BACKGROUND OF THE INVENTION1. Field of the Invention[0001]
The present invention relates generally to commodities transactions. More particularly, the present invention relates to a system for allowing automated commodities transactions to occur within limits defined by the relevant participants.[0002]
2. General Background and State of the Art[0003]
Agricultural commodities are a basic element of our economy and their exchange through transactional markets has been well established. In short, the process is extremely simple at a high level. Producers grow the various agricultural products and sell them to consumers at the best price they are able to obtain. Thus, the success of the producer depends on the price offered by the consumer and the quantities produced and ultimately sold. In practice, however, there is an extremely complex set of transactions that can actually occur in order to achieve this rather simple result.[0004]
Generally, the producers will sell and deliver their products to local intermediaries, such as elevator operators. The elevator operators then sell and deliver those products to end users/consumers (or to yet another middleman) who may be located anywhere. The elevator operator must generate a profit by selling the products at a higher price than paid to the producer, while taking into account the costs for storage and transportation. The producer realizes a profit when the products are sold to the intermediary at a price that is higher than the cost of production and transportation. One of the major considerations in these commodities transactions is that the margins are very low.[0005]
The prices for the commodities are not static and in fact can fluctuate dramatically based on any number of factors and issues. Centralized commodities exchanges have been established that allow for regulated transactions under these fluctuating conditions to occur. Through this system, the price of commodities is determinable, both at the present time and at least speculatively into the future. For example, the Chicago Board of Trade (CBOT) is such a commodities exchange and the prices indicated by that board become the de facto price of a given commodity world-wide. More accurately, the price indicated by CBOT serves as a base by which prices in given localities are determined. As an example, assume that a bushel of yellow corn is trading on CBOT for $2.00. That means, that a bushel of yellow corn delivered to Chicago, Ill. (during the specified time period that the price is good for) is worth $2.00.[0006]
Thus, if a producer can deliver his product to the Chicago area, that producer should receive the price for the commodity indicated by CBOT. In practice, this usually is not feasible. A farmer in Kansas who raises corn is usually not in a position to economically transport that corn to Chicago in quantities to make it worthwhile. Thus, the farmer delivers his corn to a local elevator operator and sells it there. The elevator operator is usually going to pay the farmer an amount that is based on the CBOT price. The price paid will depend on geographical location, transportation availability and cost, storage costs, etc.[0007]
To determine the amount paid to the local farmer, the elevator operator adds a basis price to the CBOT trading price. The basis includes the elevator's costs, such as transportation to market and costs associated with running the facilities, as well as the margin. For example, assuming transportation charges of $0.40/bushel and a margin of $0.04, the local farmer will be paid $1.56/bushel for yellow corn, when the CBOT trading price is $2.00/bushel ($2.00−$0.40−$0.04=$1.56). In this example, the elevator operator will realize a profit of $0.04/bushel when the corn is resold at the anticipated price.[0008]
This is obviously a very narrow margin for the elevator operator and this translates into a high degree of risk. Risk is incurred because delivery of the material is usually scheduled for some time after the agreement is completed. If at the time of delivery, the CBOT price has dropped the elevator operator is still obligated to pay the producer the amount agreed on. However, it will be difficult if not impossible for the elevator operator to resell the product at a price high enough to obtain his desired margin. In the above example, the margin was only $0.04. A minor shift in the commodities market can financially devastate the elevator operator.[0009]
To manage that risk, the elevator operator takes advantage of another element of the commodities exchange. For every contract that is generated with a producer, the elevator operator will place a hedge order. In the case of a cash purchase with a producer, a sell order would go into the commodities futures market. Continuing with the above example, assume that a producer wishes to sell to the elevator operator 500 bushels of yellow corn for[0010]delivery 3 month from today. Yellow corn is at $2.00/bushel at CBOT and the elevator operator agrees to pay the producer $1.56/bushel for delivery in three months. To cover his risk the elevator operator also works through a broker to sell 500 bushels of yellow corn in the futures market. The futures contract is for 500 bushels of yellow corn, deliverable in three months at a price of $2.00/bushel. If in three months when the elevator operator takes delivery from the producer, the trading price of yellow corn is down, the futures contract will prevent the elevator operator from realizing a loss. One way of looking at this is to assume that the elevator operator were to try and sell that corn on the market. Any potential buyer would look at the CBOT trading price, which is now below the $2.00 level and only be willing to pay a reduced amount. However, the elevator operator has the futures contract for a sale at the price of $2.00/bushel. Thus, the margin of $0.04 is maintained. Conversely, if the trading price goes up, purchasers will be willing to give the elevator operator an amount exceeding $2.00 a bushel, but the elevator operator still must fulfill his future contract to sell at $2.00.
