BACKGROUND OF THE INVENTIONThis invention relates to liquid polymer compositions which are useful in the manufacture of imaged printing plates and coatings through photopolymerization. Photocurable compositions useful in forming printing plates and coatings, in general, are well known in the art. In particular U.S. Pat. No. 2,760,863 (Plambeck) describes the use of certain photopolymers in the fabrication of printing plates. However, the processes of Plambeck require the use of relatively toxic solvents to develop away the unpolymerized photopolymer thereby revealing the relief image of the printing plate.[0001]
U.S. Pat. Nos. 3,960,572; 4,006,024; 4,137,081; 4,174,218; 4,442,302; and 4,857,434, the teaching each of which are included herein by reference in their entirety, reveal certain improvements to the processes of Plambeck. One of the most notable improvements of the foregoing disclosures is that the photopolymers utilized can be developed, after selective polymerization with light, in aqueous based solutions, Aqueous developable photopolymers of the foregoing type are currently marketed under the Merigraph trade name by MacDermid Imaging Technology, Inc. of Wilmington, Del. These aqueous developable photopolymers are useful in printing a variety of substrates including paper, cardboard and plastic, due to the fact that they are capable of forming printing plates having the necessary hardness, flexibility, resilience, and abrasion resistance required for such printing.[0002]
The liquid photopolymers currently known and utilized are useful in printing with aqueous or alcohol based inks only. They are not useful in printing with organic solvent (“solvent”) based inks because the cured polymers do not possess the necessary resistance to solvents. When exposed to solvent based inks cured liquid photopolymers generally degrade or swell to an unacceptable degree, making their usefulness in printing these solvent based inks much less than desirable.[0003]
In a variety of applications, such as film printing, it is necessary or desirable to print with solvent based inks. The solvents used in such inks may be one or a mixture of commonly used organic solvents, such as petroleum distillates. In any case, liquid photopolymers, such as those described above, have not possessed the necessary resistance to these solvents and thus are not useful in fabricating printing plates for these applications.[0004]
It is therefore an object of this invention to reveal liquid photopolymer compositions which produce printing plates which are resistant to a variety of inks, including water based, alcohol based and solvent based. The printing plates produced using the compositions of this invention are therefore useful in a wide variety of printing applications.[0005]
It is a further object of this invention to reveal liquid photopolymer compositions which produce printing plates having the hardness, flexibility and abrasion resistance which is necessary for printing in a variety of applications. Thus the photopolymer compositions of this invention are capable of producing high quality artwork using a wide variety of inks and on various types of surfaces.[0006]
SUMMARY OF INVENTIONThese and other objects are achievable with a photopolymer composition comprising:[0007]
A An ethyleneically unsaturated polyurethane prepolymer having the structure:[0008]
Y—XP—XnY
Wherein P is selected from the group consisting of hydrogenated polybutadiene, hydrogenated polyisoprene and hydrogenated copolymers of butadiene with styrene (note that the starting raw reactants for P is a hydroxyl terminated compound selected from the previously noted group);[0009]
Wherein X is selected from the group consisting of aromatic diisocyanates and aliphatic diisocyanates;[0010]
Wherein Y is a terminal group which has an ethyleneically active portion at the outer end of the group; and[0011]
Wherein n is an integer from 1 to 20;[0012]
B. at least one ethylenically unsaturated monomer; and[0013]
C. at least one photoinitiator.[0014]
DETAILED DESCRIPTION OF THE INVENTIONThe liquid photopolymer compositions of the present invention are useful in preparing printing plates which have good resistance to solvent based inks as well as the requisite hardness, flexibility and resilience for effective, high quality printing on a variety of substrates. The photosensitive resins of the present invention provide photopolymer printing plates which have a shore A hardness between 30 and 65 on the shore A scale at 20° C. and a solvent swell (a typical measure of solvent resistance) of 8-10 wt. % or lower in a solution of 15% by weight n-propyl acetate (a common ink solvent) and 85% isopropanol for 24 hours. Properties in these ranges render said plates useful for printing on plastic film, as well as other types of substrates, in a flexographic printing process, The plates produced are also capable of effectively printing with water, alcohol or solvent based printing inks.[0015]
The liquid photopolymer composition of the current invention comprises:[0016]
A). at least one ethylenically unsaturated polyurethane prepolymer;[0017]
B). at least one photoinitiator;[0018]
C). at least one ethylenically unsaturated monomer.[0019]
The polyurethane prepolymer of the current invention is prepared by reacting an excess of a diisocyanate with a saturated polyolefine diol, such as hydrogenated polybutadiene diol, or with a mixture of said saturated polyolefine diols and unsaturated diols, or with a mixture of said saturated polyolefine diols and short chain diols such as butane diol, hexane diol, propyl ethyl propane diol and trimethyl pentane diol, or with a mixture of said saturated polyolefine diols and polyester diols, such as polyhexylene adipate. The foregoing reaction of the saturated polyolefine diol, or the indicated mixtures containing said saturated polyolefine diol, with an excess of diisocyanate will form an isocyanate terminated polyurethane oligomer. The diisocyanate used can be aromatic or aliphatic diisocyanates, but aromatic diisocyanates are preferred. Suitable aliphatic diisocyanates include trimethyl hexamethylene diisocyanate and biscyclohexylmethylene diisocyanate. Preferred aromatic diisocyanates include toluene diisocyanate and methylene diphenyl diisocyanate.[0020]
