BACKGROUND OF THE INVENTIONThe present invention relates to an illuminating system to be used for printed articles such as books and photographs, screen displays of personal computers or other office automation equipment, portable information terminals, portable video tape recorders and the like, or reflection type liquid crystal displays used in various monitors, and the like.[0001]
In recent years, personal computers, portable information terminals, video tape recorders and the like have been becoming increasingly small-sized and portable, making it an important issue to reduce the power consumption of their image display units. On this account, many of them have been provided with reflection type liquid crystal displays used as their image display units.[0002]
The reflection type liquid crystal display device is given screen brightness by reflecting outside light such as sunlight and indoor light. However, at places of less outside light, the device could not afford enough brightness in the screen. As a result of this, there have been invented several reflection type liquid crystal displays equipped with an illuminating system which enables screen display even at places of insufficient outside light.[0003]
An example of the illuminating system to be mounted on the reflection type liquid crystal display device is shown. FIG. 16 is a schematic cross-sectional view of a conventional illuminating system. As shown in FIG. 16, the conventional illuminating system comprises a[0004]light source1, areflector2, alight guide member63 and acompensating plate5. In order that thereflector2 collimates the light emitted from thelight source1, the distance from thelight source1 to a side face of thelight guide member63 is elongated. Thelight guide member63 has a function of propagating the light introduced from thereflector2 by totally reflecting the light, and a function of illuminating a reflectingplate4 by totally reflecting the light with slopes of grooves formed in its top face to change the angle of the light. The compensatingplate5 has a function of correcting any distortion that occurs when the reflected light from the reflectingplate4 passes thelight guide member63.
However, in the conventional illuminating system, when the light that has been transmitted by the[0005]light guide member63 to the compensatingplate5 comes incident on thelight guide member63 again after being totally reflected by the top face of thecompensating plate5, part of the light is reflected by the slopes of the grooves of the top face of thelight guide member63 so that groove lines are more visible, as an issue. Also, whereas light is collimated by a reflector to reduce the issue of these groove lines' visibility, the collimated light is more likely to reach one side of thelight guide member63 opposite to the light source without impinging on the slopes of the grooves of thelight guide member63. This would result in a low illuminating efficiency, as another issue.
SUMMARY OF THE INVENTIONTherefore, an object of the present invention is to provide an illuminating system which makes groove lines less visible, maintains an image of reflected light successful and offers a good illuminating efficiency.[0006]
In accomplishing these and other aspects, according to a first aspect of the present invention, there is provided an illuminating system comprising:[0007]
a light source; and[0008]
a transparent plate with the light source placed beside a side face thereof,[0009]
wherein a plurality of grooves filled with a layer having a refractive index different from a refractive index of the transparent plate are arranged at specified intervals in a surface or interior of the transparent plate.[0010]
According to a second aspect of the present invention, there is provided an illuminating system according to the first aspect, wherein a top face and a bottom face of the transparent plate are generally parallel to each other.[0011]
According to a third aspect of the present invention, there is provided an illuminating system according to the first or second aspect, wherein a condition of[0012]
θ<sin−1(n1/n)−sin−1{(1/n)sin(β)}
is satisfied where n is the refractive index of the transparent plate, n[0013]1is the refractive index of a material as the layer that fills the grooves which are the slits, θ is an angle formed by each of the slits and the top face of the transparent plate and β is an angle of visibility of the illuminating system.
According to a fourth aspect of the present invention, there is provided an illuminating system comprising:[0014]
a light source;[0015]
a transparent first plate with the light source placed beside a side face thereof; and[0016]
a transparent second plate placed on a top face of the first plate, wherein a bottom face of the first plate is a plane surface and a plurality of stepwise slopes are arranged at specified intervals in the top face of the first plate;[0017]
in a bottom face of the second plate, stepwise slopes are arranged so as to be identical in configuration to the slopes of the top face of the first plate; and[0018]
the top face of the first plate and the bottom face of the second plate are placed with a specified spacing.[0019]
According to a fifth aspect of the present invention, there is provided an illuminating system according to the fourth aspect, wherein a condition of[0020]
θ<sin−1(n2/n)−sin−1{(1/n)sin(β)}
is satisfied where n is the refractive index of the first plate, n[0021]2is the refractive index of a material as the layer bonding the first plate and the second plate to each other, θ is an angle of each of the slopes of the top face of the first plate and the bottom face of the second plate and β is an angle of visibility of the illuminating system.
According to a sixth aspect of the present invention, there is provided an illuminating system according to the fifth aspect, wherein a light outgoing angle of a collimator placed at an outgoing exit of the light source is within ±sin[0022]−1[n×sin{90−θ−sin−1(n2/n)}].
According to a seventh aspect of the present invention, there is provided an illuminating system by overhead irradiation comprising:[0023]
a light source;[0024]
a transparent plate which is a light guide member in which a plurality of grooves are arranged in a top face of the light guide member at specified intervals in a direction parallel to a longitudinal direction of the light source, and in which a flat portion constituting a part of the top face is arranged between adjacent ones of the grooves, wherein an illumination object placed on a bottom face side of the light guide member is observed from a top face side of the light guide member.[0025]
According to an eighth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to the seventh aspect, wherein each of the grooves of the light guide member is a V-shaped groove having a first slope located on one side closer to the light source and a second slope located on the other side farther from the light source, and wherein an angle θ[0026]1formed by the first slope and the bottom face of the light guide member falls within a range of θ1≦90°−θc+2θ3, where θcis a total reflection angle of the light guide member and θ3is an angle formed by the flat portion and the bottom face of the light guide member.
According to a ninth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to the seventh or eighth aspect, wherein each of the grooves of the light guide member is a V-shaped groove having a first slope located on one side closer to the light source and a second slope located on the other side farther from the light source, and wherein an angle θ[0027]1formed by the first slope and the bottom face of the light guide member satisfies a condition of:
θ[0028]1≈45+θ3−(½)sin−1(1/n×sinβ), where n is a refractive index of the light guide member, θ3is an angle formed by the flat portion and the bottom face of the light guide member and β is an angle formed by a perpendicular of the bottom face of the light guide member and a direction of the observer.
According to a tenth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to any one of the seventh to ninth aspects, wherein each of the grooves of the light guide member is a V-shaped groove having a first slope located on one side closer to the light source and a second slope located on the other side farther from the light source, and wherein an angle θ[0029]2formed by the second slope and the bottom face of the light guide member satisfies a condition of θ2≦(½)sin−1(1/n), where n is a refractive index of the light guide member.
According to an eleventh aspect of the present invention, there is provided an illuminating system by overhead irradiation according to any one of the seventh to tenth aspects, wherein in the light guide member, a pitch of the grooves is not more than a dot pitch of the illumination object.[0030]
According to a twelfth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to any one of the seventh to eleventh aspects, wherein each of the grooves of the light guide member is a V-shaped groove having a first slope located on one side closer to the light source and a second slope located on the other side farther from the light source, and wherein in the light guide member, a length of the first slope is not more than {L×(0.5/60)×[0031]π+B/180}, where L is a distance between the top face of the light guide member and an observer observing the illumination object.
According to a thirteenth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to any one of the seventh to twelfth aspects, wherein a transparent prism sheet is placed on the top face of the light guide member, the prism sheet having, with respect to a cross-sectional shape, a plurality of projected portions having slopes of an angle θ[0032]4to the top face are arranged on the bottom face so that a flat portion generally parallel to the bottom face is interposed therebetween.
According to a fourteenth aspect of the present invention, there is provided an illuminating system by overhead irradiation according to the thirteenth aspect, wherein the length of the slope of the prism sheet is not more than {L×(0.5/60)×[0033]π/180}, where L is the distance between the observer who observes the illumination object and the top face of the light guide member.
According to a fifteenth aspect of the present invention, there is provided an illuminating system comprising:[0034]
a light source; and[0035]
a transparent plate taking light from the light source through a side face thereof and projecting illumination light through a lower face thereof subjected to at least one of an anti-reflection treatment and a diffuse treatment,[0036]
wherein an illumination object which is disposed at a lower face side of the transparent plate is observed from an upper face side of the transparent plate.[0037]
According to a sixteenth aspect of the present invention, there is provided a reflection type liquid crystal display device which comprises:[0038]
the illuminating system according to the first aspect, the transparent plate taking light from the light source through a side face thereof and projecting illumination light through a lower face thereof subjected to at least one of an antireflection treatment and a diffuse treatment; and[0039]
a reflection type liquid crystal panel having a surface of at least one substrate thereof processed through at least one of the anti-reflection treatment and the diffuse treatment,[0040]
wherein the surface of the substrate of the liquid crystal panel processed through at least one of the anti-reflection treatment and the diffuse treatment is arranged to confront a lower face of the transparent plate, so that the reflection type liquid crystal panel is observed from an upper face side of the transparent plate.[0041]
According to a seventeenth aspect of the present invention, there is provided a reflection type liquid crystal display device which comprises:[0042]
the illuminating system according to the first aspect, the transparent plate taking light from the light source through a side face thereof and projecting illumination light through a lower face thereof subjected to at least one of an antireflection treatment and a diffuse treatment;[0043]
a reflection type liquid crystal panel having a surface of at least one substrate thereof processed through at least either an anti-reflection treatment or a diffuse treatment; and[0044]
a touch panel having a surface processed through a diffuse treatment,[0045]
wherein the surface of the substrate of the liquid crystal panel processed through at least either the anti-reflection treatment or the diffuse treatment is arranged to confront the lower face of the transparent plate and at the same time, the touch panel is disposed to confront an upper face of the transparent plate, so that the reflection type liquid crystal panel is observed from an upper face side of the transparent plate.[0046]
According to an eighteenth aspect of the present invention, there is provided a reflection type liquid crystal display device according to any one of the sixteenth to seventeenth aspects, wherein a haze value of the diffuse treatment provided to the surface of the substrate of the reflection type liquid crystal panel, the lower face of the transparent plate or the surface of the touch panel is set to be not larger than 20%.[0047]
According to a nineteenth aspect of the present invention, there is provided a reflection type liquid crystal display device according to any one of the sixteenth to eighteenth aspects, wherein a transparent material or a sheet of the material which has approximately the same refractive index as that of a material of the transparent plate and that of the substrate of the reflection type liquid crystal panel is interposed between the lower face of the transparent plate and the reflection type liquid crystal panel.[0048]
According to a 20th aspect of the present invention, there is provided a reflection type liquid crystal display device which comprises:[0049]
the illuminating system according to the first aspect, the transparent plate taking light from the light source through a side face thereof and projecting illumination light from a lower face thereof; and[0050]
a reflection type liquid crystal panel having an field angle control plate arranged on an upper face thereof, said control plate featuring a diffuse characteristic in one direction while being transparent in other directions,[0051]
wherein the face of the reflection type liquid crystal panel where the field angle control plate is arranged is set to confront the lower face of the transparent plate, and moreover an angle of the illumination light projected from the lower face of the transparent plate is almost agreed with a diffusion direction of the field angle control plate, so that the reflection type liquid crystal panel is observed from an upper face side of the transparent plate.[0052]
According to a 21st aspect of the present invention, there is provided a reflection type liquid crystal display device according to the 20th aspect, wherein an output angle of the transparent plate and the diffusion direction of the field angle control plate is 30-50° to a normal direction of the reflection type liquid crystal panel.[0053]
According to a 22nd aspect of the present invention, there is provided an illuminating system according to the first aspect, wherein the light house is a group of point light sources in which point light sources are arranged on an almost straight line via a constant interval to radiate in nearly the same direction,[0054]
the illuminating system further comprising:[0055]
a reflector having an opening part and disposed to cover the group of point light sources; and[0056]
a diffusing plate set at the opening part of the reflector,[0057]
wherein the diffusing plate is separated from the group of point light sources so that quantity of light from a center of an illuminance distribution by the point light source on the diffusing plate is nearly equal to that between centers of illuminance distributions of the point light sources.[0058]
