifier selected atblock514, the larger valued RF detector frame counter is associated with the left-hand side tire monitor for both axles. In the illustration ofFIG. 4, if theRF detector414 were instead mounted on the left-hand side of thevehicle400, the larger valued tire identifier would be selected to be associated withtire monitor424 and the larger valued RF detector frame counter would be selected to be associated withtire monitor428. Using the example list of data above, and assuming that both tire monitors are on the left-hand side of the vehicle, the method would select id1 for the left front tire monitor and id2 for the right front tire monitor. Similarly, the method would select id3 for the left rear tire monitor and id4 for the right rear tire monitor.
Atblock520, the four selected tire identifiers are stored in non-volatile memory such as the E2PROM or other persistent memory described above. During subsequent operation of the tire monitor system, as new frames of tire data are received, the tire identification information contained in the frame will be compared with one of the selected in store for tire identifiers. If there is a match, the tire pressure information or other tire data contained in the frame will be used to update the current tire pressure information. Atblock522, the learn routine illustrated inFIG. 5 is exited and the method ofFIG. 5 terminates.
FIG. 6 illustrates a method for the remote tire monitor system to learn the positioning of tire monitors on a vehicle during a normal driving operation. The method begins atblock602, which is accessed after determining at block502 (FIG. 5) that tire monitor identifiers have already been stored in the persistent memory of the system.
Atblock602, the tire monitor values stored in the persistent memory are inserted into the list or array in working memory. The Total RF Frame Counter, the front RF detector counter value (for identifiers which were in the front) and the rear RF detector counter value (for identifierswhich were in the rear) for each of these array entries is preloaded with a predetermined value, such as 5. Storing preloaded values such as this gives a weighting to the tire identifiers already stored in the persistent memory and copied into the working memory array. The benefit of weighting the preloaded tire monitor values in the array in this manner is to reduce the likelihood that a tire monitor on an adjacent vehicle will be detected and selected as one of the four tire monitors of the vehicle. This could occur, for example, if more than one vehicle with comparable systems are parked adjacent each other, such as the end of an assembly line or in another location. Further, weighting the preloaded tire monitor values reduces the time required for the learn process so that reliable information can be given to the driver sooner. This process happens every time the vehicle is started and a new journey is begun.
Atblock604, it is determined if a frame of data has been received. If not, control remains in aloop including block604 until a frame of data is received. Once a frame of data has been received, control proceeds to block606.
Atblock606 it is determined if the tire monitor identifier contained in the received frame is already stored in the persistent memory or E2PROM. If not, at block608 the received tire monitor identifier is added to the working list of tire identifiers in working memory. Control proceeds to block610.
Atblock610, the relevant wheel position counters are incremented. Operation here is similar to the operation atblock510,FIG. 5. The working list of data includes columns for each of the front and rear RF detector counters and a total RF frame counter. Atblock610, the total RF frame counter corresponding to the received tire identifier is incremented. Also atblock610, the counter corresponding to the front or rear RF detector is incremented, depending on which RF detector sensed or detected the transmission from the transmitting tire monitor.
Atblock612, three criteria are tested to determine if sufficient frames of data have been received to reliably distinguish front from rear tire monitor positions. Operation ofblock612 is similar to the operation ofblock512,FIG. 5. Atblock614, two tire identifiers are selected to correspond to the front end of the vehicle and two tire identifiers are selected to correspond to the rear end of the vehicle. Atblock612, if all three criteria are not fulfilled, control returns to block604 to await the receipt of additional frames of data.
Atblock616, it is determined if, for each of the front and rear sets of tire monitors, one tire monitor has a higher RF detector counter value. If not, control returns to block604 to await the receipt of additional data. If so, atblock618, the front and rear selected tire monitor pairs are each sorted among right and left tire monitors, selecting a left front, right front, left rear and right rear tire monitor. Atblock620, the four tire monitor identifiers are stored in non-volatile or persistent memory, along with position information for the tire monitor. The learn routine ofFIG. 6 is then exited at622.
From the foregoing, it can be seen that the present embodiments provide a method and apparatus which automatically conveys wheel position and data to a receiver in a vehicle. Even after changes in tire position due to tire rotation or replacement of a tire, the system automatically re-learns the position of the tires on the vehicle. No external actuation is required. Interference and cross talk are minimized by locating RF detectors in close proximity to the tire monitors. By sharing one RF detector between the front wheels and one RF detector between the rear wheels, the required number of RF detectors is reduced along with the required cabling and the concomitant cost, weight and difficulty of installation of the system. Further, the system provides automatic learn capability for learning and updating the identities of tire monitors on the vehicle without manual intervention.
While a particular embodiment of the present invention has been shown and described, modifications may be made. For example, while the exemplary embodiment counts received transmissions from tire monitors of the system, other embodiments may use alternate methods or detect other signal parameters to identify tire monitor positions in the system. Also, while the two learn methods ofFIGS. 5 and 6 are generally similarly for both the learn method in the production line and the learn method during normal driving, other method steps or test criteria may be substituted to change the two methods, accounting for the differing environments in which each method is practiced. It is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.