Movatterモバイル変換


[0]ホーム

URL:


US12171993B2 - Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing - Google Patents

Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
Download PDF

Info

Publication number
US12171993B2
US12171993B2US18/073,153US202218073153AUS12171993B2US 12171993 B2US12171993 B2US 12171993B2US 202218073153 AUS202218073153 AUS 202218073153AUS 12171993 B2US12171993 B2US 12171993B2
Authority
US
United States
Prior art keywords
impeller
helical blade
blood pump
pump assembly
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US18/073,153
Other versions
US20230091425A1 (en
Inventor
Joseph P. Higgins
Jeffrey R. Stone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiovasular Systems Inc
Cardiovascular Systems Inc
Original Assignee
Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiovascular Systems IncfiledCriticalCardiovascular Systems Inc
Priority to US18/073,153priorityCriticalpatent/US12171993B2/en
Publication of US20230091425A1publicationCriticalpatent/US20230091425A1/en
Assigned to CARDIOVASULAR SYSTEMS, INC.reassignmentCARDIOVASULAR SYSTEMS, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: STONE, JEFFREY R., HIGGINS, JOSEPH P.
Application grantedgrantedCritical
Publication of US12171993B2publicationCriticalpatent/US12171993B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

The present invention provides an intravascular blood pump system with an external motor and comprising an impeller housing and/or impeller blade(s) that may be expandable and collapsible. The blade(s) and/or impeller housing may be biased to expand or may be expanded by centrifugal forces generated during rotation of the impeller and blades an operatively connected rotational external motor.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. Utility patent application Ser. No. 16/524,554, filed Jul. 29, 2019 and titled INTRAVASCULAR PUMP WITHOUT INDUCER AND CENTRIFUGAL FORCE-DRIVEN EXPANSION OF IMPELLER BLADES AND/OR EXPANDABLE AND COLLAPSIBLE IMPELLER HOUSING and claims priority to U.S. Provisional Patent Application No. 62/711,740, filed Jul. 30, 2018 and titled INTRAVASCULAR PUMP WITH CENTRIFUGAL FORCE-DRIVEN EXPANSION, the contents of which are hereby incorporated by reference in their entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTIONField of the Invention
The invention relates to an intravascular blood pump with an expandable and collapsible inlet region.
Description of the Related Art
With reference toFIG.1, the human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart. The chambers include the left atrium, left ventricle, right atrium and right ventricle. The four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve.
The mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium. Similarly, the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart. The valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood.
Thus, as illustrated, the general blood flow comprises deoxygenated blood returning from the body where it is received by the right atrium via the superior and inferior vena cava and is, in turn, pumped into the right ventricle, a process controlled by the tricuspid valve. The right ventricle functions to pump the deoxygenated blood to the lungs via the pulmonary arteries, where the blood is reoxygenated and returned to the left atrium via the pulmonary veins.
Heart disease is a health problem with a high mortality rate. The use of temporary mechanical blood pump devices are used on an increasingly frequent basis to provide short-term acute support during surgery or as temporary bridging support to help a patient survive a crisis. These temporary blood pumps have developed and evolved over the years to supplement the pumping action of the heart on a short-term basis and supplement blood flow as either left or right ventricular assist devices, with the left ventricular assist device (“LVAD”) currently the most commonly used device.
Known temporary LVAD devices generally are delivered percutaneously, e.g., through the femoral artery, to locate or position the LVAD inlet in the patient's left ventricle and the outlet in the patient's ascending aorta with the body of the device disposed across the aortic valve. As the skilled artisan will understand, an incision may be made below the patient's groin to enable access to the patient's femoral artery. The physician may then translate guide wire, followed by a catheter or delivery sheath, through the femoral artery and descending aorta until reaching the ascending aorta. The LVAD with attached rotational drive shaft may then be translated through the delivery catheter or sheath lumen, leaving a proximal end of the drive shaft exposed outside of the patient and coupled with a prime mover such as an electric motor or the equivalent for rotating and controlling the rotational speed of the drive shaft and associated LVAD impeller.
Temporary axial flow blood pumps consist generally of two types: (1) those that are powered by a motor integrated into the device that is connected with the pump's impeller (see U.S. Pat. Nos. 5,147,388 and 5,275,580); and (2) those that are powered by an external motor that provides rotational torque to a drive shaft which is, in turn, connected to the pump's impeller (see U.S. Pat. No. 4,625,712 to Wampler and U.S. Pat. No. 5,112,349 to Summers, each hereby incorporated by reference in their entirety).
Known temporary ventricle assist devices (“VAD”), including LVAD and RVAD (right ventricular assist) devices, whether with integrated motor or an external motor, generally comprise the following elements mounted within a housing, listed in order from the inflow end to the outflow end: an inflow aperture(s); a flow inducer, known in the art as component that directs flow into the impeller from the inflow apertures or inlet; a rotational impeller; and a flow diffuser and/or outflow structure known in the art as functioning to straighten or redirecting the rotational flow created by the rotational impeller into axial flow; and an outflow aperture(s) as shown in the exemplary prior art pump and/or impeller assembly cross sectional and cutaway view ofFIG.2.
InFIG.2, theknown device2 is oriented with the inflow end (distal end) on the left side of the drawing and the outflow end (proximal) on the right side, so that the incoming blood flow in the ventricle enters the device housing through the inflow aperture(s) (not shown), flows through the defined by the surroundinghousing14, ultimately entering the impeller/pump assembly4. There, the incoming blood encounters the flow inducer6 before being urged forward by the rotatingimpeller8. The blood flow may then be modified by aflow diffuser9 and exits into the aorta via the housing's outflow aperture(s)10.
