Movatterモバイル変換


[0]ホーム

URL:


US12059124B2 - Surgical hub spatial awareness to determine devices in operating theater - Google Patents

Surgical hub spatial awareness to determine devices in operating theater
Download PDF

Info

Publication number
US12059124B2
US12059124B2US17/218,885US202117218885AUS12059124B2US 12059124 B2US12059124 B2US 12059124B2US 202117218885 AUS202117218885 AUS 202117218885AUS 12059124 B2US12059124 B2US 12059124B2
Authority
US
United States
Prior art keywords
surgical
hub
display
data
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/218,885
Other versions
US20210212771A1 (en
Inventor
Frederick E. Shelton, IV
David C. Yates
Jason L. Harris
Daniel E. Alesi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Cilag GmbH International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cilag GmbH InternationalfiledCriticalCilag GmbH International
Priority to US17/218,885priorityCriticalpatent/US12059124B2/en
Assigned to ETHICON LLCreassignmentETHICON LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ALESI, DANIEL E., HARRIS, JASON L., SHELTON, FREDERICK E., IV, YATES, DAVID C.
Assigned to CILAG GMBH INTERNATIONALreassignmentCILAG GMBH INTERNATIONALASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ETHICON LLC
Publication of US20210212771A1publicationCriticalpatent/US20210212771A1/en
Priority to US18/794,170prioritypatent/US20250072715A1/en
Application grantedgrantedCritical
Publication of US12059124B2publicationCriticalpatent/US12059124B2/en
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A surgical hub is disclosed. The surgical hub includes a processor and a memory coupled to the processor. The memory stores instructions executable by the processor to receive first image data from a first image sensor, the first image data represents a first field of view, receive second image data from a second image sensor, wherein the second image data represents a second field of view, and display, on a display coupled to the processor, a first image rendered from the first image data corresponding to the first field of view and a second image rendered from the second image data corresponding to the second field of view.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation patent application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/940,671, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER, filed Mar. 29, 2018, now U.S. Patent Application Publication No. 2019/0201104, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/649,309, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER, filed Mar. 28, 2018, the disclosure of each of which is herein incorporated by reference in its entirety.
This application is a continuation patent application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/940,671, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER, filed Mar. 29, 2018, now U.S. Patent Application Publication No. 2019/0201104, which also claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, of U.S. Provisional Patent Application Ser. No. 62/611,340, titled CLOUD-BASED MEDICAL ANALYTICS, filed Dec. 28, 2017, of U.S. Provisional Patent Application Ser. No. 62/611,339, titled ROBOT ASSISTED SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of each of which is herein incorporated by reference in its entirety.
BACKGROUND
The present disclosure relates to various surgical systems. Surgical procedures are typically performed in surgical operating theaters or rooms in a healthcare facility such as, for example, a hospital. A sterile field is typically created around the patient. The sterile field may include the scrubbed team members, who are properly attired, and all furniture and fixtures in the area. Various surgical devices and systems are utilized in performance of a surgical procedure.
SUMMARY
In one general aspect, a surgical hub is provided. The general hub comprises a processor; and a memory coupled to the processor, the memory storing instructions executable by the processor to: receive first image data from a first image sensor, wherein the first image data represents a first field of view; receive second image data from a second image sensor, wherein the second image data represents a second field of view; and display, on a display coupled to the processor, a first image rendered from the first image data corresponding to the first field of view and a second image rendered from the second image data corresponding to the second field of view.
In another general aspect, a surgical hub is provided. The surgical hub comprises a processor; and a memory coupled to the processor, the memory storing instructions executable by the processor to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image rendered based on the image data received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
In another general aspect, a surgical hub is provided. The surgical hub comprises a control circuit configured to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
In another general aspect, a non-transitory computer readable medium is provided. The non-transitory computer readable medium stores computer readable instructions which, when executed, causes a machine to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
In another general aspect, a non-transitory computer readable medium is provided. The non-transitory computer readable medium stores computer readable instructions which, when executed, causes a machine to: receive first image data from a first image sensor, wherein the first image data represents a first field of view; receive second image data from a second image sensor, wherein the second image data represents a second field of view; and display, on a display coupled to the surgical hub, a first image corresponding to the first field of view and a second image corresponding to the second field of view.
FIGURES
The features of various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
FIG.1 is a block diagram of a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.
FIG.2 is a surgical system being used to perform a surgical procedure in an operating room, in accordance with at least one aspect of the present disclosure.
FIG.3 is a surgical hub paired with a visualization system, a robotic system, and an intelligent instrument, in accordance with at least one aspect of the present disclosure.
FIG.4 is a partial perspective view of a surgical hub enclosure, and of a combo generator module slidably receivable in a drawer of the surgical hub enclosure, in accordance with at least one aspect of the present disclosure.
FIG.5 is a perspective view of a combo generator module with bipolar, ultrasonic, and monopolar contacts and a smoke evacuation component, in accordance with at least one aspect of the present disclosure.
FIG.6 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateral modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.
FIG.7 illustrates a vertical modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.
FIG.8 illustrates a surgical data network comprising a modular communication hub configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to the cloud, in accordance with at least one aspect of the present disclosure.
FIG.9 illustrates a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.
FIG.10 illustrates a surgical hub comprising a plurality of modules coupled to the modular control tower, in accordance with at least one aspect of the present disclosure.
FIG.11 illustrates one aspect of a Universal Serial Bus (USB) network hub device, in accordance with at least one aspect of the present disclosure.
FIG.12 illustrates a logic diagram of a control system of a surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG.13 illustrates a control circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG.14 illustrates a combinational logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG.15 illustrates a sequential logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG.16 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions, in accordance with at least one aspect of the present disclosure.
FIG.17 is a schematic diagram of a robotic surgical instrument configured to operate a surgical tool described herein, in accordance with at least one aspect of the present disclosure.
FIG.18 illustrates a block diagram of a surgical instrument programmed to control the distal translation of a displacement member, in accordance with at least one aspect of the present disclosure.
FIG.19 is a schematic diagram of a surgical instrument configured to control various functions, in accordance with at least one aspect of the present disclosure.
FIG.20 is a simplified block diagram of a generator configured to provide inductorless tuning, among other benefits, in accordance with at least one aspect of the present disclosure.
FIG.21 illustrates an example of a generator, which is one form of the generator ofFIG.20, in accordance with at least one aspect of the present disclosure.
FIG.22 illustrates a diagram of a surgical instrument centered on a linear staple transection line using the benefit of centering tools and techniques described in connection withFIGS.23-35, in accordance with at least one aspect of the present disclosure.
FIGS.23-25 illustrate a process of aligning an anvil trocar of a circular stapler to a staple overlap portion of a linear staple line created by a double-stapling technique, in accordance with at least one aspect of the present disclosure, where:
FIG.23 illustrates an anvil trocar of a circular stapler that is not aligned with a staple overlap portion of a linear staple line created by a double-stapling technique;
FIG.24 illustrates an anvil trocar of a circular stapler that is aligned with the center of the staple overlap portion of the linear staple line created by a double-stapling technique; and
FIG.25 illustrates a centering tool displayed on a surgical hub display showing a staple overlap portion of a linear staple line created by a double-stapling technique to be cut out by a circular stapler, where the anvil trocar is not aligned with the staple overlap portion of the double staple line as shown inFIG.23.
FIGS.26 and27 illustrate a before image and an after image of a centering tool, in accordance with at least one aspect of the present disclosure, where:
FIG.26 illustrates an image of a projected cut path of an anvil trocar and circular knife before alignment with the target alignment ring circumscribing the image of the linear staple line over the image of the staple overlap portion presented on a surgical hub display; and
FIG.27 illustrates an image of a projected cut path of an anvil trocar and circular knife after alignment with the target alignment ring circumscribing the image of the linear staple line over the image of the staple overlap portion presented on a surgical hub display.
FIGS.28-30 illustrate a process of aligning an anvil trocar of a circular stapler to a center of a linear staple line, in accordance with at least one aspect of the present disclosure, where:
FIG.28 illustrates the anvil trocar out of alignment with the center of the linear staple line;
FIG.29 illustrates the anvil trocar in alignment with the center of the linear staple line; and
FIG.30 illustrates a centering tool displayed on a surgical hub display of a linear staple line, where the anvil trocar is not aligned with the staple overlap portion of the double staple line as shown inFIG.28.
FIG.31 is an image of a standard reticle field view of a linear staple line transection of a surgical as viewed through a laparoscope displayed on the surgical hub display, in accordance with at least one aspect of the present disclosure.
FIG.32 is an image of a laser-assisted reticle field of view of the surgical site shown inFIG.31 before the anvil trocar and circular knife of the circular stapler are aligned to the center of the linear staple line, in accordance with at least one aspect of the present disclosure.
FIG.33 is an image of a laser-assisted reticle field of view of the surgical site shown inFIG.32 after the anvil trocar and circular knife of the circular stapler are aligned to the center of the linear staple line, in accordance with at least one aspect of the present disclosure.
FIG.34 illustrates a non-contact inductive sensor implementation of a non-contact sensor to determine an anvil trocar location relative to the center of a staple line transection, in accordance with at least one aspect of the present disclosure.
FIGS.35A and35B illustrate one aspect of a non-contact capacitive sensor implementation of the non-contact sensor to determine an anvil trocar location relative to the center of a staple line transection, in accordance with at least one aspect of the present disclosure, where:
FIG.35A shows the non-contact capacitive sensor without a nearby metal target; and
FIG.35B shows the non-contact capacitive sensor near a metal target.
FIG.36 is a logic flow diagram of a process depicting a control program or a logic configuration for aligning a surgical instrument, in accordance with at least one aspect of the present disclosure.
FIG.37 illustrates a primary display of the surgical hub comprising a global and local display, in accordance with at least one aspect of the present disclosure.
FIG.38 illustrates a primary display of the surgical hub, in accordance with at least one aspect of the present disclosure.
FIG.39 illustrates a clamp stabilization sequence over a five second period, in accordance with at least one aspect of the present disclosure.
FIG.40 illustrates a diagram of four separate wide angle view images of a surgical site at four separate times during the procedure, in accordance with at least one aspect of the present disclosure.
FIG.41 is a graph of tissue creep clamp stabilization curves for two tissue types, in accordance with at least one aspect of the present disclosure.
FIG.42 is a graph of time dependent proportionate fill of a clamp force stabilization curve, in accordance with at least one aspect of the present disclosure.
FIG.43 is a graph of the role of tissue creep in the clamp force stabilization curve, in accordance with at least one aspect of the present disclosure.
FIGS.44A and44B illustrate two graphs for determining when the clamped tissue has reached creep stability, in accordance with at least one aspect of the present disclosure, where:
FIG.44A illustrates a curve that represents a vector tangent angle dθ as a function of time; and
FIG.44B illustrates a curve that represents change in force-to-close (ΔFTC) as a function of time.
FIG.45 illustrates an example of an augmented video image of a pre-operative video image augmented with data identifying displayed elements, in accordance with at least one aspect of the present disclosure.
FIG.46 is a logic flow diagram of a process depicting a control program or a logic configuration to display images, in accordance with at least one aspect of the present disclosure.
FIG.47 illustrates a communication system comprising an intermediate signal combiner positioned in the communication path between an imaging module and a surgical hub display, in accordance with at least one aspect of the present disclosure.
FIG.48 illustrates an independent interactive headset worn by a surgeon to communicate data to the surgical hub, according to one aspect of the present disclosure.
FIG.49 illustrates a method for controlling the usage of a device, in accordance with at least one aspect of the present disclosure, in accordance with at least one aspect of the present disclosure.
FIG.50 illustrates a surgical system that includes a handle having a controller and a motor, an adapter releasably coupled to the handle, and a loading unit releasably coupled to the adapter, in accordance with at least one aspect of the present disclosure.
FIG.51 illustrates a verbal Automated Endoscopic System for Optimal Positioning (AESOP) camera positioning system, in accordance with at least one aspect of the present disclosure.
FIG.52 illustrates a multi-functional surgical control system and switching interface for virtual operating room integration, in accordance with at least one aspect of the present disclosure.
FIG.53 illustrates a diagram of a beam source and combined beam detector system utilized as a device control mechanism in an operating theater, in accordance with at least one aspect of the present disclosure.
FIGS.54A-E illustrate various types of sterile field control and data input consoles, in accordance with at least one aspect of the present disclosure, where:
FIG.54A illustrates a single zone sterile field control and data input console;
FIG.54B illustrates a multi zone sterile field control and data input console;
FIG.54C illustrates a tethered sterile field control and data input console;
FIG.54D illustrates a battery operated sterile field control and data input console; and
FIG.54E illustrates a battery operated sterile field control and data input console.
FIGS.55A-55B illustrate a sterile field console in use in a sterile field during a surgical procedure, in accordance with at least one aspect of the present disclosure, where:
FIG.55A shows the sterile field console positioned in the sterile field near two surgeons engaged in an operation; and
FIG.55B shows one of the surgeons tapping the touchscreen of the sterile field console.
FIG.56 illustrates a process for accepting consult feeds from another operating room, in accordance with at least one aspect of the present disclosure.
FIG.57 illustrates a standard technique for estimating vessel path and depth and device trajectory, in accordance with at least one aspect of the present disclosure.
FIGS.58A-58D illustrate multiple real time views of images of a virtual anatomical detail for dissection, in accordance with at least one aspect of the present disclosure, where:
FIG.58A is a perspective view of the virtual anatomical detail;
FIG.58C is a side view of the virtual anatomical detail;
FIG.58B is a perspective view of the virtual anatomical detail; and
FIG.58D is a side view of the virtual anatomical detail.
FIGS.59A-59B illustrate a touchscreen display that may be used within the sterile field, in accordance with at least one aspect of the present disclosure, where:
FIG.59A illustrates an image of a surgical site displayed on a touchscreen display in portrait mode;
FIG.59B shows the touchscreen display rotated in landscape mode and the surgeon uses his index finger to scroll the image in the direction of the arrows;
FIG.59C shows the surgeon using his index finger and thumb to pinch open the image in the direction of the arrows to zoom in;
FIG.59D shows the surgeon using his index finger and thumb to pinch close the image in the direction of the arrows to zoom out; and
FIG.59E shows the touchscreen display rotated in two directions indicated by arrows to enable the surgeon to view the image in different orientations.
FIG.60 illustrates a surgical site employing a smart retractor comprising a direct interface control to a surgical hub, in accordance with at least one aspect of the present disclosure.
FIG.61 illustrates a surgical site with a smart flexible sticker display attached to the body of a patient, in accordance with at least one aspect of the present disclosure.
FIG.62 is a logic flow diagram of a process depicting a control program or a logic configuration to communicate from inside a sterile field to a device located outside the sterile field, in accordance with at least one aspect of the present disclosure.
FIG.63 illustrates a system for performing surgery, in accordance with at least one aspect of the present disclosure.
FIG.64 illustrates a second layer of information overlaying a first layer of information, in accordance with at least one aspect of the present disclosure.
FIG.65 depicts a perspective view of a surgeon using a surgical instrument that includes a handle assembly housing and a wireless circuit board during a surgical procedure, with the surgeon wearing a set of safety glasses, in accordance with at least one aspect of the present disclosure.
FIG.66 is a schematic diagram of a feedback control system for controlling a surgical instrument, in accordance with at least one aspect of the present disclosure.
FIG.67 illustrates a feedback controller that includes an on-screen display module and a heads up display (HUD) module, in accordance with at least one aspect of the present disclosure.
FIG.68 is a timeline depicting situational awareness of a surgical hub, in accordance with at least one aspect of the present disclosure.
DESCRIPTION
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Mar. 28, 2018, each of which is herein incorporated by reference in its entirety:
  • U.S. Provisional Patent Application Ser. No. 62/649,302, titled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
  • U.S. Provisional Patent Application Ser. No. 62/649,294, titled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
  • U.S. Provisional Patent Application Ser. No. 62/649,300, titled SURGICAL HUB SITUATIONAL AWARENESS;
  • U.S. Provisional Patent Application Ser. No. 62/649,309, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
  • U.S. Provisional Patent Application Ser. No. 62/649,310, titled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
  • U.S. Provisional Patent Application Ser. No. 62/649,291, titled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT;
  • U.S. Provisional Patent Application Ser. No. 62/649,296, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
  • U.S. Provisional Patent Application Ser. No. 62/649,333, titled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER;
  • U.S. Provisional Patent Application Ser. No. 62/649,327, titled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
  • U.S. Provisional Patent Application Ser. No. 62/649,315, titled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK;
  • U.S. Provisional Patent Application Ser. No. 62/649,313, titled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES;
  • U.S. Provisional Patent Application Ser. No. 62/649,320, titled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
  • U.S. Provisional Patent Application Ser. No. 62/649,307, titled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; and
  • U.S. Provisional Patent Application Ser. No. 62/649,323, titled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
  • U.S. patent application Ser. No. 15/940,641, titled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES, now U.S. Pat. No. 10,944,728;
  • U.S. patent application Ser. No. 15/940,648, titled INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES, now U.S. Patent Application Publication No. 2019/0206004;
  • U.S. patent application Ser. No. 15/940,656, titled SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES, now U.S. Patent Application Publication No. 2019/0201141;
  • U.S. patent application Ser. No. 15/940,666, titled SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS, now U.S. Patent Application Publication No. 2019/0206551;
  • U.S. patent application Ser. No. 15/940,670, titled COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS, now U.S. Patent Application Publication No. 2019/0201116;
  • U.S. patent application Ser. No. 15/940,677, titled SURGICAL HUB CONTROL ARRANGEMENTS, now U.S. Patent Application Publication No. 2019/0201143;
  • U.S. patent application Ser. No. 15/940,632, titled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD, now U.S. Patent Application Publication No. 2019/0205566;
  • U.S. patent application Ser. No. 15/940,640, titled COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS, now U.S. Patent Application Publication No. 2019/0200863;
  • U.S. patent application Ser. No. 15/940,645, titled SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT, now U.S. Pat. No. 10,892,899;
  • U.S. patent application Ser. No. 15/940,649, titled DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME, now U.S. Patent Application Publication No. 2019/0205567;
  • U.S. patent application Ser. No. 15/940,654, titled SURGICAL HUB SITUATIONAL AWARENESS, now U.S. Patent Application Publication No. 2019/0201140;
  • U.S. patent application Ser. No. 15/940,663, titled SURGICAL SYSTEM DISTRIBUTED PROCESSING, now U.S. Patent Application Publication No. 2019/0201033;
  • U.S. patent application Ser. No. 15/940,668, titled AGGREGATION AND REPORTING OF SURGICAL HUB DATA, now U.S. Patent Application Publication No. 2019/0201115;
  • U.S. patent application Ser. No. 15/940,686, titled DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE, now U.S. Patent Application Publication No. 2019/0201105;
  • U.S. patent application Ser. No. 15/940,700, titled STERILE FIELD INTERACTIVE CONTROL DISPLAYS, now U.S. Patent Application Publication No. 2019/0205001;
  • U.S. patent application Ser. No. 15/940,629, titled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS, now U.S. Patent Application Publication No. 2019/0201112;
  • U.S. patent application Ser. No. 15/940,704, titled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT, now U.S. Patent Application Publication No. 2019/0206050;
  • U.S. patent application Ser. No. 15/940,722, titled CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY, now U.S. Patent Application Publication No. 2019/0200905; and
  • U.S. patent application Ser. No. 15/940,742, titled DUAL CMOS ARRAY IMAGING, now U.S. Patent Application Publication No. 2019/0200906.
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
  • U.S. patent application Ser. No. 15/940,636, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES, now U.S. Patent Application Publication No. 2019/0206003;
  • U.S. patent application Ser. No. 15/940,653, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS, now U.S. Patent Application Publication No. 2019/0201114;
  • U.S. patent application Ser. No. 15/940,660, titled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER, now U.S. Patent Application Publication No. 2019/0206555;
  • U.S. patent application Ser. No. 15/940,679, titled CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET, now U.S. Pat. No. 10,932,872;
  • U.S. patent application Ser. No. 15/940,694, titled CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION, now U.S. Patent Application Publication No. 2019/0201119;
  • U.S. patent application Ser. No. 15/940,634, titled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES, now U.S. Patent Application Publication No. 2019/0201138;
  • U.S. patent application Ser. No. 15/940,706, titled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK, now U.S. Patent Application Publication No. 2019/0206561; and
  • U.S. patent application Ser. No. 15/940,675, titled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES, now U.S. Pat. No. 10,849,697.
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
  • U.S. patent application Ser. No. 15/940,627, titled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201111;
  • U.S. patent application Ser. No. 15/940,637, titled COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201139;
  • U.S. patent application Ser. No. 15/940,642, titled CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201113;
  • U.S. patent application Ser. No. 15/940,676, titled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201142;
  • U.S. patent application Ser. No. 15/940,680, titled CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201135;
  • U.S. patent application Ser. No. 15/940,683, titled COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201145;
  • U.S. patent application Ser. No. 15/940,690, titled DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201118; and
  • U.S. patent application Ser. No. 15/940,711, titled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201120.
Before explaining various aspects of surgical devices and generators in detail, it should be noted that the illustrative examples are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative examples may be implemented or incorporated in other aspects, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative examples for the convenience of the reader and are not for the purpose of limitation thereof. Also, it will be appreciated that one or more of the following-described aspects, expressions of aspects, and/or examples, can be combined with any one or more of the other following-described aspects, expressions of aspects and/or examples.
Referring toFIG.1, a computer-implemented interactivesurgical system100 includes one or moresurgical systems102 and a cloud-based system (e.g., thecloud104 that may include aremote server113 coupled to a storage device105). Eachsurgical system102 includes at least onesurgical hub106 in communication with thecloud104 that may include aremote server113. In one example, as illustrated inFIG.1, thesurgical system102 includes avisualization system108, arobotic system110, and a handheld intelligentsurgical instrument112, which are configured to communicate with one another and/or thehub106. In some aspects, asurgical system102 may include an M number ofhubs106, an N number ofvisualization systems108, an O number ofrobotic systems110, and a P number of handheld intelligentsurgical instruments112, where M, N, O, and P are integers greater than or equal to one.
FIG.3 depicts an example of asurgical system102 being used to perform a surgical procedure on a patient who is lying down on an operating table114 in asurgical operating room116. Arobotic system110 is used in the surgical procedure as a part of thesurgical system102. Therobotic system110 includes a surgeon'sconsole118, a patient side cart120 (surgical robot), and a surgicalrobotic hub122. Thepatient side cart120 can manipulate at least one removably coupledsurgical tool117 through a minimally invasive incision in the body of the patient while the surgeon views the surgical site through the surgeon'sconsole118. An image of the surgical site can be obtained by amedical imaging device124, which can be manipulated by thepatient side cart120 to orient theimaging device124. Therobotic hub122 can be used to process the images of the surgical site for subsequent display to the surgeon through the surgeon'sconsole118.
Other types of robotic systems can be readily adapted for use with thesurgical system102. Various examples of robotic systems and surgical tools that are suitable for use with the present disclosure are described in U.S. Provisional Patent Application Ser. No. 62/611,339, titled ROBOT ASSISTED SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
Various examples of cloud-based analytics that are performed by thecloud104, and are suitable for use with the present disclosure, are described in U.S. Provisional Patent Application Ser. No. 62/611,340, titled CLOUD-BASED MEDICAL ANALYTICS, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
In various aspects, theimaging device124 includes at least one image sensor and one or more optical components. Suitable image sensors include, but are not limited to, Charge-Coupled Device (CCD) sensors and Complementary Metal-Oxide Semiconductor (CMOS) sensors.
The optical components of theimaging device124 may include one or more illumination sources and/or one or more lenses. The one or more illumination sources may be directed to illuminate portions of the surgical field. The one or more image sensors may receive light reflected or refracted from the surgical field, including light reflected or refracted from tissue and/or surgical instruments.
The one or more illumination sources may be configured to radiate electromagnetic energy in the visible spectrum as well as the invisible spectrum. The visible spectrum, sometimes referred to as the optical spectrum or luminous spectrum, is that portion of the electromagnetic spectrum that is visible to (i.e., can be detected by) the human eye and may be referred to as visible light or simply light. A typical human eye will respond to wavelengths in air that are from about 380 nm to about 750 nm.
The invisible spectrum (i.e., the non-luminous spectrum) is that portion of the electromagnetic spectrum that lies below and above the visible spectrum (i.e., wavelengths below about 380 nm and above about 750 nm). The invisible spectrum is not detectable by the human eye. Wavelengths greater than about 750 nm are longer than the red visible spectrum, and they become invisible infrared (IR), microwave, and radio electromagnetic radiation. Wavelengths less than about 380 nm are shorter than the violet spectrum, and they become invisible ultraviolet, x-ray, and gamma ray electromagnetic radiation.
In various aspects, theimaging device124 is configured for use in a minimally invasive procedure. Examples of imaging devices suitable for use with the present disclosure include, but not limited to, an arthroscope, angioscope, bronchoscope, choledochoscope, colonoscope, cytoscope, duodenoscope, enteroscope, esophagogastro-duodenoscope (gastroscope), endoscope, laryngoscope, nasopharyngo-neproscope, sigmoidoscope, thoracoscope, and ureteroscope.
In one aspect, the imaging device employs multi-spectrum monitoring to discriminate topography and underlying structures. A multi-spectral image is one that captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or by the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, e.g., IR and ultraviolet. Spectral imaging can allow extraction of additional information the human eye fails to capture with its receptors for red, green, and blue. The use of multi-spectral imaging is described in greater detail under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. Multi-spectrum monitoring can be a useful tool in relocating a surgical field after a surgical task is completed to perform one or more of the previously described tests on the treated tissue.
It is axiomatic that strict sterilization of the operating room and surgical equipment is required during any surgery. The strict hygiene and sterilization conditions required in a “surgical theater,” i.e., an operating or treatment room, necessitate the highest possible sterility of all medical devices and equipment. Part of that sterilization process is the need to sterilize anything that comes in contact with the patient or penetrates the sterile field, including theimaging device124 and its attachments and components. It will be appreciated that the sterile field may be considered a specified area, such as within a tray or on a sterile towel, that is considered free of microorganisms, or the sterile field may be considered an area, immediately around a patient, who has been prepared for a surgical procedure. The sterile field may include the scrubbed team members, who are properly attired, and all furniture and fixtures in the area.
In various aspects, thevisualization system108 includes one or more imaging sensors, one or more image processing units, one or more storage arrays, and one or more displays that are strategically arranged with respect to the sterile field, as illustrated inFIG.2. In one aspect, thevisualization system108 includes an interface for HL7, PACS, and EMR. Various components of thevisualization system108 are described under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
As illustrated inFIG.2, aprimary display119 is positioned in the sterile field to be visible to an operator at the operating table114. In addition, a visualization tower111 is positioned outside the sterile field. The visualization tower111 includes a firstnon-sterile display107 and a secondnon-sterile display109, which face away from each other. Thevisualization system108, guided by thehub106, is configured to utilize thedisplays107,109, and119 to coordinate information flow to operators inside and outside the sterile field. For example, thehub106 may cause thevisualization system108 to display a snap-shot of a surgical site, as recorded by animaging device124, on anon-sterile display107 or109, while maintaining a live feed of the surgical site on theprimary display119. The snap-shot on thenon-sterile display107 or109 can permit a non-sterile operator to perform a diagnostic step relevant to the surgical procedure, for example.
In one aspect, thehub106 is also configured to route a diagnostic input or feedback entered by a non-sterile operator at the visualization tower111 to theprimary display119 within the sterile field, where it can be viewed by a sterile operator at the operating table. In one example, the input can be in the form of a modification to the snap-shot displayed on thenon-sterile display107 or109, which can be routed to theprimary display119 by thehub106.
Referring toFIG.2, asurgical instrument112 is being used in the surgical procedure as part of thesurgical system102. Thehub106 is also configured to coordinate information flow to a display of thesurgical instrument112. For example, in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. A diagnostic input or feedback entered by a non-sterile operator at the visualization tower111 can be routed by thehub106 to the surgical instrument display115 within the sterile field, where it can be viewed by the operator of thesurgical instrument112. Example surgical instruments that are suitable for use with thesurgical system102 are described under the heading “Surgical Instrument Hardware” and in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety, for example.
Referring now toFIG.3, ahub106 is depicted in communication with avisualization system108, arobotic system110, and a handheld intelligentsurgical instrument112. Thehub106 includes ahub display135, animaging module138, agenerator module140, acommunication module130, aprocessor module132, and astorage array134. In certain aspects, as illustrated inFIG.3, thehub106 further includes asmoke evacuation module126 and/or a suction/irrigation module128.
During a surgical procedure, energy application to tissue, for sealing and/or cutting, is generally associated with smoke evacuation, suction of excess fluid, and/or irrigation of the tissue. Fluid, power, and/or data lines from different sources are often entangled during the surgical procedure. Valuable time can be lost addressing this issue during a surgical procedure. Detangling the lines may necessitate disconnecting the lines from their respective modules, which may require resetting the modules. The hubmodular enclosure136 offers a unified environment for managing the power, data, and fluid lines, which reduces the frequency of entanglement between such lines.
Aspects of the present disclosure present a surgical hub for use in a surgical procedure that involves energy application to tissue at a surgical site. The surgical hub includes a hub enclosure and a combo generator module slidably receivable in a docking station of the hub enclosure. The docking station includes data and power contacts. The combo generator module includes two or more of an ultrasonic energy generator component, a bipolar RF energy generator component, and a monopolar RF energy generator component that are housed in a single unit. In one aspect, the combo generator module also includes a smoke evacuation component, at least one energy delivery cable for connecting the combo generator module to a surgical instrument, at least one smoke evacuation component configured to evacuate smoke, fluid, and/or particulates generated by the application of therapeutic energy to the tissue, and a fluid line extending from the remote surgical site to the smoke evacuation component.
In one aspect, the fluid line is a first fluid line and a second fluid line extends from the remote surgical site to a suction and irrigation module slidably received in the hub enclosure. In one aspect, the hub enclosure comprises a fluid interface.
Certain surgical procedures may require the application of more than one energy type to the tissue. One energy type may be more beneficial for cutting the tissue, while another different energy type may be more beneficial for sealing the tissue. For example, a bipolar generator can be used to seal the tissue while an ultrasonic generator can be used to cut the sealed tissue. Aspects of the present disclosure present a solution where a hubmodular enclosure136 is configured to accommodate different generators, and facilitate an interactive communication therebetween. One of the advantages of the hubmodular enclosure136 is enabling the quick removal and/or replacement of various modules.
Aspects of the present disclosure present a modular surgical enclosure for use in a surgical procedure that involves energy application to tissue. The modular surgical enclosure includes a first energy-generator module, configured to generate a first energy for application to the tissue, and a first docking station comprising a first docking port that includes first data and power contacts, wherein the first energy-generator module is slidably movable into an electrical engagement with the power and data contacts and wherein the first energy-generator module is slidably movable out of the electrical engagement with the first power and data contacts.
Further to the above, the modular surgical enclosure also includes a second energy-generator module configured to generate a second energy, different than the first energy, for application to the tissue, and a second docking station comprising a second docking port that includes second data and power contacts, wherein the second energy-generator module is slidably movable into an electrical engagement with the power and data contacts, and wherein the second energy-generator module is slidably movable out of the electrical engagement with the second power and data contacts.
In addition, the modular surgical enclosure also includes a communication bus between the first docking port and the second docking port, configured to facilitate communication between the first energy-generator module and the second energy-generator module.
Referring toFIGS.3-7, aspects of the present disclosure are presented for a hubmodular enclosure136 that allows the modular integration of agenerator module140, asmoke evacuation module126, and a suction/irrigation module128. The hubmodular enclosure136 further facilitates interactive communication between themodules140,126,128. As illustrated inFIG.5, thegenerator module140 can be a generator module with integrated monopolar, bipolar, and ultrasonic components supported in asingle housing unit139 slidably insertable into the hubmodular enclosure136. As illustrated inFIG.5, thegenerator module140 can be configured to connect to amonopolar device146, abipolar device147, and anultrasonic device148. Alternatively, thegenerator module140 may comprise a series of monopolar, bipolar, and/or ultrasonic generator modules that interact through the hubmodular enclosure136. The hubmodular enclosure136 can be configured to facilitate the insertion of multiple generators and interactive communication between the generators docked into the hubmodular enclosure136 so that the generators would act as a single generator.
In one aspect, the hubmodular enclosure136 comprises a modular power andcommunication backplane149 with external and wireless communication headers to enable the removable attachment of themodules140,126,128 and interactive communication therebetween.
In one aspect, the hubmodular enclosure136 includes docking stations, or drawers,151, herein also referred to as drawers, which are configured to slidably receive themodules140,126,128.FIG.4 illustrates a partial perspective view of asurgical hub enclosure136, and acombo generator module145 slidably receivable in adocking station151 of thesurgical hub enclosure136. Adocking port152 with power and data contacts on a rear side of thecombo generator module145 is configured to engage acorresponding docking port150 with power and data contacts of acorresponding docking station151 of the hubmodular enclosure136 as thecombo generator module145 is slid into position within thecorresponding docking station151 of thehub module enclosure136. In one aspect, thecombo generator module145 includes a bipolar, ultrasonic, and monopolar module and a smoke evacuation module integrated together into asingle housing unit139, as illustrated inFIG.5.
In various aspects, thesmoke evacuation module126 includes afluid line154 that conveys captured/collected smoke and/or fluid away from a surgical site and to, for example, thesmoke evacuation module126. Vacuum suction originating from thesmoke evacuation module126 can draw the smoke into an opening of a utility conduit at the surgical site. The utility conduit, coupled to the fluid line, can be in the form of a flexible tube terminating at thesmoke evacuation module126. The utility conduit and the fluid line define a fluid path extending toward thesmoke evacuation module126 that is received in thehub enclosure136.
In various aspects, the suction/irrigation module128 is coupled to a surgical tool comprising an aspiration fluid line and a suction fluid line. In one example, the aspiration and suction fluid lines are in the form of flexible tubes extending from the surgical site toward the suction/irrigation module128. One or more drive systems can be configured to cause irrigation and aspiration of fluids to and from the surgical site.
In one aspect, the surgical tool includes a shaft having an end effector at a distal end thereof and at least one energy treatment associated with the end effector, an aspiration tube, and an irrigation tube. The aspiration tube can have an inlet port at a distal end thereof and the aspiration tube extends through the shaft. Similarly, an irrigation tube can extend through the shaft and can have an inlet port in proximity to the energy deliver implement. The energy deliver implement is configured to deliver ultrasonic and/or RF energy to the surgical site and is coupled to thegenerator module140 by a cable extending initially through the shaft.
The irrigation tube can be in fluid communication with a fluid source, and the aspiration tube can be in fluid communication with a vacuum source. The fluid source and/or the vacuum source can be housed in the suction/irrigation module128. In one example, the fluid source and/or the vacuum source can be housed in thehub enclosure136 separately from the suction/irrigation module128. In such example, a fluid interface can be configured to connect the suction/irrigation module128 to the fluid source and/or the vacuum source.
In one aspect, themodules140,126,128 and/or their corresponding docking stations on the hubmodular enclosure136 may include alignment features that are configured to align the docking ports of the modules into engagement with their counterparts in the docking stations of the hubmodular enclosure136. For example, as illustrated inFIG.4, thecombo generator module145 includesside brackets155 that are configured to slidably engage withcorresponding brackets156 of thecorresponding docking station151 of the hubmodular enclosure136. The brackets cooperate to guide the docking port contacts of thecombo generator module145 into an electrical engagement with the docking port contacts of the hubmodular enclosure136.
In some aspects, thedrawers151 of the hubmodular enclosure136 are the same, or substantially the same size, and the modules are adjusted in size to be received in thedrawers151. For example, theside brackets155 and/or156 can be larger or smaller depending on the size of the module. In other aspects, thedrawers151 are different in size and are each designed to accommodate a particular module.
Furthermore, the contacts of a particular module can be keyed for engagement with the contacts of a particular drawer to avoid inserting a module into a drawer with mismatching contacts.
As illustrated inFIG.4, thedocking port150 of onedrawer151 can be coupled to thedocking port150 of anotherdrawer151 through a communications link157 to facilitate an interactive communication between the modules housed in the hubmodular enclosure136. Thedocking ports150 of the hubmodular enclosure136 may alternatively, or additionally, facilitate a wireless interactive communication between the modules housed in the hubmodular enclosure136. Any suitable wireless communication can be employed, such as for example Air Titan-Bluetooth.
FIG.6 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateralmodular housing160 configured to receive a plurality of modules of asurgical hub206. The lateralmodular housing160 is configured to laterally receive and interconnect themodules161. Themodules161 are slidably inserted intodocking stations162 of lateralmodular housing160, which includes a backplane for interconnecting themodules161. As illustrated inFIG.6, themodules161 are arranged laterally in the lateralmodular housing160. Alternatively, themodules161 may be arranged vertically in a lateral modular housing.
FIG.7 illustrates a verticalmodular housing164 configured to receive a plurality ofmodules165 of thesurgical hub106. Themodules165 are slidably inserted into docking stations, or drawers,167 of verticalmodular housing164, which includes a backplane for interconnecting themodules165. Although thedrawers167 of the verticalmodular housing164 are arranged vertically, in certain instances, a verticalmodular housing164 may include drawers that are arranged laterally. Furthermore, themodules165 may interact with one another through the docking ports of the verticalmodular housing164. In the example ofFIG.7, adisplay177 is provided for displaying data relevant to the operation of themodules165. In addition, the verticalmodular housing164 includes amaster module178 housing a plurality of sub-modules that are slidably received in themaster module178.
In various aspects, theimaging module138 comprises an integrated video processor and a modular light source and is adapted for use with various imaging devices. In one aspect, the imaging device is comprised of a modular housing that can be assembled with a light source module and a camera module. The housing can be a disposable housing. In at least one example, the disposable housing is removably coupled to a reusable controller, a light source module, and a camera module. The light source module and/or the camera module can be selectively chosen depending on the type of surgical procedure. In one aspect, the camera module comprises a CCD sensor. In another aspect, the camera module comprises a CMOS sensor. In another aspect, the camera module is configured for scanned beam imaging. Likewise, the light source module can be configured to deliver a white light or a different light, depending on the surgical procedure.
During a surgical procedure, removing a surgical device from the surgical field and replacing it with another surgical device that includes a different camera or a different light source can be inefficient. Temporarily losing sight of the surgical field may lead to undesirable consequences. The module imaging device of the present disclosure is configured to permit the replacement of a light source module or a camera module midstream during a surgical procedure, without having to remove the imaging device from the surgical field.
In one aspect, the imaging device comprises a tubular housing that includes a plurality of channels. A first channel is configured to slidably receive the camera module, which can be configured for a snap-fit engagement with the first channel. A second channel is configured to slidably receive the light source module, which can be configured for a snap-fit engagement with the second channel. In another example, the camera module and/or the light source module can be rotated into a final position within their respective channels. A threaded engagement can be employed in lieu of the snap-fit engagement.
In various examples, multiple imaging devices are placed at different positions in the surgical field to provide multiple views. Theimaging module138 can be configured to switch between the imaging devices to provide an optimal view. In various aspects, theimaging module138 can be configured to integrate the images from the different imaging device.
Various image processors and imaging devices suitable for use with the present disclosure are described in U.S. Pat. No. 7,995,045, titled COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR, which issued on Aug. 9, 2011, which is herein incorporated by reference in its entirety. In addition, U.S. Pat. No. 7,982,776, titled SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD, which issued on Jul. 19, 2011, which is herein incorporated by reference in its entirety, describes various systems for removing motion artifacts from image data. Such systems can be integrated with theimaging module138. Furthermore, U.S. Patent Application Publication No. 2011/0306840, titled CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS, which published on Dec. 15, 2011, and U.S. Patent Application Publication No. 2014/0243597, titled SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE, which published on Aug. 28, 2014, now U.S. Pat. No. 10,098,527, each of which is herein incorporated by reference in its entirety.
FIG.8 illustrates asurgical data network201 comprising amodular communication hub203 configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to a cloud-based system (e.g., thecloud204 that may include aremote server213 coupled to a storage device205). In one aspect, themodular communication hub203 comprises anetwork hub207 and/or anetwork switch209 in communication with a network router. Themodular communication hub203 also can be coupled to alocal computer system210 to provide local computer processing and data manipulation. Thesurgical data network201 may be configured as passive, intelligent, or switching. A passive surgical data network serves as a conduit for the data, enabling it to go from one device (or segment) to another and to the cloud computing resources. An intelligent surgical data network includes additional features to enable the traffic passing through the surgical data network to be monitored and to configure each port in thenetwork hub207 ornetwork switch209. An intelligent surgical data network may be referred to as a manageable hub or switch. A switching hub reads the destination address of each packet and then forwards the packet to the correct port.
Modular devices1a-1nlocated in the operating theater may be coupled to themodular communication hub203. Thenetwork hub207 and/or thenetwork switch209 may be coupled to anetwork router211 to connect thedevices1a-1nto thecloud204 or thelocal computer system210. Data associated with thedevices1a-1nmay be transferred to cloud-based computers via the router for remote data processing and manipulation. Data associated with thedevices1a-1nmay also be transferred to thelocal computer system210 for local data processing and manipulation.Modular devices2a-2mlocated in the same operating theater also may be coupled to anetwork switch209. Thenetwork switch209 may be coupled to thenetwork hub207 and/or thenetwork router211 to connect to thedevices2a-2mto thecloud204. Data associated with thedevices2a-2nmay be transferred to thecloud204 via thenetwork router211 for data processing and manipulation. Data associated with thedevices2a-2mmay also be transferred to thelocal computer system210 for local data processing and manipulation.
It will be appreciated that thesurgical data network201 may be expanded by interconnectingmultiple network hubs207 and/or multiple network switches209 withmultiple network routers211. Themodular communication hub203 may be contained in a modular control tower configured to receivemultiple devices1a-1n/2a-2m. Thelocal computer system210 also may be contained in a modular control tower. Themodular communication hub203 is connected to a display212 to display images obtained by some of thedevices1a-1n/2a-2m, for example during surgical procedures. In various aspects, thedevices1a-1n/2a-2mmay include, for example, various modules such as animaging module138 coupled to an endoscope, agenerator module140 coupled to an energy-based surgical device, asmoke evacuation module126, a suction/irrigation module128, acommunication module130, aprocessor module132, astorage array134, a surgical device coupled to a display, and/or a non-contact sensor module, among other modular devices that may be connected to themodular communication hub203 of thesurgical data network201.
In one aspect, thesurgical data network201 may comprise a combination of network hub(s), network switch(es), and network router(s) connecting thedevices1a-1n/2a-2mto the cloud. Any one of or all of thedevices1a-1n/2a-2mcoupled to the network hub or network switch may collect data in real time and transfer the data to cloud computers for data processing and manipulation. It will be appreciated that cloud computing relies on sharing computing resources rather than having local servers or personal devices to handle software applications. The word “cloud” may be used as a metaphor for “the Internet,” although the term is not limited as such. Accordingly, the term “cloud computing” may be used herein to refer to “a type of Internet-based computing,” where different services—such as servers, storage, and applications—are delivered to themodular communication hub203 and/orcomputer system210 located in the surgical theater (e.g., a fixed, mobile, temporary, or field operating room or space) and to devices connected to themodular communication hub203 and/orcomputer system210 through the Internet. The cloud infrastructure may be maintained by a cloud service provider. In this context, the cloud service provider may be the entity that coordinates the usage and control of thedevices1a-1n/2a-2mlocated in one or more operating theaters. The cloud computing services can perform a large number of calculations based on the data gathered by smart surgical instruments, robots, and other computerized devices located in the operating theater. The hub hardware enables multiple devices or connections to be connected to a computer that communicates with the cloud computing resources and storage.
Applying cloud computer data processing techniques on the data collected by thedevices1a-1n/2a-2m, the surgical data network provides improved surgical outcomes, reduced costs, and improved patient satisfaction. At least some of thedevices1a-1n/2a-2mmay be employed to view tissue states to assess leaks or perfusion of sealed tissue after a tissue sealing and cutting procedure. At least some of thedevices1a-1n/2a-2mmay be employed to identify pathology, such as the effects of diseases, using the cloud-based computing to examine data including images of samples of body tissue for diagnostic purposes. This includes localization and margin confirmation of tissue and phenotypes. At least some of thedevices1a-1n/2a-2mmay be employed to identify anatomical structures of the body using a variety of sensors integrated with imaging devices and techniques such as overlaying images captured by multiple imaging devices. The data gathered by thedevices1a-1n/2a-2m, including image data, may be transferred to thecloud204 or thelocal computer system210 or both for data processing and manipulation including image processing and manipulation. The data may be analyzed to improve surgical procedure outcomes by determining if further treatment, such as the application of endoscopic intervention, emerging technologies, a targeted radiation, targeted intervention, and precise robotics to tissue-specific sites and conditions, may be pursued. Such data analysis may further employ outcome analytics processing, and using standardized approaches may provide beneficial feedback to either confirm surgical treatments and the behavior of the surgeon or suggest modifications to surgical treatments and the behavior of the surgeon.
In one implementation, theoperating theater devices1a-1nmay be connected to themodular communication hub203 over a wired channel or a wireless channel depending on the configuration of thedevices1a-1nto a network hub. Thenetwork hub207 may be implemented, in one aspect, as a local network broadcast device that works on the physical layer of the Open System Interconnection (OSI) model. The network hub provides connectivity to thedevices1a-1nlocated in the same operating theater network. Thenetwork hub207 collects data in the form of packets and sends them to the router in half duplex mode. Thenetwork hub207 does not store any media access control/internet protocol (MAC/IP) to transfer the device data. Only one of thedevices1a-1ncan send data at a time through thenetwork hub207. Thenetwork hub207 has no routing tables or intelligence regarding where to send information and broadcasts all network data across each connection and to a remote server213 (FIG.9) over thecloud204. Thenetwork hub207 can detect basic network errors such as collisions, but having all information broadcast to multiple ports can be a security risk and cause bottlenecks.
In another implementation, theoperating theater devices2a-2mmay be connected to anetwork switch209 over a wired channel or a wireless channel. Thenetwork switch209 works in the data link layer of the OSI model. Thenetwork switch209 is a multicast device for connecting thedevices2a-2mlocated in the same operating theater to the network. Thenetwork switch209 sends data in the form of frames to thenetwork router211 and works in full duplex mode.Multiple devices2a-2mcan send data at the same time through thenetwork switch209. Thenetwork switch209 stores and uses MAC addresses of thedevices2a-2mto transfer data.
Thenetwork hub207 and/or thenetwork switch209 are coupled to thenetwork router211 for connection to thecloud204. Thenetwork router211 works in the network layer of the OSI model. Thenetwork router211 creates a route for transmitting data packets received from thenetwork hub207 and/ornetwork switch211 to cloud-based computer resources for further processing and manipulation of the data collected by any one of or all thedevices1a-1n/2a-2m. Thenetwork router211 may be employed to connect two or more different networks located in different locations, such as, for example, different operating theaters of the same healthcare facility or different networks located in different operating theaters of different healthcare facilities. Thenetwork router211 sends data in the form of packets to thecloud204 and works in full duplex mode. Multiple devices can send data at the same time. Thenetwork router211 uses IP addresses to transfer data.
In one example, thenetwork hub207 may be implemented as a USB hub, which allows multiple USB devices to be connected to a host computer. The USB hub may expand a single USB port into several tiers so that there are more ports available to connect devices to the host system computer. Thenetwork hub207 may include wired or wireless capabilities to receive information over a wired channel or a wireless channel. In one aspect, a wireless USB short-range, high-bandwidth wireless radio communication protocol may be employed for communication between thedevices1a-1nanddevices2a-2mlocated in the operating theater.
In other examples, theoperating theater devices1a-1n/2a-2mmay communicate to themodular communication hub203 via Bluetooth wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHZ) from fixed and mobile devices and building personal area networks (PANs). In other aspects, theoperating theater devices1a-1n/2a-2mmay communicate to themodular communication hub203 via a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long-term evolution (LTE), and Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, and Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter-range wireless communications such as Wi-Fi and Bluetooth, and a second communication module may be dedicated to longer-range wireless communications such as GPS, EDGE, GPRS, CDMA, WIMAX, LTE, Ev-DO, and others.
Themodular communication hub203 may serve as a central connection for one or all of theoperating theater devices1a-1n/2a-2mand handles a data type known as frames. Frames carry the data generated by thedevices1a-1n/2a-2m. When a frame is received by themodular communication hub203, it is amplified and transmitted to thenetwork router211, which transfers the data to the cloud computing resources by using a number of wireless or wired communication standards or protocols, as described herein.
Themodular communication hub203 can be used as a standalone device or be connected to compatible network hubs and network switches to form a larger network. Themodular communication hub203 is generally easy to install, configure, and maintain, making it a good option for networking theoperating theater devices1a-1n/2a-2m.
FIG.9 illustrates a computer-implemented interactivesurgical system200. The computer-implemented interactivesurgical system200 is similar in many respects to the computer-implemented interactivesurgical system100. For example, the computer-implemented interactivesurgical system200 includes one or moresurgical systems202, which are similar in many respects to thesurgical systems102. Eachsurgical system202 includes at least onesurgical hub206 in communication with acloud204 that may include aremote server213. In one aspect, the computer-implemented interactivesurgical system200 comprises amodular control tower236 connected to multiple operating theater devices such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating theater. As shown inFIG.10, themodular control tower236 comprises amodular communication hub203 coupled to acomputer system210. As illustrated in the example ofFIG.9, themodular control tower236 is coupled to animaging module238 that is coupled to anendoscope239, agenerator module240 that is coupled to anenergy device241, asmoke evacuator module226, a suction/irrigation module228, acommunication module230, aprocessor module232, astorage array234, a smart device/instrument235 optionally coupled to adisplay237, and anon-contact sensor module242. The operating theater devices are coupled to cloud computing resources and data storage via themodular control tower236. Arobot hub222 also may be connected to themodular control tower236 and to the cloud computing resources. The devices/instruments235,visualization systems208, among others, may be coupled to themodular control tower236 via wired or wireless communication standards or protocols, as described herein. Themodular control tower236 may be coupled to a hub display215 (e.g., monitor, screen) to display and overlay images received from the imaging module, device/instrument display, and/orother visualization systems208. The hub display also may display data received from devices connected to the modular control tower in conjunction with images and overlaid images.
FIG.10 illustrates asurgical hub206 comprising a plurality of modules coupled to themodular control tower236. Themodular control tower236 comprises amodular communication hub203, e.g., a network connectivity device, and acomputer system210 to provide local processing, visualization, and imaging, for example. As shown inFIG.10, themodular communication hub203 may be connected in a tiered configuration to expand the number of modules (e.g., devices) that may be connected to themodular communication hub203 and transfer data associated with the modules to thecomputer system210, cloud computing resources, or both. As shown inFIG.10, each of the network hubs/switches in themodular communication hub203 includes three downstream ports and one upstream port. The upstream network hub/switch is connected to a processor to provide a communication connection to the cloud computing resources and alocal display217. Communication to thecloud204 may be made either through a wired or a wireless communication channel.
Thesurgical hub206 employs anon-contact sensor module242 to measure the dimensions of the operating theater and generate a map of the surgical theater using either ultrasonic or laser-type non-contact measurement devices. An ultrasound-based non-contact sensor module scans the operating theater by transmitting a burst of ultrasound and receiving the echo when it bounces off the perimeter walls of an operating theater as described under the heading “Surgical Hub Spatial Awareness Within an Operating Room” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, which is herein incorporated by reference in its entirety, in which the sensor module is configured to determine the size of the operating theater and to adjust Bluetooth-pairing distance limits. A laser-based non-contact sensor module scans the operating theater by transmitting laser light pulses, receiving laser light pulses that bounce off the perimeter walls of the operating theater, and comparing the phase of the transmitted pulse to the received pulse to determine the size of the operating theater and to adjust Bluetooth pairing distance limits, for example.
Thecomputer system210 comprises aprocessor244 and anetwork interface245. Theprocessor244 is coupled to acommunication module247,storage248,memory249,non-volatile memory250, and input/output interface251 via a system bus. The system bus can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 9-bit bus, Industrial Standard Architecture (ISA), Micro-Charmel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), USB, Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Small Computer Systems Interface (SCSI), or any other proprietary bus.
Theprocessor244 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), an internal read-only memory (ROM) loaded with StellarisWare® software, a 2 KB electrically erasable programmable read-only memory (EEPROM), and/or one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analogs, one or more 12-bit analog-to-digital converters (ADCs) with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, theprocessor244 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
The system memory includes volatile memory and non-volatile memory. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer system, such as during start-up, is stored in non-volatile memory. For example, the non-volatile memory can include ROM, programmable ROM (PROM), electrically programmable ROM (EPROM), EEPROM, or flash memory. Volatile memory includes random-access memory (RAM), which acts as external cache memory. Moreover, RAM is available in many forms such as SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Thecomputer system210 also includes removable/non-removable, volatile/non-volatile computer storage media, such as for example disk storage. The disk storage includes, but is not limited to, devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-60 drive, flash memory card, or memory stick. In addition, the disk storage can include storage media separately or in combination with other storage media including, but not limited to, an optical disc drive such as a compact disc ROM device (CD-ROM), compact disc recordable drive (CD-R Drive), compact disc rewritable drive (CD-RW Drive), or a digital versatile disc ROM drive (DVD-ROM). To facilitate the connection of the disk storage devices to the system bus, a removable or non-removable interface may be employed.
It is to be appreciated that thecomputer system210 includes software that acts as an intermediary between users and the basic computer resources described in a suitable operating environment. Such software includes an operating system. The operating system, which can be stored on the disk storage, acts to control and allocate resources of the computer system. System applications take advantage of the management of resources by the operating system through program modules and program data stored either in the system memory or on the disk storage. It is to be appreciated that various components described herein can be implemented with various operating systems or combinations of operating systems.
A user enters commands or information into thecomputer system210 through input device(s) coupled to the I/O interface251. The input devices include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processor through the system bus via interface port(s). The interface port(s) include, for example, a serial port, a parallel port, a game port, and a USB. The output device(s) use some of the same types of ports as input device(s). Thus, for example, a USB port may be used to provide input to the computer system and to output information from the computer system to an output device. An output adapter is provided to illustrate that there are some output devices like monitors, displays, speakers, and printers, among other output devices that require special adapters. The output adapters include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device and the system bus. It should be noted that other devices and/or systems of devices, such as remote computer(s), provide both input and output capabilities.
Thecomputer system210 can operate in a networked environment using logical connections to one or more remote computers, such as cloud computer(s), or local computers. The remote cloud computer(s) can be a personal computer, server, router, network PC, workstation, microprocessor-based appliance, peer device, or other common network node, and the like, and typically includes many or all of the elements described relative to the computer system. For purposes of brevity, only a memory storage device is illustrated with the remote computer(s). The remote computer(s) is logically connected to the computer system through a network interface and then physically connected via a communication connection. The network interface encompasses communication networks such as local area networks (LANs) and wide area networks (WANs). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit-switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet-switching networks, and Digital Subscriber Lines (DSL).
In various aspects, thecomputer system210 ofFIG.10, theimaging module238 and/orvisualization system208, and/or theprocessor module232 ofFIGS.9-10, may comprise an image processor, image processing engine, media processor, or any specialized digital signal processor (DSP) used for the processing of digital images. The image processor may employ parallel computing with single instruction, multiple data (SIMD) or multiple instruction, multiple data (MIMD) technologies to increase speed and efficiency. The digital image processing engine can perform a range of tasks. The image processor may be a system on a chip with multicore processor architecture.
The communication connection(s) refers to the hardware/software employed to connect the network interface to the bus. While the communication connection is shown for illustrative clarity inside the computer system, it can also be external to thecomputer system210. The hardware/software necessary for connection to the network interface includes, for illustrative purposes only, internal and external technologies such as modems, including regular telephone-grade modems, cable modems, and DSL modems, ISDN adapters, and Ethernet cards.
FIG.11 illustrates a functional block diagram of one aspect of aUSB network hub300 device, according to one aspect of the present disclosure. In the illustrated aspect, the USBnetwork hub device300 employs a TUSB2036 integrated circuit hub by Texas Instruments. TheUSB network hub300 is a CMOS device that provides an upstreamUSB transceiver port302 and up to three downstreamUSB transceiver ports304,306,308 in compliance with the USB 2.0 specification. The upstreamUSB transceiver port302 is a differential root data port comprising a differential data minus (DM0) input paired with a differential data plus (DP0) input. The three downstreamUSB transceiver ports304,306,308 are differential data ports where each port includes differential data plus (DP1-DP3) outputs paired with differential data minus (DM1-DM3) outputs.
TheUSB network hub300 device is implemented with a digital state machine instead of a microcontroller, and no firmware programming is required. Fully compliant USB transceivers are integrated into the circuit for the upstreamUSB transceiver port302 and all downstreamUSB transceiver ports304,306,308. The downstreamUSB transceiver ports304,306,308 support both full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. TheUSB network hub300 device may be configured either in bus-powered or self-powered mode and includes ahub power logic312 to manage power.
TheUSB network hub300 device includes a serial interface engine310 (SIE). TheSIE310 is the front end of theUSB network hub300 hardware and handles most of the protocol described inchapter 8 of the USB specification. TheSIE310 typically comprehends signaling up to the transaction level. The functions that it handles could include: packet recognition, transaction sequencing, SOP, EOP, RESET, and RESUME signal detection/generation, clock/data separation, non-return-to-zero invert (NRZI) data encoding/decoding and bit-stuffing, CRC generation and checking (token and data), packet ID (PID) generation and checking/decoding, and/or serial-parallel/parallel-serial conversion. The310 receives aclock input314 and is coupled to a suspend/resume logic andframe timer316 circuit and ahub repeater circuit318 to control communication between the upstreamUSB transceiver port302 and the downstreamUSB transceiver ports304,306,308 throughport logic circuits320,322,324. TheSIE310 is coupled to acommand decoder326 via interface logic to control commands from a serial EEPROM via aserial EEPROM interface330.
In various aspects, theUSB network hub300 can connect127 functions configured in up to six logical layers (tiers) to a single computer. Further, theUSB network hub300 can connect to all peripherals using a standardized four-wire cable that provides both communication and power distribution. The power configurations are bus-powered and self-powered modes. TheUSB network hub300 may be configured to support four modes of power management: a bus-powered hub, with either individual-port power management or ganged-port power management, and the self-powered hub, with either individual-port power management or ganged-port power management. In one aspect, using a USB cable, theUSB network hub300, the upstreamUSB transceiver port302 is plugged into a USB host controller, and the downstreamUSB transceiver ports304,306,308 are exposed for connecting USB compatible devices, and so forth.
Surgical Instrument Hardware
FIG.12 illustrates a logic diagram of acontrol system470 of a surgical instrument or tool in accordance with one or more aspects of the present disclosure. Thesystem470 comprises a control circuit. The control circuit includes amicrocontroller461 comprising aprocessor462 and amemory468. One or more ofsensors472,474,476, for example, provide real-time feedback to theprocessor462. Amotor482, driven by amotor driver492, operably couples a longitudinally movable displacement member to drive the I-beam knife element. Atracking system480 is configured to determine the position of the longitudinally movable displacement member. The position information is provided to theprocessor462, which can be programmed or configured to determine the position of the longitudinally movable drive member as well as the position of a firing member, firing bar, and I-beam knife element. Additional motors may be provided at the tool driver interface to control I-beam firing, closure tube travel, shaft rotation, and articulation. Adisplay473 displays a variety of operating conditions of the instruments and may include touch screen functionality for data input. Information displayed on thedisplay473 may be overlaid with images acquired via endoscopic imaging modules.
In one aspect, themicrocontroller461 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, themain microcontroller461 may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHZ, a prefetch buffer to improve performance above 40 MHZ, a 32 KB single-cycle SRAM, and internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, and/or one or more 12-bit ADCs with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, themicrocontroller461 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
Themicrocontroller461 may be programmed to perform various functions such as precise control over the speed and position of the knife and articulation systems. In one aspect, themicrocontroller461 includes aprocessor462 and amemory468. Theelectric motor482 may be a brushed direct current (DC) motor with a gearbox and mechanical links to an articulation or knife system. In one aspect, amotor driver492 may be an A3941 available from Allegro Microsystems, Inc. Other motor drivers may be readily substituted for use in thetracking system480 comprising an absolute positioning system. A detailed description of an absolute positioning system is described in U.S. Patent Application Publication No. 2017/0296213, titled SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT, which published on Oct. 19, 2017, now U.S. Pat. No. 9,958,764, which is herein incorporated by reference in its entirety.
Themicrocontroller461 may be programmed to provide precise control over the speed and position of displacement members and articulation systems. Themicrocontroller461 may be configured to compute a response in the software of themicrocontroller461. The computed response is compared to a measured response of the actual system to obtain an “observed” response, which is used for actual feedback decisions. The observed response is a favorable, tuned value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect outside influences on the system.
In one aspect, themotor482 may be controlled by themotor driver492 and can be employed by the firing system of the surgical instrument or tool. In various forms, themotor482 may be a brushed DC driving motor having a maximum rotational speed of approximately 25,000 RPM. In other arrangements, themotor482 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. Themotor driver492 may comprise an H-bridge driver comprising field-effect transistors (FETs), for example. Themotor482 can be powered by a power assembly releasably mounted to the handle assembly or tool housing for supplying control power to the surgical instrument or tool. The power assembly may comprise a battery which may include a number of battery cells connected in series that can be used as the power source to power the surgical instrument or tool. In certain circumstances, the battery cells of the power assembly may be replaceable and/or rechargeable. In at least one example, the battery cells can be lithium-ion batteries which can be couplable to and separable from the power assembly.
Themotor driver492 may be an A3941 available from Allegro Microsystems, Inc. TheA3941492 is a full-bridge controller for use with external N-channel power metal-oxide semiconductor field-effect transistors (MOSFETs) specifically designed for inductive loads, such as brush DC motors. Thedriver492 comprises a unique charge pump regulator that provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor may be employed to provide the above battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay modes using diode or synchronous rectification. In the slow decay mode, current recirculation can be through the high-side or the lowside FETs. The power FETs are protected from shoot-through by resistor-adjustable dead time. Integrated diagnostics provide indications of undervoltage, overtemperature, and power bridge faults and can be configured to protect the power MOSFETs under most short circuit conditions. Other motor drivers may be readily substituted for use in thetracking system480 comprising an absolute positioning system.
Thetracking system480 comprises a controlled motor drive circuit arrangement comprising aposition sensor472 according to one aspect of this disclosure. Theposition sensor472 for an absolute positioning system provides a unique position signal corresponding to the location of a displacement member. In one aspect, the displacement member represents a longitudinally movable drive member comprising a rack of drive teeth for meshing engagement with a corresponding drive gear of a gear reducer assembly. In other aspects, the displacement member represents the firing member, which could be adapted and configured to include a rack of drive teeth. In yet another aspect, the displacement member represents a firing bar or the I-beam, each of which can be adapted and configured to include a rack of drive teeth. Accordingly, as used herein, the term displacement member is used generically to refer to any movable member of the surgical instrument or tool such as the drive member, the firing member, the firing bar, the I-beam, or any element that can be displaced. In one aspect, the longitudinally movable drive member is coupled to the firing member, the firing bar, and the I-beam. Accordingly, the absolute positioning system can, in effect, track the linear displacement of the I-beam by tracking the linear displacement of the longitudinally movable drive member. In various other aspects, the displacement member may be coupled to anyposition sensor472 suitable for measuring linear displacement. Thus, the longitudinally movable drive member, the firing member, the firing bar, or the I-beam, or combinations thereof, may be coupled to any suitable linear displacement sensor. Linear displacement sensors may include contact or non-contact displacement sensors. Linear displacement sensors may comprise linear variable differential transformers (LVDT), differential variable reluctance transducers (DVRT), a slide potentiometer, a magnetic sensing system comprising a movable magnet and a series of linearly arranged Hall effect sensors, a magnetic sensing system comprising a fixed magnet and a series of movable, linearly arranged Hall effect sensors, an optical sensing system comprising a movable light source and a series of linearly arranged photo diodes or photo detectors, an optical sensing system comprising a fixed light source and a series of movable linearly, arranged photo diodes or photo detectors, or any combination thereof.
Theelectric motor482 can include a rotatable shaft that operably interfaces with a gear assembly that is mounted in meshing engagement with a set, or rack, of drive teeth on the displacement member. A sensor element may be operably coupled to a gear assembly such that a single revolution of theposition sensor472 element corresponds to some linear longitudinal translation of the displacement member. An arrangement of gearing and sensors can be connected to the linear actuator, via a rack and pinion arrangement, or a rotary actuator, via a spur gear or other connection. A power source supplies power to the absolute positioning system and an output indicator may display the output of the absolute positioning system. The displacement member represents the longitudinally movable drive member comprising a rack of drive teeth formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly. The displacement member represents the longitudinally movable firing member, firing bar, I-beam, or combinations thereof.
A single revolution of the sensor element associated with theposition sensor472 is equivalent to a longitudinal linear displacement d1 of the of the displacement member, where d1 is the longitudinal linear distance that the displacement member moves from point “a” to point “b” after a single revolution of the sensor element coupled to the displacement member. The sensor arrangement may be connected via a gear reduction that results in theposition sensor472 completing one or more revolutions for the full stroke of the displacement member. Theposition sensor472 may complete multiple revolutions for the full stroke of the displacement member.
A series of switches, where n is an integer greater than one, may be employed alone or in combination with a gear reduction to provide a unique position signal for more than one revolution of theposition sensor472. The state of the switches are fed back to themicrocontroller461 that applies logic to determine a unique position signal corresponding to the longitudinal linear displacement d1+d2+ . . . dn of the displacement member. The output of theposition sensor472 is provided to themicrocontroller461. Theposition sensor472 of the sensor arrangement may comprise a magnetic sensor, an analog rotary sensor like a potentiometer, or an array of analog Hall-effect elements, which output a unique combination of position signals or values.
Theposition sensor472 may comprise any number of magnetic sensing elements, such as, for example, magnetic sensors classified according to whether they measure the total magnetic field or the vector components of the magnetic field. The techniques used to produce both types of magnetic sensors encompass many aspects of physics and electronics. The technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber-optic, magneto-optic, and microelectromechanical systems-based magnetic sensors, among others.
In one aspect, theposition sensor472 for thetracking system480 comprising an absolute positioning system comprises a magnetic rotary absolute positioning system. Theposition sensor472 may be implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor472 is interfaced with themicrocontroller461 to provide an absolute positioning system. Theposition sensor472 is a low-voltage and low-power component and includes four Hall-effect elements in an area of theposition sensor472 that is located above a magnet. A high-resolution ADC and a smart power management controller are also provided on the chip. A coordinate rotation digital computer (CORDIC) processor, also known as the digit-by-digit method and Volder's algorithm, is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations. The angle position, alarm bits, and magnetic field information are transmitted over a standard serial communication interface, such as a serial peripheral interface (SPI) interface, to themicrocontroller461. Theposition sensor472 provides 12 or 14 bits of resolution. Theposition sensor472 may be an AS5055 chip provided in a small QFN 16-pin 4×4×0.85 mm package.
Thetracking system480 comprising an absolute positioning system may comprise and/or be programmed to implement a feedback controller, such as a PID, state feedback, and adaptive controller. A power source converts the signal from the feedback controller into a physical input to the system: in this case the voltage. Other examples include a PWM of the voltage, current, and force. Other sensor(s) may be provided to measure physical parameters of the physical system in addition to the position measured by theposition sensor472. In some aspects, the other sensor(s) can include sensor arrangements such as those described in U.S. Pat. No. 9,345,481, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which issued on May 24, 2016, which is herein incorporated by reference in its entirety; U.S. Patent Application Publication No. 2014/0263552, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which published on Sep. 18, 2014, which is herein incorporated by reference in its entirety; and U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, now U.S. Pat. No. 10,881,399, which is herein incorporated by reference in its entirety. In a digital signal processing system, an absolute positioning system is coupled to a digital data acquisition system where the output of the absolute positioning system will have a finite resolution and sampling frequency. The absolute positioning system may comprise a compare-and-combine circuit to combine a computed response with a measured response using algorithms, such as a weighted average and a theoretical control loop, that drive the computed response towards the measured response. The computed response of the physical system takes into account properties like mass, inertial, viscous friction, inductance resistance, etc., to predict what the states and outputs of the physical system will be by knowing the input.
The absolute positioning system provides an absolute position of the displacement member upon power-up of the instrument, without retracting or advancing the displacement member to a reset (zero or home) position as may be required with conventional rotary encoders that merely count the number of steps forwards or backwards that themotor482 has taken to infer the position of a device actuator, drive bar, knife, or the like.
Asensor474, such as, for example, a strain gauge or a micro-strain gauge, is configured to measure one or more parameters of the end effector, such as, for example, the amplitude of the strain exerted on the anvil during a clamping operation, which can be indicative of the closure forces applied to the anvil. The measured strain is converted to a digital signal and provided to theprocessor462. Alternatively, or in addition to thesensor474, asensor476, such as, for example, a load sensor, can measure the closure force applied by the closure drive system to the anvil. Thesensor476, such as, for example, a load sensor, can measure the firing force applied to an I-beam in a firing stroke of the surgical instrument or tool. The I-beam is configured to engage a wedge sled, which is configured to upwardly cam staple drivers to force out staples into deforming contact with an anvil. The I-beam also includes a sharpened cutting edge that can be used to sever tissue as the I-beam is advanced distally by the firing bar. Alternatively, acurrent sensor478 can be employed to measure the current drawn by themotor482. The force required to advance the firing member can correspond to the current drawn by themotor482, for example. The measured force is converted to a digital signal and provided to theprocessor462.
In one form, thestrain gauge sensor474 can be used to measure the force applied to the tissue by the end effector. A strain gauge can be coupled to the end effector to measure the force on the tissue being treated by the end effector. A system for measuring forces applied to the tissue grasped by the end effector comprises astrain gauge sensor474, such as, for example, a micro-strain gauge, that is configured to measure one or more parameters of the end effector, for example. In one aspect, thestrain gauge sensor474 can measure the amplitude or magnitude of the strain exerted on a jaw member of an end effector during a clamping operation, which can be indicative of the tissue compression. The measured strain is converted to a digital signal and provided to aprocessor462 of themicrocontroller461. Aload sensor476 can measure the force used to operate the knife element, for example, to cut the tissue captured between the anvil and the staple cartridge. A magnetic field sensor can be employed to measure the thickness of the captured tissue. The measurement of the magnetic field sensor also may be converted to a digital signal and provided to theprocessor462.
The measurements of the tissue compression, the tissue thickness, and/or the force required to close the end effector on the tissue, as respectively measured by thesensors474,476, can be used by themicrocontroller461 to characterize the selected position of the firing member and/or the corresponding value of the speed of the firing member. In one instance, amemory468 may store a technique, an equation, and/or a lookup table which can be employed by themicrocontroller461 in the assessment.
Thecontrol system470 of the surgical instrument or tool also may comprise wired or wireless communication circuits to communicate with the modular communication hub as shown inFIGS.8-11.
FIG.13 illustrates acontrol circuit500 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thecontrol circuit500 can be configured to implement various processes described herein. Thecontrol circuit500 may comprise a microcontroller comprising one or more processors502 (e.g., microprocessor, microcontroller) coupled to at least onememory circuit504. Thememory circuit504 stores machine-executable instructions that, when executed by theprocessor502, cause theprocessor502 to execute machine instructions to implement various processes described herein. Theprocessor502 may be any one of a number of single-core or multicore processors known in the art. Thememory circuit504 may comprise volatile and non-volatile storage media. Theprocessor502 may include aninstruction processing unit506 and anarithmetic unit508. The instruction processing unit may be configured to receive instructions from thememory circuit504 of this disclosure.
FIG.14 illustrates acombinational logic circuit510 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thecombinational logic circuit510 can be configured to implement various processes described herein. Thecombinational logic circuit510 may comprise a finite state machine comprising acombinational logic512 configured to receive data associated with the surgical instrument or tool at aninput514, process the data by thecombinational logic512, and provide anoutput516.
FIG.15 illustrates asequential logic circuit520 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thesequential logic circuit520 or thecombinational logic522 can be configured to implement various processes described herein. Thesequential logic circuit520 may comprise a finite state machine. Thesequential logic circuit520 may comprise acombinational logic522, at least onememory circuit524, and aclock529, for example. The at least onememory circuit524 can store a current state of the finite state machine. In certain instances, thesequential logic circuit520 may be synchronous or asynchronous. Thecombinational logic522 is configured to receive data associated with the surgical instrument or tool from aninput526, process the data by thecombinational logic522, and provide anoutput528. In other aspects, the circuit may comprise a combination of a processor (e.g.,processor502,FIG.13) and a finite state machine to implement various processes herein. In other aspects, the finite state machine may comprise a combination of a combinational logic circuit (e.g.,combinational logic circuit510,FIG.14) and thesequential logic circuit520.
FIG.16 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions. In certain instances, a first motor can be activated to perform a first function, a second motor can be activated to perform a second function, a third motor can be activated to perform a third function, a fourth motor can be activated to perform a fourth function, and so on. In certain instances, the plurality of motors of roboticsurgical instrument600 can be individually activated to cause firing, closure, and/or articulation motions in the end effector. The firing, closure, and/or articulation motions can be transmitted to the end effector through a shaft assembly, for example.
In certain instances, the surgical instrument system or tool may include a firingmotor602. The firingmotor602 may be operably coupled to a firingmotor drive assembly604 which can be configured to transmit firing motions, generated by themotor602 to the end effector, in particular to displace the I-beam element. In certain instances, the firing motions generated by themotor602 may cause the staples to be deployed from the staple cartridge into tissue captured by the end effector and/or the cutting edge of the I-beam element to be advanced to cut the captured tissue, for example. The I-beam element may be retracted by reversing the direction of themotor602.
In certain instances, the surgical instrument or tool may include aclosure motor603. Theclosure motor603 may be operably coupled to a closuremotor drive assembly605 which can be configured to transmit closure motions, generated by themotor603 to the end effector, in particular to displace a closure tube to close the anvil and compress tissue between the anvil and the staple cartridge. The closure motions may cause the end effector to transition from an open configuration to an approximated configuration to capture tissue, for example. The end effector may be transitioned to an open position by reversing the direction of themotor603.
In certain instances, the surgical instrument or tool may include one ormore articulation motors606a,606b, for example. Themotors606a,606bmay be operably coupled to respective articulationmotor drive assemblies608a,608b, which can be configured to transmit articulation motions generated by themotors606a,606bto the end effector. In certain instances, the articulation motions may cause the end effector to articulate relative to the shaft, for example.
As described above, the surgical instrument or tool may include a plurality of motors which may be configured to perform various independent functions. In certain instances, the plurality of motors of the surgical instrument or tool can be individually or separately activated to perform one or more functions while the other motors remain inactive. For example, thearticulation motors606a,606bcan be activated to cause the end effector to be articulated while the firingmotor602 remains inactive. Alternatively, the firingmotor602 can be activated to fire the plurality of staples, and/or to advance the cutting edge, while the articulation motor606 remains inactive. Furthermore theclosure motor603 may be activated simultaneously with the firingmotor602 to cause the closure tube and the I-beam element to advance distally as described in more detail hereinbelow.
In certain instances, the surgical instrument or tool may include acommon control module610 which can be employed with a plurality of motors of the surgical instrument or tool. In certain instances, thecommon control module610 may accommodate one of the plurality of motors at a time. For example, thecommon control module610 can be couplable to and separable from the plurality of motors of the robotic surgical instrument individually. In certain instances, a plurality of the motors of the surgical instrument or tool may share one or more common control modules such as thecommon control module610. In certain instances, a plurality of motors of the surgical instrument or tool can be individually and selectively engaged with thecommon control module610. In certain instances, thecommon control module610 can be selectively switched from interfacing with one of a plurality of motors of the surgical instrument or tool to interfacing with another one of the plurality of motors of the surgical instrument or tool.
In at least one example, thecommon control module610 can be selectively switched between operable engagement with thearticulation motors606a,606band operable engagement with either the firingmotor602 or theclosure motor603. In at least one example, as illustrated inFIG.16, aswitch614 can be moved or transitioned between a plurality of positions and/or states. In afirst position616, theswitch614 may electrically couple thecommon control module610 to the firingmotor602; in a second position617, theswitch614 may electrically couple thecommon control module610 to theclosure motor603; in athird position618a, theswitch614 may electrically couple thecommon control module610 to thefirst articulation motor606a; and in afourth position618b, theswitch614 may electrically couple thecommon control module610 to thesecond articulation motor606b, for example. In certain instances, separatecommon control modules610 can be electrically coupled to the firingmotor602, theclosure motor603, and the articulations motor606a,606bat the same time. In certain instances, theswitch614 may be a mechanical switch, an electromechanical switch, a solid-state switch, or any suitable switching mechanism.
Each of themotors602,603,606a,606bmay comprise a torque sensor to measure the output torque on the shaft of the motor. The force on an end effector may be sensed in any conventional manner, such as by force sensors on the outer sides of the jaws or by a torque sensor for the motor actuating the jaws.
In various instances, as illustrated inFIG.16, thecommon control module610 may comprise amotor driver626 which may comprise one or more H-Bridge FETs. Themotor driver626 may modulate the power transmitted from apower source628 to a motor coupled to thecommon control module610 based on input from a microcontroller620 (the “controller”), for example. In certain instances, themicrocontroller620 can be employed to determine the current drawn by the motor, for example, while the motor is coupled to thecommon control module610, as described above.
In certain instances, themicrocontroller620 may include a microprocessor622 (the “processor”) and one or more non-transitory computer-readable mediums or memory units624 (the “memory”). In certain instances, thememory624 may store various program instructions, which when executed may cause theprocessor622 to perform a plurality of functions and/or calculations described herein. In certain instances, one or more of thememory units624 may be coupled to theprocessor622, for example.
In certain instances, thepower source628 can be employed to supply power to themicrocontroller620, for example. In certain instances, thepower source628 may comprise a battery (or “battery pack” or “power pack”), such as a lithium-ion battery, for example. In certain instances, the battery pack may be configured to be releasably mounted to a handle for supplying power to thesurgical instrument600. A number of battery cells connected in series may be used as thepower source628. In certain instances, thepower source628 may be replaceable and/or rechargeable, for example.
In various instances, theprocessor622 may control themotor driver626 to control the position, direction of rotation, and/or velocity of a motor that is coupled to thecommon control module610. In certain instances, theprocessor622 can signal themotor driver626 to stop and/or disable a motor that is coupled to thecommon control module610. It should be understood that the term “processor” as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or, at most, a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.
In one instance, theprocessor622 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In certain instances, themicrocontroller620 may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHZ, a prefetch buffer to improve performance above 40 MHZ, a 32 KB single-cycle SRAM, an internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, one or more 12-bit ADCs with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use with the module4410. Accordingly, the present disclosure should not be limited in this context.
In certain instances, thememory624 may include program instructions for controlling each of the motors of thesurgical instrument600 that are couplable to thecommon control module610. For example, thememory624 may include program instructions for controlling the firingmotor602, theclosure motor603, and thearticulation motors606a,606b. Such program instructions may cause theprocessor622 to control the firing, closure, and articulation functions in accordance with inputs from algorithms or control programs of the surgical instrument or tool.
In certain instances, one or more mechanisms and/or sensors such as, for example,sensors630 can be employed to alert theprocessor622 to the program instructions that should be used in a particular setting. For example, thesensors630 may alert theprocessor622 to use the program instructions associated with firing, closing, and articulating the end effector. In certain instances, thesensors630 may comprise position sensors which can be employed to sense the position of theswitch614, for example. Accordingly, theprocessor622 may use the program instructions associated with firing the I-beam of the end effector upon detecting, through thesensors630 for example, that theswitch614 is in thefirst position616; theprocessor622 may use the program instructions associated with closing the anvil upon detecting, through thesensors630 for example, that theswitch614 is in the second position617; and theprocessor622 may use the program instructions associated with articulating the end effector upon detecting, through thesensors630 for example, that theswitch614 is in the third orfourth position618a,618b.
FIG.17 is a schematic diagram of a roboticsurgical instrument700 configured to operate a surgical tool described herein according to one aspect of this disclosure. The roboticsurgical instrument700 may be programmed or configured to control distal/proximal translation of a displacement member, distal/proximal displacement of a closure tube, shaft rotation, and articulation, either with single or multiple articulation drive links. In one aspect, thesurgical instrument700 may be programmed or configured to individually control a firing member, a closure member, a shaft member, and/or one or more articulation members. Thesurgical instrument700 comprises acontrol circuit710 configured to control motor-driven firing members, closure members, shaft members, and/or one or more articulation members.
In one aspect, the roboticsurgical instrument700 comprises acontrol circuit710 configured to control ananvil716 and an I-beam714 (including a sharp cutting edge) portion of anend effector702, a removablestaple cartridge718, ashaft740, and one ormore articulation members742a,742bvia a plurality of motors704a-704e. Aposition sensor734 may be configured to provide position feedback of the I-beam714 to thecontrol circuit710.Other sensors738 may be configured to provide feedback to thecontrol circuit710. A timer/counter731 provides timing and counting information to thecontrol circuit710. Anenergy source712 may be provided to operate the motors704a-704e, and acurrent sensor736 provides motor current feedback to thecontrol circuit710. The motors704a-704ecan be operated individually by thecontrol circuit710 in a open-loop or closed-loop feedback control.
In one aspect, thecontrol circuit710 may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to perform one or more tasks. In one aspect, a timer/counter731 provides an output signal, such as the elapsed time or a digital count, to thecontrol circuit710 to correlate the position of the I-beam714 as determined by theposition sensor734 with the output of the timer/counter731 such that thecontrol circuit710 can determine the position of the I-beam714 at a specific time (t) relative to a starting position or the time (t) when the I-beam714 is at a specific position relative to a starting position. The timer/counter731 may be configured to measure elapsed time, count external events, or time external events.
In one aspect, thecontrol circuit710 may be programmed to control functions of theend effector702 based on one or more tissue conditions. Thecontrol circuit710 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Thecontrol circuit710 may be programmed to select a firing control program or closure control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, thecontrol circuit710 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, thecontrol circuit710 may be programmed to translate the displacement member at a higher velocity and/or with higher power. A closure control program may control the closure force applied to the tissue by theanvil716. Other control programs control the rotation of theshaft740 and thearticulation members742a,742b.
In one aspect, thecontrol circuit710 may generate motor set point signals. The motor set point signals may be provided to various motor controllers708a-708e. The motor controllers708a-708emay comprise one or more circuits configured to provide motor drive signals to the motors704a-704eto drive the motors704a-704eas described herein. In some examples, the motors704a-704emay be brushed DC electric motors. For example, the velocity of the motors704a-704emay be proportional to the respective motor drive signals. In some examples, the motors704a-704emay be brushless DC electric motors, and the respective motor drive signals may comprise a PWM signal provided to one or more stator windings of the motors704a-704e. Also, in some examples, the motor controllers708a-708emay be omitted and thecontrol circuit710 may generate the motor drive signals directly.
In one aspect, thecontrol circuit710 may initially operate each of the motors704a-704ein an open-loop configuration for a first open-loop portion of a stroke of the displacement member. Based on the response of the roboticsurgical instrument700 during the open-loop portion of the stroke, thecontrol circuit710 may select a firing control program in a closed-loop configuration. The response of the instrument may include a translation distance of the displacement member during the open-loop portion, a time elapsed during the open-loop portion, the energy provided to one of the motors704a-704eduring the open-loop portion, a sum of pulse widths of a motor drive signal, etc. After the open-loop portion, thecontrol circuit710 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during a closed-loop portion of the stroke, thecontrol circuit710 may modulate one of the motors704a-704ebased on translation data describing a position of the displacement member in a closed-loop manner to translate the displacement member at a constant velocity.
In one aspect, the motors704a-704emay receive power from anenergy source712. Theenergy source712 may be a DC power supply driven by a main alternating current power source, a battery, a super capacitor, or any other suitable energy source. The motors704a-704emay be mechanically coupled to individual movable mechanical elements such as the I-beam714,anvil716,shaft740,articulation742a, andarticulation742bvia respective transmissions706a-706e. The transmissions706a-706emay include one or more gears or other linkage components to couple the motors704a-704eto movable mechanical elements. Aposition sensor734 may sense a position of the I-beam714. Theposition sensor734 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam714. In some examples, theposition sensor734 may include an encoder configured to provide a series of pulses to thecontrol circuit710 as the I-beam714 translates distally and proximally. Thecontrol circuit710 may track the pulses to determine the position of the I-beam714. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam714. Also, in some examples, theposition sensor734 may be omitted. Where any of the motors704a-704eis a stepper motor, thecontrol circuit710 may track the position of the I-beam714 by aggregating the number and direction of steps that the motor704 has been instructed to execute. Theposition sensor734 may be located in theend effector702 or at any other portion of the instrument. The outputs of each of the motors704a-704einclude a torque sensor744a-744eto sense force and have an encoder to sense rotation of the drive shaft.
In one aspect, thecontrol circuit710 is configured to drive a firing member such as the I-beam714 portion of theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708a, which provides a drive signal to themotor704a. The output shaft of themotor704ais coupled to a torque sensor744a. The torque sensor744ais coupled to atransmission706awhich is coupled to the I-beam714. Thetransmission706acomprises movable mechanical elements such as rotating elements and a firing member to control the movement of the I-beam714 distally and proximally along a longitudinal axis of theend effector702. In one aspect, themotor704amay be coupled to the knife gear assembly, which includes a knife gear reduction set that includes a first knife drive gear and a second knife drive gear. A torque sensor744aprovides a firing force feedback signal to thecontrol circuit710. The firing force signal represents the force required to fire or displace the I-beam714. Aposition sensor734 may be configured to provide the position of the I-beam714 along the firing stroke or the position of the firing member as a feedback signal to thecontrol circuit710. Theend effector702 may includeadditional sensors738 configured to provide feedback signals to thecontrol circuit710. When ready to use, thecontrol circuit710 may provide a firing signal to themotor control708a. In response to the firing signal, themotor704amay drive the firing member distally along the longitudinal axis of theend effector702 from a proximal stroke start position to a stroke end position distal to the stroke start position. As the firing member translates distally, an I-beam714, with a cutting element positioned at a distal end, advances distally to cut tissue located between thestaple cartridge718 and theanvil716.
In one aspect, thecontrol circuit710 is configured to drive a closure member such as theanvil716 portion of theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708b, which provides a drive signal to themotor704b. The output shaft of themotor704bis coupled to atorque sensor744b. Thetorque sensor744bis coupled to atransmission706bwhich is coupled to theanvil716. Thetransmission706bcomprises movable mechanical elements such as rotating elements and a closure member to control the movement of theanvil716 from the open and closed positions. In one aspect, themotor704bis coupled to a closure gear assembly, which includes a closure reduction gear set that is supported in meshing engagement with the closure spur gear. Thetorque sensor744bprovides a closure force feedback signal to thecontrol circuit710. The closure force feedback signal represents the closure force applied to theanvil716. Theposition sensor734 may be configured to provide the position of the closure member as a feedback signal to thecontrol circuit710.Additional sensors738 in theend effector702 may provide the closure force feedback signal to thecontrol circuit710. Thepivotable anvil716 is positioned opposite thestaple cartridge718. When ready to use, thecontrol circuit710 may provide a closure signal to themotor control708b. In response to the closure signal, themotor704badvances a closure member to grasp tissue between theanvil716 and thestaple cartridge718.
In one aspect, thecontrol circuit710 is configured to rotate a shaft member such as theshaft740 to rotate theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708c, which provides a drive signal to themotor704c. The output shaft of themotor704cis coupled to atorque sensor744c. Thetorque sensor744cis coupled to atransmission706cwhich is coupled to theshaft740. Thetransmission706ccomprises movable mechanical elements such as rotating elements to control the rotation of theshaft740 clockwise or counterclockwise up to and over 360°. In one aspect, themotor704cis coupled to the rotational transmission assembly, which includes a tube gear segment that is formed on (or attached to) the proximal end of the proximal closure tube for operable engagement by a rotational gear assembly that is operably supported on the tool mounting plate. Thetorque sensor744cprovides a rotation force feedback signal to thecontrol circuit710. The rotation force feedback signal represents the rotation force applied to theshaft740. Theposition sensor734 may be configured to provide the position of the closure member as a feedback signal to thecontrol circuit710.Additional sensors738 such as a shaft encoder may provide the rotational position of theshaft740 to thecontrol circuit710.
In one aspect, thecontrol circuit710 is configured to articulate theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708d, which provides a drive signal to themotor704d. The output shaft of themotor704dis coupled to atorque sensor744d. Thetorque sensor744dis coupled to atransmission706dwhich is coupled to anarticulation member742a. Thetransmission706dcomprises movable mechanical elements such as articulation elements to control the articulation of theend effector702±65°. In one aspect, themotor704dis coupled to an articulation nut, which is rotatably journaled on the proximal end portion of the distal spine portion and is rotatably driven thereon by an articulation gear assembly. Thetorque sensor744dprovides an articulation force feedback signal to thecontrol circuit710. The articulation force feedback signal represents the articulation force applied to theend effector702.Sensors738, such as an articulation encoder, may provide the articulation position of theend effector702 to thecontrol circuit710.
In another aspect, the articulation function of the roboticsurgical system700 may comprise two articulation members, or links,742a,742b. Thesearticulation members742a,742bare driven by separate disks on the robot interface (the rack) which are driven by the twomotors708d,708e. When theseparate firing motor704ais provided, each ofarticulation links742a,742bcan be antagonistically driven with respect to the other link in order to provide a resistive holding motion and a load to the head when it is not moving and to provide an articulation motion as the head is articulated. Thearticulation members742a,742battach to the head at a fixed radius as the head is rotated. Accordingly, the mechanical advantage of the push-and-pull link changes as the head is rotated. This change in the mechanical advantage may be more pronounced with other articulation link drive systems.
In one aspect, the one or more motors704a-704emay comprise a brushed DC motor with a gearbox and mechanical links to a firing member, closure member, or articulation member. Another example includes electric motors704a-704ethat operate the movable mechanical elements such as the displacement member, articulation links, closure tube, and shaft. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies, and friction on the physical system. Such outside influence can be referred to as drag, which acts in opposition to one of electric motors704a-704e. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.
In one aspect, theposition sensor734 may be implemented as an absolute positioning system. In one aspect, theposition sensor734 may comprise a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor734 may interface with thecontrol circuit710 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.
In one aspect, thecontrol circuit710 may be in communication with one ormore sensors738. Thesensors738 may be positioned on theend effector702 and adapted to operate with the roboticsurgical instrument700 to measure the various derived parameters such as the gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors738 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a load cell, a pressure sensor, a force sensor, a torque sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector702. Thesensors738 may include one or more sensors. Thesensors738 may be located on thestaple cartridge718 deck to determine tissue location using segmented electrodes. The torque sensors744a-744emay be configured to sense force such as firing force, closure force, and/or articulation force, among others. Accordingly, thecontrol circuit710 can sense (1) the closure load experienced by the distal closure tube and its position, (2) the firing member at the rack and its position, (3) what portion of thestaple cartridge718 has tissue on it, and (4) the load and position on both articulation rods.
In one aspect, the one ormore sensors738 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in theanvil716 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. Thesensors738 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between theanvil716 and thestaple cartridge718. Thesensors738 may be configured to detect impedance of a tissue section located between theanvil716 and thestaple cartridge718 that is indicative of the thickness and/or fullness of tissue located therebetween.
In one aspect, thesensors738 may be implemented as one or more limit switches, electromechanical devices, solid-state switches, Hall-effect devices, magneto-resistive (MR) devices, giant magneto-resistive (GMR) devices, magnetometers, among others. In other implementations, thesensors738 may be implemented as solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, thesensors738 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.
In one aspect, thesensors738 may be configured to measure forces exerted on theanvil716 by the closure drive system. For example, one ormore sensors738 can be at an interaction point between the closure tube and theanvil716 to detect the closure forces applied by the closure tube to theanvil716. The forces exerted on theanvil716 can be representative of the tissue compression experienced by the tissue section captured between theanvil716 and thestaple cartridge718. The one ormore sensors738 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to theanvil716 by the closure drive system. The one ormore sensors738 may be sampled in real time during a clamping operation by the processor of thecontrol circuit710. Thecontrol circuit710 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to theanvil716.
In one aspect, acurrent sensor736 can be employed to measure the current drawn by each of the motors704a-704e. The force required to advance any of the movable mechanical elements such as the I-beam714 corresponds to the current drawn by one of the motors704a-704e. The force is converted to a digital signal and provided to thecontrol circuit710. Thecontrol circuit710 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move an I-beam714 in theend effector702 at or near a target velocity. The roboticsurgical instrument700 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, a linear-quadratic (LQR), and/or an adaptive controller, for example. The roboticsurgical instrument700 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example. Additional details are disclosed in U.S. patent application Ser. No. 15/636,829, titled METHODS FOR CLOSED LOOP VELOCITY CONTROL FOR ROBOTIC SURGICAL INSTRUMENT, filed Jun. 29, 2017, now U.S. Pat. No. 10,932,772, which is herein incorporated by reference in its entirety.
FIG.18 illustrates a block diagram of asurgical instrument750 programmed to control the distal translation of a displacement member according to one aspect of this disclosure. In one aspect, thesurgical instrument750 is programmed to control the distal translation of a displacement member such as the I-beam764. Thesurgical instrument750 comprises anend effector752 that may comprise ananvil766, an I-beam764 (including a sharp cutting edge), and a removablestaple cartridge768.
The position, movement, displacement, and/or translation of a linear displacement member, such as the I-beam764, can be measured by an absolute positioning system, sensor arrangement, andposition sensor784. Because the I-beam764 is coupled to a longitudinally movable drive member, the position of the I-beam764 can be determined by measuring the position of the longitudinally movable drive member employing theposition sensor784. Accordingly, in the following description, the position, displacement, and/or translation of the I-beam764 can be achieved by theposition sensor784 as described herein. Acontrol circuit760 may be programmed to control the translation of the displacement member, such as the I-beam764. Thecontrol circuit760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., the I-beam764, in the manner described. In one aspect, a timer/counter781 provides an output signal, such as the elapsed time or a digital count, to thecontrol circuit760 to correlate the position of the I-beam764 as determined by theposition sensor784 with the output of the timer/counter781 such that thecontrol circuit760 can determine the position of the I-beam764 at a specific time (t) relative to a starting position. The timer/counter781 may be configured to measure elapsed time, count external events, or time external events.
Thecontrol circuit760 may generate a motor setpoint signal772. The motor setpoint signal772 may be provided to amotor controller758. Themotor controller758 may comprise one or more circuits configured to provide amotor drive signal774 to themotor754 to drive themotor754 as described herein. In some examples, themotor754 may be a brushed DC electric motor. For example, the velocity of themotor754 may be proportional to themotor drive signal774. In some examples, themotor754 may be a brushless DC electric motor and themotor drive signal774 may comprise a PWM signal provided to one or more stator windings of themotor754. Also, in some examples, themotor controller758 may be omitted, and thecontrol circuit760 may generate themotor drive signal774 directly.
Themotor754 may receive power from anenergy source762. Theenergy source762 may be or include a battery, a super capacitor, or any other suitable energy source. Themotor754 may be mechanically coupled to the I-beam764 via atransmission756. Thetransmission756 may include one or more gears or other linkage components to couple themotor754 to the I-beam764. Aposition sensor784 may sense a position of the I-beam764. Theposition sensor784 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam764. In some examples, theposition sensor784 may include an encoder configured to provide a series of pulses to thecontrol circuit760 as the I-beam764 translates distally and proximally. Thecontrol circuit760 may track the pulses to determine the position of the I-beam764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam764. Also, in some examples, theposition sensor784 may be omitted. Where themotor754 is a stepper motor, thecontrol circuit760 may track the position of the I-beam764 by aggregating the number and direction of steps that themotor754 has been instructed to execute. Theposition sensor784 may be located in theend effector752 or at any other portion of the instrument.
Thecontrol circuit760 may be in communication with one ormore sensors788. Thesensors788 may be positioned on theend effector752 and adapted to operate with thesurgical instrument750 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector752. Thesensors788 may include one or more sensors.
The one ormore sensors788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in theanvil766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. Thesensors788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between theanvil766 and thestaple cartridge768. Thesensors788 may be configured to detect impedance of a tissue section located between theanvil766 and thestaple cartridge768 that is indicative of the thickness and/or fullness of tissue located therebetween.
Thesensors788 may be is configured to measure forces exerted on theanvil766 by a closure drive system. For example, one ormore sensors788 can be at an interaction point between a closure tube and theanvil766 to detect the closure forces applied by a closure tube to theanvil766. The forces exerted on theanvil766 can be representative of the tissue compression experienced by the tissue section captured between theanvil766 and thestaple cartridge768. The one ormore sensors788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to theanvil766 by the closure drive system. The one ormore sensors788 may be sampled in real time during a clamping operation by a processor of thecontrol circuit760. Thecontrol circuit760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to theanvil766.
Acurrent sensor786 can be employed to measure the current drawn by themotor754. The force required to advance the I-beam764 corresponds to the current drawn by themotor754. The force is converted to a digital signal and provided to thecontrol circuit760.
Thecontrol circuit760 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move an I-beam764 in theend effector752 at or near a target velocity. Thesurgical instrument750 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, LQR, and/or an adaptive controller, for example. Thesurgical instrument750 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example.
The actual drive system of thesurgical instrument750 is configured to drive the displacement member, cutting member, or I-beam764, by a brushed DC motor with gearbox and mechanical links to an articulation and/or knife system. Another example is theelectric motor754 that operates the displacement member and the articulation driver, for example, of an interchangeable shaft assembly. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies and friction on the physical system. Such outside influence can be referred to as drag which acts in opposition to theelectric motor754. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.
Various example aspects are directed to asurgical instrument750 comprising anend effector752 with motor-driven surgical stapling and cutting implements. For example, amotor754 may drive a displacement member distally and proximally along a longitudinal axis of theend effector752. Theend effector752 may comprise apivotable anvil766 and, when configured for use, astaple cartridge768 positioned opposite theanvil766. A clinician may grasp tissue between theanvil766 and thestaple cartridge768, as described herein. When ready to use theinstrument750, the clinician may provide a firing signal, for example by depressing a trigger of theinstrument750. In response to the firing signal, themotor754 may drive the displacement member distally along the longitudinal axis of theend effector752 from a proximal stroke begin position to a stroke end position distal of the stroke begin position. As the displacement member translates distally, an I-beam764 with a cutting element positioned at a distal end, may cut the tissue between thestaple cartridge768 and theanvil766.
In various examples, thesurgical instrument750 may comprise acontrol circuit760 programmed to control the distal translation of the displacement member, such as the I-beam764, for example, based on one or more tissue conditions. Thecontrol circuit760 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Thecontrol circuit760 may be programmed to select a firing control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, thecontrol circuit760 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, thecontrol circuit760 may be programmed to translate the displacement member at a higher velocity and/or with higher power.
In some examples, thecontrol circuit760 may initially operate themotor754 in an open loop configuration for a first open loop portion of a stroke of the displacement member. Based on a response of theinstrument750 during the open loop portion of the stroke, thecontrol circuit760 may select a firing control program. The response of the instrument may include, a translation distance of the displacement member during the open loop portion, a time elapsed during the open loop portion, energy provided to themotor754 during the open loop portion, a sum of pulse widths of a motor drive signal, etc. After the open loop portion, thecontrol circuit760 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during the closed loop portion of the stroke, thecontrol circuit760 may modulate themotor754 based on translation data describing a position of the displacement member in a closed loop manner to translate the displacement member at a constant velocity. Additional details are disclosed in U.S. patent application Ser. No. 15/720,852, titled SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT, filed Sep. 29, 2017, now U.S. Pat. No. 10,743,872, which is herein incorporated by reference in its entirety.
FIG.19 is a schematic diagram of asurgical instrument790 configured to control various functions according to one aspect of this disclosure. In one aspect, thesurgical instrument790 is programmed to control distal translation of a displacement member such as the I-beam764. Thesurgical instrument790 comprises anend effector792 that may comprise ananvil766, an I-beam764, and a removablestaple cartridge768 which may be interchanged with an RF cartridge796 (shown in dashed line).
In one aspect,sensors788 may be implemented as a limit switch, electromechanical device, solid-state switches, Hall-effect devices, MR devices, GMR devices, magnetometers, among others. In other implementations, the sensors638 may be solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, thesensors788 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.
In one aspect, theposition sensor784 may be implemented as an absolute positioning system comprising a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor784 may interface with thecontrol circuit760 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.
In one aspect, the I-beam764 may be implemented as a knife member comprising a knife body that operably supports a tissue cutting blade thereon and may further include anvil engagement tabs or features and channel engagement features or a foot. In one aspect, thestaple cartridge768 may be implemented as a standard (mechanical) surgical fastener cartridge. In one aspect, theRF cartridge796 may be implemented as an RF cartridge. These and other sensors arrangements are described in commonly owned U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, now U.S. Pat. No. 10,881,399, which is herein incorporated by reference in its entirety.
The position, movement, displacement, and/or translation of a linear displacement member, such as the I-beam764, can be measured by an absolute positioning system, sensor arrangement, and position sensor represented asposition sensor784. Because the I-beam764 is coupled to the longitudinally movable drive member, the position of the I-beam764 can be determined by measuring the position of the longitudinally movable drive member employing theposition sensor784. Accordingly, in the following description, the position, displacement, and/or translation of the I-beam764 can be achieved by theposition sensor784 as described herein. Acontrol circuit760 may be programmed to control the translation of the displacement member, such as the I-beam764, as described herein. Thecontrol circuit760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., the I-beam764, in the manner described. In one aspect, a timer/counter781 provides an output signal, such as the elapsed time or a digital count, to thecontrol circuit760 to correlate the position of the I-beam764 as determined by theposition sensor784 with the output of the timer/counter781 such that thecontrol circuit760 can determine the position of the I-beam764 at a specific time (t) relative to a starting position. The timer/counter781 may be configured to measure elapsed time, count external events, or time external events.
Thecontrol circuit760 may generate a motor setpoint signal772. The motor setpoint signal772 may be provided to amotor controller758. Themotor controller758 may comprise one or more circuits configured to provide amotor drive signal774 to themotor754 to drive themotor754 as described herein. In some examples, themotor754 may be a brushed DC electric motor. For example, the velocity of themotor754 may be proportional to themotor drive signal774. In some examples, themotor754 may be a brushless DC electric motor and themotor drive signal774 may comprise a PWM signal provided to one or more stator windings of themotor754. Also, in some examples, themotor controller758 may be omitted, and thecontrol circuit760 may generate themotor drive signal774 directly.
Themotor754 may receive power from anenergy source762. Theenergy source762 may be or include a battery, a super capacitor, or any other suitable energy source. Themotor754 may be mechanically coupled to the I-beam764 via atransmission756. Thetransmission756 may include one or more gears or other linkage components to couple themotor754 to the I-beam764. Aposition sensor784 may sense a position of the I-beam764. Theposition sensor784 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam764. In some examples, theposition sensor784 may include an encoder configured to provide a series of pulses to thecontrol circuit760 as the I-beam764 translates distally and proximally. Thecontrol circuit760 may track the pulses to determine the position of the I-beam764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam764. Also, in some examples, theposition sensor784 may be omitted. Where themotor754 is a stepper motor, thecontrol circuit760 may track the position of the I-beam764 by aggregating the number and direction of steps that the motor has been instructed to execute. Theposition sensor784 may be located in theend effector792 or at any other portion of the instrument.
Thecontrol circuit760 may be in communication with one ormore sensors788. Thesensors788 may be positioned on theend effector792 and adapted to operate with thesurgical instrument790 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector792. Thesensors788 may include one or more sensors.
The one ormore sensors788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in theanvil766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. Thesensors788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between theanvil766 and thestaple cartridge768. Thesensors788 may be configured to detect impedance of a tissue section located between theanvil766 and thestaple cartridge768 that is indicative of the thickness and/or fullness of tissue located therebetween.
Thesensors788 may be is configured to measure forces exerted on theanvil766 by the closure drive system. For example, one ormore sensors788 can be at an interaction point between a closure tube and theanvil766 to detect the closure forces applied by a closure tube to theanvil766. The forces exerted on theanvil766 can be representative of the tissue compression experienced by the tissue section captured between theanvil766 and thestaple cartridge768. The one ormore sensors788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to theanvil766 by the closure drive system. The one ormore sensors788 may be sampled in real time during a clamping operation by a processor portion of thecontrol circuit760. Thecontrol circuit760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to theanvil766.
Acurrent sensor786 can be employed to measure the current drawn by themotor754. The force required to advance the I-beam764 corresponds to the current drawn by themotor754. The force is converted to a digital signal and provided to thecontrol circuit760.
AnRF energy source794 is coupled to theend effector792 and is applied to theRF cartridge796 when theRF cartridge796 is loaded in theend effector792 in place of thestaple cartridge768. Thecontrol circuit760 controls the delivery of the RF energy to theRF cartridge796.
Additional details are disclosed in U.S. patent application Ser. No. 15/636,096, titled SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE, AND METHOD OF USING SAME, filed Jun. 28, 2017, now U.S. Patent Application Publication No. 2019/0000478, which is herein incorporated by reference in its entirety.
Generator Hardware
FIG.20 is a simplified block diagram of agenerator800 configured to provide inductorless tuning, among other benefits. Additional details of thegenerator800 are described in U.S. Pat. No. 9,060,775, titled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, which issued on Jun. 23, 2015, which is herein incorporated by reference in its entirety. Thegenerator800 may comprise a patientisolated stage802 in communication with anon-isolated stage804 via a power transformer806. A secondary winding808 of the power transformer806 is contained in theisolated stage802 and may comprise a tapped configuration (e.g., a center-tapped or a non-center-tapped configuration) to define drive signal outputs810a,810b,810cfor delivering drive signals to different surgical instruments, such as, for example, an ultrasonic surgical instrument, an RF electrosurgical instrument, and a multifunction surgical instrument which includes ultrasonic and RF energy modes that can be delivered alone or simultaneously. In particular, drive signal outputs810a,810cmay output an ultrasonic drive signal (e.g., a 420V root-mean-square (RMS) drive signal) to an ultrasonic surgical instrument, and drive signal outputs810b,810cmay output an RF electrosurgical drive signal (e.g., a 100V RMS drive signal) to an RF electrosurgical instrument, with thedrive signal output810bcorresponding to the center tap of the power transformer806.
In certain forms, the ultrasonic and electrosurgical drive signals may be provided simultaneously to distinct surgical instruments and/or to a single surgical instrument, such as the multifunction surgical instrument, having the capability to deliver both ultrasonic and electrosurgical energy to tissue. It will be appreciated that the electrosurgical signal, provided either to a dedicated electrosurgical instrument and/or to a combined multifunction ultrasonic/electrosurgical instrument may be either a therapeutic or sub-therapeutic level signal where the sub-therapeutic signal can be used, for example, to monitor tissue or instrument conditions and provide feedback to the generator. For example, the ultrasonic and RF signals can be delivered separately or simultaneously from a generator with a single output port in order to provide the desired output signal to the surgical instrument, as will be discussed in more detail below. Accordingly, the generator can combine the ultrasonic and electrosurgical RF energies and deliver the combined energies to the multifunction ultrasonic/electrosurgical instrument. Bipolar electrodes can be placed on one or both jaws of the end effector. One jaw may be driven by ultrasonic energy in addition to electrosurgical RF energy, working simultaneously. The ultrasonic energy may be employed to dissect tissue, while the electrosurgical RF energy may be employed for vessel sealing.
Thenon-isolated stage804 may comprise apower amplifier812 having an output connected to a primary winding814 of the power transformer806. In certain forms, thepower amplifier812 may comprise a push-pull amplifier. For example, thenon-isolated stage804 may further comprise alogic device816 for supplying a digital output to a digital-to-analog converter (DAC)circuit818, which in turn supplies a corresponding analog signal to an input of thepower amplifier812. In certain forms, thelogic device816 may comprise a programmable gate array (PGA), a FPGA, programmable logic device (PLD), among other logic circuits, for example. Thelogic device816, by virtue of controlling the input of thepower amplifier812 via theDAC circuit818, may therefore control any of a number of parameters (e.g., frequency, waveform shape, waveform amplitude) of drive signals appearing at the drive signal outputs810a,810b,810c. In certain forms and as discussed below, thelogic device816, in conjunction with a processor (e.g., a DSP discussed below), may implement a number of DSP-based and/or other control algorithms to control parameters of the drive signals output by thegenerator800.
Power may be supplied to a power rail of thepower amplifier812 by a switch-mode regulator820, e.g., a power converter. In certain forms, the switch-mode regulator820 may comprise an adjustable buck regulator, for example. Thenon-isolated stage804 may further comprise afirst processor822, which in one form may comprise a DSP processor such as an Analog Devices ADSP-21469 SHARC DSP, available from Analog Devices, Norwood, MA, for example, although in various forms any suitable processor may be employed. In certain forms theDSP processor822 may control the operation of the switch-mode regulator820 responsive to voltage feedback data received from thepower amplifier812 by theDSP processor822 via anADC circuit824. In one form, for example, theDSP processor822 may receive as input, via theADC circuit824, the waveform envelope of a signal (e.g., an RF signal) being amplified by thepower amplifier812. TheDSP processor822 may then control the switch-mode regulator820 (e.g., via a PWM output) such that the rail voltage supplied to thepower amplifier812 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of thepower amplifier812 based on the waveform envelope, the efficiency of thepower amplifier812 may be significantly improved relative to a fixed rail voltage amplifier schemes.
In certain forms, thelogic device816, in conjunction with theDSP processor822, may implement a digital synthesis circuit such as a direct digital synthesizer control scheme to control the waveform shape, frequency, and/or amplitude of drive signals output by thegenerator800. In one form, for example, thelogic device816 may implement a DDS control algorithm by recalling waveform samples stored in a dynamically updated lookup table (LUT), such as a RAM LUT, which may be embedded in an FPGA. This control algorithm is particularly useful for ultrasonic applications in which an ultrasonic transducer, such as an ultrasonic transducer, may be driven by a clean sinusoidal current at its resonant frequency. Because other frequencies may excite parasitic resonances, minimizing or reducing the total distortion of the motional branch current may correspondingly minimize or reduce undesirable resonance effects. Because the waveform shape of a drive signal output by thegenerator800 is impacted by various sources of distortion present in the output drive circuit (e.g., the power transformer806, the power amplifier812), voltage and current feedback data based on the drive signal may be input into an algorithm, such as an error control algorithm implemented by theDSP processor822, which compensates for distortion by suitably pre-distorting or modifying the waveform samples stored in the LUT on a dynamic, ongoing basis (e.g., in real time). In one form, the amount or degree of pre-distortion applied to the LUT samples may be based on the error between a computed motional branch current and a desired current waveform shape, with the error being determined on a sample-by-sample basis. In this way, the pre-distorted LUT samples, when processed through the drive circuit, may result in a motional branch drive signal having the desired waveform shape (e.g., sinusoidal) for optimally driving the ultrasonic transducer. In such forms, the LUT waveform samples will therefore not represent the desired waveform shape of the drive signal, but rather the waveform shape that is required to ultimately produce the desired waveform shape of the motional branch drive signal when distortion effects are taken into account.
Thenon-isolated stage804 may further comprise afirst ADC circuit826 and asecond ADC circuit828 coupled to the output of the power transformer806 via respective isolation transformers830,832 for respectively sampling the voltage and current of drive signals output by thegenerator800. In certain forms, theADC circuits826,828 may be configured to sample at high speeds (e.g., 80 mega samples per second (MSPS)) to enable oversampling of the drive signals. In one form, for example, the sampling speed of theADC circuits826,828 may enable approximately 200× (depending on frequency) oversampling of the drive signals. In certain forms, the sampling operations of theADC circuit826,828 may be performed by a single ADC circuit receiving input voltage and current signals via a two-way multiplexer. The use of high-speed sampling in forms of thegenerator800 may enable, among other things, calculation of the complex current flowing through the motional branch (which may be used in certain forms to implement DDS-based waveform shape control described above), accurate digital filtering of the sampled signals, and calculation of real power consumption with a high degree of precision. Voltage and current feedback data output by theADC circuits826,828 may be received and processed (e.g., first-in-first-out (FIFO) buffer, multiplexer) by thelogic device816 and stored in data memory for subsequent retrieval by, for example, theDSP processor822. As noted above, voltage and current feedback data may be used as input to an algorithm for pre-distorting or modifying LUT waveform samples on a dynamic and ongoing basis. In certain forms, this may require each stored voltage and current feedback data pair to be indexed based on, or otherwise associated with, a corresponding LUT sample that was output by thelogic device816 when the voltage and current feedback data pair was acquired. Synchronization of the LUT samples and the voltage and current feedback data in this manner contributes to the correct timing and stability of the pre-distortion algorithm.
In certain forms, the voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signals. In one form, for example, voltage and current feedback data may be used to determine impedance phase. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), thereby minimizing or reducing the effects of harmonic distortion and correspondingly enhancing impedance phase measurement accuracy. The determination of phase impedance and a frequency control signal may be implemented in theDSP processor822, for example, with the frequency control signal being supplied as input to a DDS control algorithm implemented by thelogic device816.
In another form, for example, the current feedback data may be monitored in order to maintain the current amplitude of the drive signal at a current amplitude setpoint. The current amplitude setpoint may be specified directly or determined indirectly based on specified voltage amplitude and power setpoints. In certain forms, control of the current amplitude may be implemented by control algorithm, such as, for example, a proportional-integral-derivative (PID) control algorithm, in theDSP processor822. Variables controlled by the control algorithm to suitably control the current amplitude of the drive signal may include, for example, the scaling of the LUT waveform samples stored in thelogic device816 and/or the full-scale output voltage of the DAC circuit818 (which supplies the input to the power amplifier812) via aDAC circuit834.
Thenon-isolated stage804 may further comprise asecond processor836 for providing, among other things user interface (UI) functionality. In one form, theUI processor836 may comprise an Atmel AT91SAM9263 processor having an ARM 926EJ-S core, available from Atmel Corporation, San Jose, California, for example. Examples of UI functionality supported by theUI processor836 may include audible and visual user feedback, communication with peripheral devices (e.g., via a USB interface), communication with a foot switch, communication with an input device (e.g., a touch screen display) and communication with an output device (e.g., a speaker). TheUI processor836 may communicate with theDSP processor822 and the logic device816 (e.g., via SPI buses). Although theUI processor836 may primarily support UI functionality, it may also coordinate with theDSP processor822 to implement hazard mitigation in certain forms. For example, theUI processor836 may be programmed to monitor various aspects of user input and/or other inputs (e.g., touch screen inputs, foot switch inputs, temperature sensor inputs) and may disable the drive output of thegenerator800 when an erroneous condition is detected.
In certain forms, both theDSP processor822 and theUI processor836, for example, may determine and monitor the operating state of thegenerator800. For theDSP processor822, the operating state of thegenerator800 may dictate, for example, which control and/or diagnostic processes are implemented by theDSP processor822. For theUI processor836, the operating state of thegenerator800 may dictate, for example, which elements of a UI (e.g., display screens, sounds) are presented to a user. The respective DSP andUI processors822,836 may independently maintain the current operating state of thegenerator800 and recognize and evaluate possible transitions out of the current operating state. TheDSP processor822 may function as the master in this relationship and determine when transitions between operating states are to occur. TheUI processor836 may be aware of valid transitions between operating states and may confirm if a particular transition is appropriate. For example, when theDSP processor822 instructs theUI processor836 to transition to a specific state, theUI processor836 may verify that requested transition is valid. In the event that a requested transition between states is determined to be invalid by theUI processor836, theUI processor836 may cause thegenerator800 to enter a failure mode.
Thenon-isolated stage804 may further comprise acontroller838 for monitoring input devices (e.g., a capacitive touch sensor used for turning thegenerator800 on and off, a capacitive touch screen). In certain forms, thecontroller838 may comprise at least one processor and/or other controller device in communication with theUI processor836. In one form, for example, thecontroller838 may comprise a processor (e.g., a Meg168 8-bit controller available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. In one form, thecontroller838 may comprise a touch screen controller (e.g., a QT5480 touch screen controller available from Atmel) to control and manage the acquisition of touch data from a capacitive touch screen.
In certain forms, when thegenerator800 is in a “power off” state, thecontroller838 may continue to receive operating power (e.g., via a line from a power supply of thegenerator800, such as thepower supply854 discussed below). In this way, thecontroller838 may continue to monitor an input device (e.g., a capacitive touch sensor located on a front panel of the generator800) for turning thegenerator800 on and off. When thegenerator800 is in the power off state, thecontroller838 may wake the power supply (e.g., enable operation of one or more DC/DC voltage converters856 of the power supply854) if activation of the “on/off” input device by a user is detected. Thecontroller838 may therefore initiate a sequence for transitioning thegenerator800 to a “power on” state. Conversely, thecontroller838 may initiate a sequence for transitioning thegenerator800 to the power off state if activation of the “on/off” input device is detected when thegenerator800 is in the power on state. In certain forms, for example, thecontroller838 may report activation of the “on/off” input device to theUI processor836, which in turn implements the necessary process sequence for transitioning thegenerator800 to the power off state. In such forms, thecontroller838 may have no independent ability for causing the removal of power from thegenerator800 after its power on state has been established.
In certain forms, thecontroller838 may cause thegenerator800 to provide audible or other sensory feedback for alerting the user that a power on or power off sequence has been initiated. Such an alert may be provided at the beginning of a power on or power off sequence and prior to the commencement of other processes associated with the sequence.
In certain forms, theisolated stage802 may comprise aninstrument interface circuit840 to, for example, provide a communication interface between a control circuit of a surgical instrument (e.g., a control circuit comprising handpiece switches) and components of thenon-isolated stage804, such as, for example, thelogic device816, theDSP processor822, and/or theUI processor836. Theinstrument interface circuit840 may exchange information with components of thenon-isolated stage804 via a communication link that maintains a suitable degree of electrical isolation between the isolated andnon-isolated stages802,804, such as, for example, an IR-based communication link. Power may be supplied to theinstrument interface circuit840 using, for example, a low-dropout voltage regulator powered by an isolation transformer driven from thenon-isolated stage804.
In one form, theinstrument interface circuit840 may comprise a logic circuit842 (e.g., logic circuit, programmable logic circuit, PGA, FPGA, PLD) in communication with a signal conditioning circuit844. The signal conditioning circuit844 may be configured to receive a periodic signal from the logic circuit842 (e.g., a 2 kHz square wave) to generate a bipolar interrogation signal having an identical frequency. The interrogation signal may be generated, for example, using a bipolar current source fed by a differential amplifier. The interrogation signal may be communicated to a surgical instrument control circuit (e.g., by using a conductive pair in a cable that connects thegenerator800 to the surgical instrument) and monitored to determine a state or configuration of the control circuit. The control circuit may comprise a number of switches, resistors, and/or diodes to modify one or more characteristics (e.g., amplitude, rectification) of the interrogation signal such that a state or configuration of the control circuit is uniquely discernable based on the one or more characteristics. In one form, for example, the signal conditioning circuit844 may comprise an ADC circuit for generating samples of a voltage signal appearing across inputs of the control circuit resulting from passage of interrogation signal therethrough. The logic circuit842 (or a component of the non-isolated stage804) may then determine the state or configuration of the control circuit based on the ADC circuit samples.
In one form, theinstrument interface circuit840 may comprise a first data circuit interface846 to enable information exchange between the logic circuit842 (or other element of the instrument interface circuit840) and a first data circuit disposed in or otherwise associated with a surgical instrument. In certain forms, for example, a first data circuit may be disposed in a cable integrally attached to a surgical instrument handpiece or in an adaptor for interfacing a specific surgical instrument type or model with thegenerator800. The first data circuit may be implemented in any suitable manner and may communicate with the generator according to any suitable protocol, including, for example, as described herein with respect to the first data circuit. In certain forms, the first data circuit may comprise a non-volatile storage device, such as an EEPROM device. In certain forms, the first data circuit interface846 may be implemented separately from the logic circuit842 and comprise suitable circuitry (e.g., discrete logic devices, a processor) to enable communication between the logic circuit842 and the first data circuit. In other forms, the first data circuit interface846 may be integral with the logic circuit842.
In certain forms, the first data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information. This information may be read by the instrument interface circuit840 (e.g., by the logic circuit842), transferred to a component of the non-isolated stage804 (e.g., tologic device816,DSP processor822, and/or UI processor836) for presentation to a user via an output device and/or for controlling a function or operation of thegenerator800. Additionally, any type of information may be communicated to the first data circuit for storage therein via the first data circuit interface846 (e.g., using the logic circuit842). Such information may comprise, for example, an updated number of operations in which the surgical instrument has been used and/or dates and/or times of its usage.
As discussed previously, a surgical instrument may be detachable from a handpiece (e.g., the multifunction surgical instrument may be detachable from the handpiece) to promote instrument interchangeability and/or disposability. In such cases, conventional generators may be limited in their ability to recognize particular instrument configurations being used and to optimize control and diagnostic processes accordingly. The addition of readable data circuits to surgical instruments to address this issue is problematic from a compatibility standpoint, however. For example, designing a surgical instrument to remain backwardly compatible with generators that lack the requisite data reading functionality may be impractical due to, for example, differing signal schemes, design complexity, and cost. Forms of instruments discussed herein address these concerns by using data circuits that may be implemented in existing surgical instruments economically and with minimal design changes to preserve compatibility of the surgical instruments with current generator platforms.
Additionally, forms of thegenerator800 may enable communication with instrument-based data circuits. For example, thegenerator800 may be configured to communicate with a second data circuit contained in an instrument (e.g., the multifunction surgical instrument). In some forms, the second data circuit may be implemented in a many similar to that of the first data circuit described herein. Theinstrument interface circuit840 may comprise a seconddata circuit interface848 to enable this communication. In one form, the seconddata circuit interface848 may comprise a tri-state digital interface, although other interfaces may also be used. In certain forms, the second data circuit may generally be any circuit for transmitting and/or receiving data. In one form, for example, the second data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information.
In some forms, the second data circuit may store information about the electrical and/or ultrasonic properties of an associated ultrasonic transducer, end effector, or ultrasonic drive system. For example, the first data circuit may indicate a burn-in frequency slope, as described herein. Additionally or alternatively, any type of information may be communicated to second data circuit for storage therein via the second data circuit interface848 (e.g., using the logic circuit842). Such information may comprise, for example, an updated number of operations in which the instrument has been used and/or dates and/or times of its usage. In certain forms, the second data circuit may transmit data acquired by one or more sensors (e.g., an instrument-based temperature sensor). In certain forms, the second data circuit may receive data from thegenerator800 and provide an indication to a user (e.g., a light emitting diode indication or other visible indication) based on the received data.
In certain forms, the second data circuit and the seconddata circuit interface848 may be configured such that communication between the logic circuit842 and the second data circuit can be effected without the need to provide additional conductors for this purpose (e.g., dedicated conductors of a cable connecting a handpiece to the generator800). In one form, for example, information may be communicated to and from the second data circuit using a one-wire bus communication scheme implemented on existing cabling, such as one of the conductors used transmit interrogation signals from the signal conditioning circuit844 to a control circuit in a handpiece. In this way, design changes or modifications to the surgical instrument that might otherwise be necessary are minimized or reduced. Moreover, because different types of communications implemented over a common physical channel can be frequency-band separated, the presence of a second data circuit may be “invisible” to generators that do not have the requisite data reading functionality, thus enabling backward compatibility of the surgical instrument.
In certain forms, theisolated stage802 may comprise at least one blocking capacitor850-1 connected to thedrive signal output810bto prevent passage of DC current to a patient. A single blocking capacitor may be required to comply with medical regulations or standards, for example. While failure in single-capacitor designs is relatively uncommon, such failure may nonetheless have negative consequences. In one form, a second blocking capacitor850-2 may be provided in series with the blocking capacitor850-1, with current leakage from a point between the blocking capacitors850-1,850-2 being monitored by, for example, anADC circuit852 for sampling a voltage induced by leakage current. The samples may be received by the logic circuit842, for example. Based changes in the leakage current (as indicated by the voltage samples), thegenerator800 may determine when at least one of the blocking capacitors850-1,850-2 has failed, thus providing a benefit over single-capacitor designs having a single point of failure.
In certain forms, thenon-isolated stage804 may comprise apower supply854 for delivering DC power at a suitable voltage and current. The power supply may comprise, for example, a 400 W power supply for delivering a 48 VDC system voltage. Thepower supply854 may further comprise one or more DC/DC voltage converters856 for receiving the output of the power supply to generate DC outputs at the voltages and currents required by the various components of thegenerator800. As discussed above in connection with thecontroller838, one or more of the DC/DC voltage converters856 may receive an input from thecontroller838 when activation of the “on/off” input device by a user is detected by thecontroller838 to enable operation of, or wake, the DC/DC voltage converters856.
FIG.21 illustrates an example of agenerator900, which is one form of the generator800 (FIG.20). Thegenerator900 is configured to deliver multiple energy modalities to a surgical instrument. Thegenerator900 provides RF and ultrasonic signals for delivering energy to a surgical instrument either independently or simultaneously. The RF and ultrasonic signals may be provided alone or in combination and may be provided simultaneously. As noted above, at least one generator output can deliver multiple energy modalities (e.g., ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others) through a single port, and these signals can be delivered separately or simultaneously to the end effector to treat tissue.
Thegenerator900 comprises aprocessor902 coupled to awaveform generator904. Theprocessor902 andwaveform generator904 are configured to generate a variety of signal waveforms based on information stored in a memory coupled to theprocessor902, not shown for clarity of disclosure. The digital information associated with a waveform is provided to thewaveform generator904 which includes one or more DAC circuits to convert the digital input into an analog output. The analog output is fed to an amplifier1106 for signal conditioning and amplification. The conditioned and amplified output of theamplifier906 is coupled to apower transformer908. The signals are coupled across thepower transformer908 to the secondary side, which is in the patient isolation side. A first signal of a first energy modality is provided to the surgical instrument between the terminals labeled ENERGY1 and RETURN. A second signal of a second energy modality is coupled across acapacitor910 and is provided to the surgical instrument between the terminals labeled ENERGY2 and RETURN. It will be appreciated that more than two energy modalities may be output and thus the subscript “n” may be used to designate that up to n ENERGYn terminals may be provided, where n is a positive integer greater than 1. It also will be appreciated that up to “n” return paths RETURNn may be provided without departing from the scope of the present disclosure.
A firstvoltage sensing circuit912 is coupled across the terminals labeled ENERGY1 and the RETURN path to measure the output voltage therebetween. A secondvoltage sensing circuit924 is coupled across the terminals labeled ENERGY2 and the RETURN path to measure the output voltage therebetween. Acurrent sensing circuit914 is disposed in series with the RETURN leg of the secondary side of thepower transformer908 as shown to measure the output current for either energy modality. If different return paths are provided for each energy modality, then a separate current sensing circuit should be provided in each return leg. The outputs of the first and secondvoltage sensing circuits912,924 are provided torespective isolation transformers916,922 and the output of thecurrent sensing circuit914 is provided to another isolation transformer918. The outputs of theisolation transformers916,928,922 in the on the primary side of the power transformer908 (non-patient isolated side) are provided to a one ormore ADC circuit926. The digitized output of theADC circuit926 is provided to theprocessor902 for further processing and computation. The output voltages and output current feedback information can be employed to adjust the output voltage and current provided to the surgical instrument and to compute output impedance, among other parameters. Input/output communications between theprocessor902 and patient isolated circuits is provided through aninterface circuit920. Sensors also may be in electrical communication with theprocessor902 by way of theinterface circuit920.
In one aspect, the impedance may be determined by theprocessor902 by dividing the output of either the firstvoltage sensing circuit912 coupled across the terminals labeled ENERGY1/RETURN or the secondvoltage sensing circuit924 coupled across the terminals labeled ENERGY2/RETURN by the output of thecurrent sensing circuit914 disposed in series with the RETURN leg of the secondary side of thepower transformer908. The outputs of the first and secondvoltage sensing circuits912,924 are provided to separateisolations transformers916,922 and the output of thecurrent sensing circuit914 is provided to anotherisolation transformer916. The digitized voltage and current sensing measurements from theADC circuit926 are provided theprocessor902 for computing impedance. As an example, the first energy modality ENERGY1 may be ultrasonic energy and the second energy modality ENERGY2 may be RF energy. Nevertheless, in addition to ultrasonic and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, although the example illustrated inFIG.21 shows a single return path RETURN may be provided for two or more energy modalities, in other aspects, multiple return paths RETURNn may be provided for each energy modality ENERGYn. Thus, as described herein, the ultrasonic transducer impedance may be measured by dividing the output of the firstvoltage sensing circuit912 by thecurrent sensing circuit914 and the tissue impedance may be measured by dividing the output of the secondvoltage sensing circuit924 by thecurrent sensing circuit914.
As shown inFIG.21, thegenerator900 comprising at least one output port can include apower transformer908 with a single output and with multiple taps to provide power in the form of one or more energy modalities, such as ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others, for example, to the end effector depending on the type of treatment of tissue being performed. For example, thegenerator900 can deliver energy with higher voltage and lower current to drive an ultrasonic transducer, with lower voltage and higher current to drive RF electrodes for sealing tissue, or with a coagulation waveform for spot coagulation using either monopolar or bipolar RF electrosurgical electrodes. The output waveform from thegenerator900 can be steered, switched, or filtered to provide the frequency to the end effector of the surgical instrument. The connection of an ultrasonic transducer to thegenerator900 output would be preferably located between the output labeled ENERGY1 and RETURN as shown inFIG.21. In one example, a connection of RF bipolar electrodes to thegenerator900 output would be preferably located between the output labeled ENERGY2 and RETURN. In the case of monopolar output, the preferred connections would be active electrode (e.g., pencil or other probe) to the ENERGY2 output and a suitable return pad connected to the RETURN output.
Additional details are disclosed in U.S. Patent Application Publication No. 2017/0086914, titled TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, which published on Mar. 30, 2017, now U.S. Pat. No. 10,624,691, which is herein incorporated by reference in its entirety.
As used throughout this description, the term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some aspects they might not. The communication module may implement any of a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication module may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WIMAX, LTE, Ev-DO, and others.
