FIELD AND BACKGROUND OF THE INVENTIONThe present invention relates to medical procedures that are performed with reference to images of the patient and, more particularly, to medical procedures performed with reference to projective images such as fluoroscope images, and also to medical procedures performed with reference to images acquired prior to, and independently of, the procedures.[0001]
Images of the interiors of patients commonly are used to guide the performance of invasive medical procedures on the patients. Bucholtz, in U.S. Pat. No. 5,383,454, Ferre et al., in U.S. Pat. No. 5,829,444 and U.S. Pat. No. 5,873,822, and Bourman, in U.S. Pat. No. 5,902,239, teach the navigation of a probe, such as a catheter, within the body of a patient, with reference to previously acquired images. Barrick, in U.S. Pat. No. 5,772,594, teaches fluoroscopic imaging of a bone prior to the insertion therein of a guide pin or screw with reference to the image.[0002]
Two kinds of imaging modalities are in common use. Representational images, such as CT images, MR images and ultrasound images, represent physical properties of the patient's body at particular locations therein. For example, each pixel of a 2D digital ultrasound image of a patient represents an acoustic impedance contrast at a corresponding point inside the patient's body, and each voxel of a 3D CT image volume represents the density of the patient's body tissue at a corresponding point inside the patient's body. Projective images, such as fluoroscopic X-ray images, represent projections of physical properties of the patient's body into a plane. For example, each point in a fluoroscopic X-ray image is an integral along a ray, from the X-ray source to the X-ray image, of the density of the patient's body tissue.[0003]
Two prior art references of particular note are Gilboa et al, WO 00/10456 and WO 00/16684, both of which documents are incorporated by reference for all purposes as if fully set forth herein. WO 00/10456 teaches intra-body navigation of a probe in conjunction with imaging by a C-mount fluoroscope. WO 00/16684 teaches the use of a representational imaging device, such as an ultrasound probe, in conjunction with the C-mount fluoroscope of WO 00/10456, for the purpose of identifying and recording points-of-interest, within the body of the patient, towards which the probe subsequently is navigated FIG. 1A, which is adapted from FIG. 2 of WO 00/16684, shows a[0004]patient24 lying on anoperation platform34 and being imaged by a C-mount fluoroscope22. Acatheter26 is navigated within abody cavity28 ofpatient24. This navigation is enabled by the provision of atransmitter30 of electromagnetic radiation underplatform34, areceiver40 of electromagnetic radiation rigidly attached tofluoroscope22, and areceiver32 of radiation rigidly attached tocatheter26, all three of which are connected bywires51 to acomputer50.Fluoroscope22 is used to acquire an image of a portion of the body ofpatient24 that includesbody cavity28 As explained in WO 00/10456,transmitter30 defines a reference frame, and the signals received bycomputer50 fromreceivers40 and32 in response to the electromagnetic radiation transmitted bytransmitter30 are indicative of the locations and orientations offluoroscope22 andcatheter26 relative to the reference frame. Given these locations and orientations,computer50 displays, on adisplay unit48, the image ofbody cavity28 acquired byfluoroscope22, with anicon representing catheter26 superposed on the image in the true location and orientation ofcatheter26 relative tobody cavity28.
Because[0005]patient24 may move, relative toplatform34, during the medical procedure,patient24 also is provided with areceiver38 of electromagnetic radiation.Computer50 computes, from the signals received fromreceiver38 in response to the electromagnetic radiation transmitted bytransmitter30, the location and orientation of the body ofpatient24 relative to the reference frame. This is in addition to the computation, bycomputer50, from the signals received fromreceiver40, of the location and orientation offluoroscope22 relative to the reference frame, and in addition to the computation, bycomputer50, from the signals received fromreceiver32, of the location and orientation ofcatheter26 relative to the reference frame.Computer50 records the location and orientation ofpatient24 when the image ofbody cavity28 is acquired. Ifpatient24 does moves,computer50 adjusts the joint display of the image and the catheter icon ondisplay unit48 to reflect the movement ofpatient24, so that the catheter icon always is displayed in a manner that reflects the true location and orientation ofcatheter26 relative tobody cavity28.
