RELATED APPLICATIONSThe present application claims priority to U.S. Provisional Patent Application No. 60/447,585, titled INTEGRATED CPR & AED DEVICES AND METHODS OF OPERATION, filed Feb. 14, 2003, herein incorporated by reference in its entirety. The present application is related to U.S. patent application Ser. No. ______[attorney docket number 539.6004.0]______, titled COOPERATING DEFIBRILLATORS AND EXTERNAL CHEST COMPRESSION DEVICES, and to U.S. patent application Ser. No.______[attorney docket number 539.6002.0]______, titled DEFIBRILLATORS LEARNING OF OTHER CONCURRENT THERAPY, both filed on date even herewith.[0001]
BACKGROUND OF THE INVENTION1. Field of the Invention[0002]
The present invention is related to the field of resuscitation devices.[0003]
2. Description of the Related Art[0004]
All over the world, people experience cardiac and respiratory events. For example, both in and out of the hospital, there is a significant incidence of cardiac and/or respiratory arrest. For these situations, a variety of therapies may be appropriate. The patient may require artificial respiration, chest compressions, defibrillation, and/or pacing.[0005]
Many patents exist discussing devices related to these events and situations. For example, a chest compression device is taught in patent U.S. Pat. No. 6,234,984 B1. Some of these devices even aggregate such features, such as are described in U.S. Pat. No. 4,349,015, and U.S. Pat. No. 4,424,806.[0006]
Many of the prior art devices, however, merely aggregate such features, without making them work together. Therefore there exists a need for devices that can combine, coordinate and integrate various aspects of these diagnostics and therapies to better diagnose and treat the patient. That is because many of these conditions are related, and a patient might need one of these therapies alternating with another.[0007]
SUMMARY OF THE INVENTIONThe present invention overcomes these problems and limitations of the prior art. Generally, the present invention provides devices, software, and methods as described below. Some embodiments of the invention provide a single device that can monitor a patient and administer diverse therapies as they arise.[0008]
In general, the preferred device of the invention includes functionalities that may perform chest compressions automatically, as well as defibrillate, monitor, pace, and ventilate. Preferably, all of these functions are automated. For those that are not automated, preferably there are instructions issued to the user.[0009]
One benefit of the invention is that monitoring and treatment are made more comprehensive, and synergies are accomplished between the disparate monitoring and treatment modes. Moreover, the invention can permit the user to carry a single item to the rescue scene.[0010]
The present invention provides an integrated device for performing external chest compression (ECC) and defibrillation on a person. The integrated device can include a backboard, at least one chest compression member operably coupled to the backboard, and a defibrillator module operably coupled to the backboard. Some devices include at least one sensor for outputting data and sensing physiological data from the patient. The backboard can be formed of an electrically non-conductive material and can have an electrode disposed in the backboard. In some devices, the physiological data includes at least one attribute from the group consisting of pulse, heart beat, breathing, body temperature, externally applied chest pressure, and thoracic impedance. Some devices include wheels and a handle for transporting the device and/or transporting a patient on the device. A controller or processor may be coupled to the device and may be further coupled to a human interface module or I/O module. The controller can be coupled to the sensor and can execute logic to defibrillate the person responsive to sensor data indicative of cardiac arrest. In some embodiments, the controller can execute logic to pace the person responsive to sensor data indicative of conditions which would benefit from pacing, for example, bradycardia, asystole, tachycardia, and heart block.[0011]
Some devices include a cooling module for cooling the person. The cooling module can include a cooling garment that can be placed over the person. In some devices, a controller can execute logic to initiate cooling responsive to sensor data indicative of cardiac arrest in the person.[0012]
Devices can include an electrode attached to the chest compression member of the device. Some electrodes include a releasable electrolyte that can be released upon application of pressure or an external signal. Chest compression members can include a belt and/or a vest, which can be coupled to a powered actuator for retracting the belt or vest. Some chest compression members include a rigid member pivotally coupled to the backboard. The rigid member can be coupled to a powered actuator for effecting ECC, or may be manually operable, depending on the embodiment. Some chest compression members include a pressure sensor for measuring external pressure applied to the chest. Other devices include a second defibrillation electrode, where the second defibrillation electrode can be disposed on the belt, vest, or other chest compression member. Some devices include multiple defibrillation electrodes coupled to the chest compression member. Multiple ECG electrodes may also be disposed on the belt, vest, or other chest compression member.[0013]
A voice output device may be included in some integrated devices. A camera coupled to a transmitter may be included in other devices. A ventilator for ventilating the patient can be included in still other integrated devices according to the present invention.[0014]
One method according to the present invention includes placing a person on a backboard of an integrated device, causing a chest compression member of the device to compress the person's chest against the backboard, causing the device to sense physiological signals of the person by a sensor, and causing a defibrillation module of the device to defibrillate the person depending on the sensed signals or responsive to the signals. Some methods further include listening to a voice output of the device. The signals can be sensed by bringing the sensor in contact with the person in some methods. The sensors may be brought in contact with the person by bringing the chest compression member in contact with the chest. Placing the person on the backboard can result in the person contacting a defibrillator electrode of the device.[0015]