According to a 23rd aspect of the present invention, there is provided an illuminating system according to the 22nd aspect, wherein the reflector is L-shaped so as not to directly pass light emitted from the point light sources to the diffusing plate.[0059]
According to a 24th aspect of the present invention, there is provided an illuminating system according to the 22nd aspect, which further comprises a light guide member which outputs light entering from a side face thereof after emitted from the diffusing plate arranged at the opening part of the reflector of the linear light source, from a lower face side thereof by grooves formed in a lower face or an upper face thereof.[0060]
BRIEF DESCRIPTION OF THE DRAWINGSThese and other aspects and features of the present invention will become clear from the following description taken in conjunction with the preferred embodiments thereof with reference to the accompanying drawings, in which:[0061]
FIG. 1 is a schematic view of a cross section of an illuminating system according to a first embodiment of the present invention;[0062]
FIG. 2 is a schematic view showing an arrangement of slits in the first embodiment;[0063]
FIG. 3 is a view for explaining the propagation of light within the light guide member in the first embodiment;[0064]
FIG. 4 is a view for explaining the propagation of reflected light within the light guide member in the first embodiment;[0065]
FIG. 5 is a schematic view of a cross section of an illuminating system according to a second embodiment of the present invention;[0066]
FIG. 6 is a view for explaining the propagation of light within the light guide member in the second embodiment;[0067]
FIG. 7 is a view for explaining the propagation of light within the light guide member in the second embodiment;[0068]
FIG. 8 is a view for explaining the propagation of reflected light within the light guide member in the second embodiment;[0069]
FIGS. 9A and 9B are a schematic sectional view and a plan view of the collimator in the second embodiment;[0070]
FIG. 10 is a view for explaining operation of the collimator in the second embodiment;[0071]
FIG. 11 is a schematic view of a cross section of a modification of the illuminating system of the first embodiment of the invention;[0072]
FIG. 12 is a schematic view of a cross section of another modification of the illuminating system of the first embodiment of the invention;[0073]
FIG. 13 is a schematic view of a cross section of still another modification of the illuminating system of the first embodiment of the invention;[0074]
FIG. 14 is a schematic view of a cross section of an example of the illuminating system of the second embodiment of the invention;[0075]
FIGS. 15A and 15B are a schematic sectional side view and a plan view of the collimator of the illuminating system in the third embodiment;[0076]
FIG. 16 is a schematic view of a cross section of an illuminating system according to the prior art;[0077]
FIG. 17 is a schematic view of a cross section of a modification of the illuminating system of the second embodiment of the invention; and[0078]
FIG. 18 is a schematic view of a cross section of another modification of the illuminating system of the second embodiment of the invention;[0079]
FIG. 19 is a schematic view of the illuminating system by overhead irradiation according to a third embodiment of the present invention;[0080]
FIG. 20 is a cross-sectional schematic view of the light guide member in the third embodiment;[0081]
FIG. 21 is a cross-sectional schematic view showing in detail the groove in the third embodiment;[0082]
FIGS. 22A, 22B,[0083]22C,22D,22E are views for explaining the reflection of light at the top face of the light guide member in the third embodiment;
FIGS. 23A, 23B,[0084]23C are cross-sectional schematic views showing another example of the illuminating system in the third embodiment;
FIG. 24 is a cross-sectional schematic view of an illuminating system by overhead irradiation according to a fourth embodiment of the present invention;[0085]
FIG. 25 is a cross-sectional schematic view of the prism sheet in the fourth embodiment;[0086]
FIG. 26 is a graph showing the radiation distribution of light outputted from the top face of the light guide member in the fourth embodiment;[0087]
FIG. 27 is a view for explaining the reflection of light at prism portions in the fourth embodiment;[0088]
FIGS. 28A, 28B are cross-sectional schematic views showing another example of prism sheet in the fourth embodiment;[0089]
FIG. 29 is a view for explaining the propagation of light within the prism sheet in the fourth embodiment;[0090]
FIG. 30 is a view of an illuminating system by overhead irradiation in a fifth embodiment of the present invention, as viewed from the top;[0091]
FIG. 31 is a cross-sectional schematic view of the light guide member in the fifth embodiment;[0092]
FIG. 32 is a more detailed cross-sectional schematic view of the illuminating system by overhead irradiation in the third embodiment;[0093]
FIG. 33 is a more detailed cross-sectional schematic view of the illuminating system by overhead irradiation in the fourth embodiment;[0094]
FIG. 34 is a more detailed cross-sectional schematic view of the illuminating system by overhead irradiation in the fourth embodiment;[0095]
FIG. 35 is a cross-sectional schematic view of an illuminating system according to the prior art;[0096]
FIG. 36 is a schematically sectional view of an illuminating system according to a seventh embodiment of the present invention;[0097]
FIG. 37 is a schematically sectional view of a transparent plate of the seventh embodiment of the present invention;[0098]
FIG. 38 is a schematically sectional view of a reflection type liquid crystal display device according to the seventh embodiment of the present invention;[0099]
FIG. 39 is a schematically sectional view of a reflection type liquid crystal display device according to an eighth embodiment of the present invention;[0100]
FIG. 40 is a diagram explanatory of the seventh embodiment of a method for manufacturing the transparent plate;[0101]
FIG. 41 is a diagram showing how the transparent plate is held in the manufacture method of FIG. 40;[0102]
FIG. 42 is a schematically sectional view of a reflection type liquid crystal display device in a ninth embodiment of the present invention;[0103]
FIG. 43 is a diagram explanatory of the propagation;[0104]
FIG. 44 is a schematically sectional view of an illuminating system of a tenth embodiment of the present invention;[0105]
FIG. 45 is a plan view of the illuminating system of FIG. 44;[0106]
FIG. 46 is a perspective view of a light guide member and a reflecting plate of the illuminating system of FIG. 44;[0107]
FIG. 47 is an enlarged view of a circular part of FIG. 46; and[0108]
FIGS. 48 and 49 are explanatory views of distance selection between light sources and a diffusing plate of the system.[0109]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSBefore the description of the present invention proceeds, it is to be noted that like parts are designated by like reference numerals throughout the accompanying drawings.[0110]
Hereinbelow, an illuminating system according to a first embodiment of the present invention is described with reference to the accompanying drawings.[0111]
FIG. 1 shows a schematic view of a cross section of the illuminating system in the first embodiment of the invention without hatching in order to clearly show the lines. In the illuminating system of the first embodiment of the invention, an angle at which an observer views the illuminating system from above (hereinafter, referred to as an angle of visibility (field angle)) is assumed to be β.[0112]
Referring to FIG. 1,[0113]reference numeral1 denotes a light source, in which, for example, fluorescent lamps, such as hot cathode-ray tubes or cold cathode-ray tubes, or light emitting diodes are arrayed in a linear shape, or in which incandescent lamps or organic light-emitting materials are formed into a linear shape. Thelight source1 is arranged on one side of alight guide member3.
In FIG. 1,[0114]reference numeral2 denotes a reflector, which is placed so as to cover thelight source1, and of which the inner surface is so made as to have a high reflectance and a small diffusivity. For example, the reflector is made up by depositing a high-reflectance material such as silver or aluminum on a resin sheet, and bonding this sheet to a thin metal plate or resin sheet. When thelight source1 is fluorescent lamp(s), it is desirable to fill the gap between thelight source1 and thereflector2 with a material having a refractive index close to the glass' refractive index of 1.5. It is also desirable that the thickness of one side face of thelight guide member3 on thelight source1 side and the height of thereflector2 are equal to each other. The reason of this is that whereas thelight guide member3 is desirably thinner than not, the lower limit value of the thickness is the height of thereflector2 because of the incidence efficiency.
In FIG. 1,[0115]reference numeral3 denotes a transparent plate (hereinafter, referred to as light guide member), which is made from a material such as quartz, glass, transparent resin like acrylic resin or polycarbonate, or the like. Top face and bottom face of thelight guide member3 are generally parallel to each other, and thelight guide member3 is generally rectangular shaped as viewed from top. Side face and top face as well as side face and bottom face of thelight guide member3 each form an angle of nearly 90 degrees.Slits31 as grooves are formed in the bottom face of thelight guide member3.
FIG. 2 shows a detailed view of a portion of the[0116]slits31. Theslits31 extend generally parallel longitudinally of thelight source1. Each slit31 is internally filled with a material of low refractive index, which is exemplified by air or fluorine-contained resin. Further, theslit31 satisfies the following condition:
θ<sin−1(n1/n)−sin−1{(1/n)sin(β)}
where n is the refractive index of the light guide member, n[0117]1is the refractive index of the slit interior, θ is the angle formed by theslit31 and the top face of the light guide member and β is the angle of visibility.
In the first embodiment, the material of the light guide member is PMMA (polymethylmethacrylate), the slit interior is air and the angle of visibility is 40 degrees. Therefore, from n=1.5, n[0118]1=1 and β=40, an angle θ formed by theslit31 and the top face of the light guide member has been set to 16 degrees. Besides, alength33 of theslit31 is 50 μm, and apitch32 of theslits31 is 200 μm. If the angle of visibility β=30, then θ=22.34°.
In FIG. 1,[0119]reference numeral4 denotes a reflecting plate. The reflectingplate4 means a printed article such as a book or photograph, a screen display unit of personal computers or other office automation equipment, portable information terminals, portable video tape recorders and the like, or a reflection type liquid crystal display used in various monitors.
Next, propagation of light within the[0120]light guide member3 is described with reference to FIG. 3.
Light incident on the[0121]light guide member3 results in light having a radiation distribution of ±sin−1(1/n) according to Snell's law, given that the refractive index of thelight guide member3 is n. Since most of the above-mentioned materials of thelight guide member3 have a refractive index of not less than 1.42, the radiation distribution falls within a range of ±44.77 degrees. In thelight guide member3, its top face and bottom face are generally parallel to each other, and its side face and top face as well as its side face and bottom face, the side face being planes of incidence on thelight guide member3, form an angle of nearly 90° C., respectively. Therefore, when light incident on a side face of thelight guide member3 comes incident on its top face or bottom face, the minimum value of incident angle is 90−44.77=45.23 degrees. With a refractive index of not less than 1.42, because the angle of total reflection is 44.77 degrees or lower, light incident on the side face is totally reflected by the top face and the bottom face.
At places other than near the[0122]slits31, light that propagates through thelight guide member3 is totally reflected by flat portions of the top face and the bottom face of thelight guide member3. At the portions of theslits31, the light is separated into transmitted beams of light and totally reflected beams of light depending on the angle of light. As shown in FIG. 3, on the assumption that the angle formed by a light beam and the top face of thelight guide member3 is α, if
α>90−θ−sin−1(n1/n),
then the light is transmitted through the[0123]slits31; and if
α<90−θ−sin−1(n1/n),
then the light is totally reflected by the[0124]slits31.
A beam of light transmitted through the[0125]slits31 is totally reflected by the flat portion of the top face of thelight guide member3, thus propagating again. The beam of light totally reflected by theslit31 goes out from the bottom face of thelight guide member3, where the angle of incidence on the bottom face is {90 −(2η+α)} and from Snell's law, if
90−(2η+α)<sin−1(1/n),
then the light beam goes out from the bottom face of the[0126]light guide member3, thus illuminating the reflectingplate4.
In this way, the illuminating system of the first embodiment illuminates the reflecting[0127]plate4. Because the light emitted from thelight source1 does not need to be collimated, the light is totally reflected by theslits31 at a high rate, so that the reflectingplate4 can be illuminated with high efficiency. Also, the light transmitted through theslits31 propagates once again through thelight guide member3, producing an effect that the groove lines are less visible.
Next, propagation of the reflected light that has illuminated the reflecting[0128]plate4 is described with reference to FIG. 4. Light outputted for illumination from thelight guide member3 illuminates the reflectingplate4, and turns back as reflected light. The reflected light comes incident again on thelight guide member3 from its bottom face, and is outputted from the top face of thelight guide member3 as it is at portions other than near theslits31.
Near the[0129]slits31, if the angle of incidence of the reflected light on the bottom face of thelight guide member3 is γ, then
θ+sin−1{(1/n)sin(γ)}>sin−1(n1/n),
the light is totally reflected by the[0130]slits31. On this account, upon incidence of the reflected light41 on the bottom face of thelight guide member3 at an angle γ, if γ >β, then the reflectedlight41 is totally reflected by theslits31, not reaching the observer; if γ≦β, then the reflectedlight41 is transmitted through theslits31, reaching the observer.
From this fact and another that the angle θ of the[0131]slits31 is
θ<sin−1(n1/n)−sin−1{(1/n)sin(β)},
the reflected light is not totally reflected by the portions of the[0132]slits31 in a range of the angle of visibility ±β. Thus, the observers field of view is not obstructed, and a successful image can be obtained.
As shown above, according to this first embodiment, the illuminating system which makes the groove lines of the[0133]light guide member3 less visible, maintains an image of reflected light successful and offers a good illuminating efficiency can be provided. Also, since uniform illumination is enabled and the light outputted from thelight source1 does not need to be collimated, thereflector2 can be reduced in size. Moreover, since the height of thereflector2 and the height of the side face of thelight guide member3 are made generally equal to each other as described above, the thickness of the side face of thelight guide member3 can be reduced according to the height of thereflector2.
In addition, in the first embodiment, the[0134]slits31 have been arranged in the top face of thelight guide member3. However, it is also possible that theslits31 are arranged between the top face and the bottom face of thelight guide member3 as shown in FIG. 11, or in the bottom face of thelight guide member3 as shown in FIG. 12, or obliquely in a direction from the top face side to the bottom face side of thelight guide member3 as shown in FIG. 13.
Further, although top face and bottom face of the[0135]light guide member3 are parallel to each other in the first embodiment, they may be non-parallel.