As alternatives to[0006]receivers32 and44,catheter26 andpatient24 are provided with respectiveimageable markers46 and44.Computer50 locates the shadows ofmarkers46 and44 in the image, using standard image processing techniques, and computes, from the locations of these shadows, the locations and orientations ofcatheter26 andpatient24.
A[0007]representational imaging device52, equipped with areceiver40aof electromagnetic radiation, also is provided, to acquire a representational image of a portion of the body ofpatient24 that overlaps with the portion of the body ofpatient24 that is acquired usingfluoroscope22.Computer50 computes, from the signals received fromreceiver40ain response to the electromagnetic radiation transmitted bytransmitter30, the location and orientation ofimaging device52 relative to the reference frame.Computer50 then displays the representational image, ondisplay unit48, superposed on the image acquired byfluoroscope22, so that a point-of-interest, towards whichcatheter26 is to be navigated, can be picked ondisplay unit48, even prior to the introduction ofcatheter26 intobody cavity28. Improved methods of effecting this superposition are taught by Gilboa et al. in PCT application US99/26826, which also is incorporated by reference for all purposes as if fully set forth herein. Becausecomputer50 tracks the movement of bothpatient24 andcatheter26, an icon representing the point-of-interest is displayed ondisplay unit48 in a manner that represents the true location of the point-of-interest inbody cavity28, so thatcatheter26 can be navigated to the point-of-interest with reference to the relative locations, as displayed bydisplay unit48, of theicon representing catheter26 and of the icon representing the point-of-interest.
[0008]Representational imaging device52 may be external to the body ofpatient24, as illustrated in FIG. 1A, or internal to the body ofpatient24. The specific example ofrepresentational imaging device52 that is presented in WO 00/16684 is an intracardiac ultrasound probe that is used to image and identify the fossa ovalis of the cardiac septum and one or more of the openings of pulmonary veins. These points within the heart may be targets of ablation for treating atrial fibrillation, and so constitute points-of-interest within the heart (as body cavity28) ofpatient24. Following the representational imaging of these targets byintracardiac ultrasound probe52 and the picking of the points-of-interest,intracardiac ultrasound probe52 is withdrawn and anablating catheter26 is navigated towards the points-of-interest.
[0009]Transmitter30 is an example of what is called in WO 00/16684 a “locating implement”.Receivers32,38,40 and40aare examples of what is called in WO 00/16684 “location implements”.Transmitter30, together withreceiver32,38,40 or40aconstitute what is called in WO 00/16684 a “locating system”. In the present context, the location and the orientation of an object are called the “disposition” of the object, so what WO 00/16684 calls a “locating system” is called herein a “disposing system”. Similarly, what WO 00/16684 calls a “locating implements is called herein a “disposing implement”, and what WO 00/16684 calls a “location implement” is called herein a “disposition implement”. The term “location system” is used herein to refer, not only to systems that measure both the location and the orientation of an object, but also to systems that measure only the location of an object; such a system includes a locating implement and a location implement. Note that when multiple disposing systems are used, one disposing instrument may be shared by all the disposing systems as is the case withtransmitter30, in which case the shared disposing instrument defines a common reference frame for all the disposing systems; or, alternatively, one disposition implement may be shared by all the disposing systems, in which case the shared disposition instrument defines a common reference frame for all the disposing systems. Common examples of disposing systems include electromagnetic disposing systems, magnetic disposing systems, acoustic disposing systems and stereopair optical systems.
One invasive medical procedure for which the prior art methods are not quite suitable is the deployment of a stent in a partially blocked coronary artery. This procedure commonly is performed by injecting a contrast agent into the target coronary artery tree and then navigating a catheter that bears the stent towards the target blockage with the help of X-ray angiographic images acquired in real time by a fluoroscope such as[0010]fluoroscope22. In this case, the points-of-interest are the blockage itself, and the branches of the coronary artery tree that must be traversed on the way to the blockage. In principle, the prior art discussed above can be used to identify the points-of-interest, provided that these points-of-interest can be picked on the image provided byrepresentational imaging device52. For example,representational imaging device52 may be a CT scanner: the contrast agent, being X-ray opaque, shows tip in both the projective images acquired usingfluoroscope22 and the representational CT scan acquired using the CT scanner. This has the disadvantage of requiring the use of two imaging modalities, one of which (CT) is not suitable for real-time imaging. Furthermore, it is relatively difficult to register a CT image volume with a fluoroscopic image.