Some methods include cooling the person using a cooling module of the device, which can include a cooling garment, or the cooling can be performed responsive to physiological signals of the person. The cooling may be performed automatically by the integrator device responsive to the physiological signals. Some methods include ventilating the person using a ventilator of the device, or the ventilating can be performed responsive to the physiological signals. In still other methods, the person is paced using a pacing module of the device, to pace the person responsive to the signals.[0016]
The present invention also includes methods that can be implemented using a controller or processor of the integrated device. The methods can be implemented using hardware, software, firmware, or other modality. The methods implemented in any of these modalities can reside in a computer-readable media.[0017]
One method that can be implemented in a controller includes receiving an input that a person has been placed on a device backboard and generating instructions to operate a chest compression member of the device to compress the person against the backboard. The method can further include receiving a physiological signal of the person and operating a defibrillation module of the device to defibrillate the person in response to the signal. The chest compression member can also be controlled in response to the signal. Some methods can generate voice outputs that can issue chest compression instructions, drug delivery instructions, manual ventilation instructions, cooling instructions, pre-cordial thump delivery instructions, and/or instructions to manually ventilate the person in synchrony with the chest compression instructions.[0018]
Some methods generate instructions to initiate defibrillation responsive to physiological signals indicative of ventricular fibrillation, ventricular tachycardia, and/or other physiological signals indicative of cardiac arrest. Methods can include generating instructions to ventilate the person in response to physiological signals indicative of lack of breathing. Some methods generate instructions to operate a pacing module responsive to physiological signals indicative of conditions which would benefit from pacing, for example, bradycardia, asystole, tachycardia, and heart block. Instructions may also be generated to monitor thoracic impedance over time. Methods may include monitoring chest compressions and generating instructions to operate a pacing module in synchrony with the monitored chest compressions.[0019]
DESCRIPTION OF THE DRAWINGSFIG. 1 is a perspective view of an integrated external chest compression (ECC) and defibrillation device;[0020]
FIG. 2 is a perspective view of the integrated device of FIG. 1, having a person disposed on the device;[0021]
FIG. 3 is a perspective view of a person disposed on another integrated device, having a shorter backboard relative to the device of FIG. 1;[0022]
FIG. 4 is a transverse, cross-sectional view of an integrated device in which the chest compression member includes a belt and a piston;[0023]
FIG. 5 is a transverse, cross-sectional view of an integrated device in which the chest compression member includes a retractable belt;[0024]
FIG. 6 is a transverse, cross-sectional view of an integrated device in which the chest compression member includes rigid members pivotally coupled to the backboard;[0025]
FIG. 7 is a transverse, cross-sectional view of an integrated device having a powered actuator coupled to a force multiplier for delivering chest compression;[0026]
FIG. 8 is a fragmentary, bottom view of a belt bearing a defibrillator electrode;[0027]
FIG. 9 is a fragmentary, bottom view of a belt bearing two defibrillator electrodes;[0028]
FIG. 10 is a fragmentary, bottom view of a belt bearing multiple ECG leads;[0029]
FIG. 11 is a fragmentary, bottom view of a belt bearing multiple sensors and associated leads;[0030]
FIG. 12 is a fragmentary, transverse cross-sectional view of a belt or vest bearing a spring biased defibrillator electrode, ECG lead, or sensor;[0031]
FIG. 13 is a fragmentary, transverse cross-sectional view of a belt or vest bearing an electrode, lead, or sensor having an electrolyte gel;[0032]
FIG. 14 is a schematic view of the integrated device of FIG. 1 further including a camera and transmitter communicating with a remote assistance center;[0033]
FIG. 15 is a schematic view of the integrated device of FIG. 1, further including a cooling module in the form of a cooling garment disposed on the person;[0034]
FIG. 16 is a highly diagrammatic, cross-sectional view of the person and cooling garment of FIG. 15;[0035]
FIG. 17 is a block diagram of the controller or computer containing executable logic or software contained within an integrated device;[0036]
FIG. 18 is a flow chart illustrating a method for integrating external chest compression and defibrillation therapies;[0037]
FIG. 19 is a time diagram showing coordinated periodic chest compressions and defibrillation and/or pacing pulses;[0038]
FIG. 20 is a flow chart segment illustrating an optional pacing portion of the flow chart of FIG. 18; and[0039]
FIG. 21 is a view of a display screen from an operation of the invention.[0040]
DETAILED DESCRIPTIONFIG. 1 illustrates an integrated external chest compression (ECC) and[0041]defibrillation device30.Integrated device30 includes a backboard or backframe32,chest compression members40, aventilator42, ahuman interface device54, and a defibrillating and/orpacing module46.
[0042]Backboard32 is shown as solid and having anupper surface34.Backboard32 need not be solid.Backboard32 is preferably made as lightweight as possible, allowing the integrated modules to be included without adding unneeded weight. In some embodiments,wheels36 and ahandle38 are coupled tobackboard32. This permits the device to be used as a gurney, making it easier to transport the patient.