As used herein a processor or processing unit is an electronic circuit which performs operations on some external data source, usually memory or some other data stream. The term is used herein to refer to the central processor (central processing unit) in a system or computer systems (especially systems on a chip (SoCs)) that combine a number of specialized “processors.”
As used herein, a system on a chip or system on chip (SoC or SOC) is an integrated circuit (also known as an “IC” or “chip”) that integrates all components of a computer or other electronic systems. It may contain digital, analog, mixed-signal, and often radio-frequency functions-all on a single substrate. A SoC integrates a microcontroller (or microprocessor) with advanced peripherals like graphics processing unit (GPU), Wi-Fi module, or coprocessor. A SoC may or may not contain built-in memory.
As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuits and memory. A microcontroller (or MCU for microcontroller unit) may be implemented as a small computer on a single integrated circuit. It may be similar to a SoC; an SoC may include a microcontroller as one of its components. A microcontroller may contain one or more core processing units (CPUs) along with memory and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers may be employed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.
As used herein, the term controller or microcontroller may be a stand-alone IC or chip device that interfaces with a peripheral device. This may be a link between two parts of a computer or a controller on an external device that manages the operation of (and connection with) that device.
Any of the processors or microcontrollers described herein, may be implemented by any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHZ, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, the processor may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
Modular devices include the modules (as described in connection withFIGS.3 and9, for example) that are receivable within a surgical hub and the surgical devices or instruments that can be connected to the various modules in order to connect or pair with the corresponding surgical hub. The modular devices include, for example, intelligent surgical instruments, medical imaging devices, suction/irrigation devices, smoke evacuators, energy generators, ventilators, insufflators, and displays. The modular devices described herein can be controlled by control algorithms. The control algorithms can be executed on the modular device itself, on the surgical hub to which the particular modular device is paired, or on both the modular device and the surgical hub (e.g., via a distributed computing architecture). In some exemplifications, the modular devices' control algorithms control the devices based on data sensed by the modular device itself (i.e., by sensors in, on, or connected to the modular device). This data can be related to the patient being operated on (e.g., tissue properties or insufflation pressure) or the modular device itself (e.g., the rate at which a knife is being advanced, motor current, or energy levels). For example, a control algorithm for a surgical stapling and cutting instrument can control the rate at which the instrument's motor drives its knife through tissue according to resistance encountered by the knife as it advances.
User Feedback Methods
The present disclosure provides user feedback techniques. In one aspect, the present disclosure provides a display of images through a medical imaging device (e.g., laparoscope, endoscope, thoracoscope, and the like). A medical imaging device comprises an optical component and an image sensor. The optical component may comprise a lens and a light source, for example. The image sensor may be implemented as a charge coupled device (CCD) or complementary oxide semiconductor (CMOS). The image sensor provides image data to electronic components in the surgical hub. The data representing the images may be transmitted by wired or wireless communication to display instrument status, feedback data, imaging data, and highlight tissue irregularities and underlining structures. In another aspect, the present disclosure provides wired or wireless communication techniques for communicating user feedback from a device (e.g., instrument, robot, or tool) to the surgical hub. In another aspect, the present disclosure provides identification and usage recording and enabling. Finally, in another aspect, the surgical hub may have a direct interface control between the device and the surgical hub.
Through Laparoscope Monitor Display of Data
In various aspects, the present disclosure provides through laparoscope monitor display of data. The through laparoscope monitor display of data may comprise displaying a current instrument alignment to adjacent previous operations, cooperation between local instrument displays and paired laparoscope display, and display of instrument specific data needed for efficient use of an end-effector portion of a surgical instrument. Each of these techniques is described hereinbelow.
Display of Current Instrument Alignment to Adjacent Previous Operations
In one aspect, the present disclosure provides alignment guidance display elements that provide the user information about the location of a previous firing or actuation and allow them to align the next instrument use to the proper position without the need for seeing the instrument directly. In another aspect, the first device and second device and are separate; the first device is within the sterile field and the second is used from outside the sterile field.
During a colorectal transection using a double-stapling technique it is difficult to align the location of an anvil trocar of a circular stapler with the center of an overlapping staple line. During the procedure, the anvil trocar of the circular stapler is inserted in the rectum below the staple line and a laparoscope is inserted in the peritoneal cavity above the staple line. Because the staple line seals off the colon, there is no light of sight to align the anvil trocar using the laparoscope to optically align the anvil trocar insertion location relative to the center of the staple line overlap.
One solution provides a non-contact sensor located on the anvil trocar of the circular stapler and a target located at the distal end of the laparoscope. Another solution provides a non-contact sensor located at the distal end of the laparoscope and a target located on the anvil trocar of the circular stapler.
A surgical hub computer processor receives signals from the non-contact sensor and displays a centering tool on a screen indicating the alignment of the anvil trocar of the circular stapler and the overlap portion at the center of staple line. The screen displays a first image of the target staple line with a radius around the staple line overlap portion and a second image of the projected anvil trocar location. The anvil trocar and the overlap portion at the center of staple line are aligned when the first and second images overlap.
In one aspect, the present disclosure provides a surgical hub for aligning a surgical instrument. The surgical hub comprises a processor and a memory coupled to the processor. The memory stores instructions executable by the processor to receive image data from an image sensor, generate a first image based on the image data, display the first image on a monitor coupled to the processor, receive a signal from a non-contact sensor, generate a second image based on the position of the surgical device, and display the second image on the monitor. The first image data represents a center of a staple line seal. The first image represents a target corresponding to the center of the staple line. The signal is indicative of a position of a surgical device relative to the center of the staple line. The second image represents the position of the surgical device along a projected path of the surgical device toward the center of the staple line.
In one aspect, the center of the staple line is a double-staple overlap portion zone. In another aspect, the image sensor receives an image from a laparoscope. In another aspect, the surgical device is a circular stapler comprising an anvil trocar and the non-contact sensor is configured to detect the location of the anvil trocar relative to the center of the staple line seal. In another aspect, the non-contact sensor is an inductive sensor. In another aspect, the non-contact sensor is a capacitive sensor.
In various aspects, the present disclosure provides a control circuit to align the surgical instrument as described above. In various aspects, the present disclosure provides a non-transitory computer readable medium storing computer readable instructions which, when executed, causes a machine to align the surgical instrument as described above.
This technique provides better alignment of a surgical instrument such as a circular stapler about the overlap portion of the staple line to produce a better seal and cut after the circular stapler is fired.
In one aspect, the present disclosure provides a system for displaying the current instrument alignment relative to prior adjacent operations. The instrument alignment information may be displayed on a monitor or any suitable electronic device suitable for the visual presentation of data whether located locally on the instrument or remotely from the instrument through the modular communication hub. The system may display the current alignment of a circular staple cartridge to an overlapping staple line, display the current alignment of a circular staple cartridge relative to a prior linear staple line, and/or show the existing staple line of the linear transection and an alignment circle indicating an appropriately centered circular staple cartridge. Each of these techniques is described hereinbelow.
In one aspect, the present disclosure provides alignment guidance display elements that provide the user information about the location of a previous firing or actuation of a surgical instrument (e.g., surgical stapler) and allows the user to align the next instrument use (e.g., firing or actuation of the surgical stapler) to the proper position without the need for seeing the instrument directly. In another aspect, the present disclosure provides a first device and a second device that is separate from the first device. The first device is located within a sterile field and the second is located outside the sterile field. The techniques described herein may be applied to surgical staplers, ultrasonic instruments, electrosurgical instruments, combination ultrasonic/electrosurgical instruments, and/or combination surgical stapler/electrosurgical instruments.
FIG.22 illustrates a diagram6000 of asurgical instrument6002 centered on astaple line6003 using the benefit of centering tools and techniques described in connection withFIGS.23-33, according to one aspect of the present disclosure. As used in the following description ofFIGS.23-33 a staple line may include multiple rows of staggered staples and typically includes two or three rows of staggered staples, without limitation. The staple line may be a double staple line6004 formed using a double-stapling technique as described in connection withFIGS.23-27 or may be alinear staple line6052 formed using a linear transection technique as described in connection withFIGS.28-33. The centering tools and techniques described herein can be used to align theinstrument6002 located in one part of the anatomy with either thestaple line6003 or with another instrument located in another part of the anatomy without the benefit of a line of sight. The centering tools and techniques include displaying the current alignment of theinstrument6002 adjacent to previous operations. The centering tool is useful, for example, during laparoscopic-assisted rectal surgery that employ a double-stapling technique, also referred to as an overlapping stapling technique. In the illustrated example, during a laparoscopic-assisted rectal surgical procedure, acircular stapler6002 is positioned in therectum6006 of a patient within thepelvic cavity6008 and a laparoscope is positioned in the peritoneal cavity.
During the laparoscopic-assisted rectal surgery, the colon is transected and sealed by thestaple line6003 having a length “l.” The double-stapling technique uses thecircular stapler6002 to create an end-to-end anastomosis and is currently used widely in laparoscopic-assisted rectal surgery. For a successful formation of an anastomosis using acircular stapler6002, theanvil trocar6010 of thecircular stapler6002 should be aligned with the center “l/2” of thestaple line6003 transection before puncturing through the center “l/2” of thestaple line6003 and/or fully clamping on the tissue before firing thecircular stapler6002 to cut out thestaple overlap portion6012 and forming the anastomosis. Misalignment of theanvil trocar6010 to the center of thestaple line6003 transection may result in a high rate of anastomotic failures. This technique may be applied to ultrasonic instruments, electrosurgical instruments, combination ultrasonic/electrosurgical instruments, and/or combination surgical stapler/electrosurgical instruments. Several techniques are now described for aligning theanvil trocar6010 of thecircular stapler6002 to the center “l/2” of thestaple line6003.
In one aspect, as described inFIGS.23-25 and with reference also toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206, the present disclosure provides an apparatus and method for detecting the overlapping portion of the double staple line6004 in a laparoscopic-assisted rectal surgery colorectal transection using a double stapling technique. The overlapping portion of the double staple line6004 is detected and the current location of theanvil trocar6010 of thecircular stapler6002 is displayed on asurgical hub display215 coupled to thesurgical hub206. Thesurgical hub display215 displays the alignment of acircular stapler6002 cartridge relative to the overlapping portion of the double staple line6004, which is located at the center of the double staple line6004. Thesurgical hub display215 displays a circular image centered around the overlapping double staple line6004 region to ensure that the overlapping portion of the double staple line6004 is contained within the knife of thecircular stapler6002 and therefore removed following the circular firing. Using the display, the surgeon aligns theanvil trocar6010 with the center of the double staple line6004 before puncturing through the center of the double staple line6004 and/or fully clamping on the tissue before firing thecircular stapler6002 to cut out thestaple overlap portion6012 and form the anastomosis.
FIGS.23-25 illustrate a process of aligning ananvil trocar6010 of acircular stapler6022 to astaple overlap portion6012 of a double staple line6004 created by a double-stapling technique, according to one aspect of the present disclosure. Thestaple overlap portion6012 is centered on the double staple line6004 formed by a double-stapling technique. Thecircular stapler6002 is inserted into thecolon6020 below the double staple line6004 and alaparoscope6014 is inserted through the abdomen above the double staple line6004. Alaparoscope6014 and anon-contact sensor6022 are used to determine ananvil trocar6010 location relative to thestaple overlap portion6012 of the double staple line6004. Thelaparoscope6014 includes an image sensor to generate an image of the double staple line6004. The image sensor image is transmitted to thesurgical hub206 via theimaging module238. Thesensor6022 generates asignal6024 that detects the metal staples using inductive or capacitive metal sensing technology. Thesignal6024 varies based on the position of theanvil trocar6010 relative to the staple overlap portion6004. A centeringtool6030 presents animage6038 of the double staple line6004 and atarget alignment ring6032 circumscribing theimage6038 of the double staple line6004 centered about animage6040 of thestaple overlap portion6012 on thesurgical hub display215. The centeringtool6030 also presents a projectedcut path6034 of an anvil knife of thecircular stapler6002. The alignment process includes displaying animage6038 of the double staple line6004 and atarget alignment ring6032 circumscribing theimage6038 of the double staple line6004 centered on theimage6040 of thestaple overlap portion6012 to be cut out by the circular knife of thecircular stapler6002. Also displayed is an image of a crosshair6036 (X) relative to theimage6040 of thestaple overlap portion6012.
FIG.23 illustrates ananvil trocar6010 of acircular stapler6002 that is not aligned with astaple overlap portion6012 of a double staple line6004 created by a double-stapling technique. The double staple line6004 has a length “l” and thestaple overlap portion6012 is located midway along the double staple line6004 at “l/2.” As shown inFIG.23, thecircular stapler6002 is inserted into a section of thecolon6020 and is positioned just below the double staple line6004 transection. Alaparoscope6014 is positioned above the double staple line6004 transection and feeds an image of the double staple line6004 andstaple overlap portion6012 within the field ofview6016 of thelaparoscope6014 to thesurgical hub display215. The position of theanvil trocar6010 relative to thestaple overlap portion6012 is detected by asensor6022 located on thecircular stapler6002. Thesensor6022 also provides the position of theanvil trocar6010 relative to thestaple overlap portion6012 to thesurgical hub display215.
As shown in InFIG.23, the projectedpath6018 of theanvil trocar6010 is shown along a broken line to a position marked by an X. As shown inFIG.23, the projectedpath6018 of theanvil trocar6010 is not aligned with thestaple overlap portion6012. Puncturing theanvil trocar6010 through the double staple line6004 at a point off thestaple overlap portion6012 could lead to an anastomotic failure. Using theanvil trocar6010 centeringtool6030 described inFIG.25, the surgeon can align theanvil trocar6010 with thestaple overlap portion6012 using the images displayed by the centeringtool6030. For example, in one implementation, thesensor6022 is an inductive sensor. Since thestaple overlap portion6012 contains more metal than the rest of the lateral portions of the double staple line6004, thesignal6024 is maximum when thesensor6022 is aligned with and proximate to thestaple overlap portion6012. Thesensor6022 provides a signal to thesurgical hub206 that indicates the location of theanvil trocar6010 relative to thestaple overlap portion6012. The output signal is converted to a visualization of the location of theanvil trocar6010 relative to thestaple overlap portion6012 that is displayed on thesurgical hub display215.
As shown inFIG.24, theanvil trocar6010 is aligned with thestaple overlap portion6012 at the center of the double staple line6004 created by a double-stapling technique. The surgeon can now puncture theanvil trocar6010 through thestaple overlap portion6012 of the double staple line6004 and/or fully clamp on the tissue before firing thecircular stapler6002 to cut out thestaple overlap portion6012 and form an anastomosis.
FIG.25 illustrates a centeringtool6030 displayed on asurgical hub display215, the centering tool providing a display of astaple overlap portion6012 of a double staple line6004 created by a double-staling technique, where theanvil trocar6010 is not aligned with thestaple overlap portion6012 of the double staple line6004 as shown inFIG.23. The centeringtool6030 presents animage6038 on thesurgical hub display215 of the double staple line6004 and animage6040 of thestaple overlap portion6012 received from thelaparoscope6014. Atarget alignment ring6032 centered about theimage6040 of thestaple overlap portion6012 circumscribes theimage6038 of the double staple line6004 to ensure that thestaple overlap portion6012 is located within the circumference of the projectedcut path6034 of thecircular stapler6002 knife when the projectedcut path6034 is aligned to thetarget alignment ring6032. The crosshair6036 (X) represents the location of theanvil trocar6010 relative to thestaple overlap portion6012. The crosshair6036 (X) indicates the point through the double staple line6004 where theanvil trocar6010 would puncture if it were advanced from its current location.
As shown inFIG.25, theanvil trocar6010 is not aligned with the desired puncture through location designated by theimage6040 of thestaple overlap portion6012. To align theanvil trocar6010 with thestaple overlap portion6012 the surgeon manipulates thecircular stapler6002 until the projectedcut path6034 overlaps thetarget alignment ring6032 and the crosshair6036 (X) is centered on theimage6040 of thestaple overlap portion6012. Once alignment is complete, the surgeon punctures theanvil trocar6010 through thestaple overlap portion6012 of the double staple line6004 and/or fully clamps on the tissue before firing thecircular stapler6002 to cut out thestaple overlap portion6012 and form the anastomosis.
As discussed above, thesensor6022 is configured to detect the position of theanvil trocar6010 relative to thestaple overlap portion6012. Accordingly, the location of the crosshair6036 (X) presented on thesurgical hub display215 is determined by thesurgical stapler sensor6022. In another aspect, thesensor6022 may be located on thelaparoscope6014, where thesensor6022 is configured to detect the tip of theanvil trocar6010. In other aspects, thesensor6022 may be located either on thecircular stapler6022 or thelaparoscope6014, or both, to determine the location of theanvil trocar6010 relative to thestaple overlap portion6012 and provide the information to thesurgical hub display215 via thesurgical hub206.
FIGS.26 and27 illustrate abefore image6042 and an afterimage6043 of a centeringtool6030, according to one aspect of the present disclosure.FIG.26 illustrates an image of a projectedcut path6034 of ananvil trocar6010 and circular knife before alignment with thetarget alignment ring6032 circumscribing theimage6038 of the double staple line6004 over theimage6040 of thestaple overlap portion6040 presented on asurgical hub display215.FIG.27 illustrates an image of a projectedcut path6034 of ananvil trocar6010 and circular knife after alignment with thetarget alignment ring6032 circumscribing theimage6038 of the double staple line6004 over theimage6040 of thestaple overlap portion6040 presented on asurgical hub display215. The current location of theanvil trocar6010 is marked by the crosshair6036 (X), which as shown inFIG.26, is positioned below and to the left of center of theimage6040 of thestaple overlap portion6040. As shown inFIG.27, as the surgeon moves theanvil trocar6010 of the along the projectedpath6046, the projectedcut path6034 aligns with thetarget alignment ring6032. Thetarget alignment ring6032 may be displayed as a greyed out alignment circle overlaid over the current position of theanvil trocar6010 relative to the center of the double staple line6004, for example. The image may include indication marks to assist the alignment process by indication which direction to move theanvil trocar6010. Thetarget alignment ring6032 may be shown in bold, change color or may be highlighted when it is located within a predetermined distance of center within acceptable limits.
In another aspect, thesensor6022 may be configured to detect the beginning and end of a linear staple line in a colorectal transection and to provide the position of the current location of theanvil trocar6010 of thecircular stapler6002. In another aspect, the present disclosure provides asurgical hub display215 to present thecircular stapler6002 centered on the linear staple line, which would create even dog ears, and to provide the current position of theanvil trocar6010 to allow the surgeon to center or align theanvil trocar6010 as desired before puncturing and/or fully clamping on tissue prior to firing thecircular stapler6002.
In another aspect, as described inFIGS.28-30 and with reference also toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206, in a laparoscopic-assisted rectal surgery colorectal transection using a linear stapling technique, the beginning and end of thelinear staple line6052 is detected and the current location of theanvil trocar6010 of thecircular stapler6002 is displayed on asurgical hub display215 coupled to thesurgical hub206. Thesurgical hub display215 displays a circular image centered on the double staple line6004, which would create even dog ears and the current position of theanvil trocar6002 is displayed to allow the surgeon to center or align theanvil trocar6010 before puncturing through thelinear staple line6052 and/or fully clamping on the tissue before firing thecircular stapler6002 to cut out thecenter6050 of thelinear staple line6052 to form an anastomosis.
FIGS.28-30 illustrate a process of aligning ananvil trocar6010 of acircular stapler6022 to acenter6050 of alinear staple line6052 created by a linear stapling technique, according to one aspect of the present disclosure.FIGS.28 and29 illustrate alaparoscope6014 and asensor6022 located on thecircular stapler6022 to determine the location of theanvil trocar6010 relative to thecenter6050 of thelinear staple line6052. Theanvil trocar6010 and thesensor6022 is inserted into thecolon6020 below thelinear staple line6052 and thelaparoscope6014 is inserted through the abdomen above thelinear staple line6052.
FIG.28 illustrates theanvil trocar6010 out of alignment with thecenter6050 of thelinear staple line6052 andFIG.29 illustrates theanvil trocar6010 in alignment with thecenter6050 of thelinear staple line6052. Thesensor6022 is used to detect thecenter6050 of thelinear staple line6052 to align theanvil trocar6010 with the center of thestaple line6052. In one aspect, thecenter6050 of thelinear staple line6052 may be located by moving thecircular stapler6002 until one end of thelinear staple line6052 is detected. An end may be detected when there are no more staples in the path of thesensor6022. Once one of the ends is reached, thecircular stapler6002 is moved along the linear staple line6053 until the opposite end is detected and the length “e” of thelinear staple line6052 is determined by measurement or by counting individual staples by thesensor6022. Once the length of thelinear staple line6052 is determined, thecenter6050 of thelinear staple line6052 can be determined by dividing the length by two “l/2.”
FIG.30 illustrates a centeringtool6054 displayed on asurgical hub display215, the centering tool providing a display of alinear staple line6052, where theanvil trocar6010 is not aligned with thestaple overlap portion6012 of the double staple line6004 as shown inFIG.28. Thesurgical hub display215 presents a standard reticle field ofview6056 of the laparoscopic field ofview6016 of thelinear staple line6052 and a portion of thecolon6020. Thesurgical hub display215 also presents atarget ring6062 circumscribing the image center of the linear staple line and a projectedcut path6064 of the anvil trocar and circular knife. The crosshair6066 (X) represents the location of theanvil trocar6010 relative to thecenter6050 of thelinear staple line6052. The crosshair6036 (X) indicates the point through thelinear staple line6052 where theanvil trocar6010 would puncture if it were advanced from its current location.
As shown inFIG.30, theanvil trocar6010 is not aligned with the desired puncture through location designated by the offset between thetarget ring6062 and the projectedcut path6064. To align theanvil trocar6010 with thecenter6050 of thelinear staple line6052 the surgeon manipulates thecircular stapler6002 until the projectedcut path6064 overlaps thetarget alignment ring6062 and the crosshair6066 (X) is centered on theimage6040 of thestaple overlap portion6012. Once alignment is complete, the surgeon punctures theanvil trocar6010 through thecenter6050 of thelinear staple line6052 and/or fully clamps on the tissue before firing thecircular stapler6002 to cut out thestaple overlap portion6012 and forming the anastomosis.
In one aspect, the present disclosure provides an apparatus and method for displaying an image of anlinear staple line6052 using a linear transection technique and an alignment ring or bullseye positioned as if theanvil trocar6010 of thecircular stapler6022 were centered appropriately along thelinear staple line6052. The apparatus displays a greyed out alignment ring overlaid over the current position of theanvil trocar6010 relative to thecenter6050 of thelinear staple line6052. The image may include indication marks to assist the alignment process by indication which direction to move theanvil trocar6010. The alignment ring may be bold, change color or highlight when it is located within a predetermined distance of centered.
With reference now toFIGS.28-31,FIG.31 is animage6080 of a standardreticle field view6080 of alinear staple line6052 transection of a surgical as viewed through alaparoscope6014 displayed on thesurgical hub display215, according to one aspect of the present disclosure. In astandard reticle view6080, it is difficult to see thelinear staple line6052 in the standard reticle field ofview6056. Further, there are no alignment aids to assist with alignment and introduction of theanvil trocar6010 to thecenter6050 of the linear staple line. This view does not show an alignment circle or alignment mark to indicate if the circular stapler is centered appropriately and does not show the projected trocar path. In this view it also difficult to see the staples because there is no contrast with the background image.
With reference now toFIGS.28-32,FIG.32 is animage6082 of a laser-assisted reticle field ofview6072 of the surgical site shown inFIG.31 before theanvil trocar6010 and circular knife of thecircular stapler6002 are aligned to thecenter6050 of thelinear staple line6052, according to one aspect of the present disclosure. The laser-assisted reticle field ofview6072 provides an alignment mark or crosshair6066 (X), currently positioned below and to the left of center of thelinear staple line6052 showing the projected path of theanvil trocar6010 to assist positioning of theanvil trocar6010. In addition to the projected path marked by the crosshair6066 (X) of theanvil trocar6010, theimage6082 displays the staples of thelinear staple line6052 in a contrast color to make them more visible against the background. Thelinear staple line6052 is highlighted and abullseye target6070 is displayed over thecenter6050 of thelinear staple line6052. Outside of the laser-assisted reticle field ofview6072, theimage6082 displays astatus warning box6068, asuggestion box6074, atarget ring6062, and the current alignment position of theanvil trocar6010 marked by the crosshair6066 (X) relative to thecenter6050 of thelinear staple line6052. As shown inFIG.32, thestatus warning box6068 indicates that the trocar is “MISALIGNED” and thesuggestion box6074 states “Adjust trocar to center staple line.”
With reference now toFIGS.28-33,FIG.33 is animage6084 of a laser-assisted reticle field ofview6072 of the surgical site shown inFIG.32 after theanvil trocar6010 and circular knife of thecircular stapler6002 are aligned to thecenter6050 of thelinear staple line6052, according to one aspect of the present disclosure. The laser-assisted reticle field ofview6072 provides an alignment mark or crosshair6066 (X), currently positioned below and to the left of center of thelinear staple line6052 showing the projected path of theanvil trocar6010 to assist positioning of theanvil trocar6010. In addition to the projected path marked by the crosshair6066 (X) of theanvil trocar6010, theimage6082 displays the staples of thelinear staple line6052 in a contrast color to make them more visible against the background. Thelinear staple line6052 is highlighted and abullseye target6070 is displayed over thecenter6050 of thelinear staple line6052. Outside of the laser-assisted reticle field ofview6072, theimage6082 displays astatus warning box6068, asuggestion box6074, atarget ring6062, and the current alignment position of theanvil trocar6010 marked by the crosshair6066 (X) relative to thecenter6050 of thelinear staple line6052. As shown inFIG.32, thestatus warning box6068 indicates that the trocar is “MISALIGNED” and thesuggestion box6074 states “Adjust trocar to center staple line.”
FIG.33 is a laser assisted view of the surgical site shown inFIG.32 after theanvil trocar6010 and circular knife are aligned to the center of thestaple line6052. In this view, inside the field ofview6072 of the laser-assisted reticle, the alignment mark crosshair6066 (X) is positioned over the center of thestaple line6052 and the highlighted bullseye target to indicate alignment of the trocar to the center of the staple line. Outside the field ofview6072 of the laser-assisted reticle, the status warning box indicates that the trocar is “ALIGNED” and the suggestion is “Proceed trocar introduction.”
FIG.34 illustrates a non-contactinductive sensor6090 implementation of thenon-contact sensor6022 to determine ananvil trocar6010 location relative to the center of a staple line transection (thestaple overlap portion6012 of the double staple line6004 shown inFIGS.23-24 or thecenter6050 of thelinear staple line6052 shown inFIGS.28-29, for example), according to one aspect of the present disclosure. The non-contactinductive sensor6090 includes anoscillator6092 that drives an inductive coil6094 to generate anelectromagnetic field6096. As ametal target6098, such as a metal staple, is introduced into theelectromagnetic field6096,eddy currents6100 induced in thetarget6098 oppose theelectromagnetic field6096 and the reluctance shifts and the amplitude of theoscillator voltage6102 drops. Anamplifier6104 amplifies theoscillator voltage6102 amplitude as it changes.
With reference now toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206 and also toFIGS.22-33, theinductive sensor6090 is a non-contact electronic sensor. It can be used for positioning and detecting metal objects such as the metal staples in thestaple lines6003,6004,6052 described above. The sensing range of theinductive sensor6090 is dependent on the type of metal being detected. Because theinductive sensor6090 is a non-contact sensor, it can detect metal objects across a stapled tissue barrier. Theinductive sensor6090 can be located either on thecircular stapler6002 to detect staples in thestaple lines6003,6004,6052, detect the location of the distal end of thelaparoscope6014, or it may be located on thelaparoscope6014 to detect the location of theanvil trocar6010. A processor or control circuit located either in thecircular stapler6002,laparoscope6014, or coupled to thesurgical hub206 receives signals from theinductive sensors6090 and can be employed to display the centering tool on thesurgical hub display215 to determine the location of theanvil trocar6010 relative to eitherstaple overlap portion6012 of a double staple line6004 or thecenter6050 of alinear staple line6052.
In one aspect, the distal end of thelaparoscope6014 may be detected by theinductive sensor6090 located on thecircular stapler6002. Theinductive sensor6090 may detect ametal target6098 positioned on the distal end of thelaparoscope6014. Once thelaparoscope6014 is aligned with thecenter6050 of thelinear staple line6052 or thestaple overlap portion6012 of the double staple line6004, a signal from theinductive sensor6090 is transmitted to circuits that convert the signals from theinductive sensor6090 to present an image of the relative alignment of thelaparoscope6014 with theanvil trocar6010 of thecircular stapler6002.
FIGS.35A and35B illustrate one aspect of anon-contact capacitive sensor6110 implementation of thenon-contact sensor6022 to determine ananvil trocar6010 location relative to the center of a staple line transection (thestaple overlap portion6012 of the double staple line6004 shown inFIGS.23-24 or thecenter6050 of thelinear staple line6052 shown inFIGS.28-29, for example), according to one aspect of the present disclosure.FIG.35A shows thenon-contact capacitive sensor6110 without a nearby metal target andFIG.35B shows thenon-contact capacitive sensor6110 near ametal target6112. Thenon-contact capacitive sensor6110 includescapacitor plates6114,6116 housed in a sensing head and establishesfield lines6118 when energized by an oscillator waveform to define a sensing zone.FIG.35A shows thefield lines6118 when no target is present proximal to thecapacitor plates6114,6116.FIG.35B shows a ferrous ornonferrous metal target6120 in the sensing zone. As themetal target6120 enters the sensing zone, the capacitance increases causing the natural frequency to shift towards the oscillation frequency causing amplitude gain. Because thecapacitive sensor6110 is a non-contact sensor, it can detect metal objects across a stapled tissue barrier. Thecapacitive sensor6110 can be located either on thecircular stapler6002 to detect thestaple lines6004,6052 or the location of the distal end of thelaparoscope6014 or thecapacitive sensor6110 may be located on thelaparoscope6014 to detect the location of theanvil trocar6010. A processor or control circuit located either in thecircular stapler6002, thelaparoscope6014, or coupled to thesurgical hub206 receives signals from thecapacitive sensor6110 to present an image of the relative alignment of thelaparoscope6014 with theanvil trocar6010 of thecircular stapler6002.
FIG.36 is a logic flow diagram6130 of a process depicting a control program or a logic configuration for aligning a surgical instrument, according to one aspect of the present disclosure. With reference toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206 and also toFIGS.22-35, thesurgical hub206 comprises aprocessor244 and amemory249 coupled to theprocessor244. Thememory249 stores instructions executable by theprocessor244 to receive6132 image data from a laparoscope image sensor, generate6134 a first image based on the image data,display6136 the first image on asurgical hub display215 coupled to theprocessor244, receive6138 a signal from anon-contact sensor6022, the signal indicative of a position of a surgical device, generate a second image based on the signal indicative of the position of the surgical device, e.g., theanvil trocar6010 anddisplay6140 the second image on thesurgical hub display215. The first image data represents acenter6044,6050 of astaple line6004,6052 seal. The first image represents a target corresponding to thecenter6044,6050 of thestaple line6004,6052 seal. The signal is indicative of a position of a surgical device, e.g., ananvil trocar6010, relative to thecenter6044,6050 of thestaple line6004,6052 seal. The second image represents the position of the surgical device, e.g., ananvil trocar6010, along a projectedpath6018 of the surgical device, e.g., ananvil trocar6010, toward thecenter6044,6050 of thestaple line6004,6052 seal.
In one aspect, thecenter6044 of the double staple line6004 seal defines astaple overlap portion6012. In another aspect, an image sensor receives an image from a medical imaging device. In another aspect, the surgical device is acircular stapler6002 comprising ananvil trocar6010 and thenon-contact sensor6022 is configured to detect the location of theanvil trocar6010 relative to thecenter6044 of the double staple line6004 seal. In another aspect, thenon-contact sensor6022 is aninductive sensor6090. In another aspect, thenon-contact sensor6022 is acapacitive sensor6110. In one aspect, the staple line may be alinear staple line6052 formed using a linear transection technique.
Cooperation Between Local Instrument Displays and Paired Imaging Device Display
In one aspect, the present disclosure provides an instrument including a local display, a hub having an operating room (OR), or operating theater, display separate from the instrument display. When the instrument is linked to the surgical hub, the secondary display on the device reconfigures to display different information than when it is independent of the surgical hub connection. In another aspect, some portion of the information on the secondary display of the instrument is then displayed on the primary display of the surgical hub. In another aspect, image fusion allowing the overlay of the status of a device, the integration landmarks being used to interlock several images and at least one guidance feature are provided on the surgical hub and/or instrument display. Techniques for overlaying or augmenting images and/or text from multiple image/text sources to present composite images on a single display are described hereinbelow in connection withFIGS.45-53 andFIGS.63-67.
In another aspect, the present disclosure provides cooperation between local instrument displays and a paired laparoscope display. In one aspect, the behavior of a local display of an instrument changes when it senses the connectable presence of a global display coupled to the surgical hub. In another aspect, the present disclosure provides 360° composite top visual field of view of a surgical site to avoid collateral structures. Each of these techniques is described hereinbelow.
During a surgical procedure, the surgical site is displayed on a remote “primary” surgical hub display. During a surgical procedure, surgical devices track and record surgical data and variables (e.g., surgical parameters) that are stored in the instrument (seeFIGS.12-19 for instrument architectures comprising processors, memory, control circuits, storage, etc.). The surgical parameters include force-to-fire (FTF), force-to-close (FTC), firing progress, tissue gap, power level, impedance, tissue compression stability (creep), and the like. Using conventional techniques during the procedure the surgeon needs to watch two separate displays. Providing image/text overlay is thus advantageous because during the procedure the surgeon can watch a single display presenting the overlaid image/text information.
One solution detects when the surgical device (e.g., instrument) is connected to the surgical hub and then display a composite image on the primary display that includes a field of view of the surgical site received from a first instrument (e.g., medical imaging device such as, e.g., laparoscope, endoscope, thoracoscope, and the like) augmented by surgical data and variables received from a second instrument (e.g., a surgical stapler) to provide pertinent images and data on the primary display.
During a surgical procedure the surgical site is displayed as a narrow field of view of a medical imaging device on the primary surgical hub display. Items outside the current field of view, collateral structures, cannot be viewed without moving the medical imaging device.
One solution provides a narrow field of view of the surgical site in a first window of the display augmented by a wide field of view of the surgical site in a separate window of the display. This provides a composite over head field of view mapped using two or more imaging arrays to provide an augmented image of multiple perspective views of the surgical site.
In one aspect, the present disclosure provides a surgical hub, comprising a processor and a memory coupled to the processor. The memory stores instructions executable by the processor to detect a surgical device connection to the surgical hub, transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected device, receive the surgical parameter data, receive image data from an image sensor, and display, on a display coupled to the surgical hub, an image received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
In another aspect, the present disclosure provides a surgical hub, comprising a processor and a memory coupled to the processor. The memory stores instructions executable by the processor to receive first image data from a first image sensor, receive second image data from a second image sensor, and display, on a display coupled to the surgical hub, a first image corresponding to the first field of view and a second image corresponding to the second field of view. The first image data represents a first field of view and the second image data represents a second field of view.
In one aspect, the first field of view is a narrow angle field of view and the second field of view is a wide angle field of view. In another aspect, the memory stores instructions executable by the processor to augment the first image with the second image on the display. In another aspect, the memory stores instructions executable by the processor to fuse the first image and the second image into a third image and display a fused image on the display. In another aspect, the fused image data comprises status information associated with a surgical device, an image data integration landmark to interlock a plurality of images, and at least one guidance parameter. In another aspect, the first image sensor is the same as the same image sensor and wherein the first image data is captured as a first time and the second image data is captured at a second time.
In another aspect, the memory stores instructions executable by the processor to receive third image data from a third image sensor, wherein the third image data represents a third field of view, generate composite image data comprising the second and third image data, display the first image in a first window of the display, wherein the first image corresponds to the first image data, and display a third image in a second window of the display, wherein the third image corresponds to the composite image data.
In another aspect, the memory stores instructions executable by the processor to receive third image data from a third image sensor, wherein the third image data represents a third field of view, fuse the second and third image data to generate fused image data, display the first image in a first window of the display, wherein the first image corresponds to the first image data, and display a third image in a second window of the display, wherein the third image corresponds to the fused image data.
In various aspects, the present disclosure provides a control circuit to perform the functions described above. In various aspects, the present disclosure provides a non-transitory computer readable medium storing computer readable instructions, which when executed, causes a machine to perform the functions described above.
By displaying endoscope images augmented with surgical device images on one primary surgical hub display, enables the surgeon to focus on one display to obtain a field of view of the surgical site augmented with surgical device data associated with the surgical procedure such as force-to-fire, force-to-close, firing progress, tissue gap, power level, impedance, tissue compression stability (creep), and the like.
Displaying a narrow field of view image in a first window of a display and a composite image of several other perspectives such as wider fields of view enables the surgeon to view a magnified image of the surgical site simultaneously with wider fields of view of the surgical site without moving the scope.
In one aspect, the present disclosure provides both global and local display of a device, e.g., a surgical instrument, coupled to the surgical hub. The device displays all of its relevant menus and displays on a local display until it senses a connection to the surgical hub at which point a sub-set of the information is displayed only on the monitor through the surgical hub and that information is either mirrored on the device display or is no longer accessible on the device detonated screen. This technique frees up the device display to show different information or display larger font information on the surgical hub display.
In one aspect, the present disclosure provides an instrument having a local display, a surgical hub having an operating theater (e.g., operating room or OR) display that is separate from the instrument display. When the instrument is linked to the surgical hub, the instrument local display becomes a secondary display and the instrument reconfigures to display different information than when it is operating independent of the surgical hub connection. In another aspect, some portion of the information on the secondary display is then displayed on the primary display in the operating theater through the surgical hub.
FIG.37 illustrates aprimary display6200 of thesurgical hub206 comprising aglobal display6202 and alocal instrument display6204, according to one aspect of the present disclosure. With continued reference toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206 andFIGS.12-21 for surgical hub connected instruments together withFIG.37, thelocal instrument display6204 behavior is displayed when theinstrument235 senses the connectable presence of aglobal display6202 through thesurgical hub206. Theglobal display6202 shows a field ofview6206 of asurgical site6208, as viewed through a medical imaging device such as, for example, a laparoscope/endoscope219 coupled to animaging module238, at the center of thesurgical hub display215, referred to herein also as a monitor, for example. Theend effector6218 portion of theconnected instrument235 is shown in the field ofview6206 of thesurgical site6208 in theglobal display6202. The images shown on thedisplay237 located on aninstrument235 coupled to thesurgical hub206 is shown, or mirrored, on thelocal instrument display6204 located in the lower right corner of themonitor6200 as shown inFIG.37, for example. During operation, all relevant instrument and information and menus are displayed on thedisplay237 located on theinstrument235 until theinstrument235 senses a connection of theinstrument235 to thesurgical hub206 at which point all or some sub-set of the information presented on theinstrument display237 is displayed only on thelocal instrument display6204 portion of thesurgical hub display6200 through thesurgical hub206. The information displayed on thelocal instrument display6204 may be mirrored on thedisplay237 located on theinstrument235 or may be no longer accessible on theinstrument display237 detonated screen. This technique frees up theinstrument235 to show different information or to show larger font information on thesurgical hub display6200. Several techniques for overlaying or augmenting images and/or text from multiple image/text sources to present composite images on a single display are described hereinbelow in connection withFIGS.45-53 andFIGS.63-67.
Thesurgical hub display6200 provides perioperative visualization of thesurgical site6208. Advanced imaging identifies and visually highlights6222 critical structures such as the ureter6220 (or nerves, etc.) and also tracksinstrument proximity displays6210 and shown on the left side of thedisplay6200. In the illustrated example, theinstrument proximity displays6210 show instrument specific settings. For example the topinstrument proximity display6212 shows settings for a monopolar instrument, the middleinstrument proximity display6214 shows settings for a bipolar instrument, and the bottominstrument proximity display6212 shows settings for an ultrasonic instrument.
In another aspect, independent secondary displays or dedicated local displays can be linked to thesurgical hub206 to provide both an interaction portal via a touchscreen display and/or a secondary screen that can display any number ofsurgical hub206 tracked data feeds to provide a clear non-confusing status. The secondary screen may display force to fire (FTF), tissue gap, power level, impedance, tissue compression stability (creep), etc., while the primary screen may display only key variables to keep the feed free of clutter. The interactive display may be used to move the display of specific information to the primary display to a desired location, size, color, etc. In the illustrated example, the secondary screen displays the instrument proximity displays6210 on the left side of thedisplay6200 and thelocal instrument display6204 on the bottom right side of thedisplay6200. Thelocal instrument display6204 presented on thesurgical hub display6200 displays an icon of theend effector6218, such as the icon of astaple cartridge6224 currently in use, thesize6226 of the staple cartridge6224 (e.g., 60 mm), and an icon of the current position of theknife6228 of the end effector.
In another aspect, thedisplay237 located on theinstrument235 displays the wireless or wired attachment of theinstrument235 to thesurgical hub206 and the instrument's communication/recording on thesurgical hub206. A setting may be provided on theinstrument235 to enable the user to select mirroring or extending the display to both monitoring devices. The instrument controls may be used to interact with the surgical hub display of the information being sourced on the instrument. As previously discussed, theinstrument235 may comprise wireless communication circuits to communicate wirelessly with thesurgical hub206.
In another aspect, a first instrument coupled to thesurgical hub206 can pair to a screen of a second instrument coupled to thesurgical hub206 allowing both instruments to display some hybrid combination of information from the two devices of both becoming mirrors of portions of the primary display. In yet another aspect, theprimary display6200 of thesurgical hub206 provides a 360° composite top visual view of thesurgical site6208 to avoid collateral structures. For example, a secondary display of the end-effector surgical stapler may be provided within theprimary display6200 of thesurgical hub206 or on another display in order to provide better perspective around the areas within a current the field ofview6206. These aspects are described hereinbelow in connection withFIGS.38-40.
FIGS.38-40 illustrate a composite overhead views of an end-effector6234 portion of a surgical stapler mapped using two or more imaging arrays or one array and time to provide multiple perspective views of the end-effector6234 to enable the composite imaging of an overhead field of view. The techniques described herein may be applied to ultrasonic instruments, electrosurgical instruments, combination ultrasonic/electrosurgical instruments, and/or combination surgical stapler/electrosurgical instruments. Several techniques for overlaying or augmenting images and/or text from multiple image/text sources to present composite images on a single display are described hereinbelow in connection withFIGS.45-53 andFIGS.63-67.
FIG.38 illustrates aprimary display6200 of thesurgical hub206, according to one aspect of the present disclosure. Aprimary window6230 is located at the center of the screen shows a magnified or exploded narrow angle view of a surgical field ofview6232. Theprimary window6230 located in the center of the screen shows a magnified or narrow angle view of an end-effector6234 of the surgical stapler grasping avessel6236. Theprimary window6230 displays knitted images to produce a composite image that enables visualization of structures adjacent to the surgical field ofview6232. Asecond window6240 is shown in the lower left corner of theprimary display6200. Thesecond window6240 displays a knitted image in a wide angle view at standard focus of the image shown in theprimary window6230 in an overhead view. The overhead view provided in thesecond window6240 enables the viewer to easily see items that are out of the narrow field surgical field ofview6232 without moving the laparoscope, orother imaging device239 coupled to theimaging module238 of thesurgical hub206. A third window6242 is shown in the lower right corner of theprimary display6200 shows anicon6244 representative of the staple cartridge of the end-effector6234 (e.g., a staple cartridge in this instance) and additional information such as “4 Row” indicating the number ofstaple rows6246 and “35 mm” indicating the distance6248 traversed by the knife along the length of the staple cartridge. Below the third window6242 is displayed anicon6258 of a frame of the current state of a clamp stabilization sequence6250 (FIG.39) that indicates clamp stabilization.
FIG.39 illustrates aclamp stabilization sequence6250 over a five second period, according to one aspect of the present disclosure. Theclamp stabilization sequence6250 is shown over a five second period withintermittent displays6252,6254,6256,6258,6260 spaced apart at onesecond intervals6268 in addition to providing the real time6266 (e.g., 09:35:10), which may be a pseudo real time to preserve anonymity of the patient. Theintermittent displays6252,6254,6256,6258,6260 show elapsed by filling in the circle until the clamp stabilization period is complete. At that point, thelast display6260 is shown in solid color. Clamp stabilization after theend effector6234 clamps thevessel6236 enables the formation of a better seal.
FIG.40 illustrates a diagram6270 of four separate wideangle view images6272,6274,6276,6278 of a surgical site at four separate times during the procedure, according to one aspect of the present disclosure. The sequence of images shows the creation of an overhead composite image in wide and narrow focus over time. Afirst image6272 is a wide angle view of the end-effector6234 clamping thevessel6236 taken at an earlier time t0(e.g., 09:35:09). Asecond image6274 is another wide angle view of the end-effector6234 clamping thevessel6236 taken at the present time t1(e.g., 09:35:13). Athird image6276 is a composite image of an overhead view of the end-effector6234 clamping thevessel6236 taken at present time t1. Thethird image6276 is displayed in thesecond window6240 of theprimary display6200 of thesurgical hub206 as shown inFIG.38. Afourth image6278 is a narrow angle view of the end-effector6234 clamping thevessel6236 at present time t1(e.g., 09:35:13). Thefourth image6278 is the narrow angle view of the surgical site shown in theprimary window6230 of theprimary display6200 of thesurgical hub206 as shown inFIG.38.
Display of Instrument Specific Data Needed for Efficient Use of the End-Effector
In one aspect, the present disclosure provides a surgical hub display of instrument specific data needed for efficient use of a surgical instrument, such as a surgical stapler. The techniques described herein may be applied to ultrasonic instruments, electrosurgical instruments, combination ultrasonic/electrosurgical instruments, and/or combination surgical stapler/electrosurgical instruments. In one aspect, a clamp time indicator based on tissue properties is shown on the display. In another aspect, a 360° composite top visual view is shown on the display to avoid collateral structures as shown and described in connection withFIGS.37-40 is incorporated herein by reference and, for conciseness and clarity of disclosure, the description ofFIGS.37-40 will not be repeated here.
In one aspect, the present disclosure provides a display of tissue creep to provide the user with in-tissue compression/tissue stability data and to guide the user making an appropriate choice of when to conduct the next instrument action. In one aspect, an algorithm calculates a constant advancement of a progressive time based feedback system related to the viscoelastic response of tissue. These and other aspects are described hereinbelow.
FIG.41 is agraph6280 of tissue creep clamp stabilization curves6282,6284 for two tissue types, according to one aspect of the present disclosure. The clamp stabilization curves6284,6284 are plotted as force-to-close (FTC) as a function of time, where FTC (N) is displayed along the vertical axis and Time, t, (Sec) is displayed along the horizontal axis. The FTC is the amount of force exerted to close the clamp arm on the tissue. The firstclamp stabilization curve6282 represents stomach tissue and the secondclamp stabilization curve6284 represents lung tissue. In one aspect, the FTC along the vertical axis is scaled from 0-180 N. and the horizontal axis is scaled from 0-5 Sec. As shown, the FTC as a different profile over a five second clamp stabilization period (e.g., as shown inFIG.39).
With reference to the firstclamp stabilization curve6282, as the stomach tissue is clamped by the end-effector6234, the force-to-close (FTC) applied by the end-effector6234 increases from 0 N to a peak force-to-close of ˜180 N after ˜1 Sec. While the end-effector6234 remains clamped on the stomach tissue, the force-to-close decays and stabilizes to ˜150 N over time due to tissue creep.
Similarly, with reference to the secondclamp stabilization curve6284, as the lung tissue is clamped by the end-effector6234, the force-to-close applied by the end-effector6234 increases from 0 N to a peak force-to-close of ˜90 N after just less than ˜1 Sec. While the end-effector6234 remains clamped on the lung tissue, the force-to-close decays and stabilizes to ˜60 N over time due to tissue creep.
The end-effector6234 clamp stabilization is monitored as described above in connection withFIGS.38-40 and is displayed every second corresponding the sampling times t1, t2, t3, t4, t5of the force-to-close to provide user feedback regarding the state of the clamped tissue.FIG.41 shows an example of monitoring tissue stabilization for the lung tissue by sampling the force-to-close every second over a 5 seconds period. At each sample time t1, t2, t3, t4, t5, theinstrument235 or thesurgical hub206 calculates acorresponding vector tangent6288,6292,6294,6298,6302 to the secondclamp stabilization curve6284. Thevector tangent6288,6292,6294,6298,6302 is monitored until its slope drops below a threshold to indicate that the tissue creep is complete and the tissue is ready to sealed and cut. As shown inFIG.41, the lung tissue is ready to be sealed and cut after ˜5 Sec. clamp stabilization period, where a solid gray circle is shown at sample time6300. As shown, thevector tangent6302 is less than a predetermined threshold.
The equation of avector tangent6288,6292,6294,6298,6302 to theclamp stabilization curve6284 may be calculated using differential calculus techniques, for example. In one aspect, at a given point on theclamp stabilization curve6284, the gradient of thecurve6284 is equal to the gradient of the tangent to thecurve6284. The derivative (or gradient function) describes the gradient of thecurve6284 at any point on thecurve6284. Similarly, it also describes the gradient of a tangent to thecurve6284 at any point on thecurve6284. The normal to thecurve6284 is a line perpendicular to the tangent to thecurve6284 at any given point. To determine the equation of a tangent to a curve find the derivative using the rules of differentiation. Substitute the x coordinate (independent variable) of the given point into the derivative to calculate the gradient of the tangent. Substitute the gradient of the tangent and the coordinates of the given point into an appropriate form of the straight line equation. Make the y coordinate (dependent variable) the subject of the formula.
FIG.42 is agraph6310 of time dependent proportionate fill of a clamp force stabilization curve, according to one aspect of the present disclosure. Thegraph6310 includes clamp stabilization curves6312,6314,6316 for standard thick stomach tissue, thin stomach tissue, and standard lung tissue. The vertical axis represents FTC (N) scaled from 0-240 N and the horizontal axis represents Time, t, (Sec) scaled from 0-15 Sec. As shown, the standard thickstomach tissue curve6316 is the default force decay stability curve. All three clamp stabilization curves6312,6314,6316 FTC profiles reach a maximum force shortly after clamping on the tissue and then the FTC decreases over time until it eventually stabilizes due to the viscoelastic response of the tissue. As shown the standard lung tissueclamp stabilization curve6312 stabilizes after a period of ˜5 Sec., the thin stomach tissueclamp stabilization curve6314 stabilizes after a period of ˜10 Sec., and the thick stomach tissueclamp stabilization curve6316 stabilizes after a period of ˜15 Sec.
FIG.43 is agraph6320 of the role of tissue creep in the clampforce stabilization curve6322, according to one aspect of the present disclosure. The vertical axis represents force-to-close FTC (N) and the horizontal axis represents Time, t, (Sec) in seconds. Vector tangent angles dθ1, dθ2. . . dθnare measured at each force-to-close sampling (t0, t1, t2, t3, t4, etc.) times. The vector tangent angle dθnis used to determine when the tissue has reached the creep termination threshold, which indicates that the tissue has reached creep stability.
FIGS.44A and44B illustrate twographs6330,6340 for determining when the clamped tissue has reached creep stability, according to one aspect of the present disclosure. Thegraph6330 inFIG.44A illustrates a curve6332 that represents a vector tangent angle dθ as a function of time. The vector tangent angle dθ is calculated as discussed inFIG.43. Thehorizontal line6334 is the tissue creep termination threshold. The tissue creep is deemed to be stable at theintersection6336 of the vector tangent angle dθ curve6332 and the tissuecreep termination threshold6334. Thegraph6340 inFIG.44B illustrates aΔFTC curve6342 that represents ΔFTC as a function of time. TheΔFTC curve6342 illustrates thethreshold6344 to 100% complete tissue creep stability meter. The tissue creep is deemed to be stable at theintersection6346 of theΔFTC curve6342 and thethreshold6344.
Communication Techniques
With reference toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206, and in particular,FIGS.9-10, in various aspects, the present disclosure provides communications techniques for exchanging information between aninstrument235, or other modules, and thesurgical hub206. In one aspect, the communications techniques include image fusion to place instrument status and analysis over a laparoscope image, such as a screen overlay of data, within and around the perimeter of an image presented on asurgical hub display215,217. In another aspect, the communication techniques include combining an intermediate short range wireless, e.g., Bluetooth, signal with the image, and in another aspect, the communication techniques include applying security and identification of requested pairing. In yet another aspect, the communication techniques include an independent interactive headset worn by a surgeon that links to the hub with audio and visual information that avoids the need for overlays, but allows customization of displayed information around periphery of view. Each of these communication techniques is discussed hereinbelow.
Screen Overlay of Data within and Around the Perimeter of the Displayed Image
In one aspect, the present disclosure provides image fusion allowing the overlay of the status of a device, the integration landmarks being used to interlock several images, and at least one guidance feature. In another aspect, the present disclosure provides a technique for screen overlay of data within and around the perimeter of displayed image. Radiographic integration may be employed for live internal sensing and pre-procedure overlay. Image fusion of one source may be superimposed over another. Image fusion may be employed to place instrument status and analysis on a medical imaging device (e.g., laparoscope, endoscope, thoracoscope, etc.) image. Image fusion allows the overlay of the status of a device or instrument, integration landmarks to interlock several images, and at least one guidance feature.
FIG.45 illustrates an example of anaugmented video image6350 comprising apre-operative video image6352 augmented withdata6354,6356,6358 identifying displayed elements. An augmented reality vision system may be employed in surgical procedures to implement a method for augmenting data onto apre-operative image6352. The method includes generating apre-operative image6352 of an anatomical section of a patient and generating an augmented video image of a surgical site within the patient. Theaugmented video image6350 includes an image of at least a portion of asurgical tool6354 operated by a user6456. The method further includes processing thepre-operative image6352 to generate data about the anatomical section of the patient. The data includes alabel6358 for the anatomical section and a peripheral margin of at least a portion of the anatomical section. The peripheral margin is configured to guide a surgeon to a cutting location relative to the anatomical section, embedding the data and an identity of theuser6356 within thepre-operative image6350 to display anaugmented video image6350 to the user about the anatomical section of the patient. The method further includes sensing a loading condition on thesurgical tool6354, generating a feedback signal based on the sensed loading condition, and updating, in real time, the data and a location of the identity of the user operating thesurgical tool6354 embedded within the augmentedvideo image6350 in response to a change in a location of thesurgical tool6354 within the augmentedvideo image6350. Further examples are disclosed in U.S. Pat. No. 9,123,155, titled APPARATUS AND METHOD FOR USING AUGMENTED REALITY VISION SYSTEM IN SURGICAL PROCEDURES, which issued on Sep. 1, 2015, which is herein incorporated by reference in its entirety.
In another aspect, radiographic integration techniques may be employed to overlay thepre-operative image6352 with data obtained through live internal sensing or pre-procedure techniques. Radiographic integration may include marker and landmark identification using surgical landmarks, radiographic markers placed in or outside the patient, identification of radio-opaque staples, clips or other tissue-fixated items. Digital radiography techniques may be employed to generate digital images for overlaying with apre-operative image6352. Digital radiography is a form of X-ray imaging that employs a digital image capture device with digital X-ray sensors instead of traditional photographic film. Digital radiography techniques provide immediate image preview and availability for overlaying with thepre-operative image6352. In addition, special image processing techniques can be applied to the digital X-ray mages to enhance the overall display quality of the image.
Digital radiography techniques employ image detectors that include flat panel detectors (FPDs), which are classified in two main categories indirect FPDs and direct FPDs. Indirect FPDs include amorphous silicon (a-Si) combined with a scintillator in the detector's outer layer, which is made from cesium iodide (CsI) or gadolinium oxy-sulfide (Gd2O2S), converts X-rays to light. The light is channeled through the a-Si photodiode layer where it is converted to a digital output signal. The digital signal is then read out by thin film transistors (TFTs) or fiber-coupled charge coupled devices (CCDs). Direct FPDs include amorphous selenium (a-Se) FPDs that convert X-ray photons directly into charge. The outer layer of a flat panel in this design is typically a high-voltage bias electrode. X-ray photons create electron-hole pairs in a-Se, and the transit of these electrons and holes depends on the potential of the bias voltage charge. As the holes are replaced with electrons, the resultant charge pattern in the selenium layer is read out by a TFT array, active matrix array, electrometer probes or micro plasma line addressing. Other direct digital detectors are based on CMOS and CCD technology. Phosphor detectors also may be employed to record the X-ray energy during exposure and is scanned by a laser diode to excite the stored energy which is released and read out by a digital image capture array of a CCD.
FIG.46 is a logic flow diagram6360 of a process depicting a control program or a logic configuration to display images, according to one aspect of the present disclosure. With reference also toFIGS.1-11 to show interaction with an interactivesurgical system100 environment including asurgical hub106,206, the present disclosure provides, in one aspect, asurgical hub206, comprising aprocessor244 and amemory249 coupled to theprocessor244. Thememory249 stores instructions executable by theprocessor244 to receive6362 first image data from a first image sensor, receive6364 second image data from a second image sensor, anddisplay6366, on adisplay217 coupled to thesurgical hub206, a first image corresponding to the first field of view and a second image corresponding to the second field of view. The first image data represents a first field of view and the second image data represents a second field of view.
In one aspect, the first field of view is a narrow angle field of view and the second field of view is a wide angle field of view. In another aspect, thememory249 stores instructions executable by theprocessor244 to augment the first image with the second image on the display. In another aspect, thememory249 stores instructions executable by theprocessor244 to fuse the first image and the second image into a third image and display a fused image on thedisplay217. In another aspect, the fused image data comprises status information associated with asurgical device235, an image data integration landmark to interlock a plurality of images, and at least one guidance parameter. In another aspect, the first image sensor is the same as the same image sensor and wherein the first image data is captured as a first time and the second image data is captured at a second time.
In another aspect, thememory249 stores instructions executable by theprocessor244 to receive third image data from a third image sensor, wherein the third image data represents a third field of view, generate composite image data comprising the second and third image data, display the first image in a first window of the display, wherein the first image corresponds to the first image data, and display a third image in a second window of thedisplay215, wherein the third image corresponds to the composite image data.
In another aspect, thememory249 stores instructions executable by theprocessor244 to receive third image data from a third image sensor, wherein the third image data represents a third field of view, fuse the second and third image data to generate fused image data, display the first image in a first window of thedisplay217, wherein the first image corresponds to the first image data, and display a third image in a second window of thedisplay217, wherein the third image corresponds to the fused image data.
Intermediate Short Range Wireless (e.g., Bluetooth) Signal Combiner
An intermediate short range wireless, e.g., Bluetooth, signal combiner may comprise a wireless heads-up display adapter placed into the communication path of the monitor to a laparoscope console allowing the surgical hub to overlay data onto the screen. Security and identification of requested pairing may augment the communication techniques.
FIG.47 illustrates acommunication system6370 comprising anintermediate signal combiner6372 positioned in the communication path between animaging module238 and asurgical hub display217, according to one aspect of the present disclosure. Thesignal combiner6372 receives image data from animaging module238 in the form of short range wireless or wired signals. Thesignal combiner6372 also receives audio and image data form aheadset6374 and combines the image data from theimaging module238 with the audio and image data from theheadset6374. Thesurgical hub206 receives the combined data from thecombiner6372 and overlays the data provided to thedisplay217, where the overlaid data is displayed. Thesignal combiner6372 may communicate with thesurgical hub206 via wired or wireless signals. Theheadset6374 receives image data from animaging device6376 coupled to theheadset6374 and receives audio data from anaudio device6378 coupled to theheadset6374. Theimaging device6376 may be a digital video camera and theaudio device6378 may be a microphone. In one aspect, thesignal combiner6372 may be an intermediate short range wireless, e.g., Bluetooth, signal combiner. Thesignal combiner6374 may comprise a wireless heads-up display adapter to couple to theheadset6374 placed into the communication path of thedisplay217 to a console allowing thesurgical hub206 to overlay data onto the screen of thedisplay217. Security and identification of requested pairing may augment the communication techniques. Theimaging module238 may be coupled to a variety if imaging devices such as anendoscope239, laparoscope, etc., for example.
Independent Interactive Headset
FIG.48 illustrates an independent interactive headset6380 worn by asurgeon6382 to communicate data to the surgical hub, according to one aspect of the present disclosure. Peripheral information of the independent interactive headset6380 does not include active video. Rather, the peripheral information includes only device settings, or signals that do not have same demands of refresh rates. Interaction may augment the surgeon's6382 information based on linkage with preoperative computerized tomography (CT) or other data linked in thesurgical hub206. The independent interactive headset6380 can identify structure—ask whether instrument is touching a nerve, vessel, or adhesion, for example. The independent interactive headset6380 may include pre-operative scan data, an optical view, tissue interrogation properties acquired throughout procedure, and/or processing in thesurgical hub206 used to provide an answer. Thesurgeon6382 can dictate notes to the independent interactive headset6380 to be saved with patient data in thehub storage248 for later use in report or in follow up.
In one aspect, the independent interactive headset6380 worn by thesurgeon6382 links to thesurgical hub206 with audio and visual information to avoid the need for overlays, and allows customization of displayed information around periphery of view. The independent interactive headset6380 provides signals from devices (e.g., instruments), answers queries about device settings, or positional information linked with video to identify quadrant or position. The independent interactive headset6380 has audio control and audio feedback from the headset6380. The independent interactive headset6380 is still able to interact with all other systems in the operating theater (e.g., operating room), and have feedback and interaction available wherever thesurgeon6382 is viewing.
Identification and Usage Recording
In one aspect, the present disclosure provides a display of the authenticity of reloads, modular components, or loading units.FIG.49 illustrates amethod6390 for controlling the usage of adevice6392. Adevice6392 is connected to anenergy source6394. Thedevice6392 includes amemory device6396 that includesstorage6398 andcommunication6400 devices. Thestorage6398 includesdata6402 that may be locked data6404 or unlockeddata6406. Additionally, thestorage6398 includes an error-detectingcode6408 such as a cyclic redundancy check (CRC) value and asterilization indicator6410. Theenergy source6394 includes areader6412,display6414, aprocessor6416, and adata port6418 that couples theenergy source6394 to anetwork6420. Thenetwork6420 is coupled to acentral server6422, which is coupled to acentral database6424. Thenetwork6420 also is coupled to areprocessing facility6426. Thereprocessing facility6426 includes a reprocessing data reader/writer6428 and asterilizing device6430.
The method comprises connecting the device to anenergy source6394. Data is read from amemory device6396 incorporated in thedevice6392. The data including one or more of a unique identifier (UID), a usage value, an activation value, a reprocessing value, or a sterilization indicator. The usage value is incremented when thedevice6392 is connected to theenergy source6394. The activation value is incremented when thedevice6392 is activated permitting energy to flow from theenergy source6394 to an energy consuming component of thedevice6392. Usage of thedevice6392 may be prevented if: the UID is on a list of prohibited UIDs, the usage value is not lower than a usage limitation value, the reprocessing value is equal to a reprocessing limitation value, the activation value is equal to an activation limitation value, and/or the sterilization indicator does not indicate that the device has been sterilized since its previous usage. Further examples are disclosed in U.S. Patent Application Publication No. 2015/0317899, titled SYSTEM AND METHOD FOR USING RFID TAGS TO DETERMINE STERILIZATION OF DEVICES, which published on Nov. 5, 2015, which is herein incorporated by reference in its entirety.
FIG.50 provides asurgical system6500 in accordance with the present disclosure and includes a surgical instrument6502 that is in communication with aconsole6522 or aportable device6526 through alocal area network6518 or acloud network6520 via a wired or wireless connection. In various aspects, theconsole6522 and theportable device6526 may be any suitable computing device. The surgical instrument6502 includes ahandle6504, anadapter6508, and aloading unit6514. Theadapter6508 releasably couples to thehandle6504 and theloading unit6514 releasably couples to theadapter6508 such that theadapter6508 transmits a force from a drive shaft to theloading unit6514. Theadapter6508 or theloading unit6514 may include a force gauge (not explicitly shown) disposed therein to measure a force exerted on theloading unit6514. Theloading unit6514 includes anend effector6530 having afirst jaw6532 and asecond jaw6534. Theloading unit6514 may be an in-situ loaded or multi-firing loading unit (MFLU) that allows a clinician to fire a plurality of fasteners multiple times without requiring theloading unit6514 to be removed from a surgical site to reload theloading unit6514.
The first andsecond jaws6532,6534 are configured to clamp tissue therebetween, fire fasteners through the clamped tissue, and sever the clamped tissue. Thefirst jaw6532 may be configured to fire at least one fastener a plurality of times, or may be configured to include a replaceable multi-fire fastener cartridge including a plurality of fasteners (e.g., staples, clips, etc.) that may be fired more that one time prior to being replaced. Thesecond jaw6534 may include an anvil that deforms or otherwise secures the fasteners about tissue as the fasteners are ejected from the multi-fire fastener cartridge.
Thehandle6504 includes a motor that is coupled to the drive shaft to affect rotation of the drive shaft. Thehandle6504 includes a control interface to selectively activate the motor. The control interface may include buttons, switches, levers, sliders, touchscreen, and any other suitable input mechanisms or user interfaces, which can be engaged by a clinician to activate the motor.
The control interface of thehandle6504 is in communication with acontroller6528 of thehandle6504 to selectively activate the motor to affect rotation of the drive shafts. Thecontroller6528 is disposed within thehandle6504 and is configured to receive input from the control interface and adapter data from theadapter6508 or loading unit data from theloading unit6514. Thecontroller6528 analyzes the input from the control interface and the data received from theadapter6508 and/orloading unit6514 to selectively activate the motor. Thehandle6504 may also include a display that is viewable by a clinician during use of thehandle6504. The display is configured to display portions of the adapter or loading unit data before, during, or after firing of the instrument6502.
Theadapter6508 includes anadapter identification device6510 disposed therein and theloading unit6514 includes a loadingunit identification device6516 disposed therein. Theadapter identification device6510 is in communication with thecontroller6528, and the loadingunit identification device6516 is in communication with thecontroller6528. It will be appreciated that the loadingunit identification device6516 may be in communication with theadapter identification device6510, which relays or passes communication from the loadingunit identification device6516 to thecontroller6528.
Theadapter6508 may also include a plurality of sensors6512 (one shown) disposed thereabout to detect various conditions of theadapter6508 or of the environment (e.g., if theadapter6508 is connected to a loading unit, if theadapter6508 is connected to a handle, if the drive shafts are rotating, the torque of the drive shafts, the strain of the drive shafts, the temperature within theadapter6508, a number of firings of theadapter6508, a peak force of theadapter6508 during firing, a total amount of force applied to theadapter6508, a peak retraction force of theadapter6508, a number of pauses of theadapter6508 during firing, etc.). The plurality ofsensors6512 provides an input to theadapter identification device6510 in the form of data signals. The data signals of the plurality ofsensors6512 may be stored within, or be used to update the adapter data stored within, theadapter identification device6510. The data signals of the plurality ofsensors6512 may be analog or digital. The plurality ofsensors6512 may include a force gauge to measure a force exerted on theloading unit6514 during firing.
Thehandle6504 and theadapter6508 are configured to interconnect theadapter identification device6510 and the loadingunit identification device6516 with thecontroller6528 via an electrical interface. The electrical interface may be a direct electrical interface (i.e., include electrical contacts that engage one another to transmit energy and signals therebetween). Additionally or alternatively, the electrical interface may be a non-contact electrical interface to wirelessly transmit energy and signals therebetween (e.g., inductively transfer). It is also contemplated that theadapter identification device6510 and thecontroller6528 may be in wireless communication with one another via a wireless connection separate from the electrical interface.
Thehandle6504 includes atransmitter6506 that is configured to transmit instrument data from thecontroller6528 to other components of the system6500 (e.g., theLAN6518, thecloud6520, theconsole6522, or the portable device6526). Thetransmitter6506 also may receive data (e.g., cartridge data, loading unit data, or adapter data) from the other components of thesystem6500. For example, thecontroller6528 may transmit instrument data including a serial number of an attached adapter (e.g., adapter6508) attached to thehandle6504, a serial number of a loading unit (e.g., loading unit6514) attached to the adapter, and a serial number of a multi-fire fastener cartridge (e.g., multi-fire fastener cartridge), loaded into the loading unit, to theconsole6528. Thereafter, theconsole6522 may transmit data (e.g., cartridge data, loading unit data, or adapter data) associated with the attached cartridge, loading unit, and adapter, respectively, back to thecontroller6528. Thecontroller6528 can display messages on the local instrument display or transmit the message, viatransmitter6506, to theconsole6522 or theportable device6526 to display the message on thedisplay6524 or portable device screen, respectively.
Multi-Functional Surgical Control System and Switching Interface for Verbal Control of Imaging Device
FIG.51 illustrates a verbal AESOP camera positioning system. Further examples are disclosed in U.S. Pat. No. 7,097,640, titled MULTI-FUNCTIONAL SURGICAL CONTROL SYSTEM AND SWITCHING INTERFACE, which issued on Aug. 29, 2006, which is herein incorporated by reference in its entirety.FIG.51 shows asurgical system6550 that may be coupled tosurgical hub206, described in connection withFIGS.1-11. Thesystem6550 allows a surgeon to operate a number of differentsurgical devices6552,6554,6556, and6558 from asingle input device6560. Providing a single input device reduces the complexity of operating the various devices and improves the efficiency of a surgical procedure performed by a surgeon. Thesystem6550 may be adapted and configured to operate a positioning system for an imaging device such as a camera or endoscope using verbal commands.
Thesurgical device6552 may be a robotic arm which can hold and move a surgical instrument. Thearm6552 may be a device such as that sold by Computer Motion, Inc. of Goleta, Calif. under the trademark AESOP, which is an acronym for Automated Endoscopic System for Optimal Positioning. Thearm6552 is commonly used to hold and move an endoscope within a patient. Thesystem6550 allows the surgeon to control the operation of therobotic arm6552 through theinput device6560.
Thesurgical device6554 may be an electrocautery device. Electrocautery devices typically have a bi-polar tip which carries a current that heats and denatures tissue. The device is typically coupled to an on-off switch to actuate the device and heat the tissue. The electrocautery device may also receive control signals to vary its power output. Thesystem6550 allows the surgeon to control the operation of the electrocautery device through theinput device6560.
Thesurgical device6556 may be a laser. Thelaser6556 may be actuated through an on-off switch. Additionally, the power of thelaser6556 may be controlled by control signals. Thesystem6550 allows the surgeon to control the operation of thelaser6556 through theinput device6560.
Thedevice6558 may be an operating table. The operating table6558 may contain motors and mechanisms which adjust the position of the table. The present invention allows the surgeon to control the position of the table6558 through theinput device6560. Although foursurgical devices6552,6554,6556, and6558 are described, it is to be understood that other functions within the operating room may be controlled through theinput device6560. By way of example, thesystem6560 may allow the surgeon to control the lighting and temperature of the operating room through theinput device6560.
Theinput device6560 may be a foot pedal which has a plurality ofbuttons6562,6564,6565,6566, and6568 that can be depressed by the surgeon. Each button is typically associated with a specific control command of a surgical device. For example, when theinput device6560 is controlling therobotic arm6552, depressing thebutton6562 may move the arm in one direction and depressing thebutton6566 may move the arm in an opposite direction. Likewise, when theelectrocautery device6554 or thelaser6556 is coupled to theinput device6560, depressing thebutton6568 may energize the devices, and so forth and so on. Although a foot pedal is shown and described, it is to be understood that theinput device6560 may be a hand controller, a speech interface which accepts voice commands from the surgeon, a cantilever pedal or other input devices which may be well known in the art of surgical device control. Using the speech interface, the surgeon is able to position a camera or endoscope connected to therobotic arm6552 using verbal commands. The imaging device, such as a camera or endoscope, may be coupled to therobotic arm6552 positioning system that be controlled through thesystem6550 using verbal commands.
Thesystem6550 has aswitching interface6570 which couples theinput device6560 to thesurgical devices6552,6554,6556, and6558. Theinterface6570 has aninput channel6572 which is connected to theinput device6560 by abus6574. Theinterface6570 also has a plurality ofoutput channels6576,6578,6580, and6582 that are coupled to the surgical devices bybusses6584,6586,6588,6590,6624,6626,6628 and which may have adapters or controllers disposed in electrical communication therewith and therebetween. Such adapters and controllers will be discussed in more detail hereinbelow.
Because eachdevice6552,6554,6556,6558 may require specifically configured control signals for proper operation,adapters6620,6622 or acontroller6618 may be placed intermediate and in electrical communication with a specific output channel and a specific surgical device. In the case of therobotic arm system6552, no adapter is necessary and as such, therobotic arm system6552 may be in direct connection with a specific output channel. Theinterface6570 couples theinput channel6572 to one of theoutput channels6576,6578,6580, and6582.
Theinterface6570 has aselect channel6592 which can switch theinput channel6572 to adifferent output channel6576,6578,6580, or6582 so that theinput device6560 can control any of the surgical devices. Theinterface6570 may be a multiplexor circuit constructed as an integrated circuit and placed on an ASIC. Alternatively, theinterface6570 may be a plurality of solenoid actuated relays coupled to the select channel by a logic circuit. Theinterface6570 switches to a specific output channel in response to an input signal or switching signal applied on theselect channel6592.
As depicted inFIG.51, there may be several inputs to theselect channel6592. Such inputs originate from thefoot pedal6560, thespeech interface6600 and theCPU6662. Theinterface6570 may have a multiplexing unit such that only one switching signal may be received at theselect channel6592 at any one time, thus ensuring no substantial hardware conflicts. The prioritization of the input devices may be configured so the foot pedal has highest priority followed by the voice interface and the CPU. This is intended for example as the prioritization scheme may be employed to ensure the most efficient system. As such other prioritization schemes may be employed. Theselect channel6592 may sequentially connect the input channel to one of the output channels each time a switching signal is provided to theselect channel6592. Alternatively, theselect channel6592 may be addressable so that theinterface6570 connects the input channel to a specific output channel when an address is provided to theselect channel6592. Such addressing is known in the art of electrical switches.
Theselect channel6592 may be connected byline6594 to adedicated button6596 on thefoot pedal6560. The surgeon can switch surgical devices by depressing thebutton6596. Alternatively, theselect channel6592 may be coupled byline6598 to aspeech interface6600 which allows the surgeon to switch surgical devices with voice commands.
Thesystem6550 may have a central processing unit (CPU)6602 which receives input signals from theinput device6560 through theinterface6570 and abus6585. TheCPU6602 receives the input signals, and can ensure that no improper commands are being input at the controller. If this occurs, theCPU6602 may respond accordingly, either by sending a different switching signal to selectchannel6592, or by alerting the surgeon via a video monitor or speaker.
TheCPU6602 can also provide output commands for theselect channel6592 on thebus6608 and receives input commands from thespeech interface6600 on the samebidirectional bus6608. TheCPU6602 may be coupled to amonitor6610 and/or a speaker6612 bybuses6614 and6616, respectively. Themonitor6610 may provide a visual indication of which surgical device is coupled to theinput device6560. The monitor may also provide a menu of commands which can be selected by the surgeon either through thespeech interface6600 orbutton6596. Alternatively, the surgeon could switch to a surgical device by selecting a command through a graphic user interface. Themonitor6610 may also provide information regarding improper control signals sent to a specificsurgical device6552,6554,6556,6558 and recognized by theCPU6602. Eachdevice6552,6554,6556,6558 has a specific appropriate operating range, which is well known to the skilled artisan. As such, theCPU6602 may be programmed to recognize when the requested operation from theinput device6560 is inappropriate and will then alert the surgeon either visually via themonitor6610 or audibly via the speaker6612. The speaker6612 may also provide an audio indication of which surgical device is coupled to theinput device6560.
Thesystem6550 may include acontroller6618 which receives the input signals from theinput device6560 and provides corresponding output signals to control the operating table6558. Likewise, the system may haveadapters6620,6622 which provide an interface between theinput device6560 and the specific surgical instruments connected to the system.
In operation, theinterface6570 initially couples theinput device6560 to one of the surgical devices. The surgeon can control a different surgical device by generating an input command that is provided to theselect channel6592. The input command switches theinterface6570 so that theinput device6560 is coupled to a different output channel and corresponding surgical device or adapter. What is thus provided is aninterface6570 that allows a surgeon to select, operate and control a plurality of different surgical devices through acommon input device6560.
FIG.52 illustrates a multi-functionalsurgical control system6650 and switching interface for virtual operating room integration. A virtual control system for controlling surgical equipment in an operating room while a surgeon performs a surgical procedure on a patient, comprising: a virtual control device including an image of a control device located on a surface and a sensor for interrogating contact interaction of an object with the image on the surface, the virtual control device delivering an interaction signal indicative of the contact interaction of the object with the image; and a system controller connected to receive the interaction signal from the virtual control device and to deliver a control signal to the surgical equipment in response to the interaction signal to control the surgical equipment in response to the contact interaction of the object with the image. Further examples are disclosed in U.S. Pat. No. 7,317,955, titled VIRTUAL OPERATING ROOM INTEGRATION, which issued on Jan. 8, 2008, which is herein incorporated by reference in its entirety.
As shown inFIG.52,communication links6674 are established between thesystem controller6676 and the various components and functions of thevirtual control system6650. Thecommunication links6674 are preferably optical paths, but the communication links may also be formed by radio frequency transmission and reception paths, hardwired electrical connections, or combinations of optical, radio frequency and hardwired connection paths as may be appropriate for the type of components and functions obtained by those components. The arrows at the ends of thelinks6674 represent the direction of primary information flow.
Thecommunication links6674 with thesurgical equipment6652, avirtual control panel6556, avirtual foot switch6654 andpatient monitoring equipment6660 are bidirectional, meaning that the information flows in both directions through thelinks6674 connecting those components and functions. For example, thesystem controller6676 supplies signals which are used to create a control panel image from thevirtual control panel6656 and a foot switch image from thevirtual foot switch6654. Thevirtual control panel6656 and thevirtual foot switch6654 supply information to thesystem controller6676 describing the physical interaction of the surgeon's finger and foot relative to a projected control panel image and the projected foot switch image. Thesystem controller6676 responds to the information describing the physical interaction with the projected image, and supplies control signals to thesurgical equipment6652 andpatient monitoring equipment6660 to control functionality of those components in response to the physical interaction information. The control, status and functionality information describing thesurgical equipment6652 andpatient monitoring equipment6660 flows to thesystem controller6676, and after that information is interpreted by thesystem controller6676, it is delivered to asystem display6670, amonitor6666, and/or a heads updisplay6668 for presentation.
Thecommunication links6674 between thesystem controller6676 and thesystem display6670, the heads updisplay6668, themonitor6666, atag printer6658 andoutput devices6664 are all uni-directional, meaning that the information flows from thesystem controller6676 to those components and functions. In a similar manner, thecommunication links6674 between thesystem controller6676 and ascanner6672 and theinput devices6662 are also unidirectional, but the information flows from thecomponents6662,6672 to thesystem controller6676. In certain circumstances, certain control and status information may flow between thesystem controller6676 and thecomponents6658,6660,6662,6664,6666,6668,6670,6672 in order to control the functionality of the those components.
Eachcommunication link6674 preferably has a unique identity so that thesystem controller6676 can individually communicate with each of the components of thevirtual control system6650. The unique identity of each communication link is preferable when some or all of thecommunication links6674 are through the same medium, as would be the case of optical and radio frequency communications. The unique identity of eachcommunication link6674 assures that thesystem controller6676 has the ability to exercise individual control over each of the components and functions on a very rapid and almost simultaneous manner. The unique identity of eachcommunication link6674 can be achieved by using different frequencies for eachcommunication link6674 or by using unique address and identification codes associated with the communications transferred over eachcommunication link6674.
In one aspect, the present disclosure provides illustrates a surgical communication and control headset that interfaces with thesurgical hub206 described in connection withFIGS.1-11. Further examples are disclosed in U.S. Patent Application Publication No. 2009/0046146, titled SURGICAL COMMUNICATION AND CONTROL SYSTEM, which published on Feb. 19, 2009, which is herein incorporated by reference in its entirety.FIG.53 illustrates a diagram6680 of a beam source and combined beam detector system utilized as a device control mechanism in an operating theater. Thesystem6680 is configured and wired to allow for device control with the overlay generated on the primary procedural display. The footswitch shows a method to allow the user to click on command icons that would appear on the screen while the beam source is used to aim at the particular desired command icon to be clicked. The control system graphic user interface (GUI) and device control processor communicate and parameters are changed using the system. Thesystem6680 includes adisplay6684 coupled to abeam detecting sensor6682 and a head mountedsource6686. Thebeam detecting sensor6682 is in communication with a control system GUI overlay processor andbeam source processor6688. The surgeon operates afootswitch6692 or other adjunctive switch, which provides a signal to a devicecontrol interface unit6694.
Thesystem6680 will provide a means for a sterile clinician to control procedural devices in an easy and quick, yet hands free and centralized fashion. The ability to maximize the efficiency of the operation and minimize the time a patient is under anesthesia is important to the best patient outcomes. It is common for surgeons, cardiologists or radiologists to verbally request adjustments be made to certain medical devices and electronic equipment used in the procedure outside the sterile field. It is typical that he or she must rely on another staff member to make the adjustments he or she needs to settings on devices such as cameras, bovies, surgical beds, shavers, insufflators, injectors, to name a few. In many circumstances, having to command a staff member to make a change to a setting can slow down a procedure because the non-sterile staff member is busy with another task. The sterile physician cannot adjust non-sterile equipment without compromising sterility, so he or she must often wait for the non-sterile staff member to make the requested adjustment to a certain device before resuming the procedure.
Thesystem6680 allows a user to use a beam source and beam detector to regenerate a pointer overlay coupled with a GUI and a concurrent switching method (i.e., a foot switch, etc.) to allow the clinician to click through commands on the primary display. In one aspect, a GUI could appear on the procedural video display when activated, such as when the user tilts his or her head twice to awaken it or steps on a foot switch provided with the system. Or it is possible that a right head tilt wakes up the system, and a left head tilt simply activates the beam source. When the overlay (called device control GUI overlay) appears on the screen it shows button icons representing various surgical devices and the user can use the beam source, in this case a laser beam, to aim at the button icons. Once the laser is over the proper button icon, a foot switch, or other simultaneous switch method can be activated, effectively acting like a mouse click on a computer. For example a user can “wake up” the system, causing a the device control GUI overlay to pop up that lists button icons on the screen, each one labeled as a corresponding procedural medical device. The user can point the laser at the correct box or device and click a foot pedal (or some other concurrent control-like voice control, waistband button, etc.) to make a selection, much like clicking a mouse on a computer. The sterile physician can then select “insufflator, for example” The subsequent screen shows arrow icons that can be clicked for various settings for the device that need to be adjusted (pressure, rate, etc.). In one iteration, the user can then can point the laser at the up arrow and click the foot pedal repeatedly until the desired setting is attained.
In one aspect, components of thesystem6680 could be coupled with existing robotic endoscope holders to “steer” a rigid surgical endoscopic camera by sending movement commands to the robotic endoscope holding arm (provided separately, i.e., AESOP by Computer Motion). The endoscope is normally held by an assistant nurse or resident physician. There are robotic and mechanical scope holders currently on the market and some have even had been introduced with voice control. However, voice control systems have often proven cumbersome, slow and inaccurate. This aspect would employ a series of software and hardware components to allow the overlay to appear as a crosshair on the primary procedural video screen. The user could point the beam source at any part of the quadrant and click a simultaneous switch, such as a foot pedal, to send movement commands to the existing robotic arm, which, when coupled with the secondary trigger (i.e., a foot switch, waist band switch, etc.) would send a command to adjust the arm in minute increments in the direction of the beam source. It could be directed by holding down the secondary trigger until the desired camera angle and position is achieved and then released. This same concept could be employed for surgical bed adjustments by having the overlay resemble the controls of a surgical bed. The surgical bed is commonly adjusted during surgery to allow better access to the anatomy. Using the combination of the beam source, in this case a laser, a beam detecting sensor such as a camera, a control system GUI overlay processing unit and beam source processor, and a device control interface unit, virtually any medical device could be controlled through this system. Control codes would be programmed into the device control interface unit, and most devices can be connected using an RS-232 interface, which is a standard for serial binary data signals connecting between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating Equipment). The present invention while described with reference to application in the medical field can be expanded/modified for use in other fields. Another use of this invention could be in helping those who are without use of their hands due to injury or handicap or for professions where the hands are occupied and hands free interface is desired.
Surgical Hub with Direct Interface Control with Secondary Surgeon Display Units Designed to be within the Sterile Field and Accessible for Input and Display by the Surgeon
In one aspect, thesurgical hub206 provides a secondary user interface that enables display and control ofsurgical hub206 functions from with the sterile field. The secondary display could be used to change display locations, what information is displayed where, pass off control of specific functions or devices.
During a surgical procedure, the surgeon may not have a user interface device accessible for interactive input by the surgeon and display within the sterile field. Thus, the surgeon cannot interface with the user interface device and the surgical hub from within the sterile field and cannot control other surgical devices through the surgical hub from within the sterile field.
One solution provides a display unit designed to be used within the sterile field and accessible for input and display by the surgeon to allow the surgeon to have interactive input control from the sterile field to control other surgical devices coupled to the surgical hub. The display unit is sterile and located within the sterile field to allow the surgeons to interface with the display unit and the surgical hub to directly interface and configure instruments as necessary without leaving the sterile field. The display unit is a master device and may be used for display, control, interchanges of tool control, allowing feeds from other surgical hubs without the surgeon leaving the sterile field.
In one aspect, the present disclosure provides a control unit, comprising an interactive touchscreen display, an interface configured to couple the interactive touchscreen display to a surgical hub, a processor, and a memory coupled to the processor. The memory stores instructions executable by the processor to receive input commands from the interactive touchscreen display located inside a sterile field and transmits the input commands to a surgical hub to control devices coupled to the surgical hub located outside the sterile field.
In another aspect, the present disclosure provides a control unit, comprising an interactive touchscreen display, an interface configured to couple the interactive touchscreen display to a surgical hub, and a control circuit configured to receive input commands from the interactive touchscreen display located inside a sterile field and transmit the input commands to a surgical hub to control devices coupled to the surgical hub located outside the sterile field.
In another aspect, the present disclosure provides a non-transitory computer readable medium storing computer readable instructions which, when executed, causes a machine to receive input commands from an interactive touchscreen display located inside a sterile field and transmit the input commands to a surgical hub through an interface configured to couple the interactive touchscreen display to the surgical hub to control devices coupled to the surgical hub located outside the sterile field.
Providing a display unit designed to be used within the sterile field and accessible for input and display by the surgeon provides the surgeon interactive input control from the sterile field to control other surgical devices coupled to the surgical hub.
This display unit within the sterile field is sterile and allows the surgeons to interface with it and the surgical hub. This gives the surgeon control of the instruments coupled to the surgical hub and allows the surgeon to directly interface and configure the instruments as necessary without leaving the sterile field. The display unit is a master device and may be used for display, control, interchanges of tool control, allowing feeds from other surgical hubs without the surgeon leaving the sterile field.
In various aspects, the present disclosure provides a secondary user interface to enable display and control of surgical hub functions from within a sterile field. This control could be a display device like an I-pad, e.g., a portable interactive touchscreen display device configured to be introduced into the operating theater in a sterile manner. It could be paired like any other device or it could be location sensitive. The display device would be allowed to function in this manner whenever the display device is placed over a specific location of the draped abdomen of the patient during a surgical procedure. In other aspects, the present disclosure provides a smart retractor and a smart sticker. These and other aspects are described hereinbelow.
In one aspect, the present disclosure provides a secondary user interface to enable display and control of surgical hub functions from within the sterile field. In another aspect, the secondary display could be used to change display locations, determine what information and where the information is displayed, and pass off control of specific functions or devices.
There are four types of secondary surgeon displays in two categories. One type of secondary surgeon display units is designed to be used within the sterile field and accessible for input and display by the surgeon within the sterile field interactive control displays. Sterile field interactive control displays may be shared or common sterile field input control displays.
A sterile field display may be mounted on the operating table, on a stand, or merely laying on the abdomen or chest of the patient. The sterile field display is sterile and allows the surgeons to interface with the sterile field display and the surgical hub. This gives the surgeon control of the system and allows them to directly interface and configure the sterile field display as necessary. The sterile field display may be configured as a master device and may be used for display, control, interchanges of tool control, allowing feeds from other surgical hubs, etc.
In one aspect, the sterile field display may be employed to re-configure the wireless activation devices within the operating theater (OR) and their paired energy device if a surgeon hands the device to another.FIGS.54A-54E illustrate various types of sterile field control and data input consoles6700,6702,6708,6712,6714 according to various aspects of the present disclosure. Each of the disclosed sterile field control and data input consoles6700,6702,6708,6712,6714 comprise at least onetouchscreen6701,6704/6706,6709,6713,6716 input/output device layered on the top of an electronic visual display of an information processing system. The sterile field control and data input consoles6700,6702,6708,6712,6714 may include batteries as a power source. Some include acable6710 to connect to a separate power source or to recharge the batteries. A user can give input or control the information processing system through simple or multi-touch gestures by touching thetouchscreen6701,6704/6706,6709,6713,6716 with a stylus, one or more fingers, or a surgical tool. The sterile field control and data input consoles6700,6702,6708,6712,6714 may be used to re-configure wireless activation devices within the operating theater and a paired energy device if a surgeon hands the device to another surgeon. The sterile field control and data input consoles6700,6702,6708,6712,6714 may be used to accept consult feeds from another operating theater where it would then configure a portion of the operating theater screens or all of them to mirror the other operating theater so the surgeon is able to see what is needed to help. The sterile field control and data input consoles6700,6702,6708,6712,6714 are configured to communicate with thesurgical hub206. Accordingly, the description of thesurgical hub206 discussed in connection withFIGS.1-11 is incorporated in this section by reference.
FIG.54A illustrates a single zone sterile field control anddata input console6700, according to one aspect of the present disclosure. Thesingle zone console6700 is configured for use in a single zone within a sterile field. Once deployed in a sterile field, thesingle zone console6700 can receive touchscreen inputs from a user in the sterile field. Thetouchscreen6701 enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus or surgical tool). Thesingle zone console6700 includes wireless communication circuits to communicate wirelessly to thesurgical hub206.
FIG.54B illustrates a multi zone sterile field control anddata input console6702, according to one aspect of the present disclosure. Themulti zone console6702 comprises afirst touchscreen6704 to receive an input from a first zone of a sterile field and asecond touchscreen6706 to receive an input from a second zone of a sterile field. Themulti zone console6702 is configured to receive inputs from multiple users in a sterile field. Themulti zone console6702 includes wireless communication circuits to communicate wirelessly to thesurgical hub206. Accordingly, the multi zone sterile field control anddata input console6702 comprises an interactive touchscreen display with multiple input and output zones.
FIG.54C illustrates a tethered sterile field control anddata input console6708, according to one aspect of the present disclosure. The tetheredconsole6708 includes acable6710 to connect the tetheredconsole6708 to thesurgical hub206 via a wired connection. Thecable6710 enables the tetheredconsole6708 to communicate over a wired link in addition to a wireless link. Thecable6710 also enables the tetheredconsole6708 to connect to a power source for powering theconsole6708 and/or recharging the batteries in theconsole6708.
FIG.54D illustrates a battery operated sterile field control anddata input console6712, according to one aspect of the present disclosure. Thesterile field console6712 is battery operated and includes wireless communication circuits to communicate wirelessly with thesurgical hub206. In particular, in one aspect, thesterile field console6712 is configured to communicate with any of the modules coupled to thehub206 such as thegenerator module240. Through thesterile field console6712, the surgeon can adjust the power output level of a generator using thetouchscreen6713 interface. One example is described below in connection withFIG.54E.
FIG.54E illustrates a battery operated sterile field control anddata input console6714, according to one aspect of the present disclosure. Thesterile field console6714 includes a user interface displayed on the touchscreen of a generator. The surgeon can thus control the output of the generator by touching the up/down arrow icons6718A,6718B that increase/decrease the power output of thegenerator module240.Additional icons6719 enable access to thegenerator module settings6174,volume6178 using the +/− icons, among other features directly from thesterile field console6714. Thesterile field console6714 may be employed to adjust the settings or reconfigure other wireless activations devices or modules coupled to thehub206 within the operating theater and their paired energy device when the surgeon hands thesterile field console6714 to another.
FIGS.55A-55B illustrate asterile field console6700 in use in a sterile field during a surgical procedure, according to one aspect of the present disclosure.FIG.55A shows thesterile field console6714 positioned in the sterile field near two surgeons engaged in an operation. InFIG.55B, one of the surgeons is shown tapping thetouchscreen6701 of the sterile field console with asurgical tool6722 to adjust the output of a modular device coupled to thesurgical hub206, reconfigure the modular device, or an energy device paired with the modular device coupled to thesurgical hub206.
In another aspect, the sterile field display may be employed to accept consult feeds from another operating room (OR), such as another operating theater orsurgical hub206, where it would then configure a portion of the OR screens or all of them to mirror the other ORs so the surgeon could see what is needed to help.FIG.56 illustrates aprocess6750 for accepting consult feeds from another operating room, according to one aspect of the present disclosure. The sterile field control and data input consoles6700,6702,6708,6712,6714 shown inFIGS.54A-54E,55A-55B may be used as an interact-able scalable secondary display allowing the surgeon to overlay other feeds or images from laser Doppler image scanning arrays or other image sources. The sterile field control and data input consoles6700,6702,6708,6712,6714 may be used to call up a pre-operative scan or image to review. Laser Doppler techniques are described in U.S. Provisional Patent Application Ser. No. 62/611,341, filed Dec. 28, 2017, and titled INTERACTIVE SURGICAL PLATFORM, which is incorporated herein by reference in its entirety.
It is recognized that the tissue penetration depth of light is dependent on the wavelength of the light used. Thus, the wavelength of the laser source light may be chosen to detect particle motion (such a blood cells) at a specific range of tissue depth. A laser Doppler employs means for detecting moving particles such as blood cells based at a variety of tissue depths based on the laser light wavelength. A laser source may be directed to a surface of a surgical site. A blood vessel (such as a vein or artery) may be disposed within the tissue at some depth δ from the tissue surface. Red laser light (having a wavelength in the range of about 635 nm to about 660 nm) may penetrate the tissue to a depth of about 1 mm. Green laser light (having a wavelength in the range of about 520 nm to about 532 nm) may penetrate the tissue to a depth of about 2-3 mm. Blue laser light (having a wavelength in the range of about 405 nm to about 445 nm) may penetrate the tissue to a depth of about 4 mm or greater. A blood vessel may be located at a depth of about 2-3 mm below the tissue surface. Red laser light will not penetrate to this depth and thus will not detect blood cells flowing within this vessel. However, both green and blue laser light can penetrate this depth. Therefore, scattered green and blue laser light from the blood cells will result in an observed Doppler shift in both the green and blue.
In some aspects, a tissue may be probed by red, green, and blue laser illumination in a sequential manner and the effect of such illumination may be detected by a CMOS imaging sensor over time. It may be recognized that sequential illumination of the tissue by laser illumination at differing wavelengths may permit a Doppler analysis at varying tissue depths over time. Although red, green, and blue laser sources may be used to illuminate the surgical site, it may be recognized that other wavelengths outside of visible light (such as in the infra red or ultraviolet regions) may be used to illuminate the surgical site for Doppler analysis. The imaging sensor information may be provided to the sterile field control and data input consoles6700,6702,6708,6712,6714.
The sterile field control and data input consoles6700,6702,6708,6712,6714 provide access to past recorded data. In one operating theater designated as OR1, the sterile field control and data input consoles6700,6702,6708,6712,6714 may be configured as “consultants” and to erase all data when the consultation is complete. In another operating theater designated as OR3 (operating room 3), the sterile field control and data input consoles6700,6702,6708,6712,6714 may be configured as a “consultees” and are configured to record all data received from operating theater OR1 (operating room 1) sterile field control and data input consoles6700,6702,6708,6712,6714. These configurations are summarized in TABLE 1 below:
TABLE 1
Sterile Field Control And DataSterile Field Control And
Input Console In OR1Data Input Console In OR3
Access to past recorded data
OR1 ConsultantOR 3 Consultee
Erase data when doneRecord all data
In one implementation of theprocess6750, operating theater OR1 receives6752 a consult request from OR3. Data is transferred to the OR1 sterile field control anddata input console6700, for example. The data is temporarily stored6754. The data is backed up in time and theOR1 view6756 of the temporary data begins on the OR1 sterile field control anddata input console6700touchscreen6701. When the view is complete, the data is erased6758 andcontrol returns6760 to OR1. The data is then erased6762 from the OR1 sterile field control anddata input console6700 memory.
In yet another aspect, the sterile field display may be employed as an interactable scalable secondary display allowing the surgeon to overlay other feeds or images like laser Doppler scanning arrays. In yet another aspect, the sterile field display may be employed to call up a pre-operative scan or image to review. Once vessel path and depth and device trajectory are estimated, the surgeon employs a sterile field interactable scalable secondary display allowing the surgeon to overlay other feeds or images.
FIG.57 is a diagram6770 that illustrates a technique for estimating vessel path, depth, and device trajectory. Prior to dissecting avessel6772,6774 located below the surface of thetissue6775 using a standard approach, the surgeon estimates the path and depth of thevessel6772,6774 and atrajectory6776 of asurgical device6778 will take to reach thevessel6772,6774. It is often difficult to estimate the path anddepth6776 of avessel6772,6774 located below the surface of thetissue6775 because the surgeon cannot accurately visualize the location of thevessel6772,6774 path anddepth6776.
FIGS.58A-58D illustrate multiple real time views of images of a virtual anatomical detail for dissection including perspective views (FIGS.58A,58C) and side views (FIGS.58B,58D). The images are displayed on a sterile field display of tablet computer or sterile field control and data input console employed as an interactable scalable secondary display allowing the surgeon to overlay other feeds or images, according to one aspect of the present disclosure. The images of the virtual anatomy enable the surgeon to more accurately predict the path and depth of avessel6772,6774 located below the surface of thetissue6775 as shown inFIG.57 and thebest trajectory6776 of thesurgical device6778.
FIG.58A is a perspective view of avirtual anatomy6780 displayed on a tablet computer or sterile field control and data input console.FIG.58B is a side view of thevirtual anatomy6780 shown inFIG.58A, according to one aspect of the present disclosure. With reference toFIGS.58A-58B, in one aspect, the surgeon uses a smartsurgical device6778 and a tablet computer to visualize thevirtual anatomy6780 in real time and in multiple views. The three dimensional perspective view includes a portion oftissue6775 in which thevessels6772,6774 are located below surface. The portion of tissue is overlaid with agrid6786 to enable the surgeon to visualize a scale and gauge the path and depth of thevessels6772,6774 attarget locations6782,6784 each marked by an X. Thegrid6786 also assists the surgeon determine thebest trajectory6776 of thesurgical device6778. As illustrated, thevessels6772,6774 have an unusual vessel path.
FIG.58C illustrates a perspective view of thevirtual anatomy6780 for dissection, according to one aspect of the present disclosure.FIG.58D is a side view of thevirtual anatomy6780 for dissection, according to one aspect of the present disclosure. With reference toFIGS.58C-58D, using the tablet computer, the surgeon can zoom and pan 360° to obtain an optimal view of thevirtual anatomy6780 for dissection. The surgeon then determines the best path ortrajectory6776 to insert the surgical device6778 (e.g., a dissector in this example). The surgeon may view the anatomy in a three-dimensional perspective view or any one of six views. See for example the side view of the virtual anatomy inFIG.58D and the insertion of the surgical device6778 (e.g., the dissector).
In another aspect, a sterile field control and data input console may allow live chatting between different departments, such as, for example, with the oncology or pathology department, to discuss margins or other particulars associated with imaging. The sterile field control and data input console may allow the pathology department to tell the surgeon about relationships of the margins within a specimen and show them to the surgeon in real time using the sterile field console.
In another aspect, a sterile field control and data input console may be used to change the focus and field of view of its own image or control that of any of the other monitors coupled to the surgical hub.
In another aspect, a sterile field control and data input console may be used to display the status of any of the equipment or modules coupled to thesurgical hub206. Knowledge of which device coupled to thesurgical hub206 is being used may be obtained via information such as the device is not on the instrument pad or on-device sensors. Based on this information, the sterile field control and data input console may change display, configurations, switch power to drive one device, and not another, one cord from capital to instrument pad and multiple cords from there. Device diagnostics may obtain knowledge that the device is inactive or not being used. Device diagnostics may be based on information such as the device is not on the instrument pad or based on-device sensors.
In another aspect, a sterile field control and data input console may be used as a learning tool. The console may display checklists, procedure steps, and/or sequence of steps. A timer/clock may be displayed to measure time to complete steps and/or procedures. The console may display room sound pressure level as indicator for activity, stress, etc.
FIGS.59A-59B illustrate atouchscreen display6890 that may be used within the sterile field, according to one aspect of the present disclosure. Using thetouchscreen display6890, a surgeon can manipulateimages6892 displayed on thetouchscreen display6890 using a variety of gestures such as, for example, drag and drop, scroll, zoom, rotate, tap, double tap, flick, drag, swipe, pinch open, pinch close, touch and hold, two-finger scroll, among others.
FIG.59A illustrates animage6892 of a surgical site displayed on atouchscreen display6890 in portrait mode.FIG.59B shows thetouchscreen display6890 rotated6894 to landscape mode and the surgeon uses hisindex finger6896 to scroll theimage6892 in the direction of the arrows.FIG.59C shows the surgeon using hisindex finger6896 andthumb6898 to pinch open theimage6892 in the direction of the arrows6899 to zoom in.FIG.59D shows the surgeon using hisindex finger6896 andthumb6898 to pinch close theimage6892 in the direction of thearrows6897 to zoom out.FIG.59E shows thetouchscreen display6890 rotated in two directions indicated byarrows6894,6896 to enable the surgeon to view theimage6892 in different orientations.
Outside the sterile field, control and static displays are used that are different from the control and static displays used inside the sterile field. The control and static displays located outside the sterile field provide interactive and static displays for operating theater (OR) and device control. The control and static displays located outside the sterile field may include secondary static displays and secondary touchscreens for input and output.
Secondary staticnon-sterile displays107,109,119 (FIG.2) for used outside the sterile field include monitors placed on the wall of the operating theater, on a rolling stand, or on capital equipment. A static display is presented with a feed from the control device to which they are attached and merely displays what is presented to it.
Secondary touch input screens located outside the sterile field may be part of the visualization system108 (FIG.2), part of the surgical hub108 (FIG.2), or may be fixed placement touch monitors on the walls or rolling stands. One difference between secondary touch input screens and static displays is that a user can interact with a secondary touch input screen by changing what is displayed on that specific monitor or others. For capital equipment applications, it could be the interface to control the setting of the connected capital equipment. The secondary touch input screens and the static displays outside the sterile field can be used to preload the surgeon's preferences (instrumentation settings and modes, lighting, procedure and preferred steps and sequence, music, etc.)
Secondary surgeon displays may include personal input displays with a personal input device that functions similarly to the common sterile field input display device but it is controlled by a specific surgeon. Personal secondary displays may be implemented in many form factors such as, for example, a watch, a small display pad, interface glasses, etc. A personal secondary display may include control capabilities of a common display device and since it is located on or controlled by a specific surgeon, the personal secondary display would be keyed to him/her specifically and would indicate that to others and itself. Generally speaking, a personal secondary display would normally not be useful to exchanging paired devices because they are not accessible to more than one surgeon. Nevertheless, a personal secondary display could be used to grant permission for release of a device.
A personal secondary display may be used to provide dedicated data to one of several surgical personnel that wants to monitor something that the others typically would not want to monitor. In addition, a personal secondary display may be used as the command module. Further, a personal secondary display may be held by the chief surgeon in the operating theater and would give the surgeon the control to override any of the other inputs from anyone else. A personal secondary display may be coupled to a short range wireless, e.g., Bluetooth, microphone and earpiece allowing the surgeon to have discrete conversations or calls or the personal secondary display may be used to broadcast to all the others in the operating theater or other department.
FIG.60 illustrates a surgical site6900 employing a smartsurgical retractor6902 comprising a direct interface control to a surgical hub206 (FIGS.1-11), according to one aspect of the present disclosure. The smartsurgical retractor6902 helps the surgeon and operating room professionals hold an incision or wound open during surgical procedures. The smartsurgical retractor6902 aids in holding back underlying organs or tissues, allowing doctors/nurses better visibility and access to the exposed area. With reference also toFIGS.1-11, the smartsurgical retractor6902 may comprise aninput display6904 operated by the smartsurgical retractor6902. The smartsurgical retractor6902 may comprise a wireless communication device to communicate with a device connected to agenerator module240 coupled to thesurgical hub206. Using theinput display6904 of the smartsurgical retractor6902, the surgeon can adjust power level or mode of thegenerator module240 to cut and/or coagulate tissue. If using automatic on/off for energy delivery on closure of an end effector on the tissue, the status of automatic on/off may be indicated by a light, screen, or other device located on thesmart retractor6902 housing. Power being used may be changed and displayed.
In one aspect, the smartsurgical retractor6902 can sense or know what device/instrument235 the surgeon is using, either through thesurgical hub206 or RFID or other device placed on the device/instrument235 or the smartsurgical retractor6902, and provide an appropriate display. Alarm and alerts may be activated when conditions require. Other features include displaying the temperature of the ultrasonic blade, nerve monitoring,light source6906 or fluorescence. Thelight source6906 may be employed to illuminate the surgical field ofview6908 and to chargephotocells6918 on single use sticker display that stick onto the smart retractor6902 (seeFIG.61, for example). In another aspect, the smartsurgical retractor6902 may include an augmented reality projected on the patient's anatomy (e.g., like a vein viewer).
FIG.61 illustrates asurgical site6910 with a smartflexible sticker display6912 attached to the body/skin6914 of a patient, according to one aspect of the present disclosure. As shown, the smartflexible sticker display6912 is applied to the body/skin6914 of a patient between the area exposed by thesurgical retractors6916. In one aspect, the smartflexible sticker display6912 may be powered by light, an on board battery, or a ground pad. Theflexible sticker display6912 may communicate via short range wireless (e.g., Bluetooth) to a device, may provide readouts, lock power, or change power. The smartflexible sticker display6912 also comprisesphotocells6918 to power the smartflexible sticker display6912 using ambient light energy. Theflexible sticker display6912 includes a display of acontrol panel6920 user interface to enable the surgeon to controldevices235 or other modules coupled to the surgical hub206 (FIGS.1-11).
FIG.62 is a logic flow diagram6920 of a process depicting a control program or a logic configuration to communicate from inside a sterile field to a device located outside the sterile field, according to one aspect of the present disclosure. In one aspect, a control unit comprises an interactive touchscreen display, an interface configured to couple the interactive touchscreen display to a surgical hub, a processor, and a memory coupled to the processor. The memory stores instructions executable by the processor to receive6922 input commands from the interactive touchscreen display located inside a sterile field and transmits6924 the input commands to a surgical hub to control devices coupled to the surgical hub located outside the sterile field.
FIG.63 illustrates a system for performing surgery. The system comprises a control box which includes internal circuitry; a surgical instrument including a distal element and techniques for sensing a position or condition of said distal element; techniques associated with said surgical instrument for transmitting said sensed position or condition to said internal circuitry of said control box; and for transmitting said sensed position or condition from said internal circuitry of said control box to a video monitor for display thereon, wherein said sensed position or condition is displayed on said video monitor as an icon or symbol, further comprising a voltage source for generating a voltage contained entirely within said surgical instrument. Further examples are disclosed in U.S. Pat. No. 5,503,320, titled SURGICAL APPARATUS WITH INDICATOR, which issued on Apr. 2, 1996, which is herein incorporated by reference in its entirety.
FIG.63 shows schematically a system whereby data is transmitted to a video monitor for display, such data relating to the position and/or condition of one or more surgical instruments. As shown inFIG.63, a laparoscopic surgical procedure is being performed wherein a plurality oftrocar sleeves6930 are inserted through abody wall6931 to provide access to abody cavity6932. Alaparoscope6933 is inserted through one of thetrocar sleeves6930 to provide illumination (light cable6934 is shown leading toward a light source, not pictured) to the surgical site and to obtain an image thereof. Acamera adapter6935 is attached at the proximal end oflaparoscope6933 andimage cable6936 extends therefrom to acontrol box6937 discussed in more detail below. Image cable inputs to image receiving port416 oncontrol box6937.
Additionalsurgical instruments6939,6940 are inserted through additional trocar sleeves6900 which extend throughbody wall6931. InFIG.63,instrument6939 schematically illustrates an endoscopic stapling device, e.g., an Endo GIA* instrument manufactured by the assignee of this application, andinstrument6940 schematically illustrates a hand instrument, e.g., an Endo Grasp* device also manufactured by the present assignee. Additional and/or alternative instruments may also be utilized according to the present invention; the illustrated instruments are merely exemplary of surgical instruments which may be utilized according to the present invention.
Instruments6939,6940 includeadapters6941,6942 associated with their respective handle portions. The adapters electronically communicate with conductive mechanisms (not pictured). These mechanisms, which include electrically conductive contact members electrically connected by wires, cables and the like, are associated with the distal elements of the respective instruments, e.g., theanvil6943 andcartridge6944 of the Endo GIA* instrument, thejaws6945,6946 of the Endo Grasp* device, and the like. The mechanisms are adapted to interrupt an electronic circuit when the distal elements are in a first position or condition and to complete the electronic circuit when the distal elements are in a second position or condition. A voltage source for the electronic circuit may be provided in the surgical instrument, e.g., in the form of a battery, or supplied fromcontrol box6937 throughcables6947,6948.
Control box6937 includes a plurality ofjacks6949 which are adapted to receivecables6947,6948 and the like.Control box6937 further includes anoutgoing adapter6950 which is adapted to cooperate with acable6951 for transmitting the laparoscopic image obtained by thelaparoscope6933 together with data concerningsurgical instruments6939,6940 tovideo monitor6952. Circuitry withincontrol box6937 is provided for converting the presence of an interrupted circuit, e.g., for the electronics withincable6947 and the mechanism associated with the distal elements ofinstrument6939, to an icon or symbol for display onvideo monitor6952. Similarly, the circuitry withincontrol box6937 is adapted to provide a second icon or symbol tovideo monitor6952 when a completed circuit exists forcable6947 and the associated mechanism.
Illustrative icons/symbols6953,6954 are shown onvideo monitor6952.Icon6953 shows a surgical staple and could be used to communicate to the surgeon that thecartridge6944 andanvil6943 ofinstrument6939 are properly positioned to form staples intissue6955.Icon6953 could take another form when thecartridge6944 andanvil6943 are not properly positioned for forming staples, thereby interrupting the circuit.Icon6954 shows a hand instrument with jaws spread apart, thereby communicating to the surgeon that thejaws6945,6946 ofinstrument6940 are open.Icon6954 could take another form whenjaws6945,6946 are closed, thereby completing the circuit.
FIG.64 illustrates a second layer of information overlaying a first layer of information. The second layer of information includes a symbolic representation of the knife overlapping the detected position of the knife in the DLU depicted in the first layer of information. Further examples are disclosed in U.S. Pat. No. 9,283,054, titled SURGICAL APPARATUS WITH INDICATOR, which issued on Mar. 15, 2016, which is herein incorporated by reference in its entirety.
Referring toFIG.64, the second layer ofinformation6963 can overlay at least a portion of the first layer ofinformation6962 on thedisplay6960. Furthermore, thetouch screen6961 can allow a user to manipulate the second layer ofinformation6963 relative to the video feedback in the underlying first layer ofinformation6962 on thedisplay6960. For example, a user can operate thetouch screen6961 to select, manipulate, reformat, resize, and/or otherwise modify the information displayed in the second layer ofinformation6963. In certain aspects, the user can use thetouch screen6961 to manipulate the second layer ofinformation6963 relative to thesurgical instrument6964 depicted in the first layer ofinformation6962 on thedisplay6960. A user can select a menu, category and/or classification of thecontrol panel6967 thereof, for example, and the second layer ofinformation6963 and/or thecontrol panel6967 can be adjusted to reflect the user's selection. In various aspects, a user may select a category from theinstrument feedback category6969 that corresponds to a specific feature or features of thesurgical instrument6964 depicted in the first layer ofinformation6962. Feedback corresponding to the user-selected category can move, locate itself, and/or “snap” to a position on thedisplay6960 relative to the specific feature or features of thesurgical instrument6964. For example, the selected feedback can move to a position near and/or overlapping the specific feature or features of thesurgical instrument6964 depicted in the first layer ofinformation6962.
Theinstrument feedback menu6969 can include a plurality of feedback categories, and can relate to the feedback data measured and/or detected by thesurgical instrument6964 during a surgical procedure. As described herein, thesurgical instrument6964 can detect and/or measure theposition6970 of a moveable jaw between an open orientation and a closed orientation, thethickness6973 of clamped tissue, the clampingforce6976 on the clamped tissue, thearticulation6974 of theDLU6965, and/or theposition6971,velocity6972, and/orforce6975 of the firing element, for example. Furthermore, the feedback controller in signal communication with thesurgical instrument6964 can provide the sensed feedback to thedisplay6960, which can display the feedback in the second layer ofinformation6963. As described herein, the selection, placement, and/or form of the feedback data displayed in the second layer ofinformation6963 can be modified based on the user's input to thetouch screen6961, for example.
When the knife of theDLU6965 is blocked from view by theend effector jaws6966 and/or tissue T, for example, the operator can track and/or approximate the position of the knife in theDLU6964 based on the changing value of the feedback data and/or the shifting position of the feedback data relative to theDLU6965 depicted in the underlying first layer ofinformation6962.
In various aspects, thedisplay menu6977 of thecontrol panel6967 can relate to a plurality of categories, such asunit systems6978 and/ordata modes6979, for example. In certain aspects, a user can select theunit systems category6978 to switch between unit systems, such as between metric and U.S. customary units, for example. Additionally, a user can select thedata mode category6979 to switch between types of numerical representations of the feedback data and/or types of graphical representations of the feedback data, for example. The numerical representations of the feedback data can be displayed as numerical values and/or percentages, for example. Furthermore, the graphical representations of the feedback data can be displayed as a function of time and/or distance, for example. As described herein, a user can select theinstrument controller menu6980 from thecontrol panel6967 to input directives for thesurgical instrument6964, which can be implemented via the instrument controller and/or the microcontroller, for example. A user can minimize or collapse thecontrol panel6967 by selecting the minimize/maximizeicon6968, and can maximize or un-collapse thecontrol panel6967 by re-selecting the minimize/maximizeicon6968.
FIG.65 depicts a perspective view of a surgeon using a surgical instrument that includes a handle assembly housing and a wireless circuit board during a surgical procedure, with the surgeon wearing a set of safety glasses. The wireless circuit board transmits a signal to a set of safety glasses worn by a surgeon using the surgical instrument during a procedure. The signal is received by a wireless port on the safety glasses. One or more lighting devices on a front lens of the safety glasses change color, fade, or glow in response to the received signal to indicate information to the surgeon about the status of the surgical instrument. The lighting devices are disposable on peripheral edges of the front lens to not distract the direct line of vision of the surgeon. Further examples are disclosed in U.S. Pat. No. 9,011,427, titled SURGICAL INSTRUMENT WITH SAFETY GLASSES, which issued on Apr. 21, 2015, which is herein incorporated by reference in its entirety.
FIG.65 shows a version ofsafety glasses6991 that may be worn by asurgeon6992 during a surgical procedure while using a medical device. In use, a wireless communications board housed in asurgical instrument6993 may communicate with awireless port6994 onsafety glasses6991. Exemplarysurgical instrument6993 is a battery-operated device, thoughinstrument6993 could be powered by a cable or otherwise.Instrument6993 includes an end effector. Particularly,wireless communications board6995 transmits one or more wireless signals indicated by arrows (B, C) towireless port6994 ofsafety glasses6991.Safety glasses6991 receive the signal, analyze the received signal, and display indicated status information received by the signal onlenses6996 to a user, such assurgeon6992, wearingsafety glasses6991. Additionally or alternatively,wireless communications board6995 transmits a wireless signal tosurgical monitor6997 such thatsurgical monitor6997 may display received indicated status information tosurgeon6992, as described above.
A version of thesafety glasses6991 may include lighting device on peripheral edges of thesafety glasses6991. A lighting device provides peripheral-vision sensory feedback ofinstrument6993, with which thesafety glasses6991 communicate to a user wearing thesafety glasses6991. The lighting device may be, for example, a light-emitted diode (“LED”), a series of LEDs, or any other suitable lighting device known to those of ordinary skill in the art and apparent in view of the teachings herein.
LEDs may be located at edges or sides of a front lens of thesafety glasses6991 so not to distract from a user's center of vision while still being positioned within the user's field of view such that the user does not need to look away from the surgical site to see the lighting device. Displayed lights may pulse and/or change color to communicate to the wearer of thesafety glasses6991 various aspects of information retrieved frominstrument6993, such as system status information or tissue sensing information (i.e., whether the end effector has sufficiently severed and sealed tissue). Feedback from housedwireless communications board6995 may cause a lighting device to activate, blink, or change color to indicate information about the use ofinstrument6993 to a user. For example, a device may incorporate a feedback mechanism based on one or more sensed tissue parameters. In this case, a change in the device output(s) based on this feedback in synch with a tone change may submit a signal throughwireless communications board6995 to thesafety glasses6991 to trigger activation of the lighting device. Such described means of activation of the lighting device should not be considered limiting as other means of indicating status information ofinstrument6993 to the user via thesafety glasses6991 are contemplated. Further, thesafety glasses6991 may be single-use or reusable eyewear. Button-cell power supplies such as button-cell batteries may be used to power wireless receivers and LEDs of versions ofsafety glasses6991, which may also include a housed wireless board and tri-color LEDs. Such button-cell power supplies may provide a low-cost means of providing sensory feedback of information aboutinstrument6993 when in use tosurgeon6992 wearingsafety glasses6991.
FIG.66 is a schematic diagram of a feedback control system for controlling a surgical instrument. The surgical instrument includes a housing and an elongated shaft that extends distally from the housing and defines a first longitudinal axis. The surgical instrument also includes a firing rod disposed in the elongated shaft and a drive mechanism disposed at least partially within the housing. The drive mechanism mechanically cooperates with the firing rod to move the firing rod. A motion sensor senses a change in the electric field (e.g., capacitance, impedance, or admittance) between the firing rod and the elongated shaft. The measurement unit determines a parameter of the motion of the firing rod, such as the position, speed, and direction of the firing rod, based on the sensed change in the electric field. A controller uses the measured parameter of the motion of the firing rod to control the drive mechanism. Further examples are disclosed in U.S. Pat. No. 8,960,520, titled METHOD AND APPARATUS FOR DETERMINING PARAMETERS OF LINEAR MOTION IN A SURGICAL INSTRUMENT, which issued on Feb. 24, 2015, which is herein incorporated by reference in its entirety.
With reference toFIG.66, aspects of the present disclosure may include afeedback control system6150. Thesystem6150 includes afeedback controller6152. Thesurgical instrument6154 is connected to thefeedback controller6152 via a data port, which may be either wired (e.g., FireWire®, USB, Serial RS232, Serial RS485, USART, Ethernet, etc.) or wireless (e.g., Bluetooth®, ANT3®, KNX®, Z-Wave X10®, Wireless USB®, Wi-Fi®, IrDA®, nanoNET®, TinyOS®, ZigBee®, 802.11 IEEE, and other radio, infrared, UHF, VHF communications and the like). Thefeedback controller6152 is configured to store the data transmitted to it by thesurgical instrument6154 as well as process and analyze the data. Thefeedback controller6152 is also connected to other devices, such as avideo display6154, avideo processor6156 and a computing device6158 (e.g., a personal computer, a PDA, a smartphone, a storage device, etc.). Thevideo processor6156 is used for processing output data generated by thefeedback controller6152 for output on thevideo display6154. Thecomputing device6158 is used for additional processing of the feedback data. In one aspect, the results of the sensor feedback analysis performed by a microcontroller may be stored internally for later retrieval by thecomputing device6158.
FIG.67 illustrates afeedback controller6152 including an on-screen display (OSD) module and a heads-up-display (HUD) module. The modules process the output of a microcontroller for display on various displays. More specifically, the OSD module overlays text and/or graphical information from thefeedback controller6152 over other video images received from the surgical site via cameras disposed therein. The modified video signal having overlaid text is transmitted to the video display allowing the user to visualize useful feedback information from thesurgical instrument6154 and/orfeedback controller6152 while still observing the surgical site. Thefeedback controller6152 includes adata port6160 coupled to a microcontroller which allows thefeedback controller6152 to be connected to the computing device6158 (FIG.66). Thedata port6160 may provide for wired and/or wireless communication with thecomputing device6158 providing for an interface between thecomputing device6158 and thefeedback controller6152 for retrieval of stored feedback data, configuration of operating parameters of thefeedback controller6152 and upgrade of firmware and/or other software of thefeedback controller6152.
Thefeedback controller6152 includes ahousing6162 and a plurality of input and output ports, such as avideo input6164, avideo output6166, and aHUD display output6168. Thefeedback controller6152 also includes a screen for displaying status information concerning thefeedback controller6152. Further examples are disclosed in U.S. Pat. No. 8,960,520, titled METHOD AND APPARATUS FOR DETERMINING PARAMETERS OF LINEAR MOTION IN A SURGICAL INSTRUMENT, which issued on Feb. 24, 2015, which is herein incorporated by reference in its entirety.
Situational Awareness
Situational awareness is the ability of some aspects of a surgical system to determine or infer information related to a surgical procedure from data received from databases and/or instruments. The information can include the type of procedure being undertaken, the type of tissue being operated on, or the body cavity that is the subject of the procedure. With the contextual information related to the surgical procedure, the surgical system can, for example, improve the manner in which it controls the modular devices (e.g. a robotic arm and/or robotic surgical tool) that are connected to it and provide contextualized information or suggestions to the surgeon during the course of the surgical procedure.
Referring now toFIG.68, atimeline5200 depicting situational awareness of a hub, such as thesurgical hub106 or206, for example, is depicted. Thetimeline5200 is an illustrative surgical procedure and the contextual information that thesurgical hub106,206 can derive from the data received from the data sources at each step in the surgical procedure. Thetimeline5200 depicts the typical steps that would be taken by the nurses, surgeons, and other medical personnel during the course of a lung segmentectomy procedure, beginning with setting up the operating theater and ending with transferring the patient to a post-operative recovery room.
The situationally awaresurgical hub106,206 receives data from the data sources throughout the course of the surgical procedure, including data generated each time medical personnel utilize a modular device that is paired with thesurgical hub106,206. Thesurgical hub106,206 can receive this data from the paired modular devices and other data sources and continually derive inferences (i.e., contextual information) about the ongoing procedure as new data is received, such as which step of the procedure is being performed at any given time. The situational awareness system of thesurgical hub106,206 is able to, for example, record data pertaining to the procedure for generating reports, verify the steps being taken by the medical personnel, provide data or prompts (e.g., via a display screen) that may be pertinent for the particular procedural step, adjust modular devices based on the context (e.g., activate monitors, adjust the field of view (FOV) of the medical imaging device, or change the energy level of an ultrasonic surgical instrument or RF electrosurgical instrument), and take any other such action described above.
As the first step S202 in this illustrative procedure, the hospital staff members retrieve the patient's EMR from the hospital's EMR database. Based on select patient data in the EMR, thesurgical hub106,206 determines that the procedure to be performed is a thoracic procedure.
Second step S204, the staff members scan the incoming medical supplies for the procedure. Thesurgical hub106,206 cross-references the scanned supplies with a list of supplies that are utilized in various types of procedures and confirms that the mix of supplies corresponds to a thoracic procedure. Further, thesurgical hub106,206 is also able to determine that the procedure is not a wedge procedure (because the incoming supplies either lack certain supplies that are necessary for a thoracic wedge procedure or do not otherwise correspond to a thoracic wedge procedure).
Third step S206, the medical personnel scan the patient band via a scanner that is communicably connected to thesurgical hub106,206. Thesurgical hub106,206 can then confirm the patient's identity based on the scanned data.
Fourth step S208, the medical staff turns on the auxiliary equipment. The auxiliary equipment being utilized can vary according to the type of surgical procedure and the techniques to be used by the surgeon, but in this illustrative case they include a smoke evacuator, insufflator, and medical imaging device. When activated, the auxiliary equipment that are modular devices can automatically pair with thesurgical hub106,206 that is located within a particular vicinity of the modular devices as part of their initialization process. Thesurgical hub106,206 can then derive contextual information about the surgical procedure by detecting the types of modular devices that pair with it during this pre-operative or initialization phase. In this particular example, thesurgical hub106,206 determines that the surgical procedure is a VATS procedure based on this particular combination of paired modular devices. Based on the combination of the data from the patient's EMR, the list of medical supplies to be used in the procedure, and the type of modular devices that connect to the hub, thesurgical hub106,206 can generally infer the specific procedure that the surgical team will be performing. Once thesurgical hub106,206 knows what specific procedure is being performed, thesurgical hub106,206 can then retrieve the steps of that procedure from a memory or from the cloud and then cross-reference the data it subsequently receives from the connected data sources (e.g., modular devices and patient monitoring devices) to infer what step of the surgical procedure the surgical team is performing.
Fifth step S210, the staff members attach the EKG electrodes and other patient monitoring devices to the patient. The EKG electrodes and other patient monitoring devices are able to pair with thesurgical hub106,206. As thesurgical hub106,206 begins receiving data from the patient monitoring devices, thesurgical hub106,206 thus confirms that the patient is in the operating theater.
Sixth step S212, the medical personnel induce anesthesia in the patient. Thesurgical hub106,206 can infer that the patient is under anesthesia based on data from the modular devices and/or patient monitoring devices, including EKG data, blood pressure data, ventilator data, or combinations thereof, for example. Upon completion of the sixth step S212, the pre-operative portion of the lung segmentectomy procedure is completed and the operative portion begins.
Seventh step S214, the patient's lung that is being operated on is collapsed (while ventilation is switched to the contralateral lung). Thesurgical hub106,206 can infer from the ventilator data that the patient's lung has been collapsed, for example. Thesurgical hub106,206 can infer that the operative portion of the procedure has commenced as it can compare the detection of the patient's lung collapsing to the expected steps of the procedure (which can be accessed or retrieved previously) and thereby determine that collapsing the lung is the first operative step in this particular procedure.
Eighth step S216, the medical imaging device (e.g., a scope) is inserted and video from the medical imaging device is initiated. Thesurgical hub106,206 receives the medical imaging device data (i.e., video or image data) through its connection to the medical imaging device. Upon receipt of the medical imaging device data, thesurgical hub106,206 can determine that the laparoscopic portion of the surgical procedure has commenced. Further, thesurgical hub106,206 can determine that the particular procedure being performed is a segmentectomy, as opposed to a lobectomy (note that a wedge procedure has already been discounted by thesurgical hub106,206 based on data received at the second step S204 of the procedure). The data from the medical imaging device124 (FIG.2) can be utilized to determine contextual information regarding the type of procedure being performed in a number of different ways, including by determining the angle at which the medical imaging device is oriented with respect to the visualization of the patient's anatomy, monitoring the number or medical imaging devices being utilized (i.e., that are activated and paired with thesurgical hub106,206), and monitoring the types of visualization devices utilized. For example, one technique for performing a VATS lobectomy places the camera in the lower anterior corner of the patient's chest cavity above the diaphragm, whereas one technique for performing a VATS segmentectomy places the camera in an anterior intercostal position relative to the segmental fissure. Using pattern recognition or machine learning techniques, for example, the situational awareness system can be trained to recognize the positioning of the medical imaging device according to the visualization of the patient's anatomy. As another example, one technique for performing a VATS lobectomy utilizes a single medical imaging device, whereas another technique for performing a VATS segmentectomy utilizes multiple cameras. As yet another example, one technique for performing a VATS segmentectomy utilizes an infrared light source (which can be communicably coupled to the surgical hub as part of the visualization system) to visualize the segmental fissure, which is not utilized in a VATS lobectomy. By tracking any or all of this data from the medical imaging device, thesurgical hub106,206 can thereby determine the specific type of surgical procedure being performed and/or the technique being used for a particular type of surgical procedure.
Ninth step S218, the surgical team begins the dissection step of the procedure. Thesurgical hub106,206 can infer that the surgeon is in the process of dissecting to mobilize the patient's lung because it receives data from the RF or ultrasonic generator indicating that an energy instrument is being fired. Thesurgical hub106,206 can cross-reference the received data with the retrieved steps of the surgical procedure to determine that an energy instrument being fired at this point in the process (i.e., after the completion of the previously discussed steps of the procedure) corresponds to the dissection step. In certain instances, the energy instrument can be an energy tool mounted to a robotic arm of a robotic surgical system.
Tenth step S220, the surgical team proceeds to the ligation step of the procedure. Thesurgical hub106,206 can infer that the surgeon is ligating arteries and veins because it receives data from the surgical stapling and cutting instrument indicating that the instrument is being fired. Similarly to the prior step, thesurgical hub106,206 can derive this inference by cross-referencing the receipt of data from the surgical stapling and cutting instrument with the retrieved steps in the process. In certain instances, the surgical instrument can be a surgical tool mounted to a robotic arm of a robotic surgical system.
Eleventh step S222, the segmentectomy portion of the procedure is performed. Thesurgical hub106,206 can infer that the surgeon is transecting the parenchyma based on data from the surgical stapling and cutting instrument, including data from its cartridge. The cartridge data can correspond to the size or type of staple being fired by the instrument, for example. As different types of staples are utilized for different types of tissues, the cartridge data can thus indicate the type of tissue being stapled and/or transected. In this case, the type of staple being fired is utilized for parenchyma (or other similar tissue types), which allows thesurgical hub106,206 to infer that the segmentectomy portion of the procedure is being performed.
Twelfth step S224, the node dissection step is then performed. Thesurgical hub106,206 can infer that the surgical team is dissecting the node and performing a leak test based on data received from the generator indicating that an RF or ultrasonic instrument is being fired. For this particular procedure, an RF or ultrasonic instrument being utilized after parenchyma was transected corresponds to the node dissection step, which allows thesurgical hub106,206 to make this inference. It should be noted that surgeons regularly switch back and forth between surgical stapling/cutting instruments and surgical energy (i.e., RF or ultrasonic) instruments depending upon the particular step in the procedure because different instruments are better adapted for particular tasks. Therefore, the particular sequence in which the stapling/cutting instruments and surgical energy instruments are used can indicate what step of the procedure the surgeon is performing. Moreover, in certain instances, robotic tools can be utilized for one or more steps in a surgical procedure and/or handheld surgical instruments can be utilized for one or more steps in the surgical procedure. The surgeon(s) can alternate between robotic tools and handheld surgical instruments and/or can use the devices concurrently, for example. Upon completion of the twelfth step S224, the incisions are closed up and the post-operative portion of the procedure begins.
Thirteenth step S226, the patient's anesthesia is reversed. Thesurgical hub106,206 can infer that the patient is emerging from the anesthesia based on the ventilator data (i.e., the patient's breathing rate begins increasing), for example.
Lastly, the fourteenth step S228 is that the medical personnel remove the various patient monitoring devices from the patient. Thesurgical hub106,206 can thus infer that the patient is being transferred to a recovery room when the hub loses EKG, BP, and other data from the patient monitoring devices. As can be seen from the description of this illustrative procedure, thesurgical hub106,206 can determine or infer when each step of a given surgical procedure is taking place according to data received from the various data sources that are communicably coupled to thesurgical hub106,206.
Situational awareness is further described in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, which is herein incorporated by reference in its entirety. In certain instances, operation of a robotic surgical system, including the various robotic surgical systems disclosed herein, for example, can be controlled by thehub106,206 based on its situational awareness and/or feedback from the components thereof and/or based on information from thecloud102.
Various aspects of the subject matter described herein are set out in the following numbered examples.
Example 1. A surgical hub, comprising: a processor; and a memory coupled to the processor, the memory storing instructions executable by the processor to: receive first image data from a first image sensor, wherein the first image data represents a first field of view; receive second image data from a second image sensor, wherein the second image data represents a second field of view; and display, on a display coupled to the processor, a first image rendered from the first image data corresponding to the first field of view and a second image rendered from the second image data corresponding to the second field of view.
Example 2. The surgical hub of Example 1, wherein the first field of view is a narrow angle field of view.
Example 3. The surgical hub of any one of Examples 1-2, wherein the first field of view is a wide angle field of view.
Example 4. The surgical hub of any one of Examples 1-3, wherein the memory stores instructions executable by the processor to augment the first image with the second image on the display.
Example 5. The surgical hub of any one of Examples 1-4, wherein the memory stores instructions executable by the processor to fuse the first image and the second image into a third image and display a fused image on the display.
Example 6. The surgical hub of any one of Examples 1-5, wherein the fused image data comprises status information associated with a surgical device, an image data integration landmark to interlock a plurality of images, and at least one guidance parameter.
Example 7. The surgical hub of any one of Examples 1-6, wherein the first image sensor is the same as the second image sensor and wherein the first image data is captured as a first time by the first image sensor and the second image data is captured at a second time by the first image sensor.
Example 8. The surgical hub of any one of Examples 1-7, wherein the memory stores instructions executable by the processor to: receive third image data from a third image sensor, wherein the third image data represents a third field of view; generate composite image data comprising the second and third image data; display the first image in a first window of the display, wherein the first image corresponds to the first image data; and display a third image in a second window of the display, wherein the third image corresponds to the composite image data.
Example 9. The surgical hub of any one of Examples 1-8, wherein the memory stores instructions executable by the processor to: receive third image data from a third image sensor, wherein the third image data represents a third field of view; fuse the second and third image data to generate fused image data; display the first image in a first window of the display, wherein the first image corresponds to the first image data; and display a third image in a second window of the display, wherein the third image corresponds to the fused image data.
Example 10. A surgical hub, comprising: a processor; and a memory coupled to the processor, the memory storing instructions executable by the processor to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image rendered based on the image data received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
Example 11. The surgical hub of Example 10, wherein the surgical device comprises a local display that is separate from the display coupled to the surgical hub.
Example 12. The surgical hub of any one of Examples 10-11, wherein the surgical device connected to the surgical hub is configured to reconfigure the local display to present information that is different from information presented when the surgical device is not connected to the surgical hub.
Example 13. The surgical hub of any one of Examples 10-12, wherein a portion of information displayed on the local display is displayed on the display coupled to the surgical hub.
Example 14. The surgical hub of any one of Examples 10-13, wherein information displayed on the display coupled to the surgical hub is mirrored on the local display of the surgical device.
Example 15. A surgical hub, comprising: a control circuit configured to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
Example 16. The surgical hub of Example 15, wherein the surgical device comprises a local display that is separate from the display coupled to the surgical hub.
Example 17. The surgical hub of any one of Examples 15-16, wherein the surgical device connected to the surgical hub is configured to reconfigure the local display to present information that is different from information presented when the surgical device is not connected to the surgical hub.
Example 18. The surgical hub of any one of Examples 15-17, wherein a portion of information displayed on the local display is displayed on the display coupled to the surgical hub.
Example 19. The surgical hub of any one of Examples 15-18, wherein information displayed on the display coupled to the surgical hub is mirrored on the local display of the surgical device.
Example 20. A non-transitory computer readable medium storing computer readable instructions which, when executed, causes a machine to: detect a surgical device connection to the surgical hub; transmit a control signal to the detected surgical device to transmit to the surgical hub surgical parameter data associated with the detected surgical device; receive the surgical parameter data from the detected surgical device; receive image data from an image sensor; and display, on a display coupled to the surgical hub, an image received from the image sensor in conjunction with the surgical parameter data received from the surgical device.
Example 21. A non-transitory computer readable medium storing computer readable instructions which, when executed, causes a machine to: receive first image data from a first image sensor, wherein the first image data represents a first field of view; receive second image data from a second image sensor, wherein the second image data represents a second field of view; and display, on a display coupled to the surgical hub, a first image corresponding to the first field of view and a second image corresponding to the second field of view.
While several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.
Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).
As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor comprising one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.
As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.
As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.
A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.
Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Claims (14)