Furthermore, although the[0136]pitch32 of theslits31 has been made to be a constant interval in the first embodiment, making thepitch32 decreasing with increasing distance from thelight source1 for thelight guide member3 causes the brightness difference between near places and far places from thelight source1 to be reduced, so that more uniform illumination can be obtained. Making thelength33 of theslits31 increasing with increasing distance from thelight source1 for thelight guide member3 also allows similar effects to be obtained. Still also, making the angle θ of theslits31 increasing with increasing distance from thelight source1 allows similar effects to be obtained.
Now, an illuminating system according to a second embodiment of the present invention is described below with reference to FIG. 5.[0137]
FIG. 5 is a schematic view of a cross section of the illuminating system in the second embodiment of the invention. In the illuminating system of the second embodiment of the invention, the angle of visibility is assumed as β.[0138]
In FIG. 5, the[0139]light source1 and thereflector2 are similar to those of the first embodiment.
Referring to FIG. 5,[0140]reference numeral30 denotes a light guide member as an example of the first transparent plate, and6 denotes a compensating plate as an example of the second transparent plate placed on thelight guide member30.Reference numeral5 denotes a collimator placed between thelight source1 and thelight guide member30, and thecollimator5 collimates light emitted from thelight source1. Output characteristic of thecollimator5 is within ±sin−1[n×sin{90−θ−sin−1(n2/n)}], where θ is the angle of astepwise slope131 of the top face of thelight guide member30, n is the refractive index of thelight guide member30 and n2is the refractive index of the material between thelight guide member30 and the compensatingplate6.
For example, if β=40, n=1.5 and n[0141]2=1, then θ=16°, where the output characteristic of thecollimator5 is ±52.13°. Also, if β=30, n=1.5 and n2=1, then θ=22.34, where the output characteristic of thecollimator5 is ±40.85°.
The structure of the[0142]collimator5 can be implemented by, for example, a plano-convex cylindrical lens satisfying the above output characteristic. Further, thecollimator5 may also be a diffraction grating. Besides, with a large angle of visibility β of the illuminating system, the output characteristic angle of thecollimator5 is so large that thecollimator5 may be omitted.
The[0143]light guide member30 is made from a material such as quartz, glass, transparent resin like acrylic resin or polycarbonate, or the like. FIG. 6 shows a detailed view of thelight guide member30. A bottom face of thelight guide member30 is a plane surface, and a plurality ofstepwise slopes131 are arranged at specified intervals in the top face of thelight guide member30. Theslopes131 are generally parallel to the longitudinal direction of thelight source1.
Assuming that the angle of each[0144]slope131 is 0, the refractive index of the material of thelight guide member30 is n, the refractive index of the material between thelight guide member30 and the compensatingplate6 is n2and that the angle of visibility is β, then angle θ of theslope131 is
θ<sin−1(n2/n)−sin−1{(1/n)sin(β)}.
A[0145]pitch32 of theslopes131 is preferably decreasing with increasing distance from thelight source1 for thelight guide member30. Also, alength33 of theslopes131 may be increasing with increasing distance from thelight source1 for thelight guide member30. Further, the angle θ of theslopes131 may be increasing with increasing distance from thelight source1. Thelight guide member30 is generally rectangular shaped as viewed from top.
The compensating[0146]plate6 is made from a material such as quartz, glass, transparent resin like acrylic resin or polycarbonate, or the like. In the compensatingplate6, stepwise slopes61 are arranged in its bottom face so as to be identical in configuration to theslopes131 of the top face of thelight guide member30, and the top face of the compensatingplate6 is a plane surface. The top face of thelight guide member30 and the bottom face of thelight guide member30 are placed at a specified spacing.
In FIG. 5,[0147]reference numeral4 denotes a reflecting plate. The reflectingplate4 means a printed article such as a book or photograph, a screen display unit of personal computers or other office automation equipment, portable information terminals or portable video tape recorders, a reflection type liquid crystal display used in various monitors or the like.
Next, propagation of light within the[0148]light guide member30 in the second embodiment is described with reference to FIG. 7. Light incident on thelight guide member30 propagates while being totally reflected by flat portions of the top face or bottom face of thelight guide member30 at places other than near theslopes131 of thelight guide member30. At the portions near theslopes131 of thelight guide member30, the light is separated into transmitted beams of light and totally reflected beams of light depending on the angle of the light. On the assumption that the refractive index of thelight guide member30 is n, the refractive index of the material between thelight guide member30 and the compensatingplate6 is n2, the angle formed by the bottom face of thelight guide member30 and the light is α, and that the angle of theslopes131 of thelight guide member30 is θ, if
α>90−θ−sin−1(n2/n)
then the light is transmitted through the[0149]slopes131 of thelight guide member30; and if
α<90−θ−sin−1(n2/n)
then the light is totally reflected by the[0150]slopes131 of thelight guide member30.
The light transmitted through the[0151]slopes131 of thelight guide member30 will not be reflected until it reaches one side of the compensatingplate6 opposite to thelight source1 side. Therefore, the light is highly likely to go out toward the observer's side, causing a deterioration of the illuminating efficiency. However, because the output characteristic of thecollimator5 for thelight source1 is within ±sin−1[n×sin(90−θ−sin−1{n2/n)}], the light incident on thelight guide member30 is within ±{90−θ−sin−1(n2/n)}, satisfying the condition of Equation α<90−θ−sin−1(n2/n), so that most of the light is totally reflected by theslopes131 of thelight guide member30, illuminating the reflectingplate4.
Therefore, the light emitted from the[0152]light source1 is enabled to display the reflectingplate4 with high efficiency. Also, since the reflectingplate4 is illuminated with high efficiency in this way, less light is transmitted through theslopes131 of thelight guide member30 to the observer side, producing an effect that the groove lines are less visible.
Next, propagation of the reflected light that has illuminated the reflecting[0153]plate4 is described with reference to FIG. 8. The light beam outputted for illumination from thelight guide member30 illuminates the reflectingplate4, and turns back as reflected light. The reflected light comes incident again on thelight guide member30 from its bottom face, and is outputted from the top face of thelight guide member30 as it is at portions other than near theslopes131 of thelight guide member30.
Near the[0154]slopes131 of thelight guide member30, on the assumption that the angle of incidence of the reflected light on the bottom face of thelight guide member30 is γ, if
θ+sin−1{(1/n)sin(γ)}>sin−1(n2/n),
then the light is totally reflected by the[0155]slopes131 of thelight guide member30. On this account, upon incidence of the reflected light41 on the bottom face of the light guide member at an angle γ, if γ>β, then the reflectedlight41 is totally reflected by theslopes131, not reaching the observer; if γ≦β, the reflectedlight41 is transmitted through theslopes131, reaching the observer.
From this fact and another that the angle θ of the[0156]slopes131 of thelight guide member30 is
θ<sin−1(n2/n)−sin−1{(1/n)sin(β)},
the reflected light is not totally reflected by the portions of the[0157]slopes131 of thelight guide member30 in a range of the angle of visibility ±β. Thus, the observer's field of view is not obstructed, and a successful image can be obtained.
As shown above, according to the second embodiment, the illuminating system which makes groove lines of the[0158]light guide member30 less visible, maintains an image of reflected light successful and offers a good illuminating efficiency can be provided.
In addition, although the groove has been formed stepwise in the second embodiment, the groove may also be an arbitrary curve as shown in FIG. 14. Further, although the[0159]pitch32 of theslopes131 has been a constant interval in the second embodiment, making thepitch32 decreasing with increasing distance from thelight source1 for thelight guide member30 causes the brightness difference between near places and far places from thelight source1 to be reduced, so that more uniform illumination can be obtained. Making thelength33 of theslopes131 increasing with increasing distance from thelight source1 for thelight guide member30 also allows similar effects to be obtained. Still also, making the angle θ of theslopes131 increasing with increase distance from thelight source1 allows similar effects to be obtained.
Also, even if the top face of the compensating[0160]plate6 and the bottom face of thelight guide member30 are not parallel to each other as shown in FIG. 17, similar effects can be obtained.
Also, even if the top face of the compensating[0161]plate6 is a curved surface as shown in FIG. 18, similar effects can be obtained.
Now, an illuminating system according to a third embodiment of the present invention is described below.[0162]
The third embodiment of the invention is almost similar in structure to the second embodiment, and differs therefrom only in the structure of the[0163]collimator5.
The structure of the[0164]collimator5 of the third embodiment is described with reference to FIG. 9. Alight incident surface51 of thecollimator5 is a plane surface. Anoutput surface52 of thecollimator5 is so structured as to have a plurality of conical recessed portions with apex angle 2δ.
On the assumption that the refractive index of the[0165]light guide member30 is n, the refractive index of the material bonding thelight guide member30 and the compensatingplate6 to each other is n2and the refractive index of thecollimator5 is n3, δ is a value that satisfies the equation:
sin−1[n×sin{90−θ−sin−1(n2/n)}]=90−δ−sin−1[n3×sin(90−δ−sin−1(1/n3)}].
Next, operation of the[0166]collimator5 is described with reference to FIG. 10. Light emitted from thelight source1, when incident on theincident surface51 of thecollimator5, results in a radiation distribution of ±sin−1(1/n3). Therefore, the angle of light incident on theslopes52 of thecollimator5 on its output side can be determined geometrically, where an incident-angle minimum value iminis
imin=90−δ−sin−1(1/n3),
and the incident-angle maximum value i[0167]maxis
+Imax=90.
Also, the angle of light outputted from the[0168]collimator5 can be determined by Snell's law, where an outgoing angle minimum value ominwith respect to theslope52 on the outgoing side is
omin=sin−1{n3×sin(imin)},
and an outgoing angle maximum value o[0169]maxis
omax=90.
Because the[0170]slope52 on the outgoing side is tilted by δ with respect to the optical axis, an outgoing angle maximum value ωmaxis
ωmax=90−δ−omin,
and the outgoing angle minimum value ω[0171]minis
ωmin=−δ.
That is,[0172]
ωmax=90−δ−sin−1[n3×sin{90−δ−sin−1(1/n3)}],
ωmin=−δ.
In this connection, if the angle of the[0173]slope131 of thelight guide member30 is θ and the refractive index of the material between thelight guide member30 and the compensatingplate6 is n2, then necessary output characteristic of thecollimator5 is within ±sin−1[n×sin{90−θ−sin−1(n2/n))}]. Because δ is a value satisfying the equation, sin−1[n×sin{90−θ−sin−1(n2/n)}]= 90−δ−sin−1[n3×sin{90−δ−sin−1(1/n3)}], ωmax=(output characteristic of collimator5), thus satisfying a desired output characteristic.
For example, if angle of visibility β=30, n=1.5, n[0174]2=1 and n3=1.5, then θ=22.4 so that the necessary output characteristic is 40.85°, where with δ=46.2°, the resulting outgoing angle is ωmax=+40.81° and ωmin=46.2°, so that a desired output characteristic of thecollimator5 is obtained. Also, if δ is a value satisfying an equation, δ=sin−1[n×sin{90−θ−sin−1(n2/n)}], then, in the above example, δ=40.85°, ωmax=+38.10° and ωmin=40.85° so that a desired output characteristic of thecollimator5 is obtained. In addition, under the above conditions, δ may be an arbitrary value of not less than 40.85° and not more than 46.2°.
As shown above, with the use of the third embodiment, the[0175]collimator5 which satisfies the output characteristic necessary for thelight guide member30 can be implemented and the same effects as in the second embodiment can be obtained.
In addition, the[0176]outgoing surface52 of thecollimator5 has been shaped into conical recessed portions with the apex angle 2δ in the third embodiment. However, theoutgoing surface52 may also be shaped into conical protrusions with the apex angle 2δ. Further, theoutgoing surface52 may be shaped into polygonal pyramids having a cross section with the apex angle 2δ instead of the conical shape. Still further, theoutgoing surface52 may be shaped into parallel grooves with the acute angle 2δ as shown in FIGS. 15A, 15B.
