BACKGROUND OF THE INVENTIONIn general, the invention relates to novel methods for silencing genes.[0002]
Desirably, these methods specifically inhibit the expression of one or more target genes in a cell or animal (e.g., a mammal such as a human) without inducing toxicity.[0003]
Double stranded RNA (dsRNA) has been shown to induce gene silencing in a number of different organisms. Gene silencing can occur through various mechanisms, one of which is post-transcriptional gene silencing (PTGS). In post-transcriptional gene silencing, transcription of the target locus is not affected, but the RNA half-life is decreased. Transcriptional gene silencing (TGS) is another mechanism by which gene expression can be regulated. In TGS, transcription of a gene is inhibited. Exogenous dsRNA has been shown to act as a potent inducer of PTGS in nematodes, trypanosomes, and insects. Double stranded RNA is also an inducer of TGS. Some current methods for using dsRNA in vertebrate cells to silence genes result in undesirable non-specific cytotoxicity or cell death due to the interferon response that is induced by dsRNA in vertebrate cells. Some methods also result in non-specific or inefficient silencing.[0004]
Thus, improved methods are needed for specifically silencing target genes without inducing toxicity or cell death. Desirably, these methods may be used to inhibit gene expression in in vitro samples, cell culture, and intact animals (e.g., vertebrates such as mammals).[0005]
SUMMARY OF THE INVENTIONIn general, the invention features novel methods for silencing genes that produce few, if any, toxic side-effects. In particular, these methods involve administerating to a cell or animal one or more double stranded RNA (dsRNA) molecules that have substantial sequence identity to a region of a target nucleic acid and that specifically inhibit the expression of the target nucleic acid. One or more short dsRNA molecules, which differ from the dsRNA having substantial identity to the target nucleic acid, are also administered to inhibit possible toxic effects or non-specific gene silencing that may otherwise be induced by the former dsRNA.[0006]
Accordingly, in a first aspect, the invention features a method for inhibiting the expression of a target nucleic acid in a cell (e.g., an invertebrate cell, a vertebrate cell such as a mammalian or human cell, or a pathogen cell). This method involves introducing into the cell a first agent that provides to the cell a first dsRNA and introducing a second agent that provides to the cell a short, second dsRNA. The first dsRNA has substantial sequence identity to a region of the target nucleic acid and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. Exemplary pathogens include bacteria and yeast. In some embodiments, the first dsRNA inhibits the expression of an endogenous nucleic acid in a vertebrate cell or a pathogen cell (e.g., a bacterial or yeast cell) or inhibits the expression of a pathogen nucleic acid in a cell infected with the pathogen.[0007]
In another aspect, the invention provides a method for inhibiting the expression of a target nucleic acid in an animal (e.g., an invertebrate or a vertebrate such as a mammal or human). This method involves introducing into the animal a first agent that provides to the animal a first dsRNA and introducing a second agent that provides to the animal a short, second dsRNA. The first dsRNA has substantial sequence identity to a region of the target nucleic acid and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. In some embodiments, the first dsRNA inhibits the expression of an endogenous nucleic acid in an animal or inhibits the expression of a pathogen nucleic acid in an animal infected with a pathogen (e.g., a bacterial or yeast cell or a virus).[0008]
In yet another aspect, the invention provides a method for treating, stabilizing, or preventing a disease or disorder in an animal (e.g., an invertebrate, a vertebrate such as a mammal or human). This method involves introducing into the animal a first agent that provides to the animal a first dsRNA and a second agent that provides to the animal a short, second dsRNA. The first dsRNA has substantial sequence identity to a region of a target nucleic acid associated with the disease or disorder and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. In some embodiments, the target gene is a gene associated with cancer, such as an oncogene, or a gene encoding a protein associated with a disease, such as a mutant protein, a dominant negative protein, or an overexpressed protein.[0009]
Exemplary cancers that can be treated, stabilized, or prevented using the above methods include prostate cancers, breast cancers, ovarian cancers, pancreatic cancers, gastric cancers, bladder cancers, salivary gland carcinomas, gastrointestinal cancers, lung cancers, colon cancers, melanomas, brain tumors, leukemias, lymphomas, and carcinomas. Benign tumors may also be treated or prevented using the methods of the present invention. Other cancers and cancer related genes that may be targeted are disclosed in, for example, WO 00/63364, WO 00/44914, and WO 99/32619.[0010]
Exemplary endogenous proteins that may be associated with disease include ANA (anti-nuclear antibody) found in SLE (systemic lupus erythematosis), abnormal immunoglobulins including IgG and IgA, Bence Jones protein associated with various multiple myelomas, and abnormal amyloid proteins in various amyloidoses including hereditary amyloidosis and Alzheimer's disease. In Huntington's Disease, a genetic abnormality in the HD (huntingtin) gene results in an expanded tract of repeated glutamine residues. In addition to this mutant gene, HD patients have a copy of[0011]chromosome 4 which has a normal sized CAG repeat. Thus, methods of the invention can be used to silence the abnormal gene but not the normal gene. In various embodiments, a nucleic acid encoding a disease-causing protein is silenced using long sRNA, and short dsRNA is used to block the dsRNA stress response that might otherwise be associated with administration of the long dsRNA.
In still another aspect, the invention features a method for treating, stabilizing, or preventing an infection in an animal (e.g., an invertebrate or a vertebrate such as a mammal or human). This method involves introducing into the animal a first agent that provides to the animal a first dsRNA and introducing a second agent that provides to the animal a short, second dsRNA. The first dsRNA has substantial sequence identity to a region of a target nucleic acid in an infectious pathogen (e.g., a virus, bacteria, or yeast) or cell infected with a pathogen and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. In various embodiments, the pathogen is an intracellular or extracellular pathogen. In some embodiments, the target nucleic acid is a gene of the pathogen that is necessary for replication and/or pathogenesis.[0012]
In a further embodiment of any of the above aspects, the methods of administering a dsRNA or a nucleic acid encoding a dsRNA includes contacting an in-dwelling device with the cell prior to, concurrent with, or following the administration of the in-dwelling device to a patient. In-dwelling devices include, but are not limited to, surgical implants, prosthetic devices, and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, and continuous ambulatory peritoneal dialysis (CAPD) catheters. Desirably, the dsRNA prevents the growth of bacteria on the device. In some embodiments, the first dsRNA inhibits the expression of a bacterial nucleic acid in a bacterial cell, a cell infected with a bacteria, or an animal infected with a bacteria.[0013]
In other desirable embodiments, the bacterial infection is due to one or more of the following bacteria:[0014]Chlamydophila pneumoniae, C. psittaci, C. abortus, Chlamydia trachomatis, Simkania negevensis, Parachlamydia acanthamoebae, Pseudomonas aeruginosa, P. alcaligenes, P. chlororaphis, P. fluorescens, P. luteola, P. mendocina, P. monteilii, P. oryzihabitans, P. pertocinogena, P. pseudalcaligenes, P. putida, P. stutzeri, Burkholderia cepacia, Aeromonas hydrophilia, Escherichia coli, Citrobacter freundii, Salmonella typhimurium, S. typhi, S. paratyphi, S. enteritidis, Shigella dysenteriae, S. flexneri, S. sonnei, Enterobacter cloacae, E. aerogenes, Klebsiella pneumoniae, K. oxytoca, Serratia marcescens, Francisella tularensis, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia alcalifaciens, P. rettgeri, P. stuartii, Acinetobacter calcoaceticus, A. haemolyticus, Yersinia enterocolitica, Y. pestis, Y. pseudotuberculosis, Y. intermedia, Bordetella pertussis, B. parapertussis, B. bronchiseptica, Haemophilus influenzae, H. parainfluenzae, H. haemolyticus, H. parahaemolyticus, H. ducreyi, Pasteurella multocida, P. haemolytica, Branhamella catarrhalis, Helicobacter pylori, Campylobacter fetus, C. jejuni, C. coli, Borrelia burgdorferi, V. cholerae, V. parahaemolyticus, Legionella pneumophila, Listeria monocytogenes, Neisseria gonorrhea, N. meningitidis, Kingella dentrificans, K. kingae, K. oralis, Moraxella catarrhalis, M. atlantae, M. lacunata, M. nonliquefaciens, M. osloensis, M. phenylpyruvica, Gardnerella vaginalis, Bacteroides fragilis, Bacteroides distasonis, Bacteroides 3452A homology group,Bacteroides vulgatus, B. ovalus, B. thetaiotaomicron, B. uniformis, B. eggerthii, B. splanchnicus, Clostridium difficile, Mycobacterium tuberculosis, M. avium, M. intracellulare, M. leprae, C. diphtheriae, C. ulcerans, C. accolens, C. afermentans, C. amycolatum, C. argentorense, C. auris, C. bovis, C. confusum, C. coyleae, C. durum, C. falsenii, C. glucuronolyticum, C. imitans, C. jeikeium, C. kutscheri, C. kroppenstedtii, C. lipophilum, C. macginleyi, C. matruchoti, C. mucifaciens, C. pilosum, C. propinquum, C. renale, C. riegelii, C. sanguinis, C. singulare, C. striatum, C. sundsvallense, C. thomssenii, C. urealyticum, C. xerosis, Streptococcus pneumoniae, S. agalactiae, S. pyogenes, Enterococcus avium, E. casseliflavus, E. cecorum, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, E. raffinosus, E. solitarius, Staphylococcus aureus, S. epidermidis, S. saprophyticus, S. intermedius, S. hyicus, S. haemolyticus, S. hominis, and/orS. saccharolyticus. Preferably, a dsRNA is administered in an amount sufficient to prevent, stabilize, or inhibit the growth of a pathogen or to kill the pathogen. In some embodiments, the first dsRNA inhibits the expression of a yeast nucleic acid in a yeast cell, a cell infected with yeast, or an animal infected with yeast.
