Movatterモバイル変換


[0]ホーム

URL:


US12326375B2 - Pressure-sensitive structure and electronic device - Google Patents

Pressure-sensitive structure and electronic device
Download PDF

Info

Publication number
US12326375B2
US12326375B2US17/912,832US202117912832AUS12326375B2US 12326375 B2US12326375 B2US 12326375B2US 202117912832 AUS202117912832 AUS 202117912832AUS 12326375 B2US12326375 B2US 12326375B2
Authority
US
United States
Prior art keywords
pressure
sensitive structure
strain
substrate
elastic carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/912,832
Other versions
US20230144931A1 (en
Inventor
Tuoxia HUANG
Jinbo YU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen New Degree Technology Co Ltd
Original Assignee
Shenzhen New Degree Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen New Degree Technology Co LtdfiledCriticalShenzhen New Degree Technology Co Ltd
Priority to US17/912,832priorityCriticalpatent/US12326375B2/en
Assigned to SHENZHEN NEW DEGREE TECHNOLOGY CO., LTD.reassignmentSHENZHEN NEW DEGREE TECHNOLOGY CO., LTD.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HUANG, Tuoxia, YU, JINBO
Publication of US20230144931A1publicationCriticalpatent/US20230144931A1/en
Application grantedgrantedCritical
Publication of US12326375B2publicationCriticalpatent/US12326375B2/en
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A pressure-sensitive structure and an electronic device are provided in the present application, in the structure of the pressure-sensitive structure, a first elastic carrier is arranged on a first mounting surface of the substrate, a semiconductor film is arranged on the first elastic carrier. When the substrate is deformed, the first elastic carrier is bent and deformed with a deformation of the substrate, a strain signal is amplified by the substrate, so that the semiconductor film can detect an amount of bending deformation of the substrate, and a signal measurement circuit of the semiconductor film is configured to output a recognizable electric signal. The pressure-sensitive structure is a sensor structure being small in size, being high in precision, and being high in reliability and sensitivity. The pressure-sensitive structure is attached to a panel or a side frame of the electronic device.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a national phase of PCT patent application Serial No. PCT/CN2021/075915, filed on Feb. 8, 2021, which claims priority to U.S. patent application No. 62/992,000 filed on Mar. 19, 2020 and entitled “hybrid strain sensing system”, and claims priority to U.S. patent application No. 63/064,086 filed on Aug. 11, 2020 and entitled “novel hybrid sensing system”, the contents each of which are incorporated herein by reference in entirety.
TECHNICAL FIELD
The present application relates to the field of pressure-sensitive structures, and particularly to a pressure-sensitive structure and an electronic device.
BACKGROUND
At present, with the wide use of capacitive screens, electronic devices, especially various components of smart phones, have begun to use touch structures to replace the original mechanical structures (e.g., mobile phone keyboards and home buttons), and thus become electronized and intelligentized gradually. However, traditional mechanical buttons are still used as most of side buttons of smart phones currently due to technology and other reasons. The existence of the traditional mechanical buttons may cause deficiencies including large space occupation of a product, discontinuity in appearance, the difficulty in water resistance and dust prevention, short service life and the difficulty in assembling.
SUMMARY
One objective of the present application is to provide a pressure-sensitive structure which aims to solve a technical problem that the existing touch-sensitive structure has a large space occupation of a device.
In order to solve the technical problem mentioned above, the technical solutions used involved in the embodiments of the present application are described below:
In the first aspect, a pressure-sensitive structure is provided, the pressure-sensitive structure includes:
    • a substrate having a first mounting surface and a second mounting surface which are arranged to be opposite to each other;
    • a first elastic carrier arranged on the first mounting surface; and
    • at least one semiconductor film, where at least one of the semiconductor film is located on the first elastic carrier, and a signal measurement circuit is integrated in the at least one of the semiconductor film. The signal measurement circuit is configured to detect an amount of bending deformation of the substrate and output a recognizable electric signal according to the amount of bending deformation of the substrate detected by the signal measurement circuit.
In the second aspect, an electronic device is provided, the electronic device includes a panel and the aforesaid pressure-sensitive structure, the pressure-sensitive structure is attached to an inner side of the panel.
In the third aspect, an electronic device is provided, the electronic device includes a side frame and the aforesaid pressure-sensitive structure, the pressure-sensitive structure is attached to an inner side of the side frame.
The pressure-sensitive structure provided in the first aspect of the embodiments of the present application has the following beneficial effects: in the pressure-sensitive structure, the first elastic carrier is arranged on the first mounting surface of the substrate, the first elastic carrier is provided with the semiconductor film. When the substrate is deformed, the first elastic carrier is bent and deformed with the deformation of the substrate, the strain signal is amplified by the substrate, the semiconductor film may detect the bending deformation of the substrate and output a recognizable electric signal by the signal measurement circuit integrated in the semiconductor film. In the pressure-sensitive structure, detection elements and the signal measurement circuit are integrated in the semiconductor film, so that the pressure-sensitive structure has a smaller volume and a small space occupation, is high in precision, and is high in reliability and sensitivity.
As compared to the traditional capacitive keys, the pressure-sensitive structure may be applied to pressure keys of an electronic device made of plastic or metal by detecting strain. Furthermore, the pressure-sensitive structure may detect a pressing force. Compared with the existing pressure capacitance, strain gauges or strain films, the pressure-sensitive structure is smaller in size, is more sensitive and more convenient to be used, and can be applied in the electronic devices which has higher requirement on miniaturization and integration, so that mass production can be realized.
Both of the two electronic devices can avoid the conditions including discontinuity in appearance due to traditional mechanical buttons, the difficulty in water resistance and dust prevention, short service life and the difficulty in assembling.
The electronic device provided in the second aspect of the embodiments of the present application has the following beneficial effects: the pressure-sensitive structure is attached to the inner side of the panel of the electronic device. When the panel is pressed, the panel will be bent and deformed, and the substrate generates bending deformation with the deformation of the panel, the semiconductor film detects the bending deformation, and the signal measurement circuit integrated in the semiconductor film outputs a recognizable electric signal. The detection of the pressure value and the pressed position is realized by detecting the strain of the panel.
The electronic device provided in the third aspect of the embodiments of the present application has the following beneficial effects: the pressure-sensitive structure is attached to the frame of the electronic device (especially the side frame of smart phone). When the side frame is pressed, the substrate will be bent and deformed with the deformation of the side frame, the semiconductor film detects the bending deformation, and the signal measurement circuit integrated in the semiconductor film outputs a recognizable electric signal for recognizing the intensity of pressure and the pressed position, thereby realizing a side-touch-key function. There is no need to flute a slot on the side frame of the electronic device separately, so that the electronic device has a concise and elegant appearance.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the embodiments of the present application more clearly, a brief introduction regarding the accompanying drawings that need to be used for describing the embodiments or exemplary technology of the present application is given below; it is apparent that the accompanying drawings described below are only some embodiments of the present application, a person of ordinary skill in the art may also obtain other drawings according to the current drawings without paying creative labor.
FIG.1 illustrates a schematic structural diagram of a pressure-sensitive structure provided by the first embodiment of the present application;
FIG.2 illustrates a diagram reflecting a correlation between a thickness of the substrate and the signal measurement circuit obtained by finite element simulation;
FIG.3 illustrates a strain simulation diagram of the first elastic carrier obtained by finite element simulation;
FIG.4A-4E illustrate schematic structural diagrams of substrates applied in the pressure-sensitive structure shown inFIG.1;
FIG.5 illustrates a schematic diagram of a signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.6 illustrates another schematic diagram of the signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.7 illustrates another schematic diagram of the signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.8 illustrates another schematic diagram of the signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.9 illustrates another schematic diagram of the signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.10 illustrates another schematic diagram of the signal measurement circuit applied in the pressure-sensitive structure shown inFIG.1;
FIG.11 illustrates one schematic structural diagram of the pressure-sensitive structure shown inFIG.1 applied to a panel, when the pressure-sensitive structure is not pressed;
FIG.12 illustrates another schematic structural diagram of the pressure-sensitive structure shown inFIG.4 applied to the panel, when the pressure-sensitive structure is pressed; and
FIG.13 illustrates a schematic diagram of the pressure-sensitive structure shown inFIG.1, when the pressure-sensitive structure is applied to a side frame.
EMBODIMENTS OF THE PRESENT INVENTION
In order to make the objective, the technical solutions and the advantages of the present application be clearer and more understandable, the present application will be further described in detail below with reference to the accompanying figures and the embodiments. It should be understood that the embodiments described in detail herein are merely intended to illustrate but not to limit the present application.
It needs to be noted that, when one component is described to be “fixed to” or “arranged on” another component, this component can be directly or indirectly arranged on another component. When it is described that one component “is connected with” another component, this component can be directly or indirectly connected to the another component. Orientation or position relationships indicated by terms including “upper”, “lower”, “left” and “right” are based on the orientation or position relationships shown in the accompanying figures and is only used for the convenience of description, instead of indicating or implying that the indicated device or element must have a specific orientation and is constructed and operated in a particular orientation, and thus should not be interpreted as limitation to the present application. For the person of ordinary skill in the art, the specific meanings of the aforesaid terms can be interpreted according to specific conditions. Terms of “the first” and “the second” are only for the purpose of describing conveniently and should not be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features. “Multiple/a plurality of” refers to as two or more unless there is an additional explicit and specific limitation. In order to the technical solutions of the present application, the technical solutions of the present application is described in detail with reference to the accompanying figures and the embodiments.
TCR (Temperature Coefficient of Resistance) represents a relative change of a resistance value of a resistance when the temperature is changed by 1° C., and the unit of TCR is ppm/° C. (i.e., 10{circumflex over ( )}-6/° C.). GF (Gauge Factor) of a resistance strain gauge represents a relative change of a resistance of the strain gauge caused due to the strain of the resistance strain gauge. Where,
GF=dR/Rε,