Thus, the futures markets serves as a hedging tool to minimize risk for the various intermediaries, such as the elevator operators. As a practical matter, these various futures contracts are usually unwound in various ways without requiring actual delivery of the commodity. Therefore, it provides a truly advantageous function to the intermediary.[0011]
All of this simply lays a groundwork for commodities exchanges on the local level. The elevator operator negotiates with a local producer on price. When a tentative agreement is reached, the elevator operator tries to sell a futures contract to minimize risk. If an acceptable futures contract is obtained, the elevator operator then formally agrees to accept the contract with the producer. In effect, two contracts are negotiated and ratified for the sale of a commodity from a producer to an elevator operator.[0012]
As discussed above, the producerwill have various subjective and objective incentives to deal with certain elevator operators. One obvious consideration is the proximity of the elevator to the producer. Past dealings with a given elevator operator would be another consideration. Whatever the reasons may be, a given producer will have several elevator operators that they might choose to deal with. At a given time, the producer will decide to sell a quantity of a product. The producer must call these various operators to determine what they will be paying. When an elevator operator receives such a call, he must then call a broker on the CBOT to determine what the current trading price of the commodity is. Then the elevator operator subtracts his basis to determine a flat price. Assuming that elevator is capable of handling it, the elevator operator makes an offer to buy a specified quantity of the commodity and a contract is ratified. The operator then secures a futures contract for the appropriate amount with another phone call to a broker. Of course, after hearing the flat price offered, the producer may refuse to proceed or attempt to renegotiate. In the later case, more calls to the broker may be necessary to determine if the required futures contracts can be obtained.[0013]
This process is slow and tedious when it works, but at times it is completely incapable of functioning. The elevator operators may be unavailable when the producers call or unable to immediately track down the required information. The commodities exchanges are only available during certain hours, thus further limiting the process. Even when the exchanges are open, securing quotes and placing orders by telephone is often a delayed process. In short, this can be drawn out process and fails to realize a high degree of efficiency.[0014]
Therefore, there exists a need to provide an automated service that allows for interaction between producers and intermediaries that can obtain and display real-time relevant data and allow for the required hedging activities to occur at any time, while facilitating the completion of commodities transactions.[0015]
INVENTION SUMMARYThe present invention provides a platform by which producers and intermediaries can provide and obtain information related to the selling of commodities on a local level, as well as coordinating and facilitating the closing of the desired contracts.[0016]
The present invention establishes an electronic marketplace that interconnects the producers with the elevator operator, and the elevator operators with the commodities exchanges. This global marketplace allows for individual elevator operators to provide customized local information so that the relevant producers can conveniently determine pricing and availability in their areas. Producers can then negotiate with those selected elevator operators. The system provides for an automatic hedging function, wherein it is assumed that any given elevator operator will require an appropriate futures contract before agreeing to a contract with a producer. Thus, the system initiates contact with the commodities exchange, determines the availability of the desired futures contract, and if available, secures the contract for the elevator operator. Thus, one significant leg of the negotiation process is reduced in complexity.[0017]
The system can also represent the elevator operator in transactions with the producers without requiring oversight by the elevator operator. Each elevator operator that participates is given control over a portion of the system representing them. The elevator operator is then able to post predefined bids for specified products, regardless of the fluctuations of the commodities prices that will inevitably occur. Over a reasonable period of time, the elevator operator's basis will remain constant or at the very least it will be a known factor. In addition, the elevator operator will certainly know what volume of trading he would like to engage in. These factors are entered by the elevator operator into his portion of the system. The system will then repeatedly obtain the prices posted on the relevant commodities exchange and determine for each elevator operator on the system their own unique flat price. This flat price, which changes in real time in accordance with the commodities exchange is then made available to the local producers. In addition, the amount the elevator operators need during any given time period are also posted.[0018]