There is thus a widely recognized need for, and it would be highly advantageous to have, a method, of navigating a probe to a point-of-interest in a body cavity of a patient, that is based on a single projective imaging modality.[0011]
A CT scanner produces its representational image volume by appropriate processing (typically, by backprojection) of a set of projective images. In principle, then, it should be possible to use[0012]fluoroscope22 itself as both a projective imager and a representational imager. Yeung, in U.S. Pat. No. 5,588,033, which is incorporated by reference for all purposes as if fully set forth herein, teaches the reconstruction of a binary (two-level) image volume from a relatively small set of projective radiographic images. In principle, a similar reconstruction should be possible using fluoroscopic images acquired at different dispositions relative topatient24. In particular, in the stent deployment discussed above, a binary representational image volume of the contrast agent in the coronary artery tree would show the portion of the coronary artery tree that contains the contrast agent at one of the two display levels (e.g., “1”) and the rest of the imaged portion of the patient's body at the other level (e.g., “0”), and so would suffice to allow picking of the points-of-interest. In practice, however,fluoroscope22 lacks sufficient mechanical stability to allow accurate reconstruction of even a binary image volume. Known successful reconstructions of image volumes from 2D projective images all require very accurate positioning of the imaging apparatus. Conventional CT scanners include heavy and very accurate mechanisms for rotating their X-ray sources and detectors and similarly heavy and accurate sliding mechanisms for moving the platform on which the patient lies. Yeung uses a stereotactic localizer frame to provide the required dispositional accuracy.
There is thus a widely recognized need for, and it would be highly advantageous to have, a method of transforming a set of projective images, acquired using a projective imager of limited mechanical stability, into a representational image volume.[0013]
Returning to the procedure for deploying a stent in a coronary artery, the fluoroscope commonly is placed in a disposition relative to the patient that is expected to give the best projective view of the target coronary artery tree. The contrast agent is injected into the coronary tree, and the projective image is acquired and digitized. This projective image is used as a background “road map” for catheter navigation with the help of other images subsequently acquired of the target coronary artery tree, but only if the fluoroscope and the patient remain in the same relative disposition. Movement of either the fluoroscope or the patient renders this projective image useless as a road map. In particular, if the disposition of the fluoroscope relative to the patient turns out to be suboptimal, or if the patient must be imaged from several dispositions of the fluoroscope in order to give an adequate picture of the three-dimensional structure of the coronary artery tree, then for each new disposition of the fluoroscope, the contrast agent must be injected anew and a new road map must be acquired. This exposes both the medical team and the patient to additional X-radiation, and also exposes the patient to the danger of liver damage from repeated injections of the contrast agent.[0014]
There is thus a widely recognized need for, and it would be highly advantageous to have, a method of acquiring and using X-ray angiographic road maps without undue danger to either the patient or the medical team.[0015]
SUMMARY OF THE INVENTIONAccording to the present invention there is provided a method of navigating a probe to a target point-of-interest in a body cavity of a patient, including the steps of: (a) acquiring a plurality of projective images of at least a portion of the body cavity, using a projective imaging device, each projective image being acquired with the projective imaging device in a different respective disposition relative to a reference frame; (b) for each projective image, measuring the respective disposition of the projective imaging device; (c) estimating a location of the target point-of-interest, relative to the reference frame, from the projective images, the estimating being based on the measured dispositions of the projective imaging device; (d) inserting the probe into the body cavity; (e) measuring a location of the probe relative to the reference frame; and (f) moving the probe, within the body cavity, so as to minimize a difference between the measured location of the probe and the estimated location of the target point-of-interest.[0016]
According to the present invention there is provided a navigating system for navigating a probe to a point-of-interest in a body cavity of a patient, including: (a) a projective imaging device for acquiring a plurality of projective images of at least a portion of the body cavity; (b) a disposing system for measuring, for each projective image, a respective disposition of the projective imaging device relative to a reference frame; (c) a mechanism for estimating a location of the point-of-interest, relative to the reference frame, from the projective images, the estimating being based on the measured dispositions of the projective imaging device; and (d) a locating system for measuring a location of the probe relative to the reference frame.[0017]