dR/R represents a resistance change rate, ε represents a mechanical strain of a material; Effective gauge factor (GF_eff) is a ratio of an actual resistance change to an ideal strain when the semiconductor film has no influence on the structural strength. As for a specific structure, the deformation of the structure is determined when an external force is predetermined. However, after a semiconductor film (e.g., silicon) having a large elastic modulus is attached, the deformation of Si is usually smaller than the deformation of the structure of the carrier, the greater the thickness of the film, the smaller the strain deformation of the film, and the corresponding resistance change is decreased. That is, the effective gauge factor is decreased with the increase of the thickness of the film.
Referring toFIG.1, a pressure-sensitive structure100 according to the first embodiment of the present disclosure includes asubstrate10 having a first mountingsurface10aand a second mountingsurface10barranged to be opposite to each other; a firstelastic carrier20 arranged on the first mountingsurface10a, and at least onesemiconductor film40. The at least onesemiconductor film40 is located on the firstelastic carrier20, and a signal measurement circuit is integrated in the at least onesemiconductor film40, the signal measurement circuit is configured to detect a bending deformation of thesubstrate10 and output a recognizable electric signal according to the detected bending deformation of thesubstrate10.
In the pressure-sensitive structure100, the first mountingsurface10aof thesubstrate10 is provided with the firstelastic carrier20, the firstelastic carrier20 is provided with asemiconductor film40. When thesubstrate10 is deformed, the firstelastic carrier20 is bent and deformed with the deformation of thesubstrate10, a strain signal is amplified by thesubstrate10. The signal measurement circuit may detect the bending deformation of thesubstrate10, and the recognizable electric signal is output by the signal measurement circuit. The pressure-sensitive structure100 is a sensor structure having a small size, a high precision, a high reliability and a high sensitivity.
As compared to the conventional capacitive keys, the pressure-sensitive structure100 can be used as a pressure key of a plastic or metal electronic device by detecting strain of thesubstrate10. Furthermore, the pressure-sensitive structure100 may also detect an intensity of a pressing force. Compared with the existing pressure capacitance, the existing strain gauge or the existing strain film, the pressure-sensitive structure100 is more sensitive and is more convenient to be used, and can be used in an electronic device having a higher structural strength, and a mass deviceion of the electronic device can be realized.
Thesubstrate10 can be made of a material having a characteristic of elastic deformation, the material can be such as metal, glass, fiberglass board, plastic, or other materials. When the pressure-sensitive structure100 is attached to an inner side of a panel, or an inner side of a side frame or an inner side of other thin-wall member, thesubstrate10 may increase the thickness of the whole structure, under the deformation of the same curvature radius of the thin-wall member, the greater the strain of thesemiconductor film40, the greater the corresponding change value ΔR. Thus, a more intensified electric signal can be obtained, and the response of the pressure-sensitive structure100 to strain is more sensitive. Theoretically, the output signal of the signal measurement circuit in thesemiconductor film40 changes in direct proportion to the thickness of thesubstrate10, that is, the thicker thesubstrate10, the more sensitive the pressure-sensitive structure100. As shown inFIG.2, by simulating the output signals of the signal measurement circuit in thesemiconductor film40 when thesubstrate10 has different thicknesses through finite element simulation, it is determined that the correlation between the output signal of the signal measurement circuit of thesemiconductor film40 and the thickness of thesubstrate10 is consistent with theoretical result.
Furthermore, the second mountingsurface10bis provided with a secondelastic carrier30, there are at least twosemiconductor films40, at least one of thesemiconductor films40 is located on the firstelastic carrier20, and other one(s) ofsemiconductor films40 is/are located on the secondelastic carrier30, and thesemiconductor films40 are arranged to be adjacent to each other. The two mounting surfaces of thesubstrate10 are respectively provided with the firstelastic carrier20 and the secondelastic carrier30, each of the firstelastic carrier20 and the secondelastic carrier30 is provided with thesemiconductor film40. When thesubstrate10 is deformed, the firstelastic carrier20 and the secondelastic carrier30 are bent and deformed with the deformation of thesubstrate10, strain signal is amplified by thesubstrate10. The resistance strain gauge may detect the bending deformation of thesubstrate10, and the recognizable electric signal is output by the signal measurement circuit in thesemiconductor film40.
Both the firstelastic carrier20 and the secondelastic carrier30 have elastic deformation characteristics for arranging thesemiconductor film40 such as polyimide, flexible circuit board, glass fiber board, polyethylene glycol terephthalate, metal, plastic, or other materials. When the firstelastic carrier20 and the secondelastic carrier30 are all provided with thesemiconductor film40, the difference of strains between the firstelastic carrier20 and the secondelastic carrier30 are detected by thesemiconductor films40 and are processed by the signal measurement circuit, and the recognizable electric signal is output.
Furthermore, thesubstrate10 is provided with astrain concentration slot11, and thesemiconductor film40 is arranged to be adjacent to thestrain concentration slot11. This arrangement makes the pressure-sensitive structure to be prone to be processed, thesemiconductor film40 is arranged adjacent to thestrain concentration slot11, such that the strain can be more concentrated on the area of the elastic carrier more adjacent to thestrain concentration slot11. Thesemiconductor film40 can detect the strain of the area of thestrain concentration slot11, a more intensive strain signal can be obtained, and the pressure-sensitive structure100 can be more sensitive. Referring to the constraint condition of the pressure-sensitive structure100, eight strain concentration slots are provided on the substrate, a finite element simulation analysis is performed on the firstelastic carrier20. As shown inFIG.4, the strain of the firstelastic carrier20 is concentrated at thestrain concentration slot11 of the substrate, and thesemiconductor film40 can detect a very intensive strain signal, so that the pressure-sensitive structure100 is high in precision, is high in reliability and is high in sensitivity. The property of the secondelastic carrier30 is similar to that of the firstelastic carrier20.
Furthermore, as shown inFIG.4A, thestrain concentration slot11 is a through slot extending in a direction perpendicular to the first mountingsurface10a. As an alternative, as shown inFIG.4B, thestrain concentration slot11 is a through slot extending in a direction inclined to the first mountingsurface10a. As an alternative, as shown inFIG.4C, thestrain concentration slot11 is a through slot having a longitudinal section with a predetermined shape, and the predetermined shape can be a funnel longitudinal section, a circle, or the like. Alternatively, as shown inFIG.4D, thestrain concentration slot11 is a blind slot having a longitudinal section with a predetermined shape. The blind slot refers to a slot that does not penetrate through thesubstrate10. The predetermined shape can be a funnel longitudinal section, a circle, or the like. Thesemiconductor film40 is arranged to be adjacent to thestrain concentration slot11, and is configured to amplify the strain signal of the elastic carrier to realize force sensing. Alternatively, as shown inFIG.4E, thesubstrate10 is an integrally-shaped plate, the bending deformation of thesubstrate10 is transferred to the firstelastic carrier20 and the secondelastic carrier30. Thesemiconductor film40 may detect the bending deformation of thesubstrate10, and the signal measurement circuit in thesemiconductor film40 outputs the recognizable electric signal.
The pressure-sensitive structure100 is applicable to different sensitivity requirements of different occasions by changing the thickness of thesubstrate10 and changing the shape of thestrain concentrating slot11.
Thesemiconductor film40 includes at least one of a silicon film, a germanium film, a gallium arsenide film, a gallium nitride film, a silicon carbide film, a zinc sulfide film and a zinc oxide film. For example, a silicon film has a very high strain coefficient, however, the silicon film has a great hardness, so that a signal output is greatly reduced when force or strain is transferred to the silicon film. The rigidity of the silicon film can be reduced and the response sensitivity of the silicon film to force or strain can be increased by thinning the silicon film, so that the silicon film can be directly attached to a surface of a material (e.g., a printed circuit board or a flexible circuit board) and configured to measure pressure or strain. A thickness N of a thickest position of thesemiconductor film40 is less than 70 um, or less than 50 um, or less than 30 um, or less than 25 um, or less than 20 um, or less than 15 um, or less than 10 um.
Furthermore, the signal measurement circuit in onesemiconductor film40 has a sensor component that can be used to detect the parameters such as pressure, temperature, and the like.
In some embodiments, the sensor component includes a strain sensing resistance and a measurement circuit of a single resistance, which can detect a resistance value of the single resistance and take the resistance value as a signal output. For example, the resistance can be measured in the manner of Ohmmeter, voltammetry, RC circuit, a RC oscillation circuit, a RLC parallel resonance circuit, as required. The Ohmmeter and the voltammetry are methods of directly measuring resistance, and the corresponding resistance measurement circuit is a conventional technique.
The circuit configuration of this signal measurement circuit is described below:
(1) Referring toFIG.5, the signal measurement circuit includes a RC circuit constituted of one strain sensing resistance R and one constant capacitance C connected in series or in parallel. The RC circuit is used to measure the resistance, and the time constant of the RC circuit is expressed as τ=RC. According to this formula, when the amount of the capacitance of the capacitance C is known, the resistance value R can be inversely calculated according to the measured time constant τ.
As shown inFIG.6, the signal measurement circuit includes a strain sensing resistance R, a constant capacitance C and an amplifier. The RC series-parallel frequency selection network and the amplifier are combined, and an integrated operational amplifier can be used as the amplifier. The RC series-parallel frequency selection network is connected between an output and a non-inverting input of the operational amplifier to be constituted as a positive feedback circuit, and Rf, R′ are connected between the output of the operational amplifier and an inverting input of the operational amplifier to be constituted as a negative feedback circuit. The positive feedback circuit and the negative feedback circuit are constituted as a Venturi bridge oscillation circuit, the input and the output of the operational amplifier cross two diagonal lines of the bridge respectively. An output frequency of the Venturi bridge oscillation circuit is expressed as
fo=12πRC1.
The frequency f0is very sensitive to changes of the resistance value R. According to this formula, when the amount of capacitance of the capacitance C is known, the resistance value R can be inversely calculated through the measured frequency f0.
Referring toFIG.7, the signal measurement circuit includes one strain sensing resistance R, one constant inductance L and one constant capacitance C. The RLC resonant circuit is a circuit constituted by connecting one RL series circuit with the capacitance C in parallel. An angular frequency of the RLC resonant circuit is expressed as
ω=1LC-(RL).
According to the formula listed above, when the inductance amount of the inductance L and the capacitance amount of the capacitance C1are known, the value of the resistance R can be calculated according to the measured angular frequency ω.
The sensor component includes two resistances. For example, the sensor component includes a voltage dividing circuit which is constituted by connecting a strain sensing resistance and a reference resistance in series. As an alternative, the sensor component includes a voltage dividing circuit constituted by connecting two strain sense resistances in series. As an alternative, the sensor component includes one shunt circuit constituted by connecting one strain sensing resistance and one reference resistance in parallel. As an alternative, the sensor component includes one shunt circuit constituted by connecting two strain sense resistances in parallel.
In one embodiment, when the signal measurement circuit includes one series voltage dividing circuit or one parallel shunt circuit constituted of two strain sense resistances, one of the strain sense resistances is a positive strain coefficient sensing resistance, and the other one is a negative strain coefficient sensing resistance. As an alternative, the two sense resistances have different strain coefficients.