Known VAD or LVAD devices further comprise a delivery configuration and a functional or working configuration, with the delivery configuration having a lower profile or smaller diameter than the functional or working configuration to, inter alia, facilitate atraumatic delivery through a delivery sheath. Stated differently, through various means the housing of the VAD or LVAD, and/or the blades of the impeller, may expand to achieve the functional or working configuration and collapse to achieve the delivery configuration. However, known devices collapse and expand the impeller blades and/or the housing wherein the collapsible and expandable housing surrounds at least a portion of the impeller in order to enable moving between an expanded or working configuration and/or require an integrated motor proximate the impeller. See, e.g., U.S. Pat. Nos. 7,027,875; 7,927,068; and 8,992,163.
Known LVAD devices will typically comprise an angled housing to accommodate the aortic arch, the angle or bend generally in the range of 135 degrees.
LVAD devices with integrated motors within the housing must be small enough to allow atraumatic intravascular translation and positioning within the heart. Though various means are known to collapse portions of the device while within the catheter or delivery sheath, including the housing and/or the impeller or parts thereof such as the blades, the size of the collapsed device may be limited by the integrated motor.
In addition, the known LVAD devices comprise a delivery configuration wherein the housing and/or impeller, e.g., the blades on the impeller, may be reduced in diameter and, when delivered distally from the delivery catheter or sheath, the collapsed elements are enabled to expand. These devices are limited in several respects. First, the collapsing and expanding comprises at least a portion of the housing that is occupied by the impeller. Second, the inflow region of the housing, that is the region distal to the rotational impeller and the stationary inducer or flow straightener, comprises an area of opportunity to optimize blood flow through the cannula or housing. Known LVAD or VAD devices do not take advantage of this opportunity. Third, known LVAD or VAD devices comprise a stationary inducer or flow straightener encountered by blood upon entry into the pump which can contribute to, inter alia, thrombosis and/or hemolysis. Fourth, reducing crossing profile of the VAD or LVAD device is critical for reasons discussed herein, a design requirement made more difficult by the need to extend electric leads across or along the housing of the device, wherein the electrical leads may be used for, e.g., powering and/or communicating with a motor or sensor(s) or other operational powered element. In this connection, electric leads require profile reduction to keep the crossing profile as low as possible, as well as insulation and/or spacing between adjacent leads where such insulation and/or spacing is necessary or desired.
Various embodiments of the present invention address these, inter alia, issues.
The figures and the detailed description which follow more particularly exemplify these and other embodiments of the invention.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG.1 is a cutaway view of the human heart;
FIG.2 is a cross-sectional view of a prior art device;
FIG.3 is a side cutaway view of one embodiment of the present invention;
FIG.4 is a side cutaway view of one embodiment of the present invention;
FIG.5 is a side cutaway of one embodiment of the present invention;
FIG.6A is a side cutaway of one embodiment of the present invention;
FIG.6B is a side cutaway of one embodiment of the present invention;
FIG.7 is a cutaway perspective view of one embodiment of the present invention;
FIG.8 is a cutaway perspective view of one embodiment of the present invention; and
FIG.9 is a cutaway perspective view of one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Generally, various embodiments of the present invention are directed to mechanical assist devices for pumping blood in a patient. Improved temporary LVAD or VAD blood pumps are described herein that are delivered percutaneously and intravascularly.
Referring now toFIG.3, an exemplaryLVAD blood pump100 is illustrated, with inflow apertures12 on the left side of the illustration andoutflow apertures10 on the right side of the device. The motor is shown as located on the proximal end of the device outside the patient's body and connected with a rotational drive shaft that is, in turn, connected with the impeller orrotor8 or pump assembly. However, as is well known in the art, the motor may be located within the housing of the device itself, wherein the motor is typically mounted on the proximal side of therotor8 or impeller or pump assembly. Either of these configurations may be used together with various embodiments of the present invention as described herein.
The entire length ofouter housing14 is shown as comprising a relatively constant diameter from the inlet or inflow apertures12 to the outlet oroutflow apertures10.Guide wire16 is positioned alongside the exterior of the device until reaching the inlet apertures12 where it enters the lumen of cannula C and extends distally therefrom as shown. Thus, theguide wire16 does not pass through the impeller orrotor8 or pump assembly. The configuration shown inFIG.3 may comprise a delivery configuration with anexpandable region102 compressed within an introducer or delivery sheath orcatheter200.
With reference generally to the Figures,device100 may comprise anexpandable region102 that may be located distal to the impeller or rotor or pump assembly, such that the housing diameter surrounding the impeller or rotor or pump assembly does not change diameter during delivery or during rotation. Stated differently, a proximal non-expandable region122 may be provided and comprises at least the impeller or rotor or pump assembly and the housing surrounding that assembly does not expand or contract appreciably but may be flexible. Further, a distalnon-expandable region124 may also be provided comprising at least the inlet region including at least the inlet apertures12. Thus, theexpandable region102 comprises a proximal end and a distal end. The proximal end of theexpandable region102 abuts or is adjacent to a distal end of the proximal non-expandable region122 while the distal end of theexpandable region102 abuts or is adjacent to a proximal end of the distalnon-expandable region124. The housing H surrounding the non-expandable region(s)122,124 may, however, be flexible or pliable, but they are not disposed to a biased expansion.