According to the present invention there is provided a method of acquiring an image volume of a body, including the steps of: (a) for each of a plurality of nominal dispositions of a projective imaging device relative to a reference frame: (i) measuring an actual disposition of the projective imaging device relative to the reference frame, (ii) if the actual disposition is not substantially the same as the each nominal disposition, moving the projective device until the actual disposition is substantially the same as the each nominal disposition, and (iii) acquiring a respective projective image of the body, using the projective imaging device at the each nominal disposition; and (b) transforming the plurality of projective images into the image volume.[0018]
According to the present invention there is provided an imaging system for acquiring an image volume of a body, including: (a) a projective imaging device for acquiring projective images of the body; (b) a disposing system for measuring dispositions of the projective imaging device relative to a reference frame; (c) a mechanism for moving the projective imaging device among a plurality of nominal dispositions thereof, with reference to the measured disposition; and (d) a processor for transforming the projective images into the image volume, each projective image having been acquired at a different respective nominal disposition.[0019]
According to the present invention there is provided a method of acquiring an image volume of a body, including the steps of: (a) for each of a plurality of dispositions of a projective imaging device relative to a reference frame: (i) moving the imaging device to the disposition, as measured by a disposing system, and (ii) acquiring a respective projective image of the body; and (b) transforming the projective images into the image volume according to the measurements of the dispositions.[0020]
According to the present invention there is provided an imaging system for acquiring an image volume of a body, including: (a) a projective imaging device for acquiring projective images of the body; (b) a disposing system for measuring dispositions of the projective imaging device relative to a reference frame; and (c) a processor for transforming the projective images into the image volume according to the measured dispositions.[0021]
According to the present invention there is provided a method of acquiring an output image volume of a body, including the steps of: (a) for each of a plurality of actual dispositions of a projective imaging device: (i) moving the projecting imaging device to the each actual disposition, and (ii) acquiring a respective projective image of the body, using the projective imaging device at the each actual disposition; (b) based on the projective images, estimating the actual dispositions; and (c) based on the estimated dispositions, transforming the projective images into the output image volume.[0022]
According to the present invention there is provided an imaging system for acquiring an image volume of a body, including: (a) a projective imaging device for acquiring a plurality of projective images of at least a portion of the body at actual respective dispositions of the projective imaging device; and (b) a processor for estimating the actual dispositions from the projective images and for transforming the projective images into the image volume, the transforming being based on the estimated dispositions.[0023]
According to the present invention there is provided a method of navigating a probe in a body cavity of a patient, including the steps of: (a) acquiring a plurality of images of at least a portion of the body cavity, using an imaging device, while measuring, for each image, a respective disposition of the imaging device relative to a reference frame, each image being acquired at a different respective disposition; (b) selecting one of the first images to use as a guide image; and (c) displaying the guide image along with an icon representative of a disposition of the probe within the body cavity.[0024]
According to the present invention there is provided a method of treating a body of a patient, including the steps of: (a) simultaneously: (i) acquiring a first image of at least a portion of the body, using an imaging device, (ii) measuring a disposition of the imaging device relative to a reference frame, and (iii) measuring a disposition of the body relative to the reference frame; (b) restoring the imaging device and the body to respective dispositions that are equivalent to the measured dispositions; and (c) performing a medical procedure on the body with reference to the first image after the restoring of the imaging device and of the body to the equivalent dispositions.[0025]