According to the present invention, light emitted from the light source becomes incident on the transparent plate, and propagates on and on while being iteratively totally reflected within the transparent plate. During this process, the light is separated into totally reflected beams of light by the slits provided inside the transparent plate and transmitted beams of light depending on the angle of light. The totally reflected beams of light are changed in angle so as to be smaller than the total reflection angle, thus being outputted to the bottom face side of the transparent plate. Also, the transmitted beams of light are totally reflected by the top face of the transparent plate so as to continuously propagate within the transparent plate, thus groove lines of the transparent plate being less visible. Further, the light is transmitted through the grooves and the collimator that has conventionally been needed to make the groove lines less visible is no longer needed, so that almost all the beams of light are outputted to the bottom side of the transparent plate, thus offering a good illuminating efficiency.[0177]
The light outgoing from the bottom face of the transparent plate illuminates an illumination object, and reflected light from the illumination object is made to be incident again on the transparent plate, where because[0178]
θ<sin−1(n1/n)−sin−1{(1/n)sin(β)},
a successful image can be displayed without being affected by the angle of visibility (field angle).[0179]
Thus, an illuminating system which makes groove lines less visible and has a good illuminating efficiency can be provided.[0180]
In other words, as described above, according to the present invention, a light source, for example a linear light source, is placed beside a side face of a flat-shaped light guide member, and slits as an example of grooves are arranged inside the light guide member so as to extend generally parallel to the light source, by which most of the light that propagates within the light guide member can be outputted from the light guide member by total reflection at the slits formed in the light guide member so that a reflecting plate as an example of the illumination object can be illuminated. Also, because beams of light transmitted without being totally reflected by the slits propagate again within the light guide member, the groove lines are less visible, and because the reflected light from the reflecting plate is transmitted to the observer side without being distorted, a successful image quality of the reflecting plate can be maintained. Further, because the light emitted from the light source does not need to be collimated, the illuminating system can be downsized, and because all the beams of light are outputted from the light guide member by the total reflection at the slits, a good illuminating efficiency can be obtained. Further, by arranging the slits at a specified angle, the brightness difference between the slits and portions other than the slits is made smaller within the observer's field of view, so that a successful image quality of reflected light can be maintained.[0181]
According to the present invention, light emitted from the light source is collimated by the collimator and introduced to the first substrate. The light incident on the first substrate is totally reflected by the slopes of the first substrate, where the angle of light is changed so as to be smaller than the total reflection angle, thus being outputted to the bottom face side.[0182]
Also, the light outputted from the bottom face of the first substrate illuminates an illumination object, and reflected light from the illumination object is made to be incident again on the first substrate, where the presence of the second substrate eliminates any distortion of the image, and if[0183]
θ<sin−1(n1/n)−sin−1{(1/n)sin(β)},
a successful image can be displayed without being affected by the angle of visibility.[0184]
Also, if the light outgoing angle of the collimator is within ±{90−θ− sin[0185]−1(n1/n)}, then all of the beams of light emitted from the light source can be totally reflected by the slopes of the first substrate to illuminate the illumination object therewith, thus offering a good illuminating efficiency.
Thus, an illuminating system which makes the groove lines less visible, maintains image quality of reflected light successful and offers a good illuminating efficiency can be provided.[0186]
In other words, according to the present invention, a light source, for example a linear light source, is placed beside a side face of a light guide member as an example of a first transparent plate, and light emitted from the light source is collimated by a collimator. Also, in the configuration of the light guide member, a bottom face of the light guide member is a plane surface and slopes are provided at a specified angle in the top face of the light guide member, and to this light guide member is bonded a compensating plate as an example of a second transparent plate whose top face is a plane surface and whose bottom face has grooves of the same configuration as in the light guide member formed therein, by which most of the light that propagates within the light guide member is totally reflected by the stepwise slopes of the light guide member so as to be outputted from the light guide member, thus allowing the reflecting plate as an example of the illumination object to be illuminated. Further, because the presence of the compensating plate allows the reflected light from the reflecting plate to be transmitted to the observer's side without being distorted, a successful image quality of the reflecting plate can be maintained. Further, because the light emitted from the light source is collimated into a specified angle by the collimator, the light is not transmitted from the light guide member to the compensating plate, allowing the reflecting plate to be illuminated with high efficiency and besides making the groove lines less visible. Further, by making the stepwise slopes into a specified angle, the brightness difference between the stepwise slopes and portions other than the slopes can be made smaller within the observer's field of view, so that a successful image quality of the reflected light can be maintained.[0187]
Further, according to still another aspect of the present invention, the collimator which satisfies the output characteristic necessary for the light guide member can be implemented, and the same effects as in the foregoing aspects can also be obtained.[0188]
FIG. 35 is a schematic cross-sectional view of an illuminating system. As shown in FIG. 35, the illuminating system comprises a[0189]light source101, areflector102, alight guide member103 and a compensatingplate105. In order that thereflector102 collimates the light emitted from thelight source101, the distance from thelight source101 to a side face of thelight guide member103 is elongated. Thelight guide member103 has a function of totally reflecting and propagating the light introduced from thereflector102, and a function of illuminating a reflectingplate104 by totally reflecting the light with slopes of grooves formed in its top face to change the angle of the light. The compensatingplate105 has a function of correcting any distortion that occurs when the reflected light from the reflectingplate104 passes thelight guide member103.
However, since the illuminating system has a double sheet construction of the[0190]light guide member103 and the compensatingplate105 and since thelight guide member103 and the compensatingplate105 are bonded together with their grooves identical in shape, their alignment may be difficult to accomplish and the fabrication costs high.
Therefore, following embodiments of the present invention have an aim of solving these issues.[0191]
Hereinbelow, an illuminating system by overhead irradiation according to a third embodiment of the present invention is described with reference to the accompanying drawings.[0192]
FIGS. 19 and 32 are a schematic view and a more detailed schematic view, respectively, of a cross section of the illuminating system by overhead irradiation in the third embodiment of the invention.[0193]
Referring to FIG. 1,[0194]reference numeral1 denotes a light source, in which a plurality of, for example, fluorescent lamps, such as hot cathode-ray tubes or cold cathode-ray tubes, or light emitting diodes are arrayed in a linear shape, or in which incandescent lamps or organic light-emitting materials are formed into a linear shape. Thelight source1 is arranged on one side of alight guide member203.
In FIG. 19,[0195]reference numeral2 denotes a reflector, which is placed so as to cover thelight source1, and of which the inner surface is so made as to have a high reflectance and a small diffusivity. For example, the reflector is made up by depositing a high-reflectance material such as silver or aluminum on a resin sheet, and bonding this sheet to a thin metal plate or resin sheet. When thelight source1 is a fluorescent lamp, it is desirable to fill the gap between thelight source1 and thereflector2 with a material having a refractive index close to the glass' refractive index of 1.5. It is also desirable that the thickness of one side face of thelight guide member203 on thelight source1 side and the height of thereflector2 are equal to each other.
In FIG. 19, a[0196]light guide member203 is, as an example, a transparent plate (hereinafter, referred to as light guide member), which is made from a material such as quartz, glass, transparent resin like acrylic resin or polycarbonate, or the like. As shown in FIG. 20, thelight guide member203 is set to a size equivalent to the size of an illumination object. Abottom face232 and anincident surface233 of thelight guide member203 form an angle of about 90 degrees. Thelight guide member203 is generally wedge shaped as a whole, and atop face231 of thelight guide member203 is tilted so as to be gradually closer to thebottom face232 of thelight guide member203 with increasing distance from thelight source1. That is, if the thickness of theside face233 of thelight guide member203 on the light source side is d1 and the thickness of the other side face on the side opposite to thelight source1 is d2, then d1≧d2. The relationship of these thicknesses may be that d1=d2 basically, but a relationship of d1>d2 allows the brightness to be maintained uniform, further favorably. Also, a plurality of V-shapedgrooves204 are formed in thetop face231 of thelight guide member203.
FIG. 21 shows a detailed view of the[0197]groove204. Thegroove204 is formed so as to extend generally parallel to the longitudinal direction of the light source1 (a direction vertical to the drawing sheet), and V-shaped in its cross section. A slope of thegroove204 on the light source side is referred to as afirst slope241. A slope of thegroove204 on the side opposite to thelight source1 is referred to as asecond slope242. Further, a portion of the light guidemember top face231 where nogroove204 is present is referred to as aflat portion243. Theflat portions243 constitute a part of thetop face231 that are one plane. An angle θ1formed by the light guidemember bottom face232 and thefirst slope241 of thegroove204 is within a range that θ1≦90°−θc+2θ3and that θ1≈ 45°θ3−(½)sin−1(1/n×sinβ), where θcis the total reflection angle, θ3is the angle formed by theflat portion243 and the light guidemember bottom face232 and β is the angle formed by a perpendicular of thebottom face232 and the observers direction. In addition, in FIG. 21,reference numeral332 denotes an imaginary plane parallel to thebottom face232.
An angle θ[0198]2formed by the light guidemember bottom face232 and thesecond slope242 of thegroove204 is that θ2≦(½)sin−1(1/n), where n is the refractive index of thelight guide member203.
It is noted that as shown in FIG. 20, both pitch p and depth h of the[0199]groove204 are based on thetop face231 as a reference plane.
In FIG. 19, on the other hand,[0200]reference numeral205 denotes a reflecting surface. The reflectingsurface205 is a printed article such as a book or photograph, a screen display unit of personal computers or other office automation equipment, portable information terminals, portable video tape recorders and the like, or a reflection type liquid crystal display used in various monitors.
Also in FIG. 19,[0201]reference numeral206 denotes an observer (more precisely, an observer's eye). Theobserver206 views the reflectingsurface205 through thelight guide member203.
Next, operation of the illuminating system according to the third embodiment of the present invention is described.[0202]
Light that has been thrown from the[0203]light source1 to be incident on thelight guide member203 at itsincident surface233 results in light having a radiation distribution of ±sin−1(1/n) centered on the 0° direction according to Snell's law, given that the refractive index of thelight guide member203 is n. Since most of the material of thelight guide member203 has a refractive index of not less than 1.42, the radiation distribution falls within a range of ±44.77°. Therefore, the incident light beam propagates within thelight guide member203 at the radiation distribution of ±44.77°. The light beam incident on the light guidemember bottom face232 has an incident angle of 90°−44.77°=45.23° or more, which is larger than the total reflection angle, so that the light beam is totally reflected by the light guidemember bottom face232.
Next, operation of the light at the light guide[0204]member top face231 is described with reference to the accompanying drawings. The light guidemember top face231 is so structured that a plurality of theflat portion243 and a plurality of thegrooves204 each composed of thefirst slope241 and thesecond slope242 are arranged, and the reflection at the light guidemember top face231 is classified into the following five patterns as shown in FIGS.22A-22E. The first pattern of FIG. 22A is light incident on theflat portion243. A second pattern of FIG. 22B is light incident on thefirst slope241. A third pattern of FIG. 22C is light incident on thesecond slope242. In the following description, α is assumed to be an angle formed by the light guidemember bottom face232 and the light reaching the light guidemember top face231. Because the light reaching the light guidemember top face231 is light having a distribution of the positive direction out of the light having the radiation distribution of ±sin−1(1/n) centered on 0°, a is not less than 0° and the light has the maximum radiation distribution at 0°.
In the first pattern of FIG. 22A, the light is incident on the[0205]flat portion243 at an incident angle of {90°−α−θ3}. Because θ3is a small value, most of light is reflected. The light reflected by theflat portion243 results in an angle of {−α−2×θ3}.
In the second pattern of FIG. 22B, the light is incident on the[0206]first slope241 at an incident angle of {90°−α−θ1}. The light that has been incident on thefirst slope241 is partly reflected by Fresnel reflection and partly transmitted to be a loss. The light reflected by thefirst slope241 results in an angle of light of {−α−2×θ1}.
In the third pattern of FIG. 22C, the light is incident on the[0207]second slope242 at an incident angle of {90°−α+θ2}. Since the light reflected by thesecond slope242 results in an angle of light of {−α+2×θ2}, the reflected light, when θ2is a small value, results in more parallel light than the light which is prior to the reflection.
Actually, the light is reflected in a composite combination of the first to third patterns. Although not limited because of differences depending on the size of the illuminating system, the groove height h is set to around 5 μm-25 μm and the pitch p is set to around 100 μm to 250 μm in this case. As a result, not a few rays of light, after being reflected by the[0208]flat portion243, are reflected by the first slope241 (in a combination of the first pattern and the second pattern). This pattern is referred to as a fourth pattern of FIG. 22D.
In the fourth pattern of FIG. 22D, the light is incident on the[0209]first slope241 at an incident angle of {90°−(−α−2×θ3)−θ1}. In this case, since θ1satisfies that θ1≦90°−θc+2θ3, the incident angle onto thefirst slope241 is 90°−(−α−2×θ3)−θ1≧α+θc(where θcis the total reflection angle). Because α is not less than 0°, all the rays of light are larger than the total reflection angle and are totally reflected, preferably. In addition, θ1, when not more than 20°, would cause a difficulty in the view of theobserver206, so that θ1is preferably set to an angle over 20°.
The light reflected by the[0210]first slope241 results in an angle of light of {α+2×θ3−2×θ1}, and becomes incident on the light guidemember bottom face232 at an incident angle of {90°+α+2×θ3−2×θ1}. In this case, since θ1satisfies that θ1≈45°+θ3−(½)sin−1(1/n×sinβ), the incident angle on thebottom face232 is 90°+α+2×θ3−2×9θ1≈α+sin−1(1/n×sinβ). It is noted here that β is the angle formed by the direction perpendicular to the reflectingsurface205 and the direction of observation by theobserver206 as shown in FIG. 19, that is, β indicates the direction of theobserver206.
Since α is at most 0°, the light is incident on the bottom face at an angle distribution centered on the angle sin[0211]−1(1/n×sinβ). Accordingly, the light goes out from the light guidemember bottom face232 at an angle distribution centered on the angle β, which is favorable for observation in the direction of angle β, thus allowing an adjust to a direction easier for the observer to view. Also, the closer to 0° the value of α is, the narrower the radiation angle distribution centered on the direction of angle β becomes, preferably.