The chest compression portion may be implemented in a number of ways, as described below. Two[0043]chest compression members40 are shown, in the form of two arms.Chest compression members40 are coupled tobackboard32. Even though only two arms are shown, the chest compression members may be implemented as a belt, and/or as a vest, either a full or partial vest. The belt or vest is intended to generally wrap around the chest of the patient, for squeezing it, or squeezing it againstbackboard32. In this way, ECC or CPR can be administered to the patient. The belt or vest may incorporate other functionalities, as further described below. In addition, it may be removable and/or reusable.
[0044]Integrated device30 includes a defibrillating and/orpacing module46, hereinafter referred to generally as a defibrillating module or defibrillator.Defibrillator46 can be electrically coupled to aposterior electrode48 embedded inbackboard32.Backboard32 may be formed of an electrically insulating material to electrically isolateposterior electrode48.Electrode48 can be disposed to contact the patient's back, on the left side.Defibrillator46 can also be coupled to a defibrillator or pacingelectrode50, disposed onchest compression member40. In some embodiments, at least one defibrillator electrode is disposed on the under-side of the belt, chest compression member, or vest to contact the patient's chest near the heart.
[0045]Integrated device30 further includes a ventilator or ventilatingmodule42.Ventilator42 can includeventilator tubing44.Ventilator42 can also be coupled tobackboard32 and can be used for ventilating the patient.Ventilator42 is shown schematically, as ventilators are well known to those skilled in the art.
[0046]Human interface device54 can be implemented in a number of ways.Human interface device54 can include aninput portion56 and anoutput portion58.Input portion56 can include a keyboard andoutput portion58 can include a visual display or computer screen and/or a voice output module for interacting with a human assistant. Abattery52 can be carried withinbackboard32 for supplying power for operatinghuman interface device54,defibrillator46,ventilator42, andchest compression members40, in the various embodiments of the invention. A controller or computer can also be included withinhuman interface device54 or elsewhere withinintegrated device30 for integrating and coordinating the operation of external chest compression, defibrillating, pacing, and ventilating, depending on the embodiment of the invention present.
FIG. 2 illustrates[0047]integrated device30 having a person orpatient100 disposed onbackboard32.Patient100 has achest102 disposed underchest compression members40 and amouth104 for receivingventilator tubing44.
FIG. 3 illustrates another[0048]integrated device120 for integrating external chest compression and defibrillation and/or pacing.Integrated device120 may be seen to includechest compression members40,human interface device54,battery52, anddefibrillator module46, as previously described with respect to FIG. 1.Integrated device120 includes a short backboard or backframe126. Shorter backboard126 can decrease the weight and increase the portability of the integrated device.
FIG. 4 illustrates an[0049]integrated device150, in which the chest compression is effected by a compressor or expandable member held in place by a belt orvest153, depending on what is provided in the particular embodiment. The chest compressor includes a mechanism for pushing downwards on the chest. In the integrated device illustrated, the compressor is implemented as abase151 and apiston152.Piston152 is illustrated in a first, retractedposition154 and a second,extended position156. Belt orvest153 can be coupled to aback frame158, as previously discussed.
FIG. 5 illustrates a belt or[0050]vest172, having a buckle, hook and loop fastener (e.g. Velcro TM) orzipper174 for fastening around the chest of the patient. Belt orvest172 can itself be contracted to effect chest compression. The contraction can take place in many ways. In one way, the belt or vest can be retracted into aback frame176. In another way, belt orvest172 can be constricted about the patient. Belt orvest172 may be seen having a first, expandedposition173 and a second,constricted position178. In yet another way, chest compression is effected by electrically stimulating the chest muscles.
FIG. 6 illustrates still another[0051]integrated device200 having a patient206 disposed on abackboard210. Indevice200, chest compression is provided by rigid chest compression members orarms202 havingsupport prongs208 that push down on the chest ofpatient206.Arms202 can be pivotally coupled tobackboard210. In the embodiment illustrated,arms202 are operated bygears204 that are integrated withbackboard210. In some embodiments,arms202 are driven by a powered chest compression actuator.
FIG. 7 illustrates another[0052]integrated device220 includingbackboard210 carryingpatient206, as previously described.Integrated device220 includes aforce multiplier224 using a lever arrangement, so that a pressing member can exert a downward pressure on the patient chest.Integrated device220 includes a gear box or apowered actuator230 coupled through a shaft orrod228, which may be hollow in some embodiments.Shaft228 can have firstforce transmission member236 slidably received withinshaft228 and pivotally coupled to a secondforce transmission member232 and a thirdforce transmission member234.Force transmission members232 and234 can be further coupled to achest compression pad235 for pressing against the chest ofpatient206.Force multiplier device224 can be held in place by a belt orvest222. In some embodiments, the lever arrangement may operate by having a rod conduct a long rotation, such as in a corkscrew arrangement.