Alternatively, the housing H ofdevice100 inFIG.3 may be non-expandable.
FIG.4 illustrates an expandable embodiment ofdevice100 and in dashed lines the change in diameter to/from a collapsed, deformed expandable region to an exemplary expanded undeformed expandable region, extending distally from a point distal to the end of the impeller, rotor and/or pump assembly along the hollow cannula to a point just proximal of the inlet apertures. Theexpandable region102 may expand to a maximum undeformed diameter within the range of 12-20 Fr, more preferably between 16-20 Fr. In contrast, the unexpanded region remains at a substantially fixed diameter within the range of 9 to 12 Fr.
With continued reference toFIGS.3 and4, and the remaining Figures generally, thedevice100 may comprise anexpandable region102 that may be, either partially or completely, biased to the expanded configuration and, therefore, comprise a material or structure that facilitates expansion and may be biased to expand. Exemplary construction of theexpandable region102 may comprise asupport structure130 that is surrounded by an outer material, e.g., a jacket or coating or sleeve comprised of a plastic or polymeric material that accommodates an expansion of the underlying support structure as is known in the art. Thesupport structure130 may be formed of a shape memory material, for example Nitinol or similar. Other materials may comprise gold, tantalum, stainless steel, metal alloys, aerospace alloys and/or polymers including polymers that expand and contract upon exposure to relative heat and cold. In other cases, at least a portion of theexpandable region102, e.g., a centralexpandable section104 discussed infra, may comprise a polymeric or other material sleeve that is configured to allow and/or accommodate expansion and collapsing and asupport structure130 may be omitted.FIG.4 provides a rotational drive shaft connected with the impeller assembly and is, in turn, connected with a prime mover such as an electric motor that is located outside the patient's body. It will be understood, however, that the various embodiments of the inventions discussed herein may also be used in combination with blood pumps comprising motors integrated therein, i.e., no external motor. Further, as discussed above,device100 may comprise an expandable housing H orregion102 or may be non-expandable.
In many of the embodiments described herein, theexpandable region102 may comprise a single expandable region, without need or reason to distinguish between a proximal transition section, central expandable section and/or distal transition section.
Generally, theexpandable region102 of the present invention may comprise asupport structure130 surrounded by a polymer coating or jacket that adapts to expansion and collapsing of theexpandable region102.
Further, thesupport structure130 may comprise an expandable stent-like structure formed of a series of cells formed from interacting and/or interconnected wires and/or struts and that enable collapsing and biased expansion of a structure, e.g., a stent, as is known in the art. For example, see U.S. Pat. No. 5,776,183 to Kanesaka; U.S. Pat. No. 5,019,090 to Pinchuk; U.S. Pat. No. 5,161,547 to Tower; U.S. Pat. No. 4,950,227 to Savin; U.S. Pat. No. 5,314,472 to Fontaine; U.S. Pat. Nos. 4,886,062 and 4,969,458 to Wiktor; and U.S. Pat. No. 4,856,516 to Hillstead, the disclosures of each of which are hereby incorporated in their entirety by reference.
Theexpandable region102 described herein is merely exemplary and not limiting in any regard. As such, any expandable housing H of ablood pump device100 is readily adaptable to the various embodiments of the present invention relating to insulation and/or spacing and/or profile reduction or integration of electrical leads or conductors E within or along the blood pump housing.Expandable region102 may also comprise a single region capable of expansion and collapse.
Turning now toFIG.5, an exemplary pump assembly orimpeller assembly200 is illustrated.
Initially, in contrast to the known impeller assembly shown inFIG.2 which comprises a flow inducer6 and flowdiffuser9, the exemplary pump or impeller assembly ofFIG.5 completely eliminates the flow inducer6 and theflow diffuser9 of the impeller assembly found in known pumps. Applicant has found that the inducer6 and/ordiffuser9 are not needed for effective control or manipulation of the incoming blood flow and that the additional stationary surface area and interconnections between at least the inducer6 and the distal end of therotating impeller8 provide increased risk of thrombosis. Thus, the blood is induced to flow through the cannula of by actuating the pump or impeller assembly to rotate at a predetermined speed, without aid or requirement of a flow inducer. The blood thus flows directly to therotating impeller8 comprisingblades11 and is urged out of the cannula or lumen of the device atoutlet apertures10 by the rotatingimpeller blades11, without aid or requirement of a flow diffuser or straightener.
Turning now toFIGS.6A and6B, another embodiment of theblood pump device300 comprises a centrifugal-force driven expansion mechanism as shown.FIG.6A illustrates a collapsed, delivery configuration whileFIG.6B shows pump assembly region in an expanded, working configuration.
Thus, the impeller housing H may comprise an expandable stent-frame as is known in the art and discussed supra. The impeller housing H may therefore move between a collapsed, delivery configuration to an expanded, working configuration during delivery and retraction. Thedevice300 may be delivered through a sheath (not shown but as is well known in the art) which forces the impeller housing H into the collapsed, delivery/retracted configuration ofFIG.6A. When thedevice300 is extended outside the distal end of the lumen of the delivery sheath, the impeller housing H, which may be biased to expand and, when released from the constrictions of the delivery sheath lumen may expand to achieve the expanded working configuration ofFIG.6B. The impeller housing H may be moved back to the collapsed delivery configuration by retracting the device housing back into the delivery sheath lumen.
With reference toFIGS.5 and6A-6B, theblades11 may comprise at least oneblade11 and the at least one blade may comprise a helical shape as illustrated. Each of the at least onehelical blades11 may comprise a first side and a second opposing side.