In desirable embodiments, the viral infection relevant to the methods of the invention is an infection by one or more of the following viruses: Hepatitis B, Hepatitis C, picornarirus, polio, HIV, coxsacchie, herpes[0015]simplex virus Type 1 and 2, St. Louis encephalitis, Epstein-Barr, myxoviruses, JC, coxsakieviruses B, togaviruses, measles, paramyxoviruses, echoviruses, bunyaviruses, cytomegaloviruses, varicella-zoster, mumps, equine encephalitis, lymphocytic choriomeningitis, rhabodoviruses including rabies, simian virus 40, human polyoma virus, parvoviruses, papilloma viruses, primate adenoviruses, coronaviruses, retroviruses, Dengue, yellow fever, Japanese encephalitis virus and/or BK. In some embodiments, the first dsRNA inhibits the expression of a viral nucleic acid in a virus, a cell infected with a virus, or an animal infected with a virus.
In another aspect, the invention features method for reducing or preventing an immune response to a transplant cell, tissue, or organ. The method involves administering to the transplant cell, tissue, or organ a first agent that provides a first dsRNA and a second agent that provides short, second dsRNA. The first dsRNA attenuates the expression of a target nucleic acid in the transplant cell, tissue, or organ that can elicit an immune response in a recipient. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. In some embodiments, an agent that provides a dsRNA molecule is also administered to the recipient to inhibit the expression of an endogenous nucleic acid that would otherwise participate in an adverse immune response to the transplant.[0016]
In desirable embodiments of any of the above aspects, the first dsRNA inhibits expression of the target nucleic acid by at least 20, 40, 60, 80, 90, 95, or 100%. In some embodiments, multiple first dsRNA molecules that are substantially identical to different nucleic acids are administered to the cell or animal to inhibit the expression of multiple target nucleic acids. For example, multiple oncogenes or multiple pathogen genes may be simultaneously silenced.[0017]
In various embodiments of any of the above aspects, the first agent and/or the second agent is a DNA molecule or DNA vector encoding a dsRNA. In other embodiments, the first agent and/or the second agent is a dsRNA, a single stranded RNA molecule that assumes a double stranded conformation inside the cell or animal (e.g., a hairpin), or a combination of two single stranded RNA molecules that are administered simultaneously or sequentially and that assume a double stranded conformation inside the cell or animal. The first agent may be administered before, during, or after the administration of the second agent. In some embodiments, the first and second agents are the same nucleic acid or the same vector that encodes both dsRNA molecules. In various embodiments, the first agent provides a short dsRNA or a long dsRNA to the cell or animal.[0018]
In some embodiments, a cytokine is also administered to the cell or animal. Exemplary cytokines are disclosed in WO 00/63364, filed Apr. 19, 2000. In some embodiments, the expression of the target nucleic acid is increased to promote the amplification of the dsRNA, resulting in more dsRNA to silence the target gene. For example, a vector containing the target nucleic acid can be administered to the cell or animal before, during, or after the administration of the first and/or second agent.[0019]
The invention also features high throughput methods of using dsRNA-mediated gene silencing to identify a nucleic acid that confers or modulates a detectable phenotype. A detectable phenotype may include, for example, any outward physical manifestation, such as molecules, macromolecules, structures, metabolism, energy utilization, tissues, organs, reflexes, and behaviors, as well as anything that is part of the detectable structure, function, or behavior of a cell, tissue, or living organism. Particularly useful in the methods of the invention are dsRNA mediated changes, wherein the detectable phenotype derives from modulation of the function of a cell, modulation of expression of a target nucleic acid, or modulation of the biological activity of a target polypeptide through dsRNA effects on a target nucleic acid. For example, see the dsRNA mediated methods of determining gene function in EP 1229134 A2 and WO 00/01846, the teachings of which are hereby incorporated by reference. The method involves the use of specially constructed cDNA libraries derived from a cell, for example, a primary cell or a cell line that has an observable phenotype or biological activity, (e.g., an activity mediated by a target polypeptide or altered gene expression), that are transfected into cells to inhibit gene expression. In addition, a short dsRNA or a nucleic acid (e.g., a vector) encoding a short dsRNA is administered to the cell to inhibit potential dsRNA mediated toxicity, including adverse effects due to the possible induction of the interferon response by the dsRNA expression library. The inhibition of gene expression by the present methods alters a detectable phenotype, e.g., the function of a cell, gene expression of a target nucleic acid, or the biological activity of a target polypeptide and allows the nucleic acid responsible for the modulation of the detectable phenotype to be readily identified. While less desirable, the method may also utilize randomized nucleic acid sequences or a given sequence for which the function is not known, as described, e.g., in U.S. Pat. No. 5,639,595, the teaching of which is hereby incorporated by reference.[0020]
Accordingly, in one aspect, the invention features a method for identifying a nucleic acid sequence that modulates the function of a cell. The method involves (a) transforming a population of cells with a dsRNA expression library, where at least two cells of the population of cells are each transformed with a different nucleic acid from the dsRNA expression library, and where at least one encoded dsRNA specifically inhibits the expression of a target nucleic acid in at least one cell (b) transforming the cells with a short dsRNA or a nucleic acid encoding a short dsRNA; (c) optionally selecting for a cell in which the nucleic acid is expressed in the cell; and (d) assaying for a modulation in the function of the cell, wherein a modulation identifies a nucleic acid sequence that modulates the function of a cell. The short dsRNA differs from at least one or all of the dsRNA molecules produced by the expression library that specifically inhibit the expression of a target nucleic acid in a cell or differs from all of the dsRNA molecules produced by the expression library. The short dsRNA inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, dsRNA binds PKR and inhibits the dimerization and activation of PKR.[0021]
In a desirable embodiment of the above aspect of the invention, assaying for a modulation in the function of a cell comprises measuring cell motility, apoptosis, cell growth, cell invasion, vascularization, cell cycle events, cell differentiation, cell dedifferentiation, neuronal cell regeneration, or the ability of a cell to support viral replication.[0022]
In a related aspect, the invention features a method for identifying a nucleic acid sequence that modulates expression of a target nucleic acid in a cell. The method involves (a) transforming a population of cells with a dsRNA expression library, where at least two cells of the population of cells are each transformed with a different nucleic acid from the dsRNA expression library, and where at least one encoded dsRNA specifically inhibits the expression of a target nucleic acid in at least one cell (b) transforming the cells with a short dsRNA or a nucleic acid encoding a short dsRNA; (c) optionally selecting for a cell in which the nucleic acid is expressed in the cell; and (d) assaying for a modulation in the expression of a gene in the cell, where a modulation identifies a nucleic acid sequence that modulates expression of a target nucleic acid in a cell. The short dsRNA differs from at least one or all of the dsRNA molecules produced by the expression library that specifically inhibit the expression of a target nucleic acid in a cell or differs from all of the dsRNA molecules produced by the expression library. The short dsRNA inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short dsRNA binds PKR and inhibits the dimerization and activation of PKR. In a desirable embodiment, the target nucleic acid is assayed using DNA array technology.[0023]
In another related aspect, the invention features a method for identifying a nucleic acid sequence that modulates the biological activity of a target polypeptide in a cell. The method involves (a) transforming a population of cells with a dsRNA expression library, where at least two cells of the population of cells are each transformed with a different nucleic acid from the dsRNA expression library, and where at least one encoded dsRNA specifically inhibits the expression of a target nucleic acid in at least one cell (b) transforming the cells with a short dsRNA or a nucleic acid encoding a short dsRNA; (c) optionally selecting for a cell in which the nucleic acid is expressed in the cell; and (d) assaying for a modulation in the biological activity of a target polypeptide in the cell, wherein a modulation identifies a nucleic acid sequence that modulates the biological activity of a target polypeptide. The short dsRNA differs from at least one or all of the dsRNA molecules produced by the expression library that specifically inhibit the expression of a target nucleic acid in a cell or differs from all of the dsRNA molecules produced by the expression library. The short dsRNA inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short dsRNA binds PKR and inhibits the dimerization and activation of PKR.[0024]
In one embodiment of any of the above aspects of the invention, in transforming step (a), the nucleic acid is stably integrated into a chromosome of the cell. Integration of the nucleic acid may be random or site-specific. Desirably integration is mediated by recombination or retroviral insertion. In addition, desirably a single copy of the nucleic acid is integrated into the chromosome. In another embodiment of any of the above aspects of the invention, in step (a) at least 50, more desirably 100; 500; 1000; 10,000; or 50,000 cells of the population of cells are each transformed with a different nucleic acid from the dsRNA expression library. Desirably, the expression library is derived from the transfected cells or cells of the same cell type as the transfected cells. In other embodiments, the population of cells is transformed with at least 5%, more desirably at least 25%, 50%, 75%, or 90%, and most desirably at least 95% of the dsRNA expression library.[0025]
In other embodiments of any of the above aspects of the invention, the dsRNA expression library contains cDNAs or randomized nucleic acids. The dsRNA expression library may be a nuclear dsRNA expression library, in which case the double stranded nucleic acid is made in the nucleus. Alternatively, the dsRNA expression library may be a cytoplasmic dsRNA expression library, in which case the double stranded nucleic acid is made in the cytoplasm. In addition, the nucleic acid from the dsRNA expression library may be made in vitro or in vivo. In addition, the identified nucleic acid sequence may be located in the cytoplasm of the cell.[0026]
In still another embodiment of any of the above aspects of the invention, the nucleic acid is contained in a vector, for example a dsRNA expression vector. The vector may then be transformed such that it is stably integrated into a chromosome of the cell, or it may function as an episomal (non-integrated) expression vector within the cell. In one embodiment, a vector that is integrated into a chromosome of the cell contains a promoter operably linked to a nucleic acid encoding a hairpin or dsRNA. In another embodiment, the vector does not contain a promoter operably linked to a nucleic acid encoding a dsRNA. In this latter embodiment, the vector integrates into a chromosome of a cell such that an endogenous promoter is operably linked to a nucleic acid from the vector that encodes a dsRNA. Desirably, the dsRNA expression vector comprises at least one RNA polymerase II promoter, for example, a human CMV-immediate early promoter (HCMV-IE) or a simian CMV (SCMV) promoter, at least one RNA polymerase I promoter, or at least one RNA polymerase III promoter. The promoter may also be a T7 promoter, in which case, the cell further comprises T7 polymerase. Alternatively, the promoter may be an SP6 promoter, in which case, the cell further comprises SP6 polymerase. The promoter may also be one convergent T7 promoter and one convergent SP6 promoter. A cell may be made to contain T7 or SP6 polymerase by transforming the cell with a T7 polymerase or an SP6 polymerase expression plasmid, respectively. In some embodiments, a T7 promoter or a RNA polymerase III promoter is operably linked to a nucleic acid that encodes a short dsRNA (e.g., a dsRNA that is less than 200, 150, 100, 75, 50, or 25 nucleotides in length). In other embodiments, the promoter is a mitochondrial promoter that allows cytoplasmic transcription of the nucleic acid in the vector (see, for example, the mitochondrial promoters described in WO 00/63364, filed Apr. 19, 2000). Alternatively, the promoter is an inducible promoter, such as a lac (Cronin et al.[0027]Genes&Development15: 1506-1517, 2001), ara (Khlebnikov et al., J Bacteriol. 2000 December; 182(24):7029-34), ecdysone (Rheogene, www.rheogene.com), RU48 (mefepristone) (corticosteroid antagonist) (Wang X J, Liefer K M, Tsai S, O'Malley B W, Roop D R, Proc Natl Acad Sci USA. 1999 Jul. 20;96(15):8483-8), or tet promoter (Rendal et al., Hum Gene Ther. 2002 January;13(2):335-42. and Larnartina et al., Hum Gene Ther. 2002 January;13(2):199-210) or a promoter disclosed in WO 00/63364, filed Apr. 19, 2000. In desirable embodiments, the inducible promoter is not induced until all the episomal vectors are eliminated from the cell. The vector may also comprise a selectable marker.