Also, when θ[0212]2is a small value, not a few rays of light, after being reflected by thesecond slope242, are reflected by theflat portion243 to be incident on the first slope241 (a combination of the first, second, and third patterns). This pattern is referred to as a fifth pattern of FIG. 22E.
In the fifth pattern of FIG. 22E, since the light reflected by the[0213]second slope242 results in {−α+2×θ2}, the reflected light, when θ2is a small value, results in more parallel light than before it is reflected. Therefore, the light reflected by thesecond slope242 is totally reflected by theflat portion243 and thefirst slope241 as described in the fourth pattern of FIG. 22D, and the distribution of radiation angle from the light guidemember bottom face232 after the total reflection becomes narrower, preferably.
Although not limited because of differences depending on the size of the illuminating system, the concrete value of θ[0214]2is at least such an angle that light reaches thesecond slope242 and results in parallel rays of light. Therefore, θ2is such an angle that a ray of light having the maximum angle of α, sin−1(1/n) is reflected toward the 0° direction, i.e., θ2≦(½)sin−1(1/n).
Further, on the assumption that the[0215]flat portion243 is absent, the necessity of theflat portion243 is described below. Out of the light that reaches the light guidemember top face231, light of 0<α<θ2cannot reach thesecond slope242, as can be easily understood, thus reaching thefirst slope241. Therefore, the light is partly reflected by Fresnel reflection but partly transmitted to be a loss. Also, light of θ2<α<2θ2, when reflected by thesecond slope242, results in a ray of light having an angle of −α+2θ2as described in the third pattern, so that 0<αθ2. Accordingly, the light is Fresnel-reflected by thefirst slope241 or transmitted to be a loss. Further, light of 2θ2<α<{sin−1(1/n)} is reflected by thesecond slope242 so that {−sin−1(1/n)+2θ2}<α<0. The light that is reflected by thesecond slope242 partly reaches thefirst slope241 successfully, but partly does not reach thefirst slope241 so as to be directed toward the light guidemember bottom face232. Therefore, the rate of light of 0<α<θ2increases so that the light is transmitted by thefirst slope241 to be a loss at a higher probability. Hence it can be said that theflat portion243 is necessary.
As a result of the above, light reflected by the[0216]grooves204 is outputted from thebottom face232 of thelight guide member203. Its outgoing angle, although not limited because of differences depending on the characteristics of the reflectingplate205, is desirably along the direction β in which theobserver206 usually observes.
Light outputted from the light guide[0217]member bottom face232 reaches the reflectingplate205, being thereby reflected. The reflected light passes again through thelight guide member203, reaching theobserver206. When this occur, a large distortion of thelight guide member203 due to thegrooves204 would cause groove lines to be conspicuous, inappropriately.
However, if the[0218]grooves204 are provided at such a pitch p not more than the minimum resolution (dot pitch) of the reflectingplate205 that moire fringes are not formed, only the light transmittance of each dot affects the image quality and the distortion of each dot does never affects the image quality.
Further, although not limited because of differences among applications, a length x of the[0219]first slope241 of thegroove204, if not more than {L×(0.5/60)×π/180}, makes the groove lines inconspicuous on the ground that the human eye's minimum resolution is 0.5 minute, where L is the distance at which usually the screen is viewed (a distance between theobserver206 and thetop face231 of the light guide member203). For example, if L is 35 cm, then groove lines of not more than {35×(0.5/60)×π/180}=50 μm can be said to be inconspicuous.
Thus, it is preferable that the pitch p is not more than the dot pitch of the reflecting[0220]plate205 or that the length x=h/tan(θ1) of thefirst slope241 is not more than (L×(0.5/60)×π/180}, where L is the distance at which theobserver206 usually views the screen (the distance between theobserver206 and thetop face231 of the light guide member203), in which case the groove lines are inconspicuous.
As shown above, the light emitted from the[0221]light source1 is outputted from the light guidemember bottom face232 by thefirst slopes241 of thegrooves204, illuminating the reflectingplate205, in which case the light density would decrease with increasing distance from thelight source1, resulting in non-uniform brightness distribution. However, because the thickness d1 of the side face of thelight guide member203 on thelight source1 side and the thickness d2 of the side face of thelight guide member203 on the side opposite to thelight source1 have a relationship of d1≧d2, the light density is maintained constant so that the brightness distribution becomes constant.
It is also preferable to make the pitch p decreasing with increasing distance from the[0222]light source1, in which case the brightness distribution becomes more uniform.
It is also preferable to increase the depth h at places far from the[0223]light source1, in which case the brightness distribution becomes more uniform.
Thus, according to this third embodiment, there can be provided the illuminating system by overhead irradiation which is simple in construction, good at illuminating efficiency, inconspicuous in groove lines and uniform in brightness distribution.[0224]
Concrete numerical values for the third embodiment may be exemplified as follows. From the viewpoint of a setting under the critical angle, a value of θ[0225]1<49.8° is set in the condition that θ1≦90°−θc+2θ3, for an improvement of brightness. Also, the outgoing angle is set by setting a value of θ1≈46.2° for β=30° in the condition that θ1≈45°+θ3−(½)sin−1(1/n×sinβ). Also, from the viewpoint of improving the reflectance at thefirst slope241 of thegroove204 of thelight guide member203 by making the rays of light parallel, a value of θ2≦20.9° is set in the condition that θ2≦(½)sin−1(1/n), for an improvement of brightness. Further, the pitch p of thegrooves204 is set to not more than 250 μm so as to be not more than the dot pitch of the reflectingplate205, for a reduction in the groove lines. Further, a value of x≦50.9 μm is set in the condition that the length of thefirst slope241 of thegroove204, x≦{L×(0.5/60)×π/180}, for a reduction of the groove lines. In addition, this example is based on the assumption that the refractive index of thelight guide member203, n=1.5, the angle formed by thetop face231 and thebottom face232 of thelight guide member203, θ3=0.8° and that the distance between thetop face231 of thelight guide member203 and theobserver206, L=350 mm.
In the third embodiment, it was found as a result of simulation experiments that the length of the flat portion is preferably about five times as long as the length of the first slope, in which case rays of light in the fifth pattern account for larger portion.[0226]
It is noted here that the present invention is not limited to the above third embodiment, and may be embodied in various ways.[0227]
For example, it is preferable to provide a protective layer on the surface of the[0228]light guide member203 in the third embodiment, in which case deteriorations of the appearance due to flaws or the like can be prevented. Hard coating agents as an example of the material that forms the protective layer can be exemplified by thermosetting silicon base agents with importance laid on the coating function, ultraviolet-curing acrylic agents or ultraviolet-curing silicon base agents with importance laid on the coating workability, and the like.
Further, in the third embodiment, a transparent sheet made of acryl or polycarbonate or the like may be provided instead of the protective layer. It is also possible to provide a protective layer on these transparent sheets.[0229]
It is also preferable to provide an antireflection coating on the[0230]top face231 of thelight guide member203 in the third embodiment, in which case the image from the reflectingplate205 becomes sharp.
It is also possible that a collimator for collimating the light of the horizontal direction with respect to the[0231]light source1 is attached to aside face233 of thelight guide member203 on the light source side in the third embodiment. The radiation distribution of light emitted from thelight source1 has a spread in not only the vertical direction but also horizontal direction to thelight source1. On this account, the light can be effectively utilized by suppressing the horizontal rays of light by the collimator. In other words, the front brightness is enhanced by narrowing the radiation brightness distribution in both right and left directions.
Furthermore, as a modification of the third embodiment, two or more fluorescent lamps may be used for a large-screen reflecting plate with a 13 inch or more diagonal, by which the brightness can be maintained, favorably. Examples of this modification are shown in FIGS. 23A, 23B,[0232]23C. One exemplary way is, as shown in FIG. 23A, to place two or more lamps at the site of thelight source1. Another way is, as shown in FIG. 23B, to prepare twolight guide members203 of the third embodiment and placed them opposite to each other with their smaller-thickness side faces adjoining. With this constitution, light emitted from a right-side light source211 is internally reflected by atop face311 of the right-sidelight guide member203 so as to be outputted from abottom face321, while light emitted from a left-side light source212 is internally reflected by atop face312 of the left-sidelight guide member203 so as to be outputted from abottom face322, so that the brightness is maintained for the large screen, favorably.
Still another way is, as shown in FIG. 23C, to prepare two[0233]light guide members203 of the third embodiment and position them back to back with their larger-thickness side faces adjoining. With this constitution, light emitted from a right-side light source211 is internally reflected by atop face312 of the left-sidelight guide member203 so as to be outputted from abottom face322, while light emitted from a left-side light source212 is internally reflected by atop face311 of the right-sidelight guide member203 so as to be outputted from abottom face321, so that the brightness is maintained for the large screen, favorably.
For a small-screen reflecting plate with a[0234]4 inch or less diagonal, employing light emitting diodes or the like as thelight source1 is suited for miniaturization, preferably. In this case, because the radiation distribution of light emitting diodes has some degree of directivity, thereflector2 may be omitted.
As described above, according to the third embodiment, light emitted from the[0235]light source1 becomes incident on thelight guide member203, and propagates on and on while being iteratively totally reflected within thelight guide member203. During this process, the light is totally reflected by thegrooves204, . . . ,204 provided in the top face of thelight guide member203, being changed into an angle of light smaller than the total reflection angle and so outputted to the bottom face side, thus illuminating anillumination object205. The reflection at thegrooves204 is composite reflection at thefirst slopes241, thesecond slopes242 and theflat portions243. Therefore, if the angle of thefirst slope241 is not more than {90°−θc+2θ3}, the reflectance becomes high so that the illuminating efficiency is improved.
Further, the angle of light emitted from the[0236]light guide member203 by thefirst slope241 varies. On this account, if the angle of thefirst slope241 is {45°+θ3−(½)sin−1(1/n×sinβ)}, then the angle of outgoing light becomes in the β direction so that angle of outgoing light can be aligned along the easy-to-view angle for theobserver206.
Also, if the angle of the[0237]second slope242 is not more than {(½)sin−1(1/n)}, then the light reflected by thesecond slope242 becomes more parallel rays of light. On this account, the light that reaches thefirst slope241 or theflat portion243 after being reflected by thesecond slope242 is reflected at higher reflectance. Thus, the illuminating efficiency is improved.
Further, if the pitch of the[0238]grooves204, . . . ,204 is not more than the dot pitch of theillumination object205, then the groove lines become inconspicuous so as not to be an obstacle to theobserver206.
Also, if the length x of the[0239]first slope241 is not more than {L×(0.5/60)×π/180}, where L is the distance between theobserver206 and the top face of thelight guide member203, then the groove lines become inconspicuous so as not to be an obstacle to theobserver206 on the ground that the human eye's resolution is 0.5 minute.
Thus, there can be provided the illuminating system by overhead irradiation which is simple in construction, good at illuminating efficiency and inconspicuous in groove lines.[0240]
Next, an illuminating system by overhead irradiation according to a fourth embodiment of the present invention is described with reference to the accompanying drawings.[0241]
The illuminating system of the fourth embodiment of the invention is generally similar in construction to the illuminating system of the third embodiment, and differs therefrom only in that a[0242]transparent plate207 is placed on thelight guide member203.
In FIGS. 24 and 33,[0243]reference numeral207 denotes a transparent plate (hereinafter, referred to as prism sheet), which is made from a material such as quartz, glass, transparent resin like acrylic resin or polycarbonate, or the like. In particular, a transparent resin, when used, may be a soft material formed into a sheet shape.
One side of the[0244]prism sheet207 is aflat surface271, and the other side is aprism surface272 with the cross section formed into a triangular, wedge shape. The shape of theprism sheet207 is generally equal in size to thelight guide member203, as viewed from the top. On theprism surface272 of theprism sheet207, are arrayed a plurality of combinations of at least an isosceles-triangular (or equilateral triangular, possible) wedge-shaped projected portion273 (hereinafter, referred to as prism portion) and aflat portion274 as shown in FIG. 25, where the wedge-shaped projectedportions273 with an isosceles-triangular cross section each extend parallel to the longitudinal direction of thelight source1 and are arranged at the intervals of the pitch P in a direction perpendicular to the longitudinal direction. If the angle formed by each slope of the projectedportions273 with an isosceles-triangular cross section and an imaginary plane parallel to theflat surface271 is θ4, then θ4is preferably set within a range of 30° to 50° in order that theprism sheet207 effectively works. Theprism sheet207 is placed on the top face of thelight guide member203 with theprism surface272 downside.