In combination with the collapsible and expandable impeller housing H configuration, the blades attached to the impeller are also enabled to move between a collapsed configuration and an expanded working configuration to further reduce the outer diameter of the impeller housing H with associatedimpeller8 andblades11 during delivery and retraction.
Again with reference toFIGS.5A and6A-6B, the first side of the at least onehelical blade11 may be configured to collapse against the outer surface of the hub to achieve a retracted configuration. The first side of the at least one helical blade may expand away from the outer surface of the hub to achieve an expanded configuration.
Accordingly, the retracted blades ofFIG.6A may open solely by rotating the impeller at a speed sufficient to generate a centrifugal force on the blade(s)11 to cause the blade(s)11 to move from retracted to extended or expanded as inFIG.6B. While fluid flow forces may assist with this transition, the blade(s)11 may be configured such that they will expand by centrifugal force alone, i.e., the blade(s)11 will, in this embodiment, expand or extend to working configuration in a vacuum and without need or aid of fluid forces to assist in the expansion.
Theexemplary impeller housing11 may, by these mechanisms, be transitioned between an exemplary range of 14 fr to 9 fr.
Accordingly, as described above, theimpeller housing11 may be self-expanding, e.g., a stent-like frame or other memory shape material. The blade(s)11 may be adapted to lock into an extended or expanded position when open/expanded, thus requiring a force to overcome the locking force when the blade(s)11 are to be collapsed. In other embodiments, the blade(s)11 may comprise a biased retracted position or a biased extended position.
In the embodiment shown, retraction of the blade(s)11 may occur at the same time and in essentially the same way as retraction of the impeller housing H, by retracting the impeller housing H and related assembly comprising the housing H,impeller8 and blade(s)11 distally into the delivery sheath lumen, thus forcing the housing H to collapse as well as the blade(s)11 to collapse against the impeller hub (seeFIG.5) to achieve the collapsed delivery/retraction configuration.
In some embodiments the impeller housing H may be expanded and/or collapsed as a result of rotation of the drive shaft and resulting rotation of theimpeller blades11 which create an outward force that pushes radially outwardly on the impeller housing H, moving it from a collapsed configuration to an expanded configuration. At the expanded point, the impeller housing H may be held at expanded configuration using a locking mechanism or be held in the expanded configuration as a result of the generated radially outward fluid forces resulting from the blade(s)11 rotation.
In some embodiments, the impeller may first be pulled distally into a proximal retraction zone or retraction cone of the impeller housing H, with the modified assembly then pushed or retracted distally into the lumen of the delivery sheath where the impeller housing H and impeller blade(s)11 retract to the collapsed configuration.
In other embodiments, reversing rotation of theimpeller8 may serve to move the extended/expanded blade(s)11 to a collapsed position or, in some embodiments unlocking the locked extended blade(s)11 so that retraction of the expanded blade(s)11 into the delivery sheath will enable completion of the collapsing of the blade(s)11.
In some cases, the blade(s)11 may be biased to collapse and athreshold impeller8 rotational speed is required to generate centrifugal force sufficient to overcome the biased collapsing of the blade(s)11 to reach the expanded working configuration. The slowing of the rotational speed of theimpeller8 below the expansion/collapse threshold will thus allow the blade(s)11 to collapse against the impeller hub.
Moreover, the combination of a biased collapsing force on the blade(s)11 with the variable rotational speed of theimpeller8 may be used to modify the pitch of the blades (11) along theimpeller11, e.g., the angle of the blade(s)11 in relation to the impeller hub, during operation. A minimum threshold expansion rotational speed may be required to begin to extend the blade(s)11 while a higher rotational speed may be required to fully extend the blade(s)11. Any rotational speed between the minimum threshold expansion rotational speed and the fully extended rotational speed may therefore be employed to generate a blade pitch relative to the impeller hub of effectively infinite possible magnitudes and that may allow the operator to use the resulting variable blade pitch and rotational speed combinations to more effectively achieve the targeted blood flow rate and/or pressures.
FIGS.7-9 below provide additional disclosure ofimpeller8 embodiments comprising expandable blade(s)11 that may be expanded out of, or collapsed at least partially into, the impeller hub by the mechanisms discussed above. The impeller housing H is not shown inFIGS.7-9, but these embodiments will function according to the preceding disclosure including but not limited to the impeller housing H.
In all cases described herein, the rotational speed of theimpeller8, when above the minimum threshold expansion rotational speed, is proportional to the degree of expansion achieved by the blade(s)11 up to the rotational speed where expansion is complete and total where the blade(s)11 may “lock” into expanded position or may freely move in/out of the impeller hub according to rotational speed as discussed herein. Thus, the expansion degree may be modified by adjusting rotational speed of theimpeller8, when the rotational speed is between the minimum threshold expansion rotational speed and the total expanded rotational speed.
Further, as discussed herein, the expansion and contraction of the impeller housing H may be done with, or without, the blade(s)11 expansion and retraction. If done without the blade(s)11 retraction and expansion embodiment, then the impeller housing H in its collapsed configuration will be limited to the radially measured diameter of the blade(s)11. If done with the retraction and expansion blade(s)11 embodiments, then it is possible that the collapsible diameter is limited by the radial diameter of the impeller hub.
The description of the invention and is as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of this invention. Variations and modifications of the embodiments disclosed herein are possible and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.