Once the elevator operator posts his information to his portion of the system, transactions can occur without further input from the elevator operator. For example, assume the same values discussed in the above example. The elevator operator's basis is −$0.44 for a given period of time. A producer accesses the system and views this operator's data. The current CBOT price is $2.00/bushel so the displayed flat price is $1.56/bushel. More specifically, this elevator operator is essentially posting a bid to buy yellow corn in his locality (i.e., delivered to him) for $1.56 bushel. There may be some limit imposed for both time and quantity. For example, this elevator operator may want to receive 1500 bushels, for delivery in three months time. A further limit would be that each producer can only deliver a given minimum or maximum.[0019]
Assuming this price is satisfactory to the producer, he can post a response to the bid. He may indicate that he will deliver 500 bushels of yellow corn in three months time. At this point, the system connects with the commodities exchange and attempts to obtain a futures contract to sell 500 bushels of yellow corn at $2.00/bushel. The producer is then informed that a successful contract has been generated. The elevator operator's posted information is then modified. That is, the amount still desired is appropriately reduced.[0020]
The above transaction can occur without any human intervention on the part of the elevator operator or the commodities exchange. Once the elevator operator has give the relevant information, the system can perform the necessary functions without subsequent intervention. In addition, there are automated portions of the commodities exchange that allow for after-hours trading. Of course, the system can allow human interaction at any point.[0021]
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a schematic diagram illustrating a transaction protocol for local commodities exchanges.[0022]
FIG. 2 is a schematic diagram illustrating the transaction protocol for local commodities exchanges utilizing the teachings of the present invention.[0023]
FIG. 3 is a flowchart of the illustrating the sequence of events involved in a local commodities transaction according to the teachings of the present invention.[0024]
FIG. 4 is a schematic diagram illustrating the system of the present invention.[0025]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSFIG. 1 illustrates a local commodities transaction system and is generally referred to as[0026]10. Afirst commodities producer15 has a predetermined quantity of the particular commodity that is or will be available for delivery at some known date.First producer15 may either have a volume of commodity in his possession or may be anticipating the fruition of a current or future crop. It is goal offirst producer15 to sell that commodity at the highest price obtainable within his local market structure, taking into account the cost for storing the commodity if he is unable to sell or deliver that product for some period of time, and also taking into account the cost of transportation to get the product to whomever ultimately buys it fromfirst producer15.
[0027]First elevator operator20 is in a position to buy commodities from local producers.First elevator operator20 will usually have the ability to store large volumes of any given commodity for predetermined periods of time and is also in a position to coordinate the delivery of those commodities from his own site to that of other parties. It is usually the goal offirst elevator operator20 to obtain as much of the commodity as can be resold so long as that resale price generates a sufficient profit. As previously explained, the pricing of the commodity will ultimately be determined by somecentral commodity exchange25. For example,commodity exchange25 may be the Chicago Board of Trade. By knowing what the localized cost for storage and transportation are and knowing what margin or profit is required,first elevator operator20 can generate a local price that he is willing to pay for commodities delivered to him based upon a current price indicated by thecommodities exchange25. The pricefirst elevator operator20 is willing to pay is that operator's flat price, and in most cases will be somewhat less than that proffered by thecommodities exchange25. Beforefirst elevator operator25 will engage in any transaction with a local producer, he most likely will attempt to secure a futures contract which will serve a hedging function that will minimize the risk forfirst elevator operator20.
FIG. 1 illustrates a typical scenario that could be found in any given locality. There could be any number of[0028]local producers15,30,31 and32 as well as any number ofelevator operators20,35,36 and37. It is assumed that in this locality any one of theseproducers15,30,31 and32 would be willing to do business with any one of theseelevator operators20,35,36 and37. The factors that a given producer will consider when deciding on which elevator operator to deal with can vary greatly, but usually will include past business dealings, capacity and proximity. Ultimately, any given producer will have a number of elevators that they are willing to deal with, thus the determining factor becomes what price each of those individual operators will be willing to offer. It is important to realize that each individual elevator operator will determine the price that they are willing to pay independently of any other given elevator operator.