Desirably in a vector for use in any of the above aspects of the invention, the sense strand and the antisense strand of the nucleic acid sequence are transcribed from the same nucleic acid sequence using two convergent promoters. In another desirable embodiment, in a vector for use in any of the above aspects of the invention, the nucleic acid sequence comprises an inverted repeat, such that upon transcription, the nucleic acid forms a dsRNA.[0028]
In still other embodiments of any of the above aspects of the invention, the cell and the vector each further comprise a loxP site and site-specific integration of the nucleic acid into a chromosome of the cell occurs through recombination between the loxP sites. In addition, step (c) of any of the above aspects of the invention further involves rescuing the nucleic acid through Cre-mediated double recombination.[0029]
In still further embodiments of any of the above aspects of the invention, the identified nucleic acid sequence is located in the nucleus of the cell. Alternatively, the identified nucleic acid sequence may be located in the cytoplasm of the cell.[0030]
In yet another embodiment of any of the above aspects of the invention, the nucleic acid from the dsRNA expression library is at least 100, 500, 600, or 1000 nucleotides in length. In other embodiments of any of the above aspects of the invention, the nucleic acid from the dsRNA expression library is at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the nucleic acid from the dsRNA expression library is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the nucleic acid from the dsRNA expression library is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the nucleic acid contains less than 50,000; 10,000; 5,000; or 2,000 nucleotides. In some embodiments, the dsRNA encoded by the dsRNA expression library is 20 to 30 nucleotides (e.g., 20, 21, 22, 23. 24. 25. 26, 27, or 28 nucleotides) in length. In addition, the nucleic acid from the dsRNA expression library may contain a sequence that is less than a full length RNA sequence.[0031]
In some embodiments, the dsRNA encoded by the dsRNA expression library is 20 to 30 nucleotides (e.g., 20, 21, 22, 23. 24. 25. 26, 27, or 28 nucleotides) in length. In particular embodiments, the dsRNA encoded by the dsRNA expression library is between 11 and 40 nucleotides in length and, in the absence of short dsRNA of the invention, induces toxicity in vertebrate cells because its sequence has affinity for PKR or another protein in a dsRNA mediated stress response pathway. The short dsRNA of the invention inhibits this toxicity.[0032]
In yet another embodiment of any of the above aspects of the invention, the cell is derived from a parent cell, and is generated by (a) transforming a population of parent cells with a bicistronic plasmid expressing a selectable marker and a reporter gene, and comprising a loxP site; (b) selecting for a cell in which the plasmid is stably integrated; and (c) selecting for a cell in which one copy of the plasmid is stably integrated in a transcriptionally active locus. Desirably the selectable marker is G418 and the reporter gene is green fluorescent protein (GFP).[0033]
In still another embodiment of the above aspects of the invention, generation of the double stranded expression library comprises: (a) isolating RNA from a cell; (b) synthesizing cDNAs from the RNA of step (a); and (c) cloning each cDNA into a vector. Desirably cDNA synthesis is optimized and/or size selected for the generation and/or selection of cDNAs that are at least 100, 500, 600, or 1000 nucleotides in length. In other embodiments, the cDNAs are least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the cDNAs is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the cDNAs is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the cDNAs contain less than 50,000; 10,000; 5,000; or 2,000 nucleotides. In addition, the cDNA may encode an RNA fragment that is less than full length. Desirably the vector comprises two convergent T7 promoters, two convergent SP6 promoters, or one convergent T7 promoter and one convergent SP6 promoter, a selectable marker, and/or a loxP site.[0034]
In addition to the above screening methods that utilize a dsRNA expression library, the invention provides screening methods that utilize (i) one or more dsRNA molecules with substantial sequence identity to a target gene to inhibit expression of the target gene and (ii) one or more short dsRNA molecules to inhibit the interferon response.[0035]
In one such aspect, the invention features a method for identifying a nucleic acid sequence that modulates the function of a cell, involving (a) transforming a population of cells with a first dsRNA and either a short, second dsRNA or a nucleic acid encoding a short, second dsRNA, (b) optionally selecting for a cell in which the nucleic acid is expressed; and (c) assaying for a modulation in the function of the cell. The first dsRNA has substantial sequence identity target nucleic acid in the cell and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. Desirably, the modulation identifies a nucleic acid sequence that modulates the function of a cell. Desirably, the method is carried out under conditions that inhibit or prevent an interferon response dsRNA stress response. In a desirable embodiment, assaying for a modulation in the function of a cell comprises measuring cell motility, apoptosis, cell growth, cell invasion, vascularization, cell cycle events, cell differentiation, cell dedifferentiation, neuronal cell regeneration, or the ability of a cell to support viral replication.[0036]
In a related aspect, the invention features a method for identifying a nucleic acid sequence that modulates expression of a target nucleic acid in a cell, involving (a) transforming a population of cells with a first dsRNA and either a short, second dsRNA or a nucleic acid encoding a short, second dsRNA; (b) optionally selecting for a cell in which the nucleic acid is expressed; and (c) assaying for a modulation in the expression of the gene in the cell, wherein the modulation identifies a nucleic acid sequence that modulates expression of a target nucleic acid in a cell. The first dsRNA has substantial sequence identity to a target nucleic acid in a cell and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. Desirably, the method is carried out under conditions that inhibit or prevent an interferon response or dsRNA stress response. In a desirable embodiment, the target nucleic acid is assayed using DNA array technology.[0037]
In another related aspect, the invention features a method for identifying a nucleic acid sequence that modulates the biological activity of a target polypeptide in a cell, involving (a) transforming a population of cells with a first dsRNA and either a short, second dsRNA or a nucleic acid encoding a short, second dsRNA; (b) optionally selecting for a cell in which the nucleic acid is expressed in the cell; and (c) assaying for a modulation in the biological activity of a target polypeptide in the cell, wherein the modulation identifies a nucleic acid sequence that modulates the biological activity of a target polypeptide in a cell. The first dsRNA has substantial sequence identity to a target nucleic in the cell and specifically inhibits the expression of the target nucleic acid. The short, second dsRNA differs from the first dsRNA and inhibits the interferon response or dsRNA-mediated toxicity. In some embodiments, the short, second dsRNA binds PKR and inhibits the dimerization and activation of PKR. Desirably, the method is carried out under conditions that inhibit or prevent an interferon response or dsRNA stress response.[0038]
In one embodiment of any of the above aspects of the invention, in step (a) at least 2, more desirably 50; 100; 500; 1000; 10,000; or 50,000 cells of the population of cells are each transformed with a different dsRNA. Desirably, at most one long dsRNA is inserted into each cell. In other embodiments, the population of cells is transformed with at least 5%, more desirably at least 25%, 50%, 75%, or 90%, and most desirably, at least 95% of the dsRNA expression library. In still another embodiment, the method further involves identifying the nucleic acid sequence by amplifying and cloning the sequence. Desirably amplification of the sequence involves the use of the polymerase chain reaction (PCR).[0039]
In some embodiments, the first dsRNA is 20 to 30 nucleotides (e.g, 20, 21, 22, 23. 24. 25. 26, 27, or 28 nucleotides) in length. In particular embodiments, the first dsRNA is between 11 and 40 nucleotides in length and, in the absence of short dsRNA of the invention, induces toxicity in vertebrate cells because its sequence has affinity for PKR or another protein in a dsRNA mediated stress response pathway. The short dsRNA of the invention inhibits this toxicity.[0040]
In a yet another aspect, the invention features a cell or a population of cells that expresses a dsRNA that (i) modulates a function of the cell, (ii) modulates the expression of a target nucleic acid (e.g., an endogenous or pathogen gene) in the cell, and/or (iii) modulates the biological activity of a target protein (e.g., an endogenous or pathogen protein) in the cell. The cell or population of cells also has one or more short dsRNA molecules (e.g., 1, 2, 3, 5, 8, 10, 20, 30, or more different short dsRNA species). Desirably, the cell contains only one molecular species of long dsRNA or only one copy of a dsRNA expression vector encoding a long dsRNA (e.g., a stably integrated vector). Desirably, the cell or population of cells is produced using one or more methods of the invention. In other embodiments, the dsRNA is expressed under conditions that inhibit or prevent an interferon response or a dsRNA stress response.[0041]
In still another aspect, the invention provides a pharmaceutical composition which includes at least one short dsRNA (e.g., 1, 2, 3, 5, 8, 10, 20, 30, or more different short dsRNA species) and at least one long dsRNA (e.g., 1, 2, 3, 5, 8, 10, 20, 30, or more different long dsRNA species) in an acceptable vehicle (e.g., a pharmaceutically acceptable carrier). Suitable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The composition can be adapted for the mode of administration and can be in the form of, for example, a pill, tablet, capsule, spray, powder, or liquid. In some embodiments, the pharmaceutical composition contains one or more pharmaceutically acceptable additives suitable for the selected route and mode of administration. These compositions may be administered by, without limitation, any parenteral route including intravenous, intra-arterial, intramuscular, subcutaneous, intradermal, intraperitoneal, intrathecal, as well as topically, orally, and by mucosal routes of delivery such as intranasal, inhalation, rectal, vaginal, buccal, and sublingual. In some embodiments, the pharmaceutical compositions of the invention are prepared for administration to vertebrate (e.g., mammalian) subjects in the form of liquids, including sterile, non-pyrogenic liquids for injection, emulsions, powders, aerosols, tablets, capsules, enteric coated tablets, or suppositories.[0042]
In some embodiments, the pharmaceutical composition includes about 1 ng to about 20 mg of nucleic acids, e.g., RNA, DNA, plasmids, viral vectors, recombinant viruses, or mixtures thereof, which provide the desired amounts of the respective dsRNAs (dsRNA homologous to a target nucleic acid and dsRNA to inhibit toxicity). In some embodiments, the composition contains about 10 ng to about 10 mg of the nucleic acids, about 0.1 to about 500 mg, about 1 to about 350 mg, about 25 to about 250 mg, or about 100 mg of the nucleic acids. If desired, the dosage regimen of the short dsRNA may be adjusted to achieve the optimal inhibition of PKR and/or other dsRNA-mediated stress responses, and the dosage regimen of the other dsRNA (e.g, long dsRNA) may be adjusted to optimize the desired sequence-specific silencing. Accordingly, a composition of the invention may contain different amounts of the two dsRNA molecules. Those of skill in the art of clinical pharmacology can readily arrive at such dosing schedules using routine experimentation.[0043]