The invention claimed is:
1. A surgical hub for use with a surgical instrument configured to deliver therapeutic energy to tissue at a surgical site of a surgical procedure, wherein the surgical hub comprises:
a hub enclosure comprising a plurality of docking stations;
a plurality of modular devices removably retainable in the docking stations;
a hub display communicatively coupled to the modular devices and configured to provide a graphical user interface to control at least one of the modular devices, wherein the plurality of modular devices share the hub display for displaying; and
a controller communicatively coupled to the modular devices and the hub display, wherein the controller is configured to display an image received from at least one of the modular devices on the hub display, wherein the image comprises an image of a surgical site,
wherein the plurality of modular devices comprise a generator configured to generate therapeutic energy for treating a tissue,
wherein the plurality of modular devices comprise a first modular device and a second modular device,
wherein the hub display is configured to display a hybrid combination of first data from the first modular device and second data from the second modular device,
wherein the first data is the image of the surgical site generated by the first modular device, wherein the first modular device comprises a medical imaging device, and
wherein, in the hub display, the second data overlays on top of the image of the surgical site,
wherein the image of the surgical site displayed by the controller on the hub display comprises:
a first window showing a magnified or exploded narrow angle view of the surgical site; and
a second window showing a wide angle view of the surgical site shown in the first window, which allows a viewer to see items that are out of the magnified or exploded narrow angle view without having to move the medical imaging device.
2. The surgical hub ofclaim 1, wherein at least one of the modular devices is in wireless communication with another modular device among the plurality of modular devices.
3. The surgical hub ofclaim 1, wherein at least one of the modular devices is in wired communication with another modular device among the plurality of modular devices.
4. The surgical hub ofclaim 1, wherein the plurality of modular devices further comprise a suction/irrigation device.
5. The surgical hub ofclaim 1, wherein the second data is surgical data from a surgical stapler.
6. The surgical hub ofclaim 1, wherein the hub display comprises a global display portion configured to provide a view of the surgical site through a medical imaging device and a local instrument display portion configured to provide at least a portion of an image displayed on a local display in one of the modular devices.
7. The surgical hub ofclaim 1, wherein the hub display further comprises a modular device setting display portion configured to display settings of at least one of the modular devices.
8. The surgical hub ofclaim 1, wherein the hub display is configured to display feedback data measured by at least one of the modular devices during a surgical procedure.
9. The surgical hub ofclaim 8, wherein the feedback data comprises at least one of a position of a moveable jaw, a thickness of a clamped tissue, a clamping force on the clamped tissue, a position of a firing component, a velocity of the firing component, and a force of the firing component.
10. The surgical hub ofclaim 1, wherein the plurality of modular devices further comprise a smoke evacuator configured to evacuate smoke and fluid generated by an application of the therapeutic energy to the tissue.
11. The surgical hub ofclaim 10, wherein the smoke evacuator includes a fluid line that conveys the smoke and the fluid away from a surgical site.
12. A surgical hub for use with a surgical instrument configured to deliver therapeutic energy to tissue at a surgical site of a surgical procedure, wherein the surgical hub comprises:
a hub enclosure comprising a plurality of docking stations;
a plurality of modular devices removably retainable in the docking stations;
a hub display communicatively coupled to the modular devices and configured to provide a graphical user interface to control the modular devices, wherein the plurality of modular devices share the hub display for displaying; and
a controller communicatively coupled to the modular devices and the hub display, wherein the controller is configured to display an image received from at least one of the modular devices on the hub display, wherein the image comprises an image of a surgical site,
wherein the plurality of modular devices comprise:
a generator configured to generate therapeutic energy for treating a tissue; and
a smoke evacuator configured to evacuate smoke and fluid generated by an application of the therapeutic energy to the tissue,
wherein the hub display is configured to display a hybrid combination of first data from a first modular device and second data from a second modular device,
wherein the first data is the image of the surgical site generated by a medical imaging device, and
wherein, in the hub display, the second data overlays on top of the image of the surgical site,
wherein the image of the surgical site displayed by the controller on the hub display comprises:
a first window showing a magnified or exploded narrow angle view of the surgical site; and
a second window showing a wide angle view of the surgical site shown in the first window, which allows a viewer to see items that are out of the magnified or exploded narrow angle view without having to move the medical imaging device.
13. The surgical hub ofclaim 12, wherein the second data is surgical data from a surgical stapler.
14. The surgical hub ofclaim 12, wherein the hub display is configured to display feedback data measured by at least one of the modular devices during a surgical procedure, wherein the feedback data comprises at least one of a position of a moveable jaw, a thickness of a clamped tissue, a clamping force on the clamped tissue, a position of a firing component, a velocity of the firing component, and a force of the firing component.
US17/218,8852017-12-282021-03-31Surgical hub spatial awareness to determine devices in operating theaterActive2038-10-06US12059124B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US17/218,885US12059124B2 (en)2017-12-282021-03-31Surgical hub spatial awareness to determine devices in operating theater
US18/794,170US20250072715A1 (en)2017-12-282024-08-05Surgical hub spatial awareness to determine devices in operating theater

Applications Claiming Priority (6)

Application NumberPriority DateFiling DateTitle
US201762611341P2017-12-282017-12-28
US201762611340P2017-12-282017-12-28
US201762611339P2017-12-282017-12-28
US201862649309P2018-03-282018-03-28
US15/940,671US11857152B2 (en)2017-12-282018-03-29Surgical hub spatial awareness to determine devices in operating theater
US17/218,885US12059124B2 (en)2017-12-282021-03-31Surgical hub spatial awareness to determine devices in operating theater

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US15/940,671ContinuationUS11857152B2 (en)2017-12-282018-03-29Surgical hub spatial awareness to determine devices in operating theater

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US18/794,170ContinuationUS20250072715A1 (en)2017-12-282024-08-05Surgical hub spatial awareness to determine devices in operating theater

Publications (2)

Publication NumberPublication Date
US20210212771A1 US20210212771A1 (en)2021-07-15
US12059124B2true US12059124B2 (en)2024-08-13

Family

ID=63209683

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US15/940,671Active2041-11-28US11857152B2 (en)2017-12-282018-03-29Surgical hub spatial awareness to determine devices in operating theater
US17/218,885Active2038-10-06US12059124B2 (en)2017-12-282021-03-31Surgical hub spatial awareness to determine devices in operating theater
US18/794,170PendingUS20250072715A1 (en)2017-12-282024-08-05Surgical hub spatial awareness to determine devices in operating theater

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US15/940,671Active2041-11-28US11857152B2 (en)2017-12-282018-03-29Surgical hub spatial awareness to determine devices in operating theater

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US18/794,170PendingUS20250072715A1 (en)2017-12-282024-08-05Surgical hub spatial awareness to determine devices in operating theater

Country Status (6)

CountryLink
US (3)US11857152B2 (en)
EP (1)EP3506288B1 (en)
JP (1)JP7225243B2 (en)
CN (1)CN111602204B (en)
BR (1)BR112020012604A2 (en)
WO (1)WO2019133069A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20210338366A1 (en)*2018-10-262021-11-04Intuitive Surgical Operations, Inc.Mixed reality systems and methods for indicating an extent of a field of view of an imaging device
USD1066405S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066404S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066378S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066379S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066381S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066382S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066380S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface

Families Citing this family (569)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20070084897A1 (en)2003-05-202007-04-19Shelton Frederick E IvArticulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en)2003-05-202015-06-23Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US9072535B2 (en)2011-05-272015-07-07Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US8215531B2 (en)2004-07-282012-07-10Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en)2004-07-282024-02-06Cilag Gmbh InternationalStaple cartridge comprising cartridge body and attached support
US11998198B2 (en)2004-07-282024-06-04Cilag Gmbh InternationalSurgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7669746B2 (en)2005-08-312010-03-02Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en)2005-08-312016-01-19Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en)2005-08-312022-11-01Cilag Gmbh InternationalStaple cartridge comprising a staple driver arrangement
US10159482B2 (en)2005-08-312018-12-25Ethicon LlcFastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en)2005-08-312022-02-15Cilag Gmbh InternationalStaple cartridge including staple drivers having different unfired heights
US7934630B2 (en)2005-08-312011-05-03Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en)2005-11-092007-05-10Shelton Frederick E IvHydraulically and electrically actuated articulation joints for surgical instruments
US11793518B2 (en)2006-01-312023-10-24Cilag Gmbh InternationalPowered surgical instruments with firing system lockout arrangements
US7753904B2 (en)2006-01-312010-07-13Ethicon Endo-Surgery, Inc.Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en)2006-01-312014-04-29Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US20110295295A1 (en)2006-01-312011-12-01Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instrument having recording capabilities
US20120292367A1 (en)2006-01-312012-11-22Ethicon Endo-Surgery, Inc.Robotically-controlled end effector
US7845537B2 (en)2006-01-312010-12-07Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US8186555B2 (en)2006-01-312012-05-29Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en)2006-01-312014-09-02Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US11224427B2 (en)2006-01-312022-01-18Cilag Gmbh InternationalSurgical stapling system including a console and retraction assembly
US11278279B2 (en)2006-01-312022-03-22Cilag Gmbh InternationalSurgical instrument assembly
US8992422B2 (en)2006-03-232015-03-31Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US8322455B2 (en)2006-06-272012-12-04Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US10568652B2 (en)2006-09-292020-02-25Ethicon LlcSurgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en)2006-10-032024-05-14Cilag Gmbh InternationalSurgical instrument
US8632535B2 (en)2007-01-102014-01-21Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US8684253B2 (en)2007-01-102014-04-01Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en)2007-01-102022-04-05Cilag Gmbh InternationalSurgical instrument with wireless communication between control unit and remote sensor
US20080169333A1 (en)2007-01-112008-07-17Shelton Frederick ESurgical stapler end effector with tapered distal end
US7673782B2 (en)2007-03-152010-03-09Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US11564682B2 (en)2007-06-042023-01-31Cilag Gmbh InternationalSurgical stapler device
US8931682B2 (en)2007-06-042015-01-13Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en)2007-06-222010-07-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US11849941B2 (en)2007-06-292023-12-26Cilag Gmbh InternationalStaple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
JP5410110B2 (en)2008-02-142014-02-05エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US7819298B2 (en)2008-02-142010-10-26Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en)2008-02-142015-11-10Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en)2008-02-142011-01-11Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US8573465B2 (en)2008-02-142013-11-05Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US11986183B2 (en)2008-02-142024-05-21Cilag Gmbh InternationalSurgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8636736B2 (en)2008-02-142014-01-28Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US9585657B2 (en)2008-02-152017-03-07Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US8210411B2 (en)2008-09-232012-07-03Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US11648005B2 (en)2008-09-232023-05-16Cilag Gmbh InternationalRobotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en)2008-09-232015-04-14Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US9386983B2 (en)2008-09-232016-07-12Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US8608045B2 (en)2008-10-102013-12-17Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en)2009-02-052013-08-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
RU2525225C2 (en)2009-02-062014-08-10Этикон Эндо-Серджери, Инк.Improvement of drive surgical suturing instrument
US8663220B2 (en)2009-07-152014-03-04Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US11090104B2 (en)2009-10-092021-08-17Cilag Gmbh InternationalSurgical generator for ultrasonic and electrosurgical devices
US8220688B2 (en)2009-12-242012-07-17Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en)2009-12-242014-10-07Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en)2010-07-302014-07-22Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US9351730B2 (en)2011-04-292016-05-31Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US9016542B2 (en)2010-09-302015-04-28Ethicon Endo-Surgery, Inc.Staple cartridge comprising compressible distortion resistant components
US11925354B2 (en)2010-09-302024-03-12Cilag Gmbh InternationalStaple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en)2010-09-302022-04-12Cilag Gmbh InternationalTissue stapler having a thickness compensator
US9629814B2 (en)2010-09-302017-04-25Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en)2010-09-302016-07-12Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US10945731B2 (en)2010-09-302021-03-16Ethicon LlcTissue thickness compensator comprising controlled release and expansion
US9788834B2 (en)2010-09-302017-10-17Ethicon LlcLayer comprising deployable attachment members
US11812965B2 (en)2010-09-302023-11-14Cilag Gmbh InternationalLayer of material for a surgical end effector
US12213666B2 (en)2010-09-302025-02-04Cilag Gmbh InternationalTissue thickness compensator comprising layers
US8695866B2 (en)2010-10-012014-04-15Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
AU2012250197B2 (en)2011-04-292017-08-10Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en)2011-05-272021-12-28Cilag Gmbh InternationalAutomated end effector component reloading system for use with a robotic system
MX358135B (en)2012-03-282018-08-06Ethicon Endo Surgery IncTissue thickness compensator comprising a plurality of layers.
BR112014024098B1 (en)2012-03-282021-05-25Ethicon Endo-Surgery, Inc. staple cartridge
US9439668B2 (en)2012-04-092016-09-13Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US11871901B2 (en)2012-05-202024-01-16Cilag Gmbh InternationalMethod for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US12226070B2 (en)2012-05-202025-02-18Cilag Gmbh InternationalSystem comprising control circuit to determine a property of a fluid at a surgical site
US9101358B2 (en)2012-06-152015-08-11Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en)2012-06-282021-09-08Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US12383267B2 (en)2012-06-282025-08-12Cilag Gmbh InternationalRobotically powered surgical device with manually-actuatable reversing system
US20140001231A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Firing system lockout arrangements for surgical instruments
US9408606B2 (en)2012-06-282016-08-09Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
JP6290201B2 (en)2012-06-282018-03-07エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11278284B2 (en)2012-06-282022-03-22Cilag Gmbh InternationalRotary drive arrangements for surgical instruments
US20140005705A1 (en)2012-06-292014-01-02Ethicon Endo-Surgery, Inc.Surgical instruments with articulating shafts
US9289256B2 (en)2012-06-282016-03-22Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en)2012-06-282016-03-15Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US9393037B2 (en)2012-06-292016-07-19Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US9408622B2 (en)2012-06-292016-08-09Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
BR112015021082B1 (en)2013-03-012022-05-10Ethicon Endo-Surgery, Inc surgical instrument
RU2672520C2 (en)2013-03-012018-11-15Этикон Эндо-Серджери, Инк.Hingedly turnable surgical instruments with conducting ways for signal transfer
US9629629B2 (en)2013-03-142017-04-25Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US9826976B2 (en)2013-04-162017-11-28Ethicon LlcMotor driven surgical instruments with lockable dual drive shafts
BR112015026109B1 (en)2013-04-162022-02-22Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en)2013-08-232019-11-06Ethicon Endo Surgery LlcFiring member retraction devices for powered surgical instruments.
US9775609B2 (en)2013-08-232017-10-03Ethicon LlcTamper proof circuit for surgical instrument battery pack
BR112016021943B1 (en)2014-03-262022-06-14Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272580A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Verification of number of battery exchanges/procedure count
US12232723B2 (en)2014-03-262025-02-25Cilag Gmbh InternationalSystems and methods for controlling a segmented circuit
US10013049B2 (en)2014-03-262018-07-03Ethicon LlcPower management through sleep options of segmented circuit and wake up control
US9737355B2 (en)2014-03-312017-08-22Ethicon LlcControlling impedance rise in electrosurgical medical devices
CN106456159B (en)2014-04-162019-03-08伊西康内外科有限责任公司 Fastener Cartridge Assembly and Nail Retainer Cover Arrangement
US10327764B2 (en)2014-09-262019-06-25Ethicon LlcMethod for creating a flexible staple line
US20150297225A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridges including extensions having different configurations
BR112016023825B1 (en)2014-04-162022-08-02Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
CN106456176B (en)2014-04-162019-06-28伊西康内外科有限责任公司 Fastener Cartridge Including Extensions With Different Configurations
US10135242B2 (en)2014-09-052018-11-20Ethicon LlcSmart cartridge wake up operation and data retention
BR112017004361B1 (en)2014-09-052023-04-11Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en)2014-09-052022-04-26Cilag Gmbh InternationalPowered medical device including measurement of closure state of jaws
US10105142B2 (en)2014-09-182018-10-23Ethicon LlcSurgical stapler with plurality of cutting elements
CN107427300B (en)2014-09-262020-12-04伊西康有限责任公司 Surgical suture buttresses and auxiliary materials
US11523821B2 (en)2014-09-262022-12-13Cilag Gmbh InternationalMethod for creating a flexible staple line
US9924944B2 (en)2014-10-162018-03-27Ethicon LlcStaple cartridge comprising an adjunct material
US11141153B2 (en)2014-10-292021-10-12Cilag Gmbh InternationalStaple cartridges comprising driver arrangements
US10517594B2 (en)2014-10-292019-12-31Ethicon LlcCartridge assemblies for surgical staplers
US11504192B2 (en)2014-10-302022-11-22Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US9844376B2 (en)2014-11-062017-12-19Ethicon LlcStaple cartridge comprising a releasable adjunct material
US10736636B2 (en)2014-12-102020-08-11Ethicon LlcArticulatable surgical instrument system
US9844374B2 (en)2014-12-182017-12-19Ethicon LlcSurgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en)2014-12-182018-10-02Ethicon LlcLocking arrangements for detachable shaft assemblies with articulatable surgical end effectors
MX389118B (en)2014-12-182025-03-20Ethicon Llc SURGICAL INSTRUMENT WITH AN ANVIL THAT CAN BE SELECTIVELY MOVED ON A DISCRETE, NON-MOBILE AXIS RELATIVE TO A STAPLE CARTRIDGE.
US9844375B2 (en)2014-12-182017-12-19Ethicon LlcDrive arrangements for articulatable surgical instruments
US9943309B2 (en)2014-12-182018-04-17Ethicon LlcSurgical instruments with articulatable end effectors and movable firing beam support arrangements
US9987000B2 (en)2014-12-182018-06-05Ethicon LlcSurgical instrument assembly comprising a flexible articulation system
US10013808B2 (en)2015-02-032018-07-03Globus Medical, Inc.Surgeon head-mounted display apparatuses
US11154301B2 (en)2015-02-272021-10-26Cilag Gmbh InternationalModular stapling assembly
JP2020121162A (en)2015-03-062020-08-13エシコン エルエルシーEthicon LLCTime dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10245033B2 (en)2015-03-062019-04-02Ethicon LlcSurgical instrument comprising a lockable battery housing
US10548504B2 (en)2015-03-062020-02-04Ethicon LlcOverlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en)2015-03-062018-06-12Ethicon Endo-Surgery, LlcSmart sensors with local signal processing
US10441279B2 (en)2015-03-062019-10-15Ethicon LlcMultiple level thresholds to modify operation of powered surgical instruments
US10433844B2 (en)2015-03-312019-10-08Ethicon LlcSurgical instrument with selectively disengageable threaded drive systems
US10238386B2 (en)2015-09-232019-03-26Ethicon LlcSurgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en)2015-09-232018-10-23Ethicon LlcSurgical stapler having downstream current-based motor control
US10299878B2 (en)2015-09-252019-05-28Ethicon LlcImplantable adjunct systems for determining adjunct skew
US10478188B2 (en)2015-09-302019-11-19Ethicon LlcImplantable layer comprising a constricted configuration
US11890015B2 (en)2015-09-302024-02-06Cilag Gmbh InternationalCompressible adjunct with crossing spacer fibers
US10194973B2 (en)2015-09-302019-02-05Ethicon LlcGenerator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10433846B2 (en)2015-09-302019-10-08Ethicon LlcCompressible adjunct with crossing spacer fibers
US10595930B2 (en)2015-10-162020-03-24Ethicon LlcElectrode wiping surgical device
US10368865B2 (en)2015-12-302019-08-06Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en)2015-12-302019-04-23Ethicon LlcSurgical instruments with separable motors and motor control circuits
US10292704B2 (en)2015-12-302019-05-21Ethicon LlcMechanisms for compensating for battery pack failure in powered surgical instruments
US11229471B2 (en)2016-01-152022-01-25Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US12193698B2 (en)2016-01-152025-01-14Cilag Gmbh InternationalMethod for self-diagnosing operation of a control switch in a surgical instrument system
US11051840B2 (en)2016-01-152021-07-06Ethicon LlcModular battery powered handheld surgical instrument with reusable asymmetric handle housing
US11129670B2 (en)2016-01-152021-09-28Cilag Gmbh InternationalModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11213293B2 (en)2016-02-092022-01-04Cilag Gmbh InternationalArticulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en)2016-02-092023-02-23Ethicon Llc SURGICAL INSTRUMENT
US11224426B2 (en)2016-02-122022-01-18Cilag Gmbh InternationalMechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en)2016-02-122019-10-22Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10426467B2 (en)2016-04-152019-10-01Ethicon LlcSurgical instrument with detection sensors
US10456137B2 (en)2016-04-152019-10-29Ethicon LlcStaple formation detection mechanisms
US10828028B2 (en)2016-04-152020-11-10Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US11607239B2 (en)2016-04-152023-03-21Cilag Gmbh InternationalSystems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en)2016-04-152019-07-23Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10335145B2 (en)2016-04-152019-07-02Ethicon LlcModular surgical instrument with configurable operating mode
US11179150B2 (en)2016-04-152021-11-23Cilag Gmbh InternationalSystems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en)2016-04-152019-12-03Ethicon, LlcSurgical instrument with improved stop/start control during a firing motion
US11317917B2 (en)2016-04-182022-05-03Cilag Gmbh InternationalSurgical stapling system comprising a lockable firing assembly
US10363037B2 (en)2016-04-182019-07-30Ethicon LlcSurgical instrument system comprising a magnetic lockout
US20170296173A1 (en)2016-04-182017-10-19Ethicon Endo-Surgery, LlcMethod for operating a surgical instrument
US10456193B2 (en)2016-05-032019-10-29Ethicon LlcMedical device with a bilateral jaw configuration for nerve stimulation
US10376305B2 (en)2016-08-052019-08-13Ethicon LlcMethods and systems for advanced harmonic energy
US10500000B2 (en)2016-08-162019-12-10Ethicon LlcSurgical tool with manual control of end effector jaws
US11266430B2 (en)2016-11-292022-03-08Cilag Gmbh InternationalEnd effector control and calibration
JP6983893B2 (en)2016-12-212021-12-17エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
MX2019007295A (en)2016-12-212019-10-15Ethicon LlcSurgical instrument system comprising an end effector lockout and a firing assembly lockout.
US10542982B2 (en)2016-12-212020-01-28Ethicon LlcShaft assembly comprising first and second articulation lockouts
US20180168615A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP2020501815A (en)2016-12-212020-01-23エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168625A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments with smart staple cartridges
US11419606B2 (en)2016-12-212022-08-23Cilag Gmbh InternationalShaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10582928B2 (en)2016-12-212020-03-10Ethicon LlcArticulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
JP7010956B2 (en)2016-12-212022-01-26エシコン エルエルシー How to staple tissue
US10813638B2 (en)2016-12-212020-10-27Ethicon LlcSurgical end effectors with expandable tissue stop arrangements
JP7010957B2 (en)2016-12-212022-01-26エシコン エルエルシー Shaft assembly with lockout
US10973516B2 (en)2016-12-212021-04-13Ethicon LlcSurgical end effectors and adaptable firing members therefor
CN110087565A (en)2016-12-212019-08-02爱惜康有限责任公司Surgical stapling system
US11090048B2 (en)2016-12-212021-08-17Cilag Gmbh InternationalMethod for resetting a fuse of a surgical instrument shaft
US10980536B2 (en)2016-12-212021-04-20Ethicon LlcNo-cartridge and spent cartridge lockout arrangements for surgical staplers
US10661376B2 (en)*2017-01-102020-05-26Versafab Corp.Portable plasma tube cutting apparatus for coping and cutting
US11653914B2 (en)2017-06-202023-05-23Cilag Gmbh InternationalSystems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10881399B2 (en)2017-06-202021-01-05Ethicon LlcTechniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en)2017-06-202022-07-12Cilag Gmbh InternationalClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10779820B2 (en)2017-06-202020-09-22Ethicon LlcSystems and methods for controlling motor speed according to user input for a surgical instrument
US10307170B2 (en)2017-06-202019-06-04Ethicon LlcMethod for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en)2017-06-202022-12-06Cilag Gmbh InternationalClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11324503B2 (en)2017-06-272022-05-10Cilag Gmbh InternationalSurgical firing member arrangements
US11090049B2 (en)2017-06-272021-08-17Cilag Gmbh InternationalStaple forming pocket arrangements
US11266405B2 (en)2017-06-272022-03-08Cilag Gmbh InternationalSurgical anvil manufacturing methods
US10993716B2 (en)2017-06-272021-05-04Ethicon LlcSurgical anvil arrangements
US11259805B2 (en)2017-06-282022-03-01Cilag Gmbh InternationalSurgical instrument comprising firing member supports
US10765427B2 (en)2017-06-282020-09-08Ethicon LlcMethod for articulating a surgical instrument
US11246592B2 (en)2017-06-282022-02-15Cilag Gmbh InternationalSurgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en)2017-06-282020-12-29Ethicon LlcDisplay screen or portion thereof with a graphical user interface for a surgical instrument
EP3420947B1 (en)2017-06-282022-05-25Cilag GmbH InternationalSurgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en)2017-06-282023-01-31Cilag Gmbh InternationalSurgical shaft assemblies with flexible interfaces
US11484310B2 (en)2017-06-282022-11-01Cilag Gmbh InternationalSurgical instrument comprising a shaft including a closure tube profile
US11298128B2 (en)2017-06-282022-04-12Cilag Gmbh InternationalSurgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10758232B2 (en)2017-06-282020-09-01Ethicon LlcSurgical instrument with positive jaw opening features
US10932772B2 (en)2017-06-292021-03-02Ethicon LlcMethods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en)2017-08-032022-10-18Cilag Gmbh InternationalSurgical system bailout
US11974742B2 (en)2017-08-032024-05-07Cilag Gmbh InternationalSurgical system comprising an articulation bailout
US11304695B2 (en)2017-08-032022-04-19Cilag Gmbh InternationalSurgical system shaft interconnection
US11944300B2 (en)2017-08-032024-04-02Cilag Gmbh InternationalMethod for operating a surgical system bailout
US10743872B2 (en)2017-09-292020-08-18Ethicon LlcSystem and methods for controlling a display of a surgical instrument
US11399829B2 (en)2017-09-292022-08-02Cilag Gmbh InternationalSystems and methods of initiating a power shutdown mode for a surgical instrument
US11510741B2 (en)2017-10-302022-11-29Cilag Gmbh InternationalMethod for producing a surgical instrument comprising a smart electrical system
US11026687B2 (en)2017-10-302021-06-08Cilag Gmbh InternationalClip applier comprising clip advancing systems
US11229436B2 (en)2017-10-302022-01-25Cilag Gmbh InternationalSurgical system comprising a surgical tool and a surgical hub
US11090075B2 (en)2017-10-302021-08-17Cilag Gmbh InternationalArticulation features for surgical end effector
US11911045B2 (en)2017-10-302024-02-27Cllag GmbH InternationalMethod for operating a powered articulating multi-clip applier
US11317919B2 (en)2017-10-302022-05-03Cilag Gmbh InternationalClip applier comprising a clip crimping system
US11311342B2 (en)2017-10-302022-04-26Cilag Gmbh InternationalMethod for communicating with surgical instrument systems
US11801098B2 (en)2017-10-302023-10-31Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US11564756B2 (en)2017-10-302023-01-31Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US11291510B2 (en)2017-10-302022-04-05Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US11925373B2 (en)2017-10-302024-03-12Cilag Gmbh InternationalSurgical suturing instrument comprising a non-circular needle
US11134944B2 (en)2017-10-302021-10-05Cilag Gmbh InternationalSurgical stapler knife motion controls
US10842490B2 (en)2017-10-312020-11-24Ethicon LlcCartridge body design with force reduction based on firing completion
US10779826B2 (en)2017-12-152020-09-22Ethicon LlcMethods of operating surgical end effectors
US11197670B2 (en)2017-12-152021-12-14Cilag Gmbh InternationalSurgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11071543B2 (en)2017-12-152021-07-27Cilag Gmbh InternationalSurgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10835330B2 (en)2017-12-192020-11-17Ethicon LlcMethod for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11311290B2 (en)2017-12-212022-04-26Cilag Gmbh InternationalSurgical instrument comprising an end effector dampener
US12336705B2 (en)2017-12-212025-06-24Cilag Gmbh InternationalContinuous use self-propelled stapling instrument
US11076853B2 (en)2017-12-212021-08-03Cilag Gmbh InternationalSystems and methods of displaying a knife position during transection for a surgical instrument
US11179151B2 (en)2017-12-212021-11-23Cilag Gmbh InternationalSurgical instrument comprising a display
US11132462B2 (en)2017-12-282021-09-28Cilag Gmbh InternationalData stripping method to interrogate patient records and create anonymized record
US11026751B2 (en)2017-12-282021-06-08Cilag Gmbh InternationalDisplay of alignment of staple cartridge to prior linear staple line
US11051876B2 (en)2017-12-282021-07-06Cilag Gmbh InternationalSurgical evacuation flow paths
US20190206569A1 (en)2017-12-282019-07-04Ethicon LlcMethod of cloud based data analytics for use with the hub
US11304763B2 (en)2017-12-282022-04-19Cilag Gmbh InternationalImage capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11786245B2 (en)2017-12-282023-10-17Cilag Gmbh InternationalSurgical systems with prioritized data transmission capabilities
US11903601B2 (en)2017-12-282024-02-20Cilag Gmbh InternationalSurgical instrument comprising a plurality of drive systems
US20190201142A1 (en)2017-12-282019-07-04Ethicon LlcAutomatic tool adjustments for robot-assisted surgical platforms
US10892995B2 (en)2017-12-282021-01-12Ethicon LlcSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11529187B2 (en)2017-12-282022-12-20Cilag Gmbh InternationalSurgical evacuation sensor arrangements
US12127729B2 (en)2017-12-282024-10-29Cilag Gmbh InternationalMethod for smoke evacuation for surgical hub
US11304745B2 (en)2017-12-282022-04-19Cilag Gmbh InternationalSurgical evacuation sensing and display
US11069012B2 (en)2017-12-282021-07-20Cilag Gmbh InternationalInteractive surgical systems with condition handling of devices and data capabilities
US11284936B2 (en)2017-12-282022-03-29Cilag Gmbh InternationalSurgical instrument having a flexible electrode
US11602393B2 (en)2017-12-282023-03-14Cilag Gmbh InternationalSurgical evacuation sensing and generator control
US11376002B2 (en)2017-12-282022-07-05Cilag Gmbh InternationalSurgical instrument cartridge sensor assemblies
US11304699B2 (en)2017-12-282022-04-19Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US11253315B2 (en)2017-12-282022-02-22Cilag Gmbh InternationalIncreasing radio frequency to create pad-less monopolar loop
US11160605B2 (en)2017-12-282021-11-02Cilag Gmbh InternationalSurgical evacuation sensing and motor control
US11832899B2 (en)2017-12-282023-12-05Cilag Gmbh InternationalSurgical systems with autonomously adjustable control programs
US11324557B2 (en)2017-12-282022-05-10Cilag Gmbh InternationalSurgical instrument with a sensing array
US11969216B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11540855B2 (en)2017-12-282023-01-03Cilag Gmbh InternationalControlling activation of an ultrasonic surgical instrument according to the presence of tissue
WO2019133144A1 (en)2017-12-282019-07-04Ethicon LlcDetection and escalation of security responses of surgical instruments to increasing severity threats
US10944728B2 (en)2017-12-282021-03-09Ethicon LlcInteractive surgical systems with encrypted communication capabilities
US11166772B2 (en)2017-12-282021-11-09Cilag Gmbh InternationalSurgical hub coordination of control and communication of operating room devices
US11786251B2 (en)2017-12-282023-10-17Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US20190201039A1 (en)2017-12-282019-07-04Ethicon LlcSituational awareness of electrosurgical systems
US11317937B2 (en)2018-03-082022-05-03Cilag Gmbh InternationalDetermining the state of an ultrasonic end effector
US11857152B2 (en)2017-12-282024-01-02Cilag Gmbh InternationalSurgical hub spatial awareness to determine devices in operating theater
US11364075B2 (en)2017-12-282022-06-21Cilag Gmbh InternationalRadio frequency energy device for delivering combined electrical signals
US11291495B2 (en)2017-12-282022-04-05Cilag Gmbh InternationalInterruption of energy due to inadvertent capacitive coupling
US11419667B2 (en)2017-12-282022-08-23Cilag Gmbh InternationalUltrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11410259B2 (en)2017-12-282022-08-09Cilag Gmbh InternationalAdaptive control program updates for surgical devices
US11179208B2 (en)2017-12-282021-11-23Cilag Gmbh InternationalCloud-based medical analytics for security and authentication trends and reactive measures
US12396806B2 (en)2017-12-282025-08-26Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness
US20190201034A1 (en)2017-12-282019-07-04Ethicon LlcPowered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
US20190201090A1 (en)2017-12-282019-07-04Ethicon LlcCapacitive coupled return path pad with separable array elements
US11832840B2 (en)2017-12-282023-12-05Cilag Gmbh InternationalSurgical instrument having a flexible circuit
US10849697B2 (en)2017-12-282020-12-01Ethicon LlcCloud interface for coupled surgical devices
US11864728B2 (en)2017-12-282024-01-09Cilag Gmbh InternationalCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US11633237B2 (en)2017-12-282023-04-25Cilag Gmbh InternationalUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US10918310B2 (en)2018-01-032021-02-16Biosense Webster (Israel) Ltd.Fast anatomical mapping (FAM) using volume filling
US10758310B2 (en)2017-12-282020-09-01Ethicon LlcWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US20190201112A1 (en)2017-12-282019-07-04Ethicon LlcComputer implemented interactive surgical systems
US11311306B2 (en)2017-12-282022-04-26Cilag Gmbh InternationalSurgical systems for detecting end effector tissue distribution irregularities
US11571234B2 (en)2017-12-282023-02-07Cilag Gmbh InternationalTemperature control of ultrasonic end effector and control system therefor
US11432885B2 (en)2017-12-282022-09-06Cilag Gmbh InternationalSensing arrangements for robot-assisted surgical platforms
US11969142B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11666331B2 (en)2017-12-282023-06-06Cilag Gmbh InternationalSystems for detecting proximity of surgical end effector to cancerous tissue
US11109866B2 (en)2017-12-282021-09-07Cilag Gmbh InternationalMethod for circular stapler control algorithm adjustment based on situational awareness
US11744604B2 (en)2017-12-282023-09-05Cilag Gmbh InternationalSurgical instrument with a hardware-only control circuit
US12376855B2 (en)2017-12-282025-08-05Cilag Gmbh InternationalSafety systems for smart powered surgical stapling
US10755813B2 (en)2017-12-282020-08-25Ethicon LlcCommunication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11304720B2 (en)2017-12-282022-04-19Cilag Gmbh InternationalActivation of energy devices
US11257589B2 (en)2017-12-282022-02-22Cilag Gmbh InternationalReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11446052B2 (en)2017-12-282022-09-20Cilag Gmbh InternationalVariation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11389164B2 (en)2017-12-282022-07-19Cilag Gmbh InternationalMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11559308B2 (en)2017-12-282023-01-24Cilag Gmbh InternationalMethod for smart energy device infrastructure
US11659023B2 (en)2017-12-282023-05-23Cilag Gmbh InternationalMethod of hub communication
US11896322B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalSensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US12290231B2 (en)2017-12-282025-05-06Cilag Gmbh InternationalMethod of hub communication, processing, storage and display
US10898622B2 (en)2017-12-282021-01-26Ethicon LlcSurgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11464559B2 (en)2017-12-282022-10-11Cilag Gmbh InternationalEstimating state of ultrasonic end effector and control system therefor
US12062442B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalMethod for operating surgical instrument systems
US11013563B2 (en)2017-12-282021-05-25Ethicon LlcDrive arrangements for robot-assisted surgical platforms
US11612444B2 (en)2017-12-282023-03-28Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness
US11278281B2 (en)2017-12-282022-03-22Cilag Gmbh InternationalInteractive surgical system
US11419630B2 (en)2017-12-282022-08-23Cilag Gmbh InternationalSurgical system distributed processing
US11308075B2 (en)2017-12-282022-04-19Cilag Gmbh InternationalSurgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11273001B2 (en)2017-12-282022-03-15Cilag Gmbh InternationalSurgical hub and modular device response adjustment based on situational awareness
US11266468B2 (en)2017-12-282022-03-08Cilag Gmbh InternationalCooperative utilization of data derived from secondary sources by intelligent surgical hubs
US10966791B2 (en)2017-12-282021-04-06Ethicon LlcCloud-based medical analytics for medical facility segmented individualization of instrument function
US11076921B2 (en)2017-12-282021-08-03Cilag Gmbh InternationalAdaptive control program updates for surgical hubs
US11179175B2 (en)2017-12-282021-11-23Cilag Gmbh InternationalControlling an ultrasonic surgical instrument according to tissue location
US11678881B2 (en)2017-12-282023-06-20Cilag Gmbh InternationalSpatial awareness of surgical hubs in operating rooms
US11696760B2 (en)2017-12-282023-07-11Cilag Gmbh InternationalSafety systems for smart powered surgical stapling
US11589888B2 (en)2017-12-282023-02-28Cilag Gmbh InternationalMethod for controlling smart energy devices
US10892899B2 (en)2017-12-282021-01-12Ethicon LlcSelf describing data packets generated at an issuing instrument
US11423007B2 (en)2017-12-282022-08-23Cilag Gmbh InternationalAdjustment of device control programs based on stratified contextual data in addition to the data
US11056244B2 (en)2017-12-282021-07-06Cilag Gmbh InternationalAutomated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11896443B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalControl of a surgical system through a surgical barrier
US11100631B2 (en)2017-12-282021-08-24Cilag Gmbh InternationalUse of laser light and red-green-blue coloration to determine properties of back scattered light
US11096693B2 (en)2017-12-282021-08-24Cilag Gmbh InternationalAdjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11576677B2 (en)2017-12-282023-02-14Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US12096916B2 (en)2017-12-282024-09-24Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11424027B2 (en)2017-12-282022-08-23Cilag Gmbh InternationalMethod for operating surgical instrument systems
US10987178B2 (en)2017-12-282021-04-27Ethicon LlcSurgical hub control arrangements
US11937769B2 (en)2017-12-282024-03-26Cilag Gmbh InternationalMethod of hub communication, processing, storage and display
US10932872B2 (en)2017-12-282021-03-02Ethicon LlcCloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11464535B2 (en)2017-12-282022-10-11Cilag Gmbh InternationalDetection of end effector emersion in liquid
US11202570B2 (en)2017-12-282021-12-21Cilag Gmbh InternationalCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11147607B2 (en)2017-12-282021-10-19Cilag Gmbh InternationalBipolar combination device that automatically adjusts pressure based on energy modality
US10695081B2 (en)2017-12-282020-06-30Ethicon LlcControlling a surgical instrument according to sensed closure parameters
US11559307B2 (en)2017-12-282023-01-24Cilag Gmbh InternationalMethod of robotic hub communication, detection, and control
US11818052B2 (en)2017-12-282023-11-14Cilag Gmbh InternationalSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11998193B2 (en)2017-12-282024-06-04Cilag Gmbh InternationalMethod for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US10943454B2 (en)2017-12-282021-03-09Ethicon LlcDetection and escalation of security responses of surgical instruments to increasing severity threats
US11234756B2 (en)2017-12-282022-02-01Cilag Gmbh InternationalPowered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US20190254753A1 (en)2018-02-192019-08-22Globus Medical, Inc.Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US12303159B2 (en)2018-03-082025-05-20Cilag Gmbh InternationalMethods for estimating and controlling state of ultrasonic end effector
US11534196B2 (en)2018-03-082022-12-27Cilag Gmbh InternationalUsing spectroscopy to determine device use state in combo instrument
US11259830B2 (en)2018-03-082022-03-01Cilag Gmbh InternationalMethods for controlling temperature in ultrasonic device
US11986233B2 (en)2018-03-082024-05-21Cilag Gmbh InternationalAdjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11471156B2 (en)2018-03-282022-10-18Cilag Gmbh InternationalSurgical stapling devices with improved rotary driven closure systems
US11213294B2 (en)2018-03-282022-01-04Cilag Gmbh InternationalSurgical instrument comprising co-operating lockout features
US10973520B2 (en)2018-03-282021-04-13Ethicon LlcSurgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11589865B2 (en)2018-03-282023-02-28Cilag Gmbh InternationalMethods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11207067B2 (en)2018-03-282021-12-28Cilag Gmbh InternationalSurgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11096688B2 (en)2018-03-282021-08-24Cilag Gmbh InternationalRotary driven firing members with different anvil and channel engagement features
US11278280B2 (en)2018-03-282022-03-22Cilag Gmbh InternationalSurgical instrument comprising a jaw closure lockout
US11090047B2 (en)2018-03-282021-08-17Cilag Gmbh InternationalSurgical instrument comprising an adaptive control system
US11219453B2 (en)2018-03-282022-01-11Cilag Gmbh InternationalSurgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11523839B2 (en)2018-04-032022-12-13Intuitive Surgical Operations, Inc.Systems and methods for grasp adjustment based on grasp properties
DE102018111645B4 (en)*2018-05-152024-01-11Schölly Fiberoptic GmbH Image recording arrangement, associated use and method for putting an image recording arrangement into operation
US11324501B2 (en)2018-08-202022-05-10Cilag Gmbh InternationalSurgical stapling devices with improved closure members
US20200054321A1 (en)2018-08-202020-02-20Ethicon LlcSurgical instruments with progressive jaw closure arrangements
US11253256B2 (en)2018-08-202022-02-22Cilag Gmbh InternationalArticulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en)2018-08-202022-04-05Cilag Gmbh InternationalMethod for operating a powered articulatable surgical instrument
US11207065B2 (en)2018-08-202021-12-28Cilag Gmbh InternationalMethod for fabricating surgical stapler anvils
US11357503B2 (en)2019-02-192022-06-14Cilag Gmbh InternationalStaple cartridge retainers with frangible retention features and methods of using same
US11317915B2 (en)2019-02-192022-05-03Cilag Gmbh InternationalUniversal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11331100B2 (en)2019-02-192022-05-17Cilag Gmbh InternationalStaple cartridge retainer system with authentication keys
US11464511B2 (en)2019-02-192022-10-11Cilag Gmbh InternationalSurgical staple cartridges with movable authentication key arrangements
US11369377B2 (en)2019-02-192022-06-28Cilag Gmbh InternationalSurgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11090122B2 (en)*2019-02-252021-08-17Verb Surgical Inc.Systems and methods for magnetic sensing and docking with a trocar
US11147553B2 (en)2019-03-252021-10-19Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11147551B2 (en)2019-03-252021-10-19Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11696761B2 (en)2019-03-252023-07-11Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11172929B2 (en)2019-03-252021-11-16Cilag Gmbh InternationalArticulation drive arrangements for surgical systems
US11315056B2 (en)*2019-04-052022-04-26International Business Machines CorporationResource planning having improved visualization
US11426251B2 (en)2019-04-302022-08-30Cilag Gmbh InternationalArticulation directional lights on a surgical instrument
US11452528B2 (en)2019-04-302022-09-27Cilag Gmbh InternationalArticulation actuators for a surgical instrument
US11253254B2 (en)2019-04-302022-02-22Cilag Gmbh InternationalShaft rotation actuator on a surgical instrument
US11432816B2 (en)2019-04-302022-09-06Cilag Gmbh InternationalArticulation pin for a surgical instrument
US11648009B2 (en)2019-04-302023-05-16Cilag Gmbh InternationalRotatable jaw tip for a surgical instrument
US11471157B2 (en)2019-04-302022-10-18Cilag Gmbh InternationalArticulation control mapping for a surgical instrument
US11903581B2 (en)2019-04-302024-02-20Cilag Gmbh InternationalMethods for stapling tissue using a surgical instrument
USD952144S1 (en)2019-06-252022-05-17Cilag Gmbh InternationalSurgical staple cartridge retainer with firing system authentication key
USD964564S1 (en)2019-06-252022-09-20Cilag Gmbh InternationalSurgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en)2019-06-252022-05-03Cilag Gmbh InternationalSurgical staple cartridge
US11523822B2 (en)2019-06-282022-12-13Cilag Gmbh InternationalBattery pack including a circuit interrupter
US11771419B2 (en)2019-06-282023-10-03Cilag Gmbh InternationalPackaging for a replaceable component of a surgical stapling system
US11298127B2 (en)2019-06-282022-04-12Cilag GmbH InterationalSurgical stapling system having a lockout mechanism for an incompatible cartridge
US11376098B2 (en)2019-06-282022-07-05Cilag Gmbh InternationalSurgical instrument system comprising an RFID system
US11627959B2 (en)2019-06-282023-04-18Cilag Gmbh InternationalSurgical instruments including manual and powered system lockouts
US11853835B2 (en)2019-06-282023-12-26Cilag Gmbh InternationalRFID identification systems for surgical instruments
US11478241B2 (en)2019-06-282022-10-25Cilag Gmbh InternationalStaple cartridge including projections
US11426167B2 (en)2019-06-282022-08-30Cilag Gmbh InternationalMechanisms for proper anvil attachment surgical stapling head assembly
US11497492B2 (en)2019-06-282022-11-15Cilag Gmbh InternationalSurgical instrument including an articulation lock
US11246678B2 (en)2019-06-282022-02-15Cilag Gmbh InternationalSurgical stapling system having a frangible RFID tag
US11298132B2 (en)2019-06-282022-04-12Cilag GmbH InlernationalStaple cartridge including a honeycomb extension
US12004740B2 (en)2019-06-282024-06-11Cilag Gmbh InternationalSurgical stapling system having an information decryption protocol
US11684434B2 (en)2019-06-282023-06-27Cilag Gmbh InternationalSurgical RFID assemblies for instrument operational setting control
US11361176B2 (en)2019-06-282022-06-14Cilag Gmbh InternationalSurgical RFID assemblies for compatibility detection
US11660163B2 (en)2019-06-282023-05-30Cilag Gmbh InternationalSurgical system with RFID tags for updating motor assembly parameters
US11291451B2 (en)2019-06-282022-04-05Cilag Gmbh InternationalSurgical instrument with battery compatibility verification functionality
US11224497B2 (en)2019-06-282022-01-18Cilag Gmbh InternationalSurgical systems with multiple RFID tags
US11464601B2 (en)2019-06-282022-10-11Cilag Gmbh InternationalSurgical instrument comprising an RFID system for tracking a movable component
US11553971B2 (en)2019-06-282023-01-17Cilag Gmbh InternationalSurgical RFID assemblies for display and communication
US11241235B2 (en)2019-06-282022-02-08Cilag Gmbh InternationalMethod of using multiple RFID chips with a surgical assembly
US11638587B2 (en)2019-06-282023-05-02Cilag Gmbh InternationalRFID identification systems for surgical instruments
US11399837B2 (en)2019-06-282022-08-02Cilag Gmbh InternationalMechanisms for motor control adjustments of a motorized surgical instrument
US11259803B2 (en)2019-06-282022-03-01Cilag Gmbh InternationalSurgical stapling system having an information encryption protocol
CN110575248A (en)*2019-09-202019-12-17哈尔滨工业大学 A robotic system for minimally invasive ablation surgery
US12159713B2 (en)*2019-12-062024-12-03Mcginley Engineered Solutions, LlcSmart orthopedic instrument with AR display
US11992373B2 (en)2019-12-102024-05-28Globus Medical, IncAugmented reality headset with varied opacity for navigated robotic surgery
US12133772B2 (en)2019-12-102024-11-05Globus Medical, Inc.Augmented reality headset for navigated robotic surgery
US12220176B2 (en)2019-12-102025-02-11Globus Medical, Inc.Extended reality instrument interaction zone for navigated robotic
US12035913B2 (en)2019-12-192024-07-16Cilag Gmbh InternationalStaple cartridge comprising a deployable knife
US11529137B2 (en)2019-12-192022-12-20Cilag Gmbh InternationalStaple cartridge comprising driver retention members
US11844520B2 (en)2019-12-192023-12-19Cilag Gmbh InternationalStaple cartridge comprising driver retention members
US11701111B2 (en)2019-12-192023-07-18Cilag Gmbh InternationalMethod for operating a surgical stapling instrument
US11234698B2 (en)2019-12-192022-02-01Cilag Gmbh InternationalStapling system comprising a clamp lockout and a firing lockout
US11911032B2 (en)2019-12-192024-02-27Cilag Gmbh InternationalStaple cartridge comprising a seating cam
US11504122B2 (en)2019-12-192022-11-22Cilag Gmbh InternationalSurgical instrument comprising a nested firing member
US11607219B2 (en)2019-12-192023-03-21Cilag Gmbh InternationalStaple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en)2019-12-192024-03-19Cilag Gmbh InternationalStaple cartridge comprising a latch lockout
US11529139B2 (en)2019-12-192022-12-20Cilag Gmbh InternationalMotor driven surgical instrument
US11464512B2 (en)2019-12-192022-10-11Cilag Gmbh InternationalStaple cartridge comprising a curved deck surface
US11576672B2 (en)2019-12-192023-02-14Cilag Gmbh InternationalSurgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en)2019-12-192022-04-05Cilag Gmbh InternationalStapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en)2019-12-192022-04-19Cilag Gmbh InternationalSurgical instrument comprising a powered articulation system
US11446029B2 (en)2019-12-192022-09-20Cilag Gmbh InternationalStaple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en)2019-12-192023-01-24Cilag Gmbh InternationalSurgical instrument comprising a rapid closure mechanism
EP4081152A1 (en)*2019-12-232022-11-02Covidien LPSystem for guiding surgical procedures
US11937863B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalDeflectable electrode with variable compression bias along the length of the deflectable electrode
US11786294B2 (en)2019-12-302023-10-17Cilag Gmbh InternationalControl program for modular combination energy device
US11950797B2 (en)2019-12-302024-04-09Cilag Gmbh InternationalDeflectable electrode with higher distal bias relative to proximal bias
US11944366B2 (en)2019-12-302024-04-02Cilag Gmbh InternationalAsymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11660089B2 (en)2019-12-302023-05-30Cilag Gmbh InternationalSurgical instrument comprising a sensing system
US12064109B2 (en)2019-12-302024-08-20Cilag Gmbh InternationalSurgical instrument comprising a feedback control circuit
US12053224B2 (en)2019-12-302024-08-06Cilag Gmbh InternationalVariation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12343063B2 (en)2019-12-302025-07-01Cilag Gmbh InternationalMulti-layer clamp arm pad for enhanced versatility and performance of a surgical device
US12076006B2 (en)2019-12-302024-09-03Cilag Gmbh InternationalSurgical instrument comprising an orientation detection system
US11779329B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalSurgical instrument comprising a flex circuit including a sensor system
US20210196357A1 (en)2019-12-302021-07-01Ethicon LlcElectrosurgical instrument with asynchronous energizing electrodes
US11452525B2 (en)*2019-12-302022-09-27Cilag Gmbh InternationalSurgical instrument comprising an adjustment system
US20210196362A1 (en)2019-12-302021-07-01Ethicon LlcElectrosurgical end effectors with thermally insulative and thermally conductive portions
US12336747B2 (en)2019-12-302025-06-24Cilag Gmbh InternationalMethod of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector
US12114912B2 (en)2019-12-302024-10-15Cilag Gmbh InternationalNon-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12262937B2 (en)2019-12-302025-04-01Cilag Gmbh InternationalUser interface for surgical instrument with combination energy modality end-effector
US11937866B2 (en)2019-12-302024-03-26Cilag Gmbh InternationalMethod for an electrosurgical procedure
US11986201B2 (en)2019-12-302024-05-21Cilag Gmbh InternationalMethod for operating a surgical instrument
US12082808B2 (en)2019-12-302024-09-10Cilag Gmbh InternationalSurgical instrument comprising a control system responsive to software configurations
US11786291B2 (en)2019-12-302023-10-17Cilag Gmbh InternationalDeflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en)2019-12-302023-11-14Cilag Gmbh InternationalSurgical instrument comprising a signal interference resolution system
US11684412B2 (en)2019-12-302023-06-27Cilag Gmbh InternationalSurgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en)2019-12-302023-07-11Cilag Gmbh InternationalArticulatable surgical instrument
US12023086B2 (en)2019-12-302024-07-02Cilag Gmbh InternationalElectrosurgical instrument for delivering blended energy modalities to tissue
US11779387B2 (en)2019-12-302023-10-10Cilag Gmbh InternationalClamp arm jaw to minimize tissue sticking and improve tissue control
US11464581B2 (en)2020-01-282022-10-11Globus Medical, Inc.Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en)2020-02-102022-07-12Globus Medical Inc.Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en)2020-02-192021-12-28Globus Medical, Inc.Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11819288B2 (en)*2020-03-192023-11-21Verb Surgical Inc.Trocar pose estimation using machine learning for docking surgical robotic arm to trocar
US11607277B2 (en)2020-04-292023-03-21Globus Medical, Inc.Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery
US11153555B1 (en)2020-05-082021-10-19Globus Medical Inc.Extended reality headset camera system for computer assisted navigation in surgery
US11382700B2 (en)2020-05-082022-07-12Globus Medical Inc.Extended reality headset tool tracking and control
US11510750B2 (en)2020-05-082022-11-29Globus Medical, Inc.Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
WO2021231508A1 (en)*2020-05-122021-11-18Covidien LpSystems and methods for image mapping and fusion during surgical procedures
USD975850S1 (en)2020-06-022023-01-17Cilag Gmbh InternationalStaple cartridge
USD975851S1 (en)2020-06-022023-01-17Cilag Gmbh InternationalStaple cartridge
USD976401S1 (en)2020-06-022023-01-24Cilag Gmbh InternationalStaple cartridge
USD975278S1 (en)2020-06-022023-01-10Cilag Gmbh InternationalStaple cartridge
USD974560S1 (en)2020-06-022023-01-03Cilag Gmbh InternationalStaple cartridge
USD966512S1 (en)2020-06-022022-10-11Cilag Gmbh InternationalStaple cartridge
USD967421S1 (en)2020-06-022022-10-18Cilag Gmbh InternationalStaple cartridge
WO2022015923A1 (en)*2020-07-172022-01-20Smith & Nephew, Inc.Touchless control of surgical devices
US11871925B2 (en)2020-07-282024-01-16Cilag Gmbh InternationalSurgical instruments with dual spherical articulation joint arrangements
US11931113B2 (en)2020-08-032024-03-19Mazor Robotics Ltd.Systems, devices, and methods for retractor interference avoidance
US11737831B2 (en)2020-09-022023-08-29Globus Medical Inc.Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11830602B2 (en)2020-10-022023-11-28Cilag Gmbh InternationalSurgical hub having variable interconnectivity capabilities
US11883022B2 (en)2020-10-022024-01-30Cilag Gmbh InternationalShared situational awareness of the device actuator activity to prioritize certain aspects of displayed information
US11510743B2 (en)2020-10-022022-11-29Cilag Gmbh InternationalCommunication control for a surgeon controlled secondary display and primary display
US11672534B2 (en)*2020-10-022023-06-13Cilag Gmbh InternationalCommunication capability of a smart stapler
US11963683B2 (en)2020-10-022024-04-23Cilag Gmbh InternationalMethod for operating tiered operation modes in a surgical system
US11911030B2 (en)2020-10-022024-02-27Cilag Gmbh InternationalCommunication capability of a surgical device with component
US12016566B2 (en)2020-10-022024-06-25Cilag Gmbh InternationalSurgical instrument with adaptive function controls
US11877897B2 (en)2020-10-022024-01-23Cilag Gmbh InternationalSituational awareness of instruments location and individualization of users to control displays
US20220104694A1 (en)*2020-10-022022-04-07Ethicon LlcControl of a display outside the sterile field from a device within the sterile field
US20220104713A1 (en)*2020-10-022022-04-07Ethicon LlcTiered-access surgical visualization system
US11992372B2 (en)2020-10-022024-05-28Cilag Gmbh InternationalCooperative surgical displays
US12064293B2 (en)2020-10-022024-08-20Cilag Gmbh InternationalField programmable surgical visualization system
US11877792B2 (en)2020-10-022024-01-23Cilag Gmbh InternationalSmart energy combo control options
US12213801B2 (en)2020-10-022025-02-04Cilag Gmbh InternationalSurgical visualization and particle trend analysis system
US11883052B2 (en)2020-10-022024-01-30Cilag Gmbh InternationalEnd effector updates
US11748924B2 (en)2020-10-022023-09-05Cilag Gmbh InternationalTiered system display control based on capacity and user operation
TWI765369B (en)*2020-10-122022-05-21臺北醫學大學Decision support system for surgical based on augmented reality (ar) and method thereof
US11517390B2 (en)2020-10-292022-12-06Cilag Gmbh InternationalSurgical instrument comprising a limited travel switch
US12053175B2 (en)2020-10-292024-08-06Cilag Gmbh InternationalSurgical instrument comprising a stowed closure actuator stop
US11896217B2 (en)2020-10-292024-02-13Cilag Gmbh InternationalSurgical instrument comprising an articulation lock
USD1013170S1 (en)2020-10-292024-01-30Cilag Gmbh InternationalSurgical instrument assembly
US11452526B2 (en)2020-10-292022-09-27Cilag Gmbh InternationalSurgical instrument comprising a staged voltage regulation start-up system
US11534259B2 (en)2020-10-292022-12-27Cilag Gmbh InternationalSurgical instrument comprising an articulation indicator
US11617577B2 (en)2020-10-292023-04-04Cilag Gmbh InternationalSurgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en)2020-10-292023-08-08Cilag Gmbh InternationalSurgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en)2020-10-292023-10-10Cilag Gmbh InternationalSurgical instrument comprising a jaw alignment system
US11931025B2 (en)2020-10-292024-03-19Cilag Gmbh InternationalSurgical instrument comprising a releasable closure drive lock
USD980425S1 (en)2020-10-292023-03-07Cilag Gmbh InternationalSurgical instrument assembly
US11844518B2 (en)2020-10-292023-12-19Cilag Gmbh InternationalMethod for operating a surgical instrument
US11849943B2 (en)2020-12-022023-12-26Cilag Gmbh InternationalSurgical instrument with cartridge release mechanisms
US11627960B2 (en)2020-12-022023-04-18Cilag Gmbh InternationalPowered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11737751B2 (en)2020-12-022023-08-29Cilag Gmbh InternationalDevices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653915B2 (en)2020-12-022023-05-23Cilag Gmbh InternationalSurgical instruments with sled location detection and adjustment features
US11744581B2 (en)2020-12-022023-09-05Cilag Gmbh InternationalPowered surgical instruments with multi-phase tissue treatment
US11678882B2 (en)2020-12-022023-06-20Cilag Gmbh InternationalSurgical instruments with interactive features to remedy incidental sled movements
US11890010B2 (en)2020-12-022024-02-06Cllag GmbH InternationalDual-sided reinforced reload for surgical instruments
US11653920B2 (en)2020-12-022023-05-23Cilag Gmbh InternationalPowered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en)2020-12-022024-04-02Cilag Gmbh InternationalPowered surgical instruments with external connectors
US11682487B2 (en)2021-01-222023-06-20Cilag Gmbh InternationalActive recognition and pairing sensing systems
US12100496B2 (en)2021-01-222024-09-24Cilag Gmbh InternationalPatient biomarker monitoring with outcomes to monitor overall healthcare delivery
US11694533B2 (en)2021-01-222023-07-04Cilag Gmbh InternationalPredictive based system adjustments based on biomarker trending
US12011163B2 (en)2021-01-222024-06-18Cilag Gmbh InternationalPrediction of tissue irregularities based on biomarker monitoring
US11723657B2 (en)2021-02-262023-08-15Cilag Gmbh InternationalAdjustable communication based on available bandwidth and power capacity
US11696757B2 (en)2021-02-262023-07-11Cilag Gmbh InternationalMonitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en)2021-02-262023-09-05Cilag Gmbh InternationalStapling instrument comprising a signal antenna
US11793514B2 (en)2021-02-262023-10-24Cilag Gmbh InternationalStaple cartridge comprising sensor array which may be embedded in cartridge body
US11980362B2 (en)2021-02-262024-05-14Cilag Gmbh InternationalSurgical instrument system comprising a power transfer coil
US11744583B2 (en)2021-02-262023-09-05Cilag Gmbh InternationalDistal communication array to tune frequency of RF systems
US11925349B2 (en)2021-02-262024-03-12Cilag Gmbh InternationalAdjustment to transfer parameters to improve available power
US12108951B2 (en)2021-02-262024-10-08Cilag Gmbh InternationalStaple cartridge comprising a sensing array and a temperature control system
US11950779B2 (en)2021-02-262024-04-09Cilag Gmbh InternationalMethod of powering and communicating with a staple cartridge
US11701113B2 (en)2021-02-262023-07-18Cilag Gmbh InternationalStapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en)2021-02-262023-11-14Cilag Gmbh InternationalStaple cartridge comprising a power management circuit
US11730473B2 (en)2021-02-262023-08-22Cilag Gmbh InternationalMonitoring of manufacturing life-cycle
US11950777B2 (en)2021-02-262024-04-09Cilag Gmbh InternationalStaple cartridge comprising an information access control system
US12324580B2 (en)2021-02-262025-06-10Cilag Gmbh InternationalMethod of powering and communicating with a staple cartridge
US11751869B2 (en)2021-02-262023-09-12Cilag Gmbh InternationalMonitoring of multiple sensors over time to detect moving characteristics of tissue
US11826012B2 (en)2021-03-222023-11-28Cilag Gmbh InternationalStapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en)2021-03-222023-11-07Cilag Gmbh InternationalStapling instrument comprising tissue compression systems
US11759202B2 (en)2021-03-222023-09-19Cilag Gmbh InternationalStaple cartridge comprising an implantable layer
US11723658B2 (en)2021-03-222023-08-15Cilag Gmbh InternationalStaple cartridge comprising a firing lockout
US11737749B2 (en)2021-03-222023-08-29Cilag Gmbh InternationalSurgical stapling instrument comprising a retraction system
US11717291B2 (en)2021-03-222023-08-08Cilag Gmbh InternationalStaple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en)2021-03-222023-11-28Cilag Gmbh InternationalSurgical instrument comprising a firing drive including a selectable leverage mechanism
US12102323B2 (en)2021-03-242024-10-01Cilag Gmbh InternationalRotary-driven surgical stapling assembly comprising a floatable component
US11849945B2 (en)2021-03-242023-12-26Cilag Gmbh InternationalRotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en)2021-03-242023-10-17Cilag Gmbh InternationalFiring members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en)2021-03-242023-09-05Cilag Gmbh InternationalMulti-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en)2021-03-242024-02-20Cilag Gmbh InternationalLeveraging surfaces for cartridge installation
US11857183B2 (en)2021-03-242024-01-02Cilag Gmbh InternationalStapling assembly components having metal substrates and plastic bodies
US11793516B2 (en)2021-03-242023-10-24Cilag Gmbh InternationalSurgical staple cartridge comprising longitudinal support beam
US11786239B2 (en)2021-03-242023-10-17Cilag Gmbh InternationalSurgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en)2021-03-242024-02-13Cilag Gmbh InternationalMethod of using a powered stapling device
US11849944B2 (en)2021-03-242023-12-26Cilag Gmbh InternationalDrivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en)2021-03-242024-04-02Cilag Gmbh InternationalJoint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896219B2 (en)2021-03-242024-02-13Cilag Gmbh InternationalMating features between drivers and underside of a cartridge deck
US11832816B2 (en)2021-03-242023-12-05Cilag Gmbh InternationalSurgical stapling assembly comprising nonplanar staples and planar staples
US12329437B2 (en)*2021-03-302025-06-17Cilag Gmbh InternationalSurgical proceduralization via modular energy system
US20220346787A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalInterchangeable end effector reloads
US12232796B2 (en)2021-04-302025-02-25Cilag Gmbh InternationalElectrosurgical techniques for sealing, short circuit detection, and system determination of power level
US11944295B2 (en)2021-04-302024-04-02Cilag Gmbh InternationalSurgical instrument comprising end effector with longitudinal sealing step
US20220346786A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalShaft system for surgical instrument
US20220346781A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalStaple cartridge comprising staple drivers and stability supports
US20220346859A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical instrument comprising independently activatable segmented electrodes
US20220346784A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical instrument comprising a closure bar and a firing bar
US11918275B2 (en)2021-04-302024-03-05Cilag Gmbh InternationalElectrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
US20220346773A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical staple for use with combination electrosurgical instruments
US11931035B2 (en)2021-04-302024-03-19Cilag Gmbh InternationalArticulation system for surgical instrument
US20220346861A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical systems configured to cooperatively control end effector function and application of therapeutic energy
US20220346785A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical instrument comprising end effector with energy sensitive resistance elements
US11857184B2 (en)2021-04-302024-01-02Cilag Gmbh InternationalSurgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
US20220346860A1 (en)2021-04-302022-11-03Cilag Gmbh InternationalSurgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters
US11826043B2 (en)2021-04-302023-11-28Cilag Gmbh InternationalStaple cartridge comprising formation support features
US20220370065A1 (en)2021-05-102022-11-24Cilag Gmbh InternationalDissimilar staple cartridges with different bioabsorbable components
BR112023023389A2 (en)2021-05-102024-01-23Cilag Gmbh Int ABSORBABLE SURGICAL CLIP COMPRISING A COATING
EP4188238A1 (en)2021-05-102023-06-07Cilag GmbH InternationalBioabsorbable staple comprising mechanisms for slowing the absorption of the staple
EP4178458A1 (en)2021-05-102023-05-17Cilag GmbH InternationalSystem of surgical staple cartridges comprising absorbable staples
WO2022238841A2 (en)2021-05-102022-11-17Cilag Gmbh InternationalPackaging assemblies for surgical staple cartridges containing bioabsorbable staples
US20220354487A1 (en)2021-05-102022-11-10Cilag Gmbh InternationalMethod for implementing a staple system
US11826047B2 (en)2021-05-282023-11-28Cilag Gmbh InternationalStapling instrument comprising jaw mounts
US11684362B2 (en)*2021-06-072023-06-27Covidien LpHandheld electromechanical surgical system
US12046358B2 (en)2021-07-222024-07-23Cilag Gmbh InternationalConfiguration of the display settings and displayed information based on the recognition of the user(s) and awareness of procedure, location or usage
WO2023002385A1 (en)2021-07-222023-01-26Cilag Gmbh InternationalHub identification and tracking of objects and personnel within the or to overlay data that is custom to the user's need
US12239317B2 (en)2021-10-182025-03-04Cilag Gmbh InternationalAnvil comprising an arrangement of forming pockets proximal to tissue stop
US11877745B2 (en)2021-10-182024-01-23Cilag Gmbh InternationalSurgical stapling assembly having longitudinally-repeating staple leg clusters
US11980363B2 (en)2021-10-182024-05-14Cilag Gmbh InternationalRow-to-row staple array variations
US11957337B2 (en)2021-10-182024-04-16Cilag Gmbh InternationalSurgical stapling assembly with offset ramped drive surfaces
US12432790B2 (en)2021-10-282025-09-30Cilag Gmbh InternationalMethod and device for transmitting UART communications over a security short range wireless communication
US12089841B2 (en)2021-10-282024-09-17Cilag CmbH InternationalStaple cartridge identification systems
US11937816B2 (en)2021-10-282024-03-26Cilag Gmbh InternationalElectrical lead arrangements for surgical instruments
US20230404572A1 (en)*2022-06-172023-12-21Cilag Gmbh InternationalSmart circular staplers
US20240077562A1 (en)*2022-09-072024-03-07Shanghai United Imaging Intelligence Co., Ltd.Apparatus and method to enable low power magnetic resonance patient positioning on edge devices