Other embodiments of the chest compression portion include belts crossing the chest from over the shoulder down to the chest, forming an “X” across the patient's chest. This is better than the conventional way of having belts horizontally across the patient's chest, in that it permits placement of sensors such as leads in different places. Alternately, an “X”-belt configuration may be combined with the conventional configuration. In yet other embodiments, the chest compression portion includes devices performing active compression-decompression, devices that combine chest compressions with abdominal compressions, devices where the belt is operated electronically without gears, and devices that use electricity to do chest compressions by electrically inducing chest muscles to contract. Various embodiments may use combinations of these chest compression techniques.[0053]
Compressing and releasing may be performed according to any type of time profile. One such profile is seen in FIG. 19. Other profiles may be sine-wave, triangular shaped, or other shapes. In an advantageous embodiment of the invention, a sine-wave may be used with a frequency outside the ECG range. This permits analyzing the ECG while simultaneously performing chest compressions. This permits the device to detect more quickly a rhythm that requires a defibrillation shock, and to reduce the delay of its delivery from the end of the chest compressions.[0054]
Referring again to FIGS. 1, 2, and[0055]3, the invention defibrillation-pacing portion can be either formed integrally with the backboard or is removable from it. In any event, the defibrillation-pacing portion can operate when integrally connected with the back frame or backboard.
The defibrillation-pacing portion is capable of performing defibrillation, and optionally, also pacing. Pacing may be implemented by a separate module than defibrillating, but it is highly advantageous to have the same module perform both functions. The defibrillation/pacing portion may operate as a defibrillator of any chosen automation level. That includes operation that is fully automated to fully manual, and every option in between.[0056]
Moreover, the invention may also advantageously provide devices or modules that perform monitoring, and further provide interpretation of the monitored signals. The monitoring results may advantageously be displayed on the human interface device previously described or on an I/O module as described below. In other embodiments, there is a separate monitoring module. Monitoring may be of any of the monitoring parameters or physiological attributes common on defibrillator/monitors or bedside monitors today, for example, NIBP, SpO[0057]2, CO2, 12 lead ECG, etc. The devices that perform the monitoring are preferably integrated with the back frame, and preferably are removable for servicing.
The invention also can include an input/output (I/O) or human interface module as previously described. In the embodiment of FIG. 1,[0058]human interface device54 includes a display screen and keyboard, as previously discussed, but that is not limiting. The invention can also have input devices such as keys, switches, knobs, levers, a microphone for voice recording, and preferably also voice recognition, and output devices such as one or more screens, a speaker, printer, or other output device. All of these are preferably aggregated at the I/O module, but that is not necessary for practicing the invention. They may be located elsewhere in the devices, or received remotely, for example, wirelessly, or transmitted wirelessly to a remote output device.
The invention also optionally includes a ventilation portion. A ventilation portion or ventilating[0059]module42 was previously described with respect to FIG. 1. The ventilation portion may be implemented either automatically, or be intended for use by a human operator. If by a human, the device may be made giving prompts for instructing the rescuer. The prompts may be timed. The rescuer may be either performing mouth-to-mouth resuscitation or opening a bag valve mask device where the user manually squeezes the bag. If the ventilator is to be automatic, a tube can be inserted into the patient's mouth, and a pump can be used. Alternatively, a mask may be placed on the face of the patient. The oxygen can be delivered this way to the patient. Other devices, such as valves that block the airway during chest decompression, for example, the CPR-x valve, can be included in the ventilation portion of the device of the invention. To the extent it is automatic, a pump of the ventilation portion may be advantageously integrated with the back frame.
The invention preferably also includes an electrical power source for powering the various portions. The power source may be a battery, such as[0060]battery52 discussed with respect to FIG. 1. The battery may be either a rechargeable battery for maximum portability, or a replaceable battery. The battery is preferably integrated with the back frame, either permanently, or in such a way that it can be removed and replaced. Some devices of the invention have the benefits of being able to share a common power source, CPU or controller, and I/O module for the interface with the rescuer. The power source may also be line power.
FIG. 8 and[0061]9 illustrate how defibrillator electrodes or other electrodes might be attached to an underside of the vest or belt of the chest compression portion of the devices of FIGS. 1, 2, or3. For example, the electrodes can be part of a belt or vest of FIGS.4 or5. The electrodes can also be integrated with an arm or a prong of a chest compression member, for example,prong208 of FIG. 6 orchest contact pad235 or FIG. 7.
FIG. 8 illustrates a belt or vest having a[0062]first portion300 coupled through a buckle orzipper304 to asecond portion302. Afirst electrode306 may be affixed to the underside of the belt or vest and coupled to a wire or lead308. In FIG. 8, one of the electrodes is situated on the underside of the belt or vest, while the other electrode may be expected to be in the backboard. At least one wire can connect the electrode to the remainder of the defibrillation/pacing portion. This is a preferred embodiment, since it would minimize CPR artifact in the ECG signal. The electrode preferably avoids the center of the chest. That is where the buckle or zipper is shown (as wider than the open portion that supports the electrode).
FIG. 9 illustrates the belt or vest of FIG. 8, having belt or vest[0063]first portion300, buckle orzipper304, andsecond portion302.First electrode306 andwire308 are as previously described with respect to FIG. 8. In FIG. 9, asecond electrode310 is coupled to a second wire or lead312. In the embodiment illustrated in FIG. 9, no electrode is needed in the backboard or back frame for traditional defibrillation. At least one wire can connect each electrode to the defibrillation/pacing portion.