Thus, what is represented in FIG. 1 are the actions required for[0029]first producer15 to negotiate and secure a contract withfirst elevator operator20. Initially,first producer15 initiates contact withfirst elevator operator20; usually via telephone.First producer15 indicates that he has a certain quantity of a commodity that will be available for delivery.First elevator operator20 determines whether or not he needs that quantity or a lessor quantity of that commodity delivered along the specified time line. Assuming that he does,first producer15 andfirst elevator operator20 will negotiate a tentative price. This price will often be based on recent historical pricing obtained fromcommodities exchange25 at some previous point in time. Alternatively, no tentative price is discussed at all andfirst producer15 andfirst elevator operator20 proceed simply on the basis thatfirst elevator operator20 will have the capacity and the desire to obtain the commodity if acceptable pricing can be determined. At that point,first elevator operator20 initiates contact with a futures commission merchant (FCM) associated with thecommodities exchange25. The futures commission merchant will then informfirst elevator operator20 of the current price for the commodity in question.
[0030]First elevator operator20 will then re-contactfirst producer15 and offer a flat price based on the price obtained from thecommodities exchange25. There may be some negotiation that occurs, butfirst producer15 will either accept or reject the flat price that is being offered byfirst elevator operator20. One reason to reject the price offered is thatfirst producer15 may wish to contact the remainder of thelocal elevators35,36 and37 that he is willing to do business with in order to determine which price they will be offering. Assuming, however, thatfirst producer15 is going to accept the flat price offered byfirst elevator operator20, he will indicate this tofirst elevator operator20. At that point,first elevator operator20 will re-contact the futures commission merchant associated withcommodities exchange25 and attempt to sell a futures contract for the same amount of the same commodity that he is planning on buying fromfirst producer15 at the same commodities exchange price that his flat price was determined from for the same date that delivery will be expected fromfirst producer15.
It may, in fact, not be possible to obtain such a futures contract. If that is the case,[0031]first elevator operator20 may indicate tofirst producer15 that they do not have a deal. At that point, they can either terminate the negotiation or continue to renegotiate the terms. Conversely,first elevator operator20 may be able to secure such a futures contract and will subsequently contactfirst producer15 to finalize the agreement.
At some time in the future,[0032]first producer15 will deliver the pre-determined amount of the commodity tofirst elevator operator20. At that point in time, the price indicated by thecommodity exchange25 for that commodity may have increased, decreased or remained the same. Assuming it has remained the same,elevator operator20 generates a profit by realizing a gain of the margin that went into the determination of the flat price whenfirst elevator operator20 resells the commodity to another party. If the price indicated bycommodities exchange25 has decreased,elevator operator20 will not realize his margin on a subsequent resell, but will realize that margin when his futures contract is unwound.
What has been described thus far is a complicated series of transactions that will usually occur between the[0033]first producer15,first elevator operator20 and a representative ofcommodities exchange25 in order for a single transaction to occur. When it works well, this is a slow and tedious process. There are, however, a number of factors which can prevent this process from working, even at that level. For example,first elevator operator20 may not be available for negotiations whenfirst producer15 initiates contact. Similarlycommodities exchange25 may not be open for business during the time period within whichfirst producer15 andfirst elevator operator20 are negotiating. Thus, substantial delays can be imposed. This process is seriously hampered when one considers the number of elevators and number of producers that must work together at any given locality.
Referring to FIG. 2, the[0034]virtual exchange45 of the present invention is illustrated. Through this system,producers15,30,31 and32 are brought together withelevator operators20,35,36 and37. Likewise, those elevator operators are also able to communicate with thecommodities exchange25. Central to all of these transactions is the Net Market (FHNM)45.Net Market45 is a global electronic marketplace within which eachindividual elevator operator20,35,36 and37 is provided with their own representative customized exchange display. For example,first elevator operator20 manages a small portion ofNet Market45 within which first elevator operator's20 parameters and requirements are displayed. This can include posts requesting desired amounts of commodities delivered in specified periods of time. Pricing parameters are input into theNet Market45 byfirst elevator operator20.Net Market45 communicates withcommodities exchange25 on a real-time basis. From the data obtained, relevant flat prices for each individual elevator operator are determined by modifying the realtime data obtained fromcommodities exchange25 based on the individual parameters provided by the respective elevator operators. Thus, any given producer can accessNet Market45 and obtain information about any desired or relevant elevator operator.Net Market45 can also facilitate the generation and completion of a contract between a given producer and a given elevator operator, while also automatically hedging that contract for the elevator operator on thecommodities exchange25.