Citations (2430)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1853416A (en)1931-01-241932-04-12Ada P HallTattoo marker
US2222125A (en)1940-03-191940-11-19Rudolph J StehlikNail driver
US3082426A (en)1960-06-171963-03-26George Oliver HalstedSurgical stapling device
US3503396A (en)1967-09-211970-03-31American Hospital Supply CorpAtraumatic surgical clamp
US3584628A (en)1968-10-111971-06-15United States Surgical CorpWire suture wrapping instrument
US3626457A (en)1970-03-051971-12-07Koppers Co IncSentinel control for cutoff apparatus
US3633584A (en)1969-06-101972-01-11Research CorpMethod and means for marking animals for identification
US3759017A (en)1971-10-221973-09-18American Air Filter CoLatch for a filter apparatus
US3863118A (en)1973-01-261975-01-28Warner Electric Brake & ClutchClosed-loop speed control for step motors
US3898545A (en)1973-05-251975-08-05Mohawk Data Sciences CorpMotor control circuit
US3912121A (en)1974-08-141975-10-14Dickey John CorpControlled population monitor
US3915271A (en)1974-09-251975-10-28Koppers Co IncMethod and apparatus for electronically controlling the engagement of coacting propulsion systems
US3932812A (en)1974-03-201976-01-13Peripheral Equipment CorporationMotor speed indicator
JPS5191993U (en)1975-01-221976-07-23
US4041362A (en)1970-01-231977-08-09Canon Kabushiki KaishaMotor control system
US4052649A (en)1975-06-181977-10-04Lear Motors CorporationHand held variable speed drill motor and control system therefor
US4087730A (en)1975-09-181978-05-02Viennatone Gesellschaft M.B.H.Electric control circuit
JPS5373315A (en)1976-12-101978-06-29Sony CorpController for motors
US4157859A (en)1977-05-261979-06-12Clifford TerrySurgical microscope system
US4171700A (en)1976-10-131979-10-23Erbe Elektromedizin Gmbh & Co. KgHigh-frequency surgical apparatus
US4202722A (en)1976-09-221980-05-13Spectra-StripApparatus for making twisted pair multi-conductor ribbon cable with intermittent straight sections
GB2037167A (en)1978-11-161980-07-09Corning Glass WorksElectrosurgical cutting instrument
EP0000756B1 (en)1977-08-051981-10-21Charles H. KliemanSurgical stapler
DE3016131A1 (en)1980-04-231981-10-29Siemens AG, 1000 Berlin und 8000 MünchenTelecommunications cable with humidity detector - comprising one bare conductor and one conductor insulated with water-soluble material
JPS57185848A (en)1981-05-121982-11-16Olympus Optical CoHigh frequency output apparatus for electric knife
US4412539A (en)1976-10-081983-11-01United States Surgical CorporationRepeating hemostatic clip applying instruments and multi-clip cartridges therefor
JPS58207752A (en)1982-05-271983-12-03Mitsubishi Electric Corp information transmission device
US4448193A (en)1982-02-261984-05-15Ethicon, Inc.Surgical clip applier with circular clip magazine
US4523695A (en)1982-02-101985-06-18Intermedicat GmbhSurgical stapler
US4608160A (en)1984-11-051986-08-26Nelson Industries, Inc.System for separating liquids
US4614366A (en)1983-11-181986-09-30Exactident, Inc.Nail identification wafer
US4633874A (en)1984-10-191987-01-06Senmed, Inc.Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4701193A (en)1985-09-111987-10-20Xanar, Inc.Smoke evacuator system for use in laser surgery
US4735603A (en)1986-09-101988-04-05James H. GoodsonLaser smoke evacuation system and method
US4788977A (en)1985-07-041988-12-06Erbe Elektromedizin GmbhHigh-frequency surgical instrument
JPS63315049A (en)1986-11-071988-12-22アルコン ラボラトリーズ,インコーポレイテッドLinear power control for ultrasonic probe having tuning reactance
US4827911A (en)1986-04-021989-05-09Cooper Lasersonics, Inc.Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4849752A (en)1985-09-271989-07-18U. S. Philips CorporationMethod and apparatus for circuit units
USD303787S (en)1986-10-311989-10-03Messenger Ronald LConnector strain relieving back shell
US4892244A (en)1988-11-071990-01-09Ethicon, Inc.Surgical stapler cartridge lockout device
DE3824913A1 (en)1988-07-221990-02-01Thomas HillDevice for monitoring high-frequency (radio-frequency) electric leakage currents
US4962681A (en)1988-11-091990-10-16Yang Tai HerModular manual electric appliance
US4976173A (en)1987-02-241990-12-11Yang Tai HerManual electric tool
EP0408160A1 (en)1989-07-101991-01-16Kabushiki Kaisha TOPCONLaser surgical apparatus
DE4002843C1 (en)1990-02-011991-04-18Gesellschaft Fuer Geraetebau Mbh, 4600 Dortmund, DeProtective breathing mask with filter - having gas sensors in-front and behind with difference in their signals providing signal for change of filter
US5010341A (en)1989-10-041991-04-23The United States Of America As Represented By The Secretary Of The NavyHigh pulse repetition frequency radar early warning receiver
US5026387A (en)1990-03-121991-06-25Ultracision Inc.Method and apparatus for ultrasonic surgical cutting and hemostatis
US5035692A (en)1990-02-131991-07-30Nicholas HerbertHemostasis clip applicator
US5042460A (en)1988-10-251991-08-27Olympus Optical Co., Ltd.Ultrasonic treating apparatus with device for inhibiting drive when ultrasonic element is determined to be defective
US5047043A (en)1986-03-111991-09-10Olympus Optical Co., Ltd.Resecting device for living organism tissue utilizing ultrasonic vibrations
US5084057A (en)1989-07-181992-01-28United States Surgical CorporationApparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
EP0473987A1 (en)1990-08-211992-03-11Schott GlaswerkeMethod and apparatus for optoelectrical recognition of disposable medical applicators connected to a laser
US5100402A (en)1990-10-051992-03-31Megadyne Medical Products, Inc.Electrosurgical laparoscopic cauterization electrode
USD327061S (en)1991-07-291992-06-16Motorola, Inc.Radio telephone controller or similar article
US5129570A (en)1990-11-301992-07-14Ethicon, Inc.Surgical stapler
US5151102A (en)1989-05-311992-09-29Kyocera CorporationBlood vessel coagulation/stanching device
US5156315A (en)1990-09-171992-10-20United States Surgical CorporationArcuate apparatus for applying two-part surgical fasteners
US5158585A (en)1988-04-131992-10-27Hitachi, Ltd.Compressor unit and separator therefor
US5160334A (en)1991-04-301992-11-03Utah Medical Products, Inc.Electrosurgical generator and suction apparatus
US5171247A (en)1991-04-041992-12-15Ethicon, Inc.Endoscopic multiple ligating clip applier with rotating shaft
US5189277A (en)1991-04-081993-02-23Thermal Dynamics CorporationModular, stackable plasma cutting apparatus
US5197962A (en)1991-06-051993-03-30Megadyne Medical Products, Inc.Composite electrosurgical medical instrument
US5204669A (en)1990-08-301993-04-20Datacard CorporationAutomatic station identification where function modules automatically initialize
US5217003A (en)1991-03-181993-06-08Wilk Peter JAutomated surgical system and apparatus
US5242474A (en)1991-11-011993-09-07Sorenson Laboratories, Inc.Dual mode laser smoke evacuation system with sequential filter monitor and vacuum compensation
US5253793A (en)1990-09-171993-10-19United States Surgical CorporationApparatus for applying two-part surgical fasteners
US5271543A (en)1992-02-071993-12-21Ethicon, Inc.Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
JPH06142113A (en)1992-11-091994-05-24Aika:KkElectric surgery appliance and electromagnetic wave fault preventing device to medical electronic apparatus by electric surgery appliance
US5318563A (en)1992-06-041994-06-07Valley Forge Scientific CorporationBipolar RF generator
US5318516A (en)1990-05-231994-06-07Ioan CosmescuRadio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor
US5322055A (en)1993-01-271994-06-21Ultracision, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
JPH06178780A (en)1992-10-161994-06-28Olympus Optical Co LtdSmoke removing system of aeroperitonic device
JPH06209902A (en)1992-11-301994-08-02Olympus Optical Co LtdPalpation device
US5342349A (en)1993-08-181994-08-30Sorenson Laboratories, Inc.Apparatus and system for coordinating a surgical plume evacuator and power generator
RU2020860C1 (en)1991-04-111994-10-15Линник Леонид ФеодосьевичBlepharostat
US5364003A (en)1993-05-051994-11-15Ethicon Endo-SurgeryStaple cartridge for a surgical stapler
US5383880A (en)1992-01-171995-01-24Ethicon, Inc.Endoscopic surgical system with sensing means
US5385544A (en)1992-08-121995-01-31Vidamed, Inc.BPH ablation method and apparatus
US5391144A (en)1990-02-021995-02-21Olympus Optical Co., Ltd.Ultrasonic treatment apparatus
US5396900A (en)1991-04-041995-03-14Symbiosis CorporationEndoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5397046A (en)1991-10-181995-03-14United States Surgical CorporationLockout mechanism for surgical apparatus
US5403327A (en)1992-12-311995-04-04Pilling Weck IncorporatedSurgical clip applier
US5403312A (en)1993-07-221995-04-04Ethicon, Inc.Electrosurgical hemostatic device
US5413267A (en)1991-05-141995-05-09United States Surgical CorporationSurgical stapler with spent cartridge sensing and lockout means
US5415335A (en)1994-04-071995-05-16Ethicon Endo-SurgerySurgical stapler cartridge containing lockout mechanism
US5417699A (en)1992-12-101995-05-23Perclose IncorporatedDevice and method for the percutaneous suturing of a vascular puncture site
JPH07132122A (en)1993-11-091995-05-23Olympus Optical Co LtdControl system for medical treatment
US5439468A (en)1993-05-071995-08-08Ethicon Endo-SurgerySurgical clip applier
US5445304A (en)1990-12-181995-08-29United States Surgical CorporationSafety device for a surgical stapler cartridge
US5462545A (en)1994-01-311995-10-31New England Medical Center Hospitals, Inc.Catheter electrodes
US5465895A (en)1994-02-031995-11-14Ethicon Endo-Surgery, Inc.Surgical stapler instrument
US5467911A (en)1993-04-271995-11-21Olympus Optical Co., Ltd.Surgical device for stapling and fastening body tissues
US5474566A (en)1994-05-051995-12-12United States Surgical CorporationSelf-contained powered surgical apparatus
US5485947A (en)1992-07-201996-01-23Ethicon, Inc.Linear stapling mechanism with cutting means
US5496317A (en)1993-05-041996-03-05Gyrus Medical LimitedLaparoscopic surgical instrument
US5496315A (en)1994-08-261996-03-05Megadyne Medical Products, Inc.Medical electrode insulating system
JPH0871072A (en)1994-09-011996-03-19Olympus Optical Co LtdManipulator system for operation
US5503320A (en)1993-08-191996-04-02United States Surgical CorporationSurgical apparatus with indicator
US5507773A (en)1994-02-181996-04-16Ethicon Endo-SurgeryCable-actuated jaw assembly for surgical instruments
US5529235A (en)1994-04-281996-06-25Ethicon Endo-Surgery, Inc.Identification device for surgical instrument
US5531743A (en)1994-11-181996-07-02Megadyne Medical Products, Inc.Resposable electrode
US5545148A (en)1992-10-241996-08-13Wurster; HelmutEndoscopic sewing instrument
US5552685A (en)1993-08-181996-09-03General Electric CompanyApparatus and method for detection and control of circulating currents in a variable speed DC motor
US5560372A (en)1994-02-021996-10-01Cory; Philip C.Non-invasive, peripheral nerve mapping device and method of use
JPH08332169A (en)1995-06-081996-12-17Olympus Optical Co LtdIntracoelomscope
JPH0928663A (en)1995-05-151997-02-04Olympus Optical Co LtdEndscope
US5607436A (en)1993-10-081997-03-04United States Surgical CorporationApparatus for applying surgical clips
US5610379A (en)1995-02-041997-03-11Nicolay Verwaltungs -GmbhLiquid and gas impenetrable switch
US5610811A (en)1992-11-091997-03-11Niti-On Medical Supply Co., Ltd.Surgical instrument file system
US5613966A (en)1994-12-211997-03-25Valleylab IncSystem and method for accessory rate control
US5619881A (en)1993-07-161997-04-15Ohyodo Diesel Co., Ltd.Double-scissors cutter
US5624452A (en)1995-04-071997-04-29Ethicon Endo-Surgery, Inc.Hemostatic surgical cutting or stapling instrument
US5626587A (en)1992-10-091997-05-06Ethicon Endo-Surgery, Inc.Method for operating a surgical instrument
USD379346S (en)1995-09-051997-05-20International Business Machines CorporationBattery charger
JPH09154850A (en)1995-12-111997-06-17Megadain Medical Prod IncApparatus for electric operation
US5643291A (en)1994-09-291997-07-01United States Surgical CorporationSurgical clip applicator
US5654750A (en)1995-02-231997-08-05Videorec Technologies, Inc.Automatic recording system
WO1997034533A1 (en)1996-03-211997-09-25S.A. Development Of Advanced Medical Products Ltd.Surgical stapler and method of surgical fastening
US5675227A (en)1992-09-251997-10-07Ge Medical SystemsDevice for maneuvering a radiology appliance
US5673841A (en)1994-12-191997-10-07Ethicon Endo-Surgery, Inc.Surgical instrument
US5673842A (en)1996-03-051997-10-07Ethicon Endo-SurgerySurgical stapler with locking mechanism
US5693052A (en)1995-09-011997-12-02Megadyne Medical Products, Inc.Coated bipolar electrocautery
US5697926A (en)1992-12-171997-12-16Megadyne Medical Products, Inc.Cautery medical instrument
US5706998A (en)1995-07-171998-01-13United States Surgical CorporationSurgical stapler with alignment pin locking mechanism
US5718359A (en)1995-08-141998-02-17United States Of America Surgical CorporationSurgical stapler with lockout mechanism
US5720287A (en)1993-07-261998-02-24Technomed Medical SystemsTherapy and imaging probe and therapeutic treatment apparatus utilizing it
US5724468A (en)1996-09-091998-03-03Lucent Technologies Inc.Electronic backplane device for a fiber distribution shelf in an optical fiber administration system
WO1998008449A1 (en)1996-08-291998-03-05Storz Instrument CompanySurgical handpiece
US5725542A (en)1995-03-091998-03-10Yoon; InbaeMultifunctional spring clips and cartridges and applicators therefor
US5725536A (en)1996-02-201998-03-10Richard-Allen Medical Industries, Inc.Articulated surgical instrument with improved articulation control mechanism
US5735445A (en)1995-03-071998-04-07United States Surgical CorporationSurgical stapler
US5735848A (en)1993-07-221998-04-07Ethicon, Inc.Electrosurgical stapling device
US5746209A (en)1996-01-261998-05-05The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod of and apparatus for histological human tissue characterizationusing ultrasound
US5749362A (en)1992-05-271998-05-12International Business Machines CorporationMethod of creating an image of an anatomical feature where the feature is within a patient's body
US5749893A (en)1993-04-301998-05-12United States Surgical CorporationSurgical instrument having an articulated jaw structure and a detachable knife
US5752644A (en)1995-07-111998-05-19United States Surgical CorporationDisposable loading unit for surgical stapler
US5762458A (en)1996-02-201998-06-09Computer Motion, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US5762255A (en)1996-02-201998-06-09Richard-Allan Medical Industries, Inc.Surgical instrument with improvement safety lockout mechanisms
US5766186A (en)1996-12-031998-06-16Simon Fraser UniversitySuturing device
US5769791A (en)1992-09-141998-06-23Sextant Medical CorporationTissue interrogating device and methods
US5775331A (en)1995-06-071998-07-07Uromed CorporationApparatus and method for locating a nerve
US5796188A (en)1995-10-051998-08-18Xomed Surgical Products, Inc.Battery-powered medical instrument with power booster
US5797537A (en)1996-02-201998-08-25Richard-Allan Medical Industries, Inc.Articulated surgical instrument with improved firing mechanism
US5800350A (en)1993-11-011998-09-01Polartechnics, LimitedApparatus for tissue type recognition
US5807393A (en)*1992-12-221998-09-15Ethicon Endo-Surgery, Inc.Surgical tissue treating device with locking mechanism
US5817093A (en)1993-07-221998-10-06Ethicon Endo-Surgery, Inc.Impedance feedback monitor with query electrode for electrosurgical instrument
USD399561S (en)1991-01-241998-10-13Megadyne Medical Products, Inc.Electrical surgical forceps handle
US5820009A (en)1996-02-201998-10-13Richard-Allan Medical Industries, Inc.Articulated surgical instrument with improved jaw closure mechanism
US5836849A (en)1995-12-141998-11-17Bayerische Motoren Werke AktiengesellschaftMethod and apparatus for transmitting torque by using a clutch of an automatic planetary transmission as a start clutch in a motor vehicle
US5836909A (en)1996-09-131998-11-17Cosmescu; IoanAutomatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US5836869A (en)1994-12-131998-11-17Olympus Optical Co., Ltd.Image tracking endoscope system
US5843080A (en)1996-10-161998-12-01Megadyne Medical Products, Inc.Bipolar instrument with multi-coated electrodes
US5846237A (en)1994-11-181998-12-08Megadyne Medical Products, Inc.Insulated implement
US5849022A (en)1994-07-291998-12-15Olympus Optical Co., Ltd.Medical instrument for use in combination with endoscopes
US5873873A (en)1997-10-101999-02-23Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator apparatus having improved clamp mechanism
US5878938A (en)1997-08-111999-03-09Ethicon Endo-Surgery, Inc.Surgical stapler with improved locking mechanism
US5906625A (en)1992-06-041999-05-25Olympus Optical Co., Ltd.Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
JPH11151247A (en)1997-11-211999-06-08Slt Japan:KkLaser treatment device
JPH11197159A (en)1998-01-131999-07-27Hitachi Ltd Surgery support system
US5942333A (en)1995-03-271999-08-24Texas Research InstituteNon-conductive coatings for underwater connector backshells
US5947996A (en)1997-06-231999-09-07Medicor CorporationYoke for surgical instrument
US5968032A (en)1998-03-301999-10-19Sleister; Dennis R.Smoke evacuator for a surgical laser or cautery plume
JPH11309156A (en)1998-04-271999-11-09Olympus Optical Co LtdSmoke exhauster
US5980510A (en)1997-10-101999-11-09Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
US5987346A (en)1993-02-261999-11-16Benaron; David A.Device and method for classification of tissue
US5997528A (en)1996-08-291999-12-07Bausch & Lomb Surgical, Inc.Surgical system providing automatic reconfiguration
US6004269A (en)1993-07-011999-12-21Boston Scientific CorporationCatheters for imaging, sensing electrical potentials, and ablating tissue
US6010054A (en)1996-02-202000-01-04Imagyn Medical TechnologiesLinear stapling instrument with improved staple cartridge
JP2000058355A (en)1998-08-172000-02-25Ooita Ken Transformer for power supply to rotating body
US6030437A (en)1997-03-112000-02-29U.S. Philips CorporationGas purifier
US6036637A (en)1994-12-132000-03-14Olympus Optical Co., Ltd.Treating system utilizing an endoscope
US6039735A (en)1997-10-032000-03-21Megadyne Medical Products, Inc.Electric field concentrated electrosurgical electrode
US6039734A (en)1995-10-242000-03-21Gyrus Medical LimitedElectrosurgical hand-held battery-operated instrument
WO2000024322A1 (en)1998-10-232000-05-04Applied Medical Resources CorporationSurgical grasper with inserts and method of using same
US6059799A (en)1998-06-252000-05-09United States Surgical CorporationApparatus for applying surgical clips
US6079606A (en)1997-09-232000-06-27United States Surgical CorporationSurgical stapling apparatus
US6090107A (en)1998-10-202000-07-18Megadyne Medical Products, Inc.Resposable electrosurgical instrument
US6099537A (en)1996-02-262000-08-08Olympus Optical Co., Ltd.Medical treatment instrument
US6102907A (en)1997-08-152000-08-15Somnus Medical Technologies, Inc.Apparatus and device for use therein and method for ablation of tissue
US6109500A (en)1996-10-042000-08-29United States Surgical CorporationLockout mechanism for a surgical stapler
US6113598A (en)1998-02-172000-09-05Baker; James A.Radiofrequency medical instrument and methods for vessel welding
US6126658A (en)1998-02-192000-10-03Baker; James A.Radiofrequency medical instrument and methods for vessel welding
US6126592A (en)1998-09-122000-10-03Smith & Nephew, Inc.Endoscope cleaning and irrigation sheath
US6139561A (en)1998-04-162000-10-31Olympus Optical Co., Ltd.Ultrasonic medical instrument
US6155473A (en)1989-05-262000-12-05United States Surgical CorporationLocking mechanism for a surgical fastening apparatus
JP2001029353A (en)1999-07-212001-02-06Olympus Optical Co LtdUltrasonic treating device
WO2001008578A1 (en)1999-07-302001-02-08Vivant Medical, Inc.Device and method for safe location and marking of a cavity and sentinel lymph nodes
WO2001012089A1 (en)1999-08-122001-02-22Somnus Medical Technologies, Inc.Nerve stimulation and tissue ablation apparatus and method
WO2001020892A2 (en)1999-09-132001-03-22Fernway LimitedA method for transmitting data between respective first and second modems in a telecommunications system, and a telecommunications system
US6214000B1 (en)1996-10-302001-04-10Richard P. FleenorCapacitive reusable electrosurgical return electrode
US6258105B1 (en)1996-04-182001-07-10Charles C. HartMalleable clip applier and method
JP2001195686A (en)2000-01-112001-07-19Mitsubishi Electric Corp Number reading collation device
US6269411B1 (en)1999-08-122001-07-31Hewlett-Packard CompanySystem for enabling stacking of autochanger modules
US6273887B1 (en)1998-01-232001-08-14Olympus Optical Co., Ltd.High-frequency treatment tool
US6283960B1 (en)1995-10-242001-09-04Oratec Interventions, Inc.Apparatus for delivery of energy to a surgical site
US6301495B1 (en)1999-04-272001-10-09International Business Machines CorporationSystem and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6302881B1 (en)1998-12-292001-10-16Erbe Elektromedizin GmbhMethod and apparatus for the removal of smoke during high-frequency surgery
US6308089B1 (en)1999-04-142001-10-23O.B. Scientific, Inc.Limited use medical probe
JP2001314411A (en)2000-02-292001-11-13Olympus Optical Co LtdSurgical operation system
US6325808B1 (en)1998-12-082001-12-04Advanced Realtime Control Systems, Inc.Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US6325811B1 (en)1999-10-052001-12-04Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
JP2001340350A (en)2000-03-282001-12-11Aloka Co LtdMedical system
US6331181B1 (en)1998-12-082001-12-18Intuitive Surgical, Inc.Surgical robotic tools, data architecture, and use
US20010056237A1 (en)1996-11-192001-12-27Cane Michael RogerMethod of and apparatus for investigating tissue histology
US6341164B1 (en)1998-07-222002-01-22Entrust Technologies LimitedMethod and apparatus for correcting improper encryption and/or for reducing memory storage
US20020049551A1 (en)2000-10-202002-04-25Ethicon Endo-Surgery, Inc.Method for differentiating between burdened and cracked ultrasonically tuned blades
US20020052616A1 (en)2000-10-202002-05-02Ethicon Endo-Surgery, Inc.Method for detecting transverse vibrations in an ultrasonic hand piece
US6391102B1 (en)2000-03-212002-05-21Stackhouse, Inc.Air filtration system with filter efficiency management
US20020072746A1 (en)2000-12-082002-06-13Christian LingenfelderInstrument for surgical purposes and method of cleaning same
EP1214913A2 (en)2000-10-202002-06-19Ethicon Endo-SurgeryDetection circuitry for surgical handpiece system
US6423057B1 (en)1999-01-252002-07-23The Arizona Board Of Regents On Behalf Of The University Of ArizonaMethod and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
US6434416B1 (en)1998-11-102002-08-13Olympus Optical Co., Ltd.Surgical microscope
US6443973B1 (en)1999-06-022002-09-03Power Medical Interventions, Inc.Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6451015B1 (en)1998-11-182002-09-17Sherwood Services AgMethod and system for menu-driven two-dimensional display lesion generator
JP2002272758A (en)2001-03-192002-09-24Hitachi Ltd Surgery support device
US6454781B1 (en)1999-05-262002-09-24Ethicon Endo-Surgery, Inc.Feedback control in an ultrasonic surgical instrument for improved tissue effects
US20020138642A1 (en)2001-03-262002-09-26Yoshihiko MiyazawaOperating method of a storage area network system
US6457625B1 (en)1998-02-172002-10-01Bionx Implants, OyDevice for installing a tissue fastener
US20020144147A1 (en)2001-03-302002-10-03International Business Machines CorporationPrioritization of networks for preferred groups
US6461352B2 (en)1999-05-112002-10-08Stryker CorporationSurgical handpiece with self-sealing switch assembly
US6466817B1 (en)1999-11-242002-10-15Nuvasive, Inc.Nerve proximity and status detection system and method
US6480796B2 (en)2000-10-202002-11-12Ethicon Endo-Surgery, Inc.Method for improving the start up of an ultrasonic system under zero load conditions
US20020169584A1 (en)2001-05-142002-11-14Zhongsu FuMobile monitoring system
US6482217B1 (en)1998-04-102002-11-19Endicor Medical, Inc.Neuro thrombectomy catheter
US20020194023A1 (en)2001-06-142002-12-19Turley Troy A.Online fracture management system and associated method
US20030009111A1 (en)2001-06-132003-01-09Cory Philip C.Non-invasive method and apparatus for tissue detection
US20030009154A1 (en)2001-06-202003-01-09Whitman Michael P.Method and system for integrated medical tracking
US20030018329A1 (en)2000-04-272003-01-23Hooven Michael D.Transmural ablation device with EKG sensor and pacing electrode
US20030028183A1 (en)2001-03-272003-02-06Sanchez Javier E.Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US6524307B1 (en)2001-10-052003-02-25Medtek Devices, Inc.Smoke evacuation apparatus
JP2003061975A (en)2001-08-292003-03-04Olympus Optical Co LtdUltrasonic diagnostic/treatment system
US20030046109A1 (en)2001-08-302003-03-06Olympus Optical Co., Ltd.Medical information system for improving efficiency of clinical record creating operations
JP2003070921A (en)2001-09-062003-03-11Mitsubishi Electric Corp Radiation treatment planning method and radiation treatment system
US6530933B1 (en)1998-12-312003-03-11Teresa T. YeungMethods and devices for fastening bulging or herniated intervertebral discs
US20030050654A1 (en)1999-06-022003-03-13Entire InterestElectro-mechanical surgical device
US20030069573A1 (en)2001-10-092003-04-10Kadhiresan Veerichetty A.RF ablation apparatus and method using amplitude control
US6551243B2 (en)2001-01-242003-04-22Siemens Medical Solutions Health Services CorporationSystem and user interface for use in providing medical information and health care delivery support
US20030093503A1 (en)2001-09-052003-05-15Olympus Optical Co., Ltd.System for controling medical instruments
JP2003153918A (en)2000-10-202003-05-27Ethicon Endo Surgery IncMethod for determining temperature of transducer of ultrasonic hand piece
US6569109B2 (en)2000-02-042003-05-27Olympus Optical Co., Ltd.Ultrasonic operation apparatus for performing follow-up control of resonance frequency drive of ultrasonic oscillator by digital PLL system using DDS (direct digital synthesizer)
US20030114851A1 (en)2001-12-132003-06-19Csaba TruckaiElectrosurgical jaws for controlled application of clamping pressure
US6584358B2 (en)2000-01-072003-06-24Biowave CorporationElectro therapy method and apparatus
US6582424B2 (en)1996-10-302003-06-24Megadyne Medical Products, Inc.Capacitive reusable electrosurgical return electrode
US20030120284A1 (en)2001-12-202003-06-26Palacios Edward M.Apparatus and method for applying reinforcement material to a surgical stapler
US6585791B1 (en)2002-01-292003-07-01Jon C. GaritoSmoke plume evacuation filtration system
US20030130711A1 (en)2001-09-282003-07-10Pearson Robert M.Impedance controlled tissue ablation apparatus and method
US6611793B1 (en)1999-09-072003-08-26Scimed Life Systems, Inc.Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6618626B2 (en)2001-01-162003-09-09Hs West Investments, LlcApparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
US6628989B1 (en)2000-10-162003-09-30Remon Medical Technologies, Ltd.Acoustic switch and apparatus and methods for using acoustic switches within a body
WO2003079909A2 (en)2002-03-192003-10-02Tyco Healthcare Group, LpSurgical fastener applying apparatus
FR2838234A1 (en)2002-04-032003-10-10SyleaFlat electric cable, uses two layers with alternating wave layout for flattened conductors to provide electromagnetic cancellation
US6633234B2 (en)2000-10-202003-10-14Ethicon Endo-Surgery, Inc.Method for detecting blade breakage using rate and/or impedance information
US20030210812A1 (en)2002-02-262003-11-13Ali KhameneApparatus and method for surgical navigation
US6648223B2 (en)2002-03-212003-11-18Alcon, Inc.Surgical system
US20030223877A1 (en)2002-06-042003-12-04Ametek, Inc.Blower assembly with closed-loop feedback
US6678552B2 (en)1994-10-242004-01-13Transscan Medical Ltd.Tissue characterization based on impedance images and on impedance measurements
US20040015053A1 (en)2000-05-222004-01-22Johannes BiegerFully-automatic, robot-assisted camera guidance susing positions sensors for laparoscopic interventions
US6685704B2 (en)2002-02-262004-02-03Megadyne Medical Products, Inc.Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US6695199B2 (en)2000-02-222004-02-24Power Medical Interventions, Inc.Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US6699187B2 (en)1997-03-272004-03-02Medtronic, Inc.System and method for providing remote expert communications and video capabilities for use during a medical procedure
JP2004118664A (en)2002-09-272004-04-15Fujitsu Ltd Medical treatment planning device
US20040078236A1 (en)1999-10-302004-04-22Medtamic HoldingsStorage and access of aggregate patient data for analysis
US20040082850A1 (en)2002-10-232004-04-29Medtonic, Inc.Methods and apparatus for locating body vessels and occlusions in body vessels
US6731514B2 (en)2001-02-272004-05-04Stmicroelectronics LimitedStackable module
US20040092992A1 (en)2002-10-232004-05-13Kenneth AdamsDisposable battery powered rotary tissue cutting instruments and methods therefor
US6742895B2 (en)2000-07-062004-06-01Alan L. RobinInternet-based glaucoma diagnostic system
US20040108825A1 (en)2002-12-062004-06-10Lg Electronics Inc.Apparatus and method for controlling driving of linear motor
US6752816B2 (en)1996-08-152004-06-22Stryker CorporationPowered surgical handpiece with removable control switch
US6760616B2 (en)2000-05-182004-07-06Nu Vasive, Inc.Tissue discrimination and applications in medical procedures
US6770072B1 (en)2001-10-222004-08-03Surgrx, Inc.Electrosurgical jaw structure for controlled energy delivery
US6775575B2 (en)2001-02-262004-08-10D. Bommi BommannanSystem and method for reducing post-surgical complications
US6778846B1 (en)2000-03-302004-08-17Medtronic, Inc.Method of guiding a medical device and system regarding same
US6781683B2 (en)1999-07-142004-08-24Leica Geosystems Hds, Inc.Advance applications for 3-D autoscanning LIDAR system
US6783524B2 (en)2001-04-192004-08-31Intuitive Surgical, Inc.Robotic surgical tool with ultrasound cauterizing and cutting instrument
US6783525B2 (en)2001-12-122004-08-31Megadyne Medical Products, Inc.Application and utilization of a water-soluble polymer on a surface
US6793663B2 (en)1999-07-302004-09-21Forschungszentrum Karlsruhe GmbhSurgical applicator tip for delivering clips of clamps
US20040199180A1 (en)2003-04-022004-10-07Knodel Bryan D.Method of using surgical device for anastomosis
US20040199659A1 (en)2002-12-242004-10-07Sony CorporationInformation processing apparatus, information processing method, data communication system and program
US20040206365A1 (en)2003-03-312004-10-21Knowlton Edward WellsMethod for treatment of tissue
US20040215131A1 (en)1999-01-192004-10-28Olympus Optical Co., Inc.Ultrasonic surgical system
US20040229496A1 (en)2003-02-202004-11-18William RobinsonSystem and method for connecting an electrosurgical instrument to a generator
US6824539B2 (en)2002-08-022004-11-30Storz Endoskop Produktions GmbhTouchscreen controlling medical equipment from multiple manufacturers
US20040243148A1 (en)2003-04-082004-12-02Wasielewski Ray C.Use of micro- and miniature position sensing devices for use in TKA and THA
US20040243435A1 (en)2003-05-292004-12-02Med-Sched, Inc.Medical information management system
US20040243147A1 (en)2001-07-032004-12-02Lipow Kenneth I.Surgical robot and robotic controller
US20050021027A1 (en)2003-05-152005-01-27Chelsea ShieldsTissue sealer with non-conductive variable stop members and method of sealing tissue
US20050020909A1 (en)2003-07-102005-01-27Moctezuma De La Barrera Jose LuisDisplay device for surgery and method for using the same
US20050020918A1 (en)2000-02-282005-01-27Wilk Ultrasound Of Canada, Inc.Ultrasonic medical device and associated method
US6849074B2 (en)2002-06-172005-02-01Medconx, Inc.Disposable surgical devices
US20050023324A1 (en)2003-05-202005-02-03Kevin DollSurgical stapling instrument having a single lockout mechanism for prevention of firing
US6852219B2 (en)2002-07-222005-02-08John M. HammondFluid separation and delivery apparatus and method
US20050033108A1 (en)2003-08-052005-02-10Sawyer Timothy E.Tumor treatment identification system
US6863650B1 (en)1997-07-242005-03-08Karl Storz Gmbh & Co. KgEndoscopic instrument for performing endoscopic procedures or examinations
US6869435B2 (en)2002-01-172005-03-22Blake, Iii John WRepeating multi-clip applier
US6869430B2 (en)2000-03-312005-03-22Rita Medical Systems, Inc.Tissue biopsy and treatment apparatus and method
US20050063575A1 (en)2003-09-222005-03-24Ge Medical Systems Global Technology, LlcSystem and method for enabling a software developer to introduce informational attributes for selective inclusion within image headers for medical imaging apparatus applications
US20050065438A1 (en)2003-09-082005-03-24Miller Landon C.G.System and method of capturing and managing information during a medical diagnostic imaging procedure
US20050070800A1 (en)2003-09-292005-03-31Olympus CorporationUltrasonic surgical system, and abnormality detection method and abnormality detection program for ultrasonic surgical system
JP2005111080A (en)2003-10-092005-04-28Olympus CorpSurgery support system
US20050100867A1 (en)2001-03-142005-05-12Alexander HilscherMethod and device for cleaning teeth
US20050131390A1 (en)2002-04-252005-06-16Russell HeinrichSurgical instruments including mems devices
US6911033B2 (en)2001-08-212005-06-28Microline Pentax Inc.Medical clip applying device
US20050139629A1 (en)2003-12-302005-06-30Schwemberger Richard F.Retaining pin leaver advancement mechanism for a curved cutter stapler
US20050143759A1 (en)2003-12-302005-06-30Kelly William D.Curved cutter stapler shaped for male pelvis
US6913471B2 (en)2002-11-122005-07-05Gateway Inc.Offset stackable pass-through signal connector
US20050149356A1 (en)2004-01-022005-07-07Cyr Keneth K.System and method for management of clinical supply operations
US20050148854A1 (en)2003-12-222005-07-07Pentax CorporationDiagnosis supporting device
US20050149001A1 (en)2003-10-092005-07-07Olympus CorporationOperation support system and support method of operation support system
US20050165390A1 (en)2002-02-112005-07-28Aldo MautiApparatus for electrosurgery
US20050182655A1 (en)2003-09-022005-08-18Qcmetrix, Inc.System and methods to collect, store, analyze, report, and present data
US6937892B2 (en)2001-09-282005-08-30Meagan Medical, Inc.Method and apparatus for securing and/or identifying a link to a percutaneous probe
US20050192633A1 (en)2004-01-232005-09-01Montpetit Karen P.Tissue fastening and cutting tool, and methods
US20050203504A1 (en)1998-10-232005-09-15Wham Robert H.Method and system for controlling output of RF medical generator
US20050203384A1 (en)2002-06-212005-09-15Marwan SatiComputer assisted system and method for minimal invasive hip, uni knee and total knee replacement
US20050203380A1 (en)2004-02-172005-09-15Frank SauerSystem and method for augmented reality navigation in a medical intervention procedure
US6945981B2 (en)2000-10-202005-09-20Ethicon-Endo Surgery, Inc.Finger operated switch for controlling a surgical handpiece
US20050213832A1 (en)2004-03-222005-09-29Nortel Networks LimitedMethod and apparatus for providing network based load balancing of medical image data
US6951559B1 (en)2002-06-212005-10-04Megadyne Medical Products, Inc.Utilization of a hybrid material in a surface coating of an electrosurgical instrument
US20050222631A1 (en)2004-04-062005-10-06Nirav DalalHierarchical data storage and analysis system for implantable medical devices
US20050228246A1 (en)2004-04-132005-10-13Jangwoen LeeMethod and apparatus for dynamically monitoring multiple in vivo tissue chromophores
US20050228425A1 (en)2004-03-222005-10-13Alcon, Inc.Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050236474A1 (en)2004-03-262005-10-27Convergence Ct, Inc.System and method for controlling access and use of patient medical data records
JP2005309702A (en)2004-04-202005-11-04Olympus CorpMedical equipment management system and medical equipment management method
US6962587B2 (en)2000-07-252005-11-08Rita Medical Systems, Inc.Method for detecting and treating tumors using localized impedance measurement
US20050251233A1 (en)2004-05-072005-11-10John KanziusSystem and method for RF-induced hyperthermia
US20050277913A1 (en)2004-06-092005-12-15Mccary Brian DHeads-up display for displaying surgical parameters in a surgical microscope
JP2005348797A (en)2004-06-082005-12-22Olympus CorpMedical practice recording system and medical practice recording device
US6978921B2 (en)2003-05-202005-12-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument incorporating an E-beam firing mechanism
US20050288425A1 (en)2004-06-192005-12-29Hankook Tire Co., Ltd.Molding material for fuel cell separator and method for preparing the same
WO2006001264A1 (en)2004-06-282006-01-05Aisin Seiki Kabushiki KaishaOccupant detection apparatus for vehicle
US6988649B2 (en)2003-05-202006-01-24Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a spent cartridge lockout
US20060020272A1 (en)2004-06-242006-01-26Gildenberg Philip LSemi-robotic suturing device
US20060025816A1 (en)2004-07-282006-02-02Shelton Frederick E IvSurgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US20060039105A1 (en)*2003-03-122006-02-23Zonare Medical Systems, Inc.Portable ultrasound unit and docking station
US7009511B2 (en)2002-12-172006-03-07Cardiac Pacemakers, Inc.Repeater device for communications with an implantable medical device
US20060059018A1 (en)2004-09-162006-03-16Olympus CorporationMedical practice management method, and portable terminal, management server, and medical practice management system using the same
JP2006077626A (en)2004-09-082006-03-23Fuji Heavy Ind Ltd Exhaust purification device
US20060069388A1 (en)2002-04-302006-03-30Csaba TruckaiElectrosurgical instrument and method
US20060079874A1 (en)2004-10-082006-04-13Faller Craig NTissue pad for use with an ultrasonic surgical instrument
US20060079872A1 (en)2004-10-082006-04-13Eggleston Jeffrey LDevices for detecting heating under a patient return electrode
US7030146B2 (en)1996-09-102006-04-18University Of South CarolinaMethods for treating diabetic neuropathy
US7032798B2 (en)1999-06-022006-04-25Power Medical Interventions, Inc.Electro-mechanical surgical device
US7041941B2 (en)1997-04-072006-05-09Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
JP2006117143A (en)2004-10-222006-05-11Denso CorpCommunication system and wheel side radio transmission device
US7044911B2 (en)2001-06-292006-05-16Philometron, Inc.Gateway platform for biological monitoring and delivery of therapeutic compounds
US7044949B2 (en)1997-12-102006-05-16Sherwood Services AgSmart recognition apparatus and method
US7044352B2 (en)2003-05-202006-05-16Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7048775B2 (en)2001-10-172006-05-23Sartorius AgDevice and method for monitoring the integrity of filtering installations
US7053752B2 (en)1996-08-062006-05-30Intuitive SurgicalGeneral purpose distributed operating room control system
US20060116908A1 (en)2002-07-302006-06-01Dew Douglas KWeb-based data entry system and method for generating medical records
US7055730B2 (en)2000-10-132006-06-06Tyco Healthcare Group LpSurgical fastener applying apparatus
US20060122558A1 (en)2004-09-212006-06-08Impact Instrumentation, Inc.Digitally controlled aspirator
JP2006164251A (en)2004-11-092006-06-22Toshiba Corp Medical information system, medical information system program and medical information processing method for performing information processing for management of medical practice
US20060136622A1 (en)2004-12-212006-06-22Spx CorporationModular controller apparatus and method
US20060142739A1 (en)2004-12-292006-06-29Disilestro Mark RSystem and method for ensuring proper medical instrument use in an operating room
US7073765B2 (en)2002-11-132006-07-11Hill-Rom Services, Inc.Apparatus for carrying medical equipment
US7077856B2 (en)1999-06-022006-07-18Power Medical Interventions, Inc.Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US7077853B2 (en)2000-10-202006-07-18Ethicon Endo-Surgery, Inc.Method for calculating transducer capacitance to determine transducer temperature
US7081096B2 (en)2003-01-242006-07-25Medtronic Vascular, Inc.Temperature mapping balloon
US20060184160A1 (en)2005-02-152006-08-17Olympus CorporationSurgery data display device, surgery data storing device, and surgery data storing display method
US7094231B1 (en)2004-01-222006-08-22Ellman Alan GDual-mode electrosurgical instrument
US7097640B2 (en)1996-06-242006-08-29Intuitive Surgical, Inc.Multi-functional surgical control system and switching interface
US7103688B2 (en)1999-04-102006-09-05Siconnect LimitedData transmission method and apparatus
US7104949B2 (en)2001-08-312006-09-12Ams Research CorporationSurgical articles for placing an implant about a tubular tissue structure and methods
US7118564B2 (en)2003-11-262006-10-10Ethicon Endo-Surgery, Inc.Medical treatment system with energy delivery device for limiting reuse
US7121460B1 (en)2002-07-162006-10-17Diebold Self-Service Systems Division Of Diebold, IncorporatedAutomated banking machine component authentication system and method
JP2006280804A (en)2005-04-042006-10-19Olympus Medical Systems Corp Endoscope system
JP2006288431A (en)2005-04-052006-10-26Olympus Medical Systems Corp Ultrasonic surgical device
US20060241399A1 (en)2005-02-102006-10-26Fabian Carl EMultiplex system for the detection of surgical implements within the wound cavity
US7137980B2 (en)1998-10-232006-11-21Sherwood Services AgMethod and system for controlling output of RF medical generator
US7140528B2 (en)2003-05-202006-11-28Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7143923B2 (en)2003-05-202006-12-05Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a firing lockout for an unclosed anvil
US7143925B2 (en)2004-07-282006-12-05Ethicon Endo-Surgery, Inc.Surgical instrument incorporating EAP blocking lockout mechanism
US7147139B2 (en)2003-12-302006-12-12Ethicon Endo-Surgery, IncClosure plate lockout for a curved cutter stapler
US20060282009A1 (en)2003-06-132006-12-14Ake ObergDevice for measuring physical properties of the tympanic membrane
US20060287645A1 (en)2005-02-092006-12-21Olympus Medical Systems Corp.System and controller for controlling operating room
US7155316B2 (en)2002-08-132006-12-26Microbotics CorporationMicrosurgical robot system
US20070005002A1 (en)2005-06-302007-01-04Intuitive Surgical Inc.Robotic surgical instruments for irrigation, aspiration, and blowing
US20070010838A1 (en)2003-05-202007-01-11Shelton Frederick E IvSurgical stapling instrument having a firing lockout for an unclosed anvil
US7164940B2 (en)1998-03-252007-01-16Olympus Optical Co., Ltd.Therapeutic system
US20070016979A1 (en)2003-01-032007-01-18Damaj Mona BStem-regulated, plant defense promoter and uses thereof in tissue-specific expression in monocots
US20070016235A1 (en)2004-12-032007-01-18Kazue TanakaUltrasonic surgical apparatus and method of driving ultrasonic treatment device
US7169145B2 (en)2003-11-212007-01-30Megadyne Medical Products, Inc.Tuned return electrode with matching inductor
US20070027459A1 (en)2005-07-292007-02-01Christopher HorvathMethod and system for configuring and data populating a surgical device
US7177533B2 (en)2000-09-242007-02-13Medtronic, Inc.Motor control system for a surgical handpiece
US20070038080A1 (en)1998-12-082007-02-15Intuitive Surgical Inc.Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US7182775B2 (en)2003-02-272007-02-27Microline Pentax, Inc.Super atraumatic grasper apparatus
US20070049947A1 (en)2005-08-252007-03-01Microline Pentax Inc.Cinch control device
US20070066970A1 (en)*2005-09-162007-03-22Leonard InesonIntegrated electrosurgical cart and surgical smoke evacuator unit
US20070078678A1 (en)2005-09-302007-04-05Disilvestro Mark RSystem and method for performing a computer assisted orthopaedic surgical procedure
US20070085528A1 (en)2005-10-192007-04-19Assaf GovariMetal immunity in a reverse magnetic system
US7207472B2 (en)2003-12-302007-04-24Ethicon Endo-Surgery, Inc.Cartridge with locking knife for a curved cutter stapler
US7208005B2 (en)2001-08-062007-04-24The Penn State Research FoundationMultifunctional tool and method for minimally invasive surgery
DE102005051367A1 (en)2005-10-252007-04-26Olympus Winter & Ibe GmbhSurgical jaw instrument e.g. for endoscopic surgery, has two joints having angle which can be moved relative to each other with bearing has joint section and far working section such as surgical muzzle instrument
US7217269B2 (en)2003-10-282007-05-15Uab Research FoundationElectrosurgical control system
JP2007123394A (en)2005-10-262007-05-17Fujikura Ltd Circuit structure using flexible wiring board
JP2007139822A (en)2005-11-142007-06-07Olympus CorpEndoscopic device
US7230529B2 (en)2003-02-072007-06-12Theradoc, Inc.System, method, and computer program for interfacing an expert system to a clinical information system
US7232447B2 (en)2002-06-122007-06-19Boston Scientific Scimed, Inc.Suturing instrument with deflectable head
US7236817B2 (en)2000-03-032007-06-26True Life Creations (SA) Pty Ltd.Animation technology
US20070156019A1 (en)2005-12-302007-07-05Larkin David QRobotic surgery system including position sensors using fiber bragg gratings
US20070161979A1 (en)2006-01-122007-07-12Sherwood Services AgRF return pad current detection system
US20070167702A1 (en)2005-12-302007-07-19Intuitive Surgical Inc.Medical robotic system providing three-dimensional telestration
US20070168461A1 (en)2005-02-012007-07-19Moore James FSyndicating surgical data in a healthcare environment
US7246734B2 (en)2005-12-052007-07-24Ethicon Endo-Surgery, Inc.Rotary hydraulic pump actuated multi-stroke surgical instrument
US20070173803A1 (en)1998-10-232007-07-26Wham Robert HSystem and method for terminating treatment in impedance feedback algorithm
US20070179482A1 (en)2004-05-072007-08-02Anderson Robert SApparatuses and methods to treat biological external tissue
US20070179508A1 (en)2005-12-122007-08-02Cook Critical Care IncorporatedHyperechoic stimulating block needle
US20070175955A1 (en)2006-01-312007-08-02Shelton Frederick E IvSurgical cutting and fastening instrument with closure trigger locking mechanism
US20070175951A1 (en)2006-01-312007-08-02Shelton Frederick E IvGearing selector for a powered surgical cutting and fastening instrument
US7252664B2 (en)2000-05-122007-08-07Cardima, Inc.System and method for multi-channel RF energy delivery with coagulum reduction
US20070192139A1 (en)2003-04-222007-08-16Ammon CooksonSystems and methods for patient re-identification
US20070191713A1 (en)2005-10-142007-08-16Eichmann Stephen EUltrasonic device for cutting and coagulating
US20070203744A1 (en)2006-02-282007-08-30Stefan SchollClinical workflow simulation tool and method
US20070225690A1 (en)2005-12-272007-09-27Olympus Medical Systems CorporationMedical system and medical display apparatus
US20070225556A1 (en)2006-03-232007-09-27Ethicon Endo-Surgery, Inc.Disposable endoscope devices
US7278563B1 (en)2006-04-252007-10-09Green David TSurgical instrument for progressively stapling and incising tissue
US20070239028A1 (en)2006-03-292007-10-11Ethicon Endo-Surgery, Inc.Ultrasonic surgical system and method
US20070244478A1 (en)2006-04-182007-10-18Sherwood Services AgSystem and method for reducing patient return electrode current concentrations
US20070249990A1 (en)2006-04-202007-10-25Ioan CosmescuAutomatic smoke evacuator and insufflation system for surgical procedures
US7294116B1 (en)2005-01-032007-11-13Ellman Alan GSurgical smoke plume evacuation system
US7294106B2 (en)2000-12-212007-11-13Brainlab AgCable-free medical detection and treatment system
JP2007300312A (en)2006-04-282007-11-15Matsushita Electric Ind Co Ltd Key exchange control method in telemedicine system
US7296724B2 (en)1991-10-182007-11-20United States Surgical CorporationSurgical stapling apparatus
US20070270660A1 (en)2006-03-292007-11-22Caylor Edward J IiiSystem and method for determining a location of an orthopaedic medical device
US20070270688A1 (en)2006-05-192007-11-22Daniel GelbartAutomatic atherectomy system
WO2007137304A2 (en)2006-05-192007-11-29Ethicon Endo-Surgery, Inc.Electrical surgical instrument
US20070282195A1 (en)2006-05-162007-12-06Masini Michael ADisplay method and system for surgical procedures
US20070282333A1 (en)2006-06-012007-12-06Fortson Reginald DUltrasonic waveguide and blade
US20070282321A1 (en)2002-04-162007-12-06Baylis Medical Company Inc.Computerized electrical signal generator
US20070293218A1 (en)2006-05-222007-12-20Qualcomm IncorporatedCollision avoidance for traffic in a wireless network
US7317955B2 (en)2003-12-122008-01-08Conmed CorporationVirtual operating room integration
US20080015664A1 (en)2004-10-062008-01-17Podhajsky Ronald JSystems and methods for thermally profiling radiofrequency electrodes
US20080013460A1 (en)2006-07-172008-01-17Geoffrey Benjamin AllenCoordinated upload of content from multimedia capture devices based on a transmission rule
US20080015912A1 (en)2006-03-302008-01-17Meryl RosenthalSystems and methods for workforce management
US20080019393A1 (en)2006-07-182008-01-24Olympus Medical Systems Corp.Operation system control apparatus, operation system control method and operation system
US20080033404A1 (en)2006-08-032008-02-07Romoda Laszlo OSurgical machine with removable display
US7328828B2 (en)2005-11-042008-02-12Ethicon Endo-Surgery, Inc,Lockout mechanisms and surgical instruments including same
US20080040151A1 (en)2005-02-012008-02-14Moore James FUses of managed health care data
US20080039742A1 (en)2004-03-232008-02-14Dune Medical Devices Ltd.Clean margin assessment tool
US7334717B2 (en)2001-10-052008-02-26Tyco Healthcare Group LpSurgical fastener applying apparatus
US20080059658A1 (en)2006-06-292008-03-06Nokia CorporationControlling the feeding of data from a feed buffer
US20080058593A1 (en)2006-08-212008-03-06Sti Medical Systems, LlcComputer aided diagnosis using video from endoscopes
US7343565B2 (en)2002-03-202008-03-11Mercurymd, Inc.Handheld device graphical user interfaces for displaying patient medical records
US7344532B2 (en)2001-08-272008-03-18Gyrus Medical LimitedElectrosurgical generator and system
US20080077158A1 (en)2006-06-162008-03-27Hani HaiderMethod and Apparatus for Computer Aided Surgery
US7353068B2 (en)2003-08-192008-04-01Olympus CorporationControl device for a medical system and control method for medical system
US20080083414A1 (en)2006-10-102008-04-10General Electric CompanyDetecting time periods associated with surgical phases and/or interventions
US20080091071A1 (en)2006-10-112008-04-17Alka KumarSystem for evacuating detached tissue in continuous flow irrigation endoscopic procedures
US7362228B2 (en)2005-04-282008-04-22Warsaw Orthepedic, Inc.Smart instrument tray RFID reader
WO2008053485A1 (en)2006-11-052008-05-08Gyrus Group PlcModular surgical workstation
US7371227B2 (en)2004-12-172008-05-13Ethicon Endo-Surgery, Inc.Trocar seal assembly
WO2008056618A2 (en)2006-11-062008-05-15Johnson & Johnson Kabushiki KaishaStapling instrument
US20080114350A1 (en)2005-07-152008-05-15Park Christopher JMatrix router for surgical ablation
US7383088B2 (en)2001-11-072008-06-03Cardiac Pacemakers, Inc.Centralized management system for programmable medical devices
US20080129465A1 (en)1996-12-162008-06-05Rao Raman KSystem for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices
US20080140090A1 (en)2006-10-172008-06-12Ernest AranyiApparatus For Applying Surgical Clips
WO2008069816A1 (en)2006-12-062008-06-12Ryan Timothy JApparatus and methods for delivering sutures
US20080147086A1 (en)*2006-10-052008-06-19Marcus PfisterIntegrating 3D images into interventional procedures
US7391173B2 (en)2006-06-302008-06-24Intuitive Surgical, IncMechanically decoupled capstan drive
WO2008076079A1 (en)2006-12-192008-06-26Bracco Imaging S.P.A.Methods and apparatuses for cursor control in image guided surgery
US20080164296A1 (en)2007-01-102008-07-10Shelton Frederick EPrevention of cartridge reuse in a surgical instrument
US20080167644A1 (en)2007-01-102008-07-10Shelton Frederick ESurgical instrument with enhanced battery performance
US20080177258A1 (en)2007-01-182008-07-24Assaf GovariCatheter with microphone
US20080177362A1 (en)2007-01-182008-07-24Medtronic, Inc.Screening device and lead delivery system
US7408439B2 (en)1996-06-242008-08-05Intuitive Surgical, Inc.Method and apparatus for accessing medical data over a network
US7407074B2 (en)2004-07-282008-08-05Ethicon Endo-Surgery, Inc.Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
US7413541B2 (en)2003-03-072008-08-19Olympus CorporationSurgery support system for endoscopic surgery
US20080200940A1 (en)2007-01-162008-08-21Eichmann Stephen EUltrasonic device for cutting and coagulating
US7422136B1 (en)2007-03-152008-09-09Tyco Healthcare Group LpPowered surgical stapling device
US7422139B2 (en)2006-01-312008-09-09Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting fastening instrument with tactile position feedback
US7423972B2 (en)2000-11-282008-09-09Flash Networks Ltd.System and method for a transmission rate controller
US7422586B2 (en)2001-02-282008-09-09Angiodynamics, Inc.Tissue surface treatment apparatus and method
US20080234708A1 (en)2007-03-222008-09-25Houser Kevin LSurgical instruments
US20080235052A1 (en)2007-03-192008-09-25General Electric CompanySystem and method for sharing medical information between image-guided surgery systems
US20080245841A1 (en)2006-05-192008-10-09Smith Kevin WMethod for Operating an Electrical Surgical Instrument with Optimal Tissue Compression
US20080255413A1 (en)2007-04-132008-10-16Michael ZemlokPowered surgical instrument
US20080262654A1 (en)2006-10-252008-10-23Terumo Kabushiki KaishaManipulator system
US7445620B2 (en)2005-08-112008-11-04The Cleveland Clinic FoundationApparatus and method for protecting nontarget tissue of a patient during electrocautery surgery
USD579876S1 (en)2005-01-072008-11-04Apple Inc.Connector system
US20080272172A1 (en)2007-05-012008-11-06Michael ZemlokPowered surgical stapling device platform
US20080281301A1 (en)2007-04-202008-11-13Deboer CharlesPersonal Surgical Center
US20080281678A1 (en)2007-05-092008-11-13Mclagan Partners, Inc.Practice management analysis tool for financial advisors
US7457804B2 (en)2002-05-102008-11-25Medrad, Inc.System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures
US20080296346A1 (en)2007-05-312008-12-04Shelton Iv Frederick EPneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
WO2008147555A2 (en)2007-05-242008-12-04Suturtek IncorporatedApparatus and method for minimally invasive suturing
US20080306759A1 (en)2007-02-092008-12-11Hakan Mehmel IlkinPatient workflow process messaging notification apparatus, system, and method
US7464849B2 (en)2006-01-312008-12-16Ethicon Endo-Surgery, Inc.Electro-mechanical surgical instrument with closure system and anvil alignment components
US7464847B2 (en)2005-06-032008-12-16Tyco Healthcare Group LpSurgical stapler with timer and feedback display
US20080312953A1 (en)2007-06-142008-12-18Advanced Medical Optics, Inc.Database design for collection of medical instrument parameters
USD583328S1 (en)2008-04-012008-12-23Cheng Uei Precision Industry Co., Ltd.Receptacle connector
US20090017910A1 (en)2007-06-222009-01-15Broadcom CorporationPosition and motion tracking of an object
US20090030437A1 (en)2007-07-272009-01-29Houser Kevin LSurgical instruments
US20090036794A1 (en)2005-12-292009-02-05Rikshospitalet-Radiumhospitalet HfMethod and apparatus for determining local tissue impedance for positioning of a needle
US20090036750A1 (en)2007-05-252009-02-05The Charles Stark Draper Laboratory, Inc.Integration and control of medical devices in a clinical environment
US20090043253A1 (en)2005-10-112009-02-12Blake PodaimaSmart medical compliance method and system
US20090046146A1 (en)2007-08-132009-02-19Jonathan HoytSurgical communication and control system
US20090048589A1 (en)2007-08-142009-02-19Tomoyuki TakashinoTreatment device and treatment method for living tissue
US20090048595A1 (en)2007-08-142009-02-19Takashi MihoriElectric processing system
US7496418B2 (en)2003-08-252009-02-24Lg Electronics Inc.Audio level information recording/management method and audio output level adjustment method
JP2009039515A (en)2007-07-172009-02-26Fujifilm Corp Image processing system, image processing method, and program
US20090076409A1 (en)2006-06-282009-03-19Ardian, Inc.Methods and systems for thermally-induced renal neuromodulation
USD589447S1 (en)2006-09-262009-03-31Hosiden CorporationPhotoelectric-transfer connector for optical fiber
US7515961B2 (en)2005-04-292009-04-07Medtronic, Inc.Method and apparatus for dynamically monitoring, detecting and diagnosing lead conditions
US20090090763A1 (en)2007-10-052009-04-09Tyco Healthcare Group LpPowered surgical stapling device
US7518502B2 (en)2007-05-242009-04-14Smith & Nephew, Inc.System and method for tracking surgical assets
US20090099866A1 (en)2007-08-102009-04-16Smiths Medical Md, Inc.Time zone adjustment for medical devices
US20090114699A1 (en)2007-11-062009-05-07Tyco Healthcare Group LpArticulation and Firing Force Mechanisms
US20090128084A1 (en)2007-11-192009-05-21Honeywell International, Inc.Motor having controllable torque
US20090157072A1 (en)2006-01-242009-06-18Covidien AgSystem and Method for Tissue Sealing
US7554343B2 (en)2005-07-252009-06-30PiezoinnovationsUltrasonic transducer control method and system
CA2709634A1 (en)2007-12-212009-07-02Benny Hon Bun YeungSurgical manipulator
US20090182577A1 (en)2008-01-152009-07-16Carestream Health, Inc.Automated information management process
US7563259B2 (en)2002-10-022009-07-21Olympus CorporationOperation system
US20090188094A1 (en)2008-01-282009-07-30Tyco Healthcare Group LpSystem and Method for Manufacturing a Medical Instrument
US20090192591A1 (en)2008-01-242009-07-30Medtronic, Inc.Markers for Prosthetic Heart Valves
US7575144B2 (en)2006-01-312009-08-18Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with single cable actuator
US20090206131A1 (en)2008-02-152009-08-20Ethicon Endo-Surgery, Inc.End effector coupling arrangements for a surgical cutting and stapling instrument
US20090217932A1 (en)2008-03-032009-09-03Ethicon Endo-Surgery, Inc.Intraluminal tissue markers
US20090234352A1 (en)2008-03-172009-09-17Tyco Healthcare Group LpVariable Capacitive Electrode Pad
US7597731B2 (en)2003-09-152009-10-06Medtek Devices, Inc.Operating room smoke evacuator with integrated vacuum motor and filter
US20090259149A1 (en)2008-04-152009-10-15Naoko TaharaPower supply apparatus for operation
US20090259221A1 (en)2008-04-152009-10-15Naoko TaharaPower supply apparatus for operation
US20090259489A1 (en)2007-09-122009-10-15Ntt Data Tokai CorporationIntegrated database system of genome information and clinical information and a method for creating database included therein
US20090270678A1 (en)2008-04-262009-10-29Intuitive Surgical, Inc.Augmented stereoscopic visualization for a surgical robot using time duplexing
US7617137B2 (en)2006-12-192009-11-10At&T Intellectual Property I, L.P.Surgical suite radio frequency identification methods and systems
US20090281541A1 (en)2008-05-092009-11-12Estech, Inc.Conduction block systems and methods
US7621898B2 (en)2005-12-142009-11-24Stryker CorporationMedical/surgical waste collection unit including waste containers of different storage volumes with inter-container transfer valve and independently controlled vacuum levels
US7621192B2 (en)2005-07-292009-11-24Dynatek Laboratories, Inc.Medical device durability test apparatus having an integrated particle counter and method of use
US20090299214A1 (en)2007-05-112009-12-03Changwang WuMethod and apparatus for quantitative nerve localization
US20090307681A1 (en)2008-06-052009-12-10Ryan ArmadoWireless Network and Methods of Wireless Communication For Ophthalmic Surgical Consoles
US20090306581A1 (en)2008-06-092009-12-10Advanced Medical Optics, Inc.Controlling a phacoemulsification system based on real-time analysis of image data
US7637907B2 (en)2006-09-192009-12-29Covidien AgSystem and method for return electrode monitoring
US7637410B2 (en)2006-10-062009-12-29Tyco Healthcare Group LpSurgical instrument including a locking assembly
US20090326336A1 (en)2008-06-252009-12-31Heinz Ulrich LemkeProcess for comprehensive surgical assist system by means of a therapy imaging and model management system (TIMMS)
US20090326321A1 (en)2008-06-182009-12-31Jacobsen Stephen CMiniaturized Imaging Device Including Multiple GRIN Lenses Optically Coupled to Multiple SSIDs
US7641092B2 (en)2005-08-052010-01-05Ethicon Endo - Surgery, Inc.Swing gate for device lockout in a curved cutter stapler
CN101617950A (en)2008-07-012010-01-06王爱娣Repeating titanium clamp pincers
US7644848B2 (en)2006-01-312010-01-12Ethicon Endo-Surgery, Inc.Electronic lockouts and surgical instrument including same
US20100036405A1 (en)2008-08-062010-02-11Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US20100036374A1 (en)2008-08-112010-02-11Tyco Healthcare Group LpElectrosurgical System Having a Sensor for Monitoring Smoke or Aerosols
US20100038403A1 (en)2006-09-082010-02-18D Arcangelo MicheleSurgical instrument and actuating movement transmitting device therefore
US7667839B2 (en)2006-03-302010-02-23Particle Measuring Systems, Inc.Aerosol particle sensor with axial fan
US7667592B2 (en)2006-06-122010-02-23Olympus Medical Systems Corp.Operation system and method of notifying system operation information of same
US7670334B2 (en)2006-01-102010-03-02Ethicon Endo-Surgery, Inc.Surgical instrument having an articulating end effector
US20100057106A1 (en)2008-08-292010-03-04Gregory SorrentinoEndoscopic surgical clip applier with connector plate
US20100069939A1 (en)2008-09-152010-03-18Olympus Medical Systems Corp.Operation system
JP2010057642A (en)2008-09-022010-03-18Nidek Co LtdApparatus for vitreous body surgery
US20100065604A1 (en)2008-09-152010-03-18Frankenman International Ltd.Lockout mechanism for a surgical stapler
US20100069942A1 (en)2008-09-182010-03-18Ethicon Endo-Surgery, Inc.Surgical instrument with apparatus for measuring elapsed time between actions
US20100070417A1 (en)2008-09-122010-03-18At&T Mobility Ii LlcNetwork registration for content transactions
US7694865B2 (en)2004-02-172010-04-13Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US7699772B2 (en)2004-05-272010-04-20Stm Medizintechnik Starnberg GmbhVisual means of an endoscope
US7699860B2 (en)2005-04-142010-04-20Ethicon Endo-Surgery, Inc.Surgical clip
US20100120266A1 (en)2007-04-032010-05-13Mats RimborgBackplane To Mate Boards With Different Widths
US7720306B2 (en)2005-08-292010-05-18Photomed Technologies, Inc.Systems and methods for displaying changes in biological responses to therapy
US7717312B2 (en)2005-06-032010-05-18Tyco Healthcare Group LpSurgical instruments employing sensors
US7721936B2 (en)2007-01-102010-05-25Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US7721934B2 (en)2006-01-312010-05-25Ethicon Endo-Surgery, Inc.Articulatable drive shaft arrangements for surgical cutting and fastening instruments
US7722603B2 (en)2006-09-282010-05-25Covidien AgSmart return electrode pad
US20100137845A1 (en)2008-12-032010-06-03Immersion CorporationTool Having Multiple Feedback Devices
US20100137886A1 (en)2007-04-112010-06-03Zergiebel Earl MSurgical clip applier
US20100132334A1 (en)2006-04-142010-06-03Renault S.A.S.Method and device for monitoring the regeneration of a pollution-removal system
US7736357B2 (en)2004-05-112010-06-15Wisconsin Alumni Research FoundationRadiofrequency ablation with independently controllable ground pad conductors
JP2010131265A (en)2008-12-052010-06-17Fujifilm CorpImaging apparatus, imaging method, and program
US7742176B2 (en)2003-09-222010-06-22Leica Geosystems AgMethod and system for determining the spatial position of a hand-held measuring appliance
US7743960B2 (en)2002-06-142010-06-29Power Medical Interventions, LlcSurgical device
US20100168561A1 (en)2006-12-182010-07-01Trillium Precision Surgical, Inc.Intraoperative Tissue Mapping and Dissection Systems, Devices, Methods, and Kits
US7757028B2 (en)2005-12-222010-07-13Intuitive Surgical Operations, Inc.Multi-priority messaging
US7753245B2 (en)2007-06-222010-07-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US20100179831A1 (en)2009-01-152010-07-15International Business Machines CorporationUniversal personal medical database access control
US20100191100A1 (en)2009-01-232010-07-29Warsaw Orthopedic, Inc.Methods and systems for diagnosing, treating, or tracking spinal disorders
US7766905B2 (en)2004-02-122010-08-03Covidien AgMethod and system for continuity testing of medical electrodes
US7766207B2 (en)2003-12-302010-08-03Ethicon Endo-Surgery, Inc.Articulating curved cutter stapler
US20100198200A1 (en)2009-01-302010-08-05Christopher HorvathSmart Illumination for Surgical Devices
US20100194574A1 (en)2009-01-302010-08-05David James MonkParticle detection system and method of detecting particles
US20100198248A1 (en)2009-02-022010-08-05Ethicon Endo-Surgery, Inc.Surgical dissector
US7771429B2 (en)2006-08-252010-08-10Warsaw Orthopedic, Inc.Surgical tool for holding and inserting fasteners
US7770773B2 (en)2005-07-272010-08-10Power Medical Interventions, LlcSurgical device
US20100204717A1 (en)2009-02-122010-08-12Cardica, Inc.Surgical Device for Multiple Clip Application
US7776037B2 (en)2006-07-072010-08-17Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7782789B2 (en)2004-09-232010-08-24Harris CorporationAdaptive bandwidth utilization for telemetered data
US20100217991A1 (en)2008-08-142010-08-26Seung Wook ChoiSurgery robot system of server and client type
US7784663B2 (en)2005-03-172010-08-31Ethicon Endo-Surgery, Inc.Surgical stapling instrument having load sensing control circuitry
US20100234996A1 (en)2007-10-202010-09-16Kuka Roboter GmbhManipulator, Particularly Industrial Robot, Having A Redundant Sensor Arrangement, And Method For The Control Thereof
US20100235689A1 (en)2009-03-162010-09-16Qualcomm IncorporatedApparatus and method for employing codes for telecommunications
US7803151B2 (en)2001-12-042010-09-28Power Medical Interventions, LlcSystem and method for calibrating a surgical instrument
US20100250571A1 (en)2009-03-262010-09-30Jay PierceSystem and method for an orthopedic dynamic data repository and registry for range
US7810692B2 (en)2008-02-142010-10-12Ethicon Endo-Surgery, Inc.Disposable loading unit with firing indicator
US20100258327A1 (en)2007-11-272010-10-14Florian EsenweinElectrically driven hand-held power tool
US7818041B2 (en)2004-07-072010-10-19Young KimSystem and method for efficient diagnostic analysis of ophthalmic examinations
US7819298B2 (en)2008-02-142010-10-26Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US20100280247A1 (en)2007-11-302010-11-04Millennium Pharmaceuticals Inc.Process improvement using tmeda
US7836085B2 (en)2007-02-052010-11-16Google Inc.Searching structured geographical data
US7832612B2 (en)2008-09-192010-11-16Ethicon Endo-Surgery, Inc.Lockout arrangement for a surgical stapler
US7833219B2 (en)2005-02-142010-11-16Olympus CorporationOperation apparatus controller and surgery system
US20100292684A1 (en)2009-05-152010-11-18Cybulski James STissue modification devices and methods of the same
US20100292535A1 (en)2009-05-182010-11-18Larry PaskarEndoscope with multiple fields of view
US7837079B2 (en)2005-08-152010-11-23Tyco Healthcare Group LpSurgical stapling instruments including a cartridge having multiple staple sizes
US7841980B2 (en)2006-05-112010-11-30Olympus Medical Systems Corp.Treatment system, trocar, treatment method and calibration method
JP2010269067A (en)2009-05-252010-12-02Hitachi Medical CorpTreatment support device
US20100301095A1 (en)2007-01-102010-12-02Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US7845537B2 (en)2006-01-312010-12-07Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US7857185B2 (en)2008-02-142010-12-28Ethicon Endo-Surgery, Inc.Disposable loading unit for surgical stapling apparatus
US7862560B2 (en)2007-03-232011-01-04Arthrocare CorporationAblation apparatus having reduced nerve stimulation and related methods
US7862579B2 (en)2004-07-282011-01-04Ethicon Endo-Surgery, Inc.Electroactive polymer-based articulation mechanism for grasper
US7865236B2 (en)2004-10-202011-01-04Nervonix, Inc.Active electrode, bio-impedance based, tissue discrimination system and methods of use
US20110006876A1 (en)2009-07-092011-01-13Medtronic Minimed, Inc.Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US20110015649A1 (en)2008-01-252011-01-20Mcmaster UniversitySurgical Guidance Utilizing Tissue Feedback
USD631252S1 (en)2010-05-262011-01-25Leslie Henry EGlove holder for engaging a garment
US20110022032A1 (en)2007-10-052011-01-27Tyco Healthcare Group LpBattery ejection design for a surgical device
US7884735B2 (en)2005-02-112011-02-08Hill-Rom Services, Inc.Transferable patient care equipment support
US7887530B2 (en)2007-04-132011-02-15Tyco Healthcare Group LpPowered surgical instrument
US20110036890A1 (en)2009-08-172011-02-17Yong MaSafety Method For Powered Surgical Instruments
US20110046618A1 (en)2009-08-042011-02-24Minar Christopher DMethods and systems for treating occluded blood vessels and other body cannula
US20110043612A1 (en)2009-07-312011-02-24Inneroptic Technology Inc.Dual-tube stereoscope
US7907166B2 (en)2005-12-302011-03-15Intuitive Surgical Operations, Inc.Stereo telestration for robotic surgery
US20110071530A1 (en)2001-02-272011-03-24Carson Christopher PTotal knee arthroplasty systems and processes
US7913891B2 (en)2008-02-142011-03-29Ethicon Endo-Surgery, Inc.Disposable loading unit with user feedback features and surgical instrument for use therewith
US20110077512A1 (en)2009-06-162011-03-31Dept. Of Veterans AffairsBiopsy marker composition and method of use
US7918377B2 (en)2008-10-162011-04-05Ethicon Endo-Surgery, Inc.Surgical stapling instrument with apparatus for providing anvil position feedback
US7918230B2 (en)2007-09-212011-04-05Tyco Healthcare Group LpSurgical device having a rotatable jaw portion
US7920706B2 (en)2002-10-282011-04-05Nokia CorporationMethod and system for managing cryptographic keys
US7922063B2 (en)2007-10-312011-04-12Tyco Healthcare Group, LpPowered surgical instrument
US20110087502A1 (en)2009-10-142011-04-14Yelton Paul AMedical facility bed availability
US7927014B2 (en)2007-05-052011-04-19Ziehm Imaging GmbhX-ray diagnostic imaging system with a plurality of coded markers
US7932826B2 (en)2008-06-122011-04-26Abbott Laboratories Inc.System for tracking the location of components, assemblies, and subassemblies in an automated diagnostic analyzer
US20110105277A1 (en)2009-11-042011-05-05Chair Trainer, Ltd.Multi-trainer for swivel chairs on castors
US20110105895A1 (en)2009-10-012011-05-05Giora KornblauGuided surgery
US20110112569A1 (en)2008-03-272011-05-12Mayo Foundation For Medical Education And ResearchNavigation and tissue capture systems and methods
US7945342B2 (en)2006-04-212011-05-17Hong Fu Jin Precision Industry (Shen Zhen) Co., Ltd.Audio processing apparatus for automatic gain control
US7945065B2 (en)2004-05-072011-05-17Phonak AgMethod for deploying hearing instrument fitting software, and hearing instrument adapted therefor
US20110118708A1 (en)2009-11-132011-05-19Intuitive Surgical Operations, Inc.Double universal joint
US20110119075A1 (en)2009-10-022011-05-19Rabin Chandra Kemp DhobleApparatuses, methods and systems for a mobile healthcare manager-based provider incentive manager
US20110125149A1 (en)2007-02-062011-05-26Rizk El-GalleyUniversal surgical function control system
US7951148B2 (en)2001-03-082011-05-31Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US7954687B2 (en)2007-11-062011-06-07Tyco Healthcare Group LpCoated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
US7954682B2 (en)2007-01-102011-06-07Ethicon Endo-Surgery, Inc.Surgical instrument with elements to communicate between control unit and end effector
US7956620B2 (en)2009-08-122011-06-07Tyco Healthcare Group LpSystem and method for augmented impedance sensing
US7955322B2 (en)2005-12-202011-06-07Intuitive Surgical Operations, Inc.Wireless communication in a robotic surgical system
US7966269B2 (en)2005-10-202011-06-21Bauer James DIntelligent human-machine interface
US7963433B2 (en)2007-09-212011-06-21Tyco Healthcare Group LpSurgical device having multiple drivers
US20110152712A1 (en)2009-12-212011-06-23Hong CaoImpedance Measurement Tissue Identification in Blood Vessels
US20110163147A1 (en)2010-01-072011-07-07Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US20110166883A1 (en)2009-09-012011-07-07Palmer Robert DSystems and Methods for Modeling Healthcare Costs, Predicting Same, and Targeting Improved Healthcare Quality and Profitability
US7979157B2 (en)2004-07-232011-07-12Mcmaster UniversityMulti-purpose robotic operating system and method
US7976553B2 (en)2005-06-132011-07-12Ethicon Endo-Surgery, Inc.Surgical suturing apparatus with detachable handle
US7980443B2 (en)2008-02-152011-07-19Ethicon Endo-Surgery, Inc.End effectors for a surgical cutting and stapling instrument
US7982776B2 (en)2007-07-132011-07-19Ethicon Endo-Surgery, Inc.SBI motion artifact removal apparatus and method
US7988028B2 (en)2008-09-232011-08-02Tyco Healthcare Group LpSurgical instrument having an asymmetric dynamic clamping member
US7995045B2 (en)2007-04-132011-08-09Ethicon Endo-Surgery, Inc.Combined SBI and conventional image processor
US7993954B2 (en)2008-09-302011-08-09Stion CorporationThermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US7993354B1 (en)2010-10-012011-08-09Endoevolution, LlcDevices and methods for minimally invasive suturing
US7993140B2 (en)2005-02-032011-08-09Christopher SakezlesModels and methods of using same for testing medical devices
US20110196398A1 (en)2010-02-112011-08-11Ethicon Endo-Surgery, Inc.Seal arrangements for ultrasonically powered surgical instruments
US8005947B2 (en)2008-09-222011-08-23Abbott Medical Optics Inc.Systems and methods for providing remote diagnostics and support for surgical systems
US20110209128A1 (en)2010-02-242011-08-25Nokia CorporationSystems, methods and apparatuses for facilitating targeted compilation of source code
US8007494B1 (en)2006-04-272011-08-30Encision, Inc.Device and method to prevent surgical burns
US8010180B2 (en)2002-03-062011-08-30Mako Surgical Corp.Haptic guidance system and method
US8007513B2 (en)2008-06-122011-08-30Ethicon Endo-Surgery, Inc.Partially reusable surgical stapler
US8012170B2 (en)2009-04-272011-09-06Tyco Healthcare Group LpDevice and method for controlling compression of tissue
US20110218526A1 (en)2010-03-032011-09-08Medtronic Ablation Frontiers, LlcVariable-output radiofrequency ablation power supply
US8016855B2 (en)2002-01-082011-09-13Tyco Healthcare Group LpSurgical device
US8019094B2 (en)2005-11-112011-09-13Hong Fu Jin Precision Industry (Shen Zhen) Co., Ltd.Audio processing system with function of automatic gain control and method thereof
US8015976B2 (en)2008-06-062011-09-13Tyco Healthcare Group LpKnife lockout mechanisms for surgical instrument
WO2011112931A1 (en)2010-03-122011-09-15The Board Of Trustees Of The University Of IllinoisWaterproof stretchable optoelectronics
US8025199B2 (en)2004-02-232011-09-27Tyco Healthcare Group LpSurgical cutting and stapling device
US8027710B1 (en)2005-01-282011-09-27Patrick DannanImaging system for endoscopic surgery
US20110238079A1 (en)2010-03-182011-09-29SPI Surgical, Inc.Surgical Cockpit Comprising Multisensory and Multimodal Interfaces for Robotic Surgery and Methods Related Thereto
US20110237883A1 (en)2010-03-262011-09-29Minkyung ChunElectronic endoscope system
US8035685B2 (en)2007-07-302011-10-11General Electric CompanySystems and methods for communicating video data between a mobile imaging system and a fixed monitor system
US20110251612A1 (en)2010-04-122011-10-13Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8038693B2 (en)2009-10-212011-10-18Tyco Healthcare Group IpMethods for ultrasonic tissue sensing and feedback
US8038686B2 (en)2005-04-142011-10-18Ethicon Endo-Surgery, Inc.Clip applier configured to prevent clip fallout
US8043560B2 (en)2006-07-192011-10-25Furuno Electric Co., Ltd.Automatic analyzer
US20110264078A1 (en)2010-04-232011-10-27Lipow Kenneth IRing form surgical effector
US20110264000A1 (en)2007-12-282011-10-27Saurav PaulSystem and method for determining tissue type and mapping tissue morphology
US20110264086A1 (en)2010-04-142011-10-27Frank IngleRenal artery denervation apparatus employing helical shaping arrangement
US20110265311A1 (en)2010-04-282011-11-03Honda Motor Co., Ltd.Workpiece holding method
US8054184B2 (en)2008-07-312011-11-08Intuitive Surgical Operations, Inc.Identification of surgical instrument attached to surgical robot
US8054752B2 (en)2005-12-222011-11-08Intuitive Surgical Operations, Inc.Synchronous data communication
US20110273465A1 (en)2009-10-282011-11-10Olympus Medical Systems Corp.Output control apparatus of medical device
US20110278343A1 (en)2009-01-292011-11-17Cardica, Inc.Clamping of Hybrid Surgical Instrument
US8062330B2 (en)2007-06-272011-11-22Tyco Healthcare Group LpButtress and surgical stapling apparatus
US8062306B2 (en)2006-12-142011-11-22Ethicon Endo-Surgery, Inc.Manually articulating devices
US8066721B2 (en)2000-12-062011-11-29Ethicon Endo-Surgery, Inc.Surgical clip application assembly
US20110295270A1 (en)2007-01-102011-12-01Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20110290024A1 (en)2010-05-282011-12-01Lefler Kenneth ASystem and method of mechanical fault detection based on signature detection
US8075571B2 (en)2005-04-142011-12-13Ethicon Endo-Surgery, Inc.Surgical clip applier methods
US20110307284A1 (en)2010-06-092011-12-15Medtronic, Inc.Command center communication system for improved management of complex medical environments
US20110306840A1 (en)2009-01-302011-12-15The Trustees Of Columbia University In The City Of New YorkControllable magnetic source to fixture intracorporeal apparatus.
US8095327B2 (en)2008-04-152012-01-10Olympus Medical Systems Corp.Power supply apparatus for operation
US8096459B2 (en)2005-10-112012-01-17Ethicon Endo-Surgery, Inc.Surgical stapler with an end effector support
US20120012638A1 (en)2010-07-142012-01-19Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US20120021684A1 (en)2009-03-262012-01-26Xped Holdings Pty LtdArrangement for managing wireless communication between devices
US20120022519A1 (en)2010-07-222012-01-26Ethicon Endo-Surgery, Inc.Surgical cutting and sealing instrument with controlled energy delivery
US20120029354A1 (en)2008-12-162012-02-02Mark Joseph LTissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
US8116848B2 (en)1996-06-282012-02-14Ramin ShahidiMethod and apparatus for volumetric image navigation
US8120301B2 (en)2009-03-092012-02-21Intuitive Surgical Operations, Inc.Ergonomic surgeon control console in robotic surgical systems
US8118206B2 (en)2008-03-152012-02-21Surgisense CorporationSensing adjunct for surgical staplers
US20120046662A1 (en)2010-08-232012-02-23Tyco Healthcare Group LpMethod of Manufacturing Tissue Sealing Electrodes
US8123764B2 (en)2004-09-202012-02-28Endoevolution, LlcApparatus and method for minimally invasive suturing
US8131565B2 (en)2006-10-242012-03-06Medapps, Inc.System for medical data collection and transmission
US20120059684A1 (en)2010-09-022012-03-08International Business Machines CorporationSpatial-Temporal Optimization of Physical Asset Maintenance
USD655678S1 (en)2010-11-112012-03-13Hosiden CorporationElectrical connector
US8136712B2 (en)2009-12-102012-03-20Ethicon Endo-Surgery, Inc.Surgical stapler with discrete staple height adjustment and tactile feedback
US8146149B2 (en)2006-06-032012-03-27B. Braun Medizinelectronik GmbH & Co. KGApparatus and method for protecting a medical device and a patient treated with this device against harmful influences from a communication network
US20120078247A1 (en)2010-09-242012-03-29Worrell Barry CArticulation joint features for articulating surgical device
US8147486B2 (en)2003-09-222012-04-03St. Jude Medical, Atrial Fibrillation Division, Inc.Medical device with flexible printed circuit
US20120080498A1 (en)2010-09-302012-04-05Ethicon Endo-Surgery, Inc.Curved end effector for a stapling instrument
US20120080336A1 (en)2010-09-302012-04-05Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples positioned within a compressible portion thereof
JP2012065698A (en)2010-09-212012-04-05Fujifilm CorpOperation support system, and operation support method using the same
US20120083786A1 (en)2010-10-042012-04-05Artale Ryan CVessel Sealing Instrument
US8155479B2 (en)2008-03-282012-04-10Intuitive Surgical Operations Inc.Automated panning and digital zooming for robotic surgical systems
USD657368S1 (en)2009-12-312012-04-10Welch Allyn, Inc.Patient monitoring device with graphical user interface
US8160098B1 (en)2009-01-142012-04-17Cisco Technology, Inc.Dynamically allocating channel bandwidth between interfaces
US8157145B2 (en)2007-05-312012-04-17Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8160690B2 (en)2007-06-142012-04-17Hansen Medical, Inc.System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US8157151B2 (en)2009-10-152012-04-17Tyco Healthcare Group LpStaple line reinforcement for anvil and cartridge
US8161977B2 (en)2006-01-312012-04-24Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US20120100517A1 (en)2010-09-302012-04-26Andrew BowditchReal-time, interactive, three-dimensional virtual surgery system and method thereof
US20120101488A1 (en)2010-10-262012-04-26Ethicon Endo-Surgery, Inc.Surgical instrument with magnetic clamping force
US8170396B2 (en)2007-04-162012-05-01Adobe Systems IncorporatedChanging video playback rate
US20120116381A1 (en)2010-11-052012-05-10Houser Kevin LSurgical instrument with charging station and wireless communication
US20120116394A1 (en)2010-11-052012-05-10Timm Richard WSurgical instrument with pivoting coupling to modular shaft and end effector
US20120116265A1 (en)2010-11-052012-05-10Houser Kevin LSurgical instrument with charging devices
US8185409B2 (en)2001-11-292012-05-22Boundarymedical Inc.Method and apparatus for operative event documentation and related data management
US20120130217A1 (en)2010-11-232012-05-24Kauphusman James VMedical devices having electrodes mounted thereon and methods of manufacturing therefor
US20120145714A1 (en)2010-12-102012-06-14Tyco Healthcare Group LpCartridge Shipping Aid
US8206345B2 (en)2005-03-072012-06-26Medtronic Cryocath LpFluid control system for a medical device
US8208707B2 (en)2008-09-022012-06-26General Electric CompanyTissue classification in medical images
US8210411B2 (en)2008-09-232012-07-03Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US8214007B2 (en)2006-11-012012-07-03Welch Allyn, Inc.Body worn physiological sensor device having a disposable electrode module
US8211100B2 (en)2009-01-122012-07-03Tyco Healthcare Group LpEnergy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US20120172696A1 (en)2009-09-102012-07-05Cathprint AbFlexible Conductor Carrier for Catheter and Catheter Fitted with a Conductor Carrier
US8216849B2 (en)2008-11-032012-07-10Petty Jon AColorimetric test for brake system corrosion
US8220688B2 (en)2009-12-242012-07-17Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8225979B2 (en)2009-10-302012-07-24Tyco Healthcare Group LpLocking shipping wedge
US8229549B2 (en)2004-07-092012-07-24Tyco Healthcare Group LpSurgical imaging device
US20120190981A1 (en)2010-12-222012-07-26Veebot, LlcSystems and methods for autonomous intravenous needle insertion
US20120191162A1 (en)2011-01-202012-07-26Cristiano VillaSystem of Remote Controlling a Medical Laser Generator Unit with a Portable Computing Device
US20120191091A1 (en)2011-01-242012-07-26Tyco Healthcare Group LpReusable Medical Device with Advanced Counting Capability
US8231042B2 (en)2008-11-062012-07-31Tyco Healthcare Group LpSurgical stapler
US20120197619A1 (en)2011-01-272012-08-02Einav Namer YelinSystem and method for generating a patient-specific digital image-based model of an anatomical structure
US8239066B2 (en)2008-10-272012-08-07Lennox Industries Inc.System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US20120203785A1 (en)2009-10-162012-08-09Nanomedapps LlcItem and user tracking
US20120203067A1 (en)2011-02-042012-08-09The Penn State Research FoundationMethod and device for determining the location of an endoscope
US8241322B2 (en)2005-07-272012-08-14Tyco Healthcare Group LpSurgical device
US20120211542A1 (en)2011-02-232012-08-23Tyco Healthcare Group I.PControlled tissue compression systems and methods
US8255045B2 (en)2007-04-032012-08-28Nuvasive, Inc.Neurophysiologic monitoring system
US8257387B2 (en)2008-08-152012-09-04Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8260016B2 (en)2007-12-102012-09-04Fujifilm CorporationImage processing system, image processing method, and computer readable medium
US20120226150A1 (en)2009-10-302012-09-06The Johns Hopkins UniversityVisual tracking and annotaton of clinically important anatomical landmarks for surgical interventions
US8262560B2 (en)2001-04-202012-09-11Tyco Healthcare Group LpImaging device for use with a surgical device
US20120232549A1 (en)2011-03-092012-09-13Vivant Medical, Inc.Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US20120245958A1 (en)2011-03-252012-09-27Surgichart, LlcCase-Centric Medical Records System with Social Networking
US20120253847A1 (en)2011-03-312012-10-04General Electric CompanyHealth information telecommunications system and method
US20120253329A1 (en)2007-09-212012-10-04Michael ZemlokHand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US20120265555A1 (en)2009-09-282012-10-18Sandro CappuzzoMethod and system for monitoring the flow and usage of medical devices
US8292639B2 (en)2006-06-302012-10-23Molex IncorporatedCompliant pin control module and method for making the same
US8295902B2 (en)2008-11-112012-10-23Shifamed Holdings, LlcLow profile electrode assembly
US8292888B2 (en)2001-04-202012-10-23Tyco Healthcare Group LpBipolar or ultrasonic surgical device
US8308040B2 (en)2007-06-222012-11-13Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US20120292367A1 (en)2006-01-312012-11-22Ethicon Endo-Surgery, Inc.Robotically-controlled end effector
US8321581B2 (en)2007-10-192012-11-27Voxer Ip LlcTelecommunication and multimedia management method and apparatus
US8322590B2 (en)2009-10-282012-12-04Covidien LpSurgical stapling instrument
JP2012239669A (en)2011-05-202012-12-10Konica Minolta Advanced Layers IncProbe and diagnostic system
JP2012240158A (en)2011-05-192012-12-10Tokyo Institute Of TechnologyRotational wave motion mechanism
US8328065B2 (en)2008-06-062012-12-11Covidien LpKnife/firing rod connection for surgical instrument
US8335590B2 (en)2008-12-232012-12-18Intuitive Surgical Operations, Inc.System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US20120319859A1 (en)2010-01-202012-12-20Creative Team Instruments Ltd.Orientation detector for use with a hand-held surgical or dental tool
JP2012533346A (en)2009-07-152012-12-27エシコン・エンド−サージェリィ・インコーポレイテッド Electrosurgical Electric Generator for Ultrasonic Surgical Instruments
US8346392B2 (en)2007-12-272013-01-01Leica Geosystems AgMethod and system for the high-precision positioning of at least one object in a final location in space
US8343065B2 (en)2007-10-182013-01-01Innovative Surgical Solutions, LlcNeural event detection
US20130001121A1 (en)2011-07-012013-01-03Biomet Manufacturing Corp.Backup kit for a patient-specific arthroplasty kit assembly
US20130006241A1 (en)2010-01-222013-01-03Tomoyuki TakashinoMedical treatment device, medical treatment apparatus, and operation method of medical treatment device
US20130008677A1 (en)2011-07-082013-01-10Chen HuifuMulti-head power tool
US20130024213A1 (en)2010-03-252013-01-24The Research Foundation Of State University Of New YorkMethod and system for guided, efficient treatment
US8364222B2 (en)2007-09-192013-01-29King's College LondonImaging apparatus and method
US8360299B2 (en)2009-08-112013-01-29Covidien LpSurgical stapling apparatus
US8365975B1 (en)2009-05-052013-02-05Cardica, Inc.Cam-controlled knife for surgical instrument
USD676392S1 (en)2010-03-092013-02-19Wago Verwaltungsgesellschaft MbhElectrical connector
US20130046295A1 (en)2011-08-182013-02-21Tyco Healthcare Group LpSurgical Instruments With Removable Components
US20130046182A1 (en)2011-08-162013-02-21Elwha LLC, a limited liability company of the State of DelawareDevices and Methods for Recording Information on a Subject's Body
US20130046279A1 (en)2011-08-162013-02-21Paul J. NiklewskiUser interface feature for drug delivery system
JP2013044303A (en)2011-08-252013-03-04Nippon Soken IncExhaust gas treatment method and exhaust gas treatment control system for internal combustion engine
US8388652B2 (en)2002-05-102013-03-05Covidien LpSurgical stapling apparatus having a wound closure material applicator assembly
US8393514B2 (en)2010-09-302013-03-12Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US20130066647A1 (en)2011-09-092013-03-14Depuy Spine, Inc.Systems and methods for surgical support and management
USD678304S1 (en)2010-03-312013-03-19Spintso International AbDisplay screen or portion thereof with graphical user interface
USD678196S1 (en)2011-01-072013-03-19Seiko Epson CorporationInput signal selector for projector
US8398541B2 (en)2006-06-062013-03-19Intuitive Surgical Operations, Inc.Interactive user interfaces for robotic minimally invasive surgical systems
US8397972B2 (en)2011-03-182013-03-19Covidien LpShipping wedge with lockout
US8403944B2 (en)2007-12-132013-03-26MicrovalApparatus for placing stitch turns resulting from a shape-memory metal thread
US8403945B2 (en)2010-02-252013-03-26Covidien LpArticulating endoscopic surgical clip applier
US8406859B2 (en)2008-08-102013-03-26Board Of Regents, The University Of Texas SystemDigital light processing hyperspectral imaging apparatus
US8403946B2 (en)2010-07-282013-03-26Covidien LpArticulating clip applier cartridge
US8411034B2 (en)2009-03-122013-04-02Marc BoillotSterile networked interface for medical systems
US20130085413A1 (en)2010-06-132013-04-04Oded TsamirAnatomical-positioning apparatus and method with an expandable device
US8413871B2 (en)2007-03-062013-04-09Covidien LpSurgical stapling apparatus
US20130090755A1 (en)2010-08-312013-04-11Mitsubishi Heavy Industries, Ltd.Numerically-controlled machine tool
US20130090526A1 (en)2002-03-192013-04-11Keita SuzukiAnastomosis system
US8423182B2 (en)2009-03-092013-04-16Intuitive Surgical Operations, Inc.Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8422035B2 (en)2007-10-262013-04-16Leica Geosystems AgDistance-measuring method for a device projecting a reference line, and such a device
US20130093829A1 (en)2011-09-272013-04-18Allied Minds Devices LlcInstruct-or
US20130096597A1 (en)2010-06-242013-04-18Koninklijke Philips Electronics N.V.Real-time monitoring and control of hifu therapy in multiple dimensions
US8429153B2 (en)2010-06-252013-04-23The United States Of America As Represented By The Secretary Of The ArmyMethod and apparatus for classifying known specimens and media using spectral properties and identifying unknown specimens and media
US8428722B2 (en)2005-11-302013-04-23Medtronic, Inc.Communication system for medical devices
JP2013081282A (en)2011-10-032013-05-02Fuji Mach Mfg Co LtdAbnormality detection device
US20130116218A1 (en)2011-09-292013-05-09Ethicon Endo-Surgery, Inc.Methods and compositions of bile acids
US8439910B2 (en)2010-01-222013-05-14Megadyne Medical Products Inc.Electrosurgical electrode with electric field concentrating flash edge
US8444663B2 (en)2004-02-272013-05-21Ethicon Endo-Surgery, Inc.Ultrasonic surgical shears and tissue pad for same
US20130131845A1 (en)2010-07-202013-05-23Maquet SasSystem for managing equipment of an operational block and correspnoding use
US8452615B2 (en)2007-11-132013-05-28How To Organize (H2O) GmbhMethod and system for management of operating-room resources
US8454506B2 (en)2005-02-282013-06-04Perahealth, Inc.Systems and methods for providing a continual measurement of health
US20130144284A1 (en)2011-12-062013-06-06Tyco Healthcare Group LpVessel Sealing Using Microwave Energy