The circuit configuration of this signal measurement circuit is described below:
    • referring toFIG.8, two resistances are constituted as one series voltage-dividing circuit. A constant-voltage source is used to impose an input voltage Ui between a power terminal V+ and a power terminal V−, a potential of a terminal Vo is detected, or an output voltage Uo between the terminal Vo and a GND terminal is measured, an input/output voltage formula is expressed as
Uo=R2R1+R2Ui,
where R1and R2are the resistances of the strain sense resistances R1 and R2, respectively.
Referring toFIG.9, two resistances are constituted as the parallel shunt circuit. A constant current source is used to input a current I between an end I+ and an end I−, an output current I1on a branch R1 is measured, and an input/output current formula is expressed as
I1=R2R1+R2I.
Referring toFIG.10, the sensor component includes four resistances R1, R2, R3 and R4, where the sensor component can be a Wheatstone bridge constituted by electrically connecting one strain sensing resistance with three reference resistances. As an alternative, the sensor component includes a half-bridge circuit constituted by electrically connecting two strain sense resistances with two reference resistances. As an alternative, the sensor component includes a full-bridge circuit constituted by electrically connecting four strain sense resistances. As an alternative, the sensor component includes a bridge circuit constituted by electrically connecting three strain sense resistances and one reference resistance.
In one embodiment, in the bridge circuit constituted of four strain sense resistances, two strain sense resistances are sense resistances having positive strain coefficient, and other two strain sense resistances are negative strain coefficient sense resistances; as an alternative, the four resistances have different strain coefficients.
The circuit configuration of the signal measurement circuit is described below:
    • the bridge circuit is constituted by four resistances, as shown inFIG.10, an output voltage formula is expressed as
Uo=R2R3-R1R4(R1+R2)(R3+R4)Ui,
where R3and R4are the resistances of the strain sense resistances R3 and R4, respectively.
Where, Uirepresents voltage VCC, U0is voltage difference between Vm+ and Vm−. In addition, in the full-bridge circuit constituted by electrically connecting the four strain sense resistances. There are many methods for the selection of the four strain sense resistances, a requirement that U0in the formula changes when the deformation is generated only needs to be met. Where there are several typical methods, which are described below:
Resistances R1 and R4 are sense resistances having positive strain coefficient, R2 and R3 are sense resistances having negative strain coefficient; alternatively, R1 and R4 are sense resistances having negative strain coefficient, R2 and R3 are sense resistances having positive strain coefficient. Alternatively, resistances R1 and R4 are sense resistances having positive (or negative) strain coefficient, resistances R2 and R3 are sense resistances zero strain coefficient.
Furthermore, thesemiconductor film40 can be further provided with a temperature sensor, the sensor component further includes the temperature sensor, where the temperature sensor is configured to detect a temperature of a position where is it located, and output a temperature detection signal. The temperature sensor can be configured to detect a local temperature, and may also be configured to use temperature information to perform output signal compensation on structural expansion which is caused due to temperature, so that thesemiconductor film40 can output a deformation signal, and can also output a temperature signal.
Furthermore, the signal measurement circuit further includes an amplification circuit connected to the sensor component and configured to amplify the signal output by the sensor component. Furthermore, the signal measurement circuit further includes a compensation circuit, where an input of the compensation circuit is coupled to an output of the amplification circuit, and the compensation circuit is configured to compensate an out-of-balance voltage output by the sensor component according to a signal output by the amplification circuit.
The condition of attaching the pressure-sensitive structure100 to the inner side of the panel, the condition of attaching the pressure-sensitive structure100 to the inner side of the side frame and the condition of attaching the pressure-sensitive structure100 to the inner side of other thin-walled member are similar. The pressure-sensitive structure100 is described by taking the condition that the pressure-sensitive structure100 is attached to thepanel201 through the colloid203, and the signal measurement circuit in thesemiconductor film40 includes the full bridge constituted of four electrically connected strain sense resistances R1, R2, R3 and R4 as example. Compared with other existing sensor structures, the pressure-sensitive structure100 has a lower dependency on the colloid203, and the pressure-sensitive structure100 can eliminate errors caused due to differences of adhesives of the colloid203. Thus, the pressure-sensitive structure100 has accurate and reliable measurement.
When thepanel201 is pressed, thepanel201 will generate downward bending deformation, the pressure-sensitive structure100 will deform with the deformation of thepanel201 through the colloid203, thereby causing deformation of the strain sense resistances R1, R2, R3, and R4, and thereby causing change of resistance values of the strain sense resistances R1, R2, R3 and R4. Due to the downward bending deformation of thepanel201, a tensile deformation is generated at the lower surface of thepanel201. Regarding the selectedcolloid203, the ratio of the width to the thickness is at least 50:1, and the amount of deformation of the colloid203 in the longitudinal direction is far less than the amount of deformation of the colloid203 in the horizontal direction since the horizontal dimension of the colloid203 is greater than the longitudinal dimension of the colloid203.
Furthermore, thesemiconductor film40 of the firstelastic carrier20 is located on a side of the firstelastic carrier20 facing thesubstrate10, or thesemiconductor film40 of the firstelastic carrier20 is located on a side of the firstelastic carrier20 being away from thesubstrate10. At least one of the two arrangements of thesemiconductor film40 of the firstelastic carrier20 is selected. Thesemiconductor film40 of the secondelastic carrier30 is located on a side of the secondelastic carrier30 facing thesubstrate10, and thesemiconductor film40 of the secondelastic carrier30 is located on a side of the secondelastic carrier30 being away from thesubstrate10. At least one of the two arrangements of thesemiconductor film40 of the secondelastic carrier30 is selected. Thesemiconductor film40 can be distributed on one side or two sides of the corresponding elastic carrier, and thesemiconductor film40 can be distributed on either side of the corresponding elastic carrier and form the signal measurement circuit in thecorresponding semiconductor film40.
Furthermore, there are at least twosemiconductor films40, and thesemiconductor films40 are distributed on thesubstrate10 in an array. According to the arrangement of thesemiconductor films40, force sensing can be performed on multiple positions, gesture recognition and sliding functions, which cannot be implemented by mechanical buttons, can be implemented through algorithm.
Furthermore, two strain sense resistances in the signal measurement circuit in thesemiconductor film40 are coincided in one-to-one correspondence manner. Alternatively, two strain sense resistances of the signal measurement circuit in thesemiconductor film40 are distributed in a staggered manner. Some or all of thesemiconductor film40 can be distributed at the position adjacent to thestrain concentration slot11 as desired.
Referring toFIG.11 andFIG.12, an electronic device according to the first embodiment of the present application includes apanel201 and the aforesaid pressure-sensitive structure100. The pressure-sensitive structure100 is attached to an inner side of thepanel201.
The pressure-sensitive structure100 is attached to the inner side of thepanel201 of the electronic device. When thepanel201 is pressed, thepanel201 is bent and deformed, and enables thesubstrate10 to generate bending deformation, the strain sense resistances detect the bending deformation, and the signal measurement circuit in thesemiconductor film40 outputs the recognizable electric signal. The detection of the pressure force and the pressed position is achieved by detecting the strain of thepanel201. The electronic device can avoid the problems including discontinuous appearance due to the traditional mechanical buttons, the difficulty in water resistance and dust prevention, short service life and the difficulty in assembling.
Thepanel201 may be a touch screen having a rigid structure, or be a display, or be other electronic device. By connecting the pressure-sensitive structure100 with thepanel201, not only the touched position can be accurately recognized, the value of the touch pressure can also be accurately recognized, and an application space of the electronic device on product application, human-computer interaction and user experience is expanded. By touching a touch screen, a display, or an electronic device by a user, a precise pressure level and a measurement of pressure can be obtained directly. After correction, a precise pressure value generated by pressing can be obtained.
Furthermore, the pressure-sensitive structure100 and thepanel201 are connected through a colloid203, welding or other mechanical connection. When using the colloid203, the colloid is used when it is adhered, it is convenient to use the colloid203, the process of assembling is simplified, and rework is facilitated. When the user's finger is pressed on thepanel201, thepanel201 is bent and deformed, and the colloid203 enables the pressure-sensitive structure100 to be deformed, the position to be pressed and the intensity of pressure are obtained, a pressure-sensitive touch-control function is realized. The colloid203 is a hydrogel or a double-sided adhesive.
Referring toFIG.13, an electronic device according to a second embodiment of the present application includes aside frame202 and the aforesaid pressure-sensitive structure100. The pressure-sensitive structure100 is attached to an inner side of theside frame202.
The pressure-sensitive structure100 is attached to the side frame22 of the electronic device, especially on a side frame of a smart phone. When theside frame202 is pressed, thesubstrate10 is bent and deformed with the deformation of theside frame202, the strain sense resistances detect the bending deformation, and the signal measurement circuit in thesemiconductor film40 outputs a recognizable electric signal for recognizing the pressed position and the intensity of the pressure, so that a touch-key-function of the side frame22 is realized, and there is no need to flute a slot on theside frame202 of the electronic device, so that the appearance of the electronic product is simple and elegant. The electronic device can avoid the conditions including discontinuous appearance due to the traditional mechanical buttons, the difficulty in water resistance and dust prevention, short service life and the difficulty in assembling.
Furthermore, the pressure-sensitive structure100 and theside frame202 are connected through the colloid203, welding or other mechanical connections. During using of the colloid203, the colloid203 is used when it is adhered, it is convenient to use the colloid203, the process of assembling is simplified, and rework is facilitated. The colloid203 is a hydrogel or a double-sided adhesive.
It can be understood that, the pressure-sensitive structure100 can also be attached to the inner side of other thin-walled members. When the thin-walled member is pressed, the thin-walled member can generate bending deformation and enables the substrate to generate bending deformation, the strain sense resistances detect the bending deformation, and the signal measurement circuit outputs the recognizable electric signal according to the detection of the bending deformation. The detection of the pressure and the pressed position is achieved by detecting the strain of the thin-walled member.
Furthermore, the pressure-sensitive structure and the thin-walled member are connected through glue, welding or other mechanical connections. During using of the colloid, the colloid is used when it is adhered, it is convenient to use the colloid203, the process of assembling is simplified, and rework is facilitated. The colloid is a hydrogel or a double-sided adhesive.
The foregoing only describes preferable embodiments of the present application, and should not be regarded as limitations to the present application. All modifications, equivalent replacements and improvements which are made within the spirit and the principle of the present application should all be included in the protection scope of the present application.