Claims (28)

The invention claimed is:
1. A blood pump system comprising:
a motor to be located outside of a patient's body;
a flexible elongated drive shaft in operative rotational engagement with the motor; and
an impeller assembly comprising an impeller housing, an impeller within the impeller housing, the impeller in operational rotational engagement with the flexible elongated drive shaft and comprising an impeller hub having an outer surface and at least one helical blade in operative engagement with the impeller hub,
wherein the at least one helical blade comprises a first side and a second side opposing the first side, wherein the first side of the at least one helical blade is configured to retract against the outer surface of the impeller hub to achieve a retracted position, and wherein the first side of the at least one helical blade is configured to expand away from the outer surface of the impeller hub to achieve any one of a plurality of expanded positions,
such that the at least one helical blade is configured to expand away from the impeller hub and the retracted position to achieve any expanded position in the plurality of expanded positions at least partially as a result of centrifugal forces generated during rotation of the impeller.
2. The blood pump assembly ofclaim 1, wherein the expanded position is a result of the rotational speed of the impeller exceeding a threshold rotational speed.
3. The blood pump assembly ofclaim 1, wherein the expanded position achieved within the plurality of expanded positions of the at least one helical blade is dependent upon the rotational speed of the impeller and the related generated centrifugal forces.
4. The blood pump assembly ofclaim 1, wherein the at least one helical blade is biased to retract.
5. The blood pump assembly ofclaim 1, further comprising the impeller housing adapted to collapse and expand.
6. The blood pump assembly ofclaim 5, wherein the impeller housing comprises a stent frame.
7. The blood pump assembly ofclaim 5, wherein the impeller housing is biased to expand.
8. The blood pump assembly ofclaim 5, wherein the impeller housing expands as a result of outwardly radially directed fluid forces generated during rotation of the impeller.
9. The blood pump assembly ofclaim 1, further comprising the impeller housing configured to collapse and expand.
10. The blood pump assembly ofclaim 9, wherein the impeller housing comprises a stent frame.
11. The blood pump assembly ofclaim 9, wherein the impeller housing is biased to expand.
12. The blood pump housing ofclaim 9, wherein the impeller housing expands as a result of outwardly radially directed fluid forces generated during rotation of the impeller.
13. A blood pump system comprising:
an external motor to be located outside of a patient's body;
a flexible elongated drive shaft in operative rotational engagement with the external motor;
an impeller assembly comprising:
an impeller housing; and
an impeller in operational rotational engagement with the flexible elongated drive shaft and operatively disposed within the housing, and at least one helical blade, the at least one helical blade comprising a first side and a second side opposing the first side and operatively attached to the impeller at an impeller hub, the impeller hub comprising an outer surface,
wherein the impeller housing and the at least one helical blade are each configured to move between a collapsed or retracted position against the outer surface of the impeller hub, wherein the first side of the at least one helical blade is configured to collapse against the outer surface of the impeller hub in the collapsed position and at least one expanded position in a plurality of expanded positions, wherein the first side of the at least one helical blade is configured to expand away from the outer surface of the impeller hub,
wherein the at least one helical blade is biased to collapse into the collapsed or retracted position against the impeller hub, and
wherein the expansion of the at least one helical blade away from the retracted position to any expanded position in the plurality of expanded positions is achieved at least partially by rotating the impeller with the operatively connected motor at a rotational speed sufficient to generate centrifugal force with a magnitude that will cause the at least one helical blade to expand from the retracted position.
14. The blood pump assembly ofclaim 13, wherein the expansion of the impeller housing from the retracted position is achieved by generating outwardly directed fluid forces during rotation of the impeller and at least one helical blade.
15. The blood pump assembly ofclaim 13, wherein the impeller housing is biased to expand.
16. The blood pump assembly ofclaim 13, wherein the impeller housing comprises a stent-like frame.
17. The blood pump assembly ofclaim 13, wherein an initial and at least partial collapsing of the expanded at least one helical blade is achieved by reversing the rotation of the impeller.
18. The blood pump assembly ofclaim 13, wherein the at least one helical blade in an expanded position is at least partially collapsed by slowing the impeller rotational speed below a threshold rotational speed.
19. The blood pump assembly ofclaim 18, wherein the at least one helical blade comprises a pitch angle relative to the impeller hub when in the expanded position and a different pitch angle when in an at least partially collapsed position.
20. The blood pump assembly ofclaim 19, wherein the pitch angle of the at least one helical blade is variably dependent on the rotational speed.
21. The blood pump assembly ofclaim 20, wherein the blood flow rate and/or pressure resulting from rotation of the impeller is configured to be varied and optimized based on the pitch angle of the at least one helical blade that is variably dependent on the rotational speed.
22. A blood pump system comprising:
an external motor to be located outside of a patient's body;
a flexible elongated drive shaft in operative rotational engagement with the external motor;
an impeller assembly comprising:
an impeller housing and an impeller in operational rotational engagement with the flexible elongated drive shaft and operatively disposed within the housing, and at least one helical blade comprising a first side and a second side opposing the first side and operatively attached to the impeller at an impeller hub, the impeller hub comprising an outer surface,
wherein the impeller housing and the at least one helical blade are each configured to move between a collapsed or retracted position against the impeller hub, wherein the first side of the at least one helical blade collapses against the outer surface of the impeller hub, and at least one expanded position in a plurality of expanded positions, wherein the first side of the at least one helical blade expands away from the outer surface of the impeller hub,
wherein the at least one helical blade is not biased to expand away from the retracted position against the outer surface of the impeller hub into any expanded position in the plurality of expanded positions and
wherein the expansion of the at least one helical blade away from the outer surface of the impeller hub and retracted position to the expanded configuration is achieved only at least partially by rotating the impeller with an operatively connected motor at a rotational speed sufficient to generate centrifugal force with a magnitude that will cause the at least one helical blade to expand from the retracted position, and
wherein the expansion of the impeller housing from the retracted position against the impeller hub is achieved by generating outwardly directed fluid forces during rotation of the impeller and at least one helical blade.
23. The blood pump assembly ofclaim 22, wherein the impeller housing is biased to expand.
24. The blood pump assembly ofclaim 22, wherein an initial and at least partial collapsing of the expanded at least one helical blade is achieved by reversing the rotation of the impeller.
25. The blood pump assembly ofclaim 22, wherein the at least one helical blade in an expanded position is at least partially collapsed by slowing the impeller rotational speed below a threshold rotational speed.
26. The blood pump assembly ofclaim 25, wherein the at least one helical blade comprises a pitch angle relative to the impeller hub when in the expanded position and a different pitch angle when in an at least partially collapsed position.
27. The blood pump assembly ofclaim 26, wherein the pitch angle of the at least one helical blade is variably dependent on the rotational speed.
28. The blood pump assembly ofclaim 27, wherein the blood flow rate and/or pressure resulting from rotation of the impeller is configured to be varied and optimized based on the pitch angle of the at least one helical blade that is variably dependent on the rotational speed.
US18/073,1532018-07-302022-12-01Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housingActiveUS12171993B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US18/073,153US12171993B2 (en)2018-07-302022-12-01Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US201862711740P2018-07-302018-07-30
US16/524,554US11541224B2 (en)2018-07-302019-07-29Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
US18/073,153US12171993B2 (en)2018-07-302022-12-01Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US16/524,554ContinuationUS11541224B2 (en)2018-07-302019-07-29Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Publications (2)