US8461744B2 (en)2009-07-152013-06-11Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US8468030B2 (en)2005-06-272013-06-18Children's Mercy HospitalSystem and method for collecting, organizing, and presenting date-oriented medical information
US20130153635A1 (en)2011-12-142013-06-20Covidien LpButtress Attachment to the Cartridge Surface
US8472630B2 (en)2009-11-062013-06-25Roche Diagnostics International AgMethod and system for establishing cryptographic communications between a remote device and a medical device
US8469973B2 (en)2006-01-272013-06-25Endoevolution, LlcApparatus and method for sternotomy closure
US8473066B2 (en)2009-07-062013-06-25Boston Scientific Neuromodulation CompanyExternal charger for a medical implantable device using field sensing coils to improve coupling
US20130165776A1 (en)2011-12-222013-06-27Andreas BlomqvistContraction status assessment
US8476227B2 (en)2010-01-222013-07-02Ethicon Endo-Surgery, Inc.Methods of activating a melanocortin-4 receptor pathway in obese subjects
US8478418B2 (en)2011-04-152013-07-02Infobionic, Inc.Remote health monitoring system
JP2013135738A (en)2011-12-282013-07-11Hitachi Medical CorpOperation support system
US20130178853A1 (en)2012-01-052013-07-11International Business Machines CorporationSurgical tool management
US8489235B2 (en)1998-11-202013-07-16Intuitive Surgical Operations, Inc.Cooperative minimally invasive telesurgical system
US20130191647A1 (en)2012-01-232013-07-25Michael N. Ferrara, JR.Secure Wireless Access to Medical Data
US20130190755A1 (en)2012-01-232013-07-25Covidien LpPartitioned surgical instrument
JP2013144057A (en)2012-01-162013-07-25Rion Co LtdBiological particle counter for dialysis, biological particle counting method for dialysis, and dialysate monitoring system
USD687146S1 (en)2011-03-022013-07-30Baylis Medical Company Inc.Electrosurgical generator
US20130196703A1 (en)2012-02-012013-08-01Medtronic, Inc.System and communication hub for a plurality of medical devices and method therefore
US20130193188A1 (en)2006-01-312013-08-01Ethicon Endo-Surgery, Inc.Powered surgical instruments with firing system lockout arrangements
US20130197531A1 (en)2008-10-132013-08-01Mikhail BoukhnyAutomated intraocular lens injector device
US8500728B2 (en)2008-08-182013-08-06Encision, Inc.Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US8503759B2 (en)2007-04-162013-08-06Alexander GreerMethods, devices, and systems useful in registration
US20130201356A1 (en)2012-02-072013-08-08Arthrex Inc.Tablet controlled camera system
US8506478B2 (en)2008-06-042013-08-13Fujifilm CorporationIllumination device for use in endoscope
US20130206813A1 (en)2012-02-142013-08-15Ethicon Endo-Surgery, Inc.Linear stapler
US8512365B2 (en)2007-07-312013-08-20Ethicon Endo-Surgery, Inc.Surgical instruments
US8515520B2 (en)2008-12-082013-08-20Medtronic Xomed, Inc.Nerve electrode
US8512325B2 (en)2010-02-262013-08-20Covidien LpFrequency shifting multi mode ultrasonic dissector
US20130214025A1 (en)2007-10-052013-08-22Covidien LpPowered surgical stapling device
US8517239B2 (en)2009-02-052013-08-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US8521331B2 (en)2009-11-132013-08-27Intuitive Surgical Operations, Inc.Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
US8523043B2 (en)2010-12-072013-09-03Immersion CorporationSurgical stapler having haptic feedback
US8533475B2 (en)2007-06-082013-09-10Roche Diagnostics Operations, Inc.Method for pairing and authenticating one or more medical devices and one or more remote electronic devices
US8535342B2 (en)2001-08-082013-09-17Stryker CorporationPowered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US8540709B2 (en)2009-12-072013-09-24Covidien LpRemovable ink for surgical instrument
US20130253480A1 (en)2012-03-222013-09-26Cory G. KimballSurgical instrument usage data management
US8546996B2 (en)2008-08-062013-10-01Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US20130256373A1 (en)2012-03-282013-10-03Ethicon Endo-Surgery, Inc.Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
WO2013143573A1 (en)2012-03-262013-10-03Brainlab AgPairing medical devices within a working environment
US8554697B2 (en)2009-05-082013-10-08Abbott Medical Optics Inc.Self-learning engine for the refinement and optimization of surgical settings
US20130268283A1 (en)2012-04-052013-10-10Welch Allyn, Inc.Process to Streamline Workflow for Continuous Monitoring of a Patient
US20130267874A1 (en)2012-04-092013-10-10Amy L. MarcotteSurgical instrument with nerve detection feature
US8561870B2 (en)2008-02-132013-10-22Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US8562598B2 (en)2008-03-312013-10-22Applied Medical Resources CorporationElectrosurgical system
US8566115B2 (en)2005-02-012013-10-22Newsilike Media Group, Inc.Syndicating surgical data in a healthcare environment
US20130277410A1 (en)2012-04-182013-10-24Cardica, Inc.Safety lockout for surgical stapler
US8571598B2 (en)2006-12-182013-10-29Intel CorporationMethod and apparatus for location-based wireless connection and pairing
US8567393B2 (en)2001-11-012013-10-29Scott Laboratories, IncUser interface for sedation and analgesia delivery systems and methods
US8574229B2 (en)2006-05-022013-11-05Aesculap AgSurgical tool
US8573465B2 (en)2008-02-142013-11-05Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US8585694B2 (en)2009-05-112013-11-19Gyrus Medical LimitedElectrosurgical generator
US8585631B2 (en)2011-10-182013-11-19Alcon Research, Ltd.Active bimodal valve system for real-time IOP control
US8590762B2 (en)2007-03-152013-11-26Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US8591536B2 (en)2007-11-302013-11-26Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US8595607B2 (en)2009-06-042013-11-26Abbott Diabetes Care Inc.Method and system for updating a medical device
US20130317837A1 (en)2012-05-242013-11-28Deka Products Limited PartnershipSystem, Method, and Apparatus for Electronic Patient Care
US8596515B2 (en)2010-06-182013-12-03Covidien LpStaple position sensor system
US8596513B2 (en)2002-10-042013-12-03Covidien LpSurgical stapler with universal articulation and tissue pre-clamp
US20130321425A1 (en)2012-06-052013-12-05Dexcom, Inc.Reporting modules
US20130325809A1 (en)2012-06-042013-12-05Samsung Electronics Co., Ltd.Method for contents backup and an electronic device thereof
US8604709B2 (en)2007-07-312013-12-10Lsi Industries, Inc.Methods and systems for controlling electrical power to DC loads
US20130331875A1 (en)2012-06-112013-12-12Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US20130331873A1 (en)2012-06-112013-12-12Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US8608045B2 (en)2008-10-102013-12-17Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US8608044B2 (en)2008-02-152013-12-17Ethicon Endo-Surgery, Inc.Feedback and lockout mechanism for surgical instrument
US8616431B2 (en)2007-06-042013-12-31Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US8617155B2 (en)2010-03-102013-12-31Covidien LpSystem and method for determining proximity relative to a critical structure
US8620055B2 (en)2009-08-072013-12-31Ucl Business PlcApparatus and method for registering two medical images
US8620473B2 (en)2007-06-132013-12-31Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US20140001231A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Firing system lockout arrangements for surgical instruments
US20140005640A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Surgical end effector jaw and electrode configurations
US20140001234A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Coupling arrangements for attaching surgical end effectors to drive systems therefor
US20140006132A1 (en)2012-06-282014-01-02Jason W. BarkerSystems and methods for managing promotional offers
US8627483B2 (en)2008-12-182014-01-07Accenture Global Services LimitedData anonymization based on guessing anonymity
US8622275B2 (en)2009-11-192014-01-07Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US8623027B2 (en)2007-10-052014-01-07Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US20140009894A1 (en)2012-07-032014-01-09Sercomm CorporationCommunication device having multi-module assembly
US8628545B2 (en)2008-06-132014-01-14Covidien LpEndoscopic stitching devices
US8628518B2 (en)2005-12-302014-01-14Intuitive Surgical Operations, Inc.Wireless force sensor on a distal portion of a surgical instrument and method
US8627995B2 (en)2006-05-192014-01-14Ethicon Endo-Sugery, Inc.Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8627993B2 (en)2007-02-122014-01-14Ethicon Endo-Surgery, Inc.Active braking electrical surgical instrument and method for braking such an instrument
US20140013565A1 (en)2012-07-102014-01-16Eileen B. MacDonaldCustomized process for facilitating successful total knee arthroplasty with outcomes analysis
US20140018788A1 (en)2012-07-042014-01-16Zoar Jacob ENGELMANDevices and Systems for Carotid Body Ablation
US8632525B2 (en)2010-09-172014-01-21Ethicon Endo-Surgery, Inc.Power control arrangements for surgical instruments and batteries
US8631987B2 (en)2006-08-022014-01-21Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8636736B2 (en)2008-02-142014-01-28Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US20140029411A1 (en)2012-07-272014-01-30Samsung Electronics Co., Ltd.Method and system to provide seamless data transmission
US8641621B2 (en)2009-02-172014-02-04Inneroptic Technology, Inc.Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US20140033926A1 (en)2012-08-032014-02-06Robert Scott FasselFiltration System
US20140035762A1 (en)2013-10-012014-02-06Ethicon Endo-Surgery, Inc.Providing Near Real Time Feedback To A User Of A Surgical Instrument
US20140039491A1 (en)2012-08-022014-02-06Ethicon Endo-Surgery, Inc.Flexible expandable electrode and method of intraluminal delivery of pulsed power
US8652121B2 (en)2003-06-032014-02-18Senorx, Inc.Universal medical device control console
US8652086B2 (en)2006-09-082014-02-18Abbott Medical Optics Inc.Systems and methods for power and flow rate control
US8657177B2 (en)2011-10-252014-02-25Covidien LpSurgical apparatus and method for endoscopic surgery
US20140058407A1 (en)2012-08-272014-02-27Nikolaos V. TsekosRobotic Device and System Software, Hardware and Methods of Use for Image-Guided and Robot-Assisted Surgery
WO2014031800A1 (en)2012-08-222014-02-27Energize Medical LlcTherapeutic energy systems
US8663220B2 (en)2009-07-152014-03-04Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8663222B2 (en)2010-09-072014-03-04Covidien LpDynamic and static bipolar electrical sealing and cutting device
US20140066700A1 (en)2012-02-062014-03-06Vantage Surgical Systems Inc.Stereoscopic System for Minimally Invasive Surgery Visualization
US20140074076A1 (en)2009-10-122014-03-13Kona Medical, Inc.Non-invasive autonomic nervous system modulation
US20140073893A1 (en)2012-09-122014-03-13Boston Scientific Scimed Inc.Open irrigated-mapping linear ablation catheter
US20140081659A1 (en)2012-09-172014-03-20Depuy Orthopaedics, Inc.Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US8679114B2 (en)2003-05-012014-03-25Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US8682049B2 (en)2012-02-142014-03-25Terarecon, Inc.Cloud-based medical image processing system with access control
US8682489B2 (en)2009-11-132014-03-25Intuitive Sugical Operations, Inc.Method and system for hand control of a teleoperated minimally invasive slave surgical instrument
US20140087999A1 (en)2012-09-212014-03-27The General Hospital Corporation D/B/A Massachusetts General HospitalClinical predictors of weight loss
US20140084949A1 (en)2012-09-242014-03-27Access Business Group International LlcSurface impedance systems and methods
US8685056B2 (en)2011-08-182014-04-01Covidien LpSurgical forceps
US8688188B2 (en)1998-04-302014-04-01Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US20140092089A1 (en)2012-09-282014-04-03Nihon Kohden CorporationOperation support system
US8690864B2 (en)2007-03-092014-04-08Covidien LpSystem and method for controlling tissue treatment
US20140108035A1 (en)2012-10-112014-04-17Kunter Seref AkbaySystem and method to automatically assign resources in a network of healthcare enterprises
US20140108983A1 (en)2012-01-222014-04-17Karen FergusonGraphical system for collecting, presenting and using medical data
US20140107697A1 (en)2012-06-252014-04-17Castle Surgical, Inc.Clamping Forceps and Associated Methods
US8708213B2 (en)2006-01-312014-04-29Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US20140117256A1 (en)2011-06-282014-05-01Koninklijke Philips N.V.Appratus for optical analysis of an associated tissue sample
US8719061B2 (en)2006-10-182014-05-06Hartford Fire Insurance CompanySystem and method for repair calculation, replacement calculation, and insurance adjustment
WO2014071184A1 (en)2012-11-022014-05-08Intuitive Surgical Operations, Inc.Flux transmission connectors and systems, flux disambiguation, and systems and methods for mapping flux supply paths
CA2795323A1 (en)2012-11-092014-05-09Covidien LpMulti-use loading unit
US8720766B2 (en)2006-09-292014-05-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments and staples
EP2730209A1 (en)2011-07-062014-05-14FUJIFILM CorporationEndoscope system, endoscope system processor and image display method
EP2732772A1 (en)2012-11-142014-05-21Covidien LPMulti-use loading unit
US20140142963A1 (en)2012-10-042014-05-22Spacelabs Healthcare LlcSystem and Method for Providing Patient Care
US8733613B2 (en)2010-09-292014-05-27Ethicon Endo-Surgery, Inc.Staple cartridge
US20140148803A1 (en)2012-11-282014-05-29Covidien LpExternal actuator for an electrosurgical instrument
US20140148729A1 (en)2012-11-292014-05-29Gregory P. SchmitzMicro-mechanical devices and methods for brain tumor removal
US8740840B2 (en)2008-01-162014-06-03Catheter Robotics Inc.Remotely controlled catheter insertion system
US8747238B2 (en)2012-06-282014-06-10Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140163359A1 (en)2011-08-212014-06-12Mordehai SholevDevice and method for assisting laparoscopic surgery - rule based approach
US8752749B2 (en)2008-02-142014-06-17Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US20140171787A1 (en)2012-12-072014-06-19The Methodist HospitalSurgical procedure management systems and methods
US20140166724A1 (en)2014-02-242014-06-19Ethicon Endo-Surgery, Inc.Staple cartridge including a barbed staple
US20140171778A1 (en)2012-12-142014-06-19Panasonic CorporationForce measurement apparatus, force measurement method, force measurement program, force measurement integrated electronic circuit, and master-slave device
US8761717B1 (en)2012-08-072014-06-24Brian K. BuchheitSafety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
US20140176576A1 (en)2012-12-212014-06-26Volcano CorporationSystem and method for graphical processing of medical data
US8768251B2 (en)2007-05-172014-07-01Abbott Medical Optics Inc.Exclusive pairing technique for Bluetooth compliant medical devices
US8763879B2 (en)2006-01-312014-07-01Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US20140188440A1 (en)2012-12-312014-07-03Intuitive Surgical Operations, Inc.Systems And Methods For Interventional Procedure Planning
US20140187856A1 (en)2012-12-312014-07-03Lee D. HoloienControl System For Modular Imaging Device
US8775196B2 (en)2002-01-292014-07-08Baxter International Inc.System and method for notification and escalation of medical data
US8771270B2 (en)2008-07-162014-07-08Intuitive Surgical Operations, Inc.Bipolar cautery instrument
GB2509523A (en)2013-01-072014-07-09Anish Kumar MampettaSurgical instrument with flexible members and a motor
US20140194864A1 (en)2005-07-152014-07-10Atricure, Inc.Ablation Device with Sensor
US20140195052A1 (en)2013-01-102014-07-10Panasonic CorporationControl apparatus and method for master-slave robot, master-slave robot, and control program
US8790253B2 (en)2008-06-132014-07-29Fujifilm CorporationLight source device, imaging apparatus and endoscope apparatus
WO2014116961A1 (en)2013-01-252014-07-31Medtronic Xomed, Inc.Surgical instrument with tracking device connected via a flexible circuit
US8794497B2 (en)2010-09-092014-08-05Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US8795001B1 (en)2012-08-102014-08-05Cisco Technology, Inc.Connector for providing pass-through power
US8799009B2 (en)2009-02-022014-08-05Mckesson Financial HoldingsSystems, methods and apparatuses for predicting capacity of resources in an institution
US8799008B2 (en)2007-10-012014-08-05General Electric CompanySystem and method to manage delivery of healthcare to a patient
US8800838B2 (en)2005-08-312014-08-12Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US8801703B2 (en)2007-08-012014-08-12Covidien LpSystem and method for return electrode monitoring
US20140226572A1 (en)2013-02-132014-08-14Qualcomm IncorporatedSmart WiFi Access Point That Selects The Best Channel For WiFi Clients Having Multi-Radio Co-Existence Problems
JP2014155207A (en)2013-02-142014-08-25Seiko Epson Corp Head-mounted display device and method for controlling head-mounted display device
US8819581B2 (en)2008-09-122014-08-26Fujitsu Ten LimitedInformation processing device and image processing device
US8814996B2 (en)2010-12-012014-08-26University Of South CarolinaMethods and sensors for the detection of active carbon filters degradation with EMIS-ECIS PWAS
US8818556B2 (en)2011-01-132014-08-26Microsoft CorporationMulti-state model for robot and user interaction
US20140243811A1 (en)2013-02-272014-08-28Covidien LpLimited use medical devices
US20140243809A1 (en)2013-02-222014-08-28Mark GelfandEndovascular catheters for trans-superficial temporal artery transmural carotid body modulation
US20140243799A1 (en)2013-02-272014-08-28Ethicon Endo-Surgery, Inc.Percutaneous Instrument with Tapered Shaft
KR20140104587A (en)2013-02-192014-08-29주식회사 루트로닉An ophthalmic surgical apparatus and an method for controlling that
US8820603B2 (en)2006-01-312014-09-02Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US8820607B2 (en)2008-07-172014-09-02Covidien LpSurgical retraction mechanism
US8820608B2 (en)2011-11-162014-09-02Olympus Medical Systems Corp.Medical instrument
US20140249557A1 (en)2013-03-012014-09-04Ethicon Endo-Surgery, Inc.Thumbwheel switch arrangements for surgical instruments
WO2014134196A1 (en)2013-02-262014-09-04Eastern Virginia Medical SchoolAugmented shared situational awareness system
US8827134B2 (en)2009-06-192014-09-09Covidien LpFlexible surgical stapler with motor in the head
US8827136B2 (en)2010-08-112014-09-09Covidien LpEndoscopic purse string surgical device
US20140252064A1 (en)2013-03-052014-09-11Covidien LpSurgical stapling device including adjustable fastener crimping
US20140276748A1 (en)2013-03-152014-09-18Medtronic Ardian Luxembourg S.a.r.I.Helical Push Wire Electrode
US20140278219A1 (en)2013-03-152014-09-18Focus Ventures, Inc.System and Method For Monitoring Movements of a User
US20140263541A1 (en)2013-03-142014-09-18Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising an articulation lock
US20140275760A1 (en)2013-03-132014-09-18Samsung Electronics Co., Ltd.Augmented reality image display system and surgical robot system comprising the same
US20140276749A1 (en)2013-03-152014-09-18Covidien LpCrest-factor control of phase-shifted inverter
US20140263552A1 (en)2013-03-132014-09-18Ethicon Endo-Surgery, Inc.Staple cartridge tissue thickness sensor system
US20140287393A1 (en)2010-11-042014-09-25The Johns Hopkins UniversitySystem and method for the evaluation of or improvement of minimally invasive surgery skills
US20140296694A1 (en)2013-04-022014-10-02General Electric CompanyMethod and system for ultrasound needle guidance
US8852174B2 (en)2009-11-132014-10-07Intuitive Surgical Operations, Inc.Surgical tool with a two degree of freedom wrist
US8851354B2 (en)2009-12-242014-10-07Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US20140303660A1 (en)2013-04-042014-10-09Elwha LlcActive tremor control in surgical instruments
US20140303990A1 (en)2013-04-052014-10-09Biomet Manufacturing Corp.Integrated orthopedic planning and management process
US8864747B2 (en)2010-09-292014-10-21Sound Surgical Technologies LlcPower assisted lipoplasty
USD716333S1 (en)2013-01-242014-10-28Broadbandtv, Corp.Display screen or portion thereof with a graphical user interface
US8876857B2 (en)2009-11-132014-11-04Intuitive Surgical Operations, Inc.End effector with redundant closing mechanisms
US8875973B2 (en)1999-07-122014-11-04Covidien LpExpanding parallel jaw device for use with an electromechanical driver device
US8882662B2 (en)2012-06-272014-11-11Camplex, Inc.Interface for viewing video from cameras on a surgical visualization system
US8885032B2 (en)2012-03-302014-11-11Olympus Medical Systems Corp.Endoscope apparatus based on plural luminance and wavelength
US8886790B2 (en)2009-08-192014-11-11Opanga Networks, Inc.Systems and methods for optimizing channel resources by coordinating data transfers based on data type and traffic
US20140336943A1 (en)2013-01-052014-11-13Foundation Medicine, Inc.System and method for managing genomic testing results
US8893946B2 (en)2007-03-282014-11-25Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US8893949B2 (en)2010-09-302014-11-25Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US8899479B2 (en)2009-09-282014-12-02Ethicon Endo-Surgery, Inc.Method and system for monitoring the flow and usage of medical devices
US8905977B2 (en)2004-07-282014-12-09Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US20140364691A1 (en)2013-03-282014-12-11Endochoice, Inc.Circuit Board Assembly of A Multiple Viewing Elements Endoscope
US8914098B2 (en)2009-03-082014-12-16Oprobe, LlcMedical and veterinary imaging and diagnostic procedures utilizing optical probe systems
US8912746B2 (en)2011-10-262014-12-16Intuitive Surgical Operations, Inc.Surgical instrument motor pack latch
US8918207B2 (en)2009-03-092014-12-23Intuitive Surgical Operations, Inc.Operator input device for a robotic surgical system
US8917513B1 (en)2012-07-302014-12-23Methode Electronics, Inc.Data center equipment cabinet information center and updateable asset tracking system
US8920186B2 (en)2011-12-282014-12-30Tyco Electronics Japan G.K.Electrical connector having a deformable lock arm
US8920433B2 (en)2009-07-312014-12-30Dexterite SurgicalErgonomic and semi-automatic manipulator, and applications to instruments for minimally invasive surgery
US8920414B2 (en)2004-09-102014-12-30Vessix Vascular, Inc.Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US20150006201A1 (en)2013-06-282015-01-01Carefusion 303, Inc.System for providing aggregated patient data
US8930203B2 (en)2007-02-182015-01-06Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US8930214B2 (en)2011-06-172015-01-06Parallax Enterprises, LlcConsolidated healthcare and resource management system
US20150012010A1 (en)2013-07-022015-01-08Gyrus Acmi, Inc.Robotic surgery
US8934684B2 (en)2009-07-312015-01-13Siemens AktiengesellschaftMethod and system for facilitating an image guided medical procedure
US8931679B2 (en)2011-10-172015-01-13Covidien LpSurgical stapling apparatus
US8936614B2 (en)2010-12-302015-01-20Covidien LpCombined unilateral/bilateral jaws on a surgical instrument
US20150025549A1 (en)2013-03-152015-01-22Sri InternationalHyperdexterous surgical system
US20150032150A1 (en)2012-04-122015-01-29Karl Storz Gmbh & Co. KgMedical Manipulator
US8945095B2 (en)2005-03-302015-02-03Intuitive Surgical Operations, Inc.Force and torque sensing for surgical instruments
US8945163B2 (en)2009-04-012015-02-03Ethicon Endo-Surgery, Inc.Methods and devices for cutting and fastening tissue
US8956581B2 (en)2008-10-012015-02-17Chevron U.S.A. Inc.Base oil manufacturing plant
US8955732B2 (en)2009-08-112015-02-17Covidien LpSurgical stapling apparatus
US20150051452A1 (en)2011-04-262015-02-19The Trustees Of Columbia University In The City Of New YorkApparatus, method and computer-accessible medium for transform analysis of biomedical data
US20150051617A1 (en)2012-03-292015-02-19Panasonic Healthcare Co., Ltd.Surgery assistance device and surgery assistance program
US20150051598A1 (en)2013-08-132015-02-19Covidien LpSurgical forceps including thermal spread control
US8960519B2 (en)1999-06-022015-02-24Covidien LpShaft, e.g., for an electro-mechanical surgical device
US8962062B2 (en)2012-01-102015-02-24Covidien LpMethods of manufacturing end effectors for energy-based surgical instruments
US8960520B2 (en)2007-10-052015-02-24Covidien LpMethod and apparatus for determining parameters of linear motion in a surgical instrument
US20150053743A1 (en)2013-08-232015-02-26Ethicon Endo-Surgery, Inc.Error detection arrangements for surgical instrument assemblies
US20150057675A1 (en)2013-08-212015-02-26Brachium Labs, LLCSystem and method for automating medical procedures
US8968309B2 (en)2011-11-102015-03-03Covidien LpSurgical forceps
US8967455B2 (en)2012-12-142015-03-03Wistron Corp.Carton structure
US8968296B2 (en)2012-06-262015-03-03Covidien LpEnergy-harvesting system, apparatus and methods
US8968358B2 (en)2009-08-052015-03-03Covidien LpBlunt tissue dissection surgical instrument jaw designs
US8968276B2 (en)2007-09-212015-03-03Covidien LpHand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US8968337B2 (en)2010-07-282015-03-03Covidien LpArticulating clip applier
US8968312B2 (en)2011-11-162015-03-03Covidien LpSurgical device with powered articulation wrist rotation
US8967443B2 (en)2007-10-052015-03-03Covidien LpMethod and apparatus for determining parameters of linear motion in a surgical instrument
US20150066000A1 (en)2012-03-062015-03-05Briteseed LlcSurgical Tool With Integrated Sensor
WO2015030157A1 (en)2013-08-292015-03-05国立大学法人京都大学Surgery support system and surgery support device
US20150062316A1 (en)2013-08-302015-03-05Panasonic CorporationEndoscope and endoscope system
US8974429B2 (en)2007-08-062015-03-10Smith & Nephew PlcApparatus and method for applying topical negative pressure
US20150070187A1 (en)2011-01-142015-03-12Covidien LpWireless Relay Module For Remote Monitoring Systems
US20150073400A1 (en)2012-04-182015-03-12CardioSonic Ltd.Tissue treatment
US8979890B2 (en)2010-10-012015-03-17Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US20150077528A1 (en)2013-09-182015-03-19Nanophthalmos, LlcSurgical navigation system and method
US8986302B2 (en)2009-10-092015-03-24Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US8986288B2 (en)2012-01-192015-03-24Olympus Medical Systems Corp.Medical system
US8989903B2 (en)2011-02-152015-03-24Intuitive Surgical Operations, Inc.Methods and systems for indicating a clamping prediction
US20150083774A1 (en)2013-09-232015-03-26Ethicon Endo-Surgery, Inc.Control features for motorized surgical stapling instrument
AU2015201140A1 (en)2010-06-112015-03-26Ethicon, LlcSuture delivery tools for endoscopic and robot-assisted surgery and methods
US8992565B2 (en)2010-11-152015-03-31Intuitive Surgical Operations, Inc.Decoupling instrument shaft roll and end effector actuation in a surgical instrument
US8991678B2 (en)2011-11-152015-03-31Intuitive Surgical Operations, Inc.Surgical instrument with stowing knife blade
US9002518B2 (en)2003-06-302015-04-07Intuitive Surgical Operations, Inc.Maximum torque driving of robotic surgical tools in robotic surgical systems
US8998797B2 (en)2008-01-292015-04-07Karl Storz Gmbh & Co. KgSurgical system
CN104490448A (en)2014-12-172015-04-08成都快典科技有限公司Clamping applying pincers for surgical ligation
US20150099458A1 (en)2011-01-142015-04-09Covidien LpNetwork-Capable Medical Device for Remote Monitoring Systems
US9005230B2 (en)2008-09-232015-04-14Ethicon Endo-Surgery, Inc.Motorized surgical instrument
WO2015054665A1 (en)2013-10-112015-04-16Masimo CorporationSystem for displaying medical monitoring data
US9010611B2 (en)2006-10-062015-04-21Covidien LpEnd effector identification by mechanical features
US9011366B2 (en)2007-03-012015-04-21Buffalo Filter LlcWick and relief valve for disposable laparoscopic smoke evacuation system
US9011427B2 (en)2010-11-052015-04-21Ethicon Endo-Surgery, Inc.Surgical instrument safety glasses
US9010608B2 (en)2011-12-142015-04-21Covidien LpReleasable buttress retention on a surgical stapler
US20150108198A1 (en)2013-10-172015-04-23Covidien LpSurgical instrument, loading unit and fasteners for use therewith
US9016539B2 (en)2011-10-252015-04-28Covidien LpMulti-use loading unit
US9017326B2 (en)2009-07-152015-04-28Ethicon Endo-Surgery, Inc.Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9020240B2 (en)2007-08-102015-04-28Leica Geosystems AgMethod and surveying system for noncontact coordinate measurement on an object surface
US9023079B2 (en)2007-11-162015-05-05Microline Surgical, Inc.Fenestrated super atraumatic grasper apparatus
US9023032B2 (en)2010-03-252015-05-05Covidien LpShaped circuit boards suitable for use in electrosurgical devices and rotatable assemblies including same
US9023071B2 (en)2008-09-122015-05-05Ethicon Endo-Surgery, Inc.Ultrasonic device for fingertip control
JP2015085454A (en)2013-10-312015-05-07セイコーエプソン株式会社Robot
USD729267S1 (en)2012-08-282015-05-12Samsung Electronics Co., Ltd.Oven display screen with a graphical user interface
US9027431B2 (en)2009-05-152015-05-12Katholieke Universiteit LeuvenRemote centre of motion positioner
US9028494B2 (en)2012-06-282015-05-12Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US20150133945A1 (en)2012-05-022015-05-14Stryker Global Technology CenterHandheld tracking system and devices for aligning implant systems during surgery
US9035568B2 (en)2011-12-052015-05-19Qualcomm IncorporatedTelehealth wireless communication hub device and service platform system
US20150140982A1 (en)2013-11-152015-05-21Richard PostrelMethod and system for pre and post processing of beacon id signals
US20150141980A1 (en)2013-11-192015-05-21Covidien LpVessel sealing instrument with suction system
US20150136833A1 (en)2010-09-302015-05-21Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US9038882B2 (en)2012-02-032015-05-26Covidien LpCircular stapling instrument
US9043027B2 (en)2011-05-312015-05-26Intuitive Surgical Operations, Inc.Positive control of robotic surgical instrument end effector
US20150145682A1 (en)2013-11-252015-05-28Mark Matthew HarrisSystem and methods for nonverbally communicating patient comfort data
US20150148830A1 (en)2013-11-222015-05-28Ethicon Endo-Surgery, Inc.Features for coupling surgical instrument shaft assembly with instrument body
US9044244B2 (en)2010-12-102015-06-02Biosense Webster (Israel), Ltd.System and method for detection of metal disturbance based on mutual inductance measurement
US9044261B2 (en)2007-07-312015-06-02Ethicon Endo-Surgery, Inc.Temperature controlled ultrasonic surgical instruments
US9050083B2 (en)2008-09-232015-06-09Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US9052809B2 (en)2010-05-262015-06-09General Electric CompanySystems and methods for situational application development and deployment with patient event monitoring
US9050063B2 (en)2012-03-302015-06-09Sandance Technology LlcSystems and methods for determining suitability of a mechanical implant for a medical procedure
US9055035B2 (en)2011-04-052015-06-09Roche Diabetes Care, Inc.Medical device with secure data transmission
US9050120B2 (en)2007-09-302015-06-09Intuitive Surgical Operations, Inc.Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US20150157354A1 (en)2007-12-032015-06-11Covidien AgBattery-Powered Hand-Held Ultrasonic Surgical Cautery Cutting Device
US9055870B2 (en)2012-04-052015-06-16Welch Allyn, Inc.Physiological parameter measuring platform device supporting multiple workflows
US20150168126A1 (en)2012-05-092015-06-18Technion Research & Development Foundation LimitedSystem and method for optical coherence tomography
US9060770B2 (en)2003-05-202015-06-23Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US20150173673A1 (en)2012-01-262015-06-25Autonomix Medical, Inc.Controlled sympathectomy and micro-ablation systems and methods
US20150173756A1 (en)2013-12-232015-06-25Ethicon Endo-Surgery, Inc.Surgical cutting and stapling methods
US9066650B2 (en)2012-08-072015-06-30Olympus Medical Systems Corp.Medical control system
US9072535B2 (en)2011-05-272015-07-07Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US9072536B2 (en)2012-06-282015-07-07Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US9078727B2 (en)2006-03-162015-07-14Boston Scientific Scimed, Inc.System and method for treating tissue wall prolapse
US9078653B2 (en)2012-03-262015-07-14Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US20150199109A1 (en)2014-01-152015-07-16Lg Electronics Inc.Display device and method for controlling the same
US9084606B2 (en)2012-06-012015-07-21Megadyne Medical Products, Inc.Electrosurgical scissors
US20150201918A1 (en)2014-01-022015-07-23Osseodyne Surgical Solutions, LlcSurgical Handpiece
US20150202014A1 (en)2012-07-102015-07-23Hyundai Heavy Industries Co. Ltd.Surgical Robot System and Surgical Robot Control Method
US20150208934A1 (en)2014-01-242015-07-30Genevieve SztrubelMethod And Apparatus For The Detection Of Neural Tissue
US9099863B2 (en)2011-09-092015-08-04Covidien LpSurgical generator and related method for mitigating overcurrent conditions
US9095367B2 (en)2012-10-222015-08-04Ethicon Endo-Surgery, Inc.Flexible harmonic waveguides/blades for surgical instruments
US9101374B1 (en)2012-08-072015-08-11David Harris HochMethod for guiding an ablation catheter based on real time intracardiac electrical signals and apparatus for performing the method
US9101359B2 (en)2011-09-132015-08-11Ethicon Endo-Surgery, Inc.Surgical staple cartridge with self-dispensing staple buttress
US9106270B2 (en)2012-10-022015-08-11Covidien LpTransmitting data across a patient isolation barrier using an electric-field capacitive coupler module
US9101358B2 (en)2012-06-152015-08-11Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US20150223725A1 (en)2012-06-292015-08-13Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Mobile maneuverable device for working on or observing a body
US20150223868A1 (en)2014-02-112015-08-13Covidien LpTemperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US9107689B2 (en)2010-02-112015-08-18Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US9107684B2 (en)2010-03-052015-08-18Covidien LpSystem and method for transferring power to intrabody instruments
US9107573B2 (en)2012-10-172015-08-18Karl Storz Endovision, Inc.Detachable shaft flexible endoscope
US9111548B2 (en)2013-05-232015-08-18Knowles Electronics, LlcSynchronization of buffered data in multiple microphones
US9107694B2 (en)2009-01-302015-08-18Koninklijke Philips N.V.Examination apparatus
US9107688B2 (en)2008-09-122015-08-18Ethicon Endo-Surgery, Inc.Activation feature for surgical instrument with pencil grip
US20150237502A1 (en)2009-03-062015-08-20Interdigital Patent Holdings, Inc.Platform Validation and Management of Wireless Devices
US9114494B1 (en)2013-03-142015-08-25Kenneth Jack MahElectronic drill guide
US9116597B1 (en)2013-03-152015-08-25Ca, Inc.Information management software
US9113880B2 (en)2007-10-052015-08-25Covidien LpInternal backbone structural chassis for a surgical device
US20150238118A1 (en)2014-02-272015-08-27Biorasis, Inc.Detection of the spatial location of an implantable biosensing platform and method thereof
US9119617B2 (en)2012-03-162015-09-01Ethicon, Inc.Clamping devices for dispensing surgical fasteners into soft media
US9119657B2 (en)2012-06-282015-09-01Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US9123155B2 (en)2011-08-092015-09-01Covidien LpApparatus and method for using augmented reality vision system in surgical procedures
US9119655B2 (en)2012-08-032015-09-01Stryker CorporationSurgical manipulator capable of controlling a surgical instrument in multiple modes
WO2015129395A1 (en)2014-02-282015-09-03オリンパス株式会社Exclusion device and robot system
US9125644B2 (en)2011-08-142015-09-08SafePath Medical, Inc.Apparatus and method for suturing tissue
US9131957B2 (en)2012-09-122015-09-15Gyrus Acmi, Inc.Automatic tool marking
US9137254B2 (en)2009-12-312015-09-15Apple Inc.Local device awareness
US20150257783A1 (en)2010-05-132015-09-17Rex Medical, L.P.Rotational thrombectomy wire
US9138129B2 (en)2007-06-132015-09-22Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9141758B2 (en)2009-02-202015-09-22Ims Health IncorporatedSystem and method for encrypting provider identifiers on medical service claim transactions
US20150272694A1 (en)2012-06-272015-10-01CamPlex LLCSurgical visualization system
US20150272580A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Verification of number of battery exchanges/procedure count
US20150272557A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Modular surgical instrument system
US9149322B2 (en)2003-03-312015-10-06Edward Wells KnowltonMethod for treatment of tissue
US20150282821A1 (en)2014-04-082015-10-08Incuvate, LlcSystems and methods for management of thrombosis
US20150282733A1 (en)2014-04-022015-10-08University Of Virginia Patent FoundationSystems and methods for accelerated mr thermometry
US9160853B1 (en)2014-12-172015-10-13Noble Systems CorporationDynamic display of real time speech analytics agent alert indications in a contact center
US9155503B2 (en)2010-10-272015-10-13Cadwell LabsApparatus, system, and method for mapping the location of a nerve
US20150289925A1 (en)2014-04-152015-10-15Ethicon Endo-Surgery, Inc.Software algorithms for electrosurgical instruments
US20150296042A1 (en)2012-11-222015-10-15Mitsubishi Electric CorporationData collection and transfer apparatus
US9161803B2 (en)2010-11-052015-10-20Ethicon Endo-Surgery, Inc.Motor driven electrosurgical device with mechanical and electrical feedback
US20150297233A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridge assemblies and staple retainer cover arrangements
US20150302157A1 (en)2014-04-172015-10-22Ryan Mitchell CollarApparatus, Method, and System for Counting Packaged, Consumable, Medical Items Such as Surgical Suture Cartridges
US20150297222A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridges including extensions having different configurations
US20150297200A1 (en)2014-04-172015-10-22Covidien LpEnd of life transmission system for surgical instruments
US20150297311A1 (en)2013-12-232015-10-22Camplex, Inc.Surgical visualization systems
US9168091B2 (en)2004-06-172015-10-27Serene Medical, Inc.Ablation apparatus and system to limit nerve conduction
US9168104B2 (en)2008-06-232015-10-27John Richard DeinIntra-operative system for identifying and tracking surgical sharp objects, instruments, and sponges
US9168054B2 (en)2009-10-092015-10-27Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20150310174A1 (en)2012-12-132015-10-29Patrick CoudertMethod of secure access to confidential medical data, and storage medium for said method
US20150305828A1 (en)2014-04-292015-10-29CUREXO, IncApparatus for adjusting a robotic surgery plan
US20150317899A1 (en)2014-05-012015-11-05Covidien LpSystem and method for using rfid tags to determine sterilization of devices
US20150313538A1 (en)2013-03-142015-11-05Kate Leeann BechtelIdentification of surgical smoke
US9179912B2 (en)2008-02-142015-11-10Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US9183723B2 (en)2012-01-312015-11-10Cleanalert, LlcFilter clog detection and notification system
EP2942023A2 (en)2014-05-062015-11-11Jr. Eric R. CosmanElectrosurgical generator
US20150320423A1 (en)2014-05-062015-11-12Covidien LpEjecting assembly for a surgical stapler
US20150324114A1 (en)2014-05-062015-11-12Conceptualiz Inc.System and method for interactive 3d surgical planning and modelling of surgical implants
US20150332003A1 (en)2014-05-192015-11-19Unitedhealth Group IncorporatedComputer readable storage media for utilizing derived medical records and methods and systems for same
US20150331995A1 (en)2014-05-142015-11-19Tiecheng ZhaoEvolving contextual clinical data engine for medical data processing
US20150332196A1 (en)2014-05-152015-11-19Heinz-Werner StillerSurgical Workflow Support System
US20150328474A1 (en)2011-11-242015-11-19Syneron Medical LtdA safe skin treatment apparatus for personal use and method for its use
US9192447B2 (en)2013-03-062015-11-24Samsung Electronics Co., Ltd.Surgical robot system and method of controlling the same
US9192375B2 (en)2012-02-292015-11-24Marker Medical, LlcSurgical apparatus and method
US9192707B2 (en)2011-04-292015-11-24Medtronic, Inc.Electrolyte and pH monitoring for fluid removal processes
US20150335344A1 (en)2009-03-062015-11-26Procept Biorobotics CorporationTissue resection and treatment with shedding pulses
US9198835B2 (en)2012-09-072015-12-01Covidien LpCatheter with imaging assembly with placement aid and related methods therefor
US9202078B2 (en)2011-05-272015-12-01International Business Machines CorporationData perturbation and anonymization using one way hash
US9198711B2 (en)2012-03-222015-12-01Covidien LpElectrosurgical system for communicating information embedded in an audio tone
US9204995B2 (en)2013-03-122015-12-08Katalyst Surgical, LlcMembrane removing forceps
US9204879B2 (en)2012-06-282015-12-08Ethicon Endo-Surgery, Inc.Flexible drive member
US9204830B2 (en)2005-04-152015-12-08Surgisense CorporationSurgical instruments with sensors for detecting tissue properties, and system using such instruments
US9211120B2 (en)2011-04-292015-12-15Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US9218053B2 (en)2011-08-042015-12-22Olympus CorporationSurgical assistant system
US9216062B2 (en)2011-02-152015-12-22Intuitive Surgical Operations, Inc.Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
US9220502B2 (en)2011-12-282015-12-29Covidien LpStaple formation recognition for a surgical device
US9220505B2 (en)2011-12-162015-12-29Ethicon Endo-Surgery, Inc.Surgical stapling instrument with locking feature to lock anvil actuator
US20150374259A1 (en)2014-06-112015-12-31The Methodist HospitalSystems and methods for medical procedure monitoring
US9226689B2 (en)2009-03-102016-01-05Medtronic Xomed, Inc.Flexible circuit sheet
US9226791B2 (en)2012-03-122016-01-05Advanced Cardiac Therapeutics, Inc.Systems for temperature-controlled ablation using radiometric feedback
US9226766B2 (en)2012-04-092016-01-05Ethicon Endo-Surgery, Inc.Serial communication protocol for medical device
US9226767B2 (en)2012-06-292016-01-05Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
US20160001411A1 (en)2013-03-152016-01-07John AlbertiForce responsive power tool
US20160005169A1 (en)2013-03-152016-01-07Synaptive Medical (Barbados) Inc.System and method for detecting tissue and fiber tract deformation
US9232883B2 (en)2010-03-292016-01-12Fujifilm CorporationEndoscope apparatus
US9237891B2 (en)2005-08-312016-01-19Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9237921B2 (en)2012-04-092016-01-19Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US20160015471A1 (en)2013-03-152016-01-21Synaptive Medical (Barbados) Inc.Context aware surgical systems
US20160019346A1 (en)2014-07-162016-01-21InteliChart, LLCSystems and methods for managing, storing, and exchanging healthcare information across heterogeneous healthcare systems
KR101587721B1 (en)2014-06-172016-01-22에스엔유 프리시젼 주식회사Apparatus and method for controlling surgical burr cutter
US9241730B2 (en)2009-11-252016-01-26Eliaz BabaevUltrasound surgical saw
US9241728B2 (en)2013-03-152016-01-26Ethicon Endo-Surgery, Inc.Surgical instrument with multiple clamping mechanisms
US9241731B2 (en)2012-04-092016-01-26Ethicon Endo-Surgery, Inc.Rotatable electrical connection for ultrasonic surgical instruments
US20160022374A1 (en)2013-03-152016-01-28Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US9247996B1 (en)2014-12-102016-02-02F21, LlcSystem, method, and apparatus for refurbishment of robotic surgical arms
US9250172B2 (en)2012-09-212016-02-02Ethicon Endo-Surgery, Inc.Systems and methods for predicting metabolic and bariatric surgery outcomes
US20160034648A1 (en)2014-07-302016-02-04Verras Healthcare International, LLCSystem and method for reducing clinical variation
US9255907B2 (en)2013-03-142016-02-09Empire Technology Development LlcIdentification of surgical smoke
US20160038224A1 (en)2014-08-112016-02-11Covidien LpSurgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US20160038253A1 (en)2013-03-152016-02-11Cameron Anthony PironMethod, system and apparatus for controlling a surgical navigation system
US9259282B2 (en)2012-12-102016-02-16Intuitive Surgical Operations, Inc.Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms
US20160048780A1 (en)2010-09-012016-02-18Apixio, Inc.Systems and methods for enhancing workflow efficiency in a healthcare management system
US9265959B2 (en)2010-11-302016-02-23Physio-Control, Inc.Medical device including setup option reporting
US9265429B2 (en)2009-09-182016-02-23Welch Allyn, Inc.Physiological parameter measuring platform device supporting multiple workflows
US9265585B2 (en)2012-10-232016-02-23Covidien LpSurgical instrument with rapid post event detection
US20160051315A1 (en)2014-08-252016-02-25Ethicon Endo-Surgery, Inc.Simultaneous i-beam and spring driven cam jaw closure mechanism
US9272406B2 (en)2010-09-302016-03-01Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US20160058439A1 (en)2014-09-022016-03-03Ethicon Endo-Surgery, Inc.Devices and Methods for Facilitating Closing and Clamping of an End Effector of a Surgical Device
US9277956B2 (en)2011-11-092016-03-08Siemens Medical Solutions Usa, Inc.System for automatic medical ablation control
US9280884B1 (en)2014-09-032016-03-08Oberon, Inc.Environmental sensor device with alarms
US9277969B2 (en)2009-04-012016-03-08Covidien LpMicrowave ablation system with user-controlled ablation size and method of use
US9277961B2 (en)2009-06-122016-03-08Advanced Cardiac Therapeutics, Inc.Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US20160066913A1 (en)2014-09-052016-03-10Ethicon Endo-Surgery, Inc.Local display of tissue parameter stabilization
US9282974B2 (en)2012-06-282016-03-15Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US9283045B2 (en)2012-06-292016-03-15Ethicon Endo-Surgery, LlcSurgical instruments with fluid management system
US9289211B2 (en)2013-03-132016-03-22Covidien LpSurgical stapling apparatus
US9289212B2 (en)2010-09-172016-03-22Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US9295514B2 (en)2013-08-302016-03-29Ethicon Endo-Surgery, LlcSurgical devices with close quarter articulation features
US9299138B2 (en)2013-03-142016-03-29DePuy Synthes Products, Inc.Generating a patient-specific orthopaedic surgical plan from medical image data
US9301759B2 (en)2006-03-232016-04-05Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US9301753B2 (en)2010-09-302016-04-05Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US9301691B2 (en)2014-02-212016-04-05Covidien LpInstrument for optically detecting tissue attributes
US9302213B2 (en)2010-12-222016-04-05Cooper Technologies CompanyPre-filtration and maintenance sensing for explosion-proof enclosures
US9301810B2 (en)2008-03-272016-04-05St. Jude Medical, Atrial Fibrillation Division, Inc.System and method of automatic detection of obstructions for a robotic catheter system
US9307894B2 (en)2012-12-202016-04-12avateramedical GmBHEndoscope comprising a system with multiple cameras for use in minimal-invasive surgery
US20160100837A1 (en)2014-10-132016-04-14Ethicon Endo-Surgery, Inc.Staple cartridge
US9314246B2 (en)2010-09-302016-04-19Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9314308B2 (en)2013-03-132016-04-19Ethicon Endo-Surgery, LlcRobotic ultrasonic surgical device with articulating end effector
US20160106516A1 (en)2014-05-302016-04-21Sameh MesallumSystems for automated biomechanical computerized surgery
US20160106934A1 (en)2013-08-062016-04-21Olympus CorporationInsufflation apparatus
US9320563B2 (en)2010-10-012016-04-26Applied Medical Resources CorporationElectrosurgical instruments and connections thereto
US9325732B1 (en)2014-06-022016-04-26Amazon Technologies, Inc.Computer security threat sharing
US9331422B2 (en)2014-06-092016-05-03Apple Inc.Electronic device with hidden connector
US20160121143A1 (en)2010-11-052016-05-05Ethicon Endo-Surgery, LlcSurgical instrument with slip ring assembly to power ultrasonic transducer
US9336385B1 (en)2008-02-112016-05-10Adaptive Cyber Security Instruments, Inc.System for real-time threat detection and management
US9341704B2 (en)2010-04-132016-05-17Frederic PicardMethods and systems for object tracking
JP2016514017A (en)2013-03-132016-05-19エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge tissue thickness sensor system
US9345544B2 (en)1999-09-172016-05-24Intuitive Surgical Operations, Inc.Systems and methods for avoiding collisions between manipulator arms using a null-space
US9345490B2 (en)2009-02-042016-05-24Stryker European Holdings I, LlcSurgical power tool and actuation assembly therefor
US9345546B2 (en)2004-05-042016-05-24Intuitive Surgical Operations, Inc.Tool memory-based software upgrades for robotic surgery
US20160143659A1 (en)2014-11-252016-05-26Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with blade cooling through retraction
US9360449B2 (en)2013-06-202016-06-07Siemens AktiengesellschaftFunctional monitoring of an electrolytic gas sensor having three electrodes, and hazard alarm and gas measuring device
US9358685B2 (en)2014-02-032016-06-07Brain CorporationApparatus and methods for control of robot actions based on corrective user inputs
US20160157717A1 (en)2013-08-082016-06-09Richard S. GasterWireless pregnancy monitor
US20160158468A1 (en)2012-11-202016-06-09Surgiquest, Inc.Systems and methods for conducting smoke evacuation during laparoscopic surgical procedures
US9364231B2 (en)2011-10-272016-06-14Covidien LpSystem and method of using simulation reload to optimize staple formation
US9364249B2 (en)2012-03-222016-06-14Ethicon Endo-Surgery, LlcMethod and apparatus for programming modular surgical instrument
WO2016093049A1 (en)2014-12-102016-06-16オリンパス株式会社Manipulator system
US20160166336A1 (en)2014-12-122016-06-16Inneroptic Technology, Inc.Surgical guidance intersection display
US9370400B2 (en)2011-10-192016-06-21Ethicon Endo-Surgery, Inc.Clip applier adapted for use with a surgical robot
US20160175025A1 (en)2014-12-172016-06-23Ethicon Endo-Surgery, Inc.Surgical Devices and Methods for Tissue Cutting and Sealing
US20160182637A1 (en)2013-09-052016-06-23Google Inc.Isolating Clients of Distributed Storage Systems
US20160180045A1 (en)2014-12-192016-06-23Ebay Inc.Wireless beacon devices used to track medical information at a hospital
US20160174998A1 (en)2013-08-072016-06-23Cornell UniverstySemiconductor tweezers and instrumentation for tissue detection and characterization
WO2016100719A1 (en)2014-12-172016-06-23Maquet Cardiovascular LlcSurgical device
US9375539B2 (en)2006-09-082016-06-28Surgiquest, Inc.Multimodal surgical gas delivery system for laparoscopic surgical procedures
US9375282B2 (en)2012-03-262016-06-28Covidien LpLight energy sealing, cutting and sensing surgical device
US20160184054A1 (en)2007-07-052016-06-30Orthoaccel Technologies, Inc.Pulsatile orthodontic device and methods
US9381003B2 (en)2012-03-232016-07-05Integrated Medical Systems International, Inc.Digital controller for surgical handpiece
US9381058B2 (en)2010-11-052016-07-05Ethicon Endo-Surgery, LlcRecharge system for medical devices
US20160192960A1 (en)2013-09-062016-07-07Raphael BuenoSystem and method for a tissue resection margin measurement device
US9387295B1 (en)2015-01-302016-07-12SurgiQues, Inc.Filter cartridge with internal gaseous seal for multimodal surgical gas delivery system having a smoke evacuation mode
US9386984B2 (en)2013-02-082016-07-12Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US9386988B2 (en)2010-09-302016-07-12Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US20160203599A1 (en)2013-08-132016-07-14H. Lee Moffitt Cancer Center And Research Institute, Inc.Systems, methods and devices for analyzing quantitative information obtained from radiological images
US9393037B2 (en)2012-06-292016-07-19Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US9393017B2 (en)2011-02-152016-07-19Intuitive Surgical Operations, Inc.Methods and systems for detecting staple cartridge misfire or failure
US20160206202A1 (en)2003-03-112016-07-21Beth Israel Deaconess Medical CenterMulti-channel medical imaging systems
US20160206362A1 (en)2015-01-212016-07-21Serene Medical, Inc.Systems and devices to identify and limit nerve conduction
US9398905B2 (en)2012-12-132016-07-26Ethicon Endo-Surgery, LlcCircular needle applier with offset needle and carrier tracks
EP3047806A1 (en)2015-01-162016-07-27Covidien LPPowered surgical stapling device
WO2016118752A1 (en)2015-01-212016-07-28Serene Medical, Inc.Systems and devices to identify and limit nerve conduction
US9404868B2 (en)2010-09-092016-08-02Sharp Kabushiki KaishaMeasuring device, measuring system, measuring method, control program, and recording medium
US20160224760A1 (en)2014-12-242016-08-04Oncompass GmbhSystem and method for adaptive medical decision support
US20160225551A1 (en)2013-09-102016-08-04Apple Inc.Sealed Button for an Electronic Device
US20160228061A1 (en)2015-02-102016-08-11Cathprint AbLow profile medical device with integrated flexible circuit and methods of making the same
US9414940B2 (en)2011-09-232016-08-16Orthosensor Inc.Sensored head for a measurement tool for the muscular-skeletal system
US9419018B2 (en)2014-05-302016-08-16Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US9414776B2 (en)2013-03-062016-08-16Navigated Technologies, LLCPatient permission-based mobile health-linked information collection and exchange systems and methods
EP3056923A1 (en)2015-02-132016-08-17Zoller & Fröhlich GmbHScanning assembly and method for scanning an object
US20160235303A1 (en)2013-10-112016-08-18The Trustees Of Columbia University In The City Of New YorkSystem, method and computer-accessible medium for characterization of tissue
US9421014B2 (en)2012-10-182016-08-23Covidien LpLoading unit velocity and position feedback
US20160242836A1 (en)2015-02-232016-08-25Hemostatix Medical Technologies, LLCApparatus, System and Method for Excision of Soft Tissue
US20160249910A1 (en)2015-02-272016-09-01Ethicon Endo-Surgery, LlcSurgical charging system that charges and/or conditions one or more batteries
US20160249920A1 (en)2013-11-042016-09-01Covidien LpSurgical fastener applying apparatus
US9433470B2 (en)2013-12-092016-09-06Meere Company Inc.Surgical robot system and method for controlling surgical robot system
US9439736B2 (en)2009-07-222016-09-13St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US9439668B2 (en)2012-04-092016-09-13Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US9439622B2 (en)2012-05-222016-09-13Covidien LpSurgical navigation system
JP2016528010A (en)2013-08-232016-09-15エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Interactive display for surgical instruments
US9450701B2 (en)2010-02-032016-09-20Orbital Multi Media Holdings CorporationData flow control method and apparatus
US9445764B2 (en)2009-07-152016-09-20Koninklijke Philips N.V.Method for automatic setting time varying parameter alert and alarm limits
US20160275259A1 (en)2013-11-012016-09-22Koninklijke Philips N.V.Patient feedback for uses of therapeutic device
US20160270732A1 (en)2015-03-172016-09-22Cathprint AbLow profile medical device with bonded base for electrical components
US20160270861A1 (en)2013-10-312016-09-22Health Research, Inc.System and methods for a situation and awareness-based intelligent surgical system
US20160270842A1 (en)2015-03-202016-09-22Ethicon Endo-Surgery, LlcElectrosurgical device having controllable current paths
US9451949B2 (en)2014-04-252016-09-27Sharp Fluidics LlcSystems and methods for increased operating room efficiency
US20160278841A1 (en)2015-03-252016-09-29Advanced Cardiac Therapeutics, Inc.Contact sensing systems and methods
US20160292456A1 (en)2015-04-012016-10-06Abbvie Inc.Systems and methods for generating longitudinal data profiles from multiple data sources
US20160287337A1 (en)2015-03-312016-10-06Luke J. AramOrthopaedic surgical system and method for patient-specific surgical procedure
JP2016174836A (en)2015-03-202016-10-06富士フイルム株式会社Image processing apparatus, endoscope system, image processing apparatus operation method, and endoscope system operation method
US20160287312A1 (en)2015-03-312016-10-06St. Jude Medical, Cardiology Division, Inc.Methods and devices for delivering pulsed RF energy during catheter ablation
US20160287912A1 (en)2013-11-042016-10-06Guided Interventions, Inc.Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound
US20160287316A1 (en)2015-03-302016-10-06Ethicon Endo-Surgery, LlcControl of cutting and sealing based on tissue mapped by segmented electrode
US9463646B2 (en)2011-10-072016-10-11Transact Technologies IncorporatedTilting touch screen for printer and printer with tilting touch screen
US9463022B2 (en)2012-12-172016-10-11Ethicon Endo-Surgery, LlcMotor driven rotary input circular stapler with lockable flexible shaft
CN106027664A (en)2016-06-292016-10-12上海吉功信息技术有限公司Medical device running management system and method
US20160296246A1 (en)2015-04-132016-10-13Novartis AgForceps with metal and polymeric arms
US20160302210A1 (en)2015-04-102016-10-13Enovate Medical, LlcCommunication hub and repeaters
US9474565B2 (en)2009-09-222016-10-25Mederi Therapeutics, Inc.Systems and methods for treating tissue with radiofrequency energy
US20160314716A1 (en)2015-04-272016-10-27KindHeart, Inc.Telerobotic surgery system for remote surgeon training using remote surgery station and party conferencing and associated methods
US20160310055A1 (en)2013-03-192016-10-27Surgisense CorporationApparatus, systems and methods for determining tissue oxygenation
US20160310204A1 (en)2015-04-232016-10-27Covidien LpSystems and methods for controlling power in an electrosurgical generator
US20160314717A1 (en)2015-04-272016-10-27KindHeart, Inc.Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods
US9480492B2 (en)2011-10-252016-11-01Covidien LpApparatus for endoscopic procedures
US9485475B2 (en)2013-03-152016-11-01Arthrex, Inc.Surgical imaging system and method for processing surgical images
US20160317172A1 (en)2014-03-132016-11-03Olympus CorporationTissue excision device
US20160321400A1 (en)2015-03-302016-11-03Zoll Medical CorporationClinical Data Handoff in Device Management and Data Sharing
US20160323283A1 (en)2015-04-302016-11-03Samsung Electronics Co., Ltd.Semiconductor device for controlling access right to resource based on pairing technique and method thereof
US9486271B2 (en)2012-03-052016-11-08Covidien LpMethod and apparatus for identification using capacitive elements
US9493807B2 (en)2012-05-252016-11-15Medtronic Minimed, Inc.Foldover sensors and methods for making and using them
US9492237B2 (en)2006-05-192016-11-15Mako Surgical Corp.Method and apparatus for controlling a haptic device
US9492146B2 (en)2011-10-252016-11-15Covidien LpApparatus for endoscopic procedures
US20160331460A1 (en)2015-05-112016-11-17Elwha LlcInteractive surgical drape, system, and related methods
US20160331473A1 (en)2014-02-072016-11-17Olympus CorporationSurgical system and surgical-system operating method
US9498215B2 (en)2012-12-312016-11-22Intuitive Surgical Operations, Inc.Surgical staple cartridge with enhanced knife clearance
USD772252S1 (en)2012-04-052016-11-22Welch Allyn, Inc.Patient monitoring device with a graphical user interface
US9498231B2 (en)2011-06-272016-11-22Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US9498291B2 (en)2013-03-152016-11-22Hansen Medical, Inc.Touch-free catheter user interface controller
US9498182B2 (en)2012-05-222016-11-22Covidien LpSystems and methods for planning and navigation
EP3095399A2 (en)2015-05-222016-11-23Covidien LPSurgical instruments for performing tonsillectomy, adenoidectomy, and other surgical procedures
US20160342753A1 (en)2015-04-242016-11-24StarslideMethod and apparatus for healthcare predictive decision technology platform
US20160342916A1 (en)2015-05-202016-11-24Schlumberger Technology CorporationDownhole tool management system
US9509566B2 (en)2013-06-272016-11-29Yokogawa Electric CorporationSystem and method for generating output data
US20160350490A1 (en)2008-04-082016-12-01Noel I. GUILLAMADynamic integration of disparate health-related processes and data
US20160345857A1 (en)2014-01-282016-12-01St. Jude Medical, Cardiology Division, Inc.Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces
US9516239B2 (en)2012-07-262016-12-06DePuy Synthes Products, Inc.YCBCR pulsed illumination scheme in a light deficient environment
US20160354162A1 (en)2015-06-022016-12-08National Taiwan UniversityDrilling control system and drilling control method
US20160354160A1 (en)2015-06-032016-12-08Covidien LpMedical instrument with sensor for use in a system and method for electromagnetic navigation
US9519753B1 (en)2015-05-262016-12-13Virtual Radiologic CorporationRadiology workflow coordination techniques
US20160361070A1 (en)2015-06-102016-12-15OrthoDrill Medical Ltd.Sensor technologies with alignment to body movements
US9522003B2 (en)2013-01-142016-12-20Intuitive Surgical Operations, Inc.Clamping instrument
US20160367305A1 (en)2015-06-172016-12-22Medtronic, Inc.Catheter breach loop feedback fault detection with active and inactive driver system
JP2016214553A (en)2015-05-202016-12-22ソニー株式会社Electrosurgical treatment device, control method of electrosurgical treatment device, and electrosurgical system
US9526407B2 (en)2008-04-252016-12-27Karl Storz Imaging, Inc.Wirelessly powered medical devices and instruments
US9526587B2 (en)2008-12-312016-12-27Intuitive Surgical Operations, Inc.Fiducial marker design and detection for locating surgical instrument in images
US9526580B2 (en)2007-04-202016-12-27Doheny Eye InstituteSterile surgical tray
US20160374723A1 (en)2007-06-292016-12-29Actuated Medical, lnc.Medical Tool With Electromechanical Control and Feedback
US20160379504A1 (en)2015-06-242016-12-29Brian D. BAILEYMethod and system for surgical instrumentation setup and user preferences
WO2016206015A1 (en)2015-06-242016-12-29Covidien LpSurgical clip applier with multiple clip feeding mechanism
US20160374710A1 (en)2014-03-122016-12-29Yegor D. SinelnikovCarotid body ablation with a transvenous ultrasound imaging and ablation catheter
US9532827B2 (en)2009-06-172017-01-03Nuortho Surgical Inc.Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US9532845B1 (en)2015-08-112017-01-03ITKR Software LLCMethods for facilitating individualized kinematically aligned total knee replacements and devices thereof
US20170000553A1 (en)2015-06-302017-01-05Ethicon Endo-Surgery, LlcSurgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US20170005911A1 (en)2015-07-022017-01-05Qualcomm IncorporatedSystems and Methods for Incorporating Devices into a Medical Data Network
US20170000516A1 (en)2015-06-302017-01-05Ethicon Endo-Surgery, LlcSurgical system with user adaptable techniques based on tissue type
US9539007B2 (en)2011-08-082017-01-10Covidien LpSurgical fastener applying aparatus
US9539020B2 (en)2013-12-272017-01-10Ethicon Endo-Surgery, LlcCoupling features for ultrasonic surgical instrument
US9542481B2 (en)2013-06-212017-01-10Virtual Radiologic CorporationRadiology data processing and standardization techniques
US9545216B2 (en)2011-08-052017-01-17Mc10, Inc.Catheter balloon methods and apparatus employing sensing elements
US9546662B2 (en)2012-11-202017-01-17Smith & Nephew, Inc.Medical pump
WO2017011646A1 (en)2015-07-142017-01-19Smith & Nephew, Inc.Instrumentation identification and re-ordering system
WO2017011382A1 (en)2015-07-132017-01-19Surgimatix, Inc.Laparoscopic suture device with release mechanism
US9549781B2 (en)2014-05-302017-01-24The Johns Hopkins UniversityMulti-force sensing surgical instrument and method of use for robotic surgical systems
EP3120781A2 (en)2010-09-302017-01-25Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US9554692B2 (en)2009-06-182017-01-31EndoChoice Innovation Ctr. Ltd.Multi-camera endoscope
US9554854B2 (en)2014-03-182017-01-31Ethicon Endo-Surgery, LlcDetecting short circuits in electrosurgical medical devices
US20170027603A1 (en)2014-04-082017-02-02Ams Research CorporationFlexible devices for blunt dissection and related methods
US9561045B2 (en)2006-06-132017-02-07Intuitive Surgical Operations, Inc.Tool with rotation lock
US9561982B2 (en)2013-04-302017-02-07Corning IncorporatedMethod of cleaning glass substrates
US9561038B2 (en)2012-06-282017-02-07Ethicon Endo-Surgery, LlcInterchangeable clip applier
US9561082B2 (en)2013-12-302017-02-07National Taiwan UniversityHandheld robot for orthopedic surgery and control method thereof
US9566708B2 (en)2015-05-142017-02-14Daniel KurniantoControl mechanism for end-effector maneuver
CN106413578A (en)2014-03-262017-02-15伊西康内外科有限责任公司Surgical stapling instrument system
US20170042604A1 (en)2014-05-302017-02-16Applied Medical Resources CorporationElectrosurgical seal and dissection systems
US9572592B2 (en)2012-05-312017-02-21Ethicon Endo-Surgery, LlcSurgical instrument with orientation sensing
CN106456169A (en)2014-03-262017-02-22伊西康内外科有限责任公司Interface systems for use with surgical instruments
US20170049522A1 (en)2014-04-282017-02-23Covidien LpSurgical assemblies for housing force transmitting members
US9579503B2 (en)2011-10-052017-02-28Medtronic Xomed, Inc.Interface module allowing delivery of tissue stimulation and electrosurgery through a common surgical instrument
US9579099B2 (en)2014-01-072017-02-28Covidien LpShipping member for loading unit
EP3135225A2 (en)2013-03-132017-03-01Covidien LPSurgical stapling apparatus
US9585657B2 (en)2008-02-152017-03-07Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
JP2017047022A (en)2015-09-032017-03-09株式会社メディカルプラットフォームInformation processor, information processing method and information processing program
US20170068792A1 (en)2015-09-032017-03-09Bruce ReinerSystem and method for medical device security, data tracking and outcomes analysis
US9592095B2 (en)2013-05-162017-03-14Intuitive Surgical Operations, Inc.Systems and methods for robotic medical system integration with external imaging
EP3141181A1 (en)2015-09-112017-03-15Bernard Boon Chye LimAblation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element
US9603277B2 (en)2014-03-062017-03-21Adtran, Inc.Field-reconfigurable backplane system
US9600138B2 (en)2013-03-152017-03-21Synaptive Medical (Barbados) Inc.Planning, navigation and simulation systems and methods for minimally invasive therapy
US9603024B2 (en)2010-04-132017-03-21Koninklijke Philips N.V.Medical body area network (MBAN) with key-based control of spectrum usage
US9597081B2 (en)2012-12-172017-03-21Ethicon Endo-Surgery, LlcMotor driven rotary input circular stapler with modular end effector
US9600031B2 (en)2015-02-102017-03-21Toshiba Tec Kabushiki KaishaCommodity sales data processing apparatus
US20170079730A1 (en)2014-03-172017-03-23Intuitive Surgical Operations, Inc.Methods and devices for tele-surgical table registration
US20170079530A1 (en)2014-10-292017-03-23Spectral Md, Inc.Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification
US9603609B2 (en)2014-07-242017-03-28Olympus CorporationUltrasonic treatment system, energy source unit, and actuation method of energy source unit
US20170086829A1 (en)2015-09-302017-03-30Ethicon Endo-Surgery, LlcCompressible adjunct with intermediate supporting structures
US20170086930A1 (en)2014-03-172017-03-30Intuitive Surgical Operations, Inc.Surgical cannula mounts and related systems and methods
US20170086906A1 (en)2014-06-232017-03-30Olympus CorporationSurgical system, medical device, and control method of surgical system
US9610412B2 (en)2010-03-022017-04-04Covidien LpInternally pressurized medical devices
US9610114B2 (en)2013-01-292017-04-04Ethicon Endo-Surgery, LlcBipolar electrosurgical hand shears
WO2017058617A2 (en)2015-09-302017-04-06Ethicon Endo-Surgery, LlcCircuit topologies for combined generator
WO2017058695A1 (en)2015-09-302017-04-06Ethicon Endo-Surgery, LlcGenerator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US9615877B2 (en)2011-06-172017-04-11Covidien LpTissue sealing forceps
USD783675S1 (en)2013-11-182017-04-11Mitsubishi Electric CorporationInformation display for an automotive vehicle with a computer generated icon
CN206097107U (en)2016-07-082017-04-12山东威瑞外科医用制品有限公司Ultrasonic knife frequency tracking device
USD784270S1 (en)2016-02-082017-04-18Vivint, Inc.Control panel
US9622684B2 (en)2013-09-202017-04-18Innovative Surgical Solutions, LlcNeural locating system
US9628501B2 (en)2011-10-142017-04-18Albeado, Inc.Pervasive, domain and situational-aware, adaptive, automated, and coordinated analysis and control of enterprise-wide computers, networks, and applications for mitigation of business and operational risks and enhancement of cyber security
US9622808B2 (en)2007-12-122017-04-18Erbe Elektromedizin GmbhDevice for contactless communication and use of a memory device
US20170105787A1 (en)2010-05-172017-04-20Ethicon Endo-Surgery, LlcSurgical instruments and end effectors therefor
US20170105754A1 (en)2015-10-192017-04-20Ethicon Endo-Surgery, LlcSurgical instrument with dual mode end effector and side-loaded clamp arm assembly
US9629560B2 (en)2015-04-062017-04-25Thomas Jefferson UniversityImplantable vital sign sensor
US9629628B2 (en)2013-03-132017-04-25Covidien LpSurgical stapling apparatus
US9629629B2 (en)2013-03-142017-04-25Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US9630318B2 (en)2014-10-022017-04-25Brain CorporationFeature detection apparatus and methods for training of robotic navigation
US20170116873A1 (en)2015-10-262017-04-27C-SATS, Inc.Crowd-sourced assessment of performance of an activity
US9636112B2 (en)2013-08-162017-05-02Covidien LpChip assembly for reusable surgical instruments
US9641596B2 (en)2012-01-252017-05-02Panasonic Intellectual Property Management Co., Ltd.Home appliance information management apparatus, home appliance information sharing method, and home appliance information sharing system
US9636096B1 (en)2009-02-042017-05-02Vioptix, Inc.Retractor systems with closed loop control
US9636825B2 (en)2014-06-262017-05-02Robotex Inc.Robotic logistics system
US9641815B2 (en)2013-03-152017-05-02DePuy Synthes Products, Inc.Super resolution and color motion artifact correction in a pulsed color imaging system
US9636239B2 (en)2009-08-202017-05-02Case Western Reserve UniversitySystem and method for mapping activity in peripheral nerves
US9636188B2 (en)2006-03-242017-05-02Stryker CorporationSystem and method for 3-D tracking of surgical instrument in relation to patient body
US20170127499A1 (en)2014-03-272017-05-04Fagerhults Belysning AbLighting system for providing light in a room
US20170119477A1 (en)2007-06-152017-05-04Orthosoft Inc.Computer-assisted surgery system and method
US9643022B2 (en)2013-06-172017-05-09Nyxoah SAFlexible control housing for disposable patch
US9642620B2 (en)2013-12-232017-05-09Ethicon Endo-Surgery, LlcSurgical cutting and stapling instruments with articulatable end effectors
US20170132785A1 (en)2015-11-092017-05-11Xerox CorporationMethod and system for evaluating the quality of a surgical procedure from in-vivo video
US20170132374A1 (en)2015-11-112017-05-11Zyno Medical, LlcSystem for Collecting Medical Data Using Proxy Inputs
US20170132385A1 (en)2015-11-112017-05-11Abbott Medical Optics Inc.Systems and methods for providing virtual access to a surgical console
US9649169B2 (en)2007-08-242017-05-16Universite Grenoble AlpesSystem and method for analysing a surgical operation by endoscopy
US9649089B2 (en)*2009-11-172017-05-16B-K Medical ApsPortable ultrasound scanner and docking system
US9652655B2 (en)2011-07-092017-05-16Gauss Surgical, Inc.System and method for estimating extracorporeal blood volume in a physical sample
US9649110B2 (en)2013-04-162017-05-16Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
WO2017083863A2 (en)*2015-11-132017-05-18Humanscale CorporationA medical technology station and method of use
US9655614B2 (en)2008-09-232017-05-23Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US9656092B2 (en)2009-05-122017-05-23Chronicmobile, Inc.Methods and systems for managing, controlling and monitoring medical devices via one or more software applications functioning in a secure environment
US9655616B2 (en)2014-01-222017-05-23Covidien LpApparatus for endoscopic procedures
US20170147759A1 (en)2015-11-242017-05-25Raj R. IyerPatient Centered Medical Home for Perioperative Hospital Surgical Care
US20170143366A1 (en)2015-11-252017-05-25Ethicon Endo-Surgery, LlcRestricted usage features for surgical instrument
US20170143284A1 (en)2015-11-252017-05-25Carestream Health, Inc.Method to detect a retained surgical object
US9662104B1 (en)2015-12-152017-05-30Heartstitch, Inc.Throw and catch suturing device with a curved needle
US9662116B2 (en)2006-05-192017-05-30Ethicon, LlcElectrically self-powered surgical instrument with cryptographic identification of interchangeable part
CN106777916A (en)2016-11-292017-05-31上海市质子重离子医院有限公司A kind of method of workflow management and equipment the operation operation of radiotherapy system
US20170154156A1 (en)2015-11-232017-06-01Koninklijke Philips N.V.Structured finding objects for integration of third party applications in the image interpretation workflow
JP2017096359A (en)2015-11-202017-06-01国立大学法人東京工業大学 Interference drive type transmission and interference drive type speed change drive device using the same
US9671860B2 (en)2011-08-042017-06-06Olympus CorporationManipulation input device and manipulator system having the same
US9668732B2 (en)2013-03-152017-06-06Applied Medical Resources CorporationSurgical stapler handle assembly having actuation mechanism with longitudinally rotatable shaft
US9668765B2 (en)2013-03-152017-06-06The Spectranetics CorporationRetractable blade for lead removal device
US9675354B2 (en)2013-01-142017-06-13Intuitive Surgical Operations, Inc.Torque compensation
US9675264B2 (en)2013-03-152017-06-13Peerbridge Health, Inc.System and method for monitoring and diagnosing patient condition based on wireless sensor monitoring data
US20170164996A1 (en)2015-03-022017-06-15Olympus CorporationPower supply device for high-frequency treatment instrument, high frequency treatment system, and control method for power supply device
US20170165008A1 (en)2015-12-142017-06-15Nuvasive, Inc.3D Visualization During Surgery with Reduced Radiation Exposure
US20170165012A1 (en)2015-12-102017-06-15Cambridge Medical Robotics LimitedGuiding engagement of a robot arm and surgical instrument
US20170164997A1 (en)2015-12-102017-06-15Ethicon Endo-Surgery, LlcMethod of treating tissue using end effector with ultrasonic and electrosurgical features
US9686306B2 (en)2012-11-022017-06-20University Of Washington Through Its Center For CommercializationUsing supplemental encrypted signals to mitigate man-in-the-middle attacks on teleoperated systems
US9681870B2 (en)2013-12-232017-06-20Ethicon LlcArticulatable surgical instruments with separate and distinct closing and firing systems
US20170172565A1 (en)2011-03-072017-06-22Scott HeneveldSuture Passing Devices and Methods
US20170177807A1 (en)2015-12-212017-06-22Gavin FabianEnhanced user interface for a system and method for optimizing surgical team composition and surgical team procedure resource management
US20170178069A1 (en)2015-12-182017-06-22Amazon Technologies, Inc.Data transfer tool for secure client-side data transfer to a shippable storage device
US20170172614A1 (en)2015-12-172017-06-22Ethicon Endo-Surgery, LlcSurgical instrument with multi-functioning trigger
US20170172676A1 (en)2014-03-172017-06-22Intuitive Surgical Operations, Inc.Structural Adjustment Systems And Methods For A Teleoperational Medical System
US20170172550A1 (en)2015-12-182017-06-22Covidien LpSurgical instruments including sensors
US20170173262A1 (en)2017-03-012017-06-22François Paul VELTZMedical systems, devices and methods
US20170172674A1 (en)2014-03-172017-06-22Intuitive Surgical Operations, Inc.Guided setup for teleoperated medical device
US9690362B2 (en)2014-03-262017-06-27Ethicon LlcSurgical instrument control circuit having a safety processor
US20170185732A1 (en)2015-12-292017-06-29Ethicon Endo-Surgery, Inc.Patient monitoring system with network of treatment equipment
US9700320B2 (en)2014-09-022017-07-11Ethicon LlcDevices and methods for removably coupling a cartridge to an end effector of a surgical device
US9700312B2 (en)2014-01-282017-07-11Covidien LpSurgical apparatus
US20170196583A1 (en)2014-10-312017-07-13Olympus CorporationMedical treatment device
US9706993B2 (en)2013-03-082017-07-18Covidien LpStaple cartridge with shipping wedge
US9710644B2 (en)2012-02-012017-07-18Servicenow, Inc.Techniques for sharing network security event information
US9710214B2 (en)2013-09-242017-07-18Intel CorporationRoom sensor applications and techniques
US20170202595A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with a plurality of control programs
US20170202591A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US20170202607A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US20170202608A1 (en)2001-06-122017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument containing elongated multi-layered shaft
US9717141B1 (en)2013-01-032017-07-25St. Jude Medical, Atrial Fibrillation Division, Inc.Flexible printed circuit with removable testing portion
US9713503B2 (en)2013-12-042017-07-25Novartis AgSurgical utility connector
US9713424B2 (en)2015-02-062017-07-25Richard F. SpaideVolume analysis and display of information in optical coherence tomography angiography
US20170209145A1 (en)2014-09-052017-07-27Ethicon LlcPowered medical device including measurement of closure state of jaws
US9717498B2 (en)2013-03-132017-08-01Covidien LpSurgical stapling apparatus
US9717548B2 (en)2013-09-242017-08-01Covidien LpElectrode for use in a bipolar electrosurgical instrument
US9717525B2 (en)2015-03-172017-08-01Prabhat Kumar AhluwaliaUterine manipulator
US20170215944A1 (en)2016-01-292017-08-03Covidien LpJaw aperture position sensor for electrosurgical forceps
US9724100B2 (en)2012-12-042017-08-08Ethicon LlcCircular anvil introduction system with alignment feature
US9724118B2 (en)2012-04-092017-08-08Ethicon Endo-Surgery, LlcTechniques for cutting and coagulating tissue for ultrasonic surgical instruments
US20170224332A1 (en)2016-02-092017-08-10Ethicon Endo-Surgery, LlcSurgical instruments with non-symmetrical articulation arrangements
US20170224428A1 (en)2014-09-292017-08-10Covidien LpDynamic input scaling for controls of robotic surgical system
US20170224334A1 (en)2016-02-092017-08-10Ethicon Endo-Surgery, LlcArticulatable surgical instruments with single articulation link arrangements
US20170231628A1 (en)2016-02-122017-08-17Ethicon Endo-Surgery, LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231553A1 (en)2015-04-212017-08-17Olympus CorporationMedical apparatus
US20170231627A1 (en)2016-02-122017-08-17Ethicon Endo-Surgery, LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US9737371B2 (en)2014-09-302017-08-22Auris Surgical Robotics, Inc.Configurable robotic surgical system with virtual rail and flexible endoscope
US9743016B2 (en)2012-12-102017-08-22Intel CorporationTechniques for improved focusing of camera arrays
US9740826B2 (en)2008-05-272017-08-22Stryker CorporationWireless medical room control arrangement for control of a plurality of medical devices
US9737335B2 (en)2002-08-082017-08-22Atropos LimitedDevice
US9737355B2 (en)2014-03-312017-08-22Ethicon LlcControlling impedance rise in electrosurgical medical devices
US9743946B2 (en)2013-12-172017-08-29Ethicon LlcRotation features for ultrasonic surgical instrument
US20170249432A1 (en)2014-09-232017-08-31Surgical Safety Technologies Inc.Operating room black-box device, system, method and computer readable medium
US20170245809A1 (en)2011-04-272017-08-31Covidien LpDevice for monitoring physiological parameters in vivo
US9750523B2 (en)2014-02-172017-09-05Olympus CorporationUltrasonic treatment apparatus
US9753568B2 (en)2014-05-152017-09-05Bebop Sensors, Inc.Flexible sensors and applications
US9750560B2 (en)2010-10-252017-09-05Medtronic Ardian Luxembourg S.A.R.L.Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US9750563B2 (en)2009-09-222017-09-05Mederi Therapeutics, Inc.Systems and methods for treating tissue with radiofrequency energy
US9750500B2 (en)2013-01-182017-09-05Covidien LpSurgical clip applier
US9753135B2 (en)2012-08-162017-09-05Leica Geosystems AgHand-held distance-measuring device having an angle-determining unit
US9750522B2 (en)2013-08-152017-09-05Ethicon LlcSurgical instrument with clips having transecting blades
WO2017151996A1 (en)2016-03-042017-09-08Covidien LpInverse kinematic control systems for robotic surgical system
US9757152B2 (en)2004-10-282017-09-12Michael R. SchrammMethod of treating scoliosis using a biological implant
US9757142B2 (en)2006-08-092017-09-12Olympus CorporationRelay device and ultrasonic-surgical and electrosurgical system
US9757126B2 (en)2014-03-312017-09-12Covidien LpSurgical stapling apparatus with firing lockout mechanism
US20170262604A1 (en)2014-06-092017-09-14Revon Systems, Inc.Systems and methods for health tracking and management
JP2017526510A (en)2014-09-052017-09-14エシコン エルエルシーEthicon LLC Addenda with integrated sensor for quantifying tissue compression
US9763741B2 (en)2013-10-242017-09-19Auris Surgical Robotics, Inc.System for robotic-assisted endolumenal surgery and related methods
US20170265943A1 (en)2016-03-162017-09-21Gal SelaTrajectory alignment system and methods
US9770541B2 (en)2014-05-152017-09-26Thermedx, LlcFluid management system with pass-through fluid volume measurement
US20170273715A1 (en)2013-03-152017-09-28Synaptive Medical (Barbados) Inc.Intelligent positioning system and methods therefore
US9777913B2 (en)2013-03-152017-10-03DePuy Synthes Products, Inc.Controlling the integral light energy of a laser pulse
US9775611B2 (en)2015-01-062017-10-03Covidien LpClam shell surgical stapling loading unit
US9775623B2 (en)2011-04-292017-10-03Covidien LpSurgical clip applier including clip relief feature
US20170281186A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcSurgical stapling system comprising a contourable shaft
US20170281173A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcSurgical stapling instrument
US20170281189A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcCircular stapling system comprising an incisable tissue support
US20170289617A1 (en)2016-04-012017-10-05Yahoo! Inc.Computerized system and method for automatically detecting and rendering highlights from streaming videos
US9782212B2 (en)2014-12-022017-10-10Covidien LpHigh level algorithms
US9782164B2 (en)2015-06-162017-10-10Ethicon Endo-Surgery, LlcSuturing instrument with multi-mode cartridges
US9782214B2 (en)2010-11-052017-10-10Ethicon LlcSurgical instrument with sensor and powered control
US9788851B2 (en)2012-04-182017-10-17Ethicon LlcSurgical instrument with tissue density sensing
US9788902B2 (en)2011-05-122017-10-17Olympus CorporationSurgical instrument device
US9788835B2 (en)2014-09-022017-10-17Ethicon LlcDevices and methods for facilitating ejection of surgical fasteners from cartridges
US9788907B1 (en)2017-02-282017-10-17Kinosis Ltd.Automated provision of real-time custom procedural surgical guidance
US20170296169A1 (en)2016-04-152017-10-19Ethicon Endo-Surgery, LlcSystems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en)2016-04-182017-10-19Ethicon Endo-Surgery, LlcMethod for operating a surgical instrument
US20170296213A1 (en)2016-04-152017-10-19Ethicon Endo-Surgery, LlcSystems and methods for controlling a surgical stapling and cutting instrument
US9795436B2 (en)2014-01-072017-10-24Ethicon LlcHarvesting energy from a surgical generator
US9797486B2 (en)2013-06-202017-10-24Covidien LpAdapter direct drive with manual retraction, lockout and connection mechanisms
US20170304020A1 (en)2016-04-202017-10-26Samson NgNavigation arm system and methods
WO2017183353A1 (en)2016-04-192017-10-26オリンパス株式会社Endoscope system
US9801627B2 (en)2014-09-262017-10-31Ethicon LlcFastener cartridge for creating a flexible staple line
US9801531B2 (en)2011-05-272017-10-31Olympus CorporationEndoscope system and method for operating endoscope system
US9805472B2 (en)2015-02-182017-10-31Sony CorporationSystem and method for smoke detection during anatomical surgery
US9801679B2 (en)2014-01-282017-10-31Ethicon LlcMethods and devices for controlling motorized surgical devices
US9802033B2 (en)2014-01-282017-10-31Ethicon LlcSurgical devices having controlled tissue cutting and sealing
US20170312456A1 (en)2016-04-272017-11-02David Bruce PHILLIPSSkin Desensitizing Device
JP2017532168A (en)2014-09-052017-11-02エシコン エルエルシーEthicon LLC The polarity of the hall magnet that detects a misloaded cartridge
US20170311777A1 (en)2014-11-072017-11-02Sony CorporationObservation device and observation system
WO2017189317A1 (en)2016-04-262017-11-02KindHeart, Inc.Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device
US9808245B2 (en)2013-12-132017-11-07Covidien LpCoupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9808305B2 (en)2014-10-312017-11-07Olympus CorporationEnergy treatment apparatus
US9808248B2 (en)2013-02-282017-11-07Ethicon LlcInstallation features for surgical instrument end effector cartridge
US9808246B2 (en)2015-03-062017-11-07Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US20170319268A1 (en)2015-03-042017-11-09Olympus CorporationInsertion instrument and medical treatment system
DE102016207666A1 (en)2016-05-032017-11-09Olympus Winter & Ibe Gmbh Medical smoke evacuation apparatus and method of operating the same
US9814462B2 (en)2010-09-302017-11-14Ethicon LlcAssembly for fastening tissue comprising a compressible layer
US9814463B2 (en)2013-03-132017-11-14Covidien LpSurgical stapling apparatus
US9814457B2 (en)2012-04-102017-11-14Ethicon LlcControl interface for laparoscopic suturing instrument
US20170325876A1 (en)2014-11-192017-11-16Kyushu University, National University CorporationHigh frequency forceps
US20170325878A1 (en)2016-05-112017-11-16Ethicon LlcSuction and irrigation sealing grasper
US9820768B2 (en)2012-06-292017-11-21Ethicon LlcUltrasonic surgical instruments with control mechanisms
US9820699B2 (en)2013-06-182017-11-21Koninklijke Philips N.V.Processing status information of a medical device
US9820741B2 (en)2011-05-122017-11-21Covidien LpReplaceable staple cartridge
US20170337043A1 (en)2012-06-222017-11-23Eresearchtechnology, Inc.Systems, methods and computer program products for providing disease and/or condition specific adaptive mobile health content, applications and/or solutions
US20170333152A1 (en)2011-12-122017-11-23Jack WadeEnhanced video enabled software tools for medical environments
US20170333147A1 (en)2016-05-202017-11-23Intuitive Surgical Operations, Inc.Instrument drape
US9830424B2 (en)2013-09-182017-11-28Hill-Rom Services, Inc.Bed/room/patient association systems and methods
US9827054B2 (en)2014-03-142017-11-28Synaptive Medical (Barbados) Inc.Intelligent positioning system and methods therefore
WO2017205308A1 (en)2016-05-262017-11-30Covidien LpRobotic surgical assemblies
US9833254B1 (en)2014-10-032017-12-05Verily Life Sciences LlcControlled dissection of biological tissue
US20170348047A1 (en)2016-06-062017-12-07Buffalo Filter LlcSensor systems for use in connection with medical procedures
WO2017210501A1 (en)2016-06-032017-12-07Covidien LpControl arm assemblies for robotic surgical systems
WO2017210499A1 (en)2016-06-032017-12-07Covidien LpControl arm for robotic surgical systems
US9839467B2 (en)2010-01-292017-12-12Covidien LpSurgical forceps capable of adjusting seal plate width based on vessel size
US9839428B2 (en)2013-12-232017-12-12Ethicon LlcSurgical cutting and stapling instruments with independent jaw control features
US9839470B2 (en)2015-06-302017-12-12Covidien LpElectrosurgical generator for minimizing neuromuscular stimulation
US9839424B2 (en)2014-01-172017-12-12Covidien LpElectromechanical surgical assembly
US9839487B2 (en)2014-03-172017-12-12Intuitive Surgical Operations, Inc.Backup latch release for surgical instrument
US9839419B2 (en)2015-06-162017-12-12Ethicon Endo-Surgery, LlcSuturing instrument with jaw having integral cartridge component
US9844379B2 (en)2004-07-282017-12-19Ethicon LlcSurgical stapling instrument having a clearanced opening
US9844374B2 (en)2014-12-182017-12-19Ethicon LlcSurgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en)2014-12-182017-12-19Ethicon LlcDrive arrangements for articulatable surgical instruments
US9844321B1 (en)2016-08-042017-12-19Novartis AgEnhanced ophthalmic surgical experience using a virtual reality head-mounted display
US9844376B2 (en)2014-11-062017-12-19Ethicon LlcStaple cartridge comprising a releasable adjunct material
US9848058B2 (en)2007-08-312017-12-19Cardiac Pacemakers, Inc.Medical data transport over wireless life critical network employing dynamic communication link mapping
US20170360499A1 (en)2016-06-172017-12-21Megadyne Medical Products, Inc.Hand-held instrument with dual zone fluid removal
US20170360358A1 (en)2016-06-152017-12-21Louis-Philippe AmiotImplants, systems and methods for surgical planning and assessment
US9848877B2 (en)2014-09-022017-12-26Ethicon LlcMethods and devices for adjusting a tissue gap of an end effector of a surgical device
US20170370710A1 (en)2016-06-242017-12-28Syracuse UniversityMotion sensor assisted room shape reconstruction and self-localization using first-order acoustic echoes
US20170367583A1 (en)2015-10-302017-12-28Cedars-Sinai Medical CenterMethods and systems for performing tissue classification using multi-channel tr-lifs and multivariate analysis
US20170367771A1 (en)2015-10-142017-12-28Surgical Theater LLCSurgical Navigation Inside A Body
US20170367754A1 (en)2015-02-272017-12-28Olympus CorporationMedical treatment device, method for operating medical treatment device, and treatment method
US20170367772A1 (en)2012-03-062017-12-28Briteseed, LlcUser Interface for a System Used to Determine Tissue or Artifact Characteristics
US9861354B2 (en)2011-05-062018-01-09Ceterix Orthopaedics, Inc.Meniscus repair
US9861428B2 (en)2013-09-162018-01-09Ethicon LlcIntegrated systems for electrosurgical steam or smoke control
US9861363B2 (en)2012-09-142018-01-09Touchstone International Medical Science Co., Ltd.Linear surgical stapler
US9864839B2 (en)2012-03-142018-01-09El Wha Llc.Systems, devices, and method for determining treatment compliance including tracking, registering, etc. of medical staff, patients, instrumentation, events, etc. according to a treatment staging plan
US20180008359A1 (en)2015-01-212018-01-11Cambridge Medical Robotics LimitedRobot tool retraction
US20180011983A1 (en)2015-02-022018-01-11Think Surgical, Inc.Method and system for managing medical data
US9867651B2 (en)2013-09-262018-01-16Covidien LpSystems and methods for estimating tissue parameters using surgical devices
US9867914B2 (en)2012-01-102018-01-16Buffalo Filter LlcFluid filtration device and system
US20180014764A1 (en)2016-07-182018-01-18Vioptix, Inc.Oximetry Device with Laparoscopic Extension
US9872609B2 (en)2009-06-182018-01-23Endochoice Innovation Center Ltd.Multi-camera endoscope
US9872683B2 (en)2013-03-142018-01-23Applied Medical Resources CorporationSurgical stapler with partial pockets
US20180021058A1 (en)2014-10-242018-01-25Covidien LpSensorizing robotic surgical system access ports
US9877718B2 (en)2011-02-152018-01-30Intuitive Surgical Operations, Inc.Methods and systems for detecting clamping or firing failure
US9888914B2 (en)2015-06-162018-02-13Ethicon Endo-Surgery, LlcSuturing instrument with motorized needle drive
US9888864B2 (en)2010-03-122018-02-13Inspire Medical Systems, Inc.Method and system for identifying a location for nerve stimulation
US9888975B2 (en)2015-12-042018-02-13Ethicon Endo-Surgery, LlcMethods, systems, and devices for control of surgical tools in a robotic surgical system
US20180042659A1 (en)2016-08-092018-02-15Covidien LpUltrasonic and radiofrequency energy production and control from a single power converter
US9895148B2 (en)2015-03-062018-02-20Ethicon Endo-Surgery, LlcMonitoring speed control and precision incrementing of motor for powered surgical instruments
US9900787B2 (en)2015-09-302018-02-20George OuMulticomputer data transferring system with a base station
US20180052971A1 (en)2016-08-222018-02-22Aic Innovations Group, Inc.Method and apparatus for determining health status