According to the present invention there is provided a method of treating a body of a patient, including the steps of: (a) simultaneously: (i) acquiring a first image of at least a portion of the body, using an imaging device, (ii) measuring a disposition of the imaging device relative to a reference frame, and (iii) measuring a first disposition of the body relative to the reference frame; (b) measuring a second disposition of the body relative to the reference frame; and (c) performing a medical procedure on the body with reference to the first image and with reference to all three dispositions.[0026]
The patient upon whom the methods of the present invention are practiced could be either a person or an animal. The term “medical procedure” as used herein should be construed as including veterinary procedures.[0027]
The term “probe” as used herein should be construed as including any device or instrument, such as a catheter, an endoscope or a surgical tool, that is introduced to the body of a patient and that is navigated towards a target for the purpose of performing a medical procedure. The medical procedures that fall within the scope of the present invention include but are not limited to diagnostic procedures and therapeutic procedures, including surgical procedures.[0028]
According to a first aspect of the present invention, a plurality of projective images of at least a portion of a body cavity are acquired by a projective imaging device such as[0029]fluoroscope22 at different respective dispositions relative to a reference frame, while measuring these dispositions, for example by using a disposing system. Each projective image includes a point that corresponds to a target point-of-interest in the body cavity; these points in the projective images are termed herein “projections” of the target point-of-interest. A location of the point-of-interest, relative to the reference frame, is estimated, preferably by picking the projections of the point-of-interest on two or more projective images, constructing rays corresponding to the picked projections, and computing the location, relative to the reference frame, of the point-of-nearest-mutual-approach of the rays. The projections may be picked manually. Alternatively, the projections are picked manually on a first projective image and automatically on subsequent projective images, for example by using standard image processing and feature recognition techniques to track the projection from image to image. Alternatively, the projective images are displayed successively and repeatedly, along with an icon that represents a point in space. The coordinates of the point are varied until the icon substantially coincides with all the projections. Alternatively, the projective images are transformed into an image volume, preferably by backprojection, and the target point-of-interest is picked directly in the image volume.
With the location of the target point-of-interest relative to the reference frame now known, a probe is inserted in the body cavity. The location of the probe is measured, preferably using a locating system, and the probe is moved towards the target point-of-interest.[0030]
Preferably, a contrast agent is introduced to the imaged portion of the body cavity prior to imaging.[0031]
Preferably, the location of at least one intermediate point-of-interest, relative to the reference frame, also is estimated from the projective images, and the probe is moved towards the target point of interest with reference to a display of icons that represent the estimated locations of the points-of-interest and the measured location of the probe. This display may be from any convenient point of view. In particular, this display may be from a point of view different from the points of view from which the projective images were acquired.[0032]
A system for implementing the first aspect of the present invention includes a projective imaging device for acquiring the projective images; a disposing system for measuring the disposition of the projective imaging device relative to the reference frame as the images are acquired; a mechanism for estimating the location of the point-of-interest relative to the reference frame, based on the acquired images; and a locating system for measuring the location of the probe in the reference frame.[0033]
Preferably, the disposing system includes a disposition implement associated with the projective imaging device and a disposing implement associated with the reference frame. Alternatively, the disposing system includes a disposing implement associated with the projective imaging device and a disposition implement associated with the reference frame. Preferably, the disposing system is an electromagnetic disposing system, a magnetic disposing system, an acoustic disposing system or a stereopair optical system.[0034]
Preferably, the locating system includes a location implement associated with the projective imaging device and a locating implement associated with the reference frame. Alternatively, the locating system includes a locating implement associated with the probe and a location implement associated with the reference frame. Preferably, the locating system is an electromagnetic locating system, a magnetic locating system or an acoustic locating system.[0035]
The accurate transformation of projective images into an image volume is addressed by a second aspect of the present invention, intended for use with a relatively mechanically unstable projective imaging device such as[0036]fluoroscope22.