FIG. 10 illustrates the underside of another belt or vest having a[0064]first portion320 coupled through a buckle orzipper324 to asecond portion322. Belt or vestfirst portion320 may be seen carrying a first electrode326 and a second electrode327, coupled towires332. Belt or vestsecond portion322 may be seen carryingthird electrode328,fourth electrode329, andfifth electrode330, all coupled towires332.Wires332, while having similar reference numbers, are, of course, preferably electrically distinct. The ECG leads of FIG. 10 are also preferably integrated with the underside of the vest or belt of the chest compression portion of the devices of FIGS. 1, 2, or3. The ECG leads may be placed so as to not interfere with any defibrillation electrodes, for example, those of FIGS. 8 and 9.
FIG. 11 illustrates yet another belt or vest having a[0065]first portion340 coupled through a buckle orzipper344 to asecond portion342. The underside of belt or vestfirst portion340 may be seen carrying afirst sensor346 coupled to a wire or othersignal transmission medium349. The underside of belt or vestsecond portion342 may be seen carrying asecond sensor347, and athird sensor348, coupled towires349. The sensors are preferably also integrated with the underside of the vest or belt of the chest compression portion of the devices of FIGS. 1, 2 and3. These sensors can include pulse detection sensors, such as those made from piezoelectric materials, temperature sensors, CO2sensors, and other sensors for measuring physiological attributes or signals, well known to those skilled in the art.
The features integrated with the belt or vest are preferably arranged so that they do not interfere with each other. The electrode may be fully integrated, or detachable for servicing. Alternately and equivalently, some electrodes, ECG leads, or sensors may be hosted in the backboard.[0066]
FIGS. 12 and 13 illustrate how defibrillator electrodes, ECG leads, or sensors may be integrated with an underside of the vest, belt, or other chest compression members, for example those in FIGS. 1, 2 or[0067]3.
FIG. 12 illustrates a belt or[0068]vest350 carrying an electrode, lead, orsensor352. Electrode, lead, orsensor352 can be coupled to awire356 and biased downward from the belt or vest with aspring354, so as to be pressed against the chest of the patient. For use with a pulse sensor, some quieting time for the spring is preferably allowed, so as to not provide interference with the signal.
FIG. 13 illustrates a belt or[0069]vest360 carrying an electrode, lead, orsensor362 on the underside of the vest or belt. A gel orelectrolyte364 may be seen on the underside of the electrode, lead, orsensor362. For implementing an electrode, a gel may be administered, or an electrolyte may be diffused. The gel or electrolyte may be provided in a capsule that bursts at an appropriate time to release it. The time may be prior to defibrillation electrotherapy. Bursting may be caused by the mere pressure against the chest, or by an appropriate electrical signal. One advantage that can be provided by some embodiments is that there is no need to disrobe the patient—the fluid may seep through the clothes to establish electrical conduction.
FIG. 14 illustrates some other optional features of the invention.[0070]Integrated device30,patient100, andbackboard32 are shown, as previously described. Acamera382 may be seen disposed on a post secured tobackboard32.Camera382 can be coupled to acommunication module380 that can act as a transmitter or transceiver.Communication module380 can communicate with aremote assistance center396 coupled through anetwork394 and aremote antenna392. A data/voice/video communications link390 is shown as existing betweencommunication module380 and remoteassistance center antenna392.Communication link390 can be bidirectional in some embodiments. In a preferred embodiment,communications module380 includes the functionality of a portable telephone, andnetwork394 is a network that can support voice and/or data communications.Camera382 is preferably a digital camera, and may be either a video camera or a still camera. The camera may be advantageously attached to a post in the backboard. This permits recording of the scene and the patient. The recording may be used for record keeping, event analysis, and other purposes. Alternately, the recording may be used for live transmission to theremote assistance center396, where more trained medical personnel can in turn provide feedback.
The user of the invention can establish[0071]communication link390 withremote assistance center396. Then the information can be transmitted and can include images, if a camera is provided. The patient's vital signs, encoded by the invention for communication, along with the rescuer's comments, observations, and even questions may be also transmitted to the remote assistance center.
In some embodiments, the invention is operable from[0072]remote assistance center396. An operator at the remove assistance center can transmit a command code throughcommunication link392integrated device30, andintegrated device30 operated accordingly. Such operation may actually include defibrillation.
Moreover, the monitored data, included also recorded data such as events, wave forms, physiological signals or attributes, and data indicative of the device operation itself, may be also transmitted to a system for collecting or storing patient information, and to a computer-aided dispatch system for assistance. Furthermore, it may also be sent to a billing system for determining patient billing.[0073]
FIGS. 15 and 16 illustrate additional optional cooling figures of the invention. Cooling can be provided for performing IMHT (Induction of Mild Hypo Thermia), which may slow down adverse effects of the events being experienced by the patient.[0074]
[0075]Integrated device30 andpatient100 are as previously described. FIG. 15 illustrates generally a cooling module aspect of the present invention. In the example illustrated, the cooling module includes a liquid gas storage container ortank402 coupled to avalve404 coupled in turn to atube406 coupled to acooling garment408. Liquidgas storage container402 can be included within the cooling module and is preferably carried under the backboard. This is most advantageous in the event the backboard is implemented with wheels.