Claims (20)

What is claimed is:
1. A pressure-sensitive structure, comprising:
a substrate having a first mounting surface and a second mounting surface which are arranged to be opposite to each other;
a first elastic carrier arranged on the first mounting surface of the substrate; and
a first semiconductor film disposed on the first elastic carrier, the first semiconductor film having multiple components integrated therein, the multiple components connected together to form a signal measurement circuit configured to detect an amount of bending deformation of the substrate and the first elastic carrier and to output a recognizable electric signal corresponding to the amount of bending deformation of the substrate and the first elastic carrier detected by the signal measurement circuit, wherein the signal measurement circuit comprises:
a RC circuit composed of one strain sensing resistance and one constant capacitance connected in series or in parallel integrated into the thin film; or
a resonant circuit composed of one strain sensing resistance, one constant inductance and one constant capacitance integrated into the thin film; or
a shunt circuit composed of one strain sensing resistance and one reference resistance connected in parallel integrated into the thin film; or
a shunt circuit composed of two strain sense resistances connected in parallel integrated into the thin film; or
a half bridge circuit constituted by electrically connecting two strain sense resistances and two reference resistances integrated into the thin film.
2. The pressure-sensitive structure according toclaim 1, wherein a second elastic carrier is arranged on the second mounting surface, and the pressure-sensitive structure additionally comprises a second semiconductor film arranged on the second elastic carrier, wherein the first and second semiconductor films are arranged adjacent to each other.
3. The pressure-sensitive structure according toclaim 2, wherein the first semiconductor film is arranged on the first elastic carrier and is located on a surface of the first elastic carrier facing the substrate or is located on a surface of the first elastic carrier facing away from the substrate; the second semiconductor film being arranged on the second elastic carrier and located on a surface of the second elastic carrier facing the substrate or located on a surface of the second elastic carrier being facing away from the substrate.
4. The pressure-sensitive structure according toclaim 1, wherein the first semiconductor film comprises a silicon film, or a germanium film, or a gallium arsenide film, or a gallium nitride film, or a silicon carbide film, or a zinc sulfide film, or a zinc oxide film.
5. The pressure-sensitive structure according toclaim 1, wherein a thickness n of the first semiconductor film is less than 70 um.
6. The pressure-sensitive structure according toclaim 1, wherein a strain concentration slot is arranged on the substrate, and the first semiconductor film is arranged adjacent to the strain concentration slot.
7. The pressure-sensitive structure according toclaim 6, wherein the strain concentration slot is a through slot extending in a direction perpendicular to the first mounting surface.
8. The pressure-sensitive structure according toclaim 1, wherein the multiple components integrated into the first semiconductor film further comprise a temperature sensor configured to detect a temperature of a position where it is located and output a temperature detection signal.
9. The pressure-sensitive structure according toclaim 1, wherein the signal measurement circuit further comprises an amplification circuit connected to a sensor and configured to amplify a signal output by the sensor.
10. The pressure-sensitive structure according toclaim 9, wherein the signal measurement circuit further comprises a compensation circuit, wherein an input of the compensation circuit is coupled to an output of the amplification circuit, and the compensation circuit is configured to compensate an out-of-balance voltage output by the sensor according to a signal output by the amplification circuit.
11. An electronic device, comprising a panel and the pressure-sensitive structure according toclaim 1, wherein the pressure-sensitive structure is attached to an inner side of the panel.
12. The electronic device according toclaim 11, wherein the pressure-sensitive structure and the panel are connected through glue or welding.
13. An electronic device, comprising a side frame and the pressure-sensitive structure according toclaim 1, wherein the pressure-sensitive structure is attached to an inner side of the side frame.
14. The electronic device according toclaim 13, wherein the pressure-sensitive structure and the side frame are connected through glue or welding.
15. The pressure-sensitive structure according toclaim 6, wherein the strain concentration slot is a through slot extending in a direction inclined to the first mounting surface.
16. The pressure-sensitive structure according toclaim 6, wherein the strain concentration slot is a through slot having a longitudinal section with a predetermined shape.
17. The pressure-sensitive structure according toclaim 6, wherein the strain concentration slot is a blind slot having a longitudinal section with a predetermined shape.
18. The pressure-sensitive structure according toclaim 1, wherein the multiple components include a capacitor and/or an inductor.
19. The pressure-sensitive structure according toclaim 1, wherein the multiple components include a voltage divider.
20. The pressure-sensitive structure according toclaim 1, wherein the multiple components include a reference resistor and a deformation sensing resistor.
US17/912,8322020-03-192021-02-08Pressure-sensitive structure and electronic deviceActive2042-01-19US12326375B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US17/912,832US12326375B2 (en)2020-03-192021-02-08Pressure-sensitive structure and electronic device