Next, operation of the illuminating system in the fourth embodiment is described.[0245]
Some of the light that has been incident on the[0246]light guide member203 from thelight source1 is transmitted through thefirst slopes241 of thegrooves204. This ray of light has a large outgoing angle with respect to thetop face231 of thelight guide member203. For example, the light is outputted in a direction in the vicinity of 80° in the foregoing third embodiment. FIG. 26 shows a graph of characteristics of light outputted from the light guidemember top face231 under the conditions of θ1=40° and θ2=10°. In FIG. 26, it can be understood that the leakage amount of light becomes large at outgoing angles around 70°-80°. Accordingly, the light, upon reaching theprism surface272 of theprism sheet207, is reflected by the triangular projectedportions273 as illustrated in FIG. 27 so as to be incident again on thelight guide member203 and pass through thelight guide member203, thus reaching the reflectingplate205. In this process, it was derived from experiments and simulations that slope angles θ4within a range of 30° to 50° allow a good efficiency to be obtained. As a result of this, the light illuminating efficiency is improved so that the brightness is enhanced.
Also, the light (image) reflected by the reflecting[0247]plate205 would yield distortion when passing through thelight guide member203 and theprism sheet207. However, the cross section of theprism sheet207 having theflat portions274, given a large length ratio of theflat portion274 to the slope of theprism portions273 and a small pitch P of theprism portions273, then less distortion results. That is, when theprism portions273 are provided at a pitch not more than the minimum resolution (dot pitch) of the reflecting plate, only the light transmittance of each dot affects the image quality and the distortion of each dot never affects the image quality.
Further, although not limited because of differences among applications, a length x of the slope, if not more than {L×(0.5/60)×[0248]π/180}, makes the prism-portion lines inconspicuous on the ground that the human eye's minimum resolution is 0.5 minute, where L is the distance at which usually the screen is viewed. For example, if L is 35 cm, then prism-portion lines of not more than 50 μm can be said to be inconspicuous.
Thus, it is preferable that the pitch p of the[0249]prism portions273 is not more than the dot pitch of the reflecting plate or that the length of the slope of theprism portions273 is not more than {L×(0.5/60)×π/180}, where L is the distance at which the observer usually views the screen (the distance between the observer and the top face of the prism sheet), in which case the lines of the projectedportions273 are inconspicuous.
As concrete examples of numerical values, the angle θ[0250]4of the slope is set to within a range of 30° to 50° for recycling of leakage light, while the pitch p is set to not more than 250 μm so as to be not more than the dot pitch of the reflectingplate205, for reduction in the prism-portion lines. Further, the length of the slope of the prism portions is set to not more than 50.9 μm so as to be not more than {L×(0.5/60)×π/180}, for reduction of the prism-portion lines.
The[0251]prism sheet207, which is intended to recycle the light that has leaked from thelight guide member203 by reflecting it at the slopes, may be implemented in other shapes only if slopes and a flat portion similar to those of the above embodiment are provided. FIGS. 28A and 28B show examples of other shapes. For example, theprism sheet207 can be implemented by one arrangement in which a plurality ofgrooves276 each having a triangular cross section are arranged as shown in FIG. 28A, or another in which a plurality ofhills277 each having a trapezoidal cross section are arranged as shown in FIG. 28B, or the like (see FIG. 33).
Further, the radiation distribution of light emitted from the[0252]light source1 has a spread in not only the vertical direction but also horizontal direction to the light source. Therefore, by placing theprism sheet207 in such a direction of the prism that the projected portions or the like extend in a direction perpendicular to the longitudinal direction of thelight source1, component rays of light in the direction horizontal to thelight source1 are reflected by the slopes so as to pass again through thelight guide member203 and illuminate the reflectingplate205, by which the illuminating efficiency can be improved.
Therefore, according to the fourth embodiment, light emitted from the[0253]light source1 becomes incident on thelight guide member203, and propagates on and on while being iteratively totally reflected within thelight guide member203. During this process, the light is totally reflected by thegrooves204, . . . ,204 provided in thetop face231 of thelight guide member203, being changed into an angle of light smaller than the total reflection angle and so outputted to the bottom face side, thus illuminating theillumination object205. The reflection at thegrooves204 is composite reflection at thefirst slope241, thesecond slope242 and theflat portion243. Therefore, part of the light is outputted from thetop face231 of thelight guide member203 by the first slopes241. The light outputted from the light guidemember top face231 is reflected by the slopes of the bottom face of theprism sheet207 so as to be incident again on thelight guide member203, thus illuminating theillumination object205. Thus, the illuminating efficiency is improved.
Also, since the angle θ[0254]4of the slopes of theprism sheet207 is within the range of 30° to 50°, a more efficient illumination can be achieved.
Also, if the pitch P of the slopes of the[0255]prism sheet207 is not more than the dot pitch of theillumination object205, the lines of theprism sheet207 become inconspicuous so as not to be an obstacle to theobserver206.
Further, if the length of the slope is not more than {L×(0.5/60)×[0256]π/180}, where L is the distance between theobserver206 and thetop face271 of theprism sheet207, then the prism-portion lines become inconspicuous so as not to be an obstacle to theobserver206 on the ground that the human eye's resolution is 0.5 minute. Thus, there can be provided the illuminating system by overhead irradiation which is simple in construction, good at illuminating efficiency and inconspicuous in prism-portion lines.
Next, an illuminating system by overhead irradiation according to a fifth embodiment of the present invention is described.[0257]
The illuminating system of the fifth embodiment of the invention is generally similar in construction to the illuminating system of the fourth embodiment, and differs therefrom only in the way how the prism sheet is positioned. The[0258]prism sheet207 in this embodiment is positioned with theprism surface272 upside.
The operation in this case is described with reference to FIGS. 29 and 34. Reflected light, although varying depending on the characteristics of the reflecting[0259]plate205, is generally diffused light. On this account, the light is radiated also in directions out of the angle of visibility. This light out of the angle of visibility is condensed by theprism surface272 of theprism sheet207, by which the front brightness is improved.
Assume that the reflected light is distributed around a center of a direction generally vertical to the[0260]light guide member203 and the prism sheet207 (the center direction is here assumed to be 0°). The reflected light passes through thelight guide member203 so as to be incident on aflat portion274 of theprism sheet207. Assuming that the reflectingplate205 is a complete diffusing plate, the light after being incident on theprism sheet207 is distributed to ±sin−1(1/n1) around the 0° direction, where n1is the refractive index of theprism sheet207.
As shown in FIG. 29, if the angle formed by the[0261]flat surface271 and the slope of theprism portions273 of theprism sheet207 is θ4, then the outgoing angle is {θ4+sin−1(n×sin(α−θ4))}. Given a θ4of 50° and n1=1.5, the maximum value of α1+sin−1(1/n1), is 41.8°, the outgoing angle being 37.7°, which is smaller than ±90°, an angle before the incidence on the prism sheet. On this account, the radiation distribution of the reflected light is narrowed by the slopes of theprism sheet207. It was derived from experiments and simulations that slope angles θ4within a range of 30° to 50° allow a good efficiency to be obtained. That is, with the slope angle in this range, the radiation angle distribute of reflected light can be narrowed so that the front brightness is enhanced.
As shown above, by positioning the[0262]prism surface272 upside, the front brightness can be improved.
Also, the reflecting[0263]plate205 may be other than a complete diffusing surface or other the outgoing angle of thelight guide member203 may be other than 0°, in which case also the radiation distribution can be narrowed in a similar manner, preferably.
Also, the light (image) reflected by the reflecting[0264]plate204 would yield distortion when passing through thelight guide member203 and theprism sheet207. However, the cross section of theprism sheet207 having theflat portions274, given a large length ratio of theflat portion274 to the slope portion of theprism portions273 and a small pitch of theprism portions273, then less distortion results. That is, when the grooves are provided at a pitch not more than the minimum resolution (dot pitch) of the reflecting plate, only the light transmittance of each dot affects the image quality and the distortion of each dot never affects the image quality.
Further, although not limited because of differences among applications, a length x of the slope, if not more than (L×(0.5/60)×[0265]π/180}, makes the prism-portion lines inconspicuous on the ground that the human eye's minimum resolution is 0.5 minute, where L is the distance at which usually the screen is viewed. For example, if L is 35 cm, then prism-portion lines of not more than 50 μm can be said to be inconspicuous.
Thus, it is preferable that the pitch P is not more than the dot pitch of the reflecting plate or that the length of the slope is not more than (L×(0.5/60)×[0266]π/180}, where L is the distance at which the observer usually views the screen, in which case the prism-portion lines are inconspicuous.
Examples of concrete numerical values are the same as in the fourth embodiment.[0267]
In this fifth embodiment, the[0268]prism sheet207, which is intended to improve the front brightness by condensing the light out of the angle of visibility by theprism surface272 of theprism sheet207, may be implemented in other shapes only if slopes and flat portions similar to those of the fifth embodiment are provided. FIG. 34 shows an example of other shapes. For example, out of the three kinds ofprism sheets207 in FIG. 34, a prism sheet on the left side is theprism sheet207 of FIG. 29, while a prism sheet on the upper right side is one in which a plurality ofgrooves276 each having a triangular cross section are arranged in its top face. A prism sheet on the lower right side is one in which a plurality ofhills277 each having a trapezoidal cross section are arranged in its top face. With these prism sheets, similar functions can be accomplished.
Also, as can be easily understood from the above description, the longitudinal direction of the prism of the[0269]prism sheet207 is not limited.
Therefore, according to the fifth embodiment, by arranging on the light guide member[0270]203 aprism sheet207 comprising a transparent plate in which, with respect to a cross-sectional shape, a plurality of projectedportions273 having slopes of an angle θ4to the bottom face are arranged on the top face so that a flat portion (274) generally parallel to the top face is interposed therebetween. Thus, the radiation distribution of reflected light from theillumination object205 can be narrowed so that the front brightness can be improved.
Also, if the pitch p of the slope of the[0271]prism sheet207 is not more than the dot pitch of theillumination object205, the lines of theprism sheet207 are inconspicuous so as not to be an obstacle to theobserver206.
Also, if the length of the slope is not more than {L×(0.5/60)×[0272]π/180}, where L is the distance between theobserver206 and the top face of theprism sheet207, the groove lines become inconspicuous so as not to be an obstacle to theobserver206 on the ground that the human eye's resolution is 0.5 minute. Thus, there can be provided the illuminating system by overhead irradiation which is simple in construction, good at illuminating efficiency and inconspicuous in groove lines.
Next, an illuminating system by overhead irradiation according to a sixth embodiment of the present invention is described with reference to the accompanying drawings. The illuminating system of the sixth embodiment of the invention is generally similar in construction to the illuminating system of the third embodiment, and differs therefrom only in the shape of the grooves of the[0273]light guide member203.
FIG. 30 shows a view as viewed from above the illuminating system.[0274]Lateral grooves204 are provided along a direction parallel to thelight source1. Besides,longitudinal grooves208 are provided along a direction perpendicular to thelight source1. Thelateral grooves204 are the same as thegrooves204 of the third embodiment. FIG. 31 shows a cross-sectional view of thelongitudinal grooves208. Thelongitudinal grooves208 are V-shaped grooves and an apex angle θ5of eachgroove208 is between 80° to 120°.
The radiation distribution of light emitted from the[0275]light source1 has a spread in not only the vertical direction but also horizontal direction to thelight source1. Therefore, by placing thelongitudinal grooves208, component rays of light in the direction horizontal to thelight source1 are reflected by the slopes so as to go out from thelight guide member203 and illuminate the reflectingplate205, by which the illuminating efficiency can be improved. The present inventors made repeated experiments and simulations, finding out that angles θ5within a range of 80° to 120° are effective. That is, with the angle θ5in this range, the brightness can be improved by effectively utilizing the light in the direction parallel to thelight source1.
Examples of concrete numerical values for the pitch and the slope length are the same as in the fourth embodiment.[0276]
Therefore, according to the sixth embodiment, light emitted from the[0277]light source1 becomes incident on thelight guide member203, and propagates on and on while being iteratively totally reflected within thelight guide member203. During this process, the light is totally reflected by thegrooves204, . . . ,204 provided in thetop face231 of thelight guide member203, being changed into an angle of light smaller than the total reflection angle and so outputted to the bottom face side, thus illuminating theillumination object205.
The radiation distribution of light emitted from the[0278]light source1 has a spread in not only the vertical direction but also horizontal direction to thelight source1. Therefore, by placing thelongitudinal grooves208, . . . ,208, component rays of light in the direction horizontal to thelight source1 are reflected by the slopes so as to go out from thelight guide member203 and illuminate the reflecting surface, by which the illuminating efficiency can be improved.
Also, since each[0279]longitudinal groove208 is formed into a V-shape and the apex angle θ5of eachlongitudinal groove208 falls within the range of 80° to 120°, a highly efficient illumination can be achieved.
Thus, there can be provided the illuminating system by overhead irradiation which is simple in construction, good at illuminating efficiency and inconspicuous in groove lines.[0280]
As described above, according to one aspect of the present invention, the illuminating system by overhead irradiation at least comprises a light source, a transparent plate-shaped light guide member, at the side face of which the light source is located, in which a plurality of grooves are arranged in a top face of the light guide member at specified intervals in a direction parallel to a longitudinal direction of the light source, and in which flat portions constituting a part of the top face are arranged between adjacent ones of the grooves, wherein an illumination object placed on a bottom face side of the light guide member is observed from a top face side of the light guide member. Therefore, most of light propagating within the light guide member can be totally reflected by the grooves so as to go out from the light guide member, thereby illuminating the reflecting surface.[0281]
Also, by setting the angle of the first slope of the grooves so that θ[0282]1≦90−θc+2θ3, a more efficient illumination can be achieved. Also, by setting the angle θ1of the first slope so that θ1≈45°+θ3−(½)sin−1(1/n×sinβ), the outgoing angle can be aligned along the observer's direction β, favorably.