According to a first variant of the second aspect of the present invention, the projective images are transformed into the image volume, preferably by backprojection, according to respective nominal dispositions of the projective imaging device relative to a reference frame. To ensure that the projective imaging device really is in these nominal dispositions when the projective images are acquired, the actual dispositions of the projective imaging device are measured. If an actual disposition differs from the corresponding nominal disposition, the projective imaging device is moved until the actual disposition substantially coincides with the nominal disposition, and only then is the corresponding image acquired. The projective image device may be moved manually, or automatically via a feedback loop. The corresponding imaging system includes the projective imaging device, a disposing system for measuring the dispositions of the projective imaging device, a mechanism for moving the projective imaging device to make the actual dispositions coincide with the nominal dispositions, and a processor for transforming the projective images into the image volume.[0037]
According to a second variant of the second aspect of the present invention, the dispositions of the projective imaging device are measured explicitly as the projective images are acquired, and the acquired projective images are transformed into the image volume according to the measured dispositions, preferably by backprojection. The corresponding imaging system includes the projective imaging device, a disposing system for measuring the dispositions of the projective imaging device, and a processor for transforming the projective images into the image volume according to the measured dispositions of the projective imaging device.[0038]
Preferably, the disposing system, of the devices of the first and second variants of the second aspect of the present invention, includes a disposition implement associated with the projective imaging device and a disposing implement associated with the reference frame. Alternatively, this disposing system includes a disposing implement associated with the projective imaging device and a disposition implement associated with the reference frame. Preferably, this disposing system is an electromagnetic disposing system, a magnetic disposing system, an acoustic disposing system or a stereopair optical system.[0039]
According to a third variant of the second aspect of the present invention, the projective images are transformed into the image volume, preferably by backprojection, according to respective actual dispositions of the projective imaging device. Because these actual dispositions are not known initially with sufficient accuracy to effect the transformation, these actual dispositions are estimated from the projective images themselves, and the transformation then is based on the estimated dispositions. Preferably, the estimating of the actual dispositions is effected by transforming the projective images into a working image volume, on the assumption that the images were acquired at respective computational dispositions of the projective imaging device; and then correcting the computational dispositions, on the basis of the preliminary image volume, to obtain the estimated dispositions. Preferably, the correcting of the computational dispositions is effected by, for each computational disposition, computing a respective synthetic projective image from the working image volume; comparing the synthetic projective image to the corresponding acquired projective image; estimating, based on the comparison, the difference between the computational disposition and the actual disposition; and adjusting the computational disposition by subtracting this difference from the computational disposition. This transforming of the acquired projective images into the working image volume, and this correcting of the computational dispositions, are iterated until the estimated differences between the computational dispositions and the actual dispositions are negligible.[0040]
The imaging system of the third variant of the second aspect of the present invention includes the projective imaging device and a processor for performing the relevant calculations.[0041]
Preferably, in all three variants of the second aspect of the present invention, the projective imaging device is a fluoroscope.[0042]
According to a third aspect of the present invention, directed at navigating a probe within the body cavity of the patient, a plurality of first images of at least a portion of the body cavity is acquired at different respective dispositions of the imaging device relative to a reference frame, while measuring these dispositions. One of the first images is selected as a guide image, and the guide image is displayed along with an icon that represents the true disposition of the probe within the body cavity.[0043]
Preferably, the dispositions of the imaging device are measured using a disposing system that includes a disposition implement associated with the imaging device and a disposing system associated with the reference frame. Alternatively, the dispositions are measured using a disposing system that includes a disposing implement associated with the imaging device and a disposition implement associated with the reference frame. Preferably, the disposing system is an electromagnetic disposing system, a magnetic disposing system, an acoustic disposing system or a stereopair optical system.[0044]
Preferably, a contrast agent is introduced to the portion of the body that is to be imaged prior to acquiring the plurality of first images.[0045]
To facilitate the correct display of the icon, the disposition of the probe relative to the common reference frame also is measured. Preferably, the disposition of the probe is measured using a disposing system that includes a disposition implement associated with the probe and a disposing implement associated with the reference frame. Alternatively, the disposition of the probe is measured using a disposing system that includes a disposing implement associated with the probe and a disposition implement associated with the reference frame. Preferably, the disposing system is an electromagnetic disposing system, a magnetic disposing system or an acoustic disposing system.[0046]