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US202062992000P2020-03-192020-03-19
US202063064086P2020-08-112020-08-11
PCT/CN2021/075915WO2021185003A1 (en)2020-03-192021-02-08Pressure-induction structure and electronic product
US17/912,832US12326375B2 (en)2020-03-192021-02-08Pressure-sensitive structure and electronic device

Publications (2)

Publication NumberPublication Date
US20230144931A1 US20230144931A1 (en)2023-05-11
US12326375B2true US12326375B2 (en)2025-06-10

Family

ID=77747826

Family Applications (6)

Application NumberTitlePriority DateFiling Date
US17/912,838Active2042-04-07US12264981B2 (en)2020-03-192021-02-08Pressure sensing device and pressure sensing apparatus
US17/912,832Active2042-01-19US12326375B2 (en)2020-03-192021-02-08Pressure-sensitive structure and electronic device
US17/912,419PendingUS20230138119A1 (en)2020-03-192021-02-08Method for fabricating strain sensing film, strain sensing film, and pressure sensor
US17/912,837Active2042-03-05US12429389B2 (en)2020-03-192021-02-08Multi-parameter sensing system
US17/912,817PendingUS20230127473A1 (en)2020-03-192021-02-08Strain sensing film, pressure sensor and hybrid strain sensing system
US17/205,860Active2041-09-01US11796405B2 (en)2020-03-192021-03-18Hybrid sensing system

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US17/912,838Active2042-04-07US12264981B2 (en)2020-03-192021-02-08Pressure sensing device and pressure sensing apparatus

Family Applications After (4)

Application NumberTitlePriority DateFiling Date
US17/912,419PendingUS20230138119A1 (en)2020-03-192021-02-08Method for fabricating strain sensing film, strain sensing film, and pressure sensor
US17/912,837Active2042-03-05US12429389B2 (en)2020-03-192021-02-08Multi-parameter sensing system
US17/912,817PendingUS20230127473A1 (en)2020-03-192021-02-08Strain sensing film, pressure sensor and hybrid strain sensing system
US17/205,860Active2041-09-01US11796405B2 (en)2020-03-192021-03-18Hybrid sensing system

Country Status (3)

CountryLink
US (6)US12264981B2 (en)
CN (5)CN115210682A (en)
WO (6)WO2021185001A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113227954B (en)*2018-12-202025-01-24深圳纽迪瑞科技开发有限公司 Pressure sensing device, pressure sensing method and electronic terminal
US11650110B2 (en)*2020-11-042023-05-16Honeywell International Inc.Rosette piezo-resistive gauge circuit for thermally compensated measurement of full stress tensor
US11557957B1 (en)*2021-08-042023-01-17Resilient Power Systems, Inc.Configurable power module for AC and DC applications
US12050142B2 (en)2022-04-052024-07-30Sensordata Technologies, Inc.Effective gauge factor utilizing integrated millivolt amplifier for strain gauge applications
CN116919352A (en)*2023-08-162023-10-24广东迈科鼎医疗科技有限公司 Micro-sensors that measure pressure and temperature within human tissue and their packaging processes
CN117147023B (en)*2023-11-012024-02-13合肥美镓传感科技有限公司Gallium nitride pressure sensor and manufacturing method thereof
CN117613033B (en)*2023-11-232024-08-20中国工程物理研究院电子工程研究所Silicon-based micro-module structure containing temperature and strain sensing and preparation method
CN120594897A (en)*2025-07-212025-09-05矽电半导体设备(深圳)股份有限公司Probe station and monitoring method