The liquid in[0076]container402 can be one that preferably turns into gas upon being released into the atmosphere. A cooling garment, similar to coolinggarment408, can be provided for each part of the body that is of interest to cool. The cooling garment can be shaped to be suitable for placing over the bodily part that is to be cooled. Coolinggarment408 illustrated in FIG. 15 is designed for placement on the patient's head. Cooling may also be accomplished by evaporative cooling, for example, using a suitable fluid delivery system and an absorber for alcohol, such as cotton.
FIG. 16 illustrates a section of cooling[0077]garment408.Garment408 has aninner shell409 for contactingpatient100.Garment408 also has an outer garment orshell411 that defines aninner space405 betweenouter shell411 andinner shell409. Spacers may be used to maintaininner space405 in an open configuration. Alternately, small tubes may be used.Garment408 can receive liquid gas fromstorage container402 viatube406 in communication withinner space405. The cooling gas or liquid can also be received into the series of small tubes, previously described. The gas can then be released into the atmosphere from various places in the garment. As it is being released, the gas can expand, cool, and thus draw heat away from the patient. Sensors, for example for temperature, may also be included.
Referring again to FIG. 15, the gas can be directed from[0078]storage container402 to liquid controller orvalve404, and from there togarment408 viatube406.Liquid controller404 can in turn be controlled by an IMHT controller, for controlling the rate of cooling of the patient. The expanded cooled gas may be mixed with air to control the final cooling gas/air temperature. The IMHT controller may be implemented in combination with the liquid controller, and optionally further communicates with the processor or controller of the device of the invention.
The present invention may be implemented by one or more devices that include logic circuitry. The device performs functions and/or methods as are described in this document. The logic circuitry may include a processor that may be programmable for a general purpose, or dedicated, such as microcontroller, a microprocessor, a Digital Signal Processor (DSP), etc. For example, the device may be a digital computer like device, such as a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Alternately, the device may be implemented as an Application Specific Integrated Circuit (ASIC), etc. These features can be integrated with the invention, or coupled with it.[0079]
Moreover, the invention additionally provides methods, which are described below. The methods and algorithms presented herein are not necessarily inherently associated with any particular computer or other apparatus. Rather, various general-purpose machines may be used with programs in accordance with the teachings herein, or it may prove more convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these machines will become apparent from this description.[0080]
In all cases there should be borne in mind the distinction between the method of the invention itself and the method of operating a computing machine. The present invention relates both to methods in general, and also to steps for operating a computer and for processing electrical or other physical signals to generate other desired physical signals.[0081]
The invention additionally provides programs, and methods of operation of the programs. A program is generally defined as a group of steps leading to a desired result, due to their nature and their sequence. A program made according to an embodiment of the invention is most advantageously implemented as a program for a computing machine, such as a general-purpose computer, a special purpose computer, a microprocessor, etc.[0082]
The invention also provides storage media that, individually or in combination with others, have stored thereon instructions of a program made according to the invention. A storage medium according to the invention is a computer-readable medium, such as a memory, and is read by the computing machine mentioned above.[0083]
The steps or instructions of a program made according to an embodiment of the invention requires physical manipulations of physical quantities. Usually, though not necessarily, these quantities may be transferred, combined, compared, and otherwise manipulated or processed according to the instructions, and they may also be stored in a computer-readable medium. These quantities include, for example electrical, magnetic, and electromagnetic signals, and also states of matter that can be queried by such signals. It is convenient at times, principally for reasons of common usage, to refer to these quantities as bits, data bits, samples, values, symbols, characters, images, terms, numbers, or the like. It should be borne in mind, however, that all of these and similar terms are associated with the appropriate physical quantities, and that these terms are merely convenient labels applied to these physical quantities, individually or in groups.[0084]
FIG. 17 illustrates a general computer, processor, or controller[0085]440 having a data storage device or computerreadable medium446 interfaced with computer440 to transfer data vialink448, or the data may define a program. Computer440 of FIG. 17 may be implemented by a CPU, and preferably interfaces with the10 module or human interface device previously described. Computer or controller440 includes amemory442 containing executable logic orprogram444.