The oligomer is then further reacted with a hydroxyacrylate, hydroxy methacrylate or mixtures thereof to form the ethylenically unsaturated polyurethane prepolymer. Suitable hydroxy acrylates or methacrylates include: hydroxypropyl methacrylate, polypropylene glycol monomethacrylate, and acrylated caprolactone oligomers. Polypropylene glycol monomethacrylate, hydroxypropyl methacrylate, or a mixture of the foregoing are preferred.[0021]
The ethyleneically unsaturated polyurethane prepolymer formed by the foregoing reactions can be described by the following:[0022]
Y—XP—XnY
Wherein P is a saturated polyolefine, preferably a hydrogenated material selected from the group consisting of hydrogenated polybutadienes, hydrogenated polyisoprenes and hydrogenated copolymers of butadiene with styrene (note that the starting raw reactants for P are hydroxy terminated hydrogenated polybutadienes, hydroxy terminated hydrogenated polyisoprenes, and hydroxy terminated hydrogenated copolymers of butadiene with styrene);[0023]
Wherein X is selected from the group consisting of aromatic diisocyanates and aliphatic diisocyanates;[0024]
Wherein Y is a terminal group which has an ethyenically active portion at the outer end of the group. Preferably said terminal group is an acrylate, a methacrylate, of mixtures thereof (note that the raw reactants are hydroxy acrylates or hydroxy methacrylates) most preferably polypropylene glycol monomethacrylate; and wherein n is a integer of from 1 to 20.[0025]
The use of a mixture of the saturated polyolefine diol(s) with the short chain diols or the polyester diols in the foregoing reaction improves the mechanical properties of the resultant photopolymer printing plates. However, the polarity of the short chain diols (molecular weight below ______) or the polyester diols also reduces the solvent resistance of the resulting printing plate. It is therefore preferred to use no more than 30% by weight of short chain diols and/or polyester diols (with the remainder being saturated polyolefine diols) in the foregoing reaction. More preferably, the amount of short chain diol or polyester diol is less than 15% by weight as noted above.[0026]
In order to produce an ethylenically unsaturated polyurethane prepolymer having the appropriate viscosity for manufacturing of flexographic printing plates, and to produce printing plates having the appropriate hardness, tensile strength and elongation, it is preferred to begin with saturated polyolefine diols having a molecular weight from 500 to 5,000, more preferably between 2,000 and 4,500 and most preferably greater than 3,000.[0027]
In addition to the ethylenically unsaturated polyurethane prepolymer, the photopolymer resins of the current invention also comprise at least one ethylenically unsaturated monomer and at least one photoinitiator. The ethylenically unsaturated monomer may be any commonly available acrylate or methacrylate such as isobornylester, t-butylester, laurylester, monoesters or diesters of acrylic acid or methacrylic acid, and/or triesters of trimethylopropanol or propoxylated trimethylolpropanol. However, the use of a monomer having two or more ethylenically unsaturated groups in the monomer increases the hardness of the resultant printing plate. Thus the amount of monomers with two or more ethylenically unsaturated groups in the monomer increases the hardness of the resultant printing plate. Therefore the amount of monomers with two or more ethylenically unsaturated groups should be controlled such that a printing plate with the desired hardness is the result.[0028]
It is preferred that the ethylenically unsaturated monomer comprise a mixture of monomers with some having one ethylenically unsaturated group and some having two or more ethylenically unsaturated groups. The optimum ratio of the mixture will be determined by the desired hardness of the resulting printing plate. The amount of the monomer or monomer mixture will have an effect on the viscosity of the photosensitive resin. The greater the amount of the monomer or monomer mixture, the lower the resultant viscosity of the photosensitive resin. The viscosity of the photosensitive resin is preferably between 10,000 cps and 200,000 cps at room temperature and more preferably between 50,000 cps and 150,000 cps.[0029]
Any commonly used photopolymerization initiator customarily used in similar photosensitive resin compositions will be suitable. Specifically, ethers, such as benzoin ether and/or acetophenone and its derivatives are commonly used as photopolymerization initiators. One particularly preferred initiator is 2,2-dimethoxy-2-phenylacetophenone. The amount of the initiator can be any effective concentration which will allow the formation of a base layer to the flexographic printing plate via a back exposure of a reasonable length of time, and the formation of a relief image with the required resolution. The effective amount of photopolymerization initiator will depend upon the initiator chosen and the desired thickness of the resultant printing plate. For 2,2-dimethoxy-2-phenylacetophenone, an effective concentration is between 0.1% and 1.5% by weight in the photopolymer resin, most preferably between 0.3% and 1.0% by weight.[0030]
In addition to all of the above the photosensitive resin compositions of the current invention may also, optionally, comprise slip additives, dyes, stabilizers and other additives of a similar nature which are typically added to photosensitive resin compositions.[0031]
The following examples are given as illustrative of the current invention but should not be taken as limiting:[0032]