Referring to FIGS. 3 and 4 the present invention will be described in greater detail. In general, the present system relies on electronic communication between the parties. Various communicative acts and resulting actions that take place can either be generated or initiated by the parties themselves, or in many cases may be automated. The level of automation, if any, will be dictated by the parties themselves. It is contemplated that the present invention will be carried out using electronic devices interconnected through a computer network or other communication mediums.[0035]
In one embodiment, such communication occurs over the Internet, represented generally as[0036]50. In general, transactions on the Internet will occur between a client terminal and a server and will often utilize the hypertext transfer protocol (HTTP). This protocol permits client systems connected to the Internet to access independent and geographically scattered server systems also connected to the Internet. Client side browsers, such as Netscape's Navigator and Microsoft's Internet Explorer provide efficient graphical user interface based client applications that implement the client side portion of the HTTP protocol. Server side application programs, generically referred to as HTTPd servers, implement the server side portion of the HTTP protocol. HTTP server applications are widely available.
The distributed system of communication and information transfer made possible by the HTTP protocol is commonly known as the World Wide Web (WWW) or as simply “the Web.” From a client side user interface perspective, a system of uniform resource locators (URLs) is used to direct the operation of a web browser in establishing transactional communication sessions with designated web server computer systems.[0037]
In use, a client computer system will seek to access to a particular document or web page located on the server system. A generally closed hypertext transfer protocol transaction is conducted between a client browser application executing on the client system and an HTTP'd server application executing on the server system. A web page is served by the server system to the client. Subsequent actions can occur by the client selecting additional URL's that may be embedded within the delivered page. In addition, specific information can be requested by the server system and the client system can provide that information so that responsive communication can occur.[0038]
As one alternative, the client may be allowed to access the server system and login as a participant in an active session. The present invention only requires that the various parties are capable of electronic communication.[0039]
[0040]Net Market45 is an HTTP server system capable of storing data and transmitting that data across the Internet once so requested. It is to be understood that a server system can include a single server or a plurality of server working together to achieve the desired result. Furthermore, the server system is meant to include both the hardware and the software necessary to make the system function as described.Producer15 andelevator operator20 each use client terminals which may be embodied in personal computers or hand held electronic devices that are capable of communication withNet Market45 viainternet50.Database55 is associated withNet Market45. Withindatabase55, eachindividual elevator operator20 has a portion allocated to that elevator operator. This apportioned data segment is an exchange structure referred to ascustomer exchange60.Elevator operator20 is able to access and customizecustomer exchange60, so that the individual attributes selected byelevator operator20 are displayable throughcustomer exchange60 when requested by a givenproducer15. In one context,customer exchange60 will be a web page or a portion of a web page obtainable through an Internet web site managed and controlled byNet Market45. That is,producer15 can issue a request throughInternet50 to the server associated withNet Market45 requesting the relevant web site. Once obtained, information indicative ofelevator operator20 will be presented in an appropriate format.Producer15 can then request the specific page or portion of a page dedicated tocustomer exchange60 associated withelevator operator20 and this information will be transmitted toproducer15 fromNet Market45. Of course, if the appropriate URL or other addressing information is known,producer15 can directly request thespecific customer exchange60. In either event,producer15 is able to obtain information fromNet Market45 that is particular and specific toelevator operator20 and is in fact, at least partially controlled byelevator operator20.
The purpose of providing such information to[0041]producer15 is to two fold. First, it simply provides information toproducer15 that is helpful in making business decisions. In addition, the present system is able to facilitate orders and contracts betweenproducer15 andelevator operator20. Reference is made to the flow chart of FIG. 3 as well as the schematic illustration of FIG. 4 to explain the process in greater detail. Atstep200,elevator operator20 initiates contact with and registers withNet Market45. A certain amount of basic information is provided toNet Market45 about elevator operator's20 business; contact, address and billing information would typically be requested and provided. While not specifically required, any information that would help a givenproducer15 evaluate a givenelevator operator20, can be selectively requested and/or provided for display throughcustomer exchange60. Such registration will usually only be required upon elevator operator's20 initial visit.Elevator operator20 also provides information related to which crops or commodities thatelevator operator20 is interested in obtaining. Atstep210,elevator operator20 will submit a basis and a corresponding futures month for a given commodity for a given period of time. As previously explained, the basis is a differential between the price the commodity is trading at on a commodities exchange, and the flat price that will ultimately be offered to theproducer15. The basis will consist of the margin or profit the elevator operator expects to receive, as well as the anticipated costs associated with marketing and transporting the product.