Publication NumberPublication Date
US20230091425A1 US20230091425A1 (en)2023-03-23
US12171993B2true US12171993B2 (en)2024-12-24

Family

ID=69179469

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US16/524,554Active2040-04-18US11541224B2 (en)2018-07-302019-07-29Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
US18/073,153ActiveUS12171993B2 (en)2018-07-302022-12-01Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US16/524,554Active2040-04-18US11541224B2 (en)2018-07-302019-07-29Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Country Status (5)

CountryLink
US (2)US11541224B2 (en)
EP (1)EP3829673A4 (en)
JP (1)JP2021532864A (en)
CN (1)CN112399867A (en)
WO (1)WO2020028312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12383727B2 (en)2018-05-302025-08-12Kardion GmbhMotor housing module for a heart support system, and heart support system and method for mounting a heart support system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12029647B2 (en)2017-03-072024-07-094C Medical Technologies, Inc.Systems, methods and devices for prosthetic heart valve with single valve leaflet
DE102018201030B4 (en)2018-01-242025-10-16Kardion Gmbh Magnetic dome element with magnetic bearing function
DE102018207611A1 (en)2018-05-162019-11-21Kardion Gmbh Rotor bearing system
DE102018207575A1 (en)2018-05-162019-11-21Kardion Gmbh Magnetic face turning coupling for the transmission of torques
DE102018208538A1 (en)2018-05-302019-12-05Kardion Gmbh Intravascular blood pump and process for the production of electrical conductors
DE102018208550A1 (en)2018-05-302019-12-05Kardion Gmbh A lead device for directing blood flow to a cardiac assist system, cardiac assist system, and method of making a lead device
DE102018208541A1 (en)2018-05-302019-12-05Kardion Gmbh Axial pump for a cardiac assist system and method of making an axial pump for a cardiac assist system
US20190365538A1 (en)*2018-06-042019-12-054C Medical Technologies, Inc.Devices, systems and methods for preventing prolapse of native cardiac valve leaflets
DE102018210076A1 (en)2018-06-212019-12-24Kardion Gmbh Method and device for detecting a state of wear of a cardiac support system, method and device for operating a cardiac support system and cardiac support system
DE102018210058A1 (en)2018-06-212019-12-24Kardion Gmbh Stator blade device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system, heart support system with stator blade device, method for operating a stator blade device and manufacturing method
DE102018211327A1 (en)2018-07-102020-01-16Kardion Gmbh Impeller for an implantable vascular support system
DE102018212153A1 (en)2018-07-202020-01-23Kardion Gmbh Inlet line for a pump unit of a cardiac support system, cardiac support system and method for producing an inlet line for a pump unit of a cardiac support system
US11541224B2 (en)*2018-07-302023-01-03Cardiovascular Systems, Inc.Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
CN112654389A (en)2018-08-072021-04-13开迪恩有限公司Bearing device for a cardiac support system and method for flushing an intermediate space in a bearing device for a cardiac support system
US11857441B2 (en)2018-09-042024-01-024C Medical Technologies, Inc.Stent loading device
US11452628B2 (en)2019-04-152022-09-274C Medical Technologies, Inc.Loading systems for collapsible prosthetic heart valve devices and methods thereof
US11931253B2 (en)2020-01-312024-03-194C Medical Technologies, Inc.Prosthetic heart valve delivery system: ball-slide attachment
US12133797B2 (en)2020-01-312024-11-054C Medical Technologies, Inc.Prosthetic heart valve delivery system: paddle attachment feature
DE102020102474A1 (en)2020-01-312021-08-05Kardion Gmbh Pump for conveying a fluid and method for manufacturing a pump
US12053375B2 (en)2020-03-052024-08-064C Medical Technologies, Inc.Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation
US11992403B2 (en)2020-03-062024-05-284C Medical Technologies, Inc.Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells
EP3884969A1 (en)*2020-03-272021-09-29Abiomed Europe GmbHBlood pump
EP4210809A1 (en)*2020-09-142023-07-19Kardion GmbHCardiovascular support pump having an impeller with a variable flow area
US20230405298A1 (en)*2020-10-082023-12-21Shifamed Holdings, LlcIntravascular blood pumps and methods of use
CN115474950A (en)*2021-06-152022-12-16浙江迪远医疗器械有限公司Blood pump capable of preventing blood coagulation
WO2023283751A1 (en)*2021-07-122023-01-19苏州心擎医疗技术有限公司Device for assisting heart in event of heart failure
FR3130624B1 (en)*2021-12-212024-01-12Fineheart Constricted head intraventricular heart pump.
CN114949584A (en)*2022-02-252022-08-30浙江迪远医疗器械有限公司Blood pump
CN116870356A (en)*2023-06-282023-10-13安徽通灵仿生科技有限公司Catheter pump assembly and control system thereof
CN116999688B (en)*2023-08-072024-05-14安徽通灵仿生科技有限公司Impeller and right ventricle auxiliary device thereof
CN119327031B (en)*2024-10-282025-10-03同济大学 Left ventricular assist device