Also according to the third aspect of the present invention, directed towards invasive medical procedures generally, a first image of at least a portion of the body of a patient is acquired while measuring both the disposition of the imaging device and the disposition of the patient relative to a common reference frame. Subsequently, both the body of the patient and the imaging device are restored to dispositions that are equivalent to the dispositions of the body of the patient and of the imaging device when the first image was acquired, and a medical procedure is performed on the body of the patent with reference to the first image. “Equivalent dispositions”, as understood herein, means that the disposition of the body of the patient relative to the imaging device (or equivalently, of the imaging device relative to the body of the patient) after restoration is the same as when the first image was acquired.[0047]
Preferably, the dispositions of the body of the patient and of the imaging device are measured using disposing systems that include respective disposition implements associated with the imaging device and with the body of the patient and a common disposing system associated with the reference frame. Alternatively, the dispositions are measured using disposing systems that include respective disposing implements associated with the imaging device and with the body of the patient and a common disposition implement associated with the reference frame. Preferably, the disposing systems are electromagnetic disposing systems, magnetic disposing systems, acoustic disposing systems or stereopair optical systems.[0048]
Preferably a contrast agent is introduced to the portion of the body that is to be imaged prior to acquiring the first image.[0049]
Preferably, the medical procedure includes navigating a probe to a point-of-interest in the targeted portion of the patient's body, with reference to the first image.[0050]
Preferably, after the body of the patient and the imaging device are restored to their equivalent dispositions, a second image is acquired, and the medical procedure is performed with reference to both images. If the medical procedure includes navigating a probe to a point-of-interest in the targeted portion of the patient's body, then the disposition of the probe relative to the common reference frame also is measured. Preferably, the disposition of the probe is measured using a disposing system that includes a disposition implement associated with the probe and a disposing implement associated with the common reference frame. Alternatively, the disposition of the probe is measured using a disposing system that includes a disposing implement associated with the probe and a disposition implement associated with the common reference frame. Preferably, the disposing system is an electromagnetic disposing system, a magnetic disposing system or an acoustic disposing system.[0051]
Also according to the third aspect of the present invention, directed towards invasive medical procedures generally, a first image of at least a portion of the body of a patient is acquired while measuring both the disposition of the imaging device and the disposition of the patient relative to a common reference frame. Subsequently, the disposition of the patient is measured again, in case the patient has moved since the first disposition measurements, and a medical procedure is performed on the patient with reference to both the first image and all three measured dispositions.[0052]
Preferably, the dispositions of the body of the patient and of the imaging device are measured using disposing systems that include respective disposition implements associated with the imaging device and with the body of the patient and a common disposing system associated with the reference frame. Alternatively, the dispositions are measured using disposing systems that include respective disposing implements associated with the imaging device and with the body of the patient and a common disposition implement associated with the reference frame. Preferably, the disposing systems are electromagnetic disposing systems, magnetic disposing systems, acoustic disposing systems or stereopair optical systems[0053]
Preferably, a contrast agent is introduced to the portion of the body that is to be imaged prior to acquiring the first image.[0054]
Preferably, the medical procedure includes navigating a probe to a point-of-interest in the targeted portion of the patient's body. This navigation includes measuring the disposition of the probe relative to the common reference frame. Preferably, the disposition of the probe is measured using a disposing system that includes a disposition implement associated with the probe and a disposing implement associated with the common reference frame. Alternatively, the disposition of the probe is measured using a disposing system that includes a disposing implement associated with the probe and a disposition implement associated with the common reference frame. Preferably, the disposing system is an electromagnetic disposing system, a magnetic disposing system or an acoustic disposing system.[0055]
Under the third aspect of the present invention, the imaging device may be either a projective imaging device or a representational imaging device, so that the first image may be either a projective image or a representational image. The preferred projective imaging device is a fluoroscope.[0056]
An important difference between prior art computer-aided surgery and the first and third aspects of the present invention should be noted. In prior art computer-aided surgery, if a 3D image volume is used to guide the navigation of a surgical tool within the patient, then this image volume is acquired prior to surgery. That guide image volume then must be registered to the frame of reference of the disposing system that is used to track the surgical tool. Because the locations of the intermediate points of interest of the first aspect of the present invention, as well as the guide image of the third aspect of the present invention, are acquired with the help of location and disposition systems that share a common component that is associated with a common reference frame, no such registration is necessary. For example, in FIG. 1A, the location system (under the first aspect of the present invention) or the disposition system (under the third aspect of the present invention) for[0057]catheter26 includestransmitter30 andreceiver32; the disposition system forfluoroscope22 includestransmitter30 andreceiver40; and the disposition system for the body ofpatient24 includestransmitter30 andreceiver38, with a common reference frame for all threereceivers32,38 and40 being refined bycommon transmitter30.