BACKGROUND OF INVENTIONThis invention relates generally to aerosolizable stable suspensions of proteins in ethanol. The suspensions of the invention are particularly suited for inhalation delivery using electrostatic or electrohydrodynamic aerosol devices to produce the aerosol.[0002]
Pulmonary delivery of therapeutic agents by means of inhaled aerosols is an area of increasing importance in the biotechnology and pharmaceutical industries. Electrostatic or electrohydrodynamic devices which are capable of generating inhalable aerosols with certain preferred properties frequently require liquid formulations containing one or more aqueous solvents such as water, an organic solvent such as an alcohol, or a mixture of an aqueous and an organic solvent.[0003]
Biological molecules such as proteins are frequently difficult to formulate in certain solvents or solvent systems (e.g., mixtures of water and organic solvents) because organic solvents tend to compromise the stability of the protein in solution. Proteins dissolved or suspended in liquid solvent systems typically suffer from chemical or physical degradation, thereby resulting in a formulation with little or no shelf-life. Stabilization of the protein in a given solvent system is therefore necessary to sustain the activity of a given protein.[0004]
In order to be useful in a pharmaceutical application, proteins require processing and storage conditions, which do not diminish a given protein's biological function. To prevent the loss of native conformation, proteins must be protected from the chemical decomposition (e.g. by deamidation) and physical instability, which results from the disruption of non-covalent interactions. Aggregation, precipitation, and adsorption (especially on hydrophobic surfaces) are examples of such disruption.[0005]
One of the most important and commonly used therapeutic proteins is insulin. Insulin tends to polymerize and form aggregates, which prevent the delivery of insulin in certain drug delivery systems. This aggregated insulin may not have required pharmacological properties and may induce abnormal immune response (Chawla et al.,[0006]Diabetes34: 420-425, 1985). Thus, maintenance of insulin's biological activity is essential for more traditional insulin administration such as portable/implantable continuous infusion pumps and controlled release polymeric devices and systems. Furthermore, insulin aggregation leads to significant reductions in biological potency and obstruction of delivery routes, thereby creating serious complications for drug delivery systems and diminishing the patient's abilities to control their blood glucose levels.” Sluzky et al.,Biotechnology and Bioengineering40: 895-903 (1992). Thus, there is a need for a method for stabilizing insulin and other proteins in liquid formulations utilized in electrostatic or electrohydrodynamic aerosol drug delivery systems.
Stabilization methodologies for certain biological molecules are known in the art. For example, WO 98/29097 discloses compositions for increasing bioavailability through muscosal delivery, which includes mixtures of bioactive agents, and hydrophobically derivatized carbohydrates in powdered form. Similarly, WO 99/33853 discloses derivatized carbohydrates, which can be used to form a variety of materials, including solid delivery systems.[0007]
U.S. Pat. No. 4,439,421 issued to Hooper et al. (1984) discloses a stabilized gamma globulin concentrate in dry form, which utilizes polysaccharides including, branched and unbranched polymers of five and/or six carbon sugars. U.S. Pat. No. 5,547,873 issued to Magneson et al. (1996) discloses a composition for stabilizing proteins for long-term dry storage, which includes a glass-forming sugar.[0008]
While being effective at stabilizing certain biomolecules under certain conditions, the related art deals primarily with dry power or other solid systems, and do not offer methods or compositions for stabilizing biomolecules in liquid solvent systems suitable for use in electrostatic or electrohydrodynamic aerosol devices and systems.[0009]
These and other deficiencies of the prior art are overcome by the present invention, which provides methods and compositions for stabilizing proteins in liquid ethanol formulations that may be aerosolized aerosol drug delivery devices. These novel formulations are stable over extended periods, and as such, provide distinct advantages over other methods of formulating proteins in liquids that are compatible with aerosol drug delivery devices.[0010]
SUMMARY OF INVENTIONThe present invention is directed to a stable suspension of a biologically active protein suited for aerosol delivery to the respiratory tract of a patient in need of treatment comprising particles of said protein suspended in ethanol. In a preferred embodiment, the invention describes a stable suspension of insulin useful for aerosol delivery to the lungs of a patient in need of treatment comprising particles of a pharmaceutically effective amount of insulin suspended in ethanol. The stable ethanol suspensions of the invention may optionally contain up to about 20% (V/V) of a pharmaceutically acceptable formulation additive such as glycerol, propylene glycol and polyethylene glycol as well as minor amounts (from about 0.05% to about 5.0% W/V) of a pharmaceutically acceptable excipient.[0011]