In a related aspect, the invention provides a kit which includes at least one short dsRNA (e.g., 1, 2, 3, 5, 8, 10, 20, 30 or more different short dsRNA species) in an acceptable vehicle and at least one long dsRNA (e.g., 1, 2, 3, 5, 8, 10, 20, 30, or more different long dsRNA species) in an acceptable vehicle. The kit allows the short dsRNA to be administered before, simultaneously with, or after the long dsRNA. In some embodiments, the short dsRNA is administered using a different route, delivery system, mode, site, or rate of administration that used for the long dsRNA.[0044]
In other embodiments of any of the above aspects of the invention, the short or long dsRNA is derived from cDNAs or randomized nucleic acids. In addition, the dsRNA may be a cytoplasmic dsRNA, in which case the double stranded nucleic acid is made in the cytoplasm. The dsRNA may be made in vitro or in vivo. In addition, the identified nucleic acid sequence may be located in the cytoplasm of the cell.[0045]
In still another embodiment of any of the various aspects of the invention, the nucleic acid is contained in a vector, for example, a dsRNA expression vector that is capable of forming a dsRNA. Desirably the dsRNA expression vector comprises at least one promoter. The promoter may be a T7 promoter, in which case, the cell further comprises T7 polymerase. Alternatively, the promoter may be an SP6 promoter, in which case, the cell further comprises SP6 polymerase. The promoter may also be one convergent T7 promoter and one convergent SP6 promoter. A cell may be made to contain T7 or SP6 polymerase by transforming the cell with a T7 polymerase or an SP6 polymerase expression plasmid, respectively. The vector may also comprise a selectable marker, for example hygromycin.[0046]
Desirably, in a vector for use in the methods of the invention, the sense strand and the antisense strand of the nucleic acid sequence are transcribed from the same nucleic acid sequence using two convergent promoters. In another desirable embodiment, in a vector for use in any of the above aspects of the invention, the nucleic acid sequence comprises an inverted repeat, such that upon transcription, the nucleic acid forms a dsRNA.[0047]
In yet another embodiment, the dsRNA is at least 100, 500, 600, or 1000 nucleotides in length. In other embodiments, the dsRNA is at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the dsRNA is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the dsRNA is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the dsRNA contains less than 50,000; 10,000; 5,000; or 2,000 nucleotides. In addition, the dsRNA may contain a sequence that is less than a full length RNA sequence. In other desirable embodiments, the double stranded region in the dsRNA (e.g., a long dsRNA) contains between 11 and 30 nucleotides, inclusive; over 30 nucleotides; or over 200 nucleotides. In desirable embodiments, the double stranded region in the short dsRNA contains between 11 and 30 nucleotides, inclusive.[0048]
In still further embodiments of any aspect of the invention, the cell is a plant cell or an animal cell. Desirably the animal cell is an invertebrate, vertebrate, or mammalian cell, for example, a human cell. The cell may be ex vivo or in vivo. The cell may be a gamete or a somatic cell, for example, a cancer cell, a stem cell, a cell of the immune system, a neuronal cell, a muscle cell, or an adipocyte.[0049]
In other embodiments, the dsRNA is derived from a cell or a population of cells and used to transform another cell population of either the same cell type or a different cell type. In desirable embodiments, the transformed cell population contains cells of a cell type that is related to the cell type of the cells from which the dsRNA was derived (e.g., the transformation of cells of one neuronal cell type with the dsRNA derived from cells of another neuronal cell type). In yet other embodiments of any of these aspects, the dsRNA contains one or more contiguous or non-contiguous positions that are randomized (e.g., by chemical or enzymatic synthesis using a mixture of nucleotides that may be added at the randomized position). In still other embodiments, the dsRNA is a randomized nucleic acid in which segments of ribonucleotides and/or deoxyribonucleotides are ligated to form the dsRNA.[0050]
In other embodiments of any of various aspects of the invention, the dsRNA (e.g., a long dsRNA) specifically hybridizes to a target nucleic acid but does not substantially hybridize to non-target molecules, which include other nucleic acids in the cell or biological sample having a sequence that is less than 99, 95, 90, 80, or 70% identical or complementary to that of the target nucleic acid. Desirably, the amount of the these non-target molecules hybridized to, or associated with, the dsRNA, as measured using standard assays, is 2-fold, desirably 5-fold, more desirably 10-fold, and most desirably 50-fold lower than the amount of the target nucleic acid hybridized to, or associated with, the dsRNA. In other embodiments, the amount of a target nucleic acid hybridized to, or associated with, the dsRNA, as measured using standard assays, is 2-fold, desirably 5-fold, more desirably 10-fold, and most desirably 50-fold greater than the amount of a control nucleic acid hybridized to, or associated with, the dsRNA. Desirably, the dsRNA only hybridizes to one target nucleic acid from a cell under denaturing, high stringency hybridization conditions. In certain embodiments, the dsRNA is substantially homologous (e.g., at least 80, 90, 95, 98, or 100% homologous) to only one target nucleic acid from a cell. In other embodiments, the dsRNA is homologous to multiple RNA molecules, such as RNA molecules from the same gene family. In yet other embodiments, the dsRNA is homologous to distinctly different mRNA sequences from genes that are similarly regulated (e.g., developmental, chromatin remodeling, or stress response induced). In other embodiments, the dsRNA is homologous to a large number of RNA molecules, such as a dsRNA designed to induce a stress response or apoptosis. In other embodiments, the percent decrease in the expression of a target nucleic acid is at least 2, 5, 10, 20, or 50 fold greater than the percent decrease in the expression of a non-target or control nucleic acid. Desirably, the dsRNA inhibits the expression of a target nucleic acid but has negligible, if any, effect on the expression of other nucleic acids in the cell. Examples of control nucleic acids include nucleic acids with a random sequence or nucleic acids known to have little, if any, affinity for the dsRNA.[0051]
Desirably, the long and short dsRNA molecules are substantially non-homologous to a naturally-occurring essential mammalian gene or to all the essential mammalian genes (see, for example, WO 00/63364). In some embodiments, the dsRNA does not adversely affect the function of an essential gene. In other embodiments, the dsRNA adversely affects the function of an essential gene in a cancer cell. Desirably, the short dsRNA inhibits the dimerization of PKR or another protein in a dsRNA-mediated stress response pathway by at least 10, 20, 30, 40, 50, 60. 70, 80, 90, or 95% compared to amount of dimerization of the protein in a control cell or animal not administered the short dsRNA, as measured using standard methods such as those described herein.[0052]
In some embodiments, the short dsRNA includes a region of randomized sequence, or the entire short dsRNA contains randomized sequence. In various embodiments, the short dsRNA does not substantially decrease the expression of a nucleic acid in the cell (e.g., decreases expression by less than 60, 40, 30, 20, or 10%). In certain embodiments, the sequence of the short dsRNA is less than 80, 70, 60, 50, 30, 20, or 10% identical to or complementary to that of a nucleic acid in the cell. In particular embodiments, multiple short dsRNA molecules or multiple vectors encoding short dsRNA are administered to the cell and less than 70, 60, 50, 30, 20, or 10% of the short dsRNA molecules have a sequence that is at least 50, 70, 80, or 90% identical to or complementary to that of a nucleic acid in the cell.[0053]
In some embodiments, a target gene (e.g., a pathogen or endogenous target gene) or a region from a target gene (e.g., a region from an intron, exon, untranslated region, promoter, or coding region) is introduced into the cell or animal. For example, this target nucleic acid can be inserted into a vector that desirably integrates in the genome of a cell and then administered to the cell or animal. Desirably, the administration of one or more copies of the target nucleic acid enhances the amplification of the dsRNA that is homologous to the target nucleic acid or enhances the amplification of cleavage products from this dsRNA.[0054]
In other embodiments of any of various aspects of the invention, at most one molecular species of long dsRNA is inserted into each cell. In other embodiments, at most one vector encoding a long dsRNA is stably integrated into the genome of each cell. In various embodiments, the dsRNA is active in the nucleus of the transformed cell and/or is active in the cytoplasm of the transformed cell. In various embodiments, at least 1, 10, 20, 50, 100, 500, or 1000 cells or all of the cells in the population are selected as cells that contain or express a dsRNA (e.g., a long dsRNA). In some embodiments, at least 1, 10, 20, 50, 100, 500, or 1000 cells or all of the cells in the population are assayed for a modulation in the function of the cell, a modulation in the expression of a target nucleic acid (e.g., an endogenous or pathogen gene) in the cell, and/or a modulation in the biological activity of a target protein (e.g., an endogenous or pathogen protein) in the cell.[0055]
In other embodiments, the dsRNA or dsRNA expression vector is complexed with one or more cationic lipids or cationic amphiphiles, such as the compositions disclosed in U.S. Pat. No. 4,897,355 (Eppstein et al., filed Oct. 29, 1987), U.S. Pat. No. 5,264,618 (Felgner et al., filed Apr. 16, 1991) or U.S. Pat. No. 5,459,127 (Felgner et al., filed Sep. 16, 1993). In other embodiments, the dsRNA or dsRNA expression vector is complexed with a liposomes/liposomic composition that includes a cationic lipid and optionally includes another component such as a 10 neutral lipid (see, for example, U.S. Pat. No. 5,279,833 (Rose), U.S. Pat. No. 5,283,185 (Epand), and U.S. Pat. No. 5,932,241). In yet other embodiments, the dsRNA or dsRNA expression vector is complexed with any other composition that is devised by one of ordinary skill in the fields of pharmaceutics and molecular biology.[0056]
Transformation/transfection of the cell may occur through a variety of means including, but not limited to, lipofection, DEAE-dextran-mediated transfection, microinjection, protoplast fusion, calcium phosphate precipitation, viral or retroviral delivery, electroporation, or biolistic transformation. The RNA or RNA expression vector (DNA) may be naked RNA or DNA or local anesthetic complexed RNA or DNA (Pachuk et al., supra). In yet another embodiment, the cell is not a[0057]C. eleganscell. Desirably the vertebrate (e.g., mammalian) cell has been cultured for only a small number of passages (e.g., less than 30 passages of a cell line that has been directly obtained from American Type Culture Collection), or are primary cells. In addition, desirably the vertebrate (e.g., mammalian) cell is transformed with dsRNA that is not complexed with cationic lipids.