At[0042]step220,elevator operator20 will post bids onNet Market45 that are to be presented incustomer exchange60. Once again,customer exchange60 is a web page or a portion of a page that is specific toelevator operator20. For example, such bids will include the quantity of a given commodity desired and any associated limits such as delivery times and minimum and/or maximum amounts desired. Such limits will vary and are in the given elevator operator's20 discretion.
At[0043]step230,Net Market45 interacts with thecommodity exchange25 in one of two ways.Net Market45 can communicate through afutures commission merchant65 or through anautomated commission system70, as directed byelevator operator20. Afutures commission merchant65 is simply a person or party licensed by thecommodities exchange25 to conduct transactions therein for parties outside ofcommodities exchange25. Communication throughfutures commission merchant65 can either be manual or fully automated. That is, the human operator can receive and respond to requests initiated byNet Market45 or an automated system an be set up to handle those requests for thatfutures commission merchant65.Automated communication system70 essentially serves the same purpose asfutures commission merchant65, however, it is an automated system set up and controlled bycommodities exchange25.
A third option, not separately illustrated would be a data collection service set up and maintained to obtain information from[0044]commodities exchange25 and to sell or otherwise provide that information to participants in the market. In any event, atstep230Net Market45 generates a request to receive real-time pricing information from thecommodities exchange25 regarding the various commodities thatelevator operator20 is posting bids for.
At[0045]step240,Net Market45 determines a flat price for the given commodity forelevator operator20 by subtracting the basis from the real-time pricing data obtained fromcommodities exchange25. This calculated flat price is then displayed via an appropriately formattedcustomer exchange60 and displayed to a givenproducer15 upon request.
The above was described with respect to a single elevator operator posting a bid for a single commodity. In practice,[0046]Net Market45 manages a number ofcustomer exchanges60, for a number ofelevator operators20. Thus, as a matter of efficiency,Net Market45 is constantly obtaining real-time data fromcommodities exchange25 regarding the real-time pricing of any number of commodities. As this real-time pricing data varies,Net Market45 updates the posted flat price for thevarious elevator operators20, by recalculating each elevator operator's20 flat price based on the real-time data. Thus for any producer accessing the system, a given elevator operator's20 posted flat price will vary in near synchronicity with the real time data generated bycommodities exchange25. In fact, the producers system can be configured to repeatedly request this data so that real time updates occur. Alternatively, a request can be sent to have FHNM45 push this data toproducer15 at a given interval to achieve the same result.
Thus, what has been achieved thus far is that[0047]elevator operator20 has registered with the system and authorized the system to generate contracts and take certain actions on his behalf. Information specific to elevator operator's20 business has been obtained and formatted incustomer exchange60. Thus, a given producer can accessFHNM45 and obtain information specific toelevator operator20 or other registered elevator operators.
Returning to Step[0048]200,elevator operator20, must authorizeNet Market45 to conduct certain transactions forelevator operator20. When so authorizing the system to function in this regard,elevator operator20 can decide whether to enable an automatic hedging function ofNet Market45. As explained above, purchasing or selling a futures contract through thecommodities exchange25, minimizes the risk associated with dealing in commodities. As a practical matter,most elevator operators20, will seek to engage this function, however, it is an option they can selectively enable or disable.
At[0049]step250,producer15 registers withNet Market45. Such registration need only occur thefirst time producer15 uses the system. Subsequently,producer15 may simply log in the known way. During registration,producer15 will provide toNet Market45 certain data aboutproducer15 sufficient to allowNet Market45 to conduct transactions betweenproducer15 and a givenelevator operator20. Such information may not be required ifproducer15 only seeks to view data rather than actually engage in transactions.
Once registered or logged in,[0050]producer15 will request acustomer exchange60 from one ormore elevator operators20 thatproducer15 is interested in conducting business with. Displayed to theproducer15 in the returned web page or other communication format will be a posted bid for a given quantity of a given commodity, within a given time frame. For example,elevator operator20 may post throughcustomer exchange60 that he would like to receive 2,000 bushels of yellow corn deliverable to his place of business three months from today's date. Currently and separately, yellow corn is trading at $2 a bushel oncommodities exchange25. BecauseNet Market45 is constantly or least regularly receiving real-time data fromcommodities exchange25, this value is known toNet Market45. Previouslyelevator operator20 had posted to the system that his basis would be $0.44/per bushel for yellow corn. Thus, a flat price of $1.56 per bushel is displayed oncustomer exchange60. Upon viewing this information,producer15 may decide that he would like to sell 500 bushels of yellow corn toelevator operator20 at $1.56 per bushel deliverable in three months. This information is then transmitted fromproducer15 toNet Market45 atStep280. Since the producer's15 offer is within the parameters established byelevator operator20 the system recognizes that a transaction can be facilitated and a contract could be generated.