US20180050196A1 (en)2016-08-192018-02-22Nicholas Charles PawseyAdvanced electrode array insertion
US9901342B2 (en)2015-03-062018-02-27Ethicon Endo-Surgery, LlcSignal and power communication system positioned on a rotatable shaft
US9901406B2 (en)2014-10-022018-02-27Inneroptic Technology, Inc.Affected region display associated with a medical device
US9907196B2 (en)2013-12-052018-02-27Sagemcom Broadband SasElectrical module
US9905000B2 (en)2015-02-192018-02-27Sony CorporationMethod and system for surgical tool localization during anatomical surgery
US9901411B2 (en)2013-10-012018-02-27Abb Gomtec GmbhControl device and method for controlling a robot with a system by means of gesture control
US20180055529A1 (en)2016-08-252018-03-01Ethicon LlcUltrasonic transducer techniques for ultrasonic surgical instrument
US20180056496A1 (en)2016-08-262018-03-01Robert Bosch Tool CorporationModular Handheld Power Tool
US9907550B2 (en)2014-01-272018-03-06Covidien LpStitching device with long needle delivery
US20180065248A1 (en)2016-09-062018-03-08Verily Life Sciences LlcSystems and methods for prevention of surgical mistakes
US9913645B2 (en)2013-02-282018-03-13Ethicon LlcLockout feature for movable cutting member of surgical instrument
US9913642B2 (en)2014-03-262018-03-13Ethicon LlcSurgical instrument comprising a sensor system
US9918326B2 (en)2015-05-272018-03-13Comcast Cable Communications, LlcOptimizing resources in data transmission
US9918788B2 (en)2012-10-312018-03-20St. Jude Medical, Atrial Fibrillation Division, Inc.Electrogram-based ablation control
US9918778B2 (en)2006-05-022018-03-20Aesculap AgLaparoscopic radiofrequency surgical device
US9918730B2 (en)2014-04-082018-03-20Ethicon LlcMethods and devices for controlling motorized surgical devices
US9922304B2 (en)2013-11-052018-03-20Deroyal Industries, Inc.System for sensing and recording consumption of medical items during medical procedure
CN107811710A (en)2017-10-312018-03-20微创(上海)医疗机器人有限公司Operation aided positioning system
US20180078170A1 (en)2016-03-152018-03-22Advanced Cardiac Therapeutics, Inc.Methods of determining catheter orientation
US20180082480A1 (en)2016-09-162018-03-22John R. WhiteAugmented reality surgical technique guidance
US9924944B2 (en)2014-10-162018-03-27Ethicon LlcStaple cartridge comprising an adjunct material
US9924961B2 (en)2015-03-062018-03-27Ethicon Endo-Surgery, LlcInteractive feedback system for powered surgical instruments
US9924941B2 (en)2011-10-262018-03-27Intuitive Surgical Operations, Inc.Surgical instrument with integral knife blade
US20180085102A1 (en)2016-06-032018-03-29Olympus CorporationMedical device
US9931040B2 (en)2015-01-142018-04-03Verily Life Sciences LlcApplications of hyperspectral laser speckle imaging
US9931124B2 (en)2015-01-072018-04-03Covidien LpReposable clip applier
US20180098049A1 (en)2016-09-302018-04-05Medi Plus Inc.Medical video display system
US9936942B2 (en)2013-09-262018-04-10Surgimatix, Inc.Laparoscopic suture device with release mechanism
US9937012B2 (en)2014-03-072018-04-10Cmr Surgical LimitedSurgical arm
US9938972B2 (en)2013-08-192018-04-10Fish Engineering LimitedDistributor apparatus with a pair of intermeshing screw rotors
US9936961B2 (en)2014-09-262018-04-10DePuy Synthes Products, Inc.Surgical tool with feedback
US9937014B2 (en)2015-04-102018-04-10Mako Surgical Corp.System and method of controlling a surgical tool during autonomous movement of the surgical tool
US9936955B2 (en)2011-01-112018-04-10Amsel Medical CorporationApparatus and methods for fastening tissue layers together with multiple tissue fasteners
US9937626B2 (en)2013-12-112018-04-10Covidien LpWrist and jaw assemblies for robotic surgical systems
US20180098816A1 (en)2016-10-062018-04-12Biosense Webster (Israel) Ltd.Pre-Operative Registration of Anatomical Images with a Position-Tracking System Using Ultrasound
US9943312B2 (en)2014-09-022018-04-17Ethicon LlcMethods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9943230B2 (en)2012-01-252018-04-17Fujifilm CorporationEndoscope system, processor device of endoscope system, and image processing method
US9943379B2 (en)2016-01-292018-04-17Millennium Healthcare Technologies, Inc.Laser-assisted periodontics
US9943964B2 (en)2015-05-292018-04-17Cmr Surgical LimitedCharacterising robot environments
US9943918B2 (en)2014-05-162018-04-17Powdermet, Inc.Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation
US9943377B2 (en)2016-08-162018-04-17Ethicon Endo-Surgery, LlcMethods, systems, and devices for causing end effector motion with a robotic surgical system
US9943309B2 (en)2014-12-182018-04-17Ethicon LlcSurgical instruments with articulatable end effectors and movable firing beam support arrangements
US20180108438A1 (en)2013-07-022018-04-19Quintiles Ims IncorporatedMarket Measures and Outcomes for App Prescribing
US9949785B2 (en)2013-11-212018-04-24Ethicon LlcUltrasonic surgical instrument with electrosurgical feature
US20180110523A1 (en)2012-06-282018-04-26Ethicon LlcEmpty clip cartridge lockout
US20180122506A1 (en)2015-03-262018-05-03Surgical Safety Technologies Inc.Operating room black-box device, system, method and computer readable medium for event and error prediction
US9962157B2 (en)2013-09-182018-05-08Covidien LpApparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US20180125590A1 (en)2007-01-102018-05-10Ethicon LlcSurgical instrument with wireless communication between control unit and remote sensor
US20180132895A1 (en)2016-11-142018-05-17Conmed CorporationMultimodal surgical gas delivery system having continuous pressure monitoring of a continuous flow of gas to a body cavity
US9976259B2 (en)2013-12-102018-05-22Buckman Laboratories International, Inc.Adhesive formulation and creping methods using same
US9980140B1 (en)2016-02-112018-05-22Bigfoot Biomedical, Inc.Secure communication architecture for medical devices
US9974595B2 (en)2014-04-042018-05-22Covidien LpSystems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US20180144314A1 (en)2016-11-212018-05-24Lisa Therese MillerInvoice Analytics System
US20180144243A1 (en)2016-11-232018-05-24General Electric CompanyHardware system design improvement using deep learning algorithms
US9980769B2 (en)2014-04-082018-05-29Ethicon LlcMethods and devices for controlling motorized surgical devices
US9980778B2 (en)2003-03-072018-05-29Intuitive Surgical Operations, Inc.Instrument having radio frequency identification systems and methods for use
US9987000B2 (en)2014-12-182018-06-05Ethicon LlcSurgical instrument assembly comprising a flexible articulation system
US9987072B2 (en)2008-03-172018-06-05Covidien LpSystem and method for detecting a fault in a capacitive return electrode for use in electrosurgery
US9990856B2 (en)2011-02-082018-06-05The Trustees Of The University Of PennsylvaniaSystems and methods for providing vibration feedback in robotic systems
US9987068B2 (en)2014-04-042018-06-05Covidien LpSystems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US20180153574A1 (en)2013-11-262018-06-07Ethicon LlcHandpiece and blade configurations for ultrasonic surgical instrument
US20180154297A1 (en)2016-12-062018-06-07Fellowes, Inc.Air purifier with intelligent sensors and airflow
US20180153436A1 (en)2015-06-032018-06-07St. Jude Medical International Holding S.À R.L.Active magnetic position sensor
US20180153632A1 (en)2015-06-092018-06-07Intuitive Surgical Operation, Inc.Configuring surgical system with surgical procedures atlas
US9993248B2 (en)2015-03-062018-06-12Ethicon Endo-Surgery, LlcSmart sensors with local signal processing
US9993258B2 (en)2015-02-272018-06-12Ethicon LlcAdaptable surgical instrument handle
US9993305B2 (en)2012-08-082018-06-12Ortoma AbMethod and system for computer assisted surgery
US20180165780A1 (en)2013-03-152018-06-14Breg, Inc.Business intelligence portal
US20180161062A1 (en)2015-08-052018-06-14Olympus CorporationTreatment tool
US20180161716A1 (en)2014-11-032018-06-14Foshan Shunde Apollo Air-Cleaner Co., Ltd.Air purifier based on filter anti-counterfeiting identification
US20180168619A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling systems
US20180168598A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcStaple forming pocket arrangements comprising zoned forming surface grooves
US20180168614A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcAnvil arrangements for surgical staplers
US20180168647A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments having end effectors with positive opening features
US20180168615A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168597A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod for resetting a fuse of a surgical instrument shaft
US20180172420A1 (en)2016-12-202018-06-21Boston Scientific Scimed Inc.Hybrid navigation sensor
US20180168649A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcArticulatable surgical stapling instruments
US20180168574A1 (en)2014-03-202018-06-21Stepwise LtdConvertible surgical tissue staplers and applications using thereof
US20180168608A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical instrument system comprising an end effector lockout and a firing assembly lockout
US20180168592A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcShaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168590A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcShaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US20180168584A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments and staple-forming anvils
US20180168625A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments with smart staple cartridges
US20180168633A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments and staple-forming anvils
US10004500B2 (en)2014-09-022018-06-26Ethicon LlcDevices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
US10004527B2 (en)2013-11-262018-06-26Ethicon LlcUltrasonic surgical instrument with staged clamping
US10004491B2 (en)2015-06-152018-06-26Ethicon LlcSuturing instrument with needle motion indicator
US10004557B2 (en)2012-11-052018-06-26Pythagoras Medical Ltd.Controlled tissue ablation
US20180182475A1 (en)2014-06-132018-06-28University Hospitals Cleveland Medical CenterArtificial-intelligence-based facilitation of healthcare delivery
US20180183684A1 (en)2016-12-282018-06-28Google Inc.Auto-prioritization of device traffic across local network
US20180177383A1 (en)2016-12-282018-06-28Auris Surgical Robotics, Inc.Detecting endolumenal buckling of flexible instruments
WO2018116247A1 (en)2016-12-222018-06-28Baylis Medical Company Inc.Multiplexing algorithm with power allocation
USD822206S1 (en)2016-06-242018-07-03Ethicon LlcSurgical fastener
US10016538B2 (en)2007-02-092018-07-10Kci Licensing, Inc.System and method for managing reduced pressure at a tissue site
US10021318B2 (en)2013-11-212018-07-10Axis AbMethod and apparatus in a motion video capturing system
US20180193579A1 (en)2017-01-102018-07-12General Electric CompanyLung protective ventilation control
US10022120B2 (en)2015-05-262018-07-17Ethicon LlcSurgical needle with recessed features
US10028402B1 (en)2017-03-222018-07-17Seagate Technology LlcPlanar expansion card assembly
US10022090B2 (en)2013-10-182018-07-17Atlantic Health System, Inc.Nerve protecting dissection device
US10022391B2 (en)2008-05-132018-07-17Chiesi Farmaceutici S.P.A.Maintenance of platelet inhibition during antiplatelet therapy
US10028744B2 (en)2015-08-262018-07-24Ethicon LlcStaple cartridge assembly including staple guides
US10028788B2 (en)2012-12-312018-07-24Mako Surgical Corp.System for image-based robotic surgery
US20180206884A1 (en)2015-12-112018-07-26Reach Surgical, Inc.Modular signal interface system and powered trocar
US20180206905A1 (en)2015-09-252018-07-26GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies AmericaMultifunctional medical device
US20180211726A1 (en)2017-01-252018-07-26International Business Machines CorporationPatient Communication Priority By Compliance Dates, Risk Scores, and Organizational Goals
US10037641B2 (en)2016-08-102018-07-31Elwha LlcSystems and methods for individual identification and authorization utilizing conformable electronics
US10034704B2 (en)2015-06-302018-07-31Ethicon LlcSurgical instrument with user adaptable algorithms
US10037715B2 (en)2013-10-162018-07-31Simulab CorporationDetecting insertion of needle into simulated vessel using a conductive fluid
US10039589B2 (en)2014-04-092018-08-07Gyrus Acmi, Inc.Enforcement device for limited usage product
US10039546B2 (en)2013-12-232018-08-07Covidien LpLoading unit including shipping member
US10044791B2 (en)2010-01-222018-08-07Deka Products Limited PartnershipSystem, method, and apparatus for communicating data
US10041822B2 (en)2007-10-052018-08-07Covidien LpMethods to shorten calibration times for powered devices
US10039564B2 (en)2014-09-302018-08-07Ethicon LlcSurgical devices having power-assisted jaw closure and methods for compressing and sensing tissue
US10039565B2 (en)2012-12-132018-08-07Alcon Research, Ltd.Fine membrane forceps with integral scraping feature
US20180221005A1 (en)2003-06-272018-08-09Stryker CorporationFoot-operated control console for wirelessly controlling medical devices
US20180221598A1 (en)2016-11-142018-08-09Conmed CorporationSmoke evacuation system for continuously removing gas from a body cavity
US10048379B2 (en)2013-07-162018-08-14Leica Geosystems AgLaser tracker having target-seeking functionality
US10045813B2 (en)2009-10-302018-08-14Covidien LpJaw roll joint
US10045704B2 (en)2007-05-082018-08-14Propep, LlcMethod for laparoscopic nerve detection and mapping
US10045782B2 (en)2015-07-302018-08-14Covidien LpSurgical stapling loading unit with stroke counter and lockout
US10045781B2 (en)2014-06-132018-08-14Ethicon LlcClosure lockout systems for surgical instruments
US10045776B2 (en)2015-03-062018-08-14Ethicon LlcControl techniques and sub-processor contained within modular shaft with select control processing from handle
US20180228557A1 (en)2015-04-202018-08-16Medrobotics CorporationArticulating robotic probes, systems and methods incorporating the same, and methods for performing surgical procedures
US20180233222A1 (en)2017-02-162018-08-16Mako Surgical CorporationSurgical procedure planning system with multiple feedback loops
US20180233235A1 (en)2015-11-122018-08-16Vivante Health, Inc.Systems and methods for developing individualized health improvement plans
US10052102B2 (en)2015-06-182018-08-21Ethicon LlcSurgical end effectors with dual cam actuated jaw closing features
US10054441B2 (en)2010-11-242018-08-21Leica Geosystems AgBuilding surveying device with an automatic plumb point finding functionality
US10052044B2 (en)2015-03-062018-08-21Ethicon LlcTime dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
USD826405S1 (en)2016-06-242018-08-21Ethicon LlcSurgical fastener
US20180235722A1 (en)2015-11-102018-08-23Gsi Group, Inc.Cordless and wireless surgical display system
WO2018152141A1 (en)2017-02-152018-08-23Covidien LpSystem and apparatus for crush prevention for medical robot applications
US20180235719A1 (en)2015-08-172018-08-23Intuitive Sergical Operations, Inc.Ungrounded master control devices and methods of use
US10058393B2 (en)2015-10-212018-08-28P Tech, LlcSystems and methods for navigation and visualization
US20180247711A1 (en)2017-02-272018-08-30Applied Logic, Inc.System and method for managing the use of surgical instruments
US20180242967A1 (en)2017-02-262018-08-30Endoevolution, LlcApparatus and method for minimally invasive suturing
US10069633B2 (en)2016-09-302018-09-04Data I/O CorporationUnified programming environment for programmable devices
US20180250825A1 (en)2015-08-252018-09-06Kawasaki Jukogyo Kabushiki KaishaRobot system
US20180250086A1 (en)2017-03-022018-09-06KindHeart, Inc.Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
US10076326B2 (en)2015-09-232018-09-18Ethicon LlcSurgical stapler having current mirror-based motor control
US20180268320A1 (en)2017-03-202018-09-20Amino, Inc.Machine learning models in location based episode prediction
US20180263710A1 (en)2015-12-252018-09-20Sony CorporationMedical imaging apparatus and surgical navigation system
US20180263699A1 (en)2017-03-142018-09-20Stephen B. MurphySystems and methods for determining leg length change during hip surgery
US10084833B2 (en)2015-11-092018-09-25Cisco Technology, Inc.Initiating a collaboration session between devices using an audible message
US10080618B2 (en)2015-07-222018-09-25Cmr Surgical LimitedGear packaging for robotic arms
US20180271603A1 (en)2015-08-302018-09-27M.S.T. Medical Surgery Technologies LtdIntelligent surgical tool control system for laparoscopic surgeries
US10085748B2 (en)2014-12-182018-10-02Ethicon LlcLocking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10085749B2 (en)2015-02-262018-10-02Covidien LpSurgical apparatus with conductor strain relief
WO2018176414A1 (en)2017-03-312018-10-04Fengh Medical Co., Ltd.Staple cartridge assembly and surgical instrument with the same
US10092355B1 (en)2014-11-212018-10-09Verily Life Sciences LlcBiophotonic surgical probe
US10097578B2 (en)2013-07-232018-10-09Oasis Technology, Inc.Anti-cyber hacking defense system
US10095942B2 (en)2014-12-152018-10-09Reflex Robotics, IncVision based real-time object tracking system for robotic gimbal control
US20180294060A1 (en)2017-04-102018-10-11Ghassan S. KassabTechnological devices and systems and methods to use the same to obtain biological information
US20180289427A1 (en)2014-10-272018-10-11Intuitive Surgical Operations, Inc.System and method for registering to a surgical table
US10102926B1 (en)2014-10-142018-10-16Sentry Data Systems, Inc.Detecting, analyzing and impacting improvement opportunities related to total cost of care, clinical quality and revenue integrity
CN108652695A (en)2017-03-312018-10-16江苏风和医疗器材股份有限公司Surgical instruments
USD831209S1 (en)2017-09-142018-10-16Ethicon LlcSurgical stapler cartridge
US10098527B2 (en)2013-02-272018-10-16Ethidcon Endo-Surgery, Inc.System for performing a minimally invasive surgical procedure
US10098705B2 (en)2014-04-012018-10-16Intuitive Surgical Operations, Inc.Control input accuracy for teleoperated surgical instrument
US20180300506A1 (en)2017-04-172018-10-18Fujitsu LimitedInformation processing apparatus and information processing system
US20180296289A1 (en)2016-01-082018-10-18Levita Magnetics International Corp.One-operator surgical system and methods of use
US20180296286A1 (en)2015-10-222018-10-18Covidien LpVariable sweeping for input devices
US10105140B2 (en)2009-11-202018-10-23Covidien LpSurgical console and hand-held surgical device
US10105470B2 (en)2012-10-242018-10-23Stryker CorporationMobile instrument assembly for use as part of a medical/surgical waste collection system, the assembly including a vacuum source to which a mobile waste collection cart can be releasably attached
US10105142B2 (en)2014-09-182018-10-23Ethicon LlcSurgical stapler with plurality of cutting elements
US20180303552A1 (en)2017-04-212018-10-25Medicrea InternationalSystems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
US20180304471A1 (en)2017-04-192018-10-25Fuji Xerox Co., Ltd.Robot device and non-transitory computer readable medium
US10111665B2 (en)2015-02-192018-10-30Covidien LpElectromechanical surgical systems
US10111658B2 (en)2015-02-122018-10-30Covidien LpDisplay screens for medical devices
US20180315492A1 (en)2017-04-262018-11-01Darroch Medical Solutions, Inc.Communication devices and systems and methods of analyzing, authenticating, and transmitting medical information
US20180310986A1 (en)2015-12-212018-11-01GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies AmericaHigh surface energy portion on a medical instrument
US10117702B2 (en)2015-04-102018-11-06Ethicon LlcSurgical generator systems and related methods
US10118119B2 (en)2015-06-082018-11-06Cts CorporationRadio frequency process sensing, control, and diagnostics network and system
US10117649B2 (en)2014-12-182018-11-06Ethicon LlcSurgical instrument assembly comprising a lockable articulation system
US20180317916A1 (en)2015-11-062018-11-08Intuitive Surgical Operations, Inc.Knife With Mechanical Fuse
US20180325619A1 (en)2017-05-092018-11-15Boston Scientific Scimed, Inc.Operating room devices, methods, and systems
US10130373B2 (en)2011-09-152018-11-20Teleflex Medical IncorporatedAutomatic surgical ligation clip applier
US10130432B2 (en)2015-09-252018-11-20Ethicon LlcHybrid robotic surgery with locking mode
US10133248B2 (en)2014-04-282018-11-20Covidien LpSystems and methods for determining an end of life state for surgical devices
US10130359B2 (en)2006-09-292018-11-20Ethicon LlcMethod for forming a staple
US10136246B2 (en)2015-07-212018-11-20Vitanet Japan, Inc.Selective pairing of wireless devices using shared keys
US10130367B2 (en)2015-02-262018-11-20Covidien LpSurgical apparatus
US20180333209A1 (en)2017-05-172018-11-22Covidien LpSystems and methods of tracking and analyzing use of medical instruments
US20180333207A1 (en)2017-04-142018-11-22Stryker CorporationSurgical systems and methods for facilitating ad-hoc intraoperative planning of surgical procedures
US20180333188A1 (en)2017-05-222018-11-22Ethicon LlcCombination ultrasonic and electrosurgical instrument with adjustable energy modalities and method for limiting blade temperature
US10136891B2 (en)2015-03-252018-11-27Ethicon LlcNaturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US10137245B2 (en)2010-08-172018-11-27University Of Florida Research Foundation, Inc.Central site photoplethysmography, medication administration, and safety
US10136949B2 (en)2015-08-172018-11-27Ethicon LlcGathering and analyzing data for robotic surgical systems
USD834541S1 (en)2017-05-192018-11-27Universal Remote Control, Inc.Remote control
US10136954B2 (en)2012-06-212018-11-27Globus Medical, Inc.Surgical tool systems and method
US10143948B2 (en)2015-08-142018-12-043M Innovative Properties CompanyIdentification of filter media within a filtration system
US10143526B2 (en)2015-11-302018-12-04Auris Health, Inc.Robot-assisted driving systems and methods
US10147148B2 (en)2014-08-262018-12-04Gree Electric Appliances Inc. Of ZhuhaiDistributed energy power source control method, apparatus and system for providing loads with dynamic power distribution modes
US10152789B2 (en)2014-07-252018-12-11Covidien LpAugmented surgical reality environment
US20180357383A1 (en)2017-06-072018-12-13International Business Machines CorporationSorting Medical Concepts According to Priority
US20180353186A1 (en)2017-06-092018-12-13Covidien LpHandheld electromechanical surgical system
US10159044B2 (en)2013-12-092018-12-18GM Global Technology Operations LLCMethod and apparatus for controlling operating states of bluetooth interfaces of a bluetooth module
US20180366213A1 (en)2016-06-082018-12-20Healthcare Value Analytics, LLCSystem and method for determining and indicating value of healthcare
US20180360456A1 (en)2017-06-202018-12-20Ethicon LlcSurgical instrument having controllable articulation velocity
US10164466B2 (en)2014-04-172018-12-25Covidien LpNon-contact surgical adapter electrical interface
US20180368930A1 (en)2017-06-222018-12-27NavLab, Inc.Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure
US10166061B2 (en)2014-03-172019-01-01Intuitive Surgical Operations, Inc.Teleoperated surgical system equipment with user interface
US10169862B2 (en)2015-05-072019-01-01Novadaq Technologies ULCMethods and systems for laser speckle imaging of tissue using a color image sensor
US20190000478A1 (en)2017-06-282019-01-03Ethicon LlcSurgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US20190006047A1 (en)2015-10-292019-01-03Sharp Fluidics LlcSystems and methods for data capture in an operating room
US20190000569A1 (en)2012-06-212019-01-03Globus Medical, Inc.Controlling a surgical robot to avoid robotic arm collision
US20190005641A1 (en)2016-03-082019-01-03Fujifilm CorporationVascular information acquisition device, endoscope system, and vascular information acquisition method
US20190001079A1 (en)2015-01-302019-01-03Surgiquest, Inc.Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
US10175096B2 (en)2016-04-012019-01-08Ethicon LlcSystem and method to enable re-use of surgical instrument
US10175127B2 (en)2014-05-052019-01-08Covidien LpEnd-effector force measurement drive circuit
US10172687B2 (en)2014-03-172019-01-08Intuitive Surgical Operations, Inc.Surgical cannulas and related systems and methods of identifying surgical cannulas
US10172618B2 (en)2015-03-252019-01-08Ethicon LlcLow glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10180463B2 (en)2015-02-272019-01-15Ethicon LlcSurgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10187742B2 (en)2015-01-192019-01-22Haldor Advanced Technologies LtdSystem and method for tracking and monitoring surgical tools
US20190025040A1 (en)2016-01-202019-01-24Lucent Medical Systems, Inc.Low-frequency electromagnetic tracking
US10189157B2 (en)2015-09-152019-01-29Karl Storz Se & Co. KgManipulating system and manipulating apparatus for surgical instruments
US10190888B2 (en)2015-03-112019-01-29Covidien LpSurgical stapling instruments with linear position assembly
US10188385B2 (en)2014-12-182019-01-29Ethicon LlcSurgical instrument system comprising lockable systems
US20190036688A1 (en)2017-07-172019-01-31Thirdwayv, Inc.Secure communication for medical devices
US10197803B2 (en)2014-03-282019-02-05Alma Mater Studiorum—Universita' di BolognaAugmented reality glasses for medical applications and corresponding augmented reality system
US10198965B2 (en)2012-08-032019-02-05Applied Medical Resources CorporationSimulated stapling and energy based ligation for surgical training
US10194907B2 (en)2012-07-182019-02-05Covidien LpMulti-fire stapler with electronic counter, lockout, and visual indicator
US10194972B2 (en)2014-08-262019-02-05Ethicon LlcManaging tissue treatment
US10194913B2 (en)2015-07-302019-02-05Ethicon LlcSurgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
US10194891B2 (en)2012-04-022019-02-05Movasu, Inc.Minimally invasive surgical instrument having articulation immobilising structure
US20190038364A1 (en)2016-03-302019-02-07Sony CorporationImage processing device and method, surgical system, and surgical member
US20190045515A1 (en)2017-12-282019-02-07Intel CorporationAssessment and mitigation of radio frequency interference of networked devices
US20190038335A1 (en)2009-03-092019-02-07Intuitive Surgical Operations, Inc.Methods of user interfaces for electrosurgical tools in robotic surgical systems
US10205708B1 (en)2015-08-212019-02-12Teletracking Technologies, Inc.Systems and methods for digital content protection and security in multi-computer networks
US10201311B2 (en)2013-02-082019-02-12Acutus Medical, Inc.Expandable catheter assembly with flexible printed circuit board (PCB) electrical pathways
US10201365B2 (en)2012-10-222019-02-12Ethicon LlcSurgeon feedback sensing and display methods
US20190046198A1 (en)2017-08-102019-02-14Ethicon LlcJaw for clip applier
US10206752B2 (en)2015-05-142019-02-19Cmr Surgical LimitedTorque sensing in a surgical robotic wrist
US20190053801A1 (en)2016-01-292019-02-21Intuitive Surgical Operations, Inc.System and method for variable velocity surgical instrument
US20190053866A1 (en)2015-09-252019-02-21Covidien LpElastic surgical interface for robotic surgical
US10213201B2 (en)2015-03-312019-02-26Ethicon LlcStapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10213266B2 (en)2014-02-072019-02-26Covidien LpRobotic surgical assemblies and adapter assemblies thereof
US20190059997A1 (en)2017-08-222019-02-28Covidien LpSystems and methods for planning a surgical procedure and evaluating the performance of a surgical procedure
US20190059986A1 (en)2017-08-292019-02-28Ethicon LlcMethods, systems, and devices for controlling electrosurgical tools
US10220522B2 (en)2013-12-122019-03-05Covidien LpGear train assemblies for robotic surgical systems
US10219491B2 (en)2013-03-152019-03-05Pentair Water Pool And Spa, Inc.Dissolved oxygen control system for aquaculture
US10222750B2 (en)2015-12-092019-03-05Samsung Electronics Co., Ltd.Watch-type wearable device
US20190069949A1 (en)2014-12-032019-03-07Metavention, Inc.Systems and methods for modulatng nerves or other tissue
US20190070731A1 (en)2017-09-062019-03-07Stryker CorporationTechniques For Controlling Position Of An End Effector Of A Robotic Device Relative To A Virtual Constraint
US20190069964A1 (en)2016-02-262019-03-07Covidien LpRobotic surgical systems and robotic arms thereof
US20190069966A1 (en)2016-02-022019-03-07Intuitive Surgical Operations, Inc.Instrument force sensor using strain gauges in a faraday cage
US10226302B2 (en)2015-05-152019-03-12Mako Surgical CorporationSystems and methods for providing guidance for a robotic medical procedure
US10226249B2 (en)2013-03-012019-03-12Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US10226254B2 (en)2014-10-212019-03-12Covidien LpAdapter, extension, and connector assemblies for surgical devices
US10231775B2 (en)2016-08-162019-03-19Ethicon LlcRobotic surgical system with tool lift control
US20190083190A1 (en)2017-09-182019-03-21Verb Surgical Inc.Robotic Surgical System and Method for Communicating Synchronous and Asynchronous Information to and From Nodes of a Robotic Arm
US20190087544A1 (en)2017-09-212019-03-21General Electric CompanySurgery Digital Twin
US10238413B2 (en)2015-12-162019-03-26Ethicon LlcSurgical instrument with multi-function button
US10245040B2 (en)2013-07-112019-04-02Covidien LpMethods and devices for performing a surgical anastomosis
US10245038B2 (en)2014-06-112019-04-02Applied Medical Resources CorporationSurgical stapler with circumferential firing
US10245037B2 (en)2011-12-072019-04-02Edwards Lifesciences CorporationSelf-cinching surgical clips and delivery system
US10245033B2 (en)2015-03-062019-04-02Ethicon LlcSurgical instrument comprising a lockable battery housing
US20190099221A1 (en)2017-09-292019-04-04K2M, Inc.Systems and methods for modeling spines and treating spines based on spine models
US20190099226A1 (en)2017-10-042019-04-04Novartis AgSurgical suite integration and optimization
US10255995B2 (en)2015-03-182019-04-09Covidien LpSystems and methods for credit-based usage of surgical instruments and components thereof
US10251661B2 (en)2013-08-272019-04-09Covidien LpHand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use
US10251725B2 (en)2014-06-092019-04-09Covidien LpAuthentication and information system for reusable surgical instruments
US20190105468A1 (en)2017-10-052019-04-11Canon U.S.A., Inc.Medical continuum robot with multiple bendable sections
US20190104919A1 (en)2012-05-202019-04-11Ethicon LlcMethod for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US10258363B2 (en)2014-04-222019-04-16Ethicon LlcMethod of operating an articulating ultrasonic surgical instrument
US10258415B2 (en)2016-01-292019-04-16Boston Scientific Scimed, Inc.Medical user interfaces and related methods of use
US10258362B2 (en)2016-07-122019-04-16Ethicon LlcUltrasonic surgical instrument with AD HOC formed blade
US10258418B2 (en)2017-06-292019-04-16Ethicon LlcSystem for controlling articulation forces
US10258331B2 (en)2016-02-122019-04-16Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10258359B2 (en)2014-08-132019-04-16Covidien LpRobotically controlling mechanical advantage gripping
US10258425B2 (en)2008-06-272019-04-16Intuitive Surgical Operations, Inc.Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US20190110855A1 (en)2017-10-172019-04-18Verily Life Sciences LlcDisplay of preoperative and intraoperative images
US20190115108A1 (en)2017-10-172019-04-18Novartis AgCustomized ophthalmic surgical profiles
US20190110856A1 (en)2017-10-172019-04-18Verily Life Sciences LlcSystems and Methods for Segmenting Surgical Videos
US20190110828A1 (en)2017-10-162019-04-18Cryterion Medical, Inc.Fluid detection assembly for a medical device
US10265090B2 (en)2013-01-162019-04-23Covidien LpHand held electromechanical surgical system including battery compartment diagnostic display
US10265035B2 (en)2016-06-012019-04-23Siemens Healthcare GmbhMethod and device for motion control of a mobile medical device
US10265066B2 (en)2015-06-262019-04-23Ethicon LlcSurgical stapler with incomplete firing indicator
US10265068B2 (en)2015-12-302019-04-23Ethicon LlcSurgical instruments with separable motors and motor control circuits
US10265004B2 (en)2011-07-142019-04-23Fujifilm CorporationBlood information measuring apparatus and method
US10265130B2 (en)2015-12-112019-04-23Ethicon LlcSystems, devices, and methods for coupling end effectors to surgical devices and loading devices
US20190122330A1 (en)2015-12-182019-04-25Orthogrid Systems Inc.Method of providing surgical guidance
US10271844B2 (en)2009-04-272019-04-30Covidien LpSurgical stapling apparatus employing a predictive stapling algorithm
US10271850B2 (en)2012-04-122019-04-30Covidien LpCircular anastomosis stapling apparatus utilizing a two stroke firing sequence
US10271846B2 (en)2005-08-312019-04-30Ethicon LlcStaple cartridge for use with a surgical stapler
US20190125458A1 (en)2017-10-302019-05-02Ethicon LlcMethod for producing a surgical instrument comprising a smart electrical system
US20190125335A1 (en)2017-10-302019-05-02Ethicon LlcSurgical suturing instrument comprising a capture width which is larger than trocar diameter
US20190125358A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising interchangeable clip reloads
US20190125380A1 (en)2017-10-302019-05-02Ethicon LlcArticulation features for surgical end effector
US20190125384A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument with rotary drive selectively actuating multiple end effector functions
US20190125457A1 (en)2017-10-302019-05-02Ethicon LlcMethod for communicating with surgical instrument systems
US20190125357A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising a clip crimping system
US20190125359A1 (en)2017-10-302019-05-02Ethicon LlcSurgical system comprising a surgical tool and a surgical hub
US20190125455A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US20190125361A1 (en)2017-10-302019-05-02Ethicon LlcMethod for operating a powered articulating multi-clip applier
US20190125324A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument with modular power sources
US20190125456A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US20190125459A1 (en)2014-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US20190125454A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US10278778B2 (en)2016-10-272019-05-07Inneroptic Technology, Inc.Medical device navigation using a virtual 3D space
USD847989S1 (en)2016-06-242019-05-07Ethicon LlcSurgical fastener cartridge
US10283220B2 (en)2013-08-162019-05-07Intuitive Surgical Operations, Inc.System and method for coordinated motion among heterogeneous devices
US20190133703A1 (en)2016-06-032019-05-09Covidien LpRobotic surgical assemblies and instrument drive units thereof
US10285700B2 (en)2016-04-202019-05-14Ethicon LlcSurgical staple cartridge with hydraulic staple deployment
US10285694B2 (en)2001-10-202019-05-14Covidien LpSurgical stapler with timer and feedback display
US20190142535A1 (en)2016-05-262019-05-16Covidien LpRobotic surgical assemblies and instrument drive units thereof
US20190145942A1 (en)2016-05-302019-05-16Givaudan SaImprovements in or Relating to Organic Compounds
US10292758B2 (en)2014-10-102019-05-21Ethicon LlcMethods and devices for articulating laparoscopic energy device
US10292704B2 (en)2015-12-302019-05-21Ethicon LlcMechanisms for compensating for battery pack failure in powered surgical instruments
US10292771B2 (en)2013-03-152019-05-21Synaptive Medical (Barbados) Inc.Surgical imaging systems
US10293129B2 (en)2016-03-072019-05-21Hansa Medical Products, Inc.Apparatus and method for forming an opening in patient's tissue
US10292769B1 (en)2018-08-072019-05-21Sony CorporationSurgical assistive device and method for providing assistance in surgery of anatomical portions of internal organ affected by intraoperative shift
US10292610B2 (en)2013-08-302019-05-21Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods
US20190150975A1 (en)2016-07-252019-05-23Olympus CorporationEnergy control device and treatment system
US10299868B2 (en)2014-03-142019-05-28Sony CorporationRobot arm apparatus, robot arm control method, and program
US10299870B2 (en)2017-06-282019-05-28Auris Health, Inc.Instrument insertion compensation
US10305926B2 (en)2016-03-112019-05-28The Toronto-Dominion BankApplication platform security enforcement in cross device and ownership structures
US20190163875A1 (en)2017-11-272019-05-30International Business Machines CorporationMedical Concept Sorting Based on Machine Learning of Attribute Value Differentiation
US10307170B2 (en)2017-06-202019-06-04Ethicon LlcMethod for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10313137B2 (en)2016-07-052019-06-04General Electric CompanyMethod for authenticating devices in a medical network
USD850617S1 (en)2016-06-242019-06-04Ethicon LlcSurgical fastener cartridge
US10311036B1 (en)2015-12-092019-06-04Universal Research Solutions, LlcDatabase management for a logical registry
US10307199B2 (en)2006-06-222019-06-04Board Of Regents Of The University Of NebraskaRobotic surgical devices and related methods
US10307159B2 (en)2016-04-012019-06-04Ethicon LlcSurgical instrument handle assembly with reconfigurable grip portion
US20190167296A1 (en)2016-07-262019-06-06Olympus CorporationEnergy control device, treatment system, and actuating method of energy control device
US10314577B2 (en)2014-06-252019-06-11Ethicon LlcLockout engagement features for surgical stapler
US10321964B2 (en)2014-09-152019-06-18Covidien LpRobotically controlling surgical assemblies
US10327779B2 (en)2015-04-102019-06-25Covidien LpAdapter, extension, and connector assemblies for surgical devices
US20190192236A1 (en)2017-12-212019-06-27Ethicon LlcSurgical instrument comprising a display
US20190192044A1 (en)2016-09-092019-06-27Sunnybrook Research InstituteSystem and method for magnetic occult lesion localization and imaging
US10335180B2 (en)2014-01-282019-07-02Ethicon LlcMotor control and feedback in powered surgical devices
US10339496B2 (en)2015-06-152019-07-02Milwaukee Electric Tool CorporationPower tool communication system
US10335042B2 (en)2013-06-282019-07-02Cardiovascular Systems, Inc.Methods, devices and systems for sensing, measuring and/or characterizing vessel and/or lesion compliance and/or elastance changes during vascular procedures
US10335147B2 (en)2014-06-252019-07-02Ethicon LlcMethod of using lockout features for surgical stapler cartridge
US10335227B2 (en)2009-04-242019-07-02Covidien LpElectrosurgical tissue sealer and cutter
US20190201138A1 (en)2017-12-282019-07-04Ethicon LlcCloud-based medical analytics for security and authentication trends and reactive measures
US20190206003A1 (en)2017-12-282019-07-04Ethicon LlcAdaptive control program updates for surgical devices
US20190201045A1 (en)2017-12-282019-07-04Ethicon LlcMethod for smoke evacuation for surgical hub
US20190201114A1 (en)2017-12-282019-07-04Ethicon LlcAdaptive control program updates for surgical hubs
US20190200981A1 (en)2017-12-282019-07-04Ethicon LlcMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20190200905A1 (en)2017-12-282019-07-04Ethicon LlcCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US20190200997A1 (en)2017-12-282019-07-04Ethicon LlcStapling device with both compulsory and discretionary lockouts based on sensed parameters
US20190201073A1 (en)2017-12-282019-07-04Ethicon LlcEstimating state of ultrasonic end effector and control system therefor
US20190201126A1 (en)2017-12-282019-07-04Ethicon LlcUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US20190206561A1 (en)2017-12-282019-07-04Ethicon LlcData handling and prioritization in a cloud analytics network
US20190201034A1 (en)2017-12-282019-07-04Ethicon LlcPowered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
US20190201159A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a tissue marking assembly
US20190200844A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication, processing, storage and display
US20190201140A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub situational awareness
US20190201115A1 (en)2017-12-282019-07-04Ethicon LlcAggregation and reporting of surgical hub data
US20190201116A1 (en)2017-12-282019-07-04Ethicon LlcCooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190205566A1 (en)2017-12-282019-07-04Ethicon LlcData stripping method to interrogate patient records and create anonymized record
US20190201594A1 (en)2017-12-282019-07-04Ethicon LlcMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US20190201044A1 (en)2017-12-282019-07-04Ethicon LlcVariation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US20190201135A1 (en)2017-12-282019-07-04Ethicon LlcControllers for robot-assisted surgical platforms
US20190201120A1 (en)2017-12-282019-07-04Ethicon LlcSensing arrangements for robot-assisted surgical platforms
US20190201081A1 (en)2017-12-282019-07-04Ethicon LlcPowered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US20190201139A1 (en)2017-12-282019-07-04Ethicon LlcCommunication arrangements for robot-assisted surgical platforms
US20190201086A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and display
US20190201084A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation flow paths
US20190201092A1 (en)2017-12-282019-07-04Ethicon LlcIncreasing radio frequency to create pad-less monopolar loop
US20190201125A1 (en)2017-12-282019-07-04Ethicon LlcInteractive surgical system
US20190201082A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and motor control
US20190201046A1 (en)2017-12-282019-07-04Ethicon LlcMethod for controlling smart energy devices
US20190206542A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub and modular device response adjustment based on situational awareness
US20190201128A1 (en)2017-12-282019-07-04Ethicon LlcSensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US20190200988A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems with prioritized data transmission capabilities
US20190201021A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument having a flexible circuit
US20190201041A1 (en)2017-12-282019-07-04Ethicon LlcActivation of energy devices
US20190201037A1 (en)2017-12-282019-07-04Ethicon LlcControlling an ultrasonic surgical instrument according to tissue location
US20190201141A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub coordination of control and communication of operating room devices
US20190201040A1 (en)2017-12-282019-07-04Ethicon LlcControlling activation of an ultrasonic surgical instrument according to the presence of tissue
US20190201123A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems with autonomously adjustable control programs
US20190201087A1 (en)2017-12-282019-07-04Ethicon LlcSmoke evacuation system including a segmented control circuit for interactive surgical platform
US20190201036A1 (en)2017-12-282019-07-04Ethicon LlcTemperature control of ultrasonic end effector and control system therefor
US20190206565A1 (en)2017-12-282019-07-04Ethicon LlcMethod for operating surgical instrument systems
US20190205441A1 (en)2017-12-282019-07-04Ethicon LlcSurgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US20190201597A1 (en)2017-12-282019-07-04Ethicon LlcDual in-series large and small droplet filters
US20190206564A1 (en)2017-12-282019-07-04Ethicon LlcMethod for facility data collection and interpretation
US20190200996A1 (en)2017-12-282019-07-04Ethicon LlcAdjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US20190206576A1 (en)2017-12-282019-07-04Ethicon LlcAutomated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US20190204201A1 (en)2017-12-282019-07-04Ethicon LlcAdjustments based on airborne particle properties
US20190201124A1 (en)2017-12-282019-07-04Ethicon LlcAdjustment of device control programs based on stratified contextual data in addition to the data
US20190201136A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication
US20190201026A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument comprising a control circuit
US20190200985A1 (en)2017-12-282019-07-04Ethicon LlcSystems for detecting proximity of surgical end effector to cancerous tissue
US20190201020A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems for detecting end effector tissue distribution irregularities
US20190201137A1 (en)2017-12-282019-07-04Ethicon LlcMethod of robotic hub communication, detection, and control
US20190201030A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument comprising a plurality of drive systems
US20190201112A1 (en)2017-12-282019-07-04Ethicon LlcComputer implemented interactive surgical systems
US20190201079A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument having a flexible electrode
US20190201033A1 (en)2017-12-282019-07-04Ethicon LlcSurgical system distributed processing
US20190201039A1 (en)2017-12-282019-07-04Ethicon LlcSituational awareness of electrosurgical systems
US20190208641A1 (en)2017-12-282019-07-04Ethicon LlcMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US20190201130A1 (en)2017-12-282019-07-04Ethicon LlcCommunication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity
US20190201023A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a sensing array
US20190205567A1 (en)2017-12-282019-07-04Ethicon LlcData pairing to interconnect a device measured parameter with an outcome
US20190201077A1 (en)2017-12-282019-07-04Ethicon LlcInterruption of energy due to inadvertent capacitive coupling
US20190201047A1 (en)2017-12-282019-07-04Ethicon LlcMethod for smart energy device infrastructure
US20190200984A1 (en)2017-12-282019-07-04Ethicon LlcSafety systems for smart powered surgical stapling
US20190201083A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensor arrangements
US20190201025A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a hardware-only control circuit
US20190206004A1 (en)2017-12-282019-07-04Ethicon LlcInteractive surgical systems with condition handling of devices and data capabilities
US20190206556A1 (en)2017-12-282019-07-04Ethicon LlcReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US20190200863A1 (en)2017-12-282019-07-04Ethicon LlcCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US20190206555A1 (en)2017-12-282019-07-04Ethicon LlcCloud-based medical analytics for customization and recommendations to a user
US20190201027A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with acoustic-based motor control
US20190206562A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication, processing, display, and cloud analytics
US20190201085A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and generator control
US20190200980A1 (en)2017-12-282019-07-04Ethicon LlcSurgical system for presenting information interpreted from external data
US20190201102A1 (en)2017-12-282019-07-04Ethicon LlcSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US20190201091A1 (en)2017-12-282019-07-04Ethicon LlcRadio frequency energy device for delivering combined electrical signals
US20190201043A1 (en)2017-12-282019-07-04Ethicon LlcDetection of end effector emersion in liquid
US20190201080A1 (en)2017-12-282019-07-04Ethicon LlcUltrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US20190201074A1 (en)2017-12-282019-07-04Ethicon LlcBipolar combination device that automatically adjusts pressure based on energy modality
US20190201158A1 (en)2017-12-282019-07-04Ethicon LlcControl of a surgical system through a surgical barrier
US20190201076A1 (en)2016-09-132019-07-04Olympus CorporationEnergy treatment system and output control method thereof
US20190200986A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument cartridge sensor assemblies
US20190200977A1 (en)2017-12-282019-07-04Ethicon LlcMethod for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US20190206050A1 (en)2017-12-282019-07-04Ethicon LlcUse of laser light and red-green-blue coloration to determine properties of back scattered light
US20190200906A1 (en)2017-12-282019-07-04Ethicon LlcDual cmos array imaging
US20190200998A1 (en)2017-12-282019-07-04Ethicon LlcMethod for circular stapler control algorithm adjustment based on situational awareness
US20190200987A1 (en)2017-12-282019-07-04Ethicon LlcVariable output cartridge sensor assembly
US20190206563A1 (en)2017-12-282019-07-04Ethicon LlcMethod for adaptive control schemes for surgical network control and interaction
US20190206569A1 (en)2017-12-282019-07-04Ethicon LlcMethod of cloud based data analytics for use with the hub
US20190201090A1 (en)2017-12-282019-07-04Ethicon LlcCapacitive coupled return path pad with separable array elements
US20190201129A1 (en)2017-12-282019-07-04Ethicon LlcImage capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US20190201104A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub spatial awareness to determine devices in operating theater
US10342602B2 (en)2015-03-172019-07-09Ethicon LlcManaging tissue treatment
US10342623B2 (en)2014-03-122019-07-09Proximed, LlcSurgical guidance systems, devices, and methods
US10349824B2 (en)2013-04-082019-07-16Apama Medical, Inc.Tissue mapping and visualization systems
US10350016B2 (en)2016-03-172019-07-16Intuitive Surgical Operations, Inc.Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10349941B2 (en)2015-05-272019-07-16Covidien LpMulti-fire lead screw stapling device
US10349939B2 (en)2015-03-252019-07-16Ethicon LlcMethod of applying a buttress to a surgical stapler
US10362179B2 (en)2015-01-092019-07-23Tracfone Wireless, Inc.Peel and stick activation code for activating service for a wireless device
US10357184B2 (en)2012-06-212019-07-23Globus Medical, Inc.Surgical tool systems and method
US10357247B2 (en)2016-04-152019-07-23Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US20190224434A1 (en)2018-01-172019-07-25Zoll Medical CorporationSystems and methods for assisting patient airway management
US10363037B2 (en)2016-04-182019-07-30Ethicon LlcSurgical instrument system comprising a magnetic lockout
US10363032B2 (en)2016-04-202019-07-30Ethicon LlcSurgical stapler with hydraulic deck control
US10368894B2 (en)2015-12-212019-08-06Ethicon LlcSurgical instrument with variable clamping force
US10368865B2 (en)2015-12-302019-08-06Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10368876B2 (en)2015-01-152019-08-06Covidien LpEndoscopic reposable surgical clip applier
US10368903B2 (en)2012-10-042019-08-06Aesculap AgWidth-adjustable cutting instrument for transapical aortic valve resectioning
US10376305B2 (en)2016-08-052019-08-13Ethicon LlcMethods and systems for advanced harmonic energy
US10378893B2 (en)2016-07-292019-08-13Ca, Inc.Location detection sensors for physical devices
US10376338B2 (en)2014-05-132019-08-13Covidien LpSurgical robotic arm support systems and methods of use
US10386990B2 (en)2009-09-222019-08-20Mederi Rf, LlcSystems and methods for treating tissue with radiofrequency energy
US10383518B2 (en)2015-03-312019-08-20Midmark CorporationElectronic ecosystem for medical examination room
US10384021B2 (en)2013-09-272019-08-20W.O.M. World Of Medicine GmbhPressure-maintaining smoke evacuation in an insufflator
US20190254759A1 (en)2016-11-042019-08-22Intuitive Surgical Operations, Inc.Reconfigurable display in computer-assisted tele-operated surgery
US10390895B2 (en)2016-08-162019-08-27Ethicon LlcControl of advancement rate and application force based on measured forces
US10390831B2 (en)2015-11-102019-08-27Covidien LpEndoscopic reposable surgical clip applier
US10390718B2 (en)2015-03-202019-08-27East Carolina UniversityMulti-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10390794B2 (en)2012-08-072019-08-27Canon Medical Systems CorporationUltrasound diagnostic apparatus and ultrasound probe
US20190261984A1 (en)2018-02-272019-08-29Applied Medical Resources CorporationSurgical stapler having a powered handle
US10404521B2 (en)2015-01-142019-09-03Datto, Inc.Remotely configurable routers with failover features, and methods and apparatus for reliable web-based administration of same
US10398517B2 (en)2016-08-162019-09-03Ethicon LlcSurgical tool positioning based on sensed parameters
US10404801B2 (en)2011-11-082019-09-03DISH Technologies L.L.C.Reconfiguring remote controls for different devices in a network
US10398434B2 (en)2017-06-292019-09-03Ethicon LlcClosed loop velocity control of closure member for robotic surgical instrument
US10398348B2 (en)2017-10-192019-09-03Biosense Webster (Israel) Ltd.Baseline impedance maps for tissue proximity indications
US10398521B2 (en)2014-03-172019-09-03Intuitive Surgical Operations, Inc.System and method for recentering imaging devices and input controls
US20190272917A1 (en)2018-03-052019-09-05Medtech S.A.Robotically-assisted surgical procedure feedback techniques
US10405859B2 (en)2016-04-152019-09-10Ethicon LlcSurgical instrument with adjustable stop/start control during a firing motion
US20190274752A1 (en)2018-03-082019-09-12Ethicon LlcFine dissection mode for tissue classification
US20190274717A1 (en)2018-03-082019-09-12Ethicon LlcMethods for controlling temperature in ultrasonic device
US20190274716A1 (en)2018-03-082019-09-12Ethicon LlcDetermining the state of an ultrasonic end effector
US20190274714A1 (en)2018-03-082019-09-12Ethicon LlcSmart blade application for reusable and disposable devices
US20190278262A1 (en)2016-12-012019-09-12Kinze Manufacturing, Inc.Systems, methods, and/or apparatus for providing a user display and interface for use with an agricultural implement
US10417446B2 (en)2015-03-102019-09-17Fujifilm CorporationInformation management apparatus and method for medical care data, and non-transitory computer readable medium
US20190282311A1 (en)2016-11-112019-09-19Intuitive Surgical Operations, Inc.Teleoperated surgical system with patient health records based instrument control
US10422727B2 (en)2014-08-102019-09-24Harry Leon PliskinContaminant monitoring and air filtration system
US10420559B2 (en)2016-02-112019-09-24Covidien LpSurgical stapler with small diameter endoscopic portion
US10420620B2 (en)2015-03-102019-09-24Covidien LpRobotic surgical systems, instrument drive units, and drive assemblies
US10420865B2 (en)2014-03-062019-09-24Stryker CorporationMedical/surgical waste collection unit with a light assembly separate from the primary display, the light assembly presenting information about the operation of the system by selectively outputting light
US20190290389A1 (en)2016-05-262019-09-26Covidien LpCannula assemblies for use with robotic surgical systems
US10426471B2 (en)2016-12-212019-10-01Ethicon LlcSurgical instrument with multiple failure response modes
US10426466B2 (en)2015-04-222019-10-01Covidien LpHandheld electromechanical surgical system
US10426481B2 (en)2014-02-242019-10-01Ethicon LlcImplantable layer assemblies
US10426467B2 (en)2016-04-152019-10-01Ethicon LlcSurgical instrument with detection sensors
US20190298354A1 (en)2018-03-282019-10-03Ethicon LlcSurgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US20190298357A1 (en)2018-03-282019-10-03Ethicon LlcSurgical instrument comprising a jaw closure lockout
US20190298355A1 (en)2018-03-282019-10-03Ethicon LlcRotary driven firing members with different anvil and channel engagement features
US20190298343A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with cartridge compatible closure and firing lockout arrangements
US20190298353A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with asymmetric closure features
US20190298352A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with improved rotary driven closure systems
US20190298356A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US20190298464A1 (en)2018-03-292019-10-03Intuitive Surgical Operations, Inc.Teleoperated surgical instruments
US20190298346A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US20190311802A1 (en)2018-04-102019-10-10DGSHAPE CorporationSurgical instrument management system
US20190307520A1 (en)2016-06-032019-10-10Covidien LpPassive axis system for robotic surgical systems
US10441279B2 (en)2015-03-062019-10-15Ethicon LlcMultiple level thresholds to modify operation of powered surgical instruments
US10441344B2 (en)2008-04-102019-10-15Erbe Elektromedizin GmbhSurgical apparatus comprising a nerve testing device
US10441345B2 (en)2009-10-092019-10-15Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US20190314015A1 (en)2018-03-282019-10-17Ethicon LlcSurgical instrument comprising an adaptive control system
US20190314016A1 (en)2014-04-162019-10-17Ethicon LlcFastener cartridge comprising non-uniform fasteners
US20190314081A1 (en)2009-03-052019-10-17Intuitive Surgical Operations, Inc.Cut and seal instrument
US10448948B2 (en)2016-02-122019-10-22Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US20190320929A1 (en)2015-10-052019-10-24Infobionic, Inc.Electrode patch for health monitoring
US10456193B2 (en)2016-05-032019-10-29Ethicon LlcMedical device with a bilateral jaw configuration for nerve stimulation
US10456137B2 (en)2016-04-152019-10-29Ethicon LlcStaple formation detection mechanisms
US20190333626A1 (en)2016-06-232019-10-31Siemens Healthcare GmbhSystem and method for artificial agent based cognitive operating rooms
US10463365B2 (en)2013-10-172019-11-05Covidien LpChip assembly for surgical instruments
US10463371B2 (en)2016-11-292019-11-05Covidien LpReload assembly with spent reload indicator
US10463436B2 (en)2015-07-222019-11-05Cmr Surgical LimitedDrive mechanisms for robot arms
US10470791B2 (en)2015-12-302019-11-12Ethicon LlcSurgical instrument with staged application of electrosurgical and ultrasonic energy
US10471254B2 (en)2014-05-122019-11-12Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US10470684B2 (en)2012-01-262019-11-12Autonomix Medical, Inc.Controlled sympathectomy and micro-ablation systems and methods
US10478544B2 (en)2014-09-252019-11-19Nxstage Medical, Inc.Medicament preparation and treatment devices, methods, and systems
US10478182B2 (en)2012-10-182019-11-19Covidien LpSurgical device identification
US10478189B2 (en)2015-06-262019-11-19Ethicon LlcMethod of applying an annular array of staples to tissue
US10478185B2 (en)2017-06-022019-11-19Covidien LpTool assembly with minimal dead space
US10485450B2 (en)2016-08-302019-11-26Mako Surgical Corp.Systems and methods for intra-operative pelvic registration
US10485543B2 (en)2016-12-212019-11-26Ethicon LlcAnvil having a knife slot width
US10498269B2 (en)2007-10-052019-12-03Covidien LpPowered surgical stapling device
US10492784B2 (en)2016-11-082019-12-03Covidien LpSurgical tool assembly with compact firing assembly
US10496788B2 (en)2012-09-132019-12-03Parkland Center For Clinical InnovationHolistic hospital patient care and management system and method for automated patient monitoring
US10492783B2 (en)2016-04-152019-12-03Ethicon, LlcSurgical instrument with improved stop/start control during a firing motion
US20190365569A1 (en)2017-02-092019-12-05Norlase ApsApparatus for Photothermal Ophthalmic Treatment
US10499847B2 (en)2012-10-312019-12-10Covidien LpSurgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10499994B2 (en)2014-02-272019-12-10University Surgical Associates, Inc.Interactive display for surgery with mother and daughter video feeds
US10499891B2 (en)2015-12-102019-12-10Cmr Surgical LimitedPulley arrangement for articulating a surgical instrument
US20190374140A1 (en)2018-06-082019-12-12East Carolina UniversityDetermining Peripheral Oxygen Saturation (SpO2) and Hemoglobin Concentration Using Multi-Spectral Laser Imaging (MSLI) Methods and Systems
US20190374292A1 (en)2018-06-062019-12-12Verily Life Sciences LlcSystems and methods for fleet management of robotic surgical systems
US20190378610A1 (en)2018-06-062019-12-12Verily Life Sciences LlcRobotic surgery using multi-user authentication without credentials
US10507278B2 (en)2016-05-232019-12-17Boston Scientific Scimed, Inc.Fluidic devices, methods, and systems
US10507068B2 (en)2015-06-162019-12-17Covidien LpRobotic surgical system torque transduction sensing
US10510267B2 (en)2013-12-202019-12-17Intuitive Surgical Operations, Inc.Simulator system for medical procedure training
US10512509B2 (en)2013-03-132019-12-24Stryker CorporationSystems and methods for establishing virtual constraint boundaries
US10512499B2 (en)2015-06-192019-12-24Covidien LpSystems and methods for detecting opening of the jaws of a vessel sealer mid-seal
US10512413B2 (en)2014-08-262019-12-24Avent, Inc.Method and system for identification of source of chronic pain and treatment
US10512461B2 (en)2014-05-152019-12-24Covidien LpSurgical fastener applying apparatus
US10512514B2 (en)2005-05-192019-12-24Intuitive Surgical Operations, Inc.Software center and highly configurable robotic systems for surgery and other uses
US10517686B2 (en)2015-10-302019-12-31Covidien LpHaptic feedback controls for a robotic surgical system interface
US10517588B2 (en)2011-08-082019-12-31Covidien LpSurgical fastener applying apparatus
US20200000470A1 (en)2017-03-172020-01-02Covidien LpAnvil plate for a surgical stapling instrument
US20200000509A1 (en)2017-03-152020-01-02Olympus CorporationEnergy source apparatus
US10531579B2 (en)2016-05-042020-01-07Shenzhen China Star Optoelectronics Technology Co., LtdDisplay apparatus, backplane and mold for making backplane bracket
US10536617B2 (en)2013-06-052020-01-14Arizona Board Of Regents On Behalf Of The University Of ArizonaDual-view probe for illumination and imaging, and use thereof
US10532330B2 (en)2011-08-082020-01-14California Institute Of TechnologyFiltration membranes, and related nano and/or micro fibers, composites, methods and systems
US10531929B2 (en)2016-08-162020-01-14Ethicon LlcControl of robotic arm motion based on sensed load on cutting tool
US10537396B2 (en)2011-01-072020-01-21Restoration Robotics, Inc.Methods and systems for modifying a parameter of an automated procedure
US10537351B2 (en)2016-01-152020-01-21Ethicon LlcModular battery powered handheld surgical instrument with variable motor control limits
US10542978B2 (en)2011-05-272020-01-28Covidien LpMethod of internally potting or sealing a handheld medical device
US10542979B2 (en)2016-06-242020-01-28Ethicon LlcStamped staples and staple cartridges using the same
US10548673B2 (en)2016-08-162020-02-04Ethicon LlcSurgical tool with a display
US10548612B2 (en)2009-12-222020-02-04Cook Medical Technologies LlcMedical devices with detachable pivotable jaws
US10552574B2 (en)2013-11-222020-02-04Spinal Generations, LlcSystem and method for identifying a medical device
US20200038120A1 (en)2017-02-172020-02-06Nz Technologies Inc.Methods and systems for touchless control of surgical environment
US10555750B2 (en)2016-08-252020-02-11Ethicon LlcUltrasonic surgical instrument with replaceable blade having identification feature
US10555748B2 (en)2016-05-252020-02-11Ethicon LlcFeatures and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument
US10555769B2 (en)2016-02-222020-02-11Ethicon LlcFlexible circuits for electrosurgical instrument
US10555675B2 (en)2015-05-152020-02-11Gauss Surgical, Inc.Method for projecting blood loss of a patient during a surgery
US20200046353A1 (en)2018-08-132020-02-13Ethicon LlcClamping assembly for linear surgical stapler
US10561560B2 (en)2013-03-122020-02-18Biolase, Inc.Dental laser unit with communication link to assistance center
US10561471B2 (en)2015-02-052020-02-18Olympus CorporationManipulator
US10561349B2 (en)2016-03-312020-02-18Dexcom, Inc.Systems and methods for display device and sensor electronics unit communication
US10561470B2 (en)2013-03-152020-02-18Intuitive Surgical Operations, Inc.Software configurable manipulator degrees of freedom
US10561753B2 (en)2016-03-022020-02-18Asp Global Manufacturing GmbhMethod of sterilizing medical devices, analyzing biological indicators, and linking medical device sterilization equipment
US10565170B2 (en)2008-12-232020-02-18Roche Diabetes Care, Inc.Structured testing method for diagnostic or therapy support of a patient with a chronic disease and devices thereof
US20200054326A1 (en)2018-08-202020-02-20Ethicon LlcSurgical stapler anvils with staple directing protrusions and tissue stability features
US20200054317A1 (en)2018-05-042020-02-20Arch Day Design, LlcSuture passing device
US20200054321A1 (en)2018-08-202020-02-20Ethicon LlcSurgical instruments with progressive jaw closure arrangements
US20200054323A1 (en)2018-08-202020-02-20Ethicon LlcMethod for fabricating surgical stapler anvils
US20200054330A1 (en)2018-08-202020-02-20Ethicon LlcArticulatable motor powered surgical instruments with dedicated articulation motor arrangements
US20200054322A1 (en)2018-08-202020-02-20Ethicon LlcFabricating techniques for surgical stapler anvils
US20200054320A1 (en)2018-08-202020-02-20Ethicon LlcMethod for operating a powered articulatable surgical instrument
US20200054328A1 (en)2018-08-202020-02-20Ethicon LlcPowered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10568626B2 (en)2016-12-212020-02-25Ethicon LlcSurgical instruments with jaw opening features for increasing a jaw opening distance
USD876466S1 (en)2018-03-292020-02-25Mitsubishi Electric CorporationDisplay screen with graphical user interface
US10568704B2 (en)2016-09-212020-02-25Verb Surgical Inc.User console system for robotic surgery
US10575868B2 (en)2013-03-012020-03-03Ethicon LlcSurgical instrument with coupler assembly
US10582931B2 (en)2016-02-242020-03-10Covidien LpEndoscopic reposable surgical clip applier
US10586074B2 (en)2016-12-202020-03-10Privacy Analytics Inc.Smart de-identification using date jittering
US10582962B2 (en)2016-01-232020-03-10Covidien LpSystem and method for harmonic control of dual-output generators
US10582964B2 (en)2006-01-242020-03-10Covidien LpMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US20200078080A1 (en)2018-09-072020-03-12Ethicon LlcEnergy module for driving multiple energy modalities
US20200078096A1 (en)2016-06-302020-03-12Intuitive Surgical Operations, Inc.Systems and methods for fault reaction mechanisms for medical robotic systems
US20200078071A1 (en)2018-09-072020-03-12Ethicon LlcInstrument tracking arrangement based on real time clock information
US20200078120A1 (en)2018-09-072020-03-12Ethicon LlcModular surgical energy system with module positional awareness with digital logic
US10588629B2 (en)2009-11-202020-03-17Covidien LpSurgical console and hand-held surgical device
US10588711B2 (en)2014-12-162020-03-17Intuitive Surgical Operations, Inc.Ureter detection using waveband-selective imaging
US10592067B2 (en)2016-08-122020-03-17Boston Scientific Scimed, Inc.Distributed interactive medical visualization system with primary/secondary interaction features
US20200090808A1 (en)2018-09-072020-03-19Ethicon LlcFirst and second communication protocol arrangement for driving primary and secondary devices through a single port
US10595930B2 (en)2015-10-162020-03-24Ethicon LlcElectrode wiping surgical device
US10595952B2 (en)2014-12-312020-03-24Sight Medical, LlcProcess and apparatus for managing medical device selection and implantation
US10602007B2 (en)2017-07-212020-03-24Toshibe Tec Kabushiki KaishaInformation processing apparatus configured to block inputs from an operation panel when the operation panel is swiveled
US10603128B2 (en)2014-10-072020-03-31Covidien LpHandheld electromechanical surgical system
US10602848B2 (en)2013-01-312020-03-31Enrique Ramirez MagañaTheater seating system with reclining seats and comfort divider
US20200106220A1 (en)2018-09-072020-04-02Ethicon LlcFlexible hand-switch circuit
US10610313B2 (en)2014-03-312020-04-07Intuitive Surgical Operations, Inc.Surgical instrument with shiftable transmission
US10610286B2 (en)2015-09-302020-04-07Ethicon LlcTechniques for circuit topologies for combined generator
US10617412B2 (en)2015-03-062020-04-14Ethicon LlcSystem for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617484B2 (en)2015-04-232020-04-14Sri InternationalHyperdexterous surgical system user interface devices
US10617413B2 (en)2016-04-012020-04-14Ethicon LlcClosure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10631423B2 (en)2014-02-042020-04-21Covidien LpAuthentication system for reusable surgical instruments
US10624667B2 (en)2016-05-202020-04-21Ethicon LlcSystem and method to track usage of surgical instrument
US10631917B2 (en)2012-08-282020-04-28Covidien LpAdjustable electrosurgical pencil
US10631912B2 (en)2010-04-302020-04-28Medtronic Xomed, Inc.Interface module for use with nerve monitoring and electrosurgery
US10631858B2 (en)2016-03-172020-04-28Intuitive Surgical Operations, Inc.Stapler with cable-driven advanceable clamping element and distal pulley
US10631916B2 (en)2017-11-292020-04-28Megadyne Medical Products, Inc.Filter connection for a smoke evacuation device
US10631939B2 (en)2012-11-022020-04-28Intuitive Surgical Operations, Inc.Systems and methods for mapping flux supply paths
US10639027B2 (en)2015-10-272020-05-05Ethicon LlcSuturing instrument cartridge with torque limiting features
US10639185B2 (en)2014-04-252020-05-05The Trustees Of Columbia University In The City Of New YorkSpinal treatment devices, methods, and systems
US10639039B2 (en)2015-08-242020-05-05Ethicon LlcSurgical stapler buttress applicator with multi-zone platform for pressure focused release
US10639037B2 (en)2017-06-282020-05-05Ethicon LlcSurgical instrument with axially movable closure member
US10639111B2 (en)2015-09-252020-05-05Covidien LpSurgical robotic assemblies and instrument adapters thereof
US10653489B2 (en)2015-05-112020-05-19Covidien LpCoupling instrument drive unit and robotic surgical instrument
US10656720B1 (en)2015-01-162020-05-19Ultrahaptics IP Two LimitedMode switching for integrated gestural interaction and multi-user collaboration in immersive virtual reality environments
US10653476B2 (en)2015-03-122020-05-19Covidien LpMapping vessels for resecting body tissue
US20200162896A1 (en)2017-05-222020-05-21Becton, Dickinson And CompanySystems, apparatuses and methods for secure wireless pairing between two devices using embedded out-of-band (oob) key generation
US10660705B2 (en)2013-03-152020-05-26Synaptive Medical (Barbados) Inc.Intermodal synchronization of surgical data
US20200168323A1 (en)2017-03-082020-05-28Deborah T. BullingtonDirectional signal fencing for medical appointment progress tracking
US10667877B2 (en)2015-06-192020-06-02Covidien LpControlling robotic surgical instruments with bidirectional coupling
US10675104B2 (en)2015-06-192020-06-09Covidien LpRobotic surgical assemblies
US10679758B2 (en)2015-08-072020-06-09Abbott Cardiovascular Systems Inc.System and method for supporting decisions during a catheterization procedure
US10674897B2 (en)2015-05-122020-06-09270 Surgical Ltd.Dynamic field of view endoscope
US10677764B2 (en)2012-06-112020-06-09Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US10675100B2 (en)2017-03-062020-06-09Covidien LpSystems and methods for improving medical instruments and devices
US20200178760A1 (en)2017-08-312020-06-11Sony CorporationMedical image processing apparatus, medical image processing system, and driving method of medical image processing apparatus
US10686805B2 (en)2015-12-112020-06-16Servicenow, Inc.Computer network threat assessment
US20200193600A1 (en)2018-12-142020-06-18Acclarent, Inc.Surgical system with combination of sensor-based navigation and endoscopy
US10687806B2 (en)2015-03-062020-06-23Ethicon LlcAdaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10687810B2 (en)2016-12-212020-06-23Ethicon LlcStepped staple cartridge with tissue retention and gap setting features
US10687905B2 (en)2015-08-312020-06-23KB Medical SARobotic surgical systems and methods
US20200203004A1 (en)2018-12-222020-06-25General Electric CompanySystems and methods for predicting outcomes using raw data
US20200197027A1 (en)2017-06-092020-06-25Stryker CorporationSurgical Systems With Twist-Lock Battery Connection
US10695134B2 (en)2016-08-252020-06-30Verily Life Sciences LlcMotion execution of a robotic system
US10695081B2 (en)2017-12-282020-06-30Ethicon LlcControlling a surgical instrument according to sensed closure parameters
US20200214699A1 (en)2015-03-252020-07-09Ethicon LlcSurgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US20200222149A1 (en)2018-08-132020-07-16Covidien LpSurgical devices with moisture control
US20200222079A1 (en)2014-02-112020-07-16Vanderbilt UniversitySystem, method, and apparatus for configuration, design, and operation of an active cannula robot
US20200226751A1 (en)2019-01-102020-07-16Verily Life Sciences LlcSurgical workflow and activity detection based on surgical videos
US10716489B2 (en)2014-10-102020-07-21Oslo Universitetssykehus HfDetermining biological tissue type
US10716583B2 (en)2014-05-192020-07-21Walk Vascular, LlcSystems and methods for removal of blood and thrombotic material
US10716473B2 (en)2016-03-222020-07-21Koninklijke Philips N.V.Automated procedure-determination and decision-generation
US10716615B2 (en)2016-01-152020-07-21Ethicon LlcModular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10716639B2 (en)2015-03-102020-07-21Covidien LpMeasuring health of a connector member of a robotic surgical system
US10717194B2 (en)2016-02-262020-07-21Intuitive Surgical Operations, Inc.System and method for collision avoidance using virtual boundaries
US20200230803A1 (en)2017-10-022020-07-23Okamura CorporationManagement system and control method
US10722292B2 (en)2013-05-312020-07-28Covidien LpSurgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US10722222B2 (en)2012-12-142020-07-28Covidien LpSurgical system including a plurality of handle assemblies
US10722233B2 (en)2016-04-072020-07-28Intuitive Surgical Operations, Inc.Stapling cartridge
US20200237372A1 (en)2018-02-112020-07-30Chul Hi ParkDevice and Method for Assisting Selection of Surgical Staple Height
US20200237452A1 (en)2018-08-132020-07-30Theator inc.Timeline overlay on surgical video
US10729458B2 (en)2011-03-302020-08-04Covidien LpUltrasonic surgical instruments
US10733267B2 (en)2015-02-272020-08-04Surgical Black Box LlcSurgical data control system
US10736219B2 (en)2016-05-262020-08-04Covidien LpInstrument drive units
US10729509B2 (en)2017-12-192020-08-04Ethicon LlcSurgical instrument comprising closure and firing locking mechanism
US10736705B2 (en)2016-12-202020-08-11Verb Surgical Inc.Sterile adapter with integrated wireless interface for use in a robotic surgical system
US10736498B2 (en)2015-06-022020-08-11Olympus CorporationSpecial light endoscope
US10736636B2 (en)2014-12-102020-08-11Ethicon LlcArticulatable surgical instrument system
US10743872B2 (en)2017-09-292020-08-18Ethicon LlcSystem and methods for controlling a display of a surgical instrument
USD893717S1 (en)2017-06-282020-08-18Ethicon LlcStaple cartridge for surgical instrument
US10748115B2 (en)2014-08-012020-08-18Smith & Nephew, Inc.Providing implants for surgical procedures
US20200261080A1 (en)2019-02-192020-08-20Ethicon LlcMethod for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US20200261081A1 (en)2019-02-192020-08-20Ethicon LlcSurgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US20200261086A1 (en)2019-02-192020-08-20Ethicon LlcInsertable deactivator element for surgical stapler lockouts
US20200261075A1 (en)2019-02-192020-08-20Ethicon LlcUniversal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US20200261083A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridge retainers with frangible retention features and methods of using same
US10751052B2 (en)2017-08-102020-08-25Ethicon LlcSurgical device with overload mechanism
US10751768B2 (en)2015-12-142020-08-25Buffalo Filter LlcMethod and apparatus for attachment and evacuation
US10751136B2 (en)2016-05-182020-08-25Virtual Incision CorporationRobotic surgical devices, systems and related methods
US20200273581A1 (en)2019-02-212020-08-27Theator inc.Post discharge risk prediction
US10758229B2 (en)2016-12-212020-09-01Ethicon LlcSurgical instrument comprising improved jaw control
US10758310B2 (en)2017-12-282020-09-01Ethicon LlcWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US10758294B2 (en)2015-01-142020-09-01Gyrus Medical LimitedElectrosurgical system
US20200275928A1 (en)2012-06-282020-09-03Ethicon LlcSurgical instrument system including replaceable end effectors
US10765470B2 (en)2015-06-302020-09-08Ethicon LlcSurgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10765376B2 (en)2014-04-092020-09-08University Of RochesterMethod and apparatus to diagnose the metastatic or progressive potential of cancer, fibrosis and other diseases
US10765427B2 (en)2017-06-282020-09-08Ethicon LlcMethod for articulating a surgical instrument
US20200281665A1 (en)2016-03-042020-09-10Covidien LpElectromechanical surgical systems and robotic surgical instruments thereof
US10772688B2 (en)2015-10-302020-09-15Covidien LpInput handles for robotic surgical systems having visual feedback
US10772630B2 (en)2015-11-132020-09-15Intuitive Surgical Operations, Inc.Staple pusher with lost motion between ramps
US10772673B2 (en)2016-05-022020-09-15Covidien LpSurgical energy system with universal connection features
US10779821B2 (en)2018-08-202020-09-22Ethicon LlcSurgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10783634B2 (en)2017-11-222020-09-22General Electric CompanySystems and methods to deliver point of care alerts for radiological findings
US10779897B2 (en)2015-06-232020-09-22Covidien LpRobotic surgical assemblies
US10779900B2 (en)2015-12-292020-09-22Covidien LpRobotic surgical systems and instrument drive assemblies
US10779818B2 (en)2007-10-052020-09-22Covidien LpPowered surgical stapling device
US10786298B2 (en)2016-03-012020-09-29Covidien LpSurgical instruments and systems incorporating machine learning based tissue identification and methods thereof
US10786327B2 (en)2016-10-032020-09-29Verb Surgical Inc.Immersive three-dimensional display for robotic surgery
US10786317B2 (en)2017-12-112020-09-29Verb Surgical Inc.Active backdriving for a robotic arm
US20200305945A1 (en)2019-03-292020-10-01Ethicon LlcModular surgical energy system with module positional awareness sensing with time counter
US20200305924A1 (en)2019-03-292020-10-01Ethicon LlcAutomatic ultrasonic energy activation circuit design for modular surgical systems
US10792118B2 (en)2015-06-232020-10-06Matrix It Medical Tracking Systems, Inc.Sterile implant tracking device, system and method of use
US10792422B2 (en)2014-11-102020-10-06White Bear Medical LLCDynamically controlled treatment protocols for autonomous treatment systems
US10792038B2 (en)2014-09-152020-10-06Applied Medical Resources CorporationSurgical stapler with self-adjusting staple height
US10803977B2 (en)2014-09-152020-10-13Synaptive Medical (Barbados) Inc.System and method for collection, storage and management of medical data
US10799304B2 (en)2015-06-082020-10-13Covidien LpMounting device for surgical systems and method of use
US10806499B2 (en)2017-10-102020-10-20Javier E. CastanedaUniversal orthopedic clamp
US10806453B2 (en)2014-12-302020-10-20Suzhou Touchstone International Medical Science Co., Ltd.Stapling head assembly and suturing and cutting apparatus for endoscopic surgery
US10806532B2 (en)2017-05-242020-10-20KindHeart, Inc.Surgical simulation system using force sensing and optical tracking and robotic surgery system
US10806454B2 (en)2015-09-252020-10-20Covidien LpRobotic surgical assemblies and instrument drive connectors thereof
US10811131B2 (en)2011-07-012020-10-20Baxter International Inc.Systems and methods for intelligent patient interface device
US10806506B2 (en)2015-04-212020-10-20Smith & Nephew, Inc.Vessel sealing algorithm and modes
US10813703B2 (en)2016-08-162020-10-27Ethicon LlcRobotic surgical system with energy application controls
US10818383B2 (en)2015-10-302020-10-27Koninklijke Philips N.V.Hospital matching of de-identified healthcare databases without obvious quasi-identifiers
US20200348662A1 (en)2016-05-092020-11-05Strong Force Iot Portfolio 2016, LlcPlatform for facilitating development of intelligence in an industrial internet of things system
US10828028B2 (en)2016-04-152020-11-10Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10828030B2 (en)2011-10-262020-11-10Intuitive Surgical Operations, Inc.Cartridge status and presence detection
US20200352664A1 (en)2018-02-022020-11-12Covidien LpSurgical robotic system including synchronous and asynchronous networks and a method employing the same
US10835206B2 (en)2015-07-162020-11-17Koninklijke Philips N.V.Wireless ultrasound probe pairing with a mobile ultrasound system
US10842490B2 (en)2017-10-312020-11-24Ethicon LlcCartridge body design with force reduction based on firing completion
US10842522B2 (en)2016-07-152020-11-24Ethicon LlcUltrasonic surgical instruments having offset blades
US10842897B2 (en)2017-01-202020-11-24Éclair Medical Systems, Inc.Disinfecting articles with ozone
US10842492B2 (en)2018-08-202020-11-24Ethicon LlcPowered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10849700B2 (en)2015-09-112020-12-01Covidien LpRobotic surgical system control scheme for manipulating robotic end effectors
US10849697B2 (en)2017-12-282020-12-01Ethicon LlcCloud interface for coupled surgical devices
US10856870B2 (en)2018-08-202020-12-08Ethicon LlcSwitching arrangements for motor powered articulatable surgical instruments
US10856768B2 (en)2018-01-252020-12-08Biosense Webster (Israel) Ltd.Intra-cardiac scar tissue identification using impedance sensing and contact measurement
USD904612S1 (en)2018-08-132020-12-08Ethicon LlcCartridge for linear surgical stapler
US20200388385A1 (en)2019-06-072020-12-10Emblemhealth, Inc.Efficient diagnosis confirmation of a suspect condition for certification and/or re-certification by a clinician
US10864050B2 (en)2016-02-262020-12-15Think Surgical, Inc.Method and system for guiding user positioning of a robot
US10864037B2 (en)2015-07-082020-12-15Research & Business Foundation Sungkyunkwan UniversityApparatus and method for discriminating biological tissue, surgical apparatus using the apparatus
US10863984B2 (en)2015-03-252020-12-15Ethicon LlcLow inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10872684B2 (en)2013-11-272020-12-22The Johns Hopkins UniversitySystem and method for medical data analysis and sharing
US20200405375A1 (en)2019-06-272020-12-31Ethicon LlcRobotic surgical system with safety and cooperative sensing control
US20200405304A1 (en)2017-06-092020-12-31Covidien LpHandheld electromechanical surgical system
US10881399B2 (en)2017-06-202021-01-05Ethicon LlcTechniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881446B2 (en)2016-12-192021-01-05Ethicon LlcVisual displays of electrical pathways
US10881464B2 (en)2015-07-132021-01-05Mako Surgical Corp.Lower extremities leg length calculation method
US10892899B2 (en)2017-12-282021-01-12Ethicon LlcSelf describing data packets generated at an issuing instrument
US10888321B2 (en)2017-06-202021-01-12Ethicon LlcSystems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10892995B2 (en)2017-12-282021-01-12Ethicon LlcSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20210007760A1 (en)2018-02-032021-01-14Caze TechnologiesSurgical systems with sesnsing and machine learning capabilities and methods thereof
US10893884B2 (en)2016-03-042021-01-19Covidien LpUltrasonic instruments for robotic surgical systems
US20210015568A1 (en)2015-06-102021-01-21Intuitive Surgical Operations, Inc.System and method for patient-side instrument control
US10898256B2 (en)2015-06-302021-01-26Ethicon LlcSurgical system with user adaptable techniques based on tissue impedance
US10898105B2 (en)2016-06-062021-01-26Temple University—Of the Commonwealth System of Higher EducationMagnetometer surgical device
US10898189B2 (en)2015-11-132021-01-26Intuitive Surgical Operations, Inc.Push-pull stapler with two degree of freedom wrist
US10903685B2 (en)2017-06-282021-01-26Ethicon LlcSurgical shaft assemblies with slip ring assemblies forming capacitive channels
US10902944B1 (en)2020-01-062021-01-26Carlsmed, Inc.Patient-specific medical procedures and devices, and associated systems and methods
US10898183B2 (en)2017-06-292021-01-26Ethicon LlcRobotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10898280B2 (en)2015-09-252021-01-26Covidien LpRobotic surgical assemblies and electromechanical instruments thereof
US20210022731A1 (en)2019-07-262021-01-28Covidien LpKnife lockout wedge
US20210022809A1 (en)2012-06-212021-01-28Globus Medical, Inc.Robotic fluoroscopic navigation
US10905420B2 (en)2016-04-122021-02-02Applied Medical Resources CorporationReload shaft assembly for surgical stapler
US10905415B2 (en)2015-06-262021-02-02Ethicon LlcSurgical stapler with electromechanical lockout
US10912580B2 (en)2013-12-162021-02-09Ethicon LlcMedical device
US10912567B2 (en)2017-08-292021-02-09Ethicon LlcCircular stapler
US10912619B2 (en)2015-11-122021-02-09Intuitive Surgical Operations, Inc.Surgical system with training or assist functions
US10916415B2 (en)2015-03-062021-02-09Micromass Uk LimitedLiquid trap or separator for electrosurgical applications
US10912559B2 (en)2018-08-202021-02-09Ethicon LlcReinforced deformable anvil tip for surgical stapler anvil
US10930400B2 (en)2012-06-282021-02-23LiveData, Inc.Operating room checklist system
US10932784B2 (en)2017-06-092021-03-02Covidien LpHandheld electromechanical surgical system
US10932872B2 (en)2017-12-282021-03-02Ethicon LlcCloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US10932705B2 (en)2017-05-082021-03-02Masimo CorporationSystem for displaying and controlling medical monitoring data
US10932772B2 (en)2017-06-292021-03-02Ethicon LlcMethods for closed loop velocity control for robotic surgical instrument
US10932804B2 (en)2017-10-302021-03-02Ethicon LlcSurgical instrument with sensor and/or control systems
US10939313B2 (en)2015-11-272021-03-02Samsung Electronics Co., Ltd.Method and apparatus for managing electronic device through wireless communication
US10944728B2 (en)2017-12-282021-03-09Ethicon LlcInteractive surgical systems with encrypted communication capabilities
US10943454B2 (en)2017-12-282021-03-09Ethicon LlcDetection and escalation of security responses of surgical instruments to increasing severity threats
US10950982B2 (en)2011-08-082021-03-16Molex, LlcConnector with tuned channel
US10945727B2 (en)2016-12-212021-03-16Ethicon LlcStaple cartridge with deformable driver retention features
US20210076966A1 (en)2014-09-232021-03-18Surgical Safety Technologies Inc.System and method for biometric data capture for event prediction
US10952732B2 (en)2013-02-212021-03-23Boston Scientific Scimed Inc.Devices and methods for forming an anastomosis
US10954935B2 (en)2016-04-192021-03-23ClearMotion, Inc.Active hydraulic ripple cancellation methods and systems
US10959788B2 (en)2015-06-032021-03-30Covidien LpOffset instrument drive unit
USD914878S1 (en)2018-08-202021-03-30Ethicon LlcSurgical instrument anvil
US10962449B2 (en)2016-03-082021-03-30Hitachi, Ltd.Diagnostic device and diagnostic method for rotary machine
US10966798B2 (en)2015-11-252021-04-06Camplex, Inc.Surgical visualization systems and displays
US10966791B2 (en)2017-12-282021-04-06Ethicon LlcCloud-based medical analytics for medical facility segmented individualization of instrument function
US10966590B2 (en)2015-03-262021-04-06Sony CorporationSurgical system, information processing device, and method
US10973682B2 (en)2014-02-242021-04-13Alcon Inc.Surgical instrument with adhesion optimized edge condition
US10973517B2 (en)2015-11-132021-04-13Intuitive Surgical Operations, Inc.Stapler with composite cardan and screw drive
US10973520B2 (en)2018-03-282021-04-13Ethicon LlcSurgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US10980537B2 (en)2017-06-202021-04-20Ethicon LlcClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10980595B2 (en)2013-09-262021-04-20Covidien LpSystems and methods for estimating tissue parameters using surgical devices
US10980610B2 (en)2016-06-032021-04-20Covidien LpSystems, methods, and computer-readable storage media for controlling aspects of a robotic surgical device and viewer adaptive stereoscopic display
US10987178B2 (en)2017-12-282021-04-27Ethicon LlcSurgical hub control arrangements
US10992698B2 (en)2017-06-052021-04-27Meditechsafe, Inc.Device vulnerability management
US10987102B2 (en)2010-09-302021-04-27Ethicon LlcTissue thickness compensator comprising a plurality of layers
US10993715B2 (en)2016-12-212021-05-04Ethicon LlcStaple cartridge comprising staples with different clamping breadths
US20210128149A1 (en)2019-11-012021-05-06Covidien LpSurgical staple cartridge
US11007022B2 (en)2017-06-292021-05-18Ethicon LlcClosed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11020115B2 (en)2014-02-122021-06-01Cilag Gmbh InternationalDeliverable surgical instrument
US20210192914A1 (en)2017-12-282021-06-24Ethicon LlcSurgical hub and modular device response adjustment based on situational awareness
US20210186454A1 (en)2016-01-112021-06-24Kambiz BehzadiAnatomical locator tags and uses
US11051902B2 (en)2015-09-092021-07-06Koninklijke Philips N.V.System and method for planning and performing a repeat interventional procedure
US11071595B2 (en)2017-12-142021-07-27Verb Surgical Inc.Multi-panel graphical user interface for a robotic surgical system
US11103246B2 (en)2012-07-182021-08-31Covidien LpMulti-fire stapler with electronic counter, lockout, and visual indicator
US20210306176A1 (en)2017-02-102021-09-30Johnson Controls Technology CompanyBuilding management system with space graphs including software components
US11183293B2 (en)2014-11-072021-11-23Koninklijke Philips N.V.Optimized anatomical structure of interest labelling
US11197731B2 (en)2005-10-202021-12-14Intuitive Surgical Operations, Inc.Auxiliary image display and manipulation on a computer display in a medical robotic system
US11273290B2 (en)2014-09-102022-03-15Intuitive Surgical Operations, Inc.Flexible instrument with nested conduits
US11289188B2 (en)2013-03-292022-03-29Koninklijke Philips N.V.Context driven summary view of radiology findings
USD950728S1 (en)2019-06-252022-05-03Cilag Gmbh InternationalSurgical staple cartridge
USD952144S1 (en)2019-06-252022-05-17Cilag Gmbh InternationalSurgical staple cartridge retainer with firing system authentication key
US20220157306A1 (en)2020-11-192022-05-19Carl Zeiss Meditec AgMethod for controlling a microscope, and microscope
US11373755B2 (en)2012-08-232022-06-28Cilag Gmbh InternationalSurgical device drive system including a ratchet mechanism
US11376098B2 (en)2019-06-282022-07-05Cilag Gmbh InternationalSurgical instrument system comprising an RFID system
US11382715B2 (en)2016-03-312022-07-12Sony CorporationJig-holding device and medical observation device
US20220249097A1 (en)2017-12-282022-08-11Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
USD964564S1 (en)2019-06-252022-09-20Cilag Gmbh InternationalSurgical staple cartridge retainer with a closure system authentication key
US11464971B2 (en)2014-08-262022-10-11Avent, Inc.Selective nerve fiber block method and system
US11504191B2 (en)2016-01-192022-11-22Titan Medical Inc.Graphical user interface for a robotic surgical system
US20220406452A1 (en)2017-12-282022-12-22Cilag Gmbh InternationalMethod for operating surgical instrument systems
US20230000518A1 (en)2018-03-082023-01-05Cilag Gmbh InternationalMethods for estimating and controlling state of ultrasonic end effector
US20230037577A1 (en)2017-12-282023-02-09Cilag Gmbh InternationalActivation of energy devices
US20230098870A1 (en)2017-12-282023-03-30Cilag Gmbh InternationalMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20230146947A1 (en)2017-10-302023-05-11Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US20230171304A1 (en)2017-12-282023-06-01Cilag Gmbh InternationalMethod of robotic hub communication, detection, and control
US20230171266A1 (en)2021-11-262023-06-01At&T Intellectual Property Ii, L.P.Method and system for predicting cyber threats using deep artificial intelligence (ai)-driven analytics
US20230190390A1 (en)2017-12-282023-06-22Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness
US20230254257A1 (en)2017-12-282023-08-10Cilag Gmbh InternationalSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9439623B2 (en)*2012-05-222016-09-13Covidien LpSurgical planning system and navigation system
CN107249497B (en)*2015-02-202021-03-16柯惠Lp公司 Operating Room and Surgical Site Awareness