The present methods provide numerous advantages for the silencing of genes in cells and animals. For example, in other dsRNA delivery systems some dsRNA molecules induce an interferon response (Jaramillo et al., Cancer Invest. 13:327-338, 1995). During the induction of post-transcriptional gene silencing events, induction of an interferon response is not desired, as this could lead to cell death and possibly to the prevention of gene silencing. Thus, a significant advantage of the present invention is that the dsRNA delivery methods described herein are performed such that an interferon response is inhibited or prevented. These methods allow dsRNA to be used in clinical applications for the[0058]prevention 10 or treatment of disease or infection without the generation of adverse side-effects due to dsRNA-induced toxicity. The use of both short and long dsRNA molecules in some embodiments of the present methods may also have improved efficiency for silencing genes than previous methods that use only short dsRNA molecules.
The methods of the present invention also provide a means for high throughput identification of nucleic acid sequences involved in modulating the function of a cell, the expression of a target nucleic acid in a cell, or the biological activity of a target polypeptide in a cell. By transforming a population of cells with a dsRNA expression library or a dsRNA library, the effects of many PTGS events on cell function, expression of a target nucleic acid in a cell, or the biological activity of a target polypeptide in a cell can be evaluated simultaneously, thereby allowing for rapid identification of the nucleic acid sequence involved in a cell function, target nucleic acid expression, or biological activity of a target polypeptide of interest. Again, the administration of a short dsRNA or a nucleic acid encoding a short dsRNA prevents toxic side-effects that might otherwise complicate the analysis of gene silencing in the cells or even kill the cells.[0059]
The transcription systems described herein also provide advantages to other double stranded expression systems. Following transformation of the dsRNA library, cells contain hundreds to thousands of dsRNA expression cassettes, with concomitant expression of that many expression cassettes. In the dsRNA expression system of the present invention, dsRNA expression cassettes contained within the expression vector integrate into the chromosome of the transfected cell. Desirably, every transformed cell integrates one of the double stranded expression cassettes. Through expansion of the transformed cell, episomal (non-integrated) expression vectors are desirably diluted out of the cell over time. Desirably no transcription occurs until the episomal expression vectors are diluted out of the cell, such that not more than 5 episomal vectors remain in the cell. Most desirably, no transcription occurs until all of the episomal vectors have been diluted out of the cell, and only the integrated expression cassette remains. The time it takes for all episomal vectors to be removed from the cell is proportional to the replication rate of the transformed cell, and is generally on the order of two to several weeks of cell culture and growth. The numbers of copies of a dsRNA molecule in a transformed cell can be determined using, for example, standard PCR techniques, and thereby, the number of episomal vectors in a given cell can be monitored.[0060]
In some embodiments, once a stable integrant containing five or fewer, and desirably no episomal expression vectors, transcription is induced, allowing dsRNA to be expressed in the cells. This method ensures that, if desired, only one species or not more than about five species of dsRNA is expressed per cell, as opposed to other methods that express hundreds to thousands of double stranded species.[0061]
By “isolated nucleic acid, nucleic acid sequence, dsRNA nucleic acid sequence, or dsRNA nucleic acid” is meant a nucleic acid or a portion thereof that is free of the genes that, in the naturally-occurring genome of the organism from which the nucleic acid sequence of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA, with or without 5′ or 3′ flanking sequences that is incorporated into a vector, for example, a dsRNA expression vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences.[0062]
By “double stranded RNA” is meant a nucleic acid containing a region of two or more nucleotides that are in a double stranded conformation. In various embodiments, the dsRNA consists entirely of ribonucleotides or consists of a mixture of ribonucleotides and deoxynucleotides, such as the RNA/DNA hybrids disclosed, for example, by WO 00/63364, filed Apr. 19, 2000 or U.S. S. No. 60/130,377, filed Apr. 21, 1999. The dsRNA may be a single molecule with a region of self-complimentarity such that nucleotides in one segment of the molecule base pair with nucleotides in another segment of the molecule. In various embodiments, a dsRNA that consists of a single molecule consists entirely of ribonucleotides or includes a region of ribonucleotides that is complimentary to a region of deoxyribonucleotides. Alternatively, the dsRNA may include two different strands that have a region of complimentarily to each other. In various embodiments, both strands consist entirely of ribonucleotides, one strand consists entirely of ribonucleotides and one strand consists entirely of deoxyribonucleotides, or one or both strands contain a mixture of ribonucleotides and deoxyribonucleotides. Desirably, the regions of complimentarily are at least 70, 80, 90, 95, 98, or 100% complimentary. Desirably, the region of the dsRNA that is present in a double stranded conformation includes at least 5, 10, 20, 30, 50, 75, 100, 200, 500, 1000, 2000 or 5000 nucleotides or includes all of the nucleotides in a cDNA being represented in the dsRNA. In some embodiments, the dsRNA does not contain any single stranded regions, such as single stranded ends, or the dsRNA is a hairpin. In other embodiments, the dsRNA has one or more single stranded regions or overhangs. Desirable RNA/DNA hybrids include a DNA strand or region that is an antisense strand or region (e.g, has at least 70, 80, 90, 95, 98, or 100% complimentary to a target nucleic acid) and an RNA strand or region that is an sense strand or region (e.g, has at least 70, 80, 90, 95, 98, or 100% identity to a target nucleic acid). In various embodiments, the RNA/DNA hybrid is made in vitro using enzymatic or chemical synthetic methods such as those described herein or those described in WO 00/63364, filed Apr. 19, 2000 or U.S. S. No. 60/130,377, filed Apr. 21, 1999. In other embodiments, a DNA strand synthesized in vitro is complexed with an RNA strand made in vivo or in vitro before, after, or concurrent with the transformation of the DNA strand into the cell. In yet other embodiments, the dsRNA is a single circular nucleic acid containing a sense and an antisense region, or the dsRNA includes a circular nucleic acid and either a second circular nucleic acid or a linear nucleic acid (see, for example, WO 00/63364, filed Apr. 19, 2000 or U.S. S. No. 60/130,377, filed Apr. 21, 1999.) Exemplary circular nucleic acids include lariat structures in which the free 5′ phosphoryl group of a nucleotide becomes linked to the 2′ hydroxyl group of another nucleotide in a loop back fashion.[0063]
In other embodiments, the dsRNA includes one or more modified nucleotides in which the 2′ position in the sugar contains a halogen (such as flourine group) or contains an alkoxy group (such as a methoxy group) which increases the half-life of the dsRNA in vitro or in vivo compared to the corresponding dsRNA in which the corresponding 2′ position contains a hydrogen or an hydroxyl group. In yet other embodiments, the dsRNA includes one or more linkages between adjacent nucleotides other than a naturally-occurring phosphodiester linkage. Examples of such linkages include phosphoramide, phosphorothioate, and phosphorodithioate linkages. In other embodiments, the dsRNA contains one or two capped strands or no capped strands, as disclosed, for example, by WO 00/63364, filed Apr. 19, 2000 or U.S. S. No. 60/130,377, filed Apr. 21, 1999. In other embodiments, the dsRNA contains coding sequence or non-coding sequence, for example, a regulatory sequence (e.g., a transcription factor binding site, a promoter, or a 5′ or 3′ untranslated region (UTR) of an mRNA). Additionally, the dsRNA can be any of the at least partially double-stranded RNA molecules disclosed in WO 00/63364, filed Apr. 19, 2000 (see, for example, pages 8-22). Any of the dsRNA molecules may be expressed in vitro or in vivo using the methods described herein or standard methods, such as those described in WO 00/63364, filed Apr. 19, 2000 (see, for example, pages 16-22).[0064]
By “short dsRNA” is meant a dsRNA that has 45, 40, 35, 30, 27, 25, 23, 21, 18, 15, 13, or fewer contiguous nucleotides in length that are in a double stranded conformation. Desirably, the short dsRNA is at least 11 nucleotides in length. In desirable embodiments, the double stranded region is between 11 to 45, 11 to 40, 11 to 30, 11 to 20, 15 to 20, 15 to 18, 20 to 25, 21 to 23, 25 to 30, or 30 to 40 contiguous nucleotides in length, inclusive. In some embodiments, the short dsRNA is between 30 to 50, 50 to 100, 100 to 200, 200 to 300, 400 to 500, 500 to 700, 700 to 1000, 1000 to 2000, or 2000 to 5000 nucleotides in length, inclusive and has a double stranded region that is between 11 and 40 contiguous nucleotides in length, inclusive. In one embodiment, the short dsRNA is completely double stranded. In some embodiments, the short dsRNA is between 11 and 30 nucleotides in length, and the entire dsRNA is double stranded. In other embodiments, the short dsRNA has one or two single stranded regions. In particular embodiments, the short dsRNA binds PKR or another protein in a dsRNA-mediated stress response pathway. Desirably, the short dsRNA inhibits the dimerization and activation of PKR by at least 20, 40, 60, 80, 90, or 100%. In some desirable embodiments, the short dsRNA inhibits the binding of a long dsRNA to PKR or another component of a dsRNA-mediated stress response pathway by at least 20, 40, 60, 80, 90, or 100%.[0065]