The invention is further directed to a method of delivering a therapeutically effective amount of a protein to the respiratory tract of a patient in need of treatment which comprises producing an aerosol of a stable liquid suspension of said protein using an electrohydrodynamic spraying means wherein said liquid suspension comprises particles of said protein suspended in ethanol.[0012]
According to the present invention, one method for stabilizing a protein in ethanol includes the step of making a suspension of a protein in ethanol by means of over-saturating ethanol with the protein, thereby promoting the formation of crystals of the protein. In an alternative method, protein crystals are added to ethanol at a high concentration to form a suspension, whereby the protein remains crystallized and does not dissolve.[0013]
DETAILED DESCRIPTION OF INVENTIONThe present invention is directed to a stable suspension of a biologically active protein suited for aerosol delivery to the respiratory tract of a patient in need of treatment comprising particles of said protein suspended in ethanol. In a preferred embodiment, the invention describes a stable suspension of insulin useful for aerosol delivery to the lungs of a patient in need of treatment comprising particles of a pharmaceutically effective amount of insulin suspended in ethanol. The stable ethanol suspensions of the invention may optionally contain up to about 20% (V/V) of a pharmaceutically acceptable formulation additive such as glycerol, propylene glycol and polyethylene glycol as well as minor amounts (from about 0.05% to about 5.0% W/V) of a pharmaceutically acceptable excipient.[0014]
The invention is further directed to a method of delivering a therapeutically effective amount of a protein to the respiratory tract of a patient in need of treatment which comprises producing an aerosol of a stable liquid suspension of said protein using an electrohydrodynamic spraying means wherein said liquid suspension comprises particles of said protein suspended in ethanol.[0015]
According to the present invention, one method for stabilizing proteins in an ethanol entails making a suspension of a protein such as insulin in ethanol by means of over-saturating the ethanol with the protein. Preferably, the protein molecules are dissolved or suspended in ethanol, at concentrations, which promote the formation of crystals of the protein. In an alternative method, protein crystals are added to an ethanol at a high concentration to form a suspension, whereby the protein remains crystallized and does not dissolve. In a preferred embodiment of the present invention, the biological molecule is insulin.[0016]
As used herein, the term “stable” or “stability” is used to mean preservation of the biological activity of a protein.[0017]
The term “suspension” as used herein is given its ordinary meaning and refers to particles of protein or aggregates of particles of protein suspended in a liquid.[0018]
The stable suspensions of the invention are useful for preparing aerosols for the delivery of therapeutic proteins to the respiratory tract. The term “respiratory tract” includes the upper airways, including the oropharynx and larynx, followed by the lower airways, which include the trachea followed by bifurcations into the bronchi and bronchioli. The upper and lower airways are called the conductive airways. The terminal bronchioli then divide into respiratory bronchioli, which then lead to the ultimate respiratory zone, the alveoli, or deep lung. Gonda, I. “Aerosols for delivery of therapeutic and diagnostic agents to the respiratory tract,” in Critical Reviews in Therapeutic Drug Carrier Systems, 6: 273-313, (1990). Usually, the deep lung, or alveoli, is the primary target of inhaled therapeutic aerosols for systemic delivery.[0019]
The term “biologically active protein” includes proteins and polypeptides that are used for diagnostic and reagent purposes as well as proteins and polypeptides that are administered to patients as the active drug substance for treatment of a disease or condition. Contemplated for use in the compositions of the invention are proteins and polypeptides such as enzymes, e.g., ascorbate oxidase, peroxidase, catalase, glucose oxidase, chymotripsin, lactate dehydrogenase and glucose-6-phosphate dehydrogenase; antibodies, e.g. Herceptin® (trastuzumab), Orthoclone OKT®3 (muromonab—CD3); hormones, e.g., insulin and human growth hormone (HGH); growth factors, e.g., fibroblast growth factor (FGF), nerve growth factor (NGF), human growth hormone releasing factor (HGHRF), and cytokines, e.g., leukemia inhibitory factor (LIF), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-11 (IL-11), interleukin-9 (IL-9), oncostatin-M (OSM), and Factor VIII.[0020]
In addition to enzymes and antibodies used in diagnostic tests or in in vitro assays, the term “biologically active” includes proteins that are administered to a patient in a “pharmaceutically effective amount” to treat a disease or condition. As would be recognized by one skilled in the art, by “pharmaceutically effective amount” is meant an amount of a pharmaceutical protein having a therapeutically relevant effect on the disease or condition to be treated. A therapeutically relevant effect relieves to some extent one or more symptoms of the disease or condition in a patient or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease or condition. Specific details of the dosage of a particular active protein drug may be found in its labeling, i.e., the package insert (see 21 CFR §201.56 & 201.57) approved by the United States Food and Drug Administration.[0021]