Also, setting the angle of the second slope of the grooves so that θ[0283]2≦(½)sin−1(1/n), a more efficient illumination can be achieved.
Also, setting the pitch of the grooves to not more than the dot pitch of the illumination object, the groove lines can be made inconspicuous.[0284]
Also, setting the length of the first slope to not more than {L×(0.5/60)×[0285]π/180}, where L is the distance between the observer and the illuminating system, more specifically, the top face of the light guide member, the groove lines can be more inconspicuous.
According to the illuminating system by overhead irradiation in another aspect of the present invention, a transparent prism sheet is placed on the light guide member, the prism sheet having, with respect to a cross-sectional shape, a plurality of projected portions having slopes of an angle θ[0286]4to the top face which are arranged on the bottom face so that a flat portion generally parallel to the bottom face is interposed therebetween. Therefore, the light that has leaked from the light guide member can be reflected by the slopes of the angle θ4so as to pass through the light guide member, thereby illuminating the reflecting plate.
Also, by setting the slope angle θ[0287]4to within a range of 30° to 50°, the illuminating efficiency is more improved.
Also, by setting the pitch of the slope of the prism sheet to not more than the dot pitch of the illumination object, the groove lines can be made inconspicuous.[0288]
Also, by setting the length of the slope of the prism sheet to not more than {L×(0.5/60)×[0289]π/180}, where L is the distance between the observer and the illuminating system, the groove lines can be more inconspicuous.
According to the illuminating system by overhead irradiation in still another aspect of the present invention, a transparent prism sheet is placed on the light guide member, the prism sheet having, with respect to a cross-sectional shape, a plurality of projected portions having slopes of an angle θ[0290]4to the bottom face which are arranged on the top face so that a flat portion generally parallel to the top face is interposed therebetween. Thus, the radiation distribution of reflected light from the reflecting surface can be narrowed, by which the front brightness can be improved.
Also, by setting the pitch of the slopes of the prism sheet to not more than the dot pitch of the illumination object, the groove lines can be made inconspicuous.[0291]
Also, by setting the length of the slope to not more than {L×(0.5/60)×[0292]π/180}, where L is the distance between the observer and the illuminating system, more specifically, the top face of the prism sheet, the groove lines can be made more inconspicuous.
Further, according to the illuminating system by overhead irradiation in yet another aspect of the present invention, a plurality of grooves are arranged in the top face of the light guide member at specified intervals in a direction perpendicular to a longitudinal direction of the light source. Therefore, component rays of light in the direction horizontal to the light source can be reflected by the slopes so as to go out from the light guide member and illuminate the reflecting surface. Thus, the illuminating efficiency can be improved.[0293]
Also, by setting the perpendicularly provided grooves into a V-shape, and by setting the apex angle θ[0294]5of the V-shape to within a range of 80° to 120°, the illuminating efficiency can be further improved.
Further, with the liquid crystal display using any one of the illuminating systems as described above, a liquid crystal display which can succeed the advantages of the above illuminating systems can be achieved.[0295]
An illuminating system according to a seventh embodiment of the present invention will be described with reference to FIGS. 36, 37.[0296]
FIG. 36 is a diagram in cross section of the illuminating system using an example of a light guide member in the seventh embodiment of the present invention.[0297]
In FIG. 36,[0298]reference numeral1 denotes a light source which is, for example, a fluorescent lamp such as a hot cathode ray tube or cold cathode ray tube, or an array of a plurality of light emitting diodes, or an incandescent lamp or a linearly shaped organic light-emitting material, etc. Thelight source1 is arranged at a side face of alight guide member303 of a transparent plate.
[0299]Reference numeral2 denotes a reflector in FIG. 36 which is arranged to cover thelight source1. Thereflector2 is constituted so that an inner face shows high reflectance and small diffusion performance. For instance, silver, aluminum or the like material of high reflectance is vapor-deposited to a resin sheet, which is then bonded to a thin metallic plate or resin sheet, thereby to constitute the reflector. If thelight source1 is a fluorescent lamp, a gap between thelight source1 andreflector2 is preferably filled with a material having a refractive index close to that of glass, namely, 1.5.
Preferably, a thickness of the side face of the[0300]light guide member303 at the side of thelight source1 is equal to a height of thereflector2. When thelight source1 is composed of light emitting diodes, thereflector2 can be eliminated because a radial distribution of the light source has some level of directivity. In that case, thelight guide member303 is desirably compact in size.
Still referring to FIG. 36, the[0301]light guide member303 is, e.g., a transparent plate (referred to simply as a “light guide member” hereinbelow) formed of quartz, glass, or transparent resin such as acrylic resin, polycarbonate, etc. Thelight guide member303 is made in the same size as that of an illumination object. As shown in FIG. 37, alower face332 of thelight guide member303 is set to be approximately 90° to a plane of incidence343. Thelight guide member303 is schematically shaped like a wedge as a whole, having anupper face331 tilted so as to be gradually closer to thelower face332 with increasing distance from thelight source1. More specifically, supposing that the thickness of theside face333 of thelight guide member303 at the side of the light source is d1, and a thickness of a side face of the light guide member at the side opposite to thelight source1 is d2, d1≧d2 is held. Although d1=d2 is fundamentally satisfactory, a relation of the thicknesses of d1>d2 is more preferable to maintain a luminance constant. A plurality of V-shapedgrooves304 are notched in theupper face331 of thelight guide member303.
In FIG. 36,[0302]reference numeral305 denotes a reflecting face which is, for example, a printed article such as a book, a photograph or the like, an image display device of a personal computer or other Office Automation equipment, a portable information terminal, a portable video tape recorders, etc., or a reflecting-type liquid crystal display device used in various kinds of monitors.
The propagation of light in the illuminating system of the seventh embodiment will now be described.[0303]
Light projected from the[0304]light source1 enters thelight guide member303 directly or after being reflected at thereflector2. The light entering thelight guide member303 is totally reflected and propagates. The light reflected at thegrooves304 among the propagation light loses total reflection conditions and consequently comes out from thelower face332 of the light guide member.
At this time, the light is reflected at the[0305]lower face332 of the light guide member to be a reflectedlight320. The light projected from thelower face332 of the light guide member illuminates the reflectingface305, when the light is reflected at the reflectingface305 and becomes areflected light500. The reflectedlight500 is an image generated by the reflectingface305. The reflectedlight320 is an unnecessary light worsening visibility of the image.
Meanwhile, in the seventh embodiment, the[0306]lower face332 of the light guide member is subjected to an anti-reflection treatment or a diffuse treatment by the known vacuum vapor deposition method, dip method, thermal transfer method, etc. When thelower face32 is processed through the antireflection treatment, the total quantity of the reflected light from thelower face332 designated by320 in FIG. 36 is reduced so large as is negligible enough in comparison with the quantity of the reflected light500 from the reflectingface305. Therefore, visibility can be improved greatly.
When the[0307]lower face32 is processed through the diffuse treatment, the reflected light320 from thelower face332 of the light guide member becomes irregularly reflected, whereby the quantity of light sensed as bright lines by human eyes due to the mirror reflection is reduced although the total quantity of the reflected light is unchanged, and the visibility can be improved.
However, the diffuse treatment to the[0308]lower face332 causes the reflected light500 from the reflectingface305 to diffuse similarly, rather inviting blurring in outline of displayed characters, etc. and decreasing the visibility. For avoiding this inconvenience, a haze value of the diffuse treatment to thelower face332 is preferably not larger than 20%, particularly in a range of 4-10% to reduce bright lines of the reflected light320 in a well-proportioned relation to the outline blurring, as is detected from experiments with many people including women and aged people. The “haze value” referred to here is a numerical value indicating a degree of diffusion, i.e., a ratio expressed by % of a diffuse transmission light and a total transmission light.
Needless to say, the visibility can be naturally improved furthermore if both the anti-reflection treatment and the diffuse treatment are performed to the[0309]lower face332 of the light guide member.
When an anti-reflection film is formed on the[0310]upper face331 of thelight guide member303, the reflection by an external light can be also reduced, with the visibility improved more.
A reflection type liquid crystal display device using the light guide member according to the seventh embodiment of the present invention will be described with reference to FIG. 3.[0311]
Those parts of FIG. 38 denoted by the same numerals as in FIG. 36 represent the same parts.[0312]360 is a reflection type liquid crystal panel comprised of twosubstrates361 and362. Thelower face332 of thelight guide member303 is subjected to the anti-reflection treatment or diffuse treatment in the known method, for example, vacuum vapor deposition, dipping, or thermal transfer method or the like. A surface of thesubstrate361 of the reflection typeliquid crystal panel360 is also processed through the anti-reflection treatment or diffuse treatment.
Because of the anti-reflection treatment to the[0313]lower face332 of the light guide member or the surface of thesubstrate361, the total quantity of the reflected light320 from thelower face332 of the light guide member or the reflected light610 from the surface of the substrate61 is reduced to a negligible level as compared with the quantity of a reflected light600 from theliquid crystal panel360. The visibility can consequently be enhanced.
It goes without saying that the anti-reflection treatment may be executed to both of the[0314]lower face332 of the light guide member and the surface of thesubstrate361.
When the diffuse treatment is carried out to either the[0315]lower face332 of the light guide member or the surface of thesubstrate361, the reflected light320 from thelower face332 or the reflected light610 from the surface of thesubstrate361 is irregularly reflected. As a result, the amount of light detected as bright lines by human eyes due to the mirror reflection is reduced although the total amount of the reflected light is not changed, and accordingly the visibility can be improved.
In spite of the above effect, the reflected light[0316]600 from the reflection typeliquid crystal panel360 is diffused likewise in consequence of the diffuse treatment, with bringing about an issue that displayed characters are blurred in outline and deteriorated in visibility. Therefore, the haze value of the diffuse treatment to thelower face332 of the light guide member or the surface of thesubstrate361 is preferably set to be 20% or lower. Results of experiments from many people including women and old people show that the haze value is particularly preferably 4-10% to keep an even balance between the reduction of bright lines by the reflected light320 or610 and the outline blurring.
In the case where the[0317]lower face332 of the light guide member and the surface of thesubstrate361 are both subjected to the diffuse treatment, the haze value of the diffuse treatment to the surface of thesubstrate361 which is closer to the reflection typeliquid crystal panel360 is set larger than that to thelower face332 of the light guide member separated farther from theliquid crystal panel360, so that the visibility is controlled not to decrease, in other words, displayed characters are prevented from blurring in outline, etc.
The visibility can be improved much more if both the anti-reflection treatment and the diffuse treatment are carried out to the[0318]lower face332 of the light guide member or the surface of thesubstrate361.
Besides, when the anti-reflection film is formed on the[0319]upper face331 of thelight guide member303, the reflection because of the external light can be lessened and the visibility can be improved.
A reflection type liquid crystal display device according to an eighth embodiment of the present invention will be discussed with reference to FIG. 39.[0320]
Parts in FIG. 39 indicated by the same reference numerals as in FIG. 38 are the same parts.[0321]380 is a touch panel used, for example, for inputting of information through touching via a pen or finger, etc. Afront face381 or arear face382 of the touch panel is processed through the diffuse treatment, thus diffusing the reflected light320 from thelower face332 of the light guide member and the reflected light610 from the surface of thesubstrate361. The amount of light sensed by human eyes as bright lines is decreased and the visibility can be improved. In this arrangement alike, the haze value at the diffuse treatment is preferred to be set at 20% or lower in order to prevent the outline blurring of displayed characters. Especially when the touch panel is provided for the purpose of inputting information via a pen and if the haze value of the diffuse treatment to thefront face381 is larger than 10%, a write resistance is too large for the pen to run smoothly. On the other hand, if the haze value is smaller than 1%, the resistance is too small. As such, the haze value for thefront face381 is preferably 1-10%.
According to the display devices of the above-described seventh and eighth embodiments of the present invention, a transparent material is filled between the[0322]lower face332 of thelight guide member303 and the reflection typeliquid crystal panel360 in the liquid crystal display device, which has approximately the same refractive index as that of a material of thelight guide member303 and that of thesubstrate361 of the reflection typeliquid crystal panel360. Alternatively, a sheet of the above transparent material is interposed. The total quantity of the reflectedlight320 and reflected light610 is further decreased to the reflected light600 from theliquid crystal panel360. The visibility can accordingly be improved more.