By “long dsRNA” is meant a dsRNA that is at least 40, 50, 100, 200, 500, 1000, 2000, 50000, 10000, or more nucleotides in length. In some embodiments, the long dsRNA has a double stranded region of between 100 to 10000, 100 to 1000, 200 to 1000, or 200 to 500 contiguous nucleotides, inclusive. In some embodiments, the long dsRNA is a single strand which achieves a double-stranded structure by virtue of regions of self-complementarity (e.g., inverted repeats or tandem sense and antisense sequences) that result in the formation of a hairpin structure. In one embodiment, the long dsRNA molecule does not produce a functional protein or is not translated. For example, the long dsRNA may be designed not to interact with cellular factors involved in translation. Exemplary long dsRNA molecules lack a poly-adenylation sequence, a Kozak region necessary for protein translation, an initiating methionine codon, and/or a cap structure. In other embodiments, the dsRNA molecule has a cap structure, one or more introns, and/or a polyadenylation sequence. Other such long dsRNA molecules include RNA/DNA hybrids. Other dsRNA molecules that may be used in the methods of the invention and various means for their preparation and delivery are described in WO 00/63364, filed Apr. 19, 2000, the teaching of which is incorporated herein by reference.[0066]
By “dsRNA expression library” or “dsRNA expression library” is meant a collection of nucleic acid expression vectors containing nucleic acid sequences, for example, cDNA sequences or randomized nucleic acid sequences that are capable of forming a dsRNA (dsRNA) upon expression of the nucleic acid sequence. Desirably the dsRNA expression library contains at least 10,000 unique nucleic acid sequences, more desirably at least 50,000; 100,000; or 500,000 unique nucleic acid sequences, and most desirably, at least 1,000,000 unique nucleic acid sequences. By a “unique nucleic acid sequence” is meant that a nucleic acid sequence of a dsRNA expression library has desirably less than 50%, more desirably less than 25% or 20%, and most desirably less than 10% nucleic acid identity to another nucleic acid sequence of a dsRNA expression library when the full length sequence are compared. Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications.[0067]
The preparation of cDNAs for the generation of dsRNA expression libraries is described herein. A randomized nucleic acid library may also be generated as described in detail below. The dsRNA expression library may contain nucleic acid sequences that are transcribed in the nucleus or that are transcribed in the cytoplasm of the cell. A dsRNA expression library may be generated using techniques described herein.[0068]
By “agent that provides an at least partially doubled stranded RNA” is meant a composition that generates an at least partially double stranded dsRNA in a cell or animal. For example, the agent can be a dsRNA, a single stranded RNA molecule that assumes a double stranded conformation inside the cell or animal (e.g., a hairpin), or a combination of two single stranded RNA molecules that are administered simultaneously or sequentially and that assume a double stranded conformation inside the cell or animal. Other exemplary agents include a DNA molecule, plasmid, viral vector, or recombinant virus encoding an at least partially double stranded RNA. Other agents are disclosed in WO 00/63364, filed Apr. 19, 2000. In some embodiments, the agent includes between 1 ng and 20 mg, 1 ng to 1 ug, 1 ug to 1 mg, or 1 mg to 20 mg of DNA and/or RNA.[0069]
By “target nucleic acid” is meant a nucleic acid sequence whose expression is modulated as a result of post-transcriptional gene silencing. As used herein, the target nucleic acid may be in the cell in which the PTGS, transcriptional gene silencing (TGS), or other gene silencing event occurs or it may be in a neighboring cell, or in a cell contacted with media or other extracellular fluid in which the cell that has undergone the PTGS, TGS, or other gene silencing event is contained. Exemplary target nucleic acids include nucleic acids associated with cancer or abnormal cell growth, such as oncogenes, and nucleic acids associated with an autosomal dominant or recessive disorder (see, for example, WO 00/63364, WO 00/44914, and WO 99/32619).[0070]
Desirably, the dsRNA inhibits the expression of an allele of a nucleic acid that has a mutation associated with a dominant disorder and does not substantially inhibit the other allele of the nucleic acid (e.g, an allele without a mutation associated with the disorder). Other exemplary target nucleic acids include host cellular nucleic acids or pathogen nucleic acids required for the infection or propagation of a pathogen, such as a virus, bacteria, yeast, protozoa, or parasite.[0071]
By “target polypeptide” is meant a polypeptide whose biological activity is modulated as a result of gene silencing. As used herein, the target polypeptide may be in the cell in which the PTGS, TGS, or other gene silencing event occurs or it may be in a neighboring cell, or in a cell contacted with media or other extracellular fluid in which the cell that has undergone the PTGS, TGS, or other gene silencing event is contained.[0072]
By “treating, stabilizing, or preventing a disease or disorder” is meant preventing or delaying an initial or subsequent occurrence of a disease or disorder; increasing the disease-free survival time between the disappearance of a condition and its reoccurrence; stabilizing or reducing an adverse symptom associated with a condition; or inhibiting or stabilizing the progression of a condition. Preferably, at least 20, 40, 60, 80, 90, or 95% of the treated subjects have a complete remission in which all evidence of the disease disappears. In another embodiment, the length of time a patient survives after being diagnosed with a condition and treated using a method of the invention is at least 20, 40, 60, 80, 100, 200, or even 500% greater than (i) the average amount of time an untreated patient survives or (ii) the average amount of time a patient treated with another therapy survives.[0073]
By “treating, stabilizing, or preventing cancer” is meant causing a reduction in the size of a tumor, slowing or preventing an increase in the size of a tumor, increasing the disease-free survival time between the disappearance of a tumor and its reappearance, preventing an initial or subsequent occurrence of a tumor, or reducing or stabilizing an adverse symptom associated with a tumor. In one embodiment, the percent of cancerous cells surviving the treatment is at least 20, 40, 60, 80, or 100% lower than the initial number of cancerous cells, as measured using any standard assay. Preferably, the decrease in the number of cancerous cells induced by administration of a composition of the invention is at least 2, 5, 10, 20, or 50-fold greater than the decrease in the number of non-cancerous cells. In yet another embodiment, the number of cancerous cells present after administration of a composition of the invention is at least 2, 5, 10, 20, or 50-fold lower than the number of cancerous cells present after administration of a vehicle control. Preferably, the methods of the present invention result in a decrease of 20, 40, 60, 80, or 100% in the size of a tumor as determined using standard methods. Preferably, at least 20, 40, 60, 80, 90, or 95% of the treated subjects have a complete remission in which all evidence of the cancer disappears. Preferably, the cancer does not reappear or reappears after at least 5, 10, 15, or 20 years. In another desirable embodiment, the length of time a patient survives after being diagnosed with cancer and treated with a composition of the invention is at least 20, 40, 60, 80, 100, 200, or even 500% greater than (i) the average amount of time an untreated patient survives or (ii) the average amount of time a patient treated with another therapy survives.[0074]
By “bacterial infection” is meant the invasion of a host animal by pathogenic bacteria. For example, the infection may include the excessive growth of bacteria that are normally present in or on the body of a animal or growth of bacteria that are not normally present in or on the animal. More generally, a bacterial infection can be any situation in which the presence of a bacterial population(s) is damaging to a host animal. Thus, a animal is “suffering” from a bacterial infection when an excessive amount of a bacterial population is present in or on the animal's body, or when the presence of a bacterial population(s) is damaging the cells or other tissue of the animal. In one embodiment, the number of a particular genus or species of bacteria is at least 2, 4, 6, or 8 times the number normally found in the animal. The bacterial infection may be due to gram positive and/or gram negative bacteria.[0075]
By “viral infection” is meant the invasion of a host animal by a virus. For example, the infection may include the excessive growth of viruses that are normally present in or on the body of a animal or growth of viruses that are not normally present in or on the animal. More generally, a viral infection can be any situation in which the presence of a viral population(s) is damaging to a host animal. Thus, a animal is “suffering” from a viral infection when an excessive amount of a viral population is present in or on the animal's body, or when the presence of a viral population(s) is damaging the cells or other tissue of the animal.[0076]
As used herein, by “randomized nucleic acids” is meant nucleic acids, for example, those that are at least 100, 500, 600, or 1000 nucleotides in length, constructed from RNA isolated from a particular cell type. In other embodiments, the nucleic acids are at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the nucleic acids is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the nucleic acids is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the nucleic acids contain less than 50,000; 10,000; 5,000; or 2,000 nucleotides. A randomized nucleic acid library may be constructed in a number of ways. For example, it may be constructed from existing cDNA libraries. In one example, the cDNA libraries are shuffled using the “Gene Shuffling” technology of Maxygen Corp. The cDNA sequences are amplified using inefficient PCR either by restricting elongation time or through the use of manganese. A library of recombinants is created, and the library is finally amplified by PCR and cloned into vectors. In a second method, existing cDNA libraries are digested with an endonuclease to generate fragments of 10 to 300 base pairs. Alternatively, the cDNA libraries are digested to generate shorter fragments of, for example, 5 to 50 base pairs, 5 to 40 base pairs, 5 to 20 base pairs, 5 to 10 base pairs, or 10 to 20 base pairs, inclusive. If the fragments are to contain 5′ OH and 3′ PO[0077]4groups, they are dephosphorylated using alkaline phosphatase and phosphorylated using polynucleotide kinase. These dsDNA fragments are then ligated to form larger molecules, and are size selected. In a third example, randomized nucleic acid libraries are created by using random priming of cDNA libraries (using random hexamers and Klenow) to generate short fragments of 20 to 100 nucleotides. Alternatively, shorter fragments are generated that contain, for example, 5 to 50 nucleotides, 5 to 40 nucleotides, 5 to 20 nucleotides, 5 to 10 nucleotides, or 10 to 20 nucleotides, inclusive. These fragments are then ligated randomly to give a desired sized larger fragment.