The stable protein suspensions of the invention may optionally contain up to about 20.0% (V/V) of a formulation additive and preferably no more than about 10.0% (W/V). The term “formulation additive” refers to a pharmaceutically acceptable organic liquid, which may be added to the ethanol suspensions of the invention to enhance the sprayability of the liquid protein suspension using an electrostatic spraying means. Contemplated for use, as formulation additives in the stable protein suspensions of the invention are polyhydric alcohols, e.g., glycerol and propylene glycol and polyglycols such as polyethylene glycol. The formulation additive should be pharmaceutically acceptable, that is, recognized by the US Food and Drug Administration as being safe for use in humans.[0022]
As would be recognized by the skilled artisan, the stable protein suspensions of the invention may optionally include “minor amounts”, that is from about 0.05% to about 5.0% W/V and preferably from about 0.05% to from about 1.0% of a pharmaceutically acceptable excipient. Pharmaceutically acceptable excipients are those recognized by the FDA as being safe for use in humans. Additives such as, surfactants, e.g., ethoxylated dodecyl alcohol, antioxidants, e.g., Vitamin E and ascorbic acid, antimicrobials, e.g., parabens and suspending agents, e.g., povidone are contemplated for use herein.[0023]
While the selection of any particular excipient is within the skill of the art, as will be recognized the decision regarding whether to add an excipient and if so which one, will be made taking into account the purpose of the excipient in a specific ethanol protein suspension.[0024]
In order to be pharmaceutically acceptable any formulation additive or excipient used in a stable suspension of the invention should be recognized by the FDA as safe for use with humans. Additionally, an excipient should have no effect or minimal effect on the stability of the protein in the ethanol suspension or on the sprayability of the suspensions using and electrostatic spraying means.[0025]
Formulations comprising suspensions of protein in ethanol, may be prepared using standard crystallization techniques, or by means of simply over-saturating the formulation with the protein. These formulations are useful for the stabilization of proteins under storage conditions and under conditions used for therapeutic delivery of various proteins. Crystalline suspensions are also useful for delivering high concentrations (i.e., dosage) of a particular protein in the form of a semi-solid slurry.[0026]
In general, the particle size of the protein crystals and/or agglomerates used in the suspensions of the invention, will range from about 0.01μ to about 10.0μ in diameter. If delivery of the protein to the deep lung is the object, the particle size of the protein should preferably range from about 0.01μ to about 5.0μ in diameter and more preferably from about 0.01μ to about 3.0μ in diameter. If delivery of the protein to the upper respiratory tract is the object, the particle size of the protein may range from about 5.0μ to about 10.0μ in diameter.[0027]
Although it is preferred to use anhydrous ethanol in the suspensions of the invention, one may use “substantially” anhydrous ethanol, that is, ethanol containing up to about 5% or less of water and preferably up to about 3% or less of water in the ethanol.[0028]
The method of the invention utilizes a dispensing device for comminuting the liquid suspensions claimed herein. Dispensing devices are known which produce a finely divided spray of liquid droplets by electrostatic means (sometimes referred to as ‘electrohydrodynamic’ means).[0029]
Electrohydrodynamic (“EHD”) sprayers are particularly useful in medicine for the administration of medicaments by inhalation. Various EHD devices are known in the art, as for example, those described in U.S. Pat. No. 6,105,877 and U.S. Pat. No. 6,068,199.[0030]
The droplet spray in such EHD devices is generated by applying an electric field to a liquid located at a spray head or spray edge. The potential of the electric field is sufficiently high to provide comminution of electrically charged liquid droplets from the spray head. The electrical charge on the droplets prevents them from coagulating via mutual repulsion.[0031]
Prior to inhalation of the aerosol to the patient, it is usually necessary to partially or wholly remove the electric charge from the aerosol droplet spray produced by the electrohydrodynamic comminution device in a controlled manner.[0032]
Although other methods may be used, the principal method used to effect comminution discharge utilizes a discharging electrode having a sharp or pointed edge and located downstream from the spray head of the EHD device. The discharging electrode produces a cloud of charged ions from the surrounding air having an opposite electrical charge of equal magnitude to that on the comininuted liquid spray (aerosol). In use, the ion cloud is attracted towards, collides with, and thereby neutralizes the liquid aerosol spray.[0033]
Although the protein/ethanol suspensions of the invention are particularly suited for use with EHD devices as would be recognized by one skilled in the art such suspensions are aerosolizable using other aerosol generating devices such as a nebulizer; see WO 99/44664 which describes a pulmonary dosing system and a method for supplying to a patient a predetermined amount of respirable therapeutically active material.[0034]
Various embodiments of the present invention are illustrated by the following examples, which should not be intended to limit the scope of the invention.[0035]