Citations (76)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3451030A (en)*1966-07-011969-06-17Gen ElectricSolder-bonded semiconductor strain gauges
US4556115A (en)1983-06-171985-12-03Hottinger Baldwin Measurement, Inc.Method and means for equalizing the measuring sensitivity of a plurality of strain gage transducers
JPS61214582A (en)1985-03-201986-09-24Hitachi Ltd Semiconductor pressure transducer
EP0195232A2 (en)1985-03-201986-09-24Hitachi, Ltd.Piezoresistive strain sensing device
US4658233A (en)*1984-03-161987-04-14Fuji Electric Corporate Research & Development Ltd.Strain gauge
JPS632835A (en)1986-06-241988-01-07Furukawa Electric Co Ltd:The Optical fiber manufacturing equipment
US4771638A (en)1985-09-301988-09-20Kabushiki Kaisha Toyota Chuo KenkyushoSemiconductor pressure sensor
CN1049718A (en)1989-08-251991-03-06株式会社长野计器制作所Strain test element and use its pressure converter
CN1460846A (en)2002-05-212003-12-10株式会社电装Film type semiconductor pressure sensor
US6729187B1 (en)*1999-04-292004-05-04The Board Of Governors For Higher Education, State Of Rhode Island And Providence PlantationsSelf-compensated ceramic strain gage for use at high temperatures
US20060207339A1 (en)*2005-03-182006-09-21Takashi SumigawaMechanical-quantity measuring device
US20060216848A1 (en)*2005-03-222006-09-28Hisashi TanieMechanical quantity measuring apparatus
US20070151356A1 (en)*2005-12-162007-07-05Hitachi, Ltd.Apparatus for measuring a mechanical quantity
US20070186677A1 (en)*2006-02-142007-08-16Zunino James L IiiNon-contact rf strain sensor
CN101044382A (en)2004-09-242007-09-26格伦德福斯联合股份公司Pressure sensor
CN101046368A (en)2006-03-292007-10-03株式会社日立制作所Strain measuring device
JP2007281051A (en)2006-04-042007-10-25Miraial Kk Semiconductor wafer chip processing method
US20080072684A1 (en)*2006-09-262008-03-27Fujitsu LimitedStrain sensor
CN201215517Y (en)2008-05-282009-04-01伊玛精密电子(苏州)有限公司Pressure detecting device with temperature compensation
US20090145235A1 (en)*2007-06-052009-06-11Gregory Otto JLow tcr nanocomposite strain gages
CN101526411A (en)2009-01-192009-09-09中国电子科技集团公司第四十八研究所Diaphragm pressure sensor core with compensating network
CN101566514A (en)2009-06-022009-10-28中国航天科技集团公司第四研究院第四十四研究所Integrated temperature thin film pressure sensor
CN101639391A (en)2009-09-072010-02-03哈尔滨工业大学Polysilicon nanometer film pressure sensor with temperature sensor and manufacture method thereof
CN101719482A (en)2009-11-252010-06-02中国电子科技集团公司第二十四研究所Manufacturing method of monolithic integrated pressure sensor
CN101807531A (en)2010-03-302010-08-18上海凯虹电子有限公司Ultra-thin chip packaging method and packaged body
CN101815933A (en)2007-08-272010-08-25皇家飞利浦电子股份有限公司The method of pressure transducer, the sensor probe that comprises pressure transducer, the Medical Devices that comprise sensor probe and manufacturing sensor probe
US20100307255A1 (en)2009-06-012010-12-09Denso CorporationPhysical quantity sensor device and method of manufacturing the same
US20110226069A1 (en)*2010-03-182011-09-22Korea Research Institute Of Standards And ScienceFlexible force or pressure sensor array using semiconductor strain gauge, fabrication method thereof and measurement method thereof
CN202255734U (en)2011-08-172012-05-30中国电子科技集团公司第四十八研究所Pressure sensitive core
CN202710236U (en)2012-07-192013-01-30慧石(上海)测控科技有限公司Adhesive structure of pressure sensing chip
CN103712721A (en)2013-12-232014-04-09新会康宇测控仪器仪表工程有限公司SOI pressure strain gauge and manufacturing method thereof
US20140220327A1 (en)*2012-10-122014-08-07Corning IncorporatedGlass Articles Having Films with Moderate Adhesion and Retained Strength
US20150020601A1 (en)*2012-03-022015-01-22Hitachi, Ltd.Device for Measuring Mechanical Quantity
US20150068315A1 (en)2013-09-122015-03-12Honeywell International Inc.Media isolated pressure sensor
US20150143915A1 (en)*2012-06-222015-05-28Korea Electronics Technology InstituteDeformation measurement sensor for measuring pressure and shearing force and structure therefor
CN104897333A (en)2015-06-292015-09-09歌尔声学股份有限公司MEMS (Micro-electromechanical Systems) pressure sensing element and manufacturing method therefor
CN204652340U (en)2015-06-052015-09-16深圳纽迪瑞科技开发有限公司Pressure sensitive press-key structure and there is the terminal equipment of this pressure sensitive press-key structure
CN105021347A (en)2015-06-262015-11-04深圳市芯海科技有限公司Sensitivity adjustment circuit of bridge type pressure sensor and sensitivity correction method of bridge type pressure sensor
CN105021341A (en)2015-08-182015-11-04熊辉High-performance film pressure transducer
CN105203019A (en)2015-10-192015-12-30上海集成电路研发中心有限公司Flexible active pressure/strain sensor structure and manufacturing method thereof
CN105224129A (en)2015-09-012016-01-06宸鸿科技(厦门)有限公司A kind of pressure-sensing input media
CN105895540A (en)2015-01-092016-08-24特科芯有限公司Die back surface silicone printing encapsulation method
CN105895587A (en)2015-01-092016-08-24特科芯有限公司Method for overcoming layering of substrate and die through bonding performance of DAF and low-roughness silicon wafer
US20160299598A1 (en)*2015-04-132016-10-13Hideep Inc.Pressure detection module and touch input device including the same
CN106301324A (en)2015-06-052017-01-04深圳纽迪瑞科技开发有限公司Pressure sensitive press-key structure and there is the terminal unit of this pressure sensitive press-key structure
JP2017003365A (en)2015-06-082017-01-05セイコーNpc株式会社Pressure sensor
CN106768524A (en)2017-02-202017-05-31广东海洋大学A kind of diaphragm pressure sensor and its manufacture method
CN106855756A (en)2015-12-092017-06-16雅士晶业股份有限公司Functional glass cover
US20170191884A1 (en)*2015-07-212017-07-06Apple Inc.Strain Sensors in an Electronic Device
WO2017133017A1 (en)2016-02-062017-08-10深圳纽迪瑞科技开发有限公司Pressure sensor, electronic device, and method for manufacturing pressure sensor
WO2017133016A1 (en)2016-02-062017-08-10深圳纽迪瑞科技开发有限公司Pressure sensor, electronic device, and method for manufacturing pressure sensor
CN206930343U (en)2017-07-042018-01-26常州信息职业技术学院A kind of electronic scale using power sense amp circuit
CN108027290A (en)2015-09-302018-05-11日立汽车系统株式会社Strain measuring device
CN108037844A (en)2017-11-092018-05-15厦门天马微电子有限公司Touch-control display panel and touch control display apparatus
US20180145266A1 (en)*2015-01-292018-05-24The University Of TokyoOrganic semiconductor element
WO2018133054A1 (en)2017-01-212018-07-26深圳纽迪瑞科技开发有限公司Pressure-sensing structure, and electronic product
CN108365021A (en)2018-02-062018-08-03无锡元创华芯微机电有限公司A kind of infrared detector wafer packaging method
CN207964135U (en)2018-01-052018-10-12台州辉腾泵业有限公司pressure sensor temperature compensation circuit
CN108917587A (en)2018-05-172018-11-30大连理工大学A kind of resistance-strain type curvature sensor based on favour stone full-bridge principle
WO2018231808A1 (en)2017-06-132018-12-20New Degree Technology, LLCA dual use strain sensor
CN109238525A (en)2018-08-282019-01-18西安航天动力研究所Metallic film type pressure-temperature compound sensor and preparation method thereof
WO2019014866A1 (en)2017-07-192019-01-24深圳纽迪瑞科技开发有限公司Pressure sensing apparatus and pressure sensing device
CN109399556A (en)2018-09-192019-03-01天津科技大学A kind of preparation method of the flexible micro-nano pressure sensor based on mode of printing
CN109781314A (en)2018-12-242019-05-21清华大学 Composite functional materials, pressure sensing devices and intelligent temperature control systems
CN109844447A (en)2016-07-122019-06-04新度技术有限公司Nano composite force sensing material
CN209264161U (en)2019-01-162019-08-16深圳纽迪瑞科技开发有限公司Strain inductive component and equipment
WO2019160349A1 (en)2018-02-142019-08-22주식회사 하이딥Portable terminal having, at lateral surface thereof, pressure sensor and touch sensor
CN110174198A (en)2018-02-192019-08-27意法半导体股份有限公司Deformeter with mechanically decoupled temperature sensor
JP2019214582A (en)2014-11-042019-12-19グレンマーク ファーマシューティカルズ, エセ.アー.Cd3/cd38 t-cell retargeting hetero-dimeric immunoglobulins and methods of their production
CN110806172A (en)2019-12-062020-02-18中国工程物理研究院化工材料研究所Sensor, preparation method thereof and integrated strain temperature sensing and measuring system
CN111174687A (en)2020-02-182020-05-19上海交通大学Flexible strain sensor chip with temperature compensation element and preparation method thereof
US20200309617A1 (en)*2019-03-292020-10-01Sintokogio, Ltd.Force sensor
US20200309618A1 (en)*2019-03-292020-10-01Sintokogio, Ltd.Force sensor and strain element
US20200378848A1 (en)*2019-05-302020-12-03Mitsubishi Electric CorporationSemiconductor strain detection element and mems actuator device
US20210328164A1 (en)*2018-09-042021-10-21The University Of TokyoOrganic semiconductor element, strain sensor, vibration sensor, and manufacturing method for organic semiconductor element
US20210405781A1 (en)*2019-08-192021-12-30Boe Technology Group Co., Ltd.Foldable display screen and assembling method thereof, and display apparatus