Citations (42)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5985234U (en)1982-11-271984-06-08株式会社メテク Drainage tube fixture
US4919647A (en)1988-10-131990-04-24Kensey Nash CorporationAortically located blood pumping catheter and method of use
WO1994005347A1 (en)1992-09-021994-03-17Reitan OeyvindCatheter pump
JPH0644738U (en)1992-11-241994-06-14稔 北川 Hose sandwiched water container
US5692882A (en)1993-11-101997-12-02The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationAxial pump
JP3063140U (en)1999-04-161999-10-19伯亮 楊 Cooling fan blades
US6003819A (en)1997-12-301999-12-21Hall; Carl L.Pivoting and telecoping hose support
US6245007B1 (en)1999-01-282001-06-12Terumo Cardiovascular Systems CorporationBlood pump
US6533716B1 (en)1998-03-072003-03-18Thomas Schmitz-RodeSelf-deploying axial-flow pump introduced intravascularly for temporary cardiac support
WO2003103745A2 (en)2002-06-112003-12-18Walid Aboul-HosnExpandable blood pump and related methods
US20080103591A1 (en)2004-11-122008-05-01Thorsten SiessFoldable Intravascularly Inserted Blood Pump
US20080114339A1 (en)2006-03-232008-05-15The Penn State Research FoundationHeart assist device with expandable impeller pump
US20080132747A1 (en)2006-12-012008-06-05Medical Value Partners, LlcMedical Device
US20090062597A1 (en)2007-08-292009-03-05Medical Value Partners, LlcArticle Comprising an Impeller
US20090093764A1 (en)2007-10-082009-04-09Ais Gmbh Aachen Innovative SolutionsCatheter device
US20090093796A1 (en)2007-10-082009-04-09Ais Gmbh Aachen Innovative SolutionsCatheter device
KR100976496B1 (en)2007-03-202010-08-18엘지전자 주식회사Fan
WO2011035927A1 (en)2009-09-222011-03-31Ecp Entwicklungsgesellschaft MbhFluid pump having at least one impeller blade and a support device
JP2011120713A (en)2009-12-102011-06-23Jms Co LtdConnection structure
WO2011076349A2 (en)2009-12-232011-06-30Vallourec Mannesmann Oil & Gas FranceSet for obtaining a threaded connection, method for making up and breaking out said connection, and use of said connection in a riser
WO2012007141A1 (en)2010-07-152012-01-19Ecp Entwicklungsgesellschaft MbhRotor for a pump, produced with a first elastic material
US20120209375A1 (en)2011-02-112012-08-16Gilbert MadridStability device for use with percutaneous delivery systems
US20130085318A1 (en)2010-06-252013-04-04Ecp Entwicklungsgesellschaft MbhSystem for introducing a pump
US20130303969A1 (en)2012-05-142013-11-14Thoratec CorporationSheath system for catheter pump
EP2692369A1 (en)2012-07-312014-02-05Rheinisch-Westfälische Technische Hochschule AachenAxial flow bood pump device
JP2014050509A (en)2012-09-062014-03-20Clean Chemical KkPriming drainage treatment tablet for artificial dialysis apparatus and priming method using the same
US20160263298A1 (en)2009-12-232016-09-15Ecp Entwicklungsgesellschaft MbhConveying blades for a compressible rotor
US20160271309A1 (en)2015-03-202016-09-22Drexel UniversityImpellers, blood pumps, and methods of treating a subject
US20160279310A1 (en)2013-11-012016-09-29Ecp Entwicklungsgesellschaft MbhPump, in particular a blood pump
JP2017048881A (en)2015-09-032017-03-09アズビル株式会社Wiring holding structure
US20180169313A1 (en)2015-05-182018-06-21Magenta Medical Ltd.Blood pump
JP2019013371A (en)2017-07-052019-01-31東レ・メディカル株式会社Drainage funnel
US20210038783A1 (en)2018-04-242021-02-11Tc1 LlcPercutaneous heart pump transitionable between separated and operational configurations
US20210046229A1 (en)2012-07-032021-02-18Tc1 LlcCatheter pump
US20210046232A1 (en)2018-03-262021-02-18Tc1 LlcCollapsible and self-expanding cannula for a percutaneous heart pump and method of manufacturing
EP3792500A1 (en)2004-09-172021-03-17The Penn State Research FoundationExpandable impeller pump
US20210077684A1 (en)2012-07-032021-03-18Tc1 LlcMotor assembly for catheter pump
US20210077693A1 (en)2015-01-222021-03-18Tc1 LlcReduced rotational mass motor assembly for catheter pump
EP3799915A1 (en)2012-05-142021-04-07Tc1 LlcImpeller for a catheter pump
US20210170162A1 (en)2011-01-062021-06-10Tc1 LlcPercutaneous heart pump
US20210187272A1 (en)2013-03-132021-06-24Tc1 LlcSheath assembly for catheter pump
US11541224B2 (en)*2018-07-302023-01-03Cardiovascular Systems, Inc.Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE10059714C1 (en)2000-12-012002-05-08Impella Cardiotech AgIntravasal pump has pump stage fitted with flexible expandible sleeve contricted during insertion through blood vessel
EP2194278A1 (en)*2008-12-052010-06-09ECP Entwicklungsgesellschaft mbHFluid pump with a rotor
CN102481398A (en)*2009-07-012012-05-30宾夕法尼亚州研究基金会Blood pump with expandable cannula
EP2338541A1 (en)2009-12-232011-06-29ECP Entwicklungsgesellschaft mbHRadial compressible and expandable rotor for a fluid pump
US9327067B2 (en)*2012-05-142016-05-03Thoratec CorporationImpeller for catheter pump