Patent Citations (2972)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1853416A (en)1931-01-241932-04-12Ada P HallTattoo marker
US2222125A (en)1940-03-191940-11-19Rudolph J StehlikNail driver
US3082426A (en)1960-06-171963-03-26George Oliver HalstedSurgical stapling device
US3503396A (en)1967-09-211970-03-31American Hospital Supply CorpAtraumatic surgical clamp
US3584628A (en)1968-10-111971-06-15United States Surgical CorpWire suture wrapping instrument
US3633584A (en)1969-06-101972-01-11Research CorpMethod and means for marking animals for identification
US4041362A (en)1970-01-231977-08-09Canon Kabushiki KaishaMotor control system
US3626457A (en)1970-03-051971-12-07Koppers Co IncSentinel control for cutoff apparatus
US3759017A (en)1971-10-221973-09-18American Air Filter CoLatch for a filter apparatus
US3863118A (en)1973-01-261975-01-28Warner Electric Brake & ClutchClosed-loop speed control for step motors
US3898545A (en)1973-05-251975-08-05Mohawk Data Sciences CorpMotor control circuit
US3932812A (en)1974-03-201976-01-13Peripheral Equipment CorporationMotor speed indicator
US3912121A (en)1974-08-141975-10-14Dickey John CorpControlled population monitor
US3915271A (en)1974-09-251975-10-28Koppers Co IncMethod and apparatus for electronically controlling the engagement of coacting propulsion systems
JPS5191993U (en)1975-01-221976-07-23
US4052649A (en)1975-06-181977-10-04Lear Motors CorporationHand held variable speed drill motor and control system therefor
US4087730A (en)1975-09-181978-05-02Viennatone Gesellschaft M.B.H.Electric control circuit
US4202722A (en)1976-09-221980-05-13Spectra-StripApparatus for making twisted pair multi-conductor ribbon cable with intermittent straight sections
US4412539A (en)1976-10-081983-11-01United States Surgical CorporationRepeating hemostatic clip applying instruments and multi-clip cartridges therefor
US4171700A (en)1976-10-131979-10-23Erbe Elektromedizin Gmbh & Co. KgHigh-frequency surgical apparatus
JPS5373315A (en)1976-12-101978-06-29Sony CorpController for motors
US4157859A (en)1977-05-261979-06-12Clifford TerrySurgical microscope system
EP0000756B1 (en)1977-08-051981-10-21Charles H. KliemanSurgical stapler
GB2037167A (en)1978-11-161980-07-09Corning Glass WorksElectrosurgical cutting instrument
DE3016131A1 (en)1980-04-231981-10-29Siemens AG, 1000 Berlin und 8000 MünchenTelecommunications cable with humidity detector - comprising one bare conductor and one conductor insulated with water-soluble material
JPS57185848A (en)1981-05-121982-11-16Olympus Optical CoHigh frequency output apparatus for electric knife
US4523695A (en)1982-02-101985-06-18Intermedicat GmbhSurgical stapler
US4448193A (en)1982-02-261984-05-15Ethicon, Inc.Surgical clip applier with circular clip magazine
JPS58207752A (en)1982-05-271983-12-03Mitsubishi Electric Corp information transmission device
US4614366A (en)1983-11-181986-09-30Exactident, Inc.Nail identification wafer
US4633874A (en)1984-10-191987-01-06Senmed, Inc.Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4608160A (en)1984-11-051986-08-26Nelson Industries, Inc.System for separating liquids
US4788977A (en)1985-07-041988-12-06Erbe Elektromedizin GmbhHigh-frequency surgical instrument
US4701193A (en)1985-09-111987-10-20Xanar, Inc.Smoke evacuator system for use in laser surgery
US4849752A (en)1985-09-271989-07-18U. S. Philips CorporationMethod and apparatus for circuit units
US5047043A (en)1986-03-111991-09-10Olympus Optical Co., Ltd.Resecting device for living organism tissue utilizing ultrasonic vibrations
US4827911A (en)1986-04-021989-05-09Cooper Lasersonics, Inc.Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4735603A (en)1986-09-101988-04-05James H. GoodsonLaser smoke evacuation system and method
USD303787S (en)1986-10-311989-10-03Messenger Ronald LConnector strain relieving back shell
JPS63315049A (en)1986-11-071988-12-22アルコン ラボラトリーズ,インコーポレイテッドLinear power control for ultrasonic probe having tuning reactance
US4976173A (en)1987-02-241990-12-11Yang Tai HerManual electric tool
US5158585A (en)1988-04-131992-10-27Hitachi, Ltd.Compressor unit and separator therefor
DE3824913A1 (en)1988-07-221990-02-01Thomas HillDevice for monitoring high-frequency (radio-frequency) electric leakage currents
US5042460A (en)1988-10-251991-08-27Olympus Optical Co., Ltd.Ultrasonic treating apparatus with device for inhibiting drive when ultrasonic element is determined to be defective
US4892244B1 (en)1988-11-071991-08-27Ethicon Inc
USRE34519E (en)1988-11-071994-01-25Ethicon, Inc.Surgical stapler cartridge lockout device
US4892244A (en)1988-11-071990-01-09Ethicon, Inc.Surgical stapler cartridge lockout device
US4962681A (en)1988-11-091990-10-16Yang Tai HerModular manual electric appliance
US6155473A (en)1989-05-262000-12-05United States Surgical CorporationLocking mechanism for a surgical fastening apparatus
US5151102A (en)1989-05-311992-09-29Kyocera CorporationBlood vessel coagulation/stanching device
EP0408160A1 (en)1989-07-101991-01-16Kabushiki Kaisha TOPCONLaser surgical apparatus
US5084057A (en)1989-07-181992-01-28United States Surgical CorporationApparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5010341A (en)1989-10-041991-04-23The United States Of America As Represented By The Secretary Of The NavyHigh pulse repetition frequency radar early warning receiver
DE4002843C1 (en)1990-02-011991-04-18Gesellschaft Fuer Geraetebau Mbh, 4600 Dortmund, DeProtective breathing mask with filter - having gas sensors in-front and behind with difference in their signals providing signal for change of filter
US5391144A (en)1990-02-021995-02-21Olympus Optical Co., Ltd.Ultrasonic treatment apparatus
US5035692A (en)1990-02-131991-07-30Nicholas HerbertHemostasis clip applicator
US5026387A (en)1990-03-121991-06-25Ultracision Inc.Method and apparatus for ultrasonic surgical cutting and hemostatis
US5318516A (en)1990-05-231994-06-07Ioan CosmescuRadio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor
EP0473987A1 (en)1990-08-211992-03-11Schott GlaswerkeMethod and apparatus for optoelectrical recognition of disposable medical applicators connected to a laser
US5204669A (en)1990-08-301993-04-20Datacard CorporationAutomatic station identification where function modules automatically initialize
US5156315A (en)1990-09-171992-10-20United States Surgical CorporationArcuate apparatus for applying two-part surgical fasteners
US5253793A (en)1990-09-171993-10-19United States Surgical CorporationApparatus for applying two-part surgical fasteners
US5100402A (en)1990-10-051992-03-31Megadyne Medical Products, Inc.Electrosurgical laparoscopic cauterization electrode
US5275323A (en)1990-11-301994-01-04Ethicon, Inc.Surgical stapler
US5129570A (en)1990-11-301992-07-14Ethicon, Inc.Surgical stapler
US6131789A (en)1990-11-302000-10-17Ethicon, Inc.Surgical stapler
US5445304A (en)1990-12-181995-08-29United States Surgical CorporationSafety device for a surgical stapler cartridge
USD399561S (en)1991-01-241998-10-13Megadyne Medical Products, Inc.Electrical surgical forceps handle
US5217003A (en)1991-03-181993-06-08Wilk Peter JAutomated surgical system and apparatus
US5171247A (en)1991-04-041992-12-15Ethicon, Inc.Endoscopic multiple ligating clip applier with rotating shaft
US5396900A (en)1991-04-041995-03-14Symbiosis CorporationEndoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5189277A (en)1991-04-081993-02-23Thermal Dynamics CorporationModular, stackable plasma cutting apparatus
RU2020860C1 (en)1991-04-111994-10-15Линник Леонид ФеодосьевичBlepharostat
US5160334A (en)1991-04-301992-11-03Utah Medical Products, Inc.Electrosurgical generator and suction apparatus
US5413267A (en)1991-05-141995-05-09United States Surgical CorporationSurgical stapler with spent cartridge sensing and lockout means
US5197962A (en)1991-06-051993-03-30Megadyne Medical Products, Inc.Composite electrosurgical medical instrument
USD327061S (en)1991-07-291992-06-16Motorola, Inc.Radio telephone controller or similar article
US7296724B2 (en)1991-10-182007-11-20United States Surgical CorporationSurgical stapling apparatus
US5397046A (en)1991-10-181995-03-14United States Surgical CorporationLockout mechanism for surgical apparatus
US5584425A (en)1991-10-181996-12-17United States Surgical CorporationLockout mechanism for surgical apparatus
US5242474A (en)1991-11-011993-09-07Sorenson Laboratories, Inc.Dual mode laser smoke evacuation system with sequential filter monitor and vacuum compensation
US5383880A (en)1992-01-171995-01-24Ethicon, Inc.Endoscopic surgical system with sensing means
US5271543A (en)1992-02-071993-12-21Ethicon, Inc.Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US20090048611A1 (en)1992-05-272009-02-19International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
US5749362A (en)1992-05-271998-05-12International Business Machines CorporationMethod of creating an image of an anatomical feature where the feature is within a patient's body
US5906625A (en)1992-06-041999-05-25Olympus Optical Co., Ltd.Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5318563A (en)1992-06-041994-06-07Valley Forge Scientific CorporationBipolar RF generator
US5485947A (en)1992-07-201996-01-23Ethicon, Inc.Linear stapling mechanism with cutting means
US5385544A (en)1992-08-121995-01-31Vidamed, Inc.BPH ablation method and apparatus
US5769791A (en)1992-09-141998-06-23Sextant Medical CorporationTissue interrogating device and methods
US5675227A (en)1992-09-251997-10-07Ge Medical SystemsDevice for maneuvering a radiology appliance
US5626587A (en)1992-10-091997-05-06Ethicon Endo-Surgery, Inc.Method for operating a surgical instrument
JPH06178780A (en)1992-10-161994-06-28Olympus Optical Co LtdSmoke removing system of aeroperitonic device
US5545148A (en)1992-10-241996-08-13Wurster; HelmutEndoscopic sewing instrument
JPH06142113A (en)1992-11-091994-05-24Aika:KkElectric surgery appliance and electromagnetic wave fault preventing device to medical electronic apparatus by electric surgery appliance
US5610811A (en)1992-11-091997-03-11Niti-On Medical Supply Co., Ltd.Surgical instrument file system
JPH06209902A (en)1992-11-301994-08-02Olympus Optical Co LtdPalpation device
US5417699A (en)1992-12-101995-05-23Perclose IncorporatedDevice and method for the percutaneous suturing of a vascular puncture site
US5893849A (en)1992-12-171999-04-13Megadyne Medical Products, Inc.Cautery medical instrument
US5697926A (en)1992-12-171997-12-16Megadyne Medical Products, Inc.Cautery medical instrument
US5807393A (en)*1992-12-221998-09-15Ethicon Endo-Surgery, Inc.Surgical tissue treating device with locking mechanism
US5403327A (en)1992-12-311995-04-04Pilling Weck IncorporatedSurgical clip applier
US5322055A (en)1993-01-271994-06-21Ultracision, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
US5322055B1 (en)1993-01-271997-10-14Ultracision IncClamp coagulator/cutting system for ultrasonic surgical instruments
US5987346A (en)1993-02-261999-11-16Benaron; David A.Device and method for classification of tissue
US5467911A (en)1993-04-271995-11-21Olympus Optical Co., Ltd.Surgical device for stapling and fastening body tissues
US5749893A (en)1993-04-301998-05-12United States Surgical CorporationSurgical instrument having an articulated jaw structure and a detachable knife
US5496317A (en)1993-05-041996-03-05Gyrus Medical LimitedLaparoscopic surgical instrument
US5364003A (en)1993-05-051994-11-15Ethicon Endo-SurgeryStaple cartridge for a surgical stapler
US5439468A (en)1993-05-071995-08-08Ethicon Endo-SurgerySurgical clip applier
US6004269A (en)1993-07-011999-12-21Boston Scientific CorporationCatheters for imaging, sensing electrical potentials, and ablating tissue
US5619881A (en)1993-07-161997-04-15Ohyodo Diesel Co., Ltd.Double-scissors cutter
US5403312A (en)1993-07-221995-04-04Ethicon, Inc.Electrosurgical hemostatic device
US5735848A (en)1993-07-221998-04-07Ethicon, Inc.Electrosurgical stapling device
US5817093A (en)1993-07-221998-10-06Ethicon Endo-Surgery, Inc.Impedance feedback monitor with query electrode for electrosurgical instrument
US5833690A (en)1993-07-221998-11-10Ethicon, Inc.Electrosurgical device and method
US5720287A (en)1993-07-261998-02-24Technomed Medical SystemsTherapy and imaging probe and therapeutic treatment apparatus utilizing it
US5342349A (en)1993-08-181994-08-30Sorenson Laboratories, Inc.Apparatus and system for coordinating a surgical plume evacuator and power generator
US5552685A (en)1993-08-181996-09-03General Electric CompanyApparatus and method for detection and control of circulating currents in a variable speed DC motor
US5503320A (en)1993-08-191996-04-02United States Surgical CorporationSurgical apparatus with indicator
US5607436A (en)1993-10-081997-03-04United States Surgical CorporationApparatus for applying surgical clips
US5800350A (en)1993-11-011998-09-01Polartechnics, LimitedApparatus for tissue type recognition
JPH07132122A (en)1993-11-091995-05-23Olympus Optical Co LtdControl system for medical treatment
US5462545A (en)1994-01-311995-10-31New England Medical Center Hospitals, Inc.Catheter electrodes
US5560372A (en)1994-02-021996-10-01Cory; Philip C.Non-invasive, peripheral nerve mapping device and method of use
US5465895A (en)1994-02-031995-11-14Ethicon Endo-Surgery, Inc.Surgical stapler instrument
US5507773A (en)1994-02-181996-04-16Ethicon Endo-SurgeryCable-actuated jaw assembly for surgical instruments
US5415335A (en)1994-04-071995-05-16Ethicon Endo-SurgerySurgical stapler cartridge containing lockout mechanism
US5693042A (en)1994-04-281997-12-02Ethicon Endo-Surgery, Inc.Identification device for surgical instrument
US5529235A (en)1994-04-281996-06-25Ethicon Endo-Surgery, Inc.Identification device for surgical instrument
US5474566A (en)1994-05-051995-12-12United States Surgical CorporationSelf-contained powered surgical apparatus
US5849022A (en)1994-07-291998-12-15Olympus Optical Co., Ltd.Medical instrument for use in combination with endoscopes
US5496315A (en)1994-08-261996-03-05Megadyne Medical Products, Inc.Medical electrode insulating system
JPH0871072A (en)1994-09-011996-03-19Olympus Optical Co LtdManipulator system for operation
US5643291A (en)1994-09-291997-07-01United States Surgical CorporationSurgical clip applicator
US5695502A (en)1994-09-291997-12-09United States Surgical CorporationSurgical clip applicator
US6678552B2 (en)1994-10-242004-01-13Transscan Medical Ltd.Tissue characterization based on impedance images and on impedance measurements
US5846237A (en)1994-11-181998-12-08Megadyne Medical Products, Inc.Insulated implement
US5531743A (en)1994-11-181996-07-02Megadyne Medical Products, Inc.Resposable electrode
US6036637A (en)1994-12-132000-03-14Olympus Optical Co., Ltd.Treating system utilizing an endoscope
US5836869A (en)1994-12-131998-11-17Olympus Optical Co., Ltd.Image tracking endoscope system
US5673841A (en)1994-12-191997-10-07Ethicon Endo-Surgery, Inc.Surgical instrument
US5613966A (en)1994-12-211997-03-25Valleylab IncSystem and method for accessory rate control
US5610379A (en)1995-02-041997-03-11Nicolay Verwaltungs -GmbhLiquid and gas impenetrable switch
US5654750A (en)1995-02-231997-08-05Videorec Technologies, Inc.Automatic recording system
US5735445A (en)1995-03-071998-04-07United States Surgical CorporationSurgical stapler
US5725542A (en)1995-03-091998-03-10Yoon; InbaeMultifunctional spring clips and cartridges and applicators therefor
US5942333A (en)1995-03-271999-08-24Texas Research InstituteNon-conductive coatings for underwater connector backshells
US5624452A (en)1995-04-071997-04-29Ethicon Endo-Surgery, Inc.Hemostatic surgical cutting or stapling instrument
JPH0928663A (en)1995-05-151997-02-04Olympus Optical Co LtdEndscope
US5775331A (en)1995-06-071998-07-07Uromed CorporationApparatus and method for locating a nerve
JPH08332169A (en)1995-06-081996-12-17Olympus Optical Co LtdIntracoelomscope
US5752644A (en)1995-07-111998-05-19United States Surgical CorporationDisposable loading unit for surgical stapler
US5706998A (en)1995-07-171998-01-13United States Surgical CorporationSurgical stapler with alignment pin locking mechanism
US5718359A (en)1995-08-141998-02-17United States Of America Surgical CorporationSurgical stapler with lockout mechanism
US5693052A (en)1995-09-011997-12-02Megadyne Medical Products, Inc.Coated bipolar electrocautery
USD379346S (en)1995-09-051997-05-20International Business Machines CorporationBattery charger
US5796188A (en)1995-10-051998-08-18Xomed Surgical Products, Inc.Battery-powered medical instrument with power booster
US6283960B1 (en)1995-10-242001-09-04Oratec Interventions, Inc.Apparatus for delivery of energy to a surgical site
US6039734A (en)1995-10-242000-03-21Gyrus Medical LimitedElectrosurgical hand-held battery-operated instrument
JPH09154850A (en)1995-12-111997-06-17Megadain Medical Prod IncApparatus for electric operation
US5836849A (en)1995-12-141998-11-17Bayerische Motoren Werke AktiengesellschaftMethod and apparatus for transmitting torque by using a clutch of an automatic planetary transmission as a start clutch in a motor vehicle
US5746209A (en)1996-01-261998-05-05The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod of and apparatus for histological human tissue characterizationusing ultrasound
US5762255A (en)1996-02-201998-06-09Richard-Allan Medical Industries, Inc.Surgical instrument with improvement safety lockout mechanisms
US5762458A (en)1996-02-201998-06-09Computer Motion, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US20110087238A1 (en)1996-02-202011-04-14Intuitive Surgical Operations, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US5725536A (en)1996-02-201998-03-10Richard-Allen Medical Industries, Inc.Articulated surgical instrument with improved articulation control mechanism
US5820009A (en)1996-02-201998-10-13Richard-Allan Medical Industries, Inc.Articulated surgical instrument with improved jaw closure mechanism
US5797537A (en)1996-02-201998-08-25Richard-Allan Medical Industries, Inc.Articulated surgical instrument with improved firing mechanism
US6010054A (en)1996-02-202000-01-04Imagyn Medical TechnologiesLinear stapling instrument with improved staple cartridge
US6099537A (en)1996-02-262000-08-08Olympus Optical Co., Ltd.Medical treatment instrument
US5673842A (en)1996-03-051997-10-07Ethicon Endo-SurgerySurgical stapler with locking mechanism
WO1997034533A1 (en)1996-03-211997-09-25S.A. Development Of Advanced Medical Products Ltd.Surgical stapler and method of surgical fastening
US6258105B1 (en)1996-04-182001-07-10Charles C. HartMalleable clip applier and method
US7097640B2 (en)1996-06-242006-08-29Intuitive Surgical, Inc.Multi-functional surgical control system and switching interface
US7408439B2 (en)1996-06-242008-08-05Intuitive Surgical, Inc.Method and apparatus for accessing medical data over a network
US8116848B2 (en)1996-06-282012-02-14Ramin ShahidiMethod and apparatus for volumetric image navigation
US7053752B2 (en)1996-08-062006-05-30Intuitive SurgicalGeneral purpose distributed operating room control system
US6752816B2 (en)1996-08-152004-06-22Stryker CorporationPowered surgical handpiece with removable control switch
WO1998008449A1 (en)1996-08-291998-03-05Storz Instrument CompanySurgical handpiece
EP0929263B1 (en)1996-08-292005-11-09Bausch & Lomb IncorporatedMicrosurgical system with plurality of modes/surgical functions
US5997528A (en)1996-08-291999-12-07Bausch & Lomb Surgical, Inc.Surgical system providing automatic reconfiguration
US5724468A (en)1996-09-091998-03-03Lucent Technologies Inc.Electronic backplane device for a fiber distribution shelf in an optical fiber administration system
US7030146B2 (en)1996-09-102006-04-18University Of South CarolinaMethods for treating diabetic neuropathy
US5836909A (en)1996-09-131998-11-17Cosmescu; IoanAutomatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US6109500A (en)1996-10-042000-08-29United States Surgical CorporationLockout mechanism for a surgical stapler
US5843080A (en)1996-10-161998-12-01Megadyne Medical Products, Inc.Bipolar instrument with multi-coated electrodes
US6214000B1 (en)1996-10-302001-04-10Richard P. FleenorCapacitive reusable electrosurgical return electrode
US6582424B2 (en)1996-10-302003-06-24Megadyne Medical Products, Inc.Capacitive reusable electrosurgical return electrode
US20010056237A1 (en)1996-11-192001-12-27Cane Michael RogerMethod of and apparatus for investigating tissue histology
US5766186A (en)1996-12-031998-06-16Simon Fraser UniversitySuturing device
US20180116735A1 (en)1996-12-122018-05-03Intuitive Surgical Operations, Inc.Surgical robotic tools, data architecture, and use
US20080129465A1 (en)1996-12-162008-06-05Rao Raman KSystem for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices
US6030437A (en)1997-03-112000-02-29U.S. Philips CorporationGas purifier
US6699187B2 (en)1997-03-272004-03-02Medtronic, Inc.System and method for providing remote expert communications and video capabilities for use during a medical procedure
US7041941B2 (en)1997-04-072006-05-09Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US5947996A (en)1997-06-231999-09-07Medicor CorporationYoke for surgical instrument
US6863650B1 (en)1997-07-242005-03-08Karl Storz Gmbh & Co. KgEndoscopic instrument for performing endoscopic procedures or examinations
US5878938A (en)1997-08-111999-03-09Ethicon Endo-Surgery, Inc.Surgical stapler with improved locking mechanism
US6102907A (en)1997-08-152000-08-15Somnus Medical Technologies, Inc.Apparatus and device for use therein and method for ablation of tissue
US6079606A (en)1997-09-232000-06-27United States Surgical CorporationSurgical stapling apparatus
US6066137A (en)1997-10-032000-05-23Megadyne Medical Products, Inc.Electric field concentrated electrosurgical electrode
US6039735A (en)1997-10-032000-03-21Megadyne Medical Products, Inc.Electric field concentrated electrosurgical electrode
US5873873A (en)1997-10-101999-02-23Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator apparatus having improved clamp mechanism
US5980510A (en)1997-10-101999-11-09Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
JPH11151247A (en)1997-11-211999-06-08Slt Japan:KkLaser treatment device
US7044949B2 (en)1997-12-102006-05-16Sherwood Services AgSmart recognition apparatus and method
JPH11197159A (en)1998-01-131999-07-27Hitachi Ltd Surgery support system
US6273887B1 (en)1998-01-232001-08-14Olympus Optical Co., Ltd.High-frequency treatment tool
US6457625B1 (en)1998-02-172002-10-01Bionx Implants, OyDevice for installing a tissue fastener
US6113598A (en)1998-02-172000-09-05Baker; James A.Radiofrequency medical instrument and methods for vessel welding
US6126658A (en)1998-02-192000-10-03Baker; James A.Radiofrequency medical instrument and methods for vessel welding
US7164940B2 (en)1998-03-252007-01-16Olympus Optical Co., Ltd.Therapeutic system
US5968032A (en)1998-03-301999-10-19Sleister; Dennis R.Smoke evacuator for a surgical laser or cautery plume
US6482217B1 (en)1998-04-102002-11-19Endicor Medical, Inc.Neuro thrombectomy catheter
US6139561A (en)1998-04-162000-10-31Olympus Optical Co., Ltd.Ultrasonic medical instrument
JPH11309156A (en)1998-04-271999-11-09Olympus Optical Co LtdSmoke exhauster
US8688188B2 (en)1998-04-302014-04-01Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US6059799A (en)1998-06-252000-05-09United States Surgical CorporationApparatus for applying surgical clips
US6341164B1 (en)1998-07-222002-01-22Entrust Technologies LimitedMethod and apparatus for correcting improper encryption and/or for reducing memory storage
JP2000058355A (en)1998-08-172000-02-25Ooita Ken Transformer for power supply to rotating body
US6126592A (en)1998-09-122000-10-03Smith & Nephew, Inc.Endoscope cleaning and irrigation sheath
US6090107A (en)1998-10-202000-07-18Megadyne Medical Products, Inc.Resposable electrosurgical instrument
US20050203504A1 (en)1998-10-232005-09-15Wham Robert H.Method and system for controlling output of RF medical generator
WO2000024322A1 (en)1998-10-232000-05-04Applied Medical Resources CorporationSurgical grasper with inserts and method of using same
US20070173803A1 (en)1998-10-232007-07-26Wham Robert HSystem and method for terminating treatment in impedance feedback algorithm
US7137980B2 (en)1998-10-232006-11-21Sherwood Services AgMethod and system for controlling output of RF medical generator
US6434416B1 (en)1998-11-102002-08-13Olympus Optical Co., Ltd.Surgical microscope
US6451015B1 (en)1998-11-182002-09-17Sherwood Services AgMethod and system for menu-driven two-dimensional display lesion generator
US8489235B2 (en)1998-11-202013-07-16Intuitive Surgical Operations, Inc.Cooperative minimally invasive telesurgical system
US8666544B2 (en)1998-11-202014-03-04Intuitive Surgical Operations, Inc.Cooperative minimally invasive telesurgical system
US6331181B1 (en)1998-12-082001-12-18Intuitive Surgical, Inc.Surgical robotic tools, data architecture, and use
US6325808B1 (en)1998-12-082001-12-04Advanced Realtime Control Systems, Inc.Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US20070038080A1 (en)1998-12-082007-02-15Intuitive Surgical Inc.Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6302881B1 (en)1998-12-292001-10-16Erbe Elektromedizin GmbhMethod and apparatus for the removal of smoke during high-frequency surgery
US6530933B1 (en)1998-12-312003-03-11Teresa T. YeungMethods and devices for fastening bulging or herniated intervertebral discs
US20040215131A1 (en)1999-01-192004-10-28Olympus Optical Co., Inc.Ultrasonic surgical system
US6423057B1 (en)1999-01-252002-07-23The Arizona Board Of Regents On Behalf Of The University Of ArizonaMethod and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
US7103688B2 (en)1999-04-102006-09-05Siconnect LimitedData transmission method and apparatus
US6308089B1 (en)1999-04-142001-10-23O.B. Scientific, Inc.Limited use medical probe
US6301495B1 (en)1999-04-272001-10-09International Business Machines CorporationSystem and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6461352B2 (en)1999-05-112002-10-08Stryker CorporationSurgical handpiece with self-sealing switch assembly
US6454781B1 (en)1999-05-262002-09-24Ethicon Endo-Surgery, Inc.Feedback control in an ultrasonic surgical instrument for improved tissue effects
US6443973B1 (en)1999-06-022002-09-03Power Medical Interventions, Inc.Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6846308B2 (en)1999-06-022005-01-25Power Medical Interventions, Inc.Electro-mechanical surgical device
US20030050654A1 (en)1999-06-022003-03-13Entire InterestElectro-mechanical surgical device
US8960519B2 (en)1999-06-022015-02-24Covidien LpShaft, e.g., for an electro-mechanical surgical device
US6849071B2 (en)1999-06-022005-02-01Power Medical Interventions, Inc.Electro-mechanical surgical device
US6793652B1 (en)1999-06-022004-09-21Power Medical Interventions, Inc.Electro-mechanical surgical device
US7077856B2 (en)1999-06-022006-07-18Power Medical Interventions, Inc.Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US9364200B2 (en)1999-06-022016-06-14Covidien LpElectro-mechanical surgical device
US7032798B2 (en)1999-06-022006-04-25Power Medical Interventions, Inc.Electro-mechanical surgical device
US8875973B2 (en)1999-07-122014-11-04Covidien LpExpanding parallel jaw device for use with an electromechanical driver device
US6781683B2 (en)1999-07-142004-08-24Leica Geosystems Hds, Inc.Advance applications for 3-D autoscanning LIDAR system
JP2001029353A (en)1999-07-212001-02-06Olympus Optical Co LtdUltrasonic treating device
US6793663B2 (en)1999-07-302004-09-21Forschungszentrum Karlsruhe GmbhSurgical applicator tip for delivering clips of clamps
WO2001008578A1 (en)1999-07-302001-02-08Vivant Medical, Inc.Device and method for safe location and marking of a cavity and sentinel lymph nodes
WO2001012089A1 (en)1999-08-122001-02-22Somnus Medical Technologies, Inc.Nerve stimulation and tissue ablation apparatus and method
US6269411B1 (en)1999-08-122001-07-31Hewlett-Packard CompanySystem for enabling stacking of autochanger modules
US6611793B1 (en)1999-09-072003-08-26Scimed Life Systems, Inc.Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
WO2001020892A2 (en)1999-09-132001-03-22Fernway LimitedA method for transmitting data between respective first and second modems in a telecommunications system, and a telecommunications system
US9345544B2 (en)1999-09-172016-05-24Intuitive Surgical Operations, Inc.Systems and methods for avoiding collisions between manipulator arms using a null-space
US6325811B1 (en)1999-10-052001-12-04Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US6773444B2 (en)1999-10-052004-08-10Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US20040078236A1 (en)1999-10-302004-04-22Medtamic HoldingsStorage and access of aggregate patient data for analysis
US6466817B1 (en)1999-11-242002-10-15Nuvasive, Inc.Nerve proximity and status detection system and method
US6584358B2 (en)2000-01-072003-06-24Biowave CorporationElectro therapy method and apparatus
JP2001195686A (en)2000-01-112001-07-19Mitsubishi Electric Corp Number reading collation device
US6569109B2 (en)2000-02-042003-05-27Olympus Optical Co., Ltd.Ultrasonic operation apparatus for performing follow-up control of resonance frequency drive of ultrasonic oscillator by digital PLL system using DDS (direct digital synthesizer)
US6695199B2 (en)2000-02-222004-02-24Power Medical Interventions, Inc.Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US20050020918A1 (en)2000-02-282005-01-27Wilk Ultrasound Of Canada, Inc.Ultrasonic medical device and associated method
JP2001314411A (en)2000-02-292001-11-13Olympus Optical Co LtdSurgical operation system
US7236817B2 (en)2000-03-032007-06-26True Life Creations (SA) Pty Ltd.Animation technology
US6391102B1 (en)2000-03-212002-05-21Stackhouse, Inc.Air filtration system with filter efficiency management
JP2001340350A (en)2000-03-282001-12-11Aloka Co LtdMedical system
US6778846B1 (en)2000-03-302004-08-17Medtronic, Inc.Method of guiding a medical device and system regarding same
US6869430B2 (en)2000-03-312005-03-22Rita Medical Systems, Inc.Tissue biopsy and treatment apparatus and method
US20030018329A1 (en)2000-04-272003-01-23Hooven Michael D.Transmural ablation device with EKG sensor and pacing electrode
US7252664B2 (en)2000-05-122007-08-07Cardima, Inc.System and method for multi-channel RF energy delivery with coagulum reduction
US6760616B2 (en)2000-05-182004-07-06Nu Vasive, Inc.Tissue discrimination and applications in medical procedures
US20040015053A1 (en)2000-05-222004-01-22Johannes BiegerFully-automatic, robot-assisted camera guidance susing positions sensors for laparoscopic interventions
US6742895B2 (en)2000-07-062004-06-01Alan L. RobinInternet-based glaucoma diagnostic system
US6962587B2 (en)2000-07-252005-11-08Rita Medical Systems, Inc.Method for detecting and treating tumors using localized impedance measurement
US20140081255A1 (en)2000-07-252014-03-20Angiodynamics, Inc.Method and Apparatuses for Tissue Treatment
US7177533B2 (en)2000-09-242007-02-13Medtronic, Inc.Motor control system for a surgical handpiece
US8505801B2 (en)2000-10-132013-08-13Covidien LpSurgical fastener applying apparatus
US8074861B2 (en)2000-10-132011-12-13Tyco Healthcare Group LpSurgical fastener applying apparatus
US7568604B2 (en)2000-10-132009-08-04Tyco Healthcare Group LpSurgical fastener applying apparatus
US10231733B2 (en)2000-10-132019-03-19Covidien LpSurgical fastener applying apparatus
US7055730B2 (en)2000-10-132006-06-06Tyco Healthcare Group LpSurgical fastener applying apparatus
US9402629B2 (en)2000-10-132016-08-02Covidien LpSurgical fastener applying apparatus
US10959729B2 (en)2000-10-132021-03-30Covidien LpSurgical fastener applying apparatus
US6628989B1 (en)2000-10-162003-09-30Remon Medical Technologies, Ltd.Acoustic switch and apparatus and methods for using acoustic switches within a body
US20020052616A1 (en)2000-10-202002-05-02Ethicon Endo-Surgery, Inc.Method for detecting transverse vibrations in an ultrasonic hand piece
US6480796B2 (en)2000-10-202002-11-12Ethicon Endo-Surgery, Inc.Method for improving the start up of an ultrasonic system under zero load conditions
US6945981B2 (en)2000-10-202005-09-20Ethicon-Endo Surgery, Inc.Finger operated switch for controlling a surgical handpiece
US20020049551A1 (en)2000-10-202002-04-25Ethicon Endo-Surgery, Inc.Method for differentiating between burdened and cracked ultrasonically tuned blades
US7077853B2 (en)2000-10-202006-07-18Ethicon Endo-Surgery, Inc.Method for calculating transducer capacitance to determine transducer temperature
JP2003153918A (en)2000-10-202003-05-27Ethicon Endo Surgery IncMethod for determining temperature of transducer of ultrasonic hand piece
EP1214913A2 (en)2000-10-202002-06-19Ethicon Endo-SurgeryDetection circuitry for surgical handpiece system
US6679899B2 (en)2000-10-202004-01-20Ethicon Endo-Surgery, Inc.Method for detecting transverse vibrations in an ultrasonic hand piece
US6633234B2 (en)2000-10-202003-10-14Ethicon Endo-Surgery, Inc.Method for detecting blade breakage using rate and/or impedance information
US7423972B2 (en)2000-11-282008-09-09Flash Networks Ltd.System and method for a transmission rate controller
US8066721B2 (en)2000-12-062011-11-29Ethicon Endo-Surgery, Inc.Surgical clip application assembly
US20020072746A1 (en)2000-12-082002-06-13Christian LingenfelderInstrument for surgical purposes and method of cleaning same
US7294106B2 (en)2000-12-212007-11-13Brainlab AgCable-free medical detection and treatment system
US6618626B2 (en)2001-01-162003-09-09Hs West Investments, LlcApparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
US6551243B2 (en)2001-01-242003-04-22Siemens Medical Solutions Health Services CorporationSystem and user interface for use in providing medical information and health care delivery support
US6775575B2 (en)2001-02-262004-08-10D. Bommi BommannanSystem and method for reducing post-surgical complications
US20110071530A1 (en)2001-02-272011-03-24Carson Christopher PTotal knee arthroplasty systems and processes
US6731514B2 (en)2001-02-272004-05-04Stmicroelectronics LimitedStackable module
US7422586B2 (en)2001-02-282008-09-09Angiodynamics, Inc.Tissue surface treatment apparatus and method
US7951148B2 (en)2001-03-082011-05-31Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US20050100867A1 (en)2001-03-142005-05-12Alexander HilscherMethod and device for cleaning teeth
JP2002272758A (en)2001-03-192002-09-24Hitachi Ltd Surgery support device
US20020138642A1 (en)2001-03-262002-09-26Yoshihiko MiyazawaOperating method of a storage area network system
US20030028183A1 (en)2001-03-272003-02-06Sanchez Javier E.Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US20020144147A1 (en)2001-03-302002-10-03International Business Machines CorporationPrioritization of networks for preferred groups
US6783524B2 (en)2001-04-192004-08-31Intuitive Surgical, Inc.Robotic surgical tool with ultrasound cauterizing and cutting instrument
US8262560B2 (en)2001-04-202012-09-11Tyco Healthcare Group LpImaging device for use with a surgical device
US8292888B2 (en)2001-04-202012-10-23Tyco Healthcare Group LpBipolar or ultrasonic surgical device
US20020169584A1 (en)2001-05-142002-11-14Zhongsu FuMobile monitoring system
US20170202608A1 (en)2001-06-122017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument containing elongated multi-layered shaft
US20030009111A1 (en)2001-06-132003-01-09Cory Philip C.Non-invasive method and apparatus for tissue detection
US20020194023A1 (en)2001-06-142002-12-19Turley Troy A.Online fracture management system and associated method
US20030009154A1 (en)2001-06-202003-01-09Whitman Michael P.Method and system for integrated medical tracking
US7044911B2 (en)2001-06-292006-05-16Philometron, Inc.Gateway platform for biological monitoring and delivery of therapeutic compounds
US20040243147A1 (en)2001-07-032004-12-02Lipow Kenneth I.Surgical robot and robotic controller
US7208005B2 (en)2001-08-062007-04-24The Penn State Research FoundationMultifunctional tool and method for minimally invasive surgery
US20170303984A1 (en)2001-08-082017-10-26Stryker CorporationMethod of managing the inventory of equipment used during a surgical procedure by inductively reading data from the equipment used in the procedure
US8535342B2 (en)2001-08-082013-09-17Stryker CorporationPowered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US6911033B2 (en)2001-08-212005-06-28Microline Pentax Inc.Medical clip applying device
US7344532B2 (en)2001-08-272008-03-18Gyrus Medical LimitedElectrosurgical generator and system
JP2003061975A (en)2001-08-292003-03-04Olympus Optical Co LtdUltrasonic diagnostic/treatment system
US20030046109A1 (en)2001-08-302003-03-06Olympus Optical Co., Ltd.Medical information system for improving efficiency of clinical record creating operations
US7104949B2 (en)2001-08-312006-09-12Ams Research CorporationSurgical articles for placing an implant about a tubular tissue structure and methods
US20030093503A1 (en)2001-09-052003-05-15Olympus Optical Co., Ltd.System for controling medical instruments
JP2003070921A (en)2001-09-062003-03-11Mitsubishi Electric Corp Radiation treatment planning method and radiation treatment system
US6937892B2 (en)2001-09-282005-08-30Meagan Medical, Inc.Method and apparatus for securing and/or identifying a link to a percutaneous probe
US20030130711A1 (en)2001-09-282003-07-10Pearson Robert M.Impedance controlled tissue ablation apparatus and method
US6524307B1 (en)2001-10-052003-02-25Medtek Devices, Inc.Smoke evacuation apparatus
US7631793B2 (en)2001-10-052009-12-15Tyco Healthcare Group LpSurgical fastener applying apparatus
US7942300B2 (en)2001-10-052011-05-17Tyco Healthcare Group LpSurgical fastener applying apparatus
US7334717B2 (en)2001-10-052008-02-26Tyco Healthcare Group LpSurgical fastener applying apparatus
US20030069573A1 (en)2001-10-092003-04-10Kadhiresan Veerichetty A.RF ablation apparatus and method using amplitude control
US7048775B2 (en)2001-10-172006-05-23Sartorius AgDevice and method for monitoring the integrity of filtering installations
US10285694B2 (en)2001-10-202019-05-14Covidien LpSurgical stapler with timer and feedback display
US6770072B1 (en)2001-10-222004-08-03Surgrx, Inc.Electrosurgical jaw structure for controlled energy delivery
US8567393B2 (en)2001-11-012013-10-29Scott Laboratories, IncUser interface for sedation and analgesia delivery systems and methods
US7383088B2 (en)2001-11-072008-06-03Cardiac Pacemakers, Inc.Centralized management system for programmable medical devices
US8185409B2 (en)2001-11-292012-05-22Boundarymedical Inc.Method and apparatus for operative event documentation and related data management
US7803151B2 (en)2001-12-042010-09-28Power Medical Interventions, LlcSystem and method for calibrating a surgical instrument
US6783525B2 (en)2001-12-122004-08-31Megadyne Medical Products, Inc.Application and utilization of a water-soluble polymer on a surface
US20030114851A1 (en)2001-12-132003-06-19Csaba TruckaiElectrosurgical jaws for controlled application of clamping pressure
US20030120284A1 (en)2001-12-202003-06-26Palacios Edward M.Apparatus and method for applying reinforcement material to a surgical stapler
US8016855B2 (en)2002-01-082011-09-13Tyco Healthcare Group LpSurgical device
US6869435B2 (en)2002-01-172005-03-22Blake, Iii John WRepeating multi-clip applier
US8775196B2 (en)2002-01-292014-07-08Baxter International Inc.System and method for notification and escalation of medical data
US6585791B1 (en)2002-01-292003-07-01Jon C. GaritoSmoke plume evacuation filtration system
US20050165390A1 (en)2002-02-112005-07-28Aldo MautiApparatus for electrosurgery
US20030210812A1 (en)2002-02-262003-11-13Ali KhameneApparatus and method for surgical navigation
US6685704B2 (en)2002-02-262004-02-03Megadyne Medical Products, Inc.Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US8010180B2 (en)2002-03-062011-08-30Mako Surgical Corp.Haptic guidance system and method
US20160228204A1 (en)2002-03-062016-08-11Mako Surgical Corp.Teleoperation System With Visual Indicator and Method of Use During Surgical Procedures
US20130090526A1 (en)2002-03-192013-04-11Keita SuzukiAnastomosis system
WO2003079909A2 (en)2002-03-192003-10-02Tyco Healthcare Group, LpSurgical fastener applying apparatus
US7343565B2 (en)2002-03-202008-03-11Mercurymd, Inc.Handheld device graphical user interfaces for displaying patient medical records
US6648223B2 (en)2002-03-212003-11-18Alcon, Inc.Surgical system
FR2838234A1 (en)2002-04-032003-10-10SyleaFlat electric cable, uses two layers with alternating wave layout for flattened conductors to provide electromagnetic cancellation
US20070282321A1 (en)2002-04-162007-12-06Baylis Medical Company Inc.Computerized electrical signal generator
US20050131390A1 (en)2002-04-252005-06-16Russell HeinrichSurgical instruments including mems devices
US20060069388A1 (en)2002-04-302006-03-30Csaba TruckaiElectrosurgical instrument and method
US7457804B2 (en)2002-05-102008-11-25Medrad, Inc.System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures
US8388652B2 (en)2002-05-102013-03-05Covidien LpSurgical stapling apparatus having a wound closure material applicator assembly
US20030223877A1 (en)2002-06-042003-12-04Ametek, Inc.Blower assembly with closed-loop feedback
US7232447B2 (en)2002-06-122007-06-19Boston Scientific Scimed, Inc.Suturing instrument with deflectable head
US7743960B2 (en)2002-06-142010-06-29Power Medical Interventions, LlcSurgical device
US6849074B2 (en)2002-06-172005-02-01Medconx, Inc.Disposable surgical devices
US6951559B1 (en)2002-06-212005-10-04Megadyne Medical Products, Inc.Utilization of a hybrid material in a surface coating of an electrosurgical instrument
US20050203384A1 (en)2002-06-212005-09-15Marwan SatiComputer assisted system and method for minimal invasive hip, uni knee and total knee replacement
US7121460B1 (en)2002-07-162006-10-17Diebold Self-Service Systems Division Of Diebold, IncorporatedAutomated banking machine component authentication system and method
US6852219B2 (en)2002-07-222005-02-08John M. HammondFluid separation and delivery apparatus and method
US20060116908A1 (en)2002-07-302006-06-01Dew Douglas KWeb-based data entry system and method for generating medical records
US6824539B2 (en)2002-08-022004-11-30Storz Endoskop Produktions GmbhTouchscreen controlling medical equipment from multiple manufacturers
US9737335B2 (en)2002-08-082017-08-22Atropos LimitedDevice
US7155316B2 (en)2002-08-132006-12-26Microbotics CorporationMicrosurgical robot system
JP2004118664A (en)2002-09-272004-04-15Fujitsu Ltd Medical treatment planning device
US7563259B2 (en)2002-10-022009-07-21Olympus CorporationOperation system
US8596513B2 (en)2002-10-042013-12-03Covidien LpSurgical stapler with universal articulation and tissue pre-clamp
US10130360B2 (en)2002-10-042018-11-20Covidien LpSurgical stapler with universal articulation and tissue pre-clamp
US20040082850A1 (en)2002-10-232004-04-29Medtonic, Inc.Methods and apparatus for locating body vessels and occlusions in body vessels
US20040092992A1 (en)2002-10-232004-05-13Kenneth AdamsDisposable battery powered rotary tissue cutting instruments and methods therefor
US7920706B2 (en)2002-10-282011-04-05Nokia CorporationMethod and system for managing cryptographic keys
US6913471B2 (en)2002-11-122005-07-05Gateway Inc.Offset stackable pass-through signal connector
US7073765B2 (en)2002-11-132006-07-11Hill-Rom Services, Inc.Apparatus for carrying medical equipment
US20040108825A1 (en)2002-12-062004-06-10Lg Electronics Inc.Apparatus and method for controlling driving of linear motor
US7009511B2 (en)2002-12-172006-03-07Cardiac Pacemakers, Inc.Repeater device for communications with an implantable medical device
US20040199659A1 (en)2002-12-242004-10-07Sony CorporationInformation processing apparatus, information processing method, data communication system and program
US20070016979A1 (en)2003-01-032007-01-18Damaj Mona BStem-regulated, plant defense promoter and uses thereof in tissue-specific expression in monocots
US7081096B2 (en)2003-01-242006-07-25Medtronic Vascular, Inc.Temperature mapping balloon
US7230529B2 (en)2003-02-072007-06-12Theradoc, Inc.System, method, and computer program for interfacing an expert system to a clinical information system
US20040229496A1 (en)2003-02-202004-11-18William RobinsonSystem and method for connecting an electrosurgical instrument to a generator
US7182775B2 (en)2003-02-272007-02-27Microline Pentax, Inc.Super atraumatic grasper apparatus
US7413541B2 (en)2003-03-072008-08-19Olympus CorporationSurgery support system for endoscopic surgery
US9980778B2 (en)2003-03-072018-05-29Intuitive Surgical Operations, Inc.Instrument having radio frequency identification systems and methods for use
US20160206202A1 (en)2003-03-112016-07-21Beth Israel Deaconess Medical CenterMulti-channel medical imaging systems
US20060039105A1 (en)*2003-03-122006-02-23Zonare Medical Systems, Inc.Portable ultrasound unit and docking station
US9149322B2 (en)2003-03-312015-10-06Edward Wells KnowltonMethod for treatment of tissue
US20040206365A1 (en)2003-03-312004-10-21Knowlton Edward WellsMethod for treatment of tissue
US20040199180A1 (en)2003-04-022004-10-07Knodel Bryan D.Method of using surgical device for anastomosis
US20040243148A1 (en)2003-04-082004-12-02Wasielewski Ray C.Use of micro- and miniature position sensing devices for use in TKA and THA
US20070192139A1 (en)2003-04-222007-08-16Ammon CooksonSystems and methods for patient re-identification
US8679114B2 (en)2003-05-012014-03-25Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US20050021027A1 (en)2003-05-152005-01-27Chelsea ShieldsTissue sealer with non-conductive variable stop members and method of sealing tissue
US20050023324A1 (en)2003-05-202005-02-03Kevin DollSurgical stapling instrument having a single lockout mechanism for prevention of firing
US6978921B2 (en)2003-05-202005-12-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument incorporating an E-beam firing mechanism
US9060770B2 (en)2003-05-202015-06-23Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US6988649B2 (en)2003-05-202006-01-24Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a spent cartridge lockout
US20070084896A1 (en)2003-05-202007-04-19Kevin DollSurgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US20070010838A1 (en)2003-05-202007-01-11Shelton Frederick E IvSurgical stapling instrument having a firing lockout for an unclosed anvil
US7380695B2 (en)2003-05-202008-06-03Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7000818B2 (en)2003-05-202006-02-21Ethicon, Endo-Surger, Inc.Surgical stapling instrument having separate distinct closing and firing systems
US7044352B2 (en)2003-05-202006-05-16Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7143923B2 (en)2003-05-202006-12-05Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a firing lockout for an unclosed anvil
US7140528B2 (en)2003-05-202006-11-28Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US20040243435A1 (en)2003-05-292004-12-02Med-Sched, Inc.Medical information management system
US8652121B2 (en)2003-06-032014-02-18Senorx, Inc.Universal medical device control console
US20060282009A1 (en)2003-06-132006-12-14Ake ObergDevice for measuring physical properties of the tympanic membrane
US20180221005A1 (en)2003-06-272018-08-09Stryker CorporationFoot-operated control console for wirelessly controlling medical devices
US9002518B2 (en)2003-06-302015-04-07Intuitive Surgical Operations, Inc.Maximum torque driving of robotic surgical tools in robotic surgical systems
US20050020909A1 (en)2003-07-102005-01-27Moctezuma De La Barrera Jose LuisDisplay device for surgery and method for using the same
US20050033108A1 (en)2003-08-052005-02-10Sawyer Timothy E.Tumor treatment identification system
US7353068B2 (en)2003-08-192008-04-01Olympus CorporationControl device for a medical system and control method for medical system
US7496418B2 (en)2003-08-252009-02-24Lg Electronics Inc.Audio level information recording/management method and audio output level adjustment method
US20050182655A1 (en)2003-09-022005-08-18Qcmetrix, Inc.System and methods to collect, store, analyze, report, and present data
US20050065438A1 (en)2003-09-082005-03-24Miller Landon C.G.System and method of capturing and managing information during a medical diagnostic imaging procedure
US7597731B2 (en)2003-09-152009-10-06Medtek Devices, Inc.Operating room smoke evacuator with integrated vacuum motor and filter
US7892337B2 (en)2003-09-152011-02-22Medtek Devices Inc.Operating room smoke evacuator with integrated vacuum motor and filter
US20050063575A1 (en)2003-09-222005-03-24Ge Medical Systems Global Technology, LlcSystem and method for enabling a software developer to introduce informational attributes for selective inclusion within image headers for medical imaging apparatus applications
US7742176B2 (en)2003-09-222010-06-22Leica Geosystems AgMethod and system for determining the spatial position of a hand-held measuring appliance
US8147486B2 (en)2003-09-222012-04-03St. Jude Medical, Atrial Fibrillation Division, Inc.Medical device with flexible printed circuit
US20050070800A1 (en)2003-09-292005-03-31Olympus CorporationUltrasonic surgical system, and abnormality detection method and abnormality detection program for ultrasonic surgical system
JP2005111080A (en)2003-10-092005-04-28Olympus CorpSurgery support system
US20050149001A1 (en)2003-10-092005-07-07Olympus CorporationOperation support system and support method of operation support system
US7217269B2 (en)2003-10-282007-05-15Uab Research FoundationElectrosurgical control system
US7837680B2 (en)2003-11-212010-11-23Megadyne Medical Products, Inc.Tuned return electrode with matching inductor
US7169145B2 (en)2003-11-212007-01-30Megadyne Medical Products, Inc.Tuned return electrode with matching inductor
US7118564B2 (en)2003-11-262006-10-10Ethicon Endo-Surgery, Inc.Medical treatment system with energy delivery device for limiting reuse
US7317955B2 (en)2003-12-122008-01-08Conmed CorporationVirtual operating room integration
US20050148854A1 (en)2003-12-222005-07-07Pentax CorporationDiagnosis supporting device
US7147139B2 (en)2003-12-302006-12-12Ethicon Endo-Surgery, IncClosure plate lockout for a curved cutter stapler
US20050139629A1 (en)2003-12-302005-06-30Schwemberger Richard F.Retaining pin leaver advancement mechanism for a curved cutter stapler
US20050143759A1 (en)2003-12-302005-06-30Kelly William D.Curved cutter stapler shaped for male pelvis
US7207472B2 (en)2003-12-302007-04-24Ethicon Endo-Surgery, Inc.Cartridge with locking knife for a curved cutter stapler
US7766207B2 (en)2003-12-302010-08-03Ethicon Endo-Surgery, Inc.Articulating curved cutter stapler
US20050149356A1 (en)2004-01-022005-07-07Cyr Keneth K.System and method for management of clinical supply operations
US7094231B1 (en)2004-01-222006-08-22Ellman Alan GDual-mode electrosurgical instrument
US20050192633A1 (en)2004-01-232005-09-01Montpetit Karen P.Tissue fastening and cutting tool, and methods
US7766905B2 (en)2004-02-122010-08-03Covidien AgMethod and system for continuity testing of medical electrodes
US7967180B2 (en)2004-02-172011-06-28Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US20050203380A1 (en)2004-02-172005-09-15Frank SauerSystem and method for augmented reality navigation in a medical intervention procedure
US7694865B2 (en)2004-02-172010-04-13Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US8025199B2 (en)2004-02-232011-09-27Tyco Healthcare Group LpSurgical cutting and stapling device
US8444663B2 (en)2004-02-272013-05-21Ethicon Endo-Surgery, Inc.Ultrasonic surgical shears and tissue pad for same
US20050213832A1 (en)2004-03-222005-09-29Nortel Networks LimitedMethod and apparatus for providing network based load balancing of medical image data
US20050228425A1 (en)2004-03-222005-10-13Alcon, Inc.Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20080039742A1 (en)2004-03-232008-02-14Dune Medical Devices Ltd.Clean margin assessment tool
US20050236474A1 (en)2004-03-262005-10-27Convergence Ct, Inc.System and method for controlling access and use of patient medical data records
US20050222631A1 (en)2004-04-062005-10-06Nirav DalalHierarchical data storage and analysis system for implantable medical devices
US20050228246A1 (en)2004-04-132005-10-13Jangwoen LeeMethod and apparatus for dynamically monitoring multiple in vivo tissue chromophores
JP2005309702A (en)2004-04-202005-11-04Olympus CorpMedical equipment management system and medical equipment management method
US9345546B2 (en)2004-05-042016-05-24Intuitive Surgical Operations, Inc.Tool memory-based software upgrades for robotic surgery
US20070179482A1 (en)2004-05-072007-08-02Anderson Robert SApparatuses and methods to treat biological external tissue
US20050251233A1 (en)2004-05-072005-11-10John KanziusSystem and method for RF-induced hyperthermia
US7945065B2 (en)2004-05-072011-05-17Phonak AgMethod for deploying hearing instrument fitting software, and hearing instrument adapted therefor
US7736357B2 (en)2004-05-112010-06-15Wisconsin Alumni Research FoundationRadiofrequency ablation with independently controllable ground pad conductors
US7699772B2 (en)2004-05-272010-04-20Stm Medizintechnik Starnberg GmbhVisual means of an endoscope
JP2005348797A (en)2004-06-082005-12-22Olympus CorpMedical practice recording system and medical practice recording device
US20050277913A1 (en)2004-06-092005-12-15Mccary Brian DHeads-up display for displaying surgical parameters in a surgical microscope
US9168091B2 (en)2004-06-172015-10-27Serene Medical, Inc.Ablation apparatus and system to limit nerve conduction
US20050288425A1 (en)2004-06-192005-12-29Hankook Tire Co., Ltd.Molding material for fuel cell separator and method for preparing the same
US20060020272A1 (en)2004-06-242006-01-26Gildenberg Philip LSemi-robotic suturing device
WO2006001264A1 (en)2004-06-282006-01-05Aisin Seiki Kabushiki KaishaOccupant detection apparatus for vehicle
US7818041B2 (en)2004-07-072010-10-19Young KimSystem and method for efficient diagnostic analysis of ophthalmic examinations
US8229549B2 (en)2004-07-092012-07-24Tyco Healthcare Group LpSurgical imaging device
US7979157B2 (en)2004-07-232011-07-12Mcmaster UniversityMulti-purpose robotic operating system and method
US10292707B2 (en)2004-07-282019-05-21Ethicon LlcArticulating surgical stapling instrument incorporating a firing mechanism
US7407074B2 (en)2004-07-282008-08-05Ethicon Endo-Surgery, Inc.Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
US20060025816A1 (en)2004-07-282006-02-02Shelton Frederick E IvSurgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US7862579B2 (en)2004-07-282011-01-04Ethicon Endo-Surgery, Inc.Electroactive polymer-based articulation mechanism for grasper
US9844379B2 (en)2004-07-282017-12-19Ethicon LlcSurgical stapling instrument having a clearanced opening
US7143925B2 (en)2004-07-282006-12-05Ethicon Endo-Surgery, Inc.Surgical instrument incorporating EAP blocking lockout mechanism
US8905977B2 (en)2004-07-282014-12-09Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
JP2006077626A (en)2004-09-082006-03-23Fuji Heavy Ind Ltd Exhaust purification device
US8920414B2 (en)2004-09-102014-12-30Vessix Vascular, Inc.Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US20060059018A1 (en)2004-09-162006-03-16Olympus CorporationMedical practice management method, and portable terminal, management server, and medical practice management system using the same
US8123764B2 (en)2004-09-202012-02-28Endoevolution, LlcApparatus and method for minimally invasive suturing
US20060122558A1 (en)2004-09-212006-06-08Impact Instrumentation, Inc.Digitally controlled aspirator
US7782789B2 (en)2004-09-232010-08-24Harris CorporationAdaptive bandwidth utilization for telemetered data
US20080015664A1 (en)2004-10-062008-01-17Podhajsky Ronald JSystems and methods for thermally profiling radiofrequency electrodes
US20060079872A1 (en)2004-10-082006-04-13Eggleston Jeffrey LDevices for detecting heating under a patient return electrode
US20060079874A1 (en)2004-10-082006-04-13Faller Craig NTissue pad for use with an ultrasonic surgical instrument
US7865236B2 (en)2004-10-202011-01-04Nervonix, Inc.Active electrode, bio-impedance based, tissue discrimination system and methods of use
JP2006117143A (en)2004-10-222006-05-11Denso CorpCommunication system and wheel side radio transmission device
US9757152B2 (en)2004-10-282017-09-12Michael R. SchrammMethod of treating scoliosis using a biological implant
JP2006164251A (en)2004-11-092006-06-22Toshiba Corp Medical information system, medical information system program and medical information processing method for performing information processing for management of medical practice
US20070016235A1 (en)2004-12-032007-01-18Kazue TanakaUltrasonic surgical apparatus and method of driving ultrasonic treatment device
US7371227B2 (en)2004-12-172008-05-13Ethicon Endo-Surgery, Inc.Trocar seal assembly
US20060136622A1 (en)2004-12-212006-06-22Spx CorporationModular controller apparatus and method
US20060142739A1 (en)2004-12-292006-06-29Disilestro Mark RSystem and method for ensuring proper medical instrument use in an operating room
US7294116B1 (en)2005-01-032007-11-13Ellman Alan GSurgical smoke plume evacuation system
USD579876S1 (en)2005-01-072008-11-04Apple Inc.Connector system
US8027710B1 (en)2005-01-282011-09-27Patrick DannanImaging system for endoscopic surgery
US20070168461A1 (en)2005-02-012007-07-19Moore James FSyndicating surgical data in a healthcare environment
US20080040151A1 (en)2005-02-012008-02-14Moore James FUses of managed health care data
US8566115B2 (en)2005-02-012013-10-22Newsilike Media Group, Inc.Syndicating surgical data in a healthcare environment
US7993140B2 (en)2005-02-032011-08-09Christopher SakezlesModels and methods of using same for testing medical devices
US20060287645A1 (en)2005-02-092006-12-21Olympus Medical Systems Corp.System and controller for controlling operating room
US20060241399A1 (en)2005-02-102006-10-26Fabian Carl EMultiplex system for the detection of surgical implements within the wound cavity
US7884735B2 (en)2005-02-112011-02-08Hill-Rom Services, Inc.Transferable patient care equipment support
US7833219B2 (en)2005-02-142010-11-16Olympus CorporationOperation apparatus controller and surgery system
US20060184160A1 (en)2005-02-152006-08-17Olympus CorporationSurgery data display device, surgery data storing device, and surgery data storing display method
US8454506B2 (en)2005-02-282013-06-04Perahealth, Inc.Systems and methods for providing a continual measurement of health
US8225643B2 (en)2005-03-072012-07-24Medtronic Cryocath LpFluid control system for a medical device
US8206345B2 (en)2005-03-072012-06-26Medtronic Cryocath LpFluid control system for a medical device
US7784663B2 (en)2005-03-172010-08-31Ethicon Endo-Surgery, Inc.Surgical stapling instrument having load sensing control circuitry
US8945095B2 (en)2005-03-302015-02-03Intuitive Surgical Operations, Inc.Force and torque sensing for surgical instruments
JP2006280804A (en)2005-04-042006-10-19Olympus Medical Systems Corp Endoscope system
JP2006288431A (en)2005-04-052006-10-26Olympus Medical Systems Corp Ultrasonic surgical device
US8075571B2 (en)2005-04-142011-12-13Ethicon Endo-Surgery, Inc.Surgical clip applier methods
US8038686B2 (en)2005-04-142011-10-18Ethicon Endo-Surgery, Inc.Clip applier configured to prevent clip fallout
US7699860B2 (en)2005-04-142010-04-20Ethicon Endo-Surgery, Inc.Surgical clip
US10231634B2 (en)2005-04-152019-03-19Surgisense CorporationSurgical instruments with sensors for detecting tissue properties, and system using such instruments
US9204830B2 (en)2005-04-152015-12-08Surgisense CorporationSurgical instruments with sensors for detecting tissue properties, and system using such instruments
US7362228B2 (en)2005-04-282008-04-22Warsaw Orthepedic, Inc.Smart instrument tray RFID reader
US7515961B2 (en)2005-04-292009-04-07Medtronic, Inc.Method and apparatus for dynamically monitoring, detecting and diagnosing lead conditions
US10512514B2 (en)2005-05-192019-12-24Intuitive Surgical Operations, Inc.Software center and highly configurable robotic systems for surgery and other uses
US7464847B2 (en)2005-06-032008-12-16Tyco Healthcare Group LpSurgical stapler with timer and feedback display
US8181839B2 (en)2005-06-032012-05-22Tyco Healthcare Group LpSurgical instruments employing sensors
US8157150B2 (en)2005-06-032012-04-17Tyco Healthcare Group LpSurgical stapler with timer and feedback display
US7717312B2 (en)2005-06-032010-05-18Tyco Healthcare Group LpSurgical instruments employing sensors
US8500756B2 (en)2005-06-132013-08-06Ethicon Endo. Surgery, Inc.Quick load mechanism for a surgical suturing apparatus
US7976553B2 (en)2005-06-132011-07-12Ethicon Endo-Surgery, Inc.Surgical suturing apparatus with detachable handle
US8468030B2 (en)2005-06-272013-06-18Children's Mercy HospitalSystem and method for collecting, organizing, and presenting date-oriented medical information
US20070005002A1 (en)2005-06-302007-01-04Intuitive Surgical Inc.Robotic surgical instruments for irrigation, aspiration, and blowing
US20080114350A1 (en)2005-07-152008-05-15Park Christopher JMatrix router for surgical ablation
US20140194864A1 (en)2005-07-152014-07-10Atricure, Inc.Ablation Device with Sensor
US7554343B2 (en)2005-07-252009-06-30PiezoinnovationsUltrasonic transducer control method and system
US7770773B2 (en)2005-07-272010-08-10Power Medical Interventions, LlcSurgical device
US8241322B2 (en)2005-07-272012-08-14Tyco Healthcare Group LpSurgical device
US20070027459A1 (en)2005-07-292007-02-01Christopher HorvathMethod and system for configuring and data populating a surgical device
US7621192B2 (en)2005-07-292009-11-24Dynatek Laboratories, Inc.Medical device durability test apparatus having an integrated particle counter and method of use
US7641092B2 (en)2005-08-052010-01-05Ethicon Endo - Surgery, Inc.Swing gate for device lockout in a curved cutter stapler
US7445620B2 (en)2005-08-112008-11-04The Cleveland Clinic FoundationApparatus and method for protecting nontarget tissue of a patient during electrocautery surgery
US7837079B2 (en)2005-08-152010-11-23Tyco Healthcare Group LpSurgical stapling instruments including a cartridge having multiple staple sizes
US20070049947A1 (en)2005-08-252007-03-01Microline Pentax Inc.Cinch control device
US7720306B2 (en)2005-08-292010-05-18Photomed Technologies, Inc.Systems and methods for displaying changes in biological responses to therapy
US9237891B2 (en)2005-08-312016-01-19Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10271846B2 (en)2005-08-312019-04-30Ethicon LlcStaple cartridge for use with a surgical stapler
US8800838B2 (en)2005-08-312014-08-12Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US20070066970A1 (en)*2005-09-162007-03-22Leonard InesonIntegrated electrosurgical cart and surgical smoke evacuator unit
US20070078678A1 (en)2005-09-302007-04-05Disilvestro Mark RSystem and method for performing a computer assisted orthopaedic surgical procedure
US20090043253A1 (en)2005-10-112009-02-12Blake PodaimaSmart medical compliance method and system
US8096459B2 (en)2005-10-112012-01-17Ethicon Endo-Surgery, Inc.Surgical stapler with an end effector support
US20070191713A1 (en)2005-10-142007-08-16Eichmann Stephen EUltrasonic device for cutting and coagulating
US20070085528A1 (en)2005-10-192007-04-19Assaf GovariMetal immunity in a reverse magnetic system
US7966269B2 (en)2005-10-202011-06-21Bauer James DIntelligent human-machine interface
US11197731B2 (en)2005-10-202021-12-14Intuitive Surgical Operations, Inc.Auxiliary image display and manipulation on a computer display in a medical robotic system
DE102005051367A1 (en)2005-10-252007-04-26Olympus Winter & Ibe GmbhSurgical jaw instrument e.g. for endoscopic surgery, has two joints having angle which can be moved relative to each other with bearing has joint section and far working section such as surgical muzzle instrument
JP2007123394A (en)2005-10-262007-05-17Fujikura Ltd Circuit structure using flexible wiring board
US7328828B2 (en)2005-11-042008-02-12Ethicon Endo-Surgery, Inc,Lockout mechanisms and surgical instruments including same
US8019094B2 (en)2005-11-112011-09-13Hong Fu Jin Precision Industry (Shen Zhen) Co., Ltd.Audio processing system with function of automatic gain control and method thereof
JP2007139822A (en)2005-11-142007-06-07Olympus CorpEndoscopic device
US8428722B2 (en)2005-11-302013-04-23Medtronic, Inc.Communication system for medical devices
US7246734B2 (en)2005-12-052007-07-24Ethicon Endo-Surgery, Inc.Rotary hydraulic pump actuated multi-stroke surgical instrument
US20070179508A1 (en)2005-12-122007-08-02Cook Critical Care IncorporatedHyperechoic stimulating block needle
US20190070550A1 (en)2005-12-142019-03-07Stryker CorporationWaste Collection Unit With A Control System For Regulating Levels Of Vacuums Being Drawn In Waste Containers
US8740866B2 (en)2005-12-142014-06-03Stryker CorporationMedical/surgical waste collection and disposal system including a rover and a docker, the docker having features facilitating the alignment of the docker with the rover
US7621898B2 (en)2005-12-142009-11-24Stryker CorporationMedical/surgical waste collection unit including waste containers of different storage volumes with inter-container transfer valve and independently controlled vacuum levels
US10343102B2 (en)2005-12-142019-07-09Stryker CorporationMedical/surgical waste collection portable rover capable of zero setting a float used to measure the volume of liquid in a waste container
US7955322B2 (en)2005-12-202011-06-07Intuitive Surgical Operations, Inc.Wireless communication in a robotic surgical system
US8054752B2 (en)2005-12-222011-11-08Intuitive Surgical Operations, Inc.Synchronous data communication
US7757028B2 (en)2005-12-222010-07-13Intuitive Surgical Operations, Inc.Multi-priority messaging
US20070225690A1 (en)2005-12-272007-09-27Olympus Medical Systems CorporationMedical system and medical display apparatus
US20090036794A1 (en)2005-12-292009-02-05Rikshospitalet-Radiumhospitalet HfMethod and apparatus for determining local tissue impedance for positioning of a needle
US7907166B2 (en)2005-12-302011-03-15Intuitive Surgical Operations, Inc.Stereo telestration for robotic surgery
US20070167702A1 (en)2005-12-302007-07-19Intuitive Surgical Inc.Medical robotic system providing three-dimensional telestration
US20070156019A1 (en)2005-12-302007-07-05Larkin David QRobotic surgery system including position sensors using fiber bragg gratings
US8628518B2 (en)2005-12-302014-01-14Intuitive Surgical Operations, Inc.Wireless force sensor on a distal portion of a surgical instrument and method
US7670334B2 (en)2006-01-102010-03-02Ethicon Endo-Surgery, Inc.Surgical instrument having an articulating end effector
US20070161979A1 (en)2006-01-122007-07-12Sherwood Services AgRF return pad current detection system
US20090157072A1 (en)2006-01-242009-06-18Covidien AgSystem and Method for Tissue Sealing
US10582964B2 (en)2006-01-242020-03-10Covidien LpMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8469973B2 (en)2006-01-272013-06-25Endoevolution, LlcApparatus and method for sternotomy closure
US7575144B2 (en)2006-01-312009-08-18Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with single cable actuator
US7422139B2 (en)2006-01-312008-09-09Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting fastening instrument with tactile position feedback
US20120292367A1 (en)2006-01-312012-11-22Ethicon Endo-Surgery, Inc.Robotically-controlled end effector
US8708213B2 (en)2006-01-312014-04-29Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US20170007247A1 (en)2006-01-312017-01-12Ethicon Endo-Surgery, LlcSurgical instrument with firing lockout
US7845537B2 (en)2006-01-312010-12-07Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US20150196295A1 (en)2006-01-312015-07-16Ethicon Endo-Surgery, Inc.Gearing selector for a powered surgical cutting and fastening instrument
US20130193188A1 (en)2006-01-312013-08-01Ethicon Endo-Surgery, Inc.Powered surgical instruments with firing system lockout arrangements
US7721934B2 (en)2006-01-312010-05-25Ethicon Endo-Surgery, Inc.Articulatable drive shaft arrangements for surgical cutting and fastening instruments
US8161977B2 (en)2006-01-312012-04-24Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US8820603B2 (en)2006-01-312014-09-02Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US7464849B2 (en)2006-01-312008-12-16Ethicon Endo-Surgery, Inc.Electro-mechanical surgical instrument with closure system and anvil alignment components
US9451958B2 (en)2006-01-312016-09-27Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US7644848B2 (en)2006-01-312010-01-12Ethicon Endo-Surgery, Inc.Electronic lockouts and surgical instrument including same
US8763879B2 (en)2006-01-312014-07-01Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US20070175955A1 (en)2006-01-312007-08-02Shelton Frederick E IvSurgical cutting and fastening instrument with closure trigger locking mechanism
US20070175951A1 (en)2006-01-312007-08-02Shelton Frederick E IvGearing selector for a powered surgical cutting and fastening instrument
US10010322B2 (en)2006-01-312018-07-03Ethicon LlcSurgical instrument
US9326770B2 (en)2006-01-312016-05-03Ethicon Endo-Surgery, LlcSurgical instrument
US20070203744A1 (en)2006-02-282007-08-30Stefan SchollClinical workflow simulation tool and method
US9078727B2 (en)2006-03-162015-07-14Boston Scientific Scimed, Inc.System and method for treating tissue wall prolapse
US9301759B2 (en)2006-03-232016-04-05Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US20070225556A1 (en)2006-03-232007-09-27Ethicon Endo-Surgery, Inc.Disposable endoscope devices
US9636188B2 (en)2006-03-242017-05-02Stryker CorporationSystem and method for 3-D tracking of surgical instrument in relation to patient body
US20070270660A1 (en)2006-03-292007-11-22Caylor Edward J IiiSystem and method for determining a location of an orthopaedic medical device
US10617482B2 (en)2006-03-292020-04-14Ethicon LlcUltrasonic surgical system and method
US20070239028A1 (en)2006-03-292007-10-11Ethicon Endo-Surgery, Inc.Ultrasonic surgical system and method
US20080015912A1 (en)2006-03-302008-01-17Meryl RosenthalSystems and methods for workforce management
US7667839B2 (en)2006-03-302010-02-23Particle Measuring Systems, Inc.Aerosol particle sensor with axial fan
US20100132334A1 (en)2006-04-142010-06-03Renault S.A.S.Method and device for monitoring the regeneration of a pollution-removal system
US20070244478A1 (en)2006-04-182007-10-18Sherwood Services AgSystem and method for reducing patient return electrode current concentrations
US20070249990A1 (en)2006-04-202007-10-25Ioan CosmescuAutomatic smoke evacuator and insufflation system for surgical procedures
US7945342B2 (en)2006-04-212011-05-17Hong Fu Jin Precision Industry (Shen Zhen) Co., Ltd.Audio processing apparatus for automatic gain control
US7278563B1 (en)2006-04-252007-10-09Green David TSurgical instrument for progressively stapling and incising tissue
US8007494B1 (en)2006-04-272011-08-30Encision, Inc.Device and method to prevent surgical burns
JP2007300312A (en)2006-04-282007-11-15Matsushita Electric Ind Co Ltd Key exchange control method in telemedicine system
US8574229B2 (en)2006-05-022013-11-05Aesculap AgSurgical tool
US9918778B2 (en)2006-05-022018-03-20Aesculap AgLaparoscopic radiofrequency surgical device
US7841980B2 (en)2006-05-112010-11-30Olympus Medical Systems Corp.Treatment system, trocar, treatment method and calibration method
US20070282195A1 (en)2006-05-162007-12-06Masini Michael ADisplay method and system for surgical procedures
US20080245841A1 (en)2006-05-192008-10-09Smith Kevin WMethod for Operating an Electrical Surgical Instrument with Optimal Tissue Compression
US9662116B2 (en)2006-05-192017-05-30Ethicon, LlcElectrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8627995B2 (en)2006-05-192014-01-14Ethicon Endo-Sugery, Inc.Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
WO2007137304A2 (en)2006-05-192007-11-29Ethicon Endo-Surgery, Inc.Electrical surgical instrument
US20070270688A1 (en)2006-05-192007-11-22Daniel GelbartAutomatic atherectomy system
US9492237B2 (en)2006-05-192016-11-15Mako Surgical Corp.Method and apparatus for controlling a haptic device
US8573459B2 (en)2006-05-192013-11-05Ethicon Endo-Surgery, IncOptimal tissue compression electrical surgical instrument
US20070293218A1 (en)2006-05-222007-12-20Qualcomm IncorporatedCollision avoidance for traffic in a wireless network
US20070282333A1 (en)2006-06-012007-12-06Fortson Reginald DUltrasonic waveguide and blade
US8146149B2 (en)2006-06-032012-03-27B. Braun Medizinelectronik GmbH & Co. KGApparatus and method for protecting a medical device and a patient treated with this device against harmful influences from a communication network
US8398541B2 (en)2006-06-062013-03-19Intuitive Surgical Operations, Inc.Interactive user interfaces for robotic minimally invasive surgical systems
US7667592B2 (en)2006-06-122010-02-23Olympus Medical Systems Corp.Operation system and method of notifying system operation information of same
US9561045B2 (en)2006-06-132017-02-07Intuitive Surgical Operations, Inc.Tool with rotation lock
US20080077158A1 (en)2006-06-162008-03-27Hani HaiderMethod and Apparatus for Computer Aided Surgery
US8560047B2 (en)2006-06-162013-10-15Board Of Regents Of The University Of NebraskaMethod and apparatus for computer aided surgery
US10307199B2 (en)2006-06-222019-06-04Board Of Regents Of The University Of NebraskaRobotic surgical devices and related methods
US9345900B2 (en)2006-06-282016-05-24Medtronic Ardian Luxembourg S.A.R.L.Methods and systems for thermally-induced renal neuromodulation
US20090076409A1 (en)2006-06-282009-03-19Ardian, Inc.Methods and systems for thermally-induced renal neuromodulation
US20080059658A1 (en)2006-06-292008-03-06Nokia CorporationControlling the feeding of data from a feed buffer
US8292639B2 (en)2006-06-302012-10-23Molex IncorporatedCompliant pin control module and method for making the same
US7391173B2 (en)2006-06-302008-06-24Intuitive Surgical, IncMechanically decoupled capstan drive
US8128625B2 (en)2006-07-072012-03-06Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7776037B2 (en)2006-07-072010-08-17Covidien AgSystem and method for controlling electrode gap during tissue sealing
US20080013460A1 (en)2006-07-172008-01-17Geoffrey Benjamin AllenCoordinated upload of content from multimedia capture devices based on a transmission rule
US20080019393A1 (en)2006-07-182008-01-24Olympus Medical Systems Corp.Operation system control apparatus, operation system control method and operation system
US8043560B2 (en)2006-07-192011-10-25Furuno Electric Co., Ltd.Automatic analyzer
US8631987B2 (en)2006-08-022014-01-21Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080033404A1 (en)2006-08-032008-02-07Romoda Laszlo OSurgical machine with removable display
US9757142B2 (en)2006-08-092017-09-12Olympus CorporationRelay device and ultrasonic-surgical and electrosurgical system
US20080058593A1 (en)2006-08-212008-03-06Sti Medical Systems, LlcComputer aided diagnosis using video from endoscopes
US7771429B2 (en)2006-08-252010-08-10Warsaw Orthopedic, Inc.Surgical tool for holding and inserting fasteners
US9375539B2 (en)2006-09-082016-06-28Surgiquest, Inc.Multimodal surgical gas delivery system for laparoscopic surgical procedures
US20100038403A1 (en)2006-09-082010-02-18D Arcangelo MicheleSurgical instrument and actuating movement transmitting device therefore
US8652086B2 (en)2006-09-082014-02-18Abbott Medical Optics Inc.Systems and methods for power and flow rate control
US7637907B2 (en)2006-09-192009-12-29Covidien AgSystem and method for return electrode monitoring
USD589447S1 (en)2006-09-262009-03-31Hosiden CorporationPhotoelectric-transfer connector for optical fiber
US7722603B2 (en)2006-09-282010-05-25Covidien AgSmart return electrode pad
US8720766B2 (en)2006-09-292014-05-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments and staples
US10130359B2 (en)2006-09-292018-11-20Ethicon LlcMethod for forming a staple
US20080147086A1 (en)*2006-10-052008-06-19Marcus PfisterIntegrating 3D images into interventional procedures
US9010611B2 (en)2006-10-062015-04-21Covidien LpEnd effector identification by mechanical features
US7637410B2 (en)2006-10-062009-12-29Tyco Healthcare Group LpSurgical instrument including a locking assembly
US20080114212A1 (en)2006-10-102008-05-15General Electric CompanyDetecting surgical phases and/or interventions
US20080083414A1 (en)2006-10-102008-04-10General Electric CompanyDetecting time periods associated with surgical phases and/or interventions
US20080091071A1 (en)2006-10-112008-04-17Alka KumarSystem for evacuating detached tissue in continuous flow irrigation endoscopic procedures
US20080140090A1 (en)2006-10-172008-06-12Ernest AranyiApparatus For Applying Surgical Clips
US8719061B2 (en)2006-10-182014-05-06Hartford Fire Insurance CompanySystem and method for repair calculation, replacement calculation, and insurance adjustment
US8131565B2 (en)2006-10-242012-03-06Medapps, Inc.System for medical data collection and transmission
US20080262654A1 (en)2006-10-252008-10-23Terumo Kabushiki KaishaManipulator system
US8214007B2 (en)2006-11-012012-07-03Welch Allyn, Inc.Body worn physiological sensor device having a disposable electrode module
WO2008053485A1 (en)2006-11-052008-05-08Gyrus Group PlcModular surgical workstation
WO2008056618A2 (en)2006-11-062008-05-15Johnson & Johnson Kabushiki KaishaStapling instrument
WO2008069816A1 (en)2006-12-062008-06-12Ryan Timothy JApparatus and methods for delivering sutures
US8062306B2 (en)2006-12-142011-11-22Ethicon Endo-Surgery, Inc.Manually articulating devices
US8571598B2 (en)2006-12-182013-10-29Intel CorporationMethod and apparatus for location-based wireless connection and pairing
US20100168561A1 (en)2006-12-182010-07-01Trillium Precision Surgical, Inc.Intraoperative Tissue Mapping and Dissection Systems, Devices, Methods, and Kits
US7617137B2 (en)2006-12-192009-11-10At&T Intellectual Property I, L.P.Surgical suite radio frequency identification methods and systems
WO2008076079A1 (en)2006-12-192008-06-26Bracco Imaging S.P.A.Methods and apparatuses for cursor control in image guided surgery
US7721936B2 (en)2007-01-102010-05-25Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US20180125590A1 (en)2007-01-102018-05-10Ethicon LlcSurgical instrument with wireless communication between control unit and remote sensor
US20100301095A1 (en)2007-01-102010-12-02Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US7954682B2 (en)2007-01-102011-06-07Ethicon Endo-Surgery, Inc.Surgical instrument with elements to communicate between control unit and end effector
US20160000437A1 (en)2007-01-102016-01-07Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US20080167644A1 (en)2007-01-102008-07-10Shelton Frederick ESurgical instrument with enhanced battery performance
US10433918B2 (en)2007-01-102019-10-08Ethicon LlcSurgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US20080164296A1 (en)2007-01-102008-07-10Shelton Frederick EPrevention of cartridge reuse in a surgical instrument
US20110295270A1 (en)2007-01-102011-12-01Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20080200940A1 (en)2007-01-162008-08-21Eichmann Stephen EUltrasonic device for cutting and coagulating
US20080177362A1 (en)2007-01-182008-07-24Medtronic, Inc.Screening device and lead delivery system
US20080177258A1 (en)2007-01-182008-07-24Assaf GovariCatheter with microphone
US7836085B2 (en)2007-02-052010-11-16Google Inc.Searching structured geographical data
US20110125149A1 (en)2007-02-062011-05-26Rizk El-GalleyUniversal surgical function control system
US10016538B2 (en)2007-02-092018-07-10Kci Licensing, Inc.System and method for managing reduced pressure at a tissue site
US20080306759A1 (en)2007-02-092008-12-11Hakan Mehmel IlkinPatient workflow process messaging notification apparatus, system, and method
US8627993B2 (en)2007-02-122014-01-14Ethicon Endo-Surgery, Inc.Active braking electrical surgical instrument and method for braking such an instrument
US8930203B2 (en)2007-02-182015-01-06Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US9011366B2 (en)2007-03-012015-04-21Buffalo Filter LlcWick and relief valve for disposable laparoscopic smoke evacuation system
US8413871B2 (en)2007-03-062013-04-09Covidien LpSurgical stapling apparatus
US8690864B2 (en)2007-03-092014-04-08Covidien LpSystem and method for controlling tissue treatment
US20080223904A1 (en)2007-03-152008-09-18Stanislaw MarczykPowered surgical stapling device
US8590762B2 (en)2007-03-152013-11-26Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US7422136B1 (en)2007-03-152008-09-09Tyco Healthcare Group LpPowered surgical stapling device
US20080235052A1 (en)2007-03-192008-09-25General Electric CompanySystem and method for sharing medical information between image-guided surgery systems
US20080234708A1 (en)2007-03-222008-09-25Houser Kevin LSurgical instruments
US7862560B2 (en)2007-03-232011-01-04Arthrocare CorporationAblation apparatus having reduced nerve stimulation and related methods
US8893946B2 (en)2007-03-282014-11-25Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US20100120266A1 (en)2007-04-032010-05-13Mats RimborgBackplane To Mate Boards With Different Widths
US8255045B2 (en)2007-04-032012-08-28Nuvasive, Inc.Neurophysiologic monitoring system
US20100137886A1 (en)2007-04-112010-06-03Zergiebel Earl MSurgical clip applier
US7887530B2 (en)2007-04-132011-02-15Tyco Healthcare Group LpPowered surgical instrument
US7950560B2 (en)2007-04-132011-05-31Tyco Healthcare Group LpPowered surgical instrument
US7995045B2 (en)2007-04-132011-08-09Ethicon Endo-Surgery, Inc.Combined SBI and conventional image processor
US20080255413A1 (en)2007-04-132008-10-16Michael ZemlokPowered surgical instrument
US8170396B2 (en)2007-04-162012-05-01Adobe Systems IncorporatedChanging video playback rate
US8503759B2 (en)2007-04-162013-08-06Alexander GreerMethods, devices, and systems useful in registration
US9526580B2 (en)2007-04-202016-12-27Doheny Eye InstituteSterile surgical tray
US20080281301A1 (en)2007-04-202008-11-13Deboer CharlesPersonal Surgical Center
US20080272172A1 (en)2007-05-012008-11-06Michael ZemlokPowered surgical stapling device platform
US7927014B2 (en)2007-05-052011-04-19Ziehm Imaging GmbhX-ray diagnostic imaging system with a plurality of coded markers
US10045704B2 (en)2007-05-082018-08-14Propep, LlcMethod for laparoscopic nerve detection and mapping
US20080281678A1 (en)2007-05-092008-11-13Mclagan Partners, Inc.Practice management analysis tool for financial advisors
US20090299214A1 (en)2007-05-112009-12-03Changwang WuMethod and apparatus for quantitative nerve localization
US8768251B2 (en)2007-05-172014-07-01Abbott Medical Optics Inc.Exclusive pairing technique for Bluetooth compliant medical devices
WO2008147555A2 (en)2007-05-242008-12-04Suturtek IncorporatedApparatus and method for minimally invasive suturing
US7518502B2 (en)2007-05-242009-04-14Smith & Nephew, Inc.System and method for tracking surgical assets
US20090036750A1 (en)2007-05-252009-02-05The Charles Stark Draper Laboratory, Inc.Integration and control of medical devices in a clinical environment
US20080296346A1 (en)2007-05-312008-12-04Shelton Iv Frederick EPneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US8157145B2 (en)2007-05-312012-04-17Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US9585658B2 (en)2007-06-042017-03-07Ethicon Endo-Surgery, LlcStapling systems
US9186143B2 (en)2007-06-042015-11-17Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US8616431B2 (en)2007-06-042013-12-31Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US8533475B2 (en)2007-06-082013-09-10Roche Diagnostics Operations, Inc.Method for pairing and authenticating one or more medical devices and one or more remote electronic devices
US9138129B2 (en)2007-06-132015-09-22Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8620473B2 (en)2007-06-132013-12-31Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US9333042B2 (en)2007-06-132016-05-10Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US20080312953A1 (en)2007-06-142008-12-18Advanced Medical Optics, Inc.Database design for collection of medical instrument parameters
US8160690B2 (en)2007-06-142012-04-17Hansen Medical, Inc.System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US20170119477A1 (en)2007-06-152017-05-04Orthosoft Inc.Computer-assisted surgery system and method
US9138225B2 (en)2007-06-222015-09-22Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US7753245B2 (en)2007-06-222010-07-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US20130168435A1 (en)2007-06-222013-07-04Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US20090017910A1 (en)2007-06-222009-01-15Broadcom CorporationPosition and motion tracking of an object
US8308040B2 (en)2007-06-222012-11-13Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US8062330B2 (en)2007-06-272011-11-22Tyco Healthcare Group LpButtress and surgical stapling apparatus
US20160374723A1 (en)2007-06-292016-12-29Actuated Medical, lnc.Medical Tool With Electromechanical Control and Feedback
US20160184054A1 (en)2007-07-052016-06-30Orthoaccel Technologies, Inc.Pulsatile orthodontic device and methods
US7982776B2 (en)2007-07-132011-07-19Ethicon Endo-Surgery, Inc.SBI motion artifact removal apparatus and method
JP2009039515A (en)2007-07-172009-02-26Fujifilm Corp Image processing system, image processing method, and program
US20090030437A1 (en)2007-07-272009-01-29Houser Kevin LSurgical instruments
US8035685B2 (en)2007-07-302011-10-11General Electric CompanySystems and methods for communicating video data between a mobile imaging system and a fixed monitor system
US8512365B2 (en)2007-07-312013-08-20Ethicon Endo-Surgery, Inc.Surgical instruments
US8604709B2 (en)2007-07-312013-12-10Lsi Industries, Inc.Methods and systems for controlling electrical power to DC loads
US9044261B2 (en)2007-07-312015-06-02Ethicon Endo-Surgery, Inc.Temperature controlled ultrasonic surgical instruments
US8801703B2 (en)2007-08-012014-08-12Covidien LpSystem and method for return electrode monitoring
US8974429B2 (en)2007-08-062015-03-10Smith & Nephew PlcApparatus and method for applying topical negative pressure
US9020240B2 (en)2007-08-102015-04-28Leica Geosystems AgMethod and surveying system for noncontact coordinate measurement on an object surface
US20090099866A1 (en)2007-08-102009-04-16Smiths Medical Md, Inc.Time zone adjustment for medical devices
US20090046146A1 (en)2007-08-132009-02-19Jonathan HoytSurgical communication and control system
US20090048595A1 (en)2007-08-142009-02-19Takashi MihoriElectric processing system
US20090048589A1 (en)2007-08-142009-02-19Tomoyuki TakashinoTreatment device and treatment method for living tissue
US9649169B2 (en)2007-08-242017-05-16Universite Grenoble AlpesSystem and method for analysing a surgical operation by endoscopy
US9848058B2 (en)2007-08-312017-12-19Cardiac Pacemakers, Inc.Medical data transport over wireless life critical network employing dynamic communication link mapping
US20090259489A1 (en)2007-09-122009-10-15Ntt Data Tokai CorporationIntegrated database system of genome information and clinical information and a method for creating database included therein
US8364222B2 (en)2007-09-192013-01-29King's College LondonImaging apparatus and method
US7963433B2 (en)2007-09-212011-06-21Tyco Healthcare Group LpSurgical device having multiple drivers
US7918230B2 (en)2007-09-212011-04-05Tyco Healthcare Group LpSurgical device having a rotatable jaw portion
US8968276B2 (en)2007-09-212015-03-03Covidien LpHand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US20120253329A1 (en)2007-09-212012-10-04Michael ZemlokHand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10117651B2 (en)2007-09-212018-11-06Covidien LpSurgical device having a rotatable jaw portion
US9050120B2 (en)2007-09-302015-06-09Intuitive Surgical Operations, Inc.Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US8799008B2 (en)2007-10-012014-08-05General Electric CompanySystem and method to manage delivery of healthcare to a patient
US8960520B2 (en)2007-10-052015-02-24Covidien LpMethod and apparatus for determining parameters of linear motion in a surgical instrument
US8967443B2 (en)2007-10-052015-03-03Covidien LpMethod and apparatus for determining parameters of linear motion in a surgical instrument
US10779818B2 (en)2007-10-052020-09-22Covidien LpPowered surgical stapling device
US10498269B2 (en)2007-10-052019-12-03Covidien LpPowered surgical stapling device
US10041822B2 (en)2007-10-052018-08-07Covidien LpMethods to shorten calibration times for powered devices
US20130214025A1 (en)2007-10-052013-08-22Covidien LpPowered surgical stapling device
US20090090763A1 (en)2007-10-052009-04-09Tyco Healthcare Group LpPowered surgical stapling device
US8623027B2 (en)2007-10-052014-01-07Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US9113880B2 (en)2007-10-052015-08-25Covidien LpInternal backbone structural chassis for a surgical device
US20110022032A1 (en)2007-10-052011-01-27Tyco Healthcare Group LpBattery ejection design for a surgical device
US8343065B2 (en)2007-10-182013-01-01Innovative Surgical Solutions, LlcNeural event detection
US8321581B2 (en)2007-10-192012-11-27Voxer Ip LlcTelecommunication and multimedia management method and apparatus
US20100234996A1 (en)2007-10-202010-09-16Kuka Roboter GmbhManipulator, Particularly Industrial Robot, Having A Redundant Sensor Arrangement, And Method For The Control Thereof
US8422035B2 (en)2007-10-262013-04-16Leica Geosystems AgDistance-measuring method for a device projecting a reference line, and such a device
US7922063B2 (en)2007-10-312011-04-12Tyco Healthcare Group, LpPowered surgical instrument
US20090114699A1 (en)2007-11-062009-05-07Tyco Healthcare Group LpArticulation and Firing Force Mechanisms
US7954687B2 (en)2007-11-062011-06-07Tyco Healthcare Group LpCoated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
US8452615B2 (en)2007-11-132013-05-28How To Organize (H2O) GmbhMethod and system for management of operating-room resources
US9023079B2 (en)2007-11-162015-05-05Microline Surgical, Inc.Fenestrated super atraumatic grasper apparatus
US20090128084A1 (en)2007-11-192009-05-21Honeywell International, Inc.Motor having controllable torque
US20100258327A1 (en)2007-11-272010-10-14Florian EsenweinElectrically driven hand-held power tool
US20100280247A1 (en)2007-11-302010-11-04Millennium Pharmaceuticals Inc.Process improvement using tmeda
US8591536B2 (en)2007-11-302013-11-26Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US20150157354A1 (en)2007-12-032015-06-11Covidien AgBattery-Powered Hand-Held Ultrasonic Surgical Cautery Cutting Device
US8260016B2 (en)2007-12-102012-09-04Fujifilm CorporationImage processing system, image processing method, and computer readable medium
US9622808B2 (en)2007-12-122017-04-18Erbe Elektromedizin GmbhDevice for contactless communication and use of a memory device
US8403944B2 (en)2007-12-132013-03-26MicrovalApparatus for placing stitch turns resulting from a shape-memory metal thread
CA2709634A1 (en)2007-12-212009-07-02Benny Hon Bun YeungSurgical manipulator
US8346392B2 (en)2007-12-272013-01-01Leica Geosystems AgMethod and system for the high-precision positioning of at least one object in a final location in space
US20110264000A1 (en)2007-12-282011-10-27Saurav PaulSystem and method for determining tissue type and mapping tissue morphology
US20090182577A1 (en)2008-01-152009-07-16Carestream Health, Inc.Automated information management process
US8740840B2 (en)2008-01-162014-06-03Catheter Robotics Inc.Remotely controlled catheter insertion system
US20090192591A1 (en)2008-01-242009-07-30Medtronic, Inc.Markers for Prosthetic Heart Valves
US20110015649A1 (en)2008-01-252011-01-20Mcmaster UniversitySurgical Guidance Utilizing Tissue Feedback
US20090188094A1 (en)2008-01-282009-07-30Tyco Healthcare Group LpSystem and Method for Manufacturing a Medical Instrument
US8998797B2 (en)2008-01-292015-04-07Karl Storz Gmbh & Co. KgSurgical system
US9336385B1 (en)2008-02-112016-05-10Adaptive Cyber Security Instruments, Inc.System for real-time threat detection and management
US8561870B2 (en)2008-02-132013-10-22Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US10765424B2 (en)2008-02-132020-09-08Ethicon LlcSurgical stapling instrument
US8636736B2 (en)2008-02-142014-01-28Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US9179912B2 (en)2008-02-142015-11-10Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US10874396B2 (en)2008-02-142020-12-29Ethicon LlcStapling instrument for use with a surgical robot
US10639036B2 (en)2008-02-142020-05-05Ethicon LlcRobotically-controlled motorized surgical cutting and fastening instrument
US7913891B2 (en)2008-02-142011-03-29Ethicon Endo-Surgery, Inc.Disposable loading unit with user feedback features and surgical instrument for use therewith
US8573465B2 (en)2008-02-142013-11-05Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US7810692B2 (en)2008-02-142010-10-12Ethicon Endo-Surgery, Inc.Disposable loading unit with firing indicator
US9498219B2 (en)2008-02-142016-11-22Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US11571212B2 (en)2008-02-142023-02-07Cilag Gmbh InternationalSurgical stapling system including an impedance sensor
US7819298B2 (en)2008-02-142010-10-26Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US11464514B2 (en)2008-02-142022-10-11Cilag Gmbh InternationalMotorized surgical stapling system including a sensing array
US8752749B2 (en)2008-02-142014-06-17Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US7857185B2 (en)2008-02-142010-12-28Ethicon Endo-Surgery, Inc.Disposable loading unit for surgical stapling apparatus
US9585657B2 (en)2008-02-152017-03-07Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US8608044B2 (en)2008-02-152013-12-17Ethicon Endo-Surgery, Inc.Feedback and lockout mechanism for surgical instrument
US20090206131A1 (en)2008-02-152009-08-20Ethicon Endo-Surgery, Inc.End effector coupling arrangements for a surgical cutting and stapling instrument
US7980443B2 (en)2008-02-152011-07-19Ethicon Endo-Surgery, Inc.End effectors for a surgical cutting and stapling instrument
US20090217932A1 (en)2008-03-032009-09-03Ethicon Endo-Surgery, Inc.Intraluminal tissue markers
US8118206B2 (en)2008-03-152012-02-21Surgisense CorporationSensing adjunct for surgical staplers
US9987072B2 (en)2008-03-172018-06-05Covidien LpSystem and method for detecting a fault in a capacitive return electrode for use in electrosurgery
US20090234352A1 (en)2008-03-172009-09-17Tyco Healthcare Group LpVariable Capacitive Electrode Pad
US9301810B2 (en)2008-03-272016-04-05St. Jude Medical, Atrial Fibrillation Division, Inc.System and method of automatic detection of obstructions for a robotic catheter system
US20110112569A1 (en)2008-03-272011-05-12Mayo Foundation For Medical Education And ResearchNavigation and tissue capture systems and methods
US8155479B2 (en)2008-03-282012-04-10Intuitive Surgical Operations Inc.Automated panning and digital zooming for robotic surgical systems
US8568411B2 (en)2008-03-312013-10-29Applied Medical Resources CorporationElectrosurgical system
US8562598B2 (en)2008-03-312013-10-22Applied Medical Resources CorporationElectrosurgical system
USD583328S1 (en)2008-04-012008-12-23Cheng Uei Precision Industry Co., Ltd.Receptacle connector
US20160350490A1 (en)2008-04-082016-12-01Noel I. GUILLAMADynamic integration of disparate health-related processes and data
US10441344B2 (en)2008-04-102019-10-15Erbe Elektromedizin GmbhSurgical apparatus comprising a nerve testing device
US20090259221A1 (en)2008-04-152009-10-15Naoko TaharaPower supply apparatus for operation
US20090259149A1 (en)2008-04-152009-10-15Naoko TaharaPower supply apparatus for operation
US8095327B2 (en)2008-04-152012-01-10Olympus Medical Systems Corp.Power supply apparatus for operation
US9526407B2 (en)2008-04-252016-12-27Karl Storz Imaging, Inc.Wirelessly powered medical devices and instruments
US20090270678A1 (en)2008-04-262009-10-29Intuitive Surgical, Inc.Augmented stereoscopic visualization for a surgical robot using time duplexing
US20090281541A1 (en)2008-05-092009-11-12Estech, Inc.Conduction block systems and methods
US10022391B2 (en)2008-05-132018-07-17Chiesi Farmaceutici S.P.A.Maintenance of platelet inhibition during antiplatelet therapy
US9740826B2 (en)2008-05-272017-08-22Stryker CorporationWireless medical room control arrangement for control of a plurality of medical devices
US8506478B2 (en)2008-06-042013-08-13Fujifilm CorporationIllumination device for use in endoscope
US20090307681A1 (en)2008-06-052009-12-10Ryan ArmadoWireless Network and Methods of Wireless Communication For Ophthalmic Surgical Consoles
US8328065B2 (en)2008-06-062012-12-11Covidien LpKnife/firing rod connection for surgical instrument
US8015976B2 (en)2008-06-062011-09-13Tyco Healthcare Group LpKnife lockout mechanisms for surgical instrument
US20140121669A1 (en)2008-06-092014-05-01Abbott Medical Optics Inc.Controlling a phacoemulsification system based on real-time analysis of image data
US20090306581A1 (en)2008-06-092009-12-10Advanced Medical Optics, Inc.Controlling a phacoemulsification system based on real-time analysis of image data
US20160367401A1 (en)2008-06-092016-12-22Abbott Medical Optics Inc.Controlling a phacoemulsification system based on real-time analysis of image data
US8007513B2 (en)2008-06-122011-08-30Ethicon Endo-Surgery, Inc.Partially reusable surgical stapler
US7932826B2 (en)2008-06-122011-04-26Abbott Laboratories Inc.System for tracking the location of components, assemblies, and subassemblies in an automated diagnostic analyzer
US8790253B2 (en)2008-06-132014-07-29Fujifilm CorporationLight source device, imaging apparatus and endoscope apparatus
US8628545B2 (en)2008-06-132014-01-14Covidien LpEndoscopic stitching devices
US20090326321A1 (en)2008-06-182009-12-31Jacobsen Stephen CMiniaturized Imaging Device Including Multiple GRIN Lenses Optically Coupled to Multiple SSIDs
US9168104B2 (en)2008-06-232015-10-27John Richard DeinIntra-operative system for identifying and tracking surgical sharp objects, instruments, and sponges
US20090326336A1 (en)2008-06-252009-12-31Heinz Ulrich LemkeProcess for comprehensive surgical assist system by means of a therapy imaging and model management system (TIMMS)
US10258425B2 (en)2008-06-272019-04-16Intuitive Surgical Operations, Inc.Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
CN101617950A (en)2008-07-012010-01-06王爱娣Repeating titanium clamp pincers
US8771270B2 (en)2008-07-162014-07-08Intuitive Surgical Operations, Inc.Bipolar cautery instrument
US8820607B2 (en)2008-07-172014-09-02Covidien LpSurgical retraction mechanism
US8054184B2 (en)2008-07-312011-11-08Intuitive Surgical Operations, Inc.Identification of surgical instrument attached to surgical robot
US8779648B2 (en)2008-08-062014-07-15Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en)2008-08-062015-07-28Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US20100036405A1 (en)2008-08-062010-02-11Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US10022568B2 (en)2008-08-062018-07-17Ethicon LlcDevices and techniques for cutting and coagulating tissue
US8546996B2 (en)2008-08-062013-10-01Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US8406859B2 (en)2008-08-102013-03-26Board Of Regents, The University Of Texas SystemDigital light processing hyperspectral imaging apparatus
US8172836B2 (en)2008-08-112012-05-08Tyco Healthcare Group LpElectrosurgical system having a sensor for monitoring smoke or aerosols
US8652128B2 (en)2008-08-112014-02-18Covidien LpElectrosurgical system having a sensor for monitoring smoke or aerosols
US20100036374A1 (en)2008-08-112010-02-11Tyco Healthcare Group LpElectrosurgical System Having a Sensor for Monitoring Smoke or Aerosols
US20100217991A1 (en)2008-08-142010-08-26Seung Wook ChoiSurgery robot system of server and client type
US8257387B2 (en)2008-08-152012-09-04Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8500728B2 (en)2008-08-182013-08-06Encision, Inc.Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US20100057106A1 (en)2008-08-292010-03-04Gregory SorrentinoEndoscopic surgical clip applier with connector plate
US8208707B2 (en)2008-09-022012-06-26General Electric CompanyTissue classification in medical images
JP2010057642A (en)2008-09-022010-03-18Nidek Co LtdApparatus for vitreous body surgery
US9023071B2 (en)2008-09-122015-05-05Ethicon Endo-Surgery, Inc.Ultrasonic device for fingertip control
US8819581B2 (en)2008-09-122014-08-26Fujitsu Ten LimitedInformation processing device and image processing device
US20100070417A1 (en)2008-09-122010-03-18At&T Mobility Ii LlcNetwork registration for content transactions
US9107688B2 (en)2008-09-122015-08-18Ethicon Endo-Surgery, Inc.Activation feature for surgical instrument with pencil grip
US20100065604A1 (en)2008-09-152010-03-18Frankenman International Ltd.Lockout mechanism for a surgical stapler
US20100069939A1 (en)2008-09-152010-03-18Olympus Medical Systems Corp.Operation system
US20100069942A1 (en)2008-09-182010-03-18Ethicon Endo-Surgery, Inc.Surgical instrument with apparatus for measuring elapsed time between actions
US7832612B2 (en)2008-09-192010-11-16Ethicon Endo-Surgery, Inc.Lockout arrangement for a surgical stapler
US8005947B2 (en)2008-09-222011-08-23Abbott Medical Optics Inc.Systems and methods for providing remote diagnostics and support for surgical systems
US7988028B2 (en)2008-09-232011-08-02Tyco Healthcare Group LpSurgical instrument having an asymmetric dynamic clamping member
US10736628B2 (en)2008-09-232020-08-11Ethicon LlcMotor-driven surgical cutting instrument
US9005230B2 (en)2008-09-232015-04-14Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US10130361B2 (en)2008-09-232018-11-20Ethicon LlcRobotically-controller motorized surgical tool with an end effector
US9655614B2 (en)2008-09-232017-05-23Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US20150182220A1 (en)2008-09-232015-07-02Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US8210411B2 (en)2008-09-232012-07-03Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US9050083B2 (en)2008-09-232015-06-09Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US7993954B2 (en)2008-09-302011-08-09Stion CorporationThermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8956581B2 (en)2008-10-012015-02-17Chevron U.S.A. Inc.Base oil manufacturing plant
US8608045B2 (en)2008-10-102013-12-17Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US20130197531A1 (en)2008-10-132013-08-01Mikhail BoukhnyAutomated intraocular lens injector device
US7918377B2 (en)2008-10-162011-04-05Ethicon Endo-Surgery, Inc.Surgical stapling instrument with apparatus for providing anvil position feedback
US8239066B2 (en)2008-10-272012-08-07Lennox Industries Inc.System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8216849B2 (en)2008-11-032012-07-10Petty Jon AColorimetric test for brake system corrosion
US8231042B2 (en)2008-11-062012-07-31Tyco Healthcare Group LpSurgical stapler
US8295902B2 (en)2008-11-112012-10-23Shifamed Holdings, LlcLow profile electrode assembly
US20100137845A1 (en)2008-12-032010-06-03Immersion CorporationTool Having Multiple Feedback Devices
JP2010131265A (en)2008-12-052010-06-17Fujifilm CorpImaging apparatus, imaging method, and program
US8515520B2 (en)2008-12-082013-08-20Medtronic Xomed, Inc.Nerve electrode
US20120029354A1 (en)2008-12-162012-02-02Mark Joseph LTissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
US8627483B2 (en)2008-12-182014-01-07Accenture Global Services LimitedData anonymization based on guessing anonymity
US8335590B2 (en)2008-12-232012-12-18Intuitive Surgical Operations, Inc.System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US10565170B2 (en)2008-12-232020-02-18Roche Diabetes Care, Inc.Structured testing method for diagnostic or therapy support of a patient with a chronic disease and devices thereof
US9526587B2 (en)2008-12-312016-12-27Intuitive Surgical Operations, Inc.Fiducial marker design and detection for locating surgical instrument in images
US8211100B2 (en)2009-01-122012-07-03Tyco Healthcare Group LpEnergy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8160098B1 (en)2009-01-142012-04-17Cisco Technology, Inc.Dynamically allocating channel bandwidth between interfaces
US20100179831A1 (en)2009-01-152010-07-15International Business Machines CorporationUniversal personal medical database access control
US20100191100A1 (en)2009-01-232010-07-29Warsaw Orthopedic, Inc.Methods and systems for diagnosing, treating, or tracking spinal disorders
US20110278343A1 (en)2009-01-292011-11-17Cardica, Inc.Clamping of Hybrid Surgical Instrument
US9107694B2 (en)2009-01-302015-08-18Koninklijke Philips N.V.Examination apparatus
US20100198200A1 (en)2009-01-302010-08-05Christopher HorvathSmart Illumination for Surgical Devices
US20110306840A1 (en)2009-01-302011-12-15The Trustees Of Columbia University In The City Of New YorkControllable magnetic source to fixture intracorporeal apparatus.
US20100194574A1 (en)2009-01-302010-08-05David James MonkParticle detection system and method of detecting particles
US8799009B2 (en)2009-02-022014-08-05Mckesson Financial HoldingsSystems, methods and apparatuses for predicting capacity of resources in an institution
US20100198248A1 (en)2009-02-022010-08-05Ethicon Endo-Surgery, Inc.Surgical dissector
US9345490B2 (en)2009-02-042016-05-24Stryker European Holdings I, LlcSurgical power tool and actuation assembly therefor
US9636096B1 (en)2009-02-042017-05-02Vioptix, Inc.Retractor systems with closed loop control
US8517239B2 (en)2009-02-052013-08-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US20100204717A1 (en)2009-02-122010-08-12Cardica, Inc.Surgical Device for Multiple Clip Application
US8641621B2 (en)2009-02-172014-02-04Inneroptic Technology, Inc.Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US9364294B2 (en)2009-02-172016-06-14Inneroptic Technology, Inc.Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US9141758B2 (en)2009-02-202015-09-22Ims Health IncorporatedSystem and method for encrypting provider identifiers on medical service claim transactions
US20190314081A1 (en)2009-03-052019-10-17Intuitive Surgical Operations, Inc.Cut and seal instrument
US20150335344A1 (en)2009-03-062015-11-26Procept Biorobotics CorporationTissue resection and treatment with shedding pulses
US20150237502A1 (en)2009-03-062015-08-20Interdigital Patent Holdings, Inc.Platform Validation and Management of Wireless Devices
US8914098B2 (en)2009-03-082014-12-16Oprobe, LlcMedical and veterinary imaging and diagnostic procedures utilizing optical probe systems
US20190038335A1 (en)2009-03-092019-02-07Intuitive Surgical Operations, Inc.Methods of user interfaces for electrosurgical tools in robotic surgical systems
US9827059B2 (en)2009-03-092017-11-28Intuitive Surgical Operations, Inc.Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8918207B2 (en)2009-03-092014-12-23Intuitive Surgical Operations, Inc.Operator input device for a robotic surgical system
US8423182B2 (en)2009-03-092013-04-16Intuitive Surgical Operations, Inc.Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8120301B2 (en)2009-03-092012-02-21Intuitive Surgical Operations, Inc.Ergonomic surgeon control console in robotic surgical systems
US9226689B2 (en)2009-03-102016-01-05Medtronic Xomed, Inc.Flexible circuit sheet
US8411034B2 (en)2009-03-122013-04-02Marc BoillotSterile networked interface for medical systems
US20100235689A1 (en)2009-03-162010-09-16Qualcomm IncorporatedApparatus and method for employing codes for telecommunications
US20120021684A1 (en)2009-03-262012-01-26Xped Holdings Pty LtdArrangement for managing wireless communication between devices
US20100250571A1 (en)2009-03-262010-09-30Jay PierceSystem and method for an orthopedic dynamic data repository and registry for range
US9277969B2 (en)2009-04-012016-03-08Covidien LpMicrowave ablation system with user-controlled ablation size and method of use
US9867670B2 (en)2009-04-012018-01-16Covidien LpMicrowave ablation system and user-controlled ablation size and method of use
US8945163B2 (en)2009-04-012015-02-03Ethicon Endo-Surgery, Inc.Methods and devices for cutting and fastening tissue
US10335227B2 (en)2009-04-242019-07-02Covidien LpElectrosurgical tissue sealer and cutter
US10159481B2 (en)2009-04-272018-12-25Covidien LpDevice and method for controlling compression of tissue
US10271844B2 (en)2009-04-272019-04-30Covidien LpSurgical stapling apparatus employing a predictive stapling algorithm
US8499992B2 (en)2009-04-272013-08-06Covidien LpDevice and method for controlling compression of tissue
US8012170B2 (en)2009-04-272011-09-06Tyco Healthcare Group LpDevice and method for controlling compression of tissue
US8365975B1 (en)2009-05-052013-02-05Cardica, Inc.Cam-controlled knife for surgical instrument
US8554697B2 (en)2009-05-082013-10-08Abbott Medical Optics Inc.Self-learning engine for the refinement and optimization of surgical settings
US8585694B2 (en)2009-05-112013-11-19Gyrus Medical LimitedElectrosurgical generator
US9656092B2 (en)2009-05-122017-05-23Chronicmobile, Inc.Methods and systems for managing, controlling and monitoring medical devices via one or more software applications functioning in a secure environment
US9027431B2 (en)2009-05-152015-05-12Katholieke Universiteit LeuvenRemote centre of motion positioner
US20100292684A1 (en)2009-05-152010-11-18Cybulski James STissue modification devices and methods of the same
US20100292535A1 (en)2009-05-182010-11-18Larry PaskarEndoscope with multiple fields of view
JP2010269067A (en)2009-05-252010-12-02Hitachi Medical CorpTreatment support device
US8595607B2 (en)2009-06-042013-11-26Abbott Diabetes Care Inc.Method and system for updating a medical device
US9277961B2 (en)2009-06-122016-03-08Advanced Cardiac Therapeutics, Inc.Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US20110077512A1 (en)2009-06-162011-03-31Dept. Of Veterans AffairsBiopsy marker composition and method of use
US9532827B2 (en)2009-06-172017-01-03Nuortho Surgical Inc.Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US9872609B2 (en)2009-06-182018-01-23Endochoice Innovation Center Ltd.Multi-camera endoscope
US9554692B2 (en)2009-06-182017-01-31EndoChoice Innovation Ctr. Ltd.Multi-camera endoscope
US8827134B2 (en)2009-06-192014-09-09Covidien LpFlexible surgical stapler with motor in the head
US8473066B2 (en)2009-07-062013-06-25Boston Scientific Neuromodulation CompanyExternal charger for a medical implantable device using field sensing coils to improve coupling
US20110006876A1 (en)2009-07-092011-01-13Medtronic Minimed, Inc.Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US8461744B2 (en)2009-07-152013-06-11Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US9445764B2 (en)2009-07-152016-09-20Koninklijke Philips N.V.Method for automatic setting time varying parameter alert and alarm limits
JP2012533346A (en)2009-07-152012-12-27エシコン・エンド−サージェリィ・インコーポレイテッド Electrosurgical Electric Generator for Ultrasonic Surgical Instruments
US9017326B2 (en)2009-07-152015-04-28Ethicon Endo-Surgery, Inc.Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en)2009-07-152014-03-04Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US9764164B2 (en)2009-07-152017-09-19Ethicon LlcUltrasonic surgical instruments
US9439736B2 (en)2009-07-222016-09-13St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US20110043612A1 (en)2009-07-312011-02-24Inneroptic Technology Inc.Dual-tube stereoscope
US8920433B2 (en)2009-07-312014-12-30Dexterite SurgicalErgonomic and semi-automatic manipulator, and applications to instruments for minimally invasive surgery
US8934684B2 (en)2009-07-312015-01-13Siemens AktiengesellschaftMethod and system for facilitating an image guided medical procedure
US20110046618A1 (en)2009-08-042011-02-24Minar Christopher DMethods and systems for treating occluded blood vessels and other body cannula
US8968358B2 (en)2009-08-052015-03-03Covidien LpBlunt tissue dissection surgical instrument jaw designs
US8620055B2 (en)2009-08-072013-12-31Ucl Business PlcApparatus and method for registering two medical images
US8636190B2 (en)2009-08-112014-01-28Covidien LpSurgical stapling apparatus
US8955732B2 (en)2009-08-112015-02-17Covidien LpSurgical stapling apparatus
US8360299B2 (en)2009-08-112013-01-29Covidien LpSurgical stapling apparatus
US7956620B2 (en)2009-08-122011-06-07Tyco Healthcare Group LpSystem and method for augmented impedance sensing
US20110036890A1 (en)2009-08-172011-02-17Yong MaSafety Method For Powered Surgical Instruments
US8886790B2 (en)2009-08-192014-11-11Opanga Networks, Inc.Systems and methods for optimizing channel resources by coordinating data transfers based on data type and traffic
US9636239B2 (en)2009-08-202017-05-02Case Western Reserve UniversitySystem and method for mapping activity in peripheral nerves
US20110166883A1 (en)2009-09-012011-07-07Palmer Robert DSystems and Methods for Modeling Healthcare Costs, Predicting Same, and Targeting Improved Healthcare Quality and Profitability
US20120172696A1 (en)2009-09-102012-07-05Cathprint AbFlexible Conductor Carrier for Catheter and Catheter Fitted with a Conductor Carrier
US9265429B2 (en)2009-09-182016-02-23Welch Allyn, Inc.Physiological parameter measuring platform device supporting multiple workflows
US9750563B2 (en)2009-09-222017-09-05Mederi Therapeutics, Inc.Systems and methods for treating tissue with radiofrequency energy
US10386990B2 (en)2009-09-222019-08-20Mederi Rf, LlcSystems and methods for treating tissue with radiofrequency energy
US9474565B2 (en)2009-09-222016-10-25Mederi Therapeutics, Inc.Systems and methods for treating tissue with radiofrequency energy
US8899479B2 (en)2009-09-282014-12-02Ethicon Endo-Surgery, Inc.Method and system for monitoring the flow and usage of medical devices