This detailed description portion is presented largely in terms of flowcharts, display images, algorithms, and symbolic representations of operations of data bits within at least one computer readable medium, such as a memory. An economy is achieved in the present document in that a single set of flowcharts is used to describe both methods of the invention, and programs according to the invention. Indeed, such descriptions and representations are the type of convenient labels used by those skilled in programming and/or the data processing arts to effectively convey the substance of their work to others skilled in the art. A person skilled in the art of programming may use these descriptions to readily generate specific instructions for implementing a program according to the present invention.[0086]
Often, for the sake of convenience only, it is preferred to implement and describe a program as various interconnected distinct software modules or features, individually and collectively also known as software and softwares. This is not necessary, however, and there may be cases where modules are equivalently aggregated into a single program with unclear boundaries. In any event, the software modules or features of the present invention may be implemented by themselves, or in combination with others. Even though it is said that the program may be stored in a computer-readable medium, it should be clear to a person skilled in the art that it need not be a single memory, or even a single machine. Various portions, modules or features of it may reside in separate memories, or even separate machines. The separate machines may be connected directly, or through a network, such as a local access network (LAN), or a global network, such as the Internet.[0087]
It will be appreciated that some of these methods may include software steps which may be performed by different modules of an overall parts of a software architecture. For example, data forwarding in a router may be performed in a data plane, which consults a local routing table. Collection of performance data may also be performed in a data plane. The performance data may be processed in a control plane, which accordingly may update the local routing table, in addition to neighboring ones. A person skilled in the art will discern which step is best performed in which plane.[0088]
In the present case, methods of the invention are implemented by machine operations. In other words, embodiments of programs of the invention are made such that they perform methods of the invention that are described in this document. These may be optionally performed in conjunction with one or more human operators performing some, but not all of them. As per the above, the users need not be collocated with each other, but each only with a machine that houses a portion of the program. Alternately, some of these machines may operate automatically, without users and/or independently from each other.[0089]
Methods of the invention are now described.[0090]
Referring now to FIG. 18, a[0091]flowchart2000 is used to illustrate a method according to an embodiment of the invention. The method offlowchart2000 may also be practiced by the devices of the invention described in this document. Above and beyond the method described herein, the responder (who is also a user) may be instructed on how to apply a device, and or interactively give feedback, and/or to perform steps of the method, etc.
According to a[0092]box2010, signals are received about the patient, and optionally are also monitored. Optionally, they are also recorded, displayed, transmitted, etc.
The signals are received from the patient (such as ECG), from special sensors (such as oximetry, impedance, force, pulse detection sensors, etc.). Signals may also be received from other components or devices (size of belt or vest around patient's chest, GPS signals, control signals from a device of a responder attending to the patient, etc.). Signals may further be received from the responder interactively, e.g. by asking questions and receiving answers.[0093]
The signals are then analyzed and treated as inputs, as is also shown in the rest of[0094]flowchart2000. Analysis may be implemented also by taking advantage of the combined functionalities and features. For example, knowledge of the time profile of the chest compression is used to remove the chest compression artifact from the ECG.
The process of[0095]box2010 preferably takes place continuously, even if execution moves also to other boxes offlowchart2000. Monitoring is for the conditions that are applicable for the below, including, for example, for the effectiveness of chest compressions. There can be different stages of monitoring, such as main monitoring, atexact box2010, and secondary monitoring concurrent with other stages, e.g. at the same time as any one ofboxes2030,2040,2080 below.
In addition, monitoring may be also for detecting Acute Myocardial Infarction (AMI), via the ECG or other monitoring parameters, and indicating this to the caregiver. If AMI is detected, then monitoring may also be for cardiac arrest (which commonly occurs following an AMI).[0096]
In addition to monitoring, preferably there is also recording. The accumulated record may include records of events, data monitored, and functionalities of the invention that are operating, and time profiles of their operation.[0097]
A number of decision trees may then be implemented, in determining what action to take next. The best embodiments known to the inventors are described, but that is only by way of example, and not of limitation. Further, the flowchart may be integrated with other steps, such as administering medications (e.g. cardiac drugs), etc. But simplistically, the ECG input is analyzed for a shockable rhythm, and then either defibrillation takes place, or pulse or other signs of circulation are checked, following the same protocol as today's AEDs. Further, a user would be prompted to start the CHEST COMPRESSION PORTION device and ventilations if there was no pulse (or no signs of circulation.) A more rigorous way is described below.[0098]
According to a[0099]next box2020, it is determined whether Ventricular Fibrillation (VF) of the patient's heart is occurring. If so, then according to anext box2030, the patient is defibrillated. This is accomplished by administering electrotherapy, such as a defibrillation shock. If a child (“pediatric”) patient is sensed, then the defibrillation energy level may be adapted automatically (e.g. be set to 50J). Such sensing may be from responder inputs, the belt or vest size when tightened around the patient, etc.
In some embodiments of the invention, at[0100]box2030, instead of delivering a defibrillation shock, the CPR portion is used to deliver a precordial thump to deliver the patient. In particular, when the device detects a shockable rhythm, rather than delivering an electrical defibrillation pulse, the device first deliver a precordial thump to the patient, via the chest compression device, to attempt defibrillation. This is a great advantage of the invention, in that it can revert from one form of therapy to another.
In yet other embodiments, based on the patient's downtime (which could be entered into the device by the caregiver), or by analysis of parameter that indicates probability of shock success (such as ECG), it may first be decided whether to deliver electrotherapy, or to first perform CPR, and/or to first deliver medications prior to defibrillating. That action could either be started automatically by the system, or could be started with manual action from the user.[0101]
Execution may then return to[0102]box2010, where inputs are received and analyzed. In a preferred optional embodiment, however, according to anext box2040, Cardiopulmonary Resuscitation (CPR) is either performed automatically, or instructed for the responder to perform, after defibrillating. Instruction may be by voice commands, and/or may include sounds for the responder to synchronize their action. In addition, depending on the monitored inputs, the repetition rate of the CPR is adjusted. Further, if CPR is performed automatically, the force and its time profile are also adjusted. Execution returns tobox2010.