Alternatively, a randomized nucleic acid library can be generated from random sequences of oligonucleotides. For example, DNA or RNA oligonucleotides may be prepared chemically. Random DNA sequences may also be prepared enzymatically using terminal transferase in the presence of all dNTPs. Random RNA molecules may be prepared using NDPs and NDP phosphorylase. The random sequences may be 10 to 300 bases in length. Alternatively, shorter random sequences are used that contain, for example, 5 to 50 bases, 5 to 40 bases, 5 to 20 bases, 5 to 10 bases, or 10 to 20 bases, inclusive. The sequences are ligated to form the desired larger sequence using RNA ligase. Alternatively these sequences may be ligated chemically. The oligonucleotides are phosphorylated at the 5′ position using polynucleotide kinase or by chemical methods, prior to ligation enzymatically. Chemical ligations can utilize a 5′ PO[0078]4and a 3′ OH group or a 5′ OH and a 3′ PO4group.
Alternatively, a randomized nucleic acid library can be generated by converting the random DNA sequences into dsDNA sequences using DNA polymerase (Klenow), dNTP and random heteromeric primers, and the RNA sequences are converted into dsDNA sequences by reverse transcriptase and Klenow. After converting into ssDNA or dsDNA the sequences are then amplified by PCR. The dsDNA fragments can also be ligated to give larger fragments of a desired size.[0079]
The randomized nucleic acids may be cloned into a vector, for example, an expression vector, as a dsRNA transcription cassette. The sequence of the nucleic acid may not be known at the time the vector is generated. The randomized nucleic acid may contain coding sequence or non-coding sequence, for example, a regulatory sequence (e.g., a transcription factor binding site, a promoter, or a 5′ or 3′ untranslated region (UTR) of an mRNA).[0080]
By “Cre-mediated double recombination” is meant two nucleic acid recombination events involving loxP sites that are mediated by Cre recombinase. A Cre-mediated double recombination event can occur, for example, as illustrated in FIG. 1.[0081]
By “function of a cell” is meant any cell activity that can be measured or assessed. Examples of cell function include, but are not limited to, cell motility, apoptosis, cell growth, cell invasion, vascularization, cell cycle events, cell differentiation, cell dedifferentiation, neuronal cell regeneration, and the ability of a cell to support viral replication. The function of a cell may also be to affect the function, gene expression, or the polypeptide biological activity of another cell, for example, a neighboring cell, a cell that is contacted with the cell, or a cell that is contacted with media or other extracellular fluid that the cell is contained in.[0082]
By “apoptosis” is meant a cell death pathway wherein a dying cell displays a set of well-characterized biochemical hallmarks that include cytolemmal membrane blebbing, cell soma shrinkage, chromatin condensation, nuclear disintegration, and DNA laddering. There are many well-known assays for determining the apoptotic state of a cell, including, and not limited to: reduction of MTT tetrazolium dye, TUNEL staining, Annexin V staining, propidium iodide staining, DNA laddering, PARP cleavage, caspase activation, and assessment of cellular and nuclear morphology. Any of these or other known assays may be used in the methods of the invention to determine whether a cell is undergoing apoptosis.[0083]
By “polypeptide biological activity” is meant the ability of a target polypeptide to modulate cell function. The level of polypeptide biological activity may be directly measured using standard assays known in the art. For example, the relative level of polypeptide biological activity may be assessed by measuring the level of the mRNA that encodes the target polypeptide (e.g., by reverse transcription-polymerase chain reaction (RT-PCR) amplification or Northern blot analysis); the level of target polypeptide (e.g., by ELISA or Western blot analysis); the activity of a reporter gene under the transcriptional regulation of a target polypeptide transcriptional regulatory region (e.g., by reporter gene assay, as described below); the specific interaction of a target polypeptide with another molecule, for example, a polypeptide that is activated by the target polypeptide or that inhibits the target polypeptide activity (e.g., by the two-hybrid assay); or the phosphorylation or glycosylation state of the target polypeptide. A compound, such as a dsRNA, that increases the level of the target polypeptide, mRNA encoding the target polypeptide, or reporter gene activity within a cell, a cell extract, or other experimental sample is a compound that stimulates or increases the biological activity of a target polypeptide. A compound, such as a dsRNA, that decreases the level of the target polypeptide, mRNA encoding the target polypeptide, or reporter gene activity within a cell, a cell extract, or other experimental sample is a compound that decreases the biological activity of a target polypeptide.[0084]
By “assaying” is meant analyzing the effect of a treatment, be it chemical or physical, administered to whole animals, cells, tissues, or molecules derived therefrom. The material being analyzed may be an animal, a cell, a tissue, a lysate or extract derived from a cell, or a molecule derived from a cell. The analysis may be, for example, for the purpose of detecting altered cell function, altered gene expression, altered endogenous RNA stability, altered polypeptide stability, altered polypeptide levels, or altered polypeptide biological activity. The means for analyzing may include, for example, antibody labeling, immunoprecipitation, phosphorylation assays, glycosylation assays, and methods known to those skilled in the art for detecting nucleic acids. In some embodiments, assaying is conducted under selective conditions.[0085]
By “modulates” is meant changing, either by a decrease or an increase. As used herein, desirably a nucleic acid decreases the function of a cell, the expression of a target nucleic acid in a cell, or the biological activity of a target polypeptide in a cell by least 20%, more desirably by at least 30%, 40%, 50%, 60% or 75%, and most desirably by at least 90%. Also as used herein, desirably a nucleic acid increases the function of a cell, the expression of a target nucleic acid in a cell, or the biological activity of a target polypeptide in a cell by at least 1.5-fold to 2-fold, more desirably by at least 3-fold, and most desirably by at least 5-fold.[0086]
By “a decrease” is meant a lowering in the level of (a) protein (e.g., as measured by ELISA or Western blot analysis); (b) reporter gene activity (e.g., as measured by reporter gene assay, for example, β-galactosidase, green fluorescent protein, or luciferase activity); (c) mRNA (e.g., as measured by RT-PCR or Northern blot analysis relative to an internal control, such as a “housekeeping” gene product, for example, β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH)); or (d) cell function, for example, as assayed by the number of apoptotic, mobile, growing, cell cycle arrested, invasive, differentiated, or dedifferentiated cells in a test sample. In all cases, the lowering is desirably by at least 20%, more desirably by at least 30%, 40%, 50%, 60%, 75%, and most desirably by at least 90%. As used herein, a decrease may be the direct or indirect result of PTGS, TGS, or another gene silencing event.[0087]
By “an increase” is meant a rise in the level of (a) protein (e.g., as measured by ELISA or Western blot analysis); (b) reporter gene activity (e.g., as measured by reporter gene assay, for example, β-galactosidase, green fluorescent protein, or luciferase activity); (c) mRNA (e.g., as measured by RT-PCR or Northern blot analysis relative to an internal control, such as a “housekeeping” gene product, for example, β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH)); or (d) cell function, for example, as assayed by the number of apoptotic, mobile, growing, cell cycle arrested, invasive, differentiated, or dedifferentiated cells in a test sample. Desirably, the increase is by at least 1.5-fold to 2-fold, more desirably by at least 3-fold, and most desirably by at least 5-fold. As used herein, an increase may be the indirect result of PTGS, TGS, or another gene silencing event. For example, the dsRNA may inhibit the expression of a protein, such as a suppressor protein, that would otherwise inhibit the expression of another nucleic acid.[0088]
By “alteration in the level of gene expression” is meant a change in transcription, translation, or mRNA or protein stability such that the overall amount of a product of the gene, i.e., mRNA or polypeptide, is increased or decreased.[0089]
By “reporter gene” is meant any gene that encodes a product whose expression is detectable and/or able to be quantitated by immunological, chemical, biochemical, or biological assays. A reporter gene product may, for example, have one of the following attributes, without restriction: fluorescence (e.g., green fluorescent protein), enzymatic activity (e.g., β-galactosidase, luciferase, chloramphenicol acetyltransferase), toxicity (e.g., ricin A), or an ability to be specifically bound by an additional molecule (e.g., an unlabeled antibody, followed by a labelled secondary antibody, or biotin, or a detectably labelled antibody). It is understood that any engineered variants of reporter genes that are readily available to one skilled in the art, are also included, without restriction, in the foregoing definition.[0090]
By “protein” or “polypeptide” or “polypeptide fragment” is meant any chain of more than two amino acids, regardless of post-translational modification (e.g., glycosylation or phosphorylation), constituting all or part of a naturally-occurring polypeptide or peptide, or constituting a non-naturally occurring polypeptide or peptide.[0091]
By “promoter” is meant a minimal sequence sufficient to direct transcription of a gene. Also included in this definition are those transcription control elements (e.g., enhancers) that are sufficient to render promoter-dependent gene expression controllable in a cell type-specific, tissue-specific, or temporal-specific manner, or that are inducible by external signals or agents; such elements, which are well-known to skilled artisans, may be found in a 5′ or 3′ region of a gene or within an intron. Desirably a promoter is operably linked to a nucleic acid sequence, for example, a cDNA or a gene in such a way as to permit expression of the nucleic acid sequence.[0092]