Previously at[0051]Step200,elevator operator20 had enabled the automatic hedging function ofNet Market45. Thus, prior to completing the transaction, betweenproducer15 andelevator operator20,Net Market45 again communicates withcommodities exchange25 either via afutures commission merchant65 or anautomated commission system70.
At[0052]Step300,Net Market45 attempts to sell a futures contract throughcommodities exchange25 for 500 bushels of yellow corn deliverable in three months time at $2.00 a bushel, because that is the price elevator operator's20 price was determined from. A futures contract at that exact amount may or may not be obtainable throughcommodities exchange25 and this is determined atstep310. Often times, the futures contract may not be obtainable for the exact quantity or price desired, however, it may be very close. Such parameters can be determined in advance byelevator operator20 so that if a futures contract within a given range is obtainable, it will be acceptable to theelevator operator20. For example, futures contracts may only be obtainable in predetermined amounts. That is, each contract may require a minimum amount such as 5,000 bushels. If the requested amount does not match a multiple of this minimum, the system will, in most cases, attempt to get as close to the requested amount as possible without exceeding it. For example, if each contract is for 5,000 bushels and the elevator operator wants to hedge 17,000 bushels, the system will sell3 contracts for 15,000 bushels. The system is capable of placing the remaining 2,000 bushels into an odd lot counter. When the elevator's other orders have accumulated to bring the odd lot counter up to a contract level, a futures contract may be obtained by the system on behalf of multiple elevator sites. Some elevator operators may elect to have the system increase their hedge order rather than short it, if the amounts do not match. Thus, when needing 17,000 bushels with a 5,000 minimum for a contract, the system will actually hedge 20,000 bushels. The choice is made by the elevator operator.
If an acceptable futures contract is obtainable, it is then obtained by[0053]Net Market45 on elevator operator's20 behalf. AtStep330,Net Market45 issues a communication toproducer15 that the order has been accepted and at Step340 a contract is generated.Producer15 andelevator operator20 both agree in advance to abide by any contract generated atStep340. This solidifies the process being handled byNet Market45 and serves to make the system that much more reliable.
At[0054]Step350, elevator operator's20 posted bid oncustomer exchange60 is modified based upon the contract that was generated atStep340.Elevator operator20 had initially indicated that 2,000 bushels of yellow corn deliverable in three months was what was needed. Now that a contract has been generated for 500 bushels of yellow corn, theelevator operator20 need only receive an additional 1,500 bushels. Thus, this is what is updated and displayed oncustomer exchange60. Of course, any pricing data that needs to be updated based on changes on commodities exchange is likewise modified.Net Market45 can facilitate any necessary or desired contract information forproducer15 andelevator operator20. That is, if it is decided to have documents signed, they can be generated and provided to the relevant parties. Of course, if acceptable, electronic documents can also be so created and distributed.
The present invention is a system that facilitates the interaction between producers, intermediaries and a commodities exchange. As described, the system functions through known information transactions, occurring between a client terminal and a server system appropriately coupled to the Internet or any other communications network. It is to be understood that propagated signals carry the information necessary to enact the system from the perspective of a given participant. Furthermore, while the present invention has been described with respect to commodities transactions, it is equally applicable to any type of commercial transaction where diverse parties are buying and/or selling products, including but not limited to stocks, bonds or other investment or financial products. The system can also facilitate such transactions for any tangible or intangible product that is to be exchanged. The system has been described as giving certain automated functionality in the representation of the buyer of a commodity or other product. This function can be provided for both the buyer and the seller or either one individually. Finally, terms such as producer and elevator operator have been used to illustrate possible embodiments. It is to be understood that the present invention involves parties who sell and parties who buy and the terminology used to describe these parties in a given context is not meant to be limited. For example, elevator operators could by any merchant or other party that engages in the purchase of tangible or intangible products.[0055]
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope of the invention.[0056]