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP1119032B8 (en)1992-04-222008-03-19Denso CorporationA method for producing a semiconductor device
JPH06302835A (en)*1993-04-151994-10-28Toyota Motor CorpSemiconductor sensor
US5522266A (en)*1993-11-301996-06-04Medex, Inc.Low cost pressure transducer particularly for medical applications
JP2001007238A (en)*1999-06-082001-01-12Taishu Denno Kofun YugenkoshiMethod of packaging wafer-level integrated circuit device
US6700473B2 (en)*2000-02-142004-03-02Kulite Semiconductor Products, Inc.Pressure transducer employing on-chip resistor compensation
US6660565B1 (en)2000-08-172003-12-09St Assembly Test Services Pte Ltd.Flip chip molded/exposed die process and package structure
GB2370122B (en)*2000-12-162005-04-27Senstronics LtdTemperature compensated strain gauge
US6912759B2 (en)*2001-07-202005-07-05Rosemount Aerospace Inc.Method of manufacturing a thin piezo resistive pressure sensor
JP3915715B2 (en)*2003-03-072007-05-16株式会社デンソー Semiconductor pressure sensor
JP2004279089A (en)*2003-03-132004-10-07Denso CorpSemiconductor pressure sensor
JP4329478B2 (en)*2003-10-062009-09-09株式会社日立製作所 Mechanical quantity measuring device
US20050115329A1 (en)*2003-10-232005-06-02Gregory Otto J.High temperature strain gages
US7146862B2 (en)*2004-06-022006-12-12Honeywell International Inc.Thick film strain gage sensor
US7474171B2 (en)*2005-06-012009-01-06Raytheon CompanyMethod and apparatus for reducing dielectric charging in MEMS structures
EP1783782A1 (en)*2005-11-022007-05-09Services Petroliers SchlumbergerHigh impedance thin film for strain gauge application
EP2069009A1 (en)*2006-09-282009-06-17Medtronic, Inc.Implantable medical device with sensor self-test feature
JP4710779B2 (en)*2006-09-282011-06-29株式会社日立製作所 Mechanical quantity measuring device
US20080290494A1 (en)*2007-05-212008-11-27Markus LutzBackside release and/or encapsulation of microelectromechanical structures and method of manufacturing same
JP5008188B2 (en)*2007-05-312012-08-22ミネベア株式会社 Triaxial force sensor and triaxial force detection method
US7647837B2 (en)*2007-08-292010-01-19Honeywell International Inc.Active temperature differential compensation for strain gage based sensors
DE102008002307A1 (en)*2008-06-092009-12-10Robert Bosch Gmbh Production method for a micromechanical component, corresponding component composite and corresponding micromechanical component
US7918137B2 (en)*2009-02-062011-04-05Kulite Semiconductor Products, Inc.Method for temperature compensation of a piezoresistive gaged metal diaphragm
CN103822749B (en)*2009-07-242016-05-04罗姆股份有限公司Pressure sensor apparatus and electronic equipment
WO2011127306A1 (en)2010-04-072011-10-13Sensortech CorporationContact sensors, force/pressure sensors, and methods for making same
JP5507323B2 (en)*2010-04-232014-05-28本田技研工業株式会社 Temperature compensation method for force sensor and force sensor
EP2579010B1 (en)*2010-05-242022-02-23National Institute for Materials ScienceSurface stress sensor
US8707796B2 (en)*2010-08-042014-04-29Terrisa DuenasSemiconductor strain gauge array
US9304151B2 (en)*2010-10-142016-04-05Hydra-Electric CompanyBridge sensor compensation and isolated output
DE102011013658B4 (en)*2011-02-102012-12-13Panasonic Industrial Devices Europe Gmbh Device for signal evaluation of load cells with strain gauges
EP2674392B1 (en)*2012-06-122017-12-27ams international AGIntegrated circuit with pressure sensor and manufacturing method
US10317297B2 (en)*2013-12-112019-06-11Melexis Technologies NvSemiconductor pressure sensor
CN106461484B (en)*2014-06-092019-04-12日立汽车系统株式会社Mechanical measurement device and the pressure sensor for using it
CN104296899B (en)*2014-09-282017-04-12缪建民High-sensitivity silicon piezoresistance pressure sensor and preparation method thereof
CN105241369B (en)*2015-08-172018-02-09王文MEMS strain gauge chip and manufacturing process thereof
US20170057810A1 (en)*2015-09-012017-03-02Apple Inc.Strain Reduction and Sensing on Package Substrates
JP2017067764A (en)*2015-09-292017-04-06ミネベアミツミ株式会社Strain gauge, load sensor, and manufacturing method for strain gauge
US10012553B2 (en)2016-08-122018-07-03The Hong Kong Polytechnic UniversityCoated nanofiller/polymer composite sensor network for guided-wave-based structural health monitoring
US10879449B2 (en)*2017-05-112020-12-29Nihat OkulanSemiconductor strain gauge and method of manufacturing same
US10908037B2 (en)*2017-06-082021-02-02New Degree Technology, LLCTransparent force sensing materials and devices
WO2021035741A1 (en)*2019-08-302021-03-04深圳纽迪瑞科技开发有限公司Force sensing apparatus, force sensing method and device
US11650110B2 (en)*2020-11-042023-05-16Honeywell International Inc.Rosette piezo-resistive gauge circuit for thermally compensated measurement of full stress tensor