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5985234U (en)1982-11-271984-06-08株式会社メテク Drainage tube fixture
US4919647A (en)1988-10-131990-04-24Kensey Nash CorporationAortically located blood pumping catheter and method of use
US5749855A (en)1992-09-021998-05-12Reitan; OyvindCatheter pump
WO1994005347A1 (en)1992-09-021994-03-17Reitan OeyvindCatheter pump
JPH0644738U (en)1992-11-241994-06-14稔 北川 Hose sandwiched water container
US5692882A (en)1993-11-101997-12-02The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationAxial pump
US6003819A (en)1997-12-301999-12-21Hall; Carl L.Pivoting and telecoping hose support
US6533716B1 (en)1998-03-072003-03-18Thomas Schmitz-RodeSelf-deploying axial-flow pump introduced intravascularly for temporary cardiac support
US6245007B1 (en)1999-01-282001-06-12Terumo Cardiovascular Systems CorporationBlood pump
JP3063140U (en)1999-04-161999-10-19伯亮 楊 Cooling fan blades
WO2003103745A2 (en)2002-06-112003-12-18Walid Aboul-HosnExpandable blood pump and related methods
EP3792500A1 (en)2004-09-172021-03-17The Penn State Research FoundationExpandable impeller pump
US20220372989A1 (en)2004-09-172022-11-24Tc1 LlcExpandable impeller pump
US20210172450A1 (en)2004-09-172021-06-10Tc1 LlcExpandable impeller pump
US20080103591A1 (en)2004-11-122008-05-01Thorsten SiessFoldable Intravascularly Inserted Blood Pump
US20080114339A1 (en)2006-03-232008-05-15The Penn State Research FoundationHeart assist device with expandable impeller pump
US20210113827A1 (en)2006-03-232021-04-22The Penn State Research FoundationHeart assist device with expandable impeller pump
US20080132747A1 (en)2006-12-012008-06-05Medical Value Partners, LlcMedical Device
KR100976496B1 (en)2007-03-202010-08-18엘지전자 주식회사Fan
US20090062597A1 (en)2007-08-292009-03-05Medical Value Partners, LlcArticle Comprising an Impeller
US20090093796A1 (en)2007-10-082009-04-09Ais Gmbh Aachen Innovative SolutionsCatheter device
US20090093764A1 (en)2007-10-082009-04-09Ais Gmbh Aachen Innovative SolutionsCatheter device
WO2011035927A1 (en)2009-09-222011-03-31Ecp Entwicklungsgesellschaft MbhFluid pump having at least one impeller blade and a support device
JP2011120713A (en)2009-12-102011-06-23Jms Co LtdConnection structure
US20160263298A1 (en)2009-12-232016-09-15Ecp Entwicklungsgesellschaft MbhConveying blades for a compressible rotor
WO2011076349A2 (en)2009-12-232011-06-30Vallourec Mannesmann Oil & Gas FranceSet for obtaining a threaded connection, method for making up and breaking out said connection, and use of said connection in a riser
US20130085318A1 (en)2010-06-252013-04-04Ecp Entwicklungsgesellschaft MbhSystem for introducing a pump
WO2012007141A1 (en)2010-07-152012-01-19Ecp Entwicklungsgesellschaft MbhRotor for a pump, produced with a first elastic material
US20210170162A1 (en)2011-01-062021-06-10Tc1 LlcPercutaneous heart pump
US20120209375A1 (en)2011-02-112012-08-16Gilbert MadridStability device for use with percutaneous delivery systems
US20130303969A1 (en)2012-05-142013-11-14Thoratec CorporationSheath system for catheter pump
US20210162195A1 (en)2012-05-142021-06-03Tc1 LlcSheath system for catheter pump
EP3799916A2 (en)2012-05-142021-04-07Tc1 LlcImpeller for a catheter pump
EP3799915A1 (en)2012-05-142021-04-07Tc1 LlcImpeller for a catheter pump
US20210077680A1 (en)2012-07-032021-03-18Tc1 LlcMotor assembly for catheter pump
US20210046229A1 (en)2012-07-032021-02-18Tc1 LlcCatheter pump
US20210077684A1 (en)2012-07-032021-03-18Tc1 LlcMotor assembly for catheter pump
US20210077681A1 (en)2012-07-032021-03-18Tc1 LlcMotor assembly for catheter pump
US20210077683A1 (en)2012-07-032021-03-18Tc1 LlcMotor assembly for catheter pump
EP2692369A1 (en)2012-07-312014-02-05Rheinisch-Westfälische Technische Hochschule AachenAxial flow bood pump device
JP2014050509A (en)2012-09-062014-03-20Clean Chemical KkPriming drainage treatment tablet for artificial dialysis apparatus and priming method using the same
US20210187272A1 (en)2013-03-132021-06-24Tc1 LlcSheath assembly for catheter pump
US20160279310A1 (en)2013-11-012016-09-29Ecp Entwicklungsgesellschaft MbhPump, in particular a blood pump
US20210077693A1 (en)2015-01-222021-03-18Tc1 LlcReduced rotational mass motor assembly for catheter pump
US20160271309A1 (en)2015-03-202016-09-22Drexel UniversityImpellers, blood pumps, and methods of treating a subject
US20180169313A1 (en)2015-05-182018-06-21Magenta Medical Ltd.Blood pump
JP2017048881A (en)2015-09-032017-03-09アズビル株式会社Wiring holding structure
JP2019013371A (en)2017-07-052019-01-31東レ・メディカル株式会社Drainage funnel
US20210046232A1 (en)2018-03-262021-02-18Tc1 LlcCollapsible and self-expanding cannula for a percutaneous heart pump and method of manufacturing
US20210046233A1 (en)2018-03-262021-02-18Tc1 LlcCollapsible and self-expanding cannula for a percutaneous heart pump and method of manufacturing
US20210038783A1 (en)2018-04-242021-02-11Tc1 LlcPercutaneous heart pump transitionable between separated and operational configurations
US11679234B2 (en)2018-04-242023-06-20Tc1 LlcPercutaneous heart pump transitionable between separated and operational configurations
US11541224B2 (en)*2018-07-302023-01-03Cardiovascular Systems, Inc.Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report dated Mar. 21, 2022, issued in EP Application No. 19845091.8.
International Search Report and Written Opinion, mailed Nov. 15, 2019, PCT Application No. PCT/US19/44053, filed Jul. 30, 2019.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12383727B2 (en)2018-05-302025-08-12Kardion GmbhMotor housing module for a heart support system, and heart support system and method for mounting a heart support system

Also Published As

Publication numberPublication date
EP3829673A1 (en)2021-06-09
CN112399867A (en)2021-02-23
US11541224B2 (en)2023-01-03
JP2021532864A (en)2021-12-02
EP3829673A4 (en)2022-04-20
WO2020028312A1 (en)2020-02-06
US20200030507A1 (en)2020-01-30
US20230091425A1 (en)2023-03-23

Similar Documents

PublicationPublication DateTitle
US12171993B2 (en)Intravascular blood pump with external motor and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
US11020582B2 (en)Intravascular pump with expandable region
US11219753B2 (en)Intravascular pump with expandable and collapsible inlet region and methods thereof
US10729833B2 (en)Intravascular pump with expandable region at least partially collapsible into recesses defined between impeller blades
US11141580B2 (en)Intravascular blood pump system with integrated conductor(s) in housing and methods thereof
US11202900B2 (en)Intravascular pump with controls and display screen on handle
US11013904B2 (en)Intravascular pump with proximal and distal pressure or flow sensors and distal sensor tracking
US11110264B2 (en)Intravascular pump with expandable distal region
EP3793674B1 (en)Intravascular pump with integrated isolated conductor(s) and methods thereof

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

ASAssignment

Owner name:CARDIOVASULAR SYSTEMS, INC., MINNESOTA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIGGINS, JOSEPH P.;STONE, JEFFREY R.;SIGNING DATES FROM 20190805 TO 20190910;REEL/FRAME:064939/0057

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:FINAL REJECTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPPInformation on status: patent application and granting procedure in general

Free format text:PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCFInformation on status: patent grant

Free format text:PATENTED CASE


[8]ページ先頭

©2009-2025 Movatter.jp