According to important alternate embodiments of the invention,[0103]boxes2030 and2040 take place together. In other words, defibrillation takes place while CPR is being performed automatically.
Referring briefly to FIG. 19, a time profile of the chest compressions is shown. More particularly, the changing circumference of the patient chest is plotted, as squeezed and released. In addition, the main level of the patient impedance is plotted in dashed lines, following in pattern the time profile of the chest circumference. (Other impedance variations may be superimposed on the main level of impedance). The profile of chest squeezing may be known directly, or indirectly from a monitored parameter such as the main level of impedance.[0104]
Advantageously, defibrillation (the large lightning bolts in FIG. 19) may take place any time in the CPR cycle. The exact timing is chosen in synchronization to pursue various optimizations. For example, if it is desired to exploit the smallest possible impedance, defibrillation happens according to bolt (A). On the other hand, if it is desired to exploit the moment that the heart is filled with the most blood (and thus draw the most current through the heart), then defibrillation happens according to bolt (B).[0105]
CPR may continue after defibrillation, or even be halted after it. An advantage of the invention is that the waiting time from CPR to defibrillation is minimized. Pacing takes place as described later in this document.[0106]
Returning to FIG. 18, if, at[0107]box2020 it is determined that the patient is not undergoing VF, then according to an optionalnext box2050, it is inquired whether a pulse is detected. If not, then according to an optionalnext box2060, it is inquired whether the condition of Ventricular Tachycardia (VT) is detected. If so, then execution reverts tobox2030, and the patient is defibrillated. But if no VT is detected atbox2060, then execution reverts tobox2040 for performing CPR.
If a pulse is detected at[0108]box2050, then, according to an optionalnext box2070, it is inquired whether respiration is detected. If so, then execution returns tobox2010. Respiration may be detected automatically by respiration sensors, such as a CO2 (carbon dioxide) sensor, chest movement sensor, or an impedance sensor.
If at[0109]box2070 there is no respiration detected, then according to an optionalnext box2080, ventilation is performed automatically by a ventilator, or rescue breathing is instructed for the responder to perform. Execution returns tobox2010.
Since[0110]box2010 is preferably executed continuously, the method also includes discontinuing one type of therapy, and optionally also starting another consistently with the above. Also, if one of the signs changes, execution may return tobox2010 and start over. For example, pulse may be lost while ventilating. Or the onset of respiration may detected, in which case other activities (such as ventilation) stop.
Referring now to[0111]optional box2090, optional pacing according to the invention is also described. In the embodiment of FIG. 18, the condition for enabling pacing is examined in two circumstances, namely in transitioning frombox2050 to2070, and also in transitioning frombox2060 to2040. Note that additional circumstances for enabling pacing are possible, only bradycardia and asystole are shown here.
Referring now to FIG. 20,[0112]box2090 is described in more detail. In both cases, it is inquired whether severe bradycardia is detected. In addition, if no pulse has been detected, it is inquired whether ventricular asystole has been detected. If not, then execution continues as before (frombox2050 to2070, and frombox2060 to2040). If yes, then according to abox2095, pacing is performed.
Returning to FIG. 19, pacing (shown as a small lightning bolt) may also be coordinated with the administration of CPR. Pacing is preferably synchronized with the compression cycle. There is some evidence that chest compressions may cause a QRS complex (ventricular depolarization), if the heart is able to support it. Accordingly, pacing during the compression cycle provides the additional impetus to the ventricles. Synchronizing pacing to the chest compressions also reduces the chest impedance, which will on average reduce the voltage and current required to achieve pacing capture. This can result in less pain for the average patient, and can allow a given device to achieve capture on more patients. Also, pacing should be avoided a few 100 msec after a QRS complex, during the ventricular vulnerability period.[0113]
At any one time during the method of FIG. 18, inputs are received (for monitoring) from the available sensors, and from the user through the I/O module. Outputs are communicated to the user through the I/O module.[0114]
Referring now to FIG. 21, a sample screen snapshot is shown. The screen is advantageously used for communicating to the user the monitored data (such as vital signs), outputs, comments, actions, etc. In the example of FIG. 21, there is a count down for imminent defibrillation (at the 3 sec point).[0115]
A person skilled in the art will be able to practice the present invention in view of the description present in this document, which is to be taken as a whole. Numerous details have been set forth in order to provide a more thorough understanding of the invention. In other instances, well-known features have not been described in detail in order not to obscure unnecessarily the invention.[0116]
While the invention has been disclosed in its preferred form, the specific embodiments as disclosed and illustrated herein are not to be considered in a limiting sense. Indeed, it should be readily apparent to those skilled in the art in view of the present description that the invention may be modified in numerous ways. The inventors regard the subject matter of the invention to include all combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein.[0117]