Patent Citations (82)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3451030A (en)*1966-07-011969-06-17Gen ElectricSolder-bonded semiconductor strain gauges
US4556115A (en)1983-06-171985-12-03Hottinger Baldwin Measurement, Inc.Method and means for equalizing the measuring sensitivity of a plurality of strain gage transducers
US4658233A (en)*1984-03-161987-04-14Fuji Electric Corporate Research & Development Ltd.Strain gauge
US4739381A (en)*1985-03-201988-04-19Hitachi, Ltd.Piezoresistive strain sensing device
EP0195232A2 (en)1985-03-201986-09-24Hitachi, Ltd.Piezoresistive strain sensing device
JPS61214582A (en)1985-03-201986-09-24Hitachi Ltd Semiconductor pressure transducer
US4771638A (en)1985-09-301988-09-20Kabushiki Kaisha Toyota Chuo KenkyushoSemiconductor pressure sensor
JPS632835A (en)1986-06-241988-01-07Furukawa Electric Co Ltd:The Optical fiber manufacturing equipment
CN1049718A (en)1989-08-251991-03-06株式会社长野计器制作所Strain test element and use its pressure converter
US6729187B1 (en)*1999-04-292004-05-04The Board Of Governors For Higher Education, State Of Rhode Island And Providence PlantationsSelf-compensated ceramic strain gage for use at high temperatures
CN1460846A (en)2002-05-212003-12-10株式会社电装Film type semiconductor pressure sensor
US8056421B2 (en)*2004-06-172011-11-15Hitachi, Ltd.Apparatus for measuring a mechanical quantity
CN101044382A (en)2004-09-242007-09-26格伦德福斯联合股份公司Pressure sensor
US20060207339A1 (en)*2005-03-182006-09-21Takashi SumigawaMechanical-quantity measuring device
US20060216848A1 (en)*2005-03-222006-09-28Hisashi TanieMechanical quantity measuring apparatus
US20070151356A1 (en)*2005-12-162007-07-05Hitachi, Ltd.Apparatus for measuring a mechanical quantity
US20070186677A1 (en)*2006-02-142007-08-16Zunino James L IiiNon-contact rf strain sensor
CN101046368A (en)2006-03-292007-10-03株式会社日立制作所Strain measuring device
JP2007263781A (en)2006-03-292007-10-11Hitachi Ltd Mechanical quantity measuring device
JP2007281051A (en)2006-04-042007-10-25Miraial Kk Semiconductor wafer chip processing method
US20080072684A1 (en)*2006-09-262008-03-27Fujitsu LimitedStrain sensor
US20090145235A1 (en)*2007-06-052009-06-11Gregory Otto JLow tcr nanocomposite strain gages
CN101815933A (en)2007-08-272010-08-25皇家飞利浦电子股份有限公司The method of pressure transducer, the sensor probe that comprises pressure transducer, the Medical Devices that comprise sensor probe and manufacturing sensor probe
CN201215517Y (en)2008-05-282009-04-01伊玛精密电子(苏州)有限公司Pressure detecting device with temperature compensation
CN101526411A (en)2009-01-192009-09-09中国电子科技集团公司第四十八研究所Diaphragm pressure sensor core with compensating network
US20100307255A1 (en)2009-06-012010-12-09Denso CorporationPhysical quantity sensor device and method of manufacturing the same
CN101566514A (en)2009-06-022009-10-28中国航天科技集团公司第四研究院第四十四研究所Integrated temperature thin film pressure sensor
CN101639391A (en)2009-09-072010-02-03哈尔滨工业大学Polysilicon nanometer film pressure sensor with temperature sensor and manufacture method thereof
CN101719482A (en)2009-11-252010-06-02中国电子科技集团公司第二十四研究所Manufacturing method of monolithic integrated pressure sensor
US20110226069A1 (en)*2010-03-182011-09-22Korea Research Institute Of Standards And ScienceFlexible force or pressure sensor array using semiconductor strain gauge, fabrication method thereof and measurement method thereof
CN101807531A (en)2010-03-302010-08-18上海凯虹电子有限公司Ultra-thin chip packaging method and packaged body
CN202255734U (en)2011-08-172012-05-30中国电子科技集团公司第四十八研究所Pressure sensitive core
US20150020601A1 (en)*2012-03-022015-01-22Hitachi, Ltd.Device for Measuring Mechanical Quantity
US20150143915A1 (en)*2012-06-222015-05-28Korea Electronics Technology InstituteDeformation measurement sensor for measuring pressure and shearing force and structure therefor
CN202710236U (en)2012-07-192013-01-30慧石(上海)测控科技有限公司Adhesive structure of pressure sensing chip
US20140220327A1 (en)*2012-10-122014-08-07Corning IncorporatedGlass Articles Having Films with Moderate Adhesion and Retained Strength
CN205843877U (en)2013-09-122016-12-28霍尼韦尔国际公司Media-isolated pressure transducer
US20150068315A1 (en)2013-09-122015-03-12Honeywell International Inc.Media isolated pressure sensor
WO2015038320A1 (en)2013-09-122015-03-19Honeywell International Inc.Media isolated pressure sensor
CN103712721A (en)2013-12-232014-04-09新会康宇测控仪器仪表工程有限公司SOI pressure strain gauge and manufacturing method thereof
JP2019214582A (en)2014-11-042019-12-19グレンマーク ファーマシューティカルズ, エセ.アー.Cd3/cd38 t-cell retargeting hetero-dimeric immunoglobulins and methods of their production
CN105895540A (en)2015-01-092016-08-24特科芯有限公司Die back surface silicone printing encapsulation method
CN105895587A (en)2015-01-092016-08-24特科芯有限公司Method for overcoming layering of substrate and die through bonding performance of DAF and low-roughness silicon wafer
US20180145266A1 (en)*2015-01-292018-05-24The University Of TokyoOrganic semiconductor element
US20160299598A1 (en)*2015-04-132016-10-13Hideep Inc.Pressure detection module and touch input device including the same
CN204652340U (en)2015-06-052015-09-16深圳纽迪瑞科技开发有限公司Pressure sensitive press-key structure and there is the terminal equipment of this pressure sensitive press-key structure
CN106301324A (en)2015-06-052017-01-04深圳纽迪瑞科技开发有限公司Pressure sensitive press-key structure and there is the terminal unit of this pressure sensitive press-key structure
JP2017003365A (en)2015-06-082017-01-05セイコーNpc株式会社Pressure sensor
CN105021347A (en)2015-06-262015-11-04深圳市芯海科技有限公司Sensitivity adjustment circuit of bridge type pressure sensor and sensitivity correction method of bridge type pressure sensor
CN104897333A (en)2015-06-292015-09-09歌尔声学股份有限公司MEMS (Micro-electromechanical Systems) pressure sensing element and manufacturing method therefor
US20170191884A1 (en)*2015-07-212017-07-06Apple Inc.Strain Sensors in an Electronic Device
CN105021341A (en)2015-08-182015-11-04熊辉High-performance film pressure transducer
CN105224129A (en)2015-09-012016-01-06宸鸿科技(厦门)有限公司A kind of pressure-sensing input media
CN108027290A (en)2015-09-302018-05-11日立汽车系统株式会社Strain measuring device
CN105203019A (en)2015-10-192015-12-30上海集成电路研发中心有限公司Flexible active pressure/strain sensor structure and manufacturing method thereof
CN106855756A (en)2015-12-092017-06-16雅士晶业股份有限公司Functional glass cover
WO2017133017A1 (en)2016-02-062017-08-10深圳纽迪瑞科技开发有限公司Pressure sensor, electronic device, and method for manufacturing pressure sensor
WO2017133016A1 (en)2016-02-062017-08-10深圳纽迪瑞科技开发有限公司Pressure sensor, electronic device, and method for manufacturing pressure sensor
US20190041281A1 (en)*2016-02-062019-02-07Shenzhen New Degree Technology Co., Ltd.Pressure sensor, electronic device, and method for manufacturing pressure sensor
CN109844447A (en)2016-07-122019-06-04新度技术有限公司Nano composite force sensing material
WO2018133054A1 (en)2017-01-212018-07-26深圳纽迪瑞科技开发有限公司Pressure-sensing structure, and electronic product
CN106768524A (en)2017-02-202017-05-31广东海洋大学A kind of diaphragm pressure sensor and its manufacture method
WO2018231808A1 (en)2017-06-132018-12-20New Degree Technology, LLCA dual use strain sensor
CN206930343U (en)2017-07-042018-01-26常州信息职业技术学院A kind of electronic scale using power sense amp circuit
WO2019014866A1 (en)2017-07-192019-01-24深圳纽迪瑞科技开发有限公司Pressure sensing apparatus and pressure sensing device
CN108037844A (en)2017-11-092018-05-15厦门天马微电子有限公司Touch-control display panel and touch control display apparatus
CN207964135U (en)2018-01-052018-10-12台州辉腾泵业有限公司pressure sensor temperature compensation circuit
CN108365021A (en)2018-02-062018-08-03无锡元创华芯微机电有限公司A kind of infrared detector wafer packaging method
WO2019160349A1 (en)2018-02-142019-08-22주식회사 하이딥Portable terminal having, at lateral surface thereof, pressure sensor and touch sensor
CN110174198A (en)2018-02-192019-08-27意法半导体股份有限公司Deformeter with mechanically decoupled temperature sensor
CN108917587A (en)2018-05-172018-11-30大连理工大学A kind of resistance-strain type curvature sensor based on favour stone full-bridge principle
CN109238525A (en)2018-08-282019-01-18西安航天动力研究所Metallic film type pressure-temperature compound sensor and preparation method thereof
US20210328164A1 (en)*2018-09-042021-10-21The University Of TokyoOrganic semiconductor element, strain sensor, vibration sensor, and manufacturing method for organic semiconductor element
CN109399556A (en)2018-09-192019-03-01天津科技大学A kind of preparation method of the flexible micro-nano pressure sensor based on mode of printing
CN109781314A (en)2018-12-242019-05-21清华大学 Composite functional materials, pressure sensing devices and intelligent temperature control systems
CN209264161U (en)2019-01-162019-08-16深圳纽迪瑞科技开发有限公司Strain inductive component and equipment
US20200309617A1 (en)*2019-03-292020-10-01Sintokogio, Ltd.Force sensor
US20200309618A1 (en)*2019-03-292020-10-01Sintokogio, Ltd.Force sensor and strain element
US20200378848A1 (en)*2019-05-302020-12-03Mitsubishi Electric CorporationSemiconductor strain detection element and mems actuator device
US20210405781A1 (en)*2019-08-192021-12-30Boe Technology Group Co., Ltd.Foldable display screen and assembling method thereof, and display apparatus
CN110806172A (en)2019-12-062020-02-18中国工程物理研究院化工材料研究所Sensor, preparation method thereof and integrated strain temperature sensing and measuring system
CN111174687A (en)2020-02-182020-05-19上海交通大学Flexible strain sensor chip with temperature compensation element and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
International Search Report dated May 7, 2021, for PCT/CN2021/075915, 7 pp., including English translation.
Office Action issued in CN202180018123.6, dated Jun. 28, 2024, 10 pages.
Office Action issued in CN202180018343.9, dated Mar. 7, 2024, 7 pages.
Written Opinion of the ISA dated May 7, 2021, for PCT/CN2021/075915, 6 pp., including English translation.

Also Published As

Publication numberPublication date
US20210293633A1 (en)2021-09-23
US11796405B2 (en)2023-10-24
WO2021185002A1 (en)2021-09-23
US20230141257A1 (en)2023-05-11
CN115210682A (en)2022-10-18
US20230138119A1 (en)2023-05-04
US20230127473A1 (en)2023-04-27
CN115605984A (en)2023-01-13
US20230144931A1 (en)2023-05-11
US20230146214A1 (en)2023-05-11
US12429389B2 (en)2025-09-30
CN115210892A (en)2022-10-18
WO2021185004A1 (en)2021-09-23
WO2021185000A1 (en)2021-09-23
US12264981B2 (en)2025-04-01
CN115362356A (en)2022-11-18
WO2021188799A1 (en)2021-09-23
CN115362346A (en)2022-11-18
WO2021185001A1 (en)2021-09-23
WO2021185003A1 (en)2021-09-23

Similar Documents

PublicationPublication DateTitle
US12326375B2 (en)Pressure-sensitive structure and electronic device
CN110192172B (en) Pressure-sensitive structures and electronics
US10352799B2 (en)Pressure sensor, electronic device, and method for manufacturing pressure sensor
CN108603799B (en)Pressure sensor, electronic device and manufacturing method of pressure sensor
US10564744B2 (en)Flexible display device
US20190094007A1 (en)Curvature radius measurer, electronic device and method of manufacturing curvature radius measurer
CN108204870A (en)Pressure sensitive component and the electronic equipment with the pressure sensitive component
CN215120758U (en)Induction device and electronic product
KR20120013969A (en) Touch Sensors with Modular Sensing Components
US20190095024A1 (en)Pressure sensing device and electronic apparatus having same
KR20100083973A (en)Touch input device and manufacturing method thereof
CN213715902U (en)Pressure touch pad
US6633172B1 (en)Capacitive measuring sensor and method for operating same
CN216284033U (en)Pressure sensing device and electronic equipment
US11965788B2 (en)Pressure sensor and electronic terminal
CN112197891B (en)Sensor, temperature and pressure detection method and sensing device
CN212391154U (en)Pressure sensing device and electronic equipment
CN116301205A (en)Electronic equipment
CN116097073B (en)Temperature pressure sensor and electronic equipment
CN113720504A (en)Pressure sensing device and electronic equipment
US20230332964A1 (en)Beam pressure sensor, pressure sensing device and electronic apparatus
CN107844217A (en)A kind of display panel and display device
CN117238695A (en)Key assembly and electronic equipment

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:SHENZHEN NEW DEGREE TECHNOLOGY CO., LTD., CHINA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, TUOXIA;YU, JINBO;REEL/FRAME:061142/0126

Effective date:20220819

FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCFInformation on status: patent grant

Free format text:PATENTED CASE


[8]ページ先頭

©2009-2025 Movatter.jp