A method for manufacturing the illuminating system according to a seventh embodiment of the present invention will be depicted with reference to FIGS. 40, 41.[0323]
The anti-reflection treatment is primarily carried out by one of three methods, namely, vacuum vapor deposition, spin coating and dip coating. Among the methods for the anti-reflection treatment, the dip coating is preferred to the[0324]light guide member303, because the spin coating is difficult if thelight guide member303 includesgrooves304 and the vacuum vapor deposition method costs high. CYTOP by Asahi Glass, Co., Ltd. is employed by way of example as an anti-reflection agent in the dip coating.
The[0325]light guide member303 is used as a front face of the display device, and therefore a uniform coat all over the face of thelight guide member303 is required. A drop of the agent liquid from an end face of thelight guide member303 can be eliminated if thelight guide member303 is inclined slantwise during the dip coating, as shown in FIG. 40. If the end face of thelight guide member303 is set in parallel to the liquid level without being inclined, the antireflection agent accumulated at the end face of thelight guide member303 drops after the dipping, resulting in an irregular coat to thelight guide member303.
In the case where the[0326]light guide member303 is one formed by injection molding, the anti-reflection coating can be obtained all over the face of thelight guide member303 by holding agate part334 as illustrated in FIG. 40. In the absence of thegate part334, the end face of thelight guide member303 is pressed from sideways to a direction of arrows as shown in FIG. 41, whereby the light guide member is fixed to anouter frame341.
In the above-described manner, the anti-reflection coating can be formed uniformly all over the face of the[0327]light guide member303 at low cost.
Although an inclination[0328]0 of thelight guide member303 is preferred to be large in order to prevent the agent from dropping, the larger the inclination θ is, the thicker the coating becomes at thegrooves304 of theupper face331 than at the other parts. Therefore, the inclination is set as small as possible. The present invention found from repeated experiments that the inclination θ of 10°-30° surely presents the dropping of the agent and makes the thickness of the coating at thegrooves304 of theupper face331 equal to that at the other parts. The anti-reflection coating agent in this case has a viscosity of approximately 10 cps and a pull-up speed of 80 mm/min.
The above range of the inclination θ differs depending on the viscosity and pull-up speed of the anti-reflection coating agent.[0329]
A reflection type liquid crystal display device in a ninth embodiment of the present invention using the light guide member will be described with reference to FIGS. 42, 43.[0330]
FIG. 42 is a schematically sectional view of the reflection type liquid crystal display device according to the ninth embodiment which is equipped with the illuminating system.[0331]
The display device of the ninth embodiment is almost the same in structure as the eighth embodiment. A difference is an angle of the light projected from the[0332]light guide member303 and the presence of an fieldangle control sheet307 disposed on the reflection type liquid crystal panel. In the ninth embodiment, the anti-reflection treatment and the diffuse treatment are not required to the light guide member and the reflection type liquid crystal panel.
The field[0333]angle control sheet307 is a sheet which has a function to diffuse light from one direction and pass light from the other directions, for instance, “Lumisty” by Sumitomo Chemical Company, Limited, “Lower” by Minnesota Mining and Manufacturing Company etc. A diffusion direction θ of the field angle control sheet is not smaller than an angle of field to a normal direction of the display device, for example, 30° in the ninth embodiment.
FIG. 43 is an explanatory diagram of the propagation of light in the ninth embodiment.[0334]
Supposing that an output angle of the[0335]light guide member303 is 30°, the unrequested reflected light320 and also the unrequested reflected light610 are directed outside the angle of visibility (field angle). Since the light projected from thelight guide member303 is turned to diffused light when passing through thecontrol sheet307, the light can illuminate theliquid crystal panel306. Moreover, the originally necessary light reflected at theliquid crystal panel306 is not diffused by the fieldangle control sheet307. Therefore, blurring of characters does not take place and superior visibility is achieved.
Although the diffusion direction θ is set to be 30° in the ninth embodiment, the angle θ may be a different value other than 30°. However, if the angle θ is small, the unnecessary reflected[0336]lights320 and610 are projected into the angle of visibility, narrowing an easy-to-see angle of the display device. If the angle θ is large, the luminance in the normal direction of the display device is decreased. After conducting experiments by changing the angle θ from 0° to 70°, the inventors detected that the easy-to-see angle is satisfied and the luminance in a direction of the front face is appropriate particularly when the angle is 30°-50°.
According to the light guide member of the seventh embodiment of the present invention as described hereinabove, the lower face of the light guide member is processed through the anti-reflection treatment or diffuse treatment, so that the total quantity of the reflected light from the lower face of the light guide member is greatly reduced, specifically as much as is negligible enough to the reflected light from the reflecting face. The visibility can accordingly be improved large.[0337]
In the reflection type liquid crystal display device of the seventh embodiment using the light guide member, the reflection type liquid crystal panel is provided which has the surface of at least one substrate processed through the anti-reflection treatment or diffuse treatment. Moreover, the liquid crystal panel is disposed so that the surface subjected to at least one of the anti-reflection treatment and the diffuse treatment confronts the lower face of the light guide member. Accordingly, the reflected light from the lower face of the light guide member is reduced as much as is negligible in comparison with the reflected light from the surface of the liquid crystal panel, and the visibility can be improved greatly.[0338]
The touch panel processed through the anti-reflection treatment or diffuse treatment is arranged on the light guide member, thereby easing bright lines of the reflected light from the lower face of the light guide member and the surface of the substrate of the liquid crystal panel and improving the visibility eventually.[0339]
The haze value of the diffuse treatment to the surface of the substrate of the reflection type liquid crystal panel is set larger than that of the diffuse treatment to the lower face of the light guide member. Decrease in visibility such as outline blurring of displayed characters or the like can be hence restricted.[0340]
In the reflection type liquid crystal display device according to the eighth embodiment of the present invention using the light guide member, the transparent material of approximately the same refractive index as that of the material of the light guide member and that of the substrate of the reflection type liquid crystal panel is filled into, or a sheet of the material is interposed between the lower face of the light guide member and the reflection type liquid crystal panel. Accordingly, the reflected light from the lower face of the light guide member and from the surface of the substrate of the reflection type liquid crystal panel is reduced to such a degree negligible as compared with the reflected light from the reflecting face of the liquid crystal panel, so that the visibility can greatly be improved.[0341]
According to the method for manufacturing the light guide member of the seventh embodiment, no drop of liquid is brought about from the end face of the light guide member. The anti-reflection treatment can be provided uniformly to the whole face of the light guide member.[0342]
The anti-reflection treatment can be carried out simply by holding the gate part of the light guide member.[0343]
According to the reflection type liquid crystal display device of the ninth embodiment using the light guide member, the field angle control plate (sheet) is arranged on the upper face of the reflection type liquid crystal panel. Since the angle of the illumination light projected from the lower face of the light guide member is nearly agreed with the diffusion direction of the field angle control plate, the light projected from the lower face of the light guide member is diffused, whereas the reflected light from the reflection type liquid crystal panel is not diffused, whereby the visibility can be improved.[0344]
Further, when each of the output angle of the light guide member and diffusion direction of the field angle control plate is 30°-50° to the normal direction of the liquid crystal panel, the reflected light from the lower face of the light guide member and from the substrate of the liquid crystal panel are sent outside the angle of visibility, so that the visibility can be improved.[0345]
The present invention can provide the light guide member easy to see, the reflection type liquid crystal display device using the light guide member and the manufacture method for the same.[0346]
Next, a tenth embodiment of the present invention will be described.[0347]
A back light is used by way of example as an illuminating system for a liquid crystal panel. The back light is, as is disclosed in Japanese Laid-Open Patent Publication No. 5-127159, constituted of a fluorescent lamp and a light guide member of a transparent flat plate, in which linear light from the fluorescent lamp is inputted to a side face of the light guide member and output as a linear light source to a liquid crystal panel with the utilization of the diffusion of light at silk printing provided at a rear face of the light guide member.[0348]
Lately, an illuminating system for illuminating the liquid crystal panel used in a portable information-processing device, consumes small power and operates at low voltage is required to achieve a compact, battery-driven structure with a long life. When the fluorescent lamp is used as the light source as in the above-mentioned back light, a high voltage generation circuit is necessitated to turn on the fluorescent lamp, and consequently, a loss at an electric circuit and a space for the electric circuit are to be taken into consideration. The light source using the fluorescent lamp is not fit to carry with.[0349]
On the other hand, a light-emitting diode which will be referred to as an “LED” hereinafter is the light source that can be driven by a battery. Many LEDs are arranged into an array and used as the linear light source to bring the light from the side face of the light guide member.[0350]
In the arrangement of LEDs as above, however, an intensity of light among the LEDs is decreased unless the LEDs are densely installed, varying a luminance distribution at the back light. Meanwhile, if the LEDs are arranged densely so as to eliminate the variation in luminance distribution, a count of LEDs used is increased, with hindering a cost reduction.[0351]
The tenth embodiment of the present invention provides a uniform linear light source, with solving the above-discussed inconveniences.[0352]
The linear light source according to the tenth embodiment of the present invention will be described with reference to FIGS.[0353]44-49.
FIGS. 44, 46 are diagrams of the linear light source in the tenth embodiment. In FIGS. 44 and 46,[0354]801 is a light source of a small light-emitting part, for instance, an LED or the like. Thelight sources801 are arranged via a constant interval p.805 is a diffusing plate.802 is a reflecting plate disposed to cover thelight sources801 and diffusingplate805. An inner face of the reflectingplate802 is vapor-deposited with silver or aluminum, etc. to increase a reflectance.803 is a light guide plate serving as one example of the light guide member, having the reflectingplate802 set at a side face thereof to project light entering from the side face to an upper face or a lower face.804 is the groove,849 is an anti-reflection coating layer at the lower surface of thelight guide plate803.851 is a liquid crystal panel,850 is an anti-reflection and anti-plate coating layer at the upper surface of thepanel850.870 is a circuit board on which theLEDs801 are mounted.880 is the touch panel of the eighth embodiment.
Supposing that a radial distribution of the[0355]light sources801 is f(θ) and a distance between thelight source801 and diffusingplate805 is L, the following expression is held;
L>p/(2 tan(θ))
wherein θ is a value satisfying f(θ)cos[0356]2(θ)=0.5.
The linear[0357]light source801 constituted as above achieves a uniform illumination, the reason for which will be discussed with reference to FIGS. 48 and 49. FIGS. 48 and 49 are XZ sectional views of the linearlight source801. Thelight sources801 are arranged in an X direction via the constant interval p and separated from the diffusingplate805 by the distance L. One light-emitting point of thelight sources801 is a point R, and an intersection of a line extending in a direction vertical to the point R, namely, in a Z direction and the diffusingplate805 is a point Q. An intersection between a bisector of the point R and a light-emitting point R1next to the point R, and the diffusingplate805 is a point P1. A luminance in a direction inclined by θ in the Z direction at the point R is f(θ) where (f(0)=1).
In order to make the light quantity from the[0358]light sources801 uniform at the diffusingplate805, although it is enough to sufficiently separate thelight sources801 from the diffusingplate805, this makes the light source part bulky in size. For eliminating the problem, therefore, a minimum distance between thelight sources801 and diffusingplate805 is calculated. Where the light quantity is smallest at the diffusingplate805 is in the middle of light-emitting points R and R1of thelight sources801, i.e., point P1. The distance L is selected so that the light quantity at the point P1becomes equal to that at the point Q, whereby the uniform linear light source is obtained.
The light reaching the point Q is mostly from the point R[0359]1and therefore the light quantity at the point Q is 1/L2. The quantity of light reaching the point P1is 2f(θ)cos2θ/L2. The θ is accordingly set to satisfy f(θ)cos2θ=0.5. Thus, the distance L between thelight sources801 and diffusingplate805 is determined to hold;
L>p/(2 tan(θ))
For example, when the radial distribution f(θ) of the light-emitting points of the[0360]light sources801 is equal to cos(θ), θ is 37.5° because cos3θ=0.5, and the distance L of thelight source801 and diffusingplate805 becomes L>0.65p.
As described hereinabove, when the light-emitting points of the[0361]light sources801 are arranged via the pitch p and if thelight sources801 are separated from the diffusingplate805 at least by L>p(2 tan(θ)) wherein f(θ) is the radial distribution of the light-emitting points and f(θ)cos2θ is equal to 0.5, the uniform linear light source is realized. Since the LED or the like light source that can be driven at low voltage is utilizable, the illumination is achieved in a compact and low-power structure to fit for use in a portable information device, etc.
According to the tenth embodiment of the present invention, the diffusing plate and the prism sheet of the light guide member are separated from the light sources by the distance L (L>p/(2 tan(θ)) wherein f(θ) is the radial distribution of light-emitting points and f(θ)cos[0362]2θ is equal to 0.5. Accordingly, the linear illumination provided exerts high and uniform luminance.
The entire disclosure of Japanese Patent Applications No. 9-122343 filed on May 13, 1997, No. 9-124992 filed on Aug. 21, 1997, and No. 10-44960 filed on Feb. 26, 1998, including specifications, claims, drawings, and summaries are incorporated herein by reference in their entirety.[0363]
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims unless they depart therefrom.[0364]