By “operably linked” is meant that a gene and one or more transcriptional regulatory sequences, e.g., a promoter or enhancer, are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.[0093]
By “expression vector” is meant a DNA construct that contains at least one promoter operably linked to a downstream gene or coding region (e.g., a cDNA or genomic DNA fragment that encodes a protein, optionally, operatively linked to sequence lying outside a coding region, an antisense RNA coding region, or RNA sequences lying outside a coding region). Transfection or transformation of the expression vector into a recipient cell allows the cell to express RNA encoded by the expression vector. An expression vector may be a genetically engineered plasmid, virus, or artificial chromosome derived from, for example, a bacteriophage, adenovirus, retrovirus, poxvirus, or herpesvirus.[0094]
By “transformation” or “transfection” is meant any method for introducing foreign molecules into a cell (e.g., a bacterial, yeast, fungal, algal, plant, insect, or animal cell, particularly a vertebrate or mammalian cell). The cell may be in an animal. Lipofection, DEAE-dextran-mediated transfection, microinjection, protoplast fusion, calcium phosphate precipitation, viral or retroviral delivery, electroporation, and biolistic transformation are just a few of the transformation/transfection methods known to those skilled in the art. The RNA or RNA expression vector (DNA) may be naked RNA or DNA or local anesthetic complexed RNA or DNA (Pachuk et al., supra). Other standard transformation/transfection methods and other RNA and/or DNA delivery agents (e.g., a cationic lipid, liposome, or bupivacaine) are described in WO 00/63364, filed Apr. 19, 2000 (see, for example, pages 18-26). Commercially available kits can also be used to deliver RNA or DNA to a cell. For example, the Transmessenger Kit from Qiagen, an RNA kit from Xeragon Inc., and an RNA kit from DNA Engine Inc. (Seattle, Wash.) can be used to introduce single or dsRNA into a cell.[0095]
By “transformed cell” or “transfected cell” is meant a cell (or a descendent of a cell) into which a nucleic acid molecule, for example, a dsRNA or double stranded expression vector has been introduced, by means of recombinant nucleic acid techniques. Such cells may be either stably or transiently transfected.[0096]
By “selective conditions” is meant conditions under which a specific cell or group of cells can be selected for. For example, the parameters of a fluorescence-activated cell sorter (FACS) can be modulated to identify a specific cell or group of cells. Cell panning, a technique known to those skilled in the art, is another method that employs selective conditions.[0097]
As use herein, by “optimized” is meant that a nucleic acid fragment is generated through inefficient first strand synthesis (e.g., reverse transcription (RT) and/or RT/second strand synthesis (RT-SSS) using Klenow or other enzymes and/or RT-PCR or PCR, to be of a particular length. Desirably the length of the nucleic acid fragment is less than a full length cDNA or is 100, 500, 600, or 1000 nucleotides in length. In other embodiments, the nucleic acid fragment is at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the nucleic acid fragment is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the nucleic acid fragment is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the nucleic acid fragment contains less than 50,000; 10,000; 5,000; or 2,000 nucleotides. Optimization of the length of a nucleic acid can be achieved during first strand or second strand synthesis of a desired nucleic acid by lowering Mg concentrations to no less than the nucleotide concentrations; by adding Mn[0098]++ to the reaction to achieve the desired size selection (e.g., by replacing Mg++completely, or by adding Mn++at varying concentrations along with Mg++); by decreasing and/or limiting concentrations of dNTP(s) to effect the desired fragment size; by using various concentrations of ddNTP(s) along with standard or optimal concentrations of dNTP(s), to achieve varying ratios, to obtain the desired fragment size; by using limited and controlled exonuclease digestion of the fragment following RT, RT-SSS, RT-PCR, or PCR; or by a combination of any of these methods.
As used herein, by “sized selected” is meant that a nucleic acid of a particular size is selected for use in the construction of dsRNA expression libraries as described herein. Desirably the size selected nucleic acid is less than a full length cDNA sequence or at least 100, 500, 600, or 1000 nucleotides in length. In other embodiments, the nucleic acid is at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length. In yet other embodiments, the number of nucleotides in the nucleic acid is between 5-100 nucleotides, 15-100 nucleotides, 20-95 nucleotides, 25-90 nucleotides, 35-85 nucleotides, 45-80 nucleotides, 50-75 nucleotides, or 55-70 nucleotides, inclusive. In still other embodiments, the number of nucleotides in the nucleic acid is contained in one of the following ranges: 5-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-35 nucleotides, 35-45 nucleotides, 45-60 nucleotides, 60-70 nucleotides, 70-80 nucleotides, 80-90 nucleotides, or 90-100 nucleotides, inclusive. In other embodiments, the nucleic acid contains less than 50,000; 10,000; 5,000; or 2,000 nucleotides. For example, a nucleic acid may be size selected using size exclusion chromatography (e.g., as size exclusion Sepharose matrices) according to standard procedures (see, for example, Sambrook, Fritsch, and Maniatis,[0099]Molecular Cloning: A Laboratory Manual(3rd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001).
By “under conditions that inhibit or prevent an interferon response or a dsRNA stress response” is meant conditions that prevent or inhibit one or more interferon responses or cellular RNA stress responses involving cell toxicity, cell death, an anti-proliferative response, or a decreased ability of a dsRNA to carry out a PTGS event. These responses include, but are not limited to, interferon induction (both[0100]Type 1 and Type II), induction of one or more interferon stimulated genes, PKR activation, 2′5′-OAS activation, and any downstream cellular and/or organismal sequelae that result from the activation/induction of one or more of these responses. By “organismal sequelac” is meant any effect(s) in a whole animal, organ, or more locally (e.g., at a site of injection) caused by the stress response. Exemplary manifestations include elevated cytokine production, local inflammation, and necrosis. Desirably the conditions that inhibit these responses are such that not more than 95%, 90%, 80%, 75%, 60%, 40%, or 25%, and most desirably not more than 10% of the cells undergo cell toxicity, cell death, or a decreased ability to carry out a PTGS, TGS, or other gene silencing event, compared to a cell not exposed to such interferon response inhibiting conditions, all other conditions being equal (e.g., same cell type, same transformation with the same dsRNA expression library.
Apoptosis, interferon induction, 2′5′ OAS activation/induction, PKR induction/activation, anti-proliferative responses, and cytopathic effects are all indicators for the RNA stress response pathway. Exemplary assays that can be used to measure the induction of an RNA stress response as described herein include a TUNEL assay to detect apoptotic cells, ELISA assays to detect the induction of alpha, beta and gamma interferon, ribosomal RNA fragmentation analysis to detect activation of 2′5′OAS, measurement of phosphorylated eIF2a as an indicator of PKR (protein kinase RNA inducible) activation, proliferation assays to detect changes in cellular proliferation, and microscopic analysis of cells to identify cellular cytopathic effects (see, e.g., Example 11). Desirably, the level of an interferon response or a dsRNA stress response in a cell transformed with a dsRNA or a dsRNA expression vector is less than 20, 10, 5, or 2-fold greater than the corresponding level in a mock-transfected control cell under the same conditions, as measured using one of the assays described herein. In other embodiments, the level of an interferon response or a dsRNA stress response in a cell transformed with a dsRNA or a dsRNA expression vector using the methods of the present invention is less than 500%, 200%, 100%, 50%, 25%, or 10% greater than the corresponding level in a corresponding transformed cell that is not exposed to such interferon response inhibiting conditions, all other conditions being equal. Desirably, the dsRNA does not induce a global inhibition of cellular transcription or translation.[0101]
By “specifically hybridizes” is meant a dsRNA that hybridizes to a target nucleic acid but does not substantially hybridize to other nucleic acids in a sample (e.g., a sample from a cell) that naturally includes the target nucleic acid, when assayed under denaturing conditions. In one embodiment, the amount of a target nucleic acid hybridized to, or associated with, the dsRNA, as measured using standard assays, is 2-fold, desirably 5-fold, more desirably 10-fold, and most desirably 50-fold greater than the amount of a control nucleic acid hybridized to, or associated with, the dsRNA.[0102]
By “substantial sequence identity” is meant sufficient sequence identity between a dsRNA and a target nucleic acid for the dsRNA to inhibit the expression of the nucleic acid. Preferably, the sequence of the dsRNA is at least 40, 50, 60, 70, 80, 90, 95, or 100% identical to the sequence of a region of the target nucleic acid.[0103]
By “specifically inhibits the expression of a target nucleic acid” is meant inhibits the expression of a target nucleic acid more than the expression of other, non-target nucleic acids which include other nucleic acids in the cell or biological sample having a sequence that is less than 99, 95, 90, 80, or 70% identical or complementary to that of the target nucleic acid. Desirably, the inhibition of the expression of these non-target molecules is 2-fold, desirably 5-fold, more desirably 10-fold, and most desirably 50-fold less than the inhibition of the expression the target nucleic acid.[0104]
By “high stringency conditions” is meant hybridization in 2×SSC at 40 C with a DNA probe length of at least 40 nucleotides. For other definitions of high stringency conditions, see F. Ausubel et al.,[0105]Current Protocols in Molecular Biology, pp. 6.3.1-6.3.6, John Wiley & Sons, New York, N.Y., 1994, hereby incorporated by reference.
Conditions and techniques that can be used to prevent an interferon response or dsRNA stress response during the screening methods of the present invention are described herein.[0106]