US20120265555A1 (en)2009-09-282012-10-18Sandro CappuzzoMethod and system for monitoring the flow and usage of medical devices
US20110105895A1 (en)2009-10-012011-05-05Giora KornblauGuided surgery
US20110119075A1 (en)2009-10-022011-05-19Rabin Chandra Kemp DhobleApparatuses, methods and systems for a mobile healthcare manager-based provider incentive manager
US10263171B2 (en)2009-10-092019-04-16Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en)2009-10-092015-10-27Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en)2009-10-092019-10-15Ethicon LlcSurgical generator for ultrasonic and electrosurgical devices
US9060775B2 (en)2009-10-092015-06-23Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en)2009-10-092015-03-24Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20140074076A1 (en)2009-10-122014-03-13Kona Medical, Inc.Non-invasive autonomic nervous system modulation
US20110087502A1 (en)2009-10-142011-04-14Yelton Paul AMedical facility bed availability
US8157151B2 (en)2009-10-152012-04-17Tyco Healthcare Group LpStaple line reinforcement for anvil and cartridge
US20120203785A1 (en)2009-10-162012-08-09Nanomedapps LlcItem and user tracking
US8038693B2 (en)2009-10-212011-10-18Tyco Healthcare Group IpMethods for ultrasonic tissue sensing and feedback
US8322590B2 (en)2009-10-282012-12-04Covidien LpSurgical stapling instrument
US20110273465A1 (en)2009-10-282011-11-10Olympus Medical Systems Corp.Output control apparatus of medical device
US20120226150A1 (en)2009-10-302012-09-06The Johns Hopkins UniversityVisual tracking and annotaton of clinically important anatomical landmarks for surgical interventions
US10045813B2 (en)2009-10-302018-08-14Covidien LpJaw roll joint
US8225979B2 (en)2009-10-302012-07-24Tyco Healthcare Group LpLocking shipping wedge
US20110105277A1 (en)2009-11-042011-05-05Chair Trainer, Ltd.Multi-trainer for swivel chairs on castors
US8472630B2 (en)2009-11-062013-06-25Roche Diagnostics International AgMethod and system for establishing cryptographic communications between a remote device and a medical device
US20110118708A1 (en)2009-11-132011-05-19Intuitive Surgical Operations, Inc.Double universal joint
US8852174B2 (en)2009-11-132014-10-07Intuitive Surgical Operations, Inc.Surgical tool with a two degree of freedom wrist
US8521331B2 (en)2009-11-132013-08-27Intuitive Surgical Operations, Inc.Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
US10098635B2 (en)2009-11-132018-10-16Intuitive Surgical Operations, Inc.End effector with redundant closing mechanisms
US8876857B2 (en)2009-11-132014-11-04Intuitive Surgical Operations, Inc.End effector with redundant closing mechanisms
US8682489B2 (en)2009-11-132014-03-25Intuitive Sugical Operations, Inc.Method and system for hand control of a teleoperated minimally invasive slave surgical instrument
US9649089B2 (en)*2009-11-172017-05-16B-K Medical ApsPortable ultrasound scanner and docking system
US8622275B2 (en)2009-11-192014-01-07Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US10588629B2 (en)2009-11-202020-03-17Covidien LpSurgical console and hand-held surgical device
US10105140B2 (en)2009-11-202018-10-23Covidien LpSurgical console and hand-held surgical device
US9241730B2 (en)2009-11-252016-01-26Eliaz BabaevUltrasound surgical saw
US8540709B2 (en)2009-12-072013-09-24Covidien LpRemovable ink for surgical instrument
US8136712B2 (en)2009-12-102012-03-20Ethicon Endo-Surgery, Inc.Surgical stapler with discrete staple height adjustment and tactile feedback
US20110152712A1 (en)2009-12-212011-06-23Hong CaoImpedance Measurement Tissue Identification in Blood Vessels
US10548612B2 (en)2009-12-222020-02-04Cook Medical Technologies LlcMedical devices with detachable pivotable jaws
US8220688B2 (en)2009-12-242012-07-17Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en)2009-12-242014-10-07Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US9137254B2 (en)2009-12-312015-09-15Apple Inc.Local device awareness
USD657368S1 (en)2009-12-312012-04-10Welch Allyn, Inc.Patient monitoring device with graphical user interface
USD667838S1 (en)2009-12-312012-09-25Welch Allyn, Inc.Patient monitoring device with graphical user interface
US20110163147A1 (en)2010-01-072011-07-07Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US20120319859A1 (en)2010-01-202012-12-20Creative Team Instruments Ltd.Orientation detector for use with a hand-held surgical or dental tool
US20130006241A1 (en)2010-01-222013-01-03Tomoyuki TakashinoMedical treatment device, medical treatment apparatus, and operation method of medical treatment device
US10044791B2 (en)2010-01-222018-08-07Deka Products Limited PartnershipSystem, method, and apparatus for communicating data
US8439910B2 (en)2010-01-222013-05-14Megadyne Medical Products Inc.Electrosurgical electrode with electric field concentrating flash edge
US8476227B2 (en)2010-01-222013-07-02Ethicon Endo-Surgery, Inc.Methods of activating a melanocortin-4 receptor pathway in obese subjects
US9839467B2 (en)2010-01-292017-12-12Covidien LpSurgical forceps capable of adjusting seal plate width based on vessel size
US9450701B2 (en)2010-02-032016-09-20Orbital Multi Media Holdings CorporationData flow control method and apparatus
US9107689B2 (en)2010-02-112015-08-18Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US9649126B2 (en)2010-02-112017-05-16Ethicon Endo-Surgery, LlcSeal arrangements for ultrasonically powered surgical instruments
US20110196398A1 (en)2010-02-112011-08-11Ethicon Endo-Surgery, Inc.Seal arrangements for ultrasonically powered surgical instruments
US20110209128A1 (en)2010-02-242011-08-25Nokia CorporationSystems, methods and apparatuses for facilitating targeted compilation of source code
US8403945B2 (en)2010-02-252013-03-26Covidien LpArticulating endoscopic surgical clip applier
US8512325B2 (en)2010-02-262013-08-20Covidien LpFrequency shifting multi mode ultrasonic dissector
US9610412B2 (en)2010-03-022017-04-04Covidien LpInternally pressurized medical devices
US20110218526A1 (en)2010-03-032011-09-08Medtronic Ablation Frontiers, LlcVariable-output radiofrequency ablation power supply
US9107684B2 (en)2010-03-052015-08-18Covidien LpSystem and method for transferring power to intrabody instruments
USD676392S1 (en)2010-03-092013-02-19Wago Verwaltungsgesellschaft MbhElectrical connector
US8617155B2 (en)2010-03-102013-12-31Covidien LpSystem and method for determining proximity relative to a critical structure
US9888864B2 (en)2010-03-122018-02-13Inspire Medical Systems, Inc.Method and system for identifying a location for nerve stimulation
WO2011112931A1 (en)2010-03-122011-09-15The Board Of Trustees Of The University Of IllinoisWaterproof stretchable optoelectronics
US20110238079A1 (en)2010-03-182011-09-29SPI Surgical, Inc.Surgical Cockpit Comprising Multisensory and Multimodal Interfaces for Robotic Surgery and Methods Related Thereto
US20130024213A1 (en)2010-03-252013-01-24The Research Foundation Of State University Of New YorkMethod and system for guided, efficient treatment
US9023032B2 (en)2010-03-252015-05-05Covidien LpShaped circuit boards suitable for use in electrosurgical devices and rotatable assemblies including same
US20110237883A1 (en)2010-03-262011-09-29Minkyung ChunElectronic endoscope system
US9232883B2 (en)2010-03-292016-01-12Fujifilm CorporationEndoscope apparatus
USD678304S1 (en)2010-03-312013-03-19Spintso International AbDisplay screen or portion thereof with graphical user interface
US20110251612A1 (en)2010-04-122011-10-13Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9603024B2 (en)2010-04-132017-03-21Koninklijke Philips N.V.Medical body area network (MBAN) with key-based control of spectrum usage
US9341704B2 (en)2010-04-132016-05-17Frederic PicardMethods and systems for object tracking
US20110264086A1 (en)2010-04-142011-10-27Frank IngleRenal artery denervation apparatus employing helical shaping arrangement
US20110264078A1 (en)2010-04-232011-10-27Lipow Kenneth IRing form surgical effector
US20110265311A1 (en)2010-04-282011-11-03Honda Motor Co., Ltd.Workpiece holding method
US10631912B2 (en)2010-04-302020-04-28Medtronic Xomed, Inc.Interface module for use with nerve monitoring and electrosurgery
US20150257783A1 (en)2010-05-132015-09-17Rex Medical, L.P.Rotational thrombectomy wire
US20170105787A1 (en)2010-05-172017-04-20Ethicon Endo-Surgery, LlcSurgical instruments and end effectors therefor
US9052809B2 (en)2010-05-262015-06-09General Electric CompanySystems and methods for situational application development and deployment with patient event monitoring
USD631252S1 (en)2010-05-262011-01-25Leslie Henry EGlove holder for engaging a garment
US20110290024A1 (en)2010-05-282011-12-01Lefler Kenneth ASystem and method of mechanical fault detection based on signature detection
US20110307284A1 (en)2010-06-092011-12-15Medtronic, Inc.Command center communication system for improved management of complex medical environments
AU2015201140A1 (en)2010-06-112015-03-26Ethicon, LlcSuture delivery tools for endoscopic and robot-assisted surgery and methods
US20130085413A1 (en)2010-06-132013-04-04Oded TsamirAnatomical-positioning apparatus and method with an expandable device
US10182814B2 (en)2010-06-182019-01-22Covidien LpStaple position sensor system
US8596515B2 (en)2010-06-182013-12-03Covidien LpStaple position sensor system
US20130096597A1 (en)2010-06-242013-04-18Koninklijke Philips Electronics N.V.Real-time monitoring and control of hifu therapy in multiple dimensions
US8429153B2 (en)2010-06-252013-04-23The United States Of America As Represented By The Secretary Of The ArmyMethod and apparatus for classifying known specimens and media using spectral properties and identifying unknown specimens and media
US20120012638A1 (en)2010-07-142012-01-19Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US8453906B2 (en)2010-07-142013-06-04Ethicon Endo-Surgery, Inc.Surgical instruments with electrodes
US20130131845A1 (en)2010-07-202013-05-23Maquet SasSystem for managing equipment of an operational block and correspnoding use
US20120022519A1 (en)2010-07-222012-01-26Ethicon Endo-Surgery, Inc.Surgical cutting and sealing instrument with controlled energy delivery
US9737310B2 (en)2010-07-282017-08-22Covidien LpArticulating clip applier
US8968337B2 (en)2010-07-282015-03-03Covidien LpArticulating clip applier
US8403946B2 (en)2010-07-282013-03-26Covidien LpArticulating clip applier cartridge
US8827136B2 (en)2010-08-112014-09-09Covidien LpEndoscopic purse string surgical device
US10137245B2 (en)2010-08-172018-11-27University Of Florida Research Foundation, Inc.Central site photoplethysmography, medication administration, and safety
US20120046662A1 (en)2010-08-232012-02-23Tyco Healthcare Group LpMethod of Manufacturing Tissue Sealing Electrodes
US20130090755A1 (en)2010-08-312013-04-11Mitsubishi Heavy Industries, Ltd.Numerically-controlled machine tool
US20160048780A1 (en)2010-09-012016-02-18Apixio, Inc.Systems and methods for enhancing workflow efficiency in a healthcare management system
US20120059684A1 (en)2010-09-022012-03-08International Business Machines CorporationSpatial-Temporal Optimization of Physical Asset Maintenance
US8663222B2 (en)2010-09-072014-03-04Covidien LpDynamic and static bipolar electrical sealing and cutting device
US9404868B2 (en)2010-09-092016-08-02Sharp Kabushiki KaishaMeasuring device, measuring system, measuring method, control program, and recording medium
US10675035B2 (en)2010-09-092020-06-09Ethicon LlcSurgical stapling head assembly with firing lockout for a surgical stapler
US8794497B2 (en)2010-09-092014-08-05Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en)2010-09-172016-03-22Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US8632525B2 (en)2010-09-172014-01-21Ethicon Endo-Surgery, Inc.Power control arrangements for surgical instruments and batteries
JP2012065698A (en)2010-09-212012-04-05Fujifilm CorpOperation support system, and operation support method using the same
US20120078247A1 (en)2010-09-242012-03-29Worrell Barry CArticulation joint features for articulating surgical device
US8864747B2 (en)2010-09-292014-10-21Sound Surgical Technologies LlcPower assisted lipoplasty
US8733613B2 (en)2010-09-292014-05-27Ethicon Endo-Surgery, Inc.Staple cartridge
US20120080498A1 (en)2010-09-302012-04-05Ethicon Endo-Surgery, Inc.Curved end effector for a stapling instrument
US20180271520A1 (en)2010-09-302018-09-27Ethicon LlcTissue thickness compensator comprising at least one medicament
US9814462B2 (en)2010-09-302017-11-14Ethicon LlcAssembly for fastening tissue comprising a compressible layer
US20150136833A1 (en)2010-09-302015-05-21Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US9282962B2 (en)2010-09-302016-03-15Ethicon Endo-Surgery, LlcAdhesive film laminate
US9044227B2 (en)2010-09-302015-06-02Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US8393514B2 (en)2010-09-302013-03-12Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US8757465B2 (en)2010-09-302014-06-24Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US10265072B2 (en)2010-09-302019-04-23Ethicon LlcSurgical stapling system comprising an end effector including an implantable layer
US10987102B2 (en)2010-09-302021-04-27Ethicon LlcTissue thickness compensator comprising a plurality of layers
US8657176B2 (en)2010-09-302014-02-25Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler
US8840003B2 (en)2010-09-302014-09-23Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US9301755B2 (en)2010-09-302016-04-05Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US9386988B2 (en)2010-09-302016-07-12Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US10588623B2 (en)2010-09-302020-03-17Ethicon LlcAdhesive film laminate
EP3120781A2 (en)2010-09-302017-01-25Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US20210259687A1 (en)2010-09-302021-08-26Ethicon LlcTissue thickness compensator comprising a plurality of layers
US8893949B2 (en)2010-09-302014-11-25Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US9301753B2 (en)2010-09-302016-04-05Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US20120080336A1 (en)2010-09-302012-04-05Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples positioned within a compressible portion thereof
US9314246B2 (en)2010-09-302016-04-19Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9272406B2 (en)2010-09-302016-03-01Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US20120100517A1 (en)2010-09-302012-04-26Andrew BowditchReal-time, interactive, three-dimensional virtual surgery system and method thereof
US8979890B2 (en)2010-10-012015-03-17Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US7993354B1 (en)2010-10-012011-08-09Endoevolution, LlcDevices and methods for minimally invasive suturing
US9320563B2 (en)2010-10-012016-04-26Applied Medical Resources CorporationElectrosurgical instruments and connections thereto
US9498279B2 (en)2010-10-042016-11-22Covidien LpVessel sealing instrument
US20120083786A1 (en)2010-10-042012-04-05Artale Ryan CVessel Sealing Instrument
US9750560B2 (en)2010-10-252017-09-05Medtronic Ardian Luxembourg S.A.R.L.Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US20120101488A1 (en)2010-10-262012-04-26Ethicon Endo-Surgery, Inc.Surgical instrument with magnetic clamping force
US9155503B2 (en)2010-10-272015-10-13Cadwell LabsApparatus, system, and method for mapping the location of a nerve
US20140287393A1 (en)2010-11-042014-09-25The Johns Hopkins UniversitySystem and method for the evaluation of or improvement of minimally invasive surgery skills
US20160121143A1 (en)2010-11-052016-05-05Ethicon Endo-Surgery, LlcSurgical instrument with slip ring assembly to power ultrasonic transducer
US9782214B2 (en)2010-11-052017-10-10Ethicon LlcSurgical instrument with sensor and powered control
US20120116265A1 (en)2010-11-052012-05-10Houser Kevin LSurgical instrument with charging devices
US20120116394A1 (en)2010-11-052012-05-10Timm Richard WSurgical instrument with pivoting coupling to modular shaft and end effector
US9381058B2 (en)2010-11-052016-07-05Ethicon Endo-Surgery, LlcRecharge system for medical devices
US9161803B2 (en)2010-11-052015-10-20Ethicon Endo-Surgery, Inc.Motor driven electrosurgical device with mechanical and electrical feedback
US9011427B2 (en)2010-11-052015-04-21Ethicon Endo-Surgery, Inc.Surgical instrument safety glasses
US9072523B2 (en)2010-11-052015-07-07Ethicon Endo-Surgery, Inc.Medical device with feature for sterile acceptance of non-sterile reusable component
US20120116381A1 (en)2010-11-052012-05-10Houser Kevin LSurgical instrument with charging station and wireless communication
USD655678S1 (en)2010-11-112012-03-13Hosiden CorporationElectrical connector
USD675164S1 (en)2010-11-112013-01-29Hosiden CorporationElectrical connector
US9095362B2 (en)2010-11-152015-08-04Intutitive Surgical Operations, Inc.Method for passively decoupling torque applied by a remote actuator into an independently rotating member
US8992565B2 (en)2010-11-152015-03-31Intuitive Surgical Operations, Inc.Decoupling instrument shaft roll and end effector actuation in a surgical instrument
US20120130217A1 (en)2010-11-232012-05-24Kauphusman James VMedical devices having electrodes mounted thereon and methods of manufacturing therefor
US10054441B2 (en)2010-11-242018-08-21Leica Geosystems AgBuilding surveying device with an automatic plumb point finding functionality
US9265959B2 (en)2010-11-302016-02-23Physio-Control, Inc.Medical device including setup option reporting
US8814996B2 (en)2010-12-012014-08-26University Of South CarolinaMethods and sensors for the detection of active carbon filters degradation with EMIS-ECIS PWAS
US8523043B2 (en)2010-12-072013-09-03Immersion CorporationSurgical stapler having haptic feedback
US9044244B2 (en)2010-12-102015-06-02Biosense Webster (Israel), Ltd.System and method for detection of metal disturbance based on mutual inductance measurement
US20120145714A1 (en)2010-12-102012-06-14Tyco Healthcare Group LpCartridge Shipping Aid
US20120190981A1 (en)2010-12-222012-07-26Veebot, LlcSystems and methods for autonomous intravenous needle insertion
US9302213B2 (en)2010-12-222016-04-05Cooper Technologies CompanyPre-filtration and maintenance sensing for explosion-proof enclosures
US8936614B2 (en)2010-12-302015-01-20Covidien LpCombined unilateral/bilateral jaws on a surgical instrument
US10537396B2 (en)2011-01-072020-01-21Restoration Robotics, Inc.Methods and systems for modifying a parameter of an automated procedure
USD678196S1 (en)2011-01-072013-03-19Seiko Epson CorporationInput signal selector for projector
US9936955B2 (en)2011-01-112018-04-10Amsel Medical CorporationApparatus and methods for fastening tissue layers together with multiple tissue fasteners
US8818556B2 (en)2011-01-132014-08-26Microsoft CorporationMulti-state model for robot and user interaction
US20150099458A1 (en)2011-01-142015-04-09Covidien LpNetwork-Capable Medical Device for Remote Monitoring Systems
US20150070187A1 (en)2011-01-142015-03-12Covidien LpWireless Relay Module For Remote Monitoring Systems
US20120191162A1 (en)2011-01-202012-07-26Cristiano VillaSystem of Remote Controlling a Medical Laser Generator Unit with a Portable Computing Device
US20120191091A1 (en)2011-01-242012-07-26Tyco Healthcare Group LpReusable Medical Device with Advanced Counting Capability
US20120197619A1 (en)2011-01-272012-08-02Einav Namer YelinSystem and method for generating a patient-specific digital image-based model of an anatomical structure
US20120203067A1 (en)2011-02-042012-08-09The Penn State Research FoundationMethod and device for determining the location of an endoscope
US9990856B2 (en)2011-02-082018-06-05The Trustees Of The University Of PennsylvaniaSystems and methods for providing vibration feedback in robotic systems
US9216062B2 (en)2011-02-152015-12-22Intuitive Surgical Operations, Inc.Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
US9662177B2 (en)2011-02-152017-05-30Intuitive Surgical Operations, Inc.Methods and systems for indicating a clamping prediction
US8989903B2 (en)2011-02-152015-03-24Intuitive Surgical Operations, Inc.Methods and systems for indicating a clamping prediction
US9393017B2 (en)2011-02-152016-07-19Intuitive Surgical Operations, Inc.Methods and systems for detecting staple cartridge misfire or failure
US9877718B2 (en)2011-02-152018-01-30Intuitive Surgical Operations, Inc.Methods and systems for detecting clamping or firing failure
US10278698B2 (en)2011-02-232019-05-07Covidien LpControlled tissue compression systems and methods
US20120211542A1 (en)2011-02-232012-08-23Tyco Healthcare Group I.PControlled tissue compression systems and methods
USD704839S1 (en)2011-03-022014-05-13Baylis Medical Company Inc.Electrosurgical generator
USD687146S1 (en)2011-03-022013-07-30Baylis Medical Company Inc.Electrosurgical generator
US20170172565A1 (en)2011-03-072017-06-22Scott HeneveldSuture Passing Devices and Methods
US20120232549A1 (en)2011-03-092012-09-13Vivant Medical, Inc.Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US8397972B2 (en)2011-03-182013-03-19Covidien LpShipping wedge with lockout
US9107662B2 (en)2011-03-182015-08-18Covidien LpShipping wedge with lockout
US8701962B2 (en)2011-03-182014-04-22Covidien LpShipping wedge with lockout
US20120245958A1 (en)2011-03-252012-09-27Surgichart, LlcCase-Centric Medical Records System with Social Networking
US10729458B2 (en)2011-03-302020-08-04Covidien LpUltrasonic surgical instruments
US20120253847A1 (en)2011-03-312012-10-04General Electric CompanyHealth information telecommunications system and method
US9055035B2 (en)2011-04-052015-06-09Roche Diabetes Care, Inc.Medical device with secure data transmission
US10282963B2 (en)2011-04-152019-05-07Infobionic, Inc.Remote data monitoring and collection system with multi-tiered analysis
US9307914B2 (en)2011-04-152016-04-12Infobionic, IncRemote data monitoring and collection system with multi-tiered analysis
US8478418B2 (en)2011-04-152013-07-02Infobionic, Inc.Remote health monitoring system
US20150051452A1 (en)2011-04-262015-02-19The Trustees Of Columbia University In The City Of New YorkApparatus, method and computer-accessible medium for transform analysis of biomedical data
US20170245809A1 (en)2011-04-272017-08-31Covidien LpDevice for monitoring physiological parameters in vivo
US9775623B2 (en)2011-04-292017-10-03Covidien LpSurgical clip applier including clip relief feature
US9192707B2 (en)2011-04-292015-11-24Medtronic, Inc.Electrolyte and pH monitoring for fluid removal processes
US9211120B2 (en)2011-04-292015-12-15Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US9861354B2 (en)2011-05-062018-01-09Ceterix Orthopaedics, Inc.Meniscus repair
US9820741B2 (en)2011-05-122017-11-21Covidien LpReplaceable staple cartridge
US9788902B2 (en)2011-05-122017-10-17Olympus CorporationSurgical instrument device
JP2012240158A (en)2011-05-192012-12-10Tokyo Institute Of TechnologyRotational wave motion mechanism
JP2012239669A (en)2011-05-202012-12-10Konica Minolta Advanced Layers IncProbe and diagnostic system
US9072535B2 (en)2011-05-272015-07-07Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US10542978B2 (en)2011-05-272020-01-28Covidien LpMethod of internally potting or sealing a handheld medical device
US9202078B2 (en)2011-05-272015-12-01International Business Machines CorporationData perturbation and anonymization using one way hash
US9801531B2 (en)2011-05-272017-10-31Olympus CorporationEndoscope system and method for operating endoscope system
US9043027B2 (en)2011-05-312015-05-26Intuitive Surgical Operations, Inc.Positive control of robotic surgical instrument end effector
US9615877B2 (en)2011-06-172017-04-11Covidien LpTissue sealing forceps
US8930214B2 (en)2011-06-172015-01-06Parallax Enterprises, LlcConsolidated healthcare and resource management system
US9498231B2 (en)2011-06-272016-11-22Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US20140117256A1 (en)2011-06-282014-05-01Koninklijke Philips N.V.Appratus for optical analysis of an associated tissue sample
US20130001121A1 (en)2011-07-012013-01-03Biomet Manufacturing Corp.Backup kit for a patient-specific arthroplasty kit assembly
US10811131B2 (en)2011-07-012020-10-20Baxter International Inc.Systems and methods for intelligent patient interface device
EP2730209A1 (en)2011-07-062014-05-14FUJIFILM CorporationEndoscope system, endoscope system processor and image display method
US20130008677A1 (en)2011-07-082013-01-10Chen HuifuMulti-head power tool
US9652655B2 (en)2011-07-092017-05-16Gauss Surgical, Inc.System and method for estimating extracorporeal blood volume in a physical sample
US10265004B2 (en)2011-07-142019-04-23Fujifilm CorporationBlood information measuring apparatus and method
US9671860B2 (en)2011-08-042017-06-06Olympus CorporationManipulation input device and manipulator system having the same
US9218053B2 (en)2011-08-042015-12-22Olympus CorporationSurgical assistant system
US9545216B2 (en)2011-08-052017-01-17Mc10, Inc.Catheter balloon methods and apparatus employing sensing elements
US9539007B2 (en)2011-08-082017-01-10Covidien LpSurgical fastener applying aparatus
US10950982B2 (en)2011-08-082021-03-16Molex, LlcConnector with tuned channel
US10532330B2 (en)2011-08-082020-01-14California Institute Of TechnologyFiltration membranes, and related nano and/or micro fibers, composites, methods and systems
US10517588B2 (en)2011-08-082019-12-31Covidien LpSurgical fastener applying apparatus
US9123155B2 (en)2011-08-092015-09-01Covidien LpApparatus and method for using augmented reality vision system in surgical procedures
US9125644B2 (en)2011-08-142015-09-08SafePath Medical, Inc.Apparatus and method for suturing tissue
US20130046279A1 (en)2011-08-162013-02-21Paul J. NiklewskiUser interface feature for drug delivery system
US20130046182A1 (en)2011-08-162013-02-21Elwha LLC, a limited liability company of the State of DelawareDevices and Methods for Recording Information on a Subject's Body
US8685056B2 (en)2011-08-182014-04-01Covidien LpSurgical forceps
US20130046295A1 (en)2011-08-182013-02-21Tyco Healthcare Group LpSurgical Instruments With Removable Components
US20140163359A1 (en)2011-08-212014-06-12Mordehai SholevDevice and method for assisting laparoscopic surgery - rule based approach
JP2013044303A (en)2011-08-252013-03-04Nippon Soken IncExhaust gas treatment method and exhaust gas treatment control system for internal combustion engine
US9099863B2 (en)2011-09-092015-08-04Covidien LpSurgical generator and related method for mitigating overcurrent conditions
US20130066647A1 (en)2011-09-092013-03-14Depuy Spine, Inc.Systems and methods for surgical support and management
US9101359B2 (en)2011-09-132015-08-11Ethicon Endo-Surgery, Inc.Surgical staple cartridge with self-dispensing staple buttress
US10130373B2 (en)2011-09-152018-11-20Teleflex Medical IncorporatedAutomatic surgical ligation clip applier
US9414940B2 (en)2011-09-232016-08-16Orthosensor Inc.Sensored head for a measurement tool for the muscular-skeletal system
US20130093829A1 (en)2011-09-272013-04-18Allied Minds Devices LlcInstruct-or
US20140204190A1 (en)2011-09-272014-07-24Allied Minds Devices LlcSystems and methods for providing guidance for a procedure with a device
US20130116218A1 (en)2011-09-292013-05-09Ethicon Endo-Surgery, Inc.Methods and compositions of bile acids
JP2013081282A (en)2011-10-032013-05-02Fuji Mach Mfg Co LtdAbnormality detection device
US9579503B2 (en)2011-10-052017-02-28Medtronic Xomed, Inc.Interface module allowing delivery of tissue stimulation and electrosurgery through a common surgical instrument
US9463646B2 (en)2011-10-072016-10-11Transact Technologies IncorporatedTilting touch screen for printer and printer with tilting touch screen
US9628501B2 (en)2011-10-142017-04-18Albeado, Inc.Pervasive, domain and situational-aware, adaptive, automated, and coordinated analysis and control of enterprise-wide computers, networks, and applications for mitigation of business and operational risks and enhancement of cyber security
US8931679B2 (en)2011-10-172015-01-13Covidien LpSurgical stapling apparatus
US8585631B2 (en)2011-10-182013-11-19Alcon Research, Ltd.Active bimodal valve system for real-time IOP control
US9370400B2 (en)2011-10-192016-06-21Ethicon Endo-Surgery, Inc.Clip applier adapted for use with a surgical robot
US8657177B2 (en)2011-10-252014-02-25Covidien LpSurgical apparatus and method for endoscopic surgery
US10463367B2 (en)2011-10-252019-11-05Covidien LpMulti-use loading unit
US9016539B2 (en)2011-10-252015-04-28Covidien LpMulti-use loading unit
US9526499B2 (en)2011-10-252016-12-27Covidien LpMulti-use loading unit
US9492146B2 (en)2011-10-252016-11-15Covidien LpApparatus for endoscopic procedures
US9480492B2 (en)2011-10-252016-11-01Covidien LpApparatus for endoscopic procedures
US9924941B2 (en)2011-10-262018-03-27Intuitive Surgical Operations, Inc.Surgical instrument with integral knife blade
US8912746B2 (en)2011-10-262014-12-16Intuitive Surgical Operations, Inc.Surgical instrument motor pack latch
US20210022738A1 (en)2011-10-262021-01-28Intuitive Surgical Operations, Inc.Cartridge Status and Presence Detection
US10828030B2 (en)2011-10-262020-11-10Intuitive Surgical Operations, Inc.Cartridge status and presence detection
US9364231B2 (en)2011-10-272016-06-14Covidien LpSystem and method of using simulation reload to optimize staple formation
US10404801B2 (en)2011-11-082019-09-03DISH Technologies L.L.C.Reconfiguring remote controls for different devices in a network
US9277956B2 (en)2011-11-092016-03-08Siemens Medical Solutions Usa, Inc.System for automatic medical ablation control
US8968309B2 (en)2011-11-102015-03-03Covidien LpSurgical forceps
US10610223B2 (en)2011-11-152020-04-07Intuitive Surgical Operations, Inc.Surgical instrument with stowing knife blade
US8991678B2 (en)2011-11-152015-03-31Intuitive Surgical Operations, Inc.Surgical instrument with stowing knife blade
US8968312B2 (en)2011-11-162015-03-03Covidien LpSurgical device with powered articulation wrist rotation
US8820608B2 (en)2011-11-162014-09-02Olympus Medical Systems Corp.Medical instrument
US20150328474A1 (en)2011-11-242015-11-19Syneron Medical LtdA safe skin treatment apparatus for personal use and method for its use
US9035568B2 (en)2011-12-052015-05-19Qualcomm IncorporatedTelehealth wireless communication hub device and service platform system
US20130144284A1 (en)2011-12-062013-06-06Tyco Healthcare Group LpVessel Sealing Using Microwave Energy
US10245037B2 (en)2011-12-072019-04-02Edwards Lifesciences CorporationSelf-cinching surgical clips and delivery system
US20170333152A1 (en)2011-12-122017-11-23Jack WadeEnhanced video enabled software tools for medical environments
US9010608B2 (en)2011-12-142015-04-21Covidien LpReleasable buttress retention on a surgical stapler
US20130153635A1 (en)2011-12-142013-06-20Covidien LpButtress Attachment to the Cartridge Surface
US9220505B2 (en)2011-12-162015-12-29Ethicon Endo-Surgery, Inc.Surgical stapling instrument with locking feature to lock anvil actuator
US20130165776A1 (en)2011-12-222013-06-27Andreas BlomqvistContraction status assessment
US8920186B2 (en)2011-12-282014-12-30Tyco Electronics Japan G.K.Electrical connector having a deformable lock arm
US9220502B2 (en)2011-12-282015-12-29Covidien LpStaple formation recognition for a surgical device
JP2013135738A (en)2011-12-282013-07-11Hitachi Medical CorpOperation support system
US20130178853A1 (en)2012-01-052013-07-11International Business Machines CorporationSurgical tool management
US9867914B2 (en)2012-01-102018-01-16Buffalo Filter LlcFluid filtration device and system
US8962062B2 (en)2012-01-102015-02-24Covidien LpMethods of manufacturing end effectors for energy-based surgical instruments
JP2013144057A (en)2012-01-162013-07-25Rion Co LtdBiological particle counter for dialysis, biological particle counting method for dialysis, and dialysate monitoring system
US8986288B2 (en)2012-01-192015-03-24Olympus Medical Systems Corp.Medical system
US20140108983A1 (en)2012-01-222014-04-17Karen FergusonGraphical system for collecting, presenting and using medical data
US20130191647A1 (en)2012-01-232013-07-25Michael N. Ferrara, JR.Secure Wireless Access to Medical Data
US20130190755A1 (en)2012-01-232013-07-25Covidien LpPartitioned surgical instrument
US9641596B2 (en)2012-01-252017-05-02Panasonic Intellectual Property Management Co., Ltd.Home appliance information management apparatus, home appliance information sharing method, and home appliance information sharing system
US9943230B2 (en)2012-01-252018-04-17Fujifilm CorporationEndoscope system, processor device of endoscope system, and image processing method
US20150173673A1 (en)2012-01-262015-06-25Autonomix Medical, Inc.Controlled sympathectomy and micro-ablation systems and methods
US10470684B2 (en)2012-01-262019-11-12Autonomix Medical, Inc.Controlled sympathectomy and micro-ablation systems and methods
US9183723B2 (en)2012-01-312015-11-10Cleanalert, LlcFilter clog detection and notification system
US20130196703A1 (en)2012-02-012013-08-01Medtronic, Inc.System and communication hub for a plurality of medical devices and method therefore
US9710644B2 (en)2012-02-012017-07-18Servicenow, Inc.Techniques for sharing network security event information
US9038882B2 (en)2012-02-032015-05-26Covidien LpCircular stapling instrument
US20140066700A1 (en)2012-02-062014-03-06Vantage Surgical Systems Inc.Stereoscopic System for Minimally Invasive Surgery Visualization
US20130201356A1 (en)2012-02-072013-08-08Arthrex Inc.Tablet controlled camera system
US8682049B2 (en)2012-02-142014-03-25Terarecon, Inc.Cloud-based medical image processing system with access control
US20130206813A1 (en)2012-02-142013-08-15Ethicon Endo-Surgery, Inc.Linear stapler
US9192375B2 (en)2012-02-292015-11-24Marker Medical, LlcSurgical apparatus and method
US9486271B2 (en)2012-03-052016-11-08Covidien LpMethod and apparatus for identification using capacitive elements
US20170367772A1 (en)2012-03-062017-12-28Briteseed, LlcUser Interface for a System Used to Determine Tissue or Artifact Characteristics
US20150066000A1 (en)2012-03-062015-03-05Briteseed LlcSurgical Tool With Integrated Sensor
US9226791B2 (en)2012-03-122016-01-05Advanced Cardiac Therapeutics, Inc.Systems for temperature-controlled ablation using radiometric feedback
US9864839B2 (en)2012-03-142018-01-09El Wha Llc.Systems, devices, and method for determining treatment compliance including tracking, registering, etc. of medical staff, patients, instrumentation, events, etc. according to a treatment staging plan
US9119617B2 (en)2012-03-162015-09-01Ethicon, Inc.Clamping devices for dispensing surgical fasteners into soft media
US9198711B2 (en)2012-03-222015-12-01Covidien LpElectrosurgical system for communicating information embedded in an audio tone
US9364249B2 (en)2012-03-222016-06-14Ethicon Endo-Surgery, LlcMethod and apparatus for programming modular surgical instrument
US20130253480A1 (en)2012-03-222013-09-26Cory G. KimballSurgical instrument usage data management
US9381003B2 (en)2012-03-232016-07-05Integrated Medical Systems International, Inc.Digital controller for surgical handpiece
US9078653B2 (en)2012-03-262015-07-14Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
WO2013143573A1 (en)2012-03-262013-10-03Brainlab AgPairing medical devices within a working environment
US9375282B2 (en)2012-03-262016-06-28Covidien LpLight energy sealing, cutting and sensing surgical device
US10166025B2 (en)2012-03-262019-01-01Ethicon LlcSurgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US20130256373A1 (en)2012-03-282013-10-03Ethicon Endo-Surgery, Inc.Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
US20150051617A1 (en)2012-03-292015-02-19Panasonic Healthcare Co., Ltd.Surgery assistance device and surgery assistance program
US9050063B2 (en)2012-03-302015-06-09Sandance Technology LlcSystems and methods for determining suitability of a mechanical implant for a medical procedure
US8885032B2 (en)2012-03-302014-11-11Olympus Medical Systems Corp.Endoscope apparatus based on plural luminance and wavelength
US10194891B2 (en)2012-04-022019-02-05Movasu, Inc.Minimally invasive surgical instrument having articulation immobilising structure
USD772252S1 (en)2012-04-052016-11-22Welch Allyn, Inc.Patient monitoring device with a graphical user interface
US20130268283A1 (en)2012-04-052013-10-10Welch Allyn, Inc.Process to Streamline Workflow for Continuous Monitoring of a Patient
US9055870B2 (en)2012-04-052015-06-16Welch Allyn, Inc.Physiological parameter measuring platform device supporting multiple workflows
US9237921B2 (en)2012-04-092016-01-19Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US9724118B2 (en)2012-04-092017-08-08Ethicon Endo-Surgery, LlcTechniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9241731B2 (en)2012-04-092016-01-26Ethicon Endo-Surgery, Inc.Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en)2012-04-092016-09-13Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US9226766B2 (en)2012-04-092016-01-05Ethicon Endo-Surgery, Inc.Serial communication protocol for medical device
US20130267874A1 (en)2012-04-092013-10-10Amy L. MarcotteSurgical instrument with nerve detection feature
US9814457B2 (en)2012-04-102017-11-14Ethicon LlcControl interface for laparoscopic suturing instrument
US20150032150A1 (en)2012-04-122015-01-29Karl Storz Gmbh & Co. KgMedical Manipulator
US10271850B2 (en)2012-04-122019-04-30Covidien LpCircular anastomosis stapling apparatus utilizing a two stroke firing sequence
US9788851B2 (en)2012-04-182017-10-17Ethicon LlcSurgical instrument with tissue density sensing
US20130277410A1 (en)2012-04-182013-10-24Cardica, Inc.Safety lockout for surgical stapler
US20150073400A1 (en)2012-04-182015-03-12CardioSonic Ltd.Tissue treatment
US20150133945A1 (en)2012-05-022015-05-14Stryker Global Technology CenterHandheld tracking system and devices for aligning implant systems during surgery
US20150168126A1 (en)2012-05-092015-06-18Technion Research & Development Foundation LimitedSystem and method for optical coherence tomography
US20190104919A1 (en)2012-05-202019-04-11Ethicon LlcMethod for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US20160374762A1 (en)2012-05-222016-12-29Covidien LpSurgical Navigation System
US9498182B2 (en)2012-05-222016-11-22Covidien LpSystems and methods for planning and navigation
US9439622B2 (en)2012-05-222016-09-13Covidien LpSurgical navigation system
US20130317837A1 (en)2012-05-242013-11-28Deka Products Limited PartnershipSystem, Method, and Apparatus for Electronic Patient Care
US9493807B2 (en)2012-05-252016-11-15Medtronic Minimed, Inc.Foldover sensors and methods for making and using them
US9572592B2 (en)2012-05-312017-02-21Ethicon Endo-Surgery, LlcSurgical instrument with orientation sensing
US9084606B2 (en)2012-06-012015-07-21Megadyne Medical Products, Inc.Electrosurgical scissors
US20130325809A1 (en)2012-06-042013-12-05Samsung Electronics Co., Ltd.Method for contents backup and an electronic device thereof
US20130321425A1 (en)2012-06-052013-12-05Dexcom, Inc.Reporting modules
US10998098B2 (en)2012-06-052021-05-04Dexcom, Inc.Reporting modules
US10677764B2 (en)2012-06-112020-06-09Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US20130331875A1 (en)2012-06-112013-12-12Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US20130331873A1 (en)2012-06-112013-12-12Covidien LpTemperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US9101358B2 (en)2012-06-152015-08-11Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US20210022809A1 (en)2012-06-212021-01-28Globus Medical, Inc.Robotic fluoroscopic navigation
US20190000569A1 (en)2012-06-212019-01-03Globus Medical, Inc.Controlling a surgical robot to avoid robotic arm collision
US10357184B2 (en)2012-06-212019-07-23Globus Medical, Inc.Surgical tool systems and method
US10136954B2 (en)2012-06-212018-11-27Globus Medical, Inc.Surgical tool systems and method
US20170337043A1 (en)2012-06-222017-11-23Eresearchtechnology, Inc.Systems, methods and computer program products for providing disease and/or condition specific adaptive mobile health content, applications and/or solutions
US20140107697A1 (en)2012-06-252014-04-17Castle Surgical, Inc.Clamping Forceps and Associated Methods
US8968296B2 (en)2012-06-262015-03-03Covidien LpEnergy-harvesting system, apparatus and methods
US9936863B2 (en)2012-06-272018-04-10Camplex, Inc.Optical assembly providing a surgical microscope view for a surgical visualization system
US8882662B2 (en)2012-06-272014-11-11Camplex, Inc.Interface for viewing video from cameras on a surgical visualization system
US20150272694A1 (en)2012-06-272015-10-01CamPlex LLCSurgical visualization system
US9364230B2 (en)2012-06-282016-06-14Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US9649111B2 (en)2012-06-282017-05-16Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US10930400B2 (en)2012-06-282021-02-23LiveData, Inc.Operating room checklist system
US20200275928A1 (en)2012-06-282020-09-03Ethicon LlcSurgical instrument system including replaceable end effectors
US9204879B2 (en)2012-06-282015-12-08Ethicon Endo-Surgery, Inc.Flexible drive member
US20140006132A1 (en)2012-06-282014-01-02Jason W. BarkerSystems and methods for managing promotional offers
US9561038B2 (en)2012-06-282017-02-07Ethicon Endo-Surgery, LlcInterchangeable clip applier
US20140001234A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Coupling arrangements for attaching surgical end effectors to drive systems therefor
US20180110523A1 (en)2012-06-282018-04-26Ethicon LlcEmpty clip cartridge lockout
US9226751B2 (en)2012-06-282016-01-05Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US20180116662A1 (en)2012-06-282018-05-03Ethicon LlcFiring system lockout arrangements for surgical instruments
US20140005640A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Surgical end effector jaw and electrode configurations
US9119657B2 (en)2012-06-282015-09-01Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US20170290585A1 (en)2012-06-282017-10-12Ethicon LlcFiring system lockout arrangements for surgical instruments
US11007004B2 (en)2012-06-282021-05-18Ethicon LlcPowered multi-axial articulable electrosurgical device with external dissection features
US9028494B2 (en)2012-06-282015-05-12Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US20140001231A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Firing system lockout arrangements for surgical instruments
US8747238B2 (en)2012-06-282014-06-10Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9282974B2 (en)2012-06-282016-03-15Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US9072536B2 (en)2012-06-282015-07-07Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US9820768B2 (en)2012-06-292017-11-21Ethicon LlcUltrasonic surgical instruments with control mechanisms
US9283045B2 (en)2012-06-292016-03-15Ethicon Endo-Surgery, LlcSurgical instruments with fluid management system
US9226767B2 (en)2012-06-292016-01-05Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
US20150223725A1 (en)2012-06-292015-08-13Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Mobile maneuverable device for working on or observing a body
US9393037B2 (en)2012-06-292016-07-19Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US20140009894A1 (en)2012-07-032014-01-09Sercomm CorporationCommunication device having multi-module assembly
US20140018788A1 (en)2012-07-042014-01-16Zoar Jacob ENGELMANDevices and Systems for Carotid Body Ablation
US20140013565A1 (en)2012-07-102014-01-16Eileen B. MacDonaldCustomized process for facilitating successful total knee arthroplasty with outcomes analysis
US20150202014A1 (en)2012-07-102015-07-23Hyundai Heavy Industries Co. Ltd.Surgical Robot System and Surgical Robot Control Method
US10194907B2 (en)2012-07-182019-02-05Covidien LpMulti-fire stapler with electronic counter, lockout, and visual indicator
US11103246B2 (en)2012-07-182021-08-31Covidien LpMulti-fire stapler with electronic counter, lockout, and visual indicator
US9516239B2 (en)2012-07-262016-12-06DePuy Synthes Products, Inc.YCBCR pulsed illumination scheme in a light deficient environment
US20140029411A1 (en)2012-07-272014-01-30Samsung Electronics Co., Ltd.Method and system to provide seamless data transmission
US8917513B1 (en)2012-07-302014-12-23Methode Electronics, Inc.Data center equipment cabinet information center and updateable asset tracking system
US20140039491A1 (en)2012-08-022014-02-06Ethicon Endo-Surgery, Inc.Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9119655B2 (en)2012-08-032015-09-01Stryker CorporationSurgical manipulator capable of controlling a surgical instrument in multiple modes
US10198965B2 (en)2012-08-032019-02-05Applied Medical Resources CorporationSimulated stapling and energy based ligation for surgical training
US20190269476A1 (en)2012-08-032019-09-05Stryker CorporationSurgical robotic system and method for commanding instrument position based on iterative boundary evaluation
US20140033926A1 (en)2012-08-032014-02-06Robert Scott FasselFiltration System
US10390794B2 (en)2012-08-072019-08-27Canon Medical Systems CorporationUltrasound diagnostic apparatus and ultrasound probe
US9101374B1 (en)2012-08-072015-08-11David Harris HochMethod for guiding an ablation catheter based on real time intracardiac electrical signals and apparatus for performing the method
US9066650B2 (en)2012-08-072015-06-30Olympus Medical Systems Corp.Medical control system
US8761717B1 (en)2012-08-072014-06-24Brian K. BuchheitSafety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
US9993305B2 (en)2012-08-082018-06-12Ortoma AbMethod and system for computer assisted surgery
US8795001B1 (en)2012-08-102014-08-05Cisco Technology, Inc.Connector for providing pass-through power
US9753135B2 (en)2012-08-162017-09-05Leica Geosystems AgHand-held distance-measuring device having an angle-determining unit
WO2014031800A1 (en)2012-08-222014-02-27Energize Medical LlcTherapeutic energy systems
US11373755B2 (en)2012-08-232022-06-28Cilag Gmbh InternationalSurgical device drive system including a ratchet mechanism
US20140058407A1 (en)2012-08-272014-02-27Nikolaos V. TsekosRobotic Device and System Software, Hardware and Methods of Use for Image-Guided and Robot-Assisted Surgery
USD729267S1 (en)2012-08-282015-05-12Samsung Electronics Co., Ltd.Oven display screen with a graphical user interface
US10631917B2 (en)2012-08-282020-04-28Covidien LpAdjustable electrosurgical pencil
US9198835B2 (en)2012-09-072015-12-01Covidien LpCatheter with imaging assembly with placement aid and related methods therefor
US9131957B2 (en)2012-09-122015-09-15Gyrus Acmi, Inc.Automatic tool marking
US20140073893A1 (en)2012-09-122014-03-13Boston Scientific Scimed Inc.Open irrigated-mapping linear ablation catheter
US10496788B2 (en)2012-09-132019-12-03Parkland Center For Clinical InnovationHolistic hospital patient care and management system and method for automated patient monitoring
US9861363B2 (en)2012-09-142018-01-09Touchstone International Medical Science Co., Ltd.Linear surgical stapler
US9129054B2 (en)2012-09-172015-09-08DePuy Synthes Products, Inc.Systems and methods for surgical and interventional planning, support, post-operative follow-up, and, functional recovery tracking
US20160338685A1 (en)2012-09-172016-11-24DePuy Synthes Products, Inc.Systems And Methods For Surgical And Interventional Planning, Support, Post-Operative Follow-Up, And, Functional Recovery Tracking
US9700292B2 (en)2012-09-172017-07-11DePuy Synthes Products, Inc.Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US20140081659A1 (en)2012-09-172014-03-20Depuy Orthopaedics, Inc.Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US10595844B2 (en)2012-09-172020-03-24DePuy Synthes Products, Inc.Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US20140087999A1 (en)2012-09-212014-03-27The General Hospital Corporation D/B/A Massachusetts General HospitalClinical predictors of weight loss
US9250172B2 (en)2012-09-212016-02-02Ethicon Endo-Surgery, Inc.Systems and methods for predicting metabolic and bariatric surgery outcomes
US20140084949A1 (en)2012-09-242014-03-27Access Business Group International LlcSurface impedance systems and methods
US20140092089A1 (en)2012-09-282014-04-03Nihon Kohden CorporationOperation support system
US9106270B2 (en)2012-10-022015-08-11Covidien LpTransmitting data across a patient isolation barrier using an electric-field capacitive coupler module
US10368903B2 (en)2012-10-042019-08-06Aesculap AgWidth-adjustable cutting instrument for transapical aortic valve resectioning
US20140142963A1 (en)2012-10-042014-05-22Spacelabs Healthcare LlcSystem and Method for Providing Patient Care
US20140108035A1 (en)2012-10-112014-04-17Kunter Seref AkbaySystem and method to automatically assign resources in a network of healthcare enterprises
US9107573B2 (en)2012-10-172015-08-18Karl Storz Endovision, Inc.Detachable shaft flexible endoscope
US10478182B2 (en)2012-10-182019-11-19Covidien LpSurgical device identification
US9421014B2 (en)2012-10-182016-08-23Covidien LpLoading unit velocity and position feedback
US9095367B2 (en)2012-10-222015-08-04Ethicon Endo-Surgery, Inc.Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en)2012-10-222019-02-12Ethicon LlcSurgeon feedback sensing and display methods
US9265585B2 (en)2012-10-232016-02-23Covidien LpSurgical instrument with rapid post event detection
US10105470B2 (en)2012-10-242018-10-23Stryker CorporationMobile instrument assembly for use as part of a medical/surgical waste collection system, the assembly including a vacuum source to which a mobile waste collection cart can be releasably attached
US10499847B2 (en)2012-10-312019-12-10Covidien LpSurgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US9918788B2 (en)2012-10-312018-03-20St. Jude Medical, Atrial Fibrillation Division, Inc.Electrogram-based ablation control
WO2014071184A1 (en)2012-11-022014-05-08Intuitive Surgical Operations, Inc.Flux transmission connectors and systems, flux disambiguation, and systems and methods for mapping flux supply paths
US9686306B2 (en)2012-11-022017-06-20University Of Washington Through Its Center For CommercializationUsing supplemental encrypted signals to mitigate man-in-the-middle attacks on teleoperated systems
US10631939B2 (en)2012-11-022020-04-28Intuitive Surgical Operations, Inc.Systems and methods for mapping flux supply paths
US10004557B2 (en)2012-11-052018-06-26Pythagoras Medical Ltd.Controlled tissue ablation
CA2795323A1 (en)2012-11-092014-05-09Covidien LpMulti-use loading unit
EP2732772A1 (en)2012-11-142014-05-21Covidien LPMulti-use loading unit
US20160158468A1 (en)2012-11-202016-06-09Surgiquest, Inc.Systems and methods for conducting smoke evacuation during laparoscopic surgical procedures
US9546662B2 (en)2012-11-202017-01-17Smith & Nephew, Inc.Medical pump
US20150296042A1 (en)2012-11-222015-10-15Mitsubishi Electric CorporationData collection and transfer apparatus
US20140148803A1 (en)2012-11-282014-05-29Covidien LpExternal actuator for an electrosurgical instrument
US20140148729A1 (en)2012-11-292014-05-29Gregory P. SchmitzMicro-mechanical devices and methods for brain tumor removal
US9724100B2 (en)2012-12-042017-08-08Ethicon LlcCircular anvil introduction system with alignment feature
US20140171787A1 (en)2012-12-072014-06-19The Methodist HospitalSurgical procedure management systems and methods
US9259282B2 (en)2012-12-102016-02-16Intuitive Surgical Operations, Inc.Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms
US9743016B2 (en)2012-12-102017-08-22Intel CorporationTechniques for improved focusing of camera arrays
US9398905B2 (en)2012-12-132016-07-26Ethicon Endo-Surgery, LlcCircular needle applier with offset needle and carrier tracks
US20150310174A1 (en)2012-12-132015-10-29Patrick CoudertMethod of secure access to confidential medical data, and storage medium for said method
US10039565B2 (en)2012-12-132018-08-07Alcon Research, Ltd.Fine membrane forceps with integral scraping feature
US20140171778A1 (en)2012-12-142014-06-19Panasonic CorporationForce measurement apparatus, force measurement method, force measurement program, force measurement integrated electronic circuit, and master-slave device
US10722222B2 (en)2012-12-142020-07-28Covidien LpSurgical system including a plurality of handle assemblies
US8967455B2 (en)2012-12-142015-03-03Wistron Corp.Carton structure
US9597081B2 (en)2012-12-172017-03-21Ethicon Endo-Surgery, LlcMotor driven rotary input circular stapler with modular end effector
US9463022B2 (en)2012-12-172016-10-11Ethicon Endo-Surgery, LlcMotor driven rotary input circular stapler with lockable flexible shaft
US9307894B2 (en)2012-12-202016-04-12avateramedical GmBHEndoscope comprising a system with multiple cameras for use in minimal-invasive surgery
US20140176576A1 (en)2012-12-212014-06-26Volcano CorporationSystem and method for graphical processing of medical data
US20140188440A1 (en)2012-12-312014-07-03Intuitive Surgical Operations, Inc.Systems And Methods For Interventional Procedure Planning
US20140187856A1 (en)2012-12-312014-07-03Lee D. HoloienControl System For Modular Imaging Device
US9498215B2 (en)2012-12-312016-11-22Intuitive Surgical Operations, Inc.Surgical staple cartridge with enhanced knife clearance
US10028788B2 (en)2012-12-312018-07-24Mako Surgical Corp.System for image-based robotic surgery
US9717141B1 (en)2013-01-032017-07-25St. Jude Medical, Atrial Fibrillation Division, Inc.Flexible printed circuit with removable testing portion
US20140337052A1 (en)2013-01-052014-11-13Foundation Medicine, Inc.System and method for outcome tracking and analysis
US20140336943A1 (en)2013-01-052014-11-13Foundation Medicine, Inc.System and method for managing genomic testing results
GB2509523A (en)2013-01-072014-07-09Anish Kumar MampettaSurgical instrument with flexible members and a motor
US20140195052A1 (en)2013-01-102014-07-10Panasonic CorporationControl apparatus and method for master-slave robot, master-slave robot, and control program
US9675354B2 (en)2013-01-142017-06-13Intuitive Surgical Operations, Inc.Torque compensation
US9522003B2 (en)2013-01-142016-12-20Intuitive Surgical Operations, Inc.Clamping instrument
US10265090B2 (en)2013-01-162019-04-23Covidien LpHand held electromechanical surgical system including battery compartment diagnostic display
US9750500B2 (en)2013-01-182017-09-05Covidien LpSurgical clip applier
USD716333S1 (en)2013-01-242014-10-28Broadbandtv, Corp.Display screen or portion thereof with a graphical user interface
WO2014116961A1 (en)2013-01-252014-07-31Medtronic Xomed, Inc.Surgical instrument with tracking device connected via a flexible circuit
US9610114B2 (en)2013-01-292017-04-04Ethicon Endo-Surgery, LlcBipolar electrosurgical hand shears
US10602848B2 (en)2013-01-312020-03-31Enrique Ramirez MagañaTheater seating system with reclining seats and comfort divider
US9386984B2 (en)2013-02-082016-07-12Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US10201311B2 (en)2013-02-082019-02-12Acutus Medical, Inc.Expandable catheter assembly with flexible printed circuit board (PCB) electrical pathways
US20140226572A1 (en)2013-02-132014-08-14Qualcomm IncorporatedSmart WiFi Access Point That Selects The Best Channel For WiFi Clients Having Multi-Radio Co-Existence Problems
JP2014155207A (en)2013-02-142014-08-25Seiko Epson Corp Head-mounted display device and method for controlling head-mounted display device
KR20140104587A (en)2013-02-192014-08-29주식회사 루트로닉An ophthalmic surgical apparatus and an method for controlling that
US10952732B2 (en)2013-02-212021-03-23Boston Scientific Scimed Inc.Devices and methods for forming an anastomosis
US20140243809A1 (en)2013-02-222014-08-28Mark GelfandEndovascular catheters for trans-superficial temporal artery transmural carotid body modulation
WO2014134196A1 (en)2013-02-262014-09-04Eastern Virginia Medical SchoolAugmented shared situational awareness system
US20140243799A1 (en)2013-02-272014-08-28Ethicon Endo-Surgery, Inc.Percutaneous Instrument with Tapered Shaft
US10098527B2 (en)2013-02-272018-10-16Ethidcon Endo-Surgery, Inc.System for performing a minimally invasive surgical procedure
US20140243811A1 (en)2013-02-272014-08-28Covidien LpLimited use medical devices
US9913645B2 (en)2013-02-282018-03-13Ethicon LlcLockout feature for movable cutting member of surgical instrument
US9808248B2 (en)2013-02-282017-11-07Ethicon LlcInstallation features for surgical instrument end effector cartridge
US10575868B2 (en)2013-03-012020-03-03Ethicon LlcSurgical instrument with coupler assembly
US9358003B2 (en)2013-03-012016-06-07Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US9398911B2 (en)2013-03-012016-07-26Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US10226249B2 (en)2013-03-012019-03-12Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US9700309B2 (en)2013-03-012017-07-11Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US20140246475A1 (en)2013-03-012014-09-04Ethicon Endo-Surgery, Inc.Control methods for surgical instruments with removable implement portions
US20140249557A1 (en)2013-03-012014-09-04Ethicon Endo-Surgery, Inc.Thumbwheel switch arrangements for surgical instruments
US9468438B2 (en)2013-03-012016-10-18Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US9326767B2 (en)2013-03-012016-05-03Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US9307986B2 (en)2013-03-012016-04-12Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US9782169B2 (en)2013-03-012017-10-10Ethicon LlcRotary powered articulation joints for surgical instruments
US9554794B2 (en)2013-03-012017-01-31Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US20140252064A1 (en)2013-03-052014-09-11Covidien LpSurgical stapling device including adjustable fastener crimping
US9192447B2 (en)2013-03-062015-11-24Samsung Electronics Co., Ltd.Surgical robot system and method of controlling the same
US9414776B2 (en)2013-03-062016-08-16Navigated Technologies, LLCPatient permission-based mobile health-linked information collection and exchange systems and methods
US20170265864A1 (en)2013-03-082017-09-21Covidien LpStaple cartridge with shipping wedge
US9706993B2 (en)2013-03-082017-07-18Covidien LpStaple cartridge with shipping wedge
US9204995B2 (en)2013-03-122015-12-08Katalyst Surgical, LlcMembrane removing forceps
US10561560B2 (en)2013-03-122020-02-18Biolase, Inc.Dental laser unit with communication link to assistance center
US9888921B2 (en)2013-03-132018-02-13Covidien LpSurgical stapling apparatus
US10499915B2 (en)2013-03-132019-12-10Covidien LpSurgical stapling apparatus
US20140275760A1 (en)2013-03-132014-09-18Samsung Electronics Co., Ltd.Augmented reality image display system and surgical robot system comprising the same
US10512509B2 (en)2013-03-132019-12-24Stryker CorporationSystems and methods for establishing virtual constraint boundaries
JP2016514017A (en)2013-03-132016-05-19エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge tissue thickness sensor system
EP3135225A2 (en)2013-03-132017-03-01Covidien LPSurgical stapling apparatus
US10702271B2 (en)2013-03-132020-07-07Covidien LpSurgical stapling apparatus
US9345481B2 (en)2013-03-132016-05-24Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US9814463B2 (en)2013-03-132017-11-14Covidien LpSurgical stapling apparatus
US9314308B2 (en)2013-03-132016-04-19Ethicon Endo-Surgery, LlcRobotic ultrasonic surgical device with articulating end effector
US9668729B2 (en)2013-03-132017-06-06Covidien LpSurgical stapling apparatus
US9629628B2 (en)2013-03-132017-04-25Covidien LpSurgical stapling apparatus
US9289211B2 (en)2013-03-132016-03-22Covidien LpSurgical stapling apparatus
US9717498B2 (en)2013-03-132017-08-01Covidien LpSurgical stapling apparatus
US20140263552A1 (en)2013-03-132014-09-18Ethicon Endo-Surgery, Inc.Staple cartridge tissue thickness sensor system
US20150313538A1 (en)2013-03-142015-11-05Kate Leeann BechtelIdentification of surgical smoke
US9351727B2 (en)2013-03-142016-05-31Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US9332987B2 (en)2013-03-142016-05-10Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US9299138B2 (en)2013-03-142016-03-29DePuy Synthes Products, Inc.Generating a patient-specific orthopaedic surgical plan from medical image data
US9629629B2 (en)2013-03-142017-04-25Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US9888919B2 (en)2013-03-142018-02-13Ethicon LlcMethod and system for operating a surgical instrument
US9629623B2 (en)2013-03-142017-04-25Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US9114494B1 (en)2013-03-142015-08-25Kenneth Jack MahElectronic drill guide
US20140263541A1 (en)2013-03-142014-09-18Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising an articulation lock
US9883860B2 (en)2013-03-142018-02-06Ethicon LlcInterchangeable shaft assemblies for use with a surgical instrument
US9255907B2 (en)2013-03-142016-02-09Empire Technology Development LlcIdentification of surgical smoke
US9872683B2 (en)2013-03-142018-01-23Applied Medical Resources CorporationSurgical stapler with partial pockets
US9808244B2 (en)2013-03-142017-11-07Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US9351726B2 (en)2013-03-142016-05-31Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US9687230B2 (en)2013-03-142017-06-27Ethicon LlcArticulatable surgical instrument comprising a firing drive
US10470762B2 (en)2013-03-142019-11-12Ethicon LlcMulti-function motor for a surgical instrument
US9241728B2 (en)2013-03-152016-01-26Ethicon Endo-Surgery, Inc.Surgical instrument with multiple clamping mechanisms
US10219491B2 (en)2013-03-152019-03-05Pentair Water Pool And Spa, Inc.Dissolved oxygen control system for aquaculture
US20160038253A1 (en)2013-03-152016-02-11Cameron Anthony PironMethod, system and apparatus for controlling a surgical navigation system
US9743947B2 (en)2013-03-152017-08-29Ethicon Endo-Surgery, LlcEnd effector with a clamp arm assembly and blade
US10561470B2 (en)2013-03-152020-02-18Intuitive Surgical Operations, Inc.Software configurable manipulator degrees of freedom
US10383699B2 (en)2013-03-152019-08-20Sri InternationalHyperdexterous surgical system
US20150025549A1 (en)2013-03-152015-01-22Sri InternationalHyperdexterous surgical system
US20160001411A1 (en)2013-03-152016-01-07John AlbertiForce responsive power tool
US10292771B2 (en)2013-03-152019-05-21Synaptive Medical (Barbados) Inc.Surgical imaging systems
US20160022374A1 (en)2013-03-152016-01-28Board Of Regents Of The University Of NebraskaOn-board tool tracking system and methods of computer assisted surgery
US9485475B2 (en)2013-03-152016-11-01Arthrex, Inc.Surgical imaging system and method for processing surgical images
US20140276748A1 (en)2013-03-152014-09-18Medtronic Ardian Luxembourg S.a.r.I.Helical Push Wire Electrode
US9641815B2 (en)2013-03-152017-05-02DePuy Synthes Products, Inc.Super resolution and color motion artifact correction in a pulsed color imaging system
US20160005169A1 (en)2013-03-152016-01-07Synaptive Medical (Barbados) Inc.System and method for detecting tissue and fiber tract deformation
US10660705B2 (en)2013-03-152020-05-26Synaptive Medical (Barbados) Inc.Intermodal synchronization of surgical data
US20180165780A1 (en)2013-03-152018-06-14Breg, Inc.Business intelligence portal
US20140276749A1 (en)2013-03-152014-09-18Covidien LpCrest-factor control of phase-shifted inverter
US20140278219A1 (en)2013-03-152014-09-18Focus Ventures, Inc.System and Method For Monitoring Movements of a User
US9498291B2 (en)2013-03-152016-11-22Hansen Medical, Inc.Touch-free catheter user interface controller
US20170304007A1 (en)2013-03-152017-10-26Synaptive Medical (Barbados) Inc.Context aware surgical systems
US9668732B2 (en)2013-03-152017-06-06Applied Medical Resources CorporationSurgical stapler handle assembly having actuation mechanism with longitudinally rotatable shaft
US9668765B2 (en)2013-03-152017-06-06The Spectranetics CorporationRetractable blade for lead removal device
US9777913B2 (en)2013-03-152017-10-03DePuy Synthes Products, Inc.Controlling the integral light energy of a laser pulse
US9675264B2 (en)2013-03-152017-06-13Peerbridge Health, Inc.System and method for monitoring and diagnosing patient condition based on wireless sensor monitoring data
US20190343594A1 (en)2013-03-152019-11-14Sri InternationalHyperdexterous surgical system
US10376337B2 (en)2013-03-152019-08-13Sri InternationalHyperdexterous surgical system
US9600138B2 (en)2013-03-152017-03-21Synaptive Medical (Barbados) Inc.Planning, navigation and simulation systems and methods for minimally invasive therapy
US20160015471A1 (en)2013-03-152016-01-21Synaptive Medical (Barbados) Inc.Context aware surgical systems
US9116597B1 (en)2013-03-152015-08-25Ca, Inc.Information management software
US20170273715A1 (en)2013-03-152017-09-28Synaptive Medical (Barbados) Inc.Intelligent positioning system and methods therefore
US20160310055A1 (en)2013-03-192016-10-27Surgisense CorporationApparatus, systems and methods for determining tissue oxygenation
US20140364691A1 (en)2013-03-282014-12-11Endochoice, Inc.Circuit Board Assembly of A Multiple Viewing Elements Endoscope
US11289188B2 (en)2013-03-292022-03-29Koninklijke Philips N.V.Context driven summary view of radiology findings
US20140296694A1 (en)2013-04-022014-10-02General Electric CompanyMethod and system for ultrasound needle guidance
US20140303660A1 (en)2013-04-042014-10-09Elwha LlcActive tremor control in surgical instruments
US20140303990A1 (en)2013-04-052014-10-09Biomet Manufacturing Corp.Integrated orthopedic planning and management process
US10349824B2 (en)2013-04-082019-07-16Apama Medical, Inc.Tissue mapping and visualization systems
US9867612B2 (en)2013-04-162018-01-16Ethicon LlcPowered surgical stapler
US10149680B2 (en)2013-04-162018-12-11Ethicon LlcSurgical instrument comprising a gap setting system
US9814460B2 (en)2013-04-162017-11-14Ethicon LlcModular motor driven surgical instruments with status indication arrangements
US10136887B2 (en)2013-04-162018-11-27Ethicon LlcDrive system decoupling arrangement for a surgical instrument
US9801626B2 (en)2013-04-162017-10-31Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9844368B2 (en)2013-04-162017-12-19Ethicon LlcSurgical system comprising first and second drive systems
US9826976B2 (en)2013-04-162017-11-28Ethicon LlcMotor driven surgical instruments with lockable dual drive shafts
US9649110B2 (en)2013-04-162017-05-16Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US10405857B2 (en)2013-04-162019-09-10Ethicon LlcPowered linear surgical stapler
US9561982B2 (en)2013-04-302017-02-07Corning IncorporatedMethod of cleaning glass substrates
US10842575B2 (en)2013-05-162020-11-24Intuitive Surgical Operations, Inc.Systems and methods for robotic medical system integration with external imaging
US9592095B2 (en)2013-05-162017-03-14Intuitive Surgical Operations, Inc.Systems and methods for robotic medical system integration with external imaging
US9111548B2 (en)2013-05-232015-08-18Knowles Electronics, LlcSynchronization of buffered data in multiple microphones
US10722292B2 (en)2013-05-312020-07-28Covidien LpSurgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US10536617B2 (en)2013-06-052020-01-14Arizona Board Of Regents On Behalf Of The University Of ArizonaDual-view probe for illumination and imaging, and use thereof
US9643022B2 (en)2013-06-172017-05-09Nyxoah SAFlexible control housing for disposable patch
US9820699B2 (en)2013-06-182017-11-21Koninklijke Philips N.V.Processing status information of a medical device
US9797486B2 (en)2013-06-202017-10-24Covidien LpAdapter direct drive with manual retraction, lockout and connection mechanisms
US9360449B2 (en)2013-06-202016-06-07Siemens AktiengesellschaftFunctional monitoring of an electrolytic gas sensor having three electrodes, and hazard alarm and gas measuring device
US9542481B2 (en)2013-06-212017-01-10Virtual Radiologic CorporationRadiology data processing and standardization techniques
US9509566B2 (en)2013-06-272016-11-29Yokogawa Electric CorporationSystem and method for generating output data
US20150006201A1 (en)2013-06-282015-01-01Carefusion 303, Inc.System for providing aggregated patient data
US10335042B2 (en)2013-06-282019-07-02Cardiovascular Systems, Inc.Methods, devices and systems for sensing, measuring and/or characterizing vessel and/or lesion compliance and/or elastance changes during vascular procedures
US20150012010A1 (en)2013-07-022015-01-08Gyrus Acmi, Inc.Robotic surgery
US20180108438A1 (en)2013-07-022018-04-19Quintiles Ims IncorporatedMarket Measures and Outcomes for App Prescribing
US10245040B2 (en)2013-07-112019-04-02Covidien LpMethods and devices for performing a surgical anastomosis
US10048379B2 (en)2013-07-162018-08-14Leica Geosystems AgLaser tracker having target-seeking functionality
US10097578B2 (en)2013-07-232018-10-09Oasis Technology, Inc.Anti-cyber hacking defense system
US20160106934A1 (en)2013-08-062016-04-21Olympus CorporationInsufflation apparatus
US20160174998A1 (en)2013-08-072016-06-23Cornell UniverstySemiconductor tweezers and instrumentation for tissue detection and characterization
US20160157717A1 (en)2013-08-082016-06-09Richard S. GasterWireless pregnancy monitor
US20150051598A1 (en)2013-08-132015-02-19Covidien LpSurgical forceps including thermal spread control
US20160203599A1 (en)2013-08-132016-07-14H. Lee Moffitt Cancer Center And Research Institute, Inc.Systems, methods and devices for analyzing quantitative information obtained from radiological images
US9750522B2 (en)2013-08-152017-09-05Ethicon LlcSurgical instrument with clips having transecting blades
US10806445B2 (en)2013-08-162020-10-20Covidien LpChip assembly for reusable surgical instruments
US10283220B2 (en)2013-08-162019-05-07Intuitive Surgical Operations, Inc.System and method for coordinated motion among heterogeneous devices
US9636112B2 (en)2013-08-162017-05-02Covidien LpChip assembly for reusable surgical instruments
US9938972B2 (en)2013-08-192018-04-10Fish Engineering LimitedDistributor apparatus with a pair of intermeshing screw rotors
US20150057675A1 (en)2013-08-212015-02-26Brachium Labs, LLCSystem and method for automating medical procedures
US20150053737A1 (en)2013-08-232015-02-26Ethicon Endo-Surgery, Inc.End effector detection systems for surgical instruments
US9808249B2 (en)2013-08-232017-11-07Ethicon LlcAttachment portions for surgical instrument assemblies
US10441281B2 (en)2013-08-232019-10-15Ethicon Llcsurgical instrument including securing and aligning features
US20150053743A1 (en)2013-08-232015-02-26Ethicon Endo-Surgery, Inc.Error detection arrangements for surgical instrument assemblies
US9445813B2 (en)2013-08-232016-09-20Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US20170249431A1 (en)2013-08-232017-08-31Ethicon LlcFiring trigger lockout arrangements for surgical instruments
JP2016528010A (en)2013-08-232016-09-15エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Interactive display for surgical instruments
US9283054B2 (en)2013-08-232016-03-15Ethicon Endo-Surgery, LlcInteractive displays
US20150053746A1 (en)2013-08-232015-02-26Ethicon Endo-Surgery, Inc.Torque optimization for surgical instruments
US10201349B2 (en)2013-08-232019-02-12Ethicon LlcEnd effector detection and firing rate modulation systems for surgical instruments
US20150053749A1 (en)2013-08-232015-02-26Ethicon Endo-Surgery, Inc.Closure indicator systems for surgical instruments
US10251661B2 (en)2013-08-272019-04-09Covidien LpHand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use
WO2015030157A1 (en)2013-08-292015-03-05国立大学法人京都大学Surgery support system and surgery support device
US20150062316A1 (en)2013-08-302015-03-05Panasonic CorporationEndoscope and endoscope system
US10292610B2 (en)2013-08-302019-05-21Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods
US9295514B2 (en)2013-08-302016-03-29Ethicon Endo-Surgery, LlcSurgical devices with close quarter articulation features
US20160182637A1 (en)2013-09-052016-06-23Google Inc.Isolating Clients of Distributed Storage Systems
US20160192960A1 (en)2013-09-062016-07-07Raphael BuenoSystem and method for a tissue resection margin measurement device
US20160225551A1 (en)2013-09-102016-08-04Apple Inc.Sealed Button for an Electronic Device
US9861428B2 (en)2013-09-162018-01-09Ethicon LlcIntegrated systems for electrosurgical steam or smoke control
US10271840B2 (en)2013-09-182019-04-30Covidien LpApparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9830424B2 (en)2013-09-182017-11-28Hill-Rom Services, Inc.Bed/room/patient association systems and methods
US20150077528A1 (en)2013-09-182015-03-19Nanophthalmos, LlcSurgical navigation system and method
US9962157B2 (en)2013-09-182018-05-08Covidien LpApparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9622684B2 (en)2013-09-202017-04-18Innovative Surgical Solutions, LlcNeural locating system
US20150083774A1 (en)2013-09-232015-03-26Ethicon Endo-Surgery, Inc.Control features for motorized surgical stapling instrument
US9710214B2 (en)2013-09-242017-07-18Intel CorporationRoom sensor applications and techniques
US9717548B2 (en)2013-09-242017-08-01Covidien LpElectrode for use in a bipolar electrosurgical instrument
US10980595B2 (en)2013-09-262021-04-20Covidien LpSystems and methods for estimating tissue parameters using surgical devices
US9867651B2 (en)2013-09-262018-01-16Covidien LpSystems and methods for estimating tissue parameters using surgical devices
US9936942B2 (en)2013-09-262018-04-10Surgimatix, Inc.Laparoscopic suture device with release mechanism
US10384021B2 (en)2013-09-272019-08-20W.O.M. World Of Medicine GmbhPressure-maintaining smoke evacuation in an insufflator
US20140035762A1 (en)2013-10-012014-02-06Ethicon Endo-Surgery, Inc.Providing Near Real Time Feedback To A User Of A Surgical Instrument
US9901411B2 (en)2013-10-012018-02-27Abb Gomtec GmbhControl device and method for controlling a robot with a system by means of gesture control
WO2015054665A1 (en)2013-10-112015-04-16Masimo CorporationSystem for displaying medical monitoring data
US20160235303A1 (en)2013-10-112016-08-18The Trustees Of Columbia University In The City Of New YorkSystem, method and computer-accessible medium for characterization of tissue
US10037715B2 (en)2013-10-162018-07-31Simulab CorporationDetecting insertion of needle into simulated vessel using a conductive fluid
US20150108198A1 (en)2013-10-172015-04-23Covidien LpSurgical instrument, loading unit and fasteners for use therewith
US10463365B2 (en)2013-10-172019-11-05Covidien LpChip assembly for surgical instruments
US10022090B2 (en)2013-10-182018-07-17Atlantic Health System, Inc.Nerve protecting dissection device
US9763741B2 (en)2013-10-242017-09-19Auris Surgical Robotics, Inc.System for robotic-assisted endolumenal surgery and related methods
JP2015085454A (en)2013-10-312015-05-07セイコーエプソン株式会社Robot
US20160270861A1 (en)2013-10-312016-09-22Health Research, Inc.System and methods for a situation and awareness-based intelligent surgical system
US20160275259A1 (en)2013-11-012016-09-22Koninklijke Philips N.V.Patient feedback for uses of therapeutic device
US20160249920A1 (en)2013-11-042016-09-01Covidien LpSurgical fastener applying apparatus
US20160287912A1 (en)2013-11-042016-10-06Guided Interventions, Inc.Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound
US9922304B2 (en)2013-11-052018-03-20Deroyal Industries, Inc.System for sensing and recording consumption of medical items during medical procedure
US20150140982A1 (en)2013-11-152015-05-21Richard PostrelMethod and system for pre and post processing of beacon id signals
USD783675S1 (en)2013-11-182017-04-11Mitsubishi Electric CorporationInformation display for an automotive vehicle with a computer generated icon
US20150141980A1 (en)2013-11-192015-05-21Covidien LpVessel sealing instrument with suction system
US10021318B2 (en)2013-11-212018-07-10Axis AbMethod and apparatus in a motion video capturing system
US9949785B2 (en)2013-11-212018-04-24Ethicon LlcUltrasonic surgical instrument with electrosurgical feature
US20150148830A1 (en)2013-11-222015-05-28Ethicon Endo-Surgery, Inc.Features for coupling surgical instrument shaft assembly with instrument body
US10552574B2 (en)2013-11-222020-02-04Spinal Generations, LlcSystem and method for identifying a medical device
US20150145682A1 (en)2013-11-252015-05-28Mark Matthew HarrisSystem and methods for nonverbally communicating patient comfort data
US20180153574A1 (en)2013-11-262018-06-07Ethicon LlcHandpiece and blade configurations for ultrasonic surgical instrument
US10004527B2 (en)2013-11-262018-06-26Ethicon LlcUltrasonic surgical instrument with staged clamping
US10872684B2 (en)2013-11-272020-12-22The Johns Hopkins UniversitySystem and method for medical data analysis and sharing
US9713503B2 (en)2013-12-042017-07-25Novartis AgSurgical utility connector
US9907196B2 (en)2013-12-052018-02-27Sagemcom Broadband SasElectrical module
US10159044B2 (en)2013-12-092018-12-18GM Global Technology Operations LLCMethod and apparatus for controlling operating states of bluetooth interfaces of a bluetooth module
US9433470B2 (en)2013-12-092016-09-06Meere Company Inc.Surgical robot system and method for controlling surgical robot system
US9976259B2 (en)2013-12-102018-05-22Buckman Laboratories International, Inc.Adhesive formulation and creping methods using same
US10179413B2 (en)2013-12-112019-01-15Covidien LpWrist and jaw assemblies for robotic surgical systems
US9937626B2 (en)2013-12-112018-04-10Covidien LpWrist and jaw assemblies for robotic surgical systems
US10220522B2 (en)2013-12-122019-03-05Covidien LpGear train assemblies for robotic surgical systems
US9808245B2 (en)2013-12-132017-11-07Covidien LpCoupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US10912580B2 (en)2013-12-162021-02-09Ethicon LlcMedical device
US9743946B2 (en)2013-12-172017-08-29Ethicon LlcRotation features for ultrasonic surgical instrument
US10510267B2 (en)2013-12-202019-12-17Intuitive Surgical Operations, Inc.Simulator system for medical procedure training
US9839428B2 (en)2013-12-232017-12-12Ethicon LlcSurgical cutting and stapling instruments with independent jaw control features
US10039546B2 (en)2013-12-232018-08-07Covidien LpLoading unit including shipping member
US9642620B2 (en)2013-12-232017-05-09Ethicon Endo-Surgery, LlcSurgical cutting and stapling instruments with articulatable end effectors
US20150173756A1 (en)2013-12-232015-06-25Ethicon Endo-Surgery, Inc.Surgical cutting and stapling methods
US20150297311A1 (en)2013-12-232015-10-22Camplex, Inc.Surgical visualization systems
US9681870B2 (en)2013-12-232017-06-20Ethicon LlcArticulatable surgical instruments with separate and distinct closing and firing systems
US9539020B2 (en)2013-12-272017-01-10Ethicon Endo-Surgery, LlcCoupling features for ultrasonic surgical instrument
US9561082B2 (en)2013-12-302017-02-07National Taiwan UniversityHandheld robot for orthopedic surgery and control method thereof
US20150201918A1 (en)2014-01-022015-07-23Osseodyne Surgical Solutions, LlcSurgical Handpiece
US9579099B2 (en)2014-01-072017-02-28Covidien LpShipping member for loading unit
US9795436B2 (en)2014-01-072017-10-24Ethicon LlcHarvesting energy from a surgical generator
US20150199109A1 (en)2014-01-152015-07-16Lg Electronics Inc.Display device and method for controlling the same
US9839424B2 (en)2014-01-172017-12-12Covidien LpElectromechanical surgical assembly
US9655616B2 (en)2014-01-222017-05-23Covidien LpApparatus for endoscopic procedures
US20150208934A1 (en)2014-01-242015-07-30Genevieve SztrubelMethod And Apparatus For The Detection Of Neural Tissue
US9907550B2 (en)2014-01-272018-03-06Covidien LpStitching device with long needle delivery
US10335180B2 (en)2014-01-282019-07-02Ethicon LlcMotor control and feedback in powered surgical devices
US9700312B2 (en)2014-01-282017-07-11Covidien LpSurgical apparatus
US20160345857A1 (en)2014-01-282016-12-01St. Jude Medical, Cardiology Division, Inc.Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces
US9802033B2 (en)2014-01-282017-10-31Ethicon LlcSurgical devices having controlled tissue cutting and sealing
US9801679B2 (en)2014-01-282017-10-31Ethicon LlcMethods and devices for controlling motorized surgical devices
US9358685B2 (en)2014-02-032016-06-07Brain CorporationApparatus and methods for control of robot actions based on corrective user inputs
US10631423B2 (en)2014-02-042020-04-21Covidien LpAuthentication system for reusable surgical instruments
US20160331473A1 (en)2014-02-072016-11-17Olympus CorporationSurgical system and surgical-system operating method
US10213266B2 (en)2014-02-072019-02-26Covidien LpRobotic surgical assemblies and adapter assemblies thereof
US20150223868A1 (en)2014-02-112015-08-13Covidien LpTemperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US20200222079A1 (en)2014-02-112020-07-16Vanderbilt UniversitySystem, method, and apparatus for configuration, design, and operation of an active cannula robot
US11020115B2 (en)2014-02-122021-06-01Cilag Gmbh InternationalDeliverable surgical instrument
US9750523B2 (en)2014-02-172017-09-05Olympus CorporationUltrasonic treatment apparatus
US9301691B2 (en)2014-02-212016-04-05Covidien LpInstrument for optically detecting tissue attributes
US10426481B2 (en)2014-02-242019-10-01Ethicon LlcImplantable layer assemblies
US20140166724A1 (en)2014-02-242014-06-19Ethicon Endo-Surgery, Inc.Staple cartridge including a barbed staple
US10973682B2 (en)2014-02-242021-04-13Alcon Inc.Surgical instrument with adhesion optimized edge condition
US10499994B2 (en)2014-02-272019-12-10University Surgical Associates, Inc.Interactive display for surgery with mother and daughter video feeds
US20150238118A1 (en)2014-02-272015-08-27Biorasis, Inc.Detection of the spatial location of an implantable biosensing platform and method thereof
WO2015129395A1 (en)2014-02-282015-09-03オリンパス株式会社Exclusion device and robot system
US9603277B2 (en)2014-03-062017-03-21Adtran, Inc.Field-reconfigurable backplane system
US10420865B2 (en)2014-03-062019-09-24Stryker CorporationMedical/surgical waste collection unit with a light assembly separate from the primary display, the light assembly presenting information about the operation of the system by selectively outputting light
US9937012B2 (en)2014-03-072018-04-10Cmr Surgical LimitedSurgical arm
US20160374710A1 (en)2014-03-122016-12-29Yegor D. SinelnikovCarotid body ablation with a transvenous ultrasound imaging and ablation catheter
US10342623B2 (en)2014-03-122019-07-09Proximed, LlcSurgical guidance systems, devices, and methods
US20160317172A1 (en)2014-03-132016-11-03Olympus CorporationTissue excision device
US9827054B2 (en)2014-03-142017-11-28Synaptive Medical (Barbados) Inc.Intelligent positioning system and methods therefore
US10299868B2 (en)2014-03-142019-05-28Sony CorporationRobot arm apparatus, robot arm control method, and program
US20190321117A1 (en)2014-03-172019-10-24Intuitive Surgical Operations, Inc.Systems and methods for recentering input controls
US9839487B2 (en)2014-03-172017-12-12Intuitive Surgical Operations, Inc.Backup latch release for surgical instrument
US10398521B2 (en)2014-03-172019-09-03Intuitive Surgical Operations, Inc.System and method for recentering imaging devices and input controls
US20170086930A1 (en)2014-03-172017-03-30Intuitive Surgical Operations, Inc.Surgical cannula mounts and related systems and methods
US20170079730A1 (en)2014-03-172017-03-23Intuitive Surgical Operations, Inc.Methods and devices for tele-surgical table registration
US10166061B2 (en)2014-03-172019-01-01Intuitive Surgical Operations, Inc.Teleoperated surgical system equipment with user interface
US10213268B2 (en)2014-03-172019-02-26Intuitive Surgical Operations, Inc.Latch release for surgical instrument
US20170172674A1 (en)2014-03-172017-06-22Intuitive Surgical Operations, Inc.Guided setup for teleoperated medical device
US20170172676A1 (en)2014-03-172017-06-22Intuitive Surgical Operations, Inc.Structural Adjustment Systems And Methods For A Teleoperational Medical System
US10172687B2 (en)2014-03-172019-01-08Intuitive Surgical Operations, Inc.Surgical cannulas and related systems and methods of identifying surgical cannulas
US9554854B2 (en)2014-03-182017-01-31Ethicon Endo-Surgery, LlcDetecting short circuits in electrosurgical medical devices
US20180168574A1 (en)2014-03-202018-06-21Stepwise LtdConvertible surgical tissue staplers and applications using thereof
US10004497B2 (en)2014-03-262018-06-26Ethicon LlcInterface systems for use with surgical instruments
US10201364B2 (en)2014-03-262019-02-12Ethicon LlcSurgical instrument comprising a rotatable shaft
US20150272580A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Verification of number of battery exchanges/procedure count
CN106456169A (en)2014-03-262017-02-22伊西康内外科有限责任公司Interface systems for use with surgical instruments
US10013049B2 (en)2014-03-262018-07-03Ethicon LlcPower management through sleep options of segmented circuit and wake up control
US9690362B2 (en)2014-03-262017-06-27Ethicon LlcSurgical instrument control circuit having a safety processor
CN106413578A (en)2014-03-262017-02-15伊西康内外科有限责任公司Surgical stapling instrument system
US20150272571A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Surgical instrument utilizing sensor adaptation
US9826977B2 (en)2014-03-262017-11-28Ethicon LlcSterilization verification circuit
US10028761B2 (en)2014-03-262018-07-24Ethicon LlcFeedback algorithms for manual bailout systems for surgical instruments
JP2017513561A (en)2014-03-262017-06-01エシコン・エンド−サージェリィ・エルエルシーEthi Verification of the number of battery replacement / treatment
US20150272557A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Modular surgical instrument system
US20150272582A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Power management control systems for surgical instruments
US9820738B2 (en)2014-03-262017-11-21Ethicon LlcSurgical instrument comprising interactive systems
US9750499B2 (en)2014-03-262017-09-05Ethicon LlcSurgical stapling instrument system
US9743929B2 (en)2014-03-262017-08-29Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US9913642B2 (en)2014-03-262018-03-13Ethicon LlcSurgical instrument comprising a sensor system
US9804618B2 (en)2014-03-262017-10-31Ethicon LlcSystems and methods for controlling a segmented circuit
US9733663B2 (en)2014-03-262017-08-15Ethicon LlcPower management through segmented circuit and variable voltage protection
US20170127499A1 (en)2014-03-272017-05-04Fagerhults Belysning AbLighting system for providing light in a room
US10197803B2 (en)2014-03-282019-02-05Alma Mater Studiorum—Universita' di BolognaAugmented reality glasses for medical applications and corresponding augmented reality system
US9757126B2 (en)2014-03-312017-09-12Covidien LpSurgical stapling apparatus with firing lockout mechanism
US10610313B2 (en)2014-03-312020-04-07Intuitive Surgical Operations, Inc.Surgical instrument with shiftable transmission
US9737355B2 (en)2014-03-312017-08-22Ethicon LlcControlling impedance rise in electrosurgical medical devices
US10675023B2 (en)2014-03-312020-06-09Covidien LpSurgical stapling apparatus with firing lockout mechanism
US10098705B2 (en)2014-04-012018-10-16Intuitive Surgical Operations, Inc.Control input accuracy for teleoperated surgical instrument
US20150282733A1 (en)2014-04-022015-10-08University Of Virginia Patent FoundationSystems and methods for accelerated mr thermometry
US9974595B2 (en)2014-04-042018-05-22Covidien LpSystems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9987068B2 (en)2014-04-042018-06-05Covidien LpSystems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9980769B2 (en)2014-04-082018-05-29Ethicon LlcMethods and devices for controlling motorized surgical devices
US20170027603A1 (en)2014-04-082017-02-02Ams Research CorporationFlexible devices for blunt dissection and related methods
US9918730B2 (en)2014-04-082018-03-20Ethicon LlcMethods and devices for controlling motorized surgical devices
US20150282821A1 (en)2014-04-082015-10-08Incuvate, LlcSystems and methods for management of thrombosis
US10039589B2 (en)2014-04-092018-08-07Gyrus Acmi, Inc.Enforcement device for limited usage product
US10765376B2 (en)2014-04-092020-09-08University Of RochesterMethod and apparatus to diagnose the metastatic or progressive potential of cancer, fibrosis and other diseases
US20150289925A1 (en)2014-04-152015-10-15Ethicon Endo-Surgery, Inc.Software algorithms for electrosurgical instruments
US9833241B2 (en)2014-04-162017-12-05Ethicon LlcSurgical fastener cartridges with driver stabilizing arrangements
US20150297228A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridges including extensions having different configurations
US10561422B2 (en)2014-04-162020-02-18Ethicon LlcFastener cartridge comprising deployable tissue engaging members
US10470768B2 (en)2014-04-162019-11-12Ethicon LlcFastener cartridge including a layer attached thereto
US20190314016A1 (en)2014-04-162019-10-17Ethicon LlcFastener cartridge comprising non-uniform fasteners
US10299792B2 (en)2014-04-162019-05-28Ethicon LlcFastener cartridge comprising non-uniform fasteners
US20150297222A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridges including extensions having different configurations
US9877721B2 (en)2014-04-162018-01-30Ethicon LlcFastener cartridge comprising tissue control features
US20150297233A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridge assemblies and staple retainer cover arrangements
US9844369B2 (en)2014-04-162017-12-19Ethicon LlcSurgical end effectors with firing element monitoring arrangements
US10010324B2 (en)2014-04-162018-07-03Ethicon LlcFastener cartridge compromising fastener cavities including fastener control features
US10164466B2 (en)2014-04-172018-12-25Covidien LpNon-contact surgical adapter electrical interface
US20150297200A1 (en)2014-04-172015-10-22Covidien LpEnd of life transmission system for surgical instruments
US20150302157A1 (en)2014-04-172015-10-22Ryan Mitchell CollarApparatus, Method, and System for Counting Packaged, Consumable, Medical Items Such as Surgical Suture Cartridges
US10258363B2 (en)2014-04-222019-04-16Ethicon LlcMethod of operating an articulating ultrasonic surgical instrument
US9451949B2 (en)2014-04-252016-09-27Sharp Fluidics LlcSystems and methods for increased operating room efficiency
US10639185B2 (en)2014-04-252020-05-05The Trustees Of Columbia University In The City Of New YorkSpinal treatment devices, methods, and systems
US20170049522A1 (en)2014-04-282017-02-23Covidien LpSurgical assemblies for housing force transmitting members
US10133248B2 (en)2014-04-282018-11-20Covidien LpSystems and methods for determining an end of life state for surgical devices
US20150305828A1 (en)2014-04-292015-10-29CUREXO, IncApparatus for adjusting a robotic surgery plan
US20150317899A1 (en)2014-05-012015-11-05Covidien LpSystem and method for using rfid tags to determine sterilization of devices
US10175127B2 (en)2014-05-052019-01-08Covidien LpEnd-effector force measurement drive circuit
US20150320423A1 (en)2014-05-062015-11-12Covidien LpEjecting assembly for a surgical stapler
US10639098B2 (en)2014-05-062020-05-05Cosman Instruments, LlcElectrosurgical generator
US10111703B2 (en)2014-05-062018-10-30Cosman Instruments, LlcElectrosurgical generator
EP2942023A2 (en)2014-05-062015-11-11Jr. Eric R. CosmanElectrosurgical generator
US20150324114A1 (en)2014-05-062015-11-12Conceptualiz Inc.System and method for interactive 3d surgical planning and modelling of surgical implants
US10471254B2 (en)2014-05-122019-11-12Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US10376338B2 (en)2014-05-132019-08-13Covidien LpSurgical robotic arm support systems and methods of use
US20150331995A1 (en)2014-05-142015-11-19Tiecheng ZhaoEvolving contextual clinical data engine for medical data processing
US9753568B2 (en)2014-05-152017-09-05Bebop Sensors, Inc.Flexible sensors and applications
US9770541B2 (en)2014-05-152017-09-26Thermedx, LlcFluid management system with pass-through fluid volume measurement
US20150332196A1 (en)2014-05-152015-11-19Heinz-Werner StillerSurgical Workflow Support System
US10512461B2 (en)2014-05-152019-12-24Covidien LpSurgical fastener applying apparatus
US9943918B2 (en)2014-05-162018-04-17Powdermet, Inc.Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation
US20150332003A1 (en)2014-05-192015-11-19Unitedhealth Group IncorporatedComputer readable storage media for utilizing derived medical records and methods and systems for same
US10716583B2 (en)2014-05-192020-07-21Walk Vascular, LlcSystems and methods for removal of blood and thrombotic material
US9419018B2 (en)2014-05-302016-08-16Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US9549781B2 (en)2014-05-302017-01-24The Johns Hopkins UniversityMulti-force sensing surgical instrument and method of use for robotic surgical systems
US20160106516A1 (en)2014-05-302016-04-21Sameh MesallumSystems for automated biomechanical computerized surgery
US20170042604A1 (en)2014-05-302017-02-16Applied Medical Resources CorporationElectrosurgical seal and dissection systems
US9325732B1 (en)2014-06-022016-04-26Amazon Technologies, Inc.Computer security threat sharing
US20170262604A1 (en)2014-06-092017-09-14Revon Systems, Inc.Systems and methods for health tracking and management
US9331422B2 (en)2014-06-092016-05-03Apple Inc.Electronic device with hidden connector
US10251725B2 (en)2014-06-092019-04-09Covidien LpAuthentication and information system for reusable surgical instruments
US10245038B2 (en)2014-06-112019-04-02Applied Medical Resources CorporationSurgical stapler with circumferential firing
US20150374259A1 (en)2014-06-112015-12-31The Methodist HospitalSystems and methods for medical procedure monitoring
US20180182475A1 (en)2014-06-132018-06-28University Hospitals Cleveland Medical CenterArtificial-intelligence-based facilitation of healthcare delivery
US10045781B2 (en)2014-06-132018-08-14Ethicon LlcClosure lockout systems for surgical instruments
KR101587721B1 (en)2014-06-172016-01-22에스엔유 프리시젼 주식회사Apparatus and method for controlling surgical burr cutter
US20170086906A1 (en)2014-06-232017-03-30Olympus CorporationSurgical system, medical device, and control method of surgical system
US10335147B2 (en)2014-06-252019-07-02Ethicon LlcMethod of using lockout features for surgical stapler cartridge
US10314577B2 (en)2014-06-252019-06-11Ethicon LlcLockout engagement features for surgical stapler
US9636825B2 (en)2014-06-262017-05-02Robotex Inc.Robotic logistics system
US20160019346A1 (en)2014-07-162016-01-21InteliChart, LLCSystems and methods for managing, storing, and exchanging healthcare information across heterogeneous healthcare systems
US9603609B2 (en)2014-07-242017-03-28Olympus CorporationUltrasonic treatment system, energy source unit, and actuation method of energy source unit
US10152789B2 (en)2014-07-252018-12-11Covidien LpAugmented surgical reality environment
US20160034648A1 (en)2014-07-302016-02-04Verras Healthcare International, LLCSystem and method for reducing clinical variation
US10748115B2 (en)2014-08-012020-08-18Smith & Nephew, Inc.Providing implants for surgical procedures
US10422727B2 (en)2014-08-102019-09-24Harry Leon PliskinContaminant monitoring and air filtration system
US20160038224A1 (en)2014-08-112016-02-11Covidien LpSurgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10258359B2 (en)2014-08-132019-04-16Covidien LpRobotically controlling mechanical advantage gripping
US20160051315A1 (en)2014-08-252016-02-25Ethicon Endo-Surgery, Inc.Simultaneous i-beam and spring driven cam jaw closure mechanism
US10512413B2 (en)2014-08-262019-12-24Avent, Inc.Method and system for identification of source of chronic pain and treatment
US10147148B2 (en)2014-08-262018-12-04Gree Electric Appliances Inc. Of ZhuhaiDistributed energy power source control method, apparatus and system for providing loads with dynamic power distribution modes
US11464971B2 (en)2014-08-262022-10-11Avent, Inc.Selective nerve fiber block method and system
US10194972B2 (en)2014-08-262019-02-05Ethicon LlcManaging tissue treatment
US9848877B2 (en)2014-09-022017-12-26Ethicon LlcMethods and devices for adjusting a tissue gap of an end effector of a surgical device
US9943312B2 (en)2014-09-022018-04-17Ethicon LlcMethods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9788835B2 (en)2014-09-022017-10-17Ethicon LlcDevices and methods for facilitating ejection of surgical fasteners from cartridges
US10004500B2 (en)2014-09-022018-06-26Ethicon LlcDevices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
US20160058439A1 (en)2014-09-022016-03-03Ethicon Endo-Surgery, Inc.Devices and Methods for Facilitating Closing and Clamping of an End Effector of a Surgical Device
US9700320B2 (en)2014-09-022017-07-11Ethicon LlcDevices and methods for removably coupling a cartridge to an end effector of a surgical device
US9280884B1 (en)2014-09-032016-03-08Oberon, Inc.Environmental sensor device with alarms
US9757128B2 (en)2014-09-052017-09-12Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US20160066913A1 (en)2014-09-052016-03-10Ethicon Endo-Surgery, Inc.Local display of tissue parameter stabilization
US20170209145A1 (en)2014-09-052017-07-27Ethicon LlcPowered medical device including measurement of closure state of jaws
US9788836B2 (en)2014-09-052017-10-17Ethicon LlcMultiple motor control for powered medical device
US10111679B2 (en)2014-09-052018-10-30Ethicon LlcCircuitry and sensors for powered medical device
US9724094B2 (en)2014-09-052017-08-08Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
JP2017532168A (en)2014-09-052017-11-02エシコン エルエルシーEthicon LLC The polarity of the hall magnet that detects a misloaded cartridge
JP2017526510A (en)2014-09-052017-09-14エシコン エルエルシーEthicon LLC Addenda with integrated sensor for quantifying tissue compression
US10135242B2 (en)2014-09-052018-11-20Ethicon LlcSmart cartridge wake up operation and data retention
US9737301B2 (en)2014-09-052017-08-22Ethicon LlcMonitoring device degradation based on component evaluation
US10016199B2 (en)2014-09-052018-07-10Ethicon LlcPolarity of hall magnet to identify cartridge type
US11273290B2 (en)2014-09-102022-03-15Intuitive Surgical Operations, Inc.Flexible instrument with nested conduits
US10803977B2 (en)2014-09-152020-10-13Synaptive Medical (Barbados) Inc.System and method for collection, storage and management of medical data
US10792038B2 (en)2014-09-152020-10-06Applied Medical Resources CorporationSurgical stapler with self-adjusting staple height
US10321964B2 (en)2014-09-152019-06-18Covidien LpRobotically controlling surgical assemblies
US10105142B2 (en)2014-09-182018-10-23Ethicon LlcSurgical stapler with plurality of cutting elements
US20210076966A1 (en)2014-09-232021-03-18Surgical Safety Technologies Inc.System and method for biometric data capture for event prediction
US20170249432A1 (en)2014-09-232017-08-31Surgical Safety Technologies Inc.Operating room black-box device, system, method and computer readable medium
US10478544B2 (en)2014-09-252019-11-19Nxstage Medical, Inc.Medicament preparation and treatment devices, methods, and systems
US9801627B2 (en)2014-09-262017-10-31Ethicon LlcFastener cartridge for creating a flexible staple line
US9936961B2 (en)2014-09-262018-04-10DePuy Synthes Products, Inc.Surgical tool with feedback
US10327764B2 (en)2014-09-262019-06-25Ethicon LlcMethod for creating a flexible staple line
US20170224428A1 (en)2014-09-292017-08-10Covidien LpDynamic input scaling for controls of robotic surgical system
US9737371B2 (en)2014-09-302017-08-22Auris Surgical Robotics, Inc.Configurable robotic surgical system with virtual rail and flexible endoscope
US10039564B2 (en)2014-09-302018-08-07Ethicon LlcSurgical devices having power-assisted jaw closure and methods for compressing and sensing tissue
US9630318B2 (en)2014-10-022017-04-25Brain CorporationFeature detection apparatus and methods for training of robotic navigation
US9901406B2 (en)2014-10-022018-02-27Inneroptic Technology, Inc.Affected region display associated with a medical device
US9833254B1 (en)2014-10-032017-12-05Verily Life Sciences LlcControlled dissection of biological tissue
US10603128B2 (en)2014-10-072020-03-31Covidien LpHandheld electromechanical surgical system
US10716489B2 (en)2014-10-102020-07-21Oslo Universitetssykehus HfDetermining biological tissue type
US10292758B2 (en)2014-10-102019-05-21Ethicon LlcMethods and devices for articulating laparoscopic energy device
US20160100837A1 (en)2014-10-132016-04-14Ethicon Endo-Surgery, Inc.Staple cartridge
US10102926B1 (en)2014-10-142018-10-16Sentry Data Systems, Inc.Detecting, analyzing and impacting improvement opportunities related to total cost of care, clinical quality and revenue integrity
US10052104B2 (en)2014-10-162018-08-21Ethicon LlcStaple cartridge comprising a tissue thickness compensator
US11185325B2 (en)2014-10-162021-11-30Cilag Gmbh InternationalEnd effector including different tissue gaps
US10905418B2 (en)2014-10-162021-02-02Ethicon LlcStaple cartridge comprising a tissue thickness compensator
US9924944B2 (en)2014-10-162018-03-27Ethicon LlcStaple cartridge comprising an adjunct material
US10226254B2 (en)2014-10-212019-03-12Covidien LpAdapter, extension, and connector assemblies for surgical devices
US20180021058A1 (en)2014-10-242018-01-25Covidien LpSensorizing robotic surgical system access ports
US20180289427A1 (en)2014-10-272018-10-11Intuitive Surgical Operations, Inc.System and method for registering to a surgical table
US20170079530A1 (en)2014-10-292017-03-23Spectral Md, Inc.Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification
US20190125459A1 (en)2014-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US20170196583A1 (en)2014-10-312017-07-13Olympus CorporationMedical treatment device
US9808305B2 (en)2014-10-312017-11-07Olympus CorporationEnergy treatment apparatus
US20180161716A1 (en)2014-11-032018-06-14Foshan Shunde Apollo Air-Cleaner Co., Ltd.Air purifier based on filter anti-counterfeiting identification
US9844376B2 (en)2014-11-062017-12-19Ethicon LlcStaple cartridge comprising a releasable adjunct material
US11183293B2 (en)2014-11-072021-11-23Koninklijke Philips N.V.Optimized anatomical structure of interest labelling
US20170311777A1 (en)2014-11-072017-11-02Sony CorporationObservation device and observation system
US10792422B2 (en)2014-11-102020-10-06White Bear Medical LLCDynamically controlled treatment protocols for autonomous treatment systems
US20170325876A1 (en)2014-11-192017-11-16Kyushu University, National University CorporationHigh frequency forceps
US10092355B1 (en)2014-11-212018-10-09Verily Life Sciences LlcBiophotonic surgical probe
US20160143659A1 (en)2014-11-252016-05-26Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with blade cooling through retraction
US9782212B2 (en)2014-12-022017-10-10Covidien LpHigh level algorithms
US20190069949A1 (en)2014-12-032019-03-07Metavention, Inc.Systems and methods for modulatng nerves or other tissue
WO2016093049A1 (en)2014-12-102016-06-16オリンパス株式会社Manipulator system
US10736636B2 (en)2014-12-102020-08-11Ethicon LlcArticulatable surgical instrument system
US9247996B1 (en)2014-12-102016-02-02F21, LlcSystem, method, and apparatus for refurbishment of robotic surgical arms
US20160166336A1 (en)2014-12-122016-06-16Inneroptic Technology, Inc.Surgical guidance intersection display
US10095942B2 (en)2014-12-152018-10-09Reflex Robotics, IncVision based real-time object tracking system for robotic gimbal control
US10588711B2 (en)2014-12-162020-03-17Intuitive Surgical Operations, Inc.Ureter detection using waveband-selective imaging
CN104490448A (en)2014-12-172015-04-08成都快典科技有限公司Clamping applying pincers for surgical ligation
US20160175025A1 (en)2014-12-172016-06-23Ethicon Endo-Surgery, Inc.Surgical Devices and Methods for Tissue Cutting and Sealing
WO2016100719A1 (en)2014-12-172016-06-23Maquet Cardiovascular LlcSurgical device
US9160853B1 (en)2014-12-172015-10-13Noble Systems CorporationDynamic display of real time speech analytics agent alert indications in a contact center
CN104490448B (en)2014-12-172017-03-15徐保利Surgical ligation clip applier
US9943309B2 (en)2014-12-182018-04-17Ethicon LlcSurgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en)2014-12-182017-12-19Ethicon LlcDrive arrangements for articulatable surgical instruments
US10004501B2 (en)2014-12-182018-06-26Ethicon LlcSurgical instruments with improved closure arrangements
US10245027B2 (en)2014-12-182019-04-02Ethicon LlcSurgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10085748B2 (en)2014-12-182018-10-02Ethicon LlcLocking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en)2014-12-182018-06-05Ethicon LlcSurgical instrument assembly comprising a flexible articulation system
US10117649B2 (en)2014-12-182018-11-06Ethicon LlcSurgical instrument assembly comprising a lockable articulation system
US9844374B2 (en)2014-12-182017-12-19Ethicon LlcSurgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9968355B2 (en)2014-12-182018-05-15Ethicon LlcSurgical instruments with articulatable end effectors and improved firing beam support arrangements
US10188385B2 (en)2014-12-182019-01-29Ethicon LlcSurgical instrument system comprising lockable systems
US20160180045A1 (en)2014-12-192016-06-23Ebay Inc.Wireless beacon devices used to track medical information at a hospital
US20160224760A1 (en)2014-12-242016-08-04Oncompass GmbhSystem and method for adaptive medical decision support
US10806453B2 (en)2014-12-302020-10-20Suzhou Touchstone International Medical Science Co., Ltd.Stapling head assembly and suturing and cutting apparatus for endoscopic surgery
US10595952B2 (en)2014-12-312020-03-24Sight Medical, LlcProcess and apparatus for managing medical device selection and implantation
US9775611B2 (en)2015-01-062017-10-03Covidien LpClam shell surgical stapling loading unit
US9931124B2 (en)2015-01-072018-04-03Covidien LpReposable clip applier
US10362179B2 (en)2015-01-092019-07-23Tracfone Wireless, Inc.Peel and stick activation code for activating service for a wireless device
US10404521B2 (en)2015-01-142019-09-03Datto, Inc.Remotely configurable routers with failover features, and methods and apparatus for reliable web-based administration of same
US20180214025A1 (en)2015-01-142018-08-02Verily Life Sciences LlcApplications of hyperspectral laser speckle imaging
US10758294B2 (en)2015-01-142020-09-01Gyrus Medical LimitedElectrosurgical system
US9931040B2 (en)2015-01-142018-04-03Verily Life Sciences LlcApplications of hyperspectral laser speckle imaging
US10368876B2 (en)2015-01-152019-08-06Covidien LpEndoscopic reposable surgical clip applier
US10656720B1 (en)2015-01-162020-05-19Ultrahaptics IP Two LimitedMode switching for integrated gestural interaction and multi-user collaboration in immersive virtual reality environments
EP3047806A1 (en)2015-01-162016-07-27Covidien LPPowered surgical stapling device
US10187742B2 (en)2015-01-192019-01-22Haldor Advanced Technologies LtdSystem and method for tracking and monitoring surgical tools
US20160206362A1 (en)2015-01-212016-07-21Serene Medical, Inc.Systems and devices to identify and limit nerve conduction
WO2016118752A1 (en)2015-01-212016-07-28Serene Medical, Inc.Systems and devices to identify and limit nerve conduction
US20180008359A1 (en)2015-01-212018-01-11Cambridge Medical Robotics LimitedRobot tool retraction
US20190001079A1 (en)2015-01-302019-01-03Surgiquest, Inc.Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
US9387295B1 (en)2015-01-302016-07-12SurgiQues, Inc.Filter cartridge with internal gaseous seal for multimodal surgical gas delivery system having a smoke evacuation mode
US10960150B2 (en)2015-01-302021-03-30Surgiquest, Inc.Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
US20180011983A1 (en)2015-02-022018-01-11Think Surgical, Inc.Method and system for managing medical data
US10561471B2 (en)2015-02-052020-02-18Olympus CorporationManipulator
US9713424B2 (en)2015-02-062017-07-25Richard F. SpaideVolume analysis and display of information in optical coherence tomography angiography
US20160228061A1 (en)2015-02-102016-08-11Cathprint AbLow profile medical device with integrated flexible circuit and methods of making the same
US9600031B2 (en)2015-02-102017-03-21Toshiba Tec Kabushiki KaishaCommodity sales data processing apparatus
US10111658B2 (en)2015-02-122018-10-30Covidien LpDisplay screens for medical devices
EP3056923A1 (en)2015-02-132016-08-17Zoller & Fröhlich GmbHScanning assembly and method for scanning an object
US9805472B2 (en)2015-02-182017-10-31Sony CorporationSystem and method for smoke detection during anatomical surgery
US9905000B2 (en)2015-02-192018-02-27Sony CorporationMethod and system for surgical tool localization during anatomical surgery
US10111665B2 (en)2015-02-192018-10-30Covidien LpElectromechanical surgical systems
US20160242836A1 (en)2015-02-232016-08-25Hemostatix Medical Technologies, LLCApparatus, System and Method for Excision of Soft Tissue
US10130367B2 (en)2015-02-262018-11-20Covidien LpSurgical apparatus
US10085749B2 (en)2015-02-262018-10-02Covidien LpSurgical apparatus with conductor strain relief
US10285698B2 (en)2015-02-262019-05-14Covidien LpSurgical apparatus
US20170367754A1 (en)2015-02-272017-12-28Olympus CorporationMedical treatment device, method for operating medical treatment device, and treatment method
US10159483B2 (en)2015-02-272018-12-25Ethicon LlcSurgical apparatus configured to track an end-of-life parameter
US10321907B2 (en)2015-02-272019-06-18Ethicon LlcSystem for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en)2015-02-272019-01-15Ethicon LlcSurgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10245028B2 (en)2015-02-272019-04-02Ethicon LlcPower adapter for a surgical instrument
US9931118B2 (en)2015-02-272018-04-03Ethicon Endo-Surgery, LlcReinforced battery for a surgical instrument
US10045779B2 (en)2015-02-272018-08-14Ethicon LlcSurgical instrument system comprising an inspection station
US9993258B2 (en)2015-02-272018-06-12Ethicon LlcAdaptable surgical instrument handle
US10226250B2 (en)2015-02-272019-03-12Ethicon LlcModular stapling assembly
US10182816B2 (en)2015-02-272019-01-22Ethicon LlcCharging system that enables emergency resolutions for charging a battery
US20160249910A1 (en)2015-02-272016-09-01Ethicon Endo-Surgery, LlcSurgical charging system that charges and/or conditions one or more batteries
US10733267B2 (en)2015-02-272020-08-04Surgical Black Box LlcSurgical data control system
US20170164996A1 (en)2015-03-022017-06-15Olympus CorporationPower supply device for high-frequency treatment instrument, high frequency treatment system, and control method for power supply device
US20170319268A1 (en)2015-03-042017-11-09Olympus CorporationInsertion instrument and medical treatment system
US10441279B2 (en)2015-03-062019-10-15Ethicon LlcMultiple level thresholds to modify operation of powered surgical instruments
US10052044B2 (en)2015-03-062018-08-21Ethicon LlcTime dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10206605B2 (en)2015-03-062019-02-19Ethicon LlcTime dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en)2015-03-062020-06-23Ethicon LlcAdaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10548504B2 (en)2015-03-062020-02-04Ethicon LlcOverlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9895148B2 (en)2015-03-062018-02-20Ethicon Endo-Surgery, LlcMonitoring speed control and precision incrementing of motor for powered surgical instruments
US10245033B2 (en)2015-03-062019-04-02Ethicon LlcSurgical instrument comprising a lockable battery housing
US10617412B2 (en)2015-03-062020-04-14Ethicon LlcSystem for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en)2015-03-062017-11-07Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US9901342B2 (en)2015-03-062018-02-27Ethicon Endo-Surgery, LlcSignal and power communication system positioned on a rotatable shaft
US9993248B2 (en)2015-03-062018-06-12Ethicon Endo-Surgery, LlcSmart sensors with local signal processing
US10045776B2 (en)2015-03-062018-08-14Ethicon LlcControl techniques and sub-processor contained within modular shaft with select control processing from handle
US10916415B2 (en)2015-03-062021-02-09Micromass Uk LimitedLiquid trap or separator for electrosurgical applications
US9924961B2 (en)2015-03-062018-03-27Ethicon Endo-Surgery, LlcInteractive feedback system for powered surgical instruments
US10420620B2 (en)2015-03-102019-09-24Covidien LpRobotic surgical systems, instrument drive units, and drive assemblies
US10716639B2 (en)2015-03-102020-07-21Covidien LpMeasuring health of a connector member of a robotic surgical system
US10417446B2 (en)2015-03-102019-09-17Fujifilm CorporationInformation management apparatus and method for medical care data, and non-transitory computer readable medium
US10190888B2 (en)2015-03-112019-01-29Covidien LpSurgical stapling instruments with linear position assembly
US10653476B2 (en)2015-03-122020-05-19Covidien LpMapping vessels for resecting body tissue
US9717525B2 (en)2015-03-172017-08-01Prabhat Kumar AhluwaliaUterine manipulator
US10342602B2 (en)2015-03-172019-07-09Ethicon LlcManaging tissue treatment
US20160270732A1 (en)2015-03-172016-09-22Cathprint AbLow profile medical device with bonded base for electrical components
US10255995B2 (en)2015-03-182019-04-09Covidien LpSystems and methods for credit-based usage of surgical instruments and components thereof
JP2016174836A (en)2015-03-202016-10-06富士フイルム株式会社Image processing apparatus, endoscope system, image processing apparatus operation method, and endoscope system operation method
US20160270842A1 (en)2015-03-202016-09-22Ethicon Endo-Surgery, LlcElectrosurgical device having controllable current paths
US10390718B2 (en)2015-03-202019-08-27East Carolina UniversityMulti-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10172618B2 (en)2015-03-252019-01-08Ethicon LlcLow glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US20160278841A1 (en)2015-03-252016-09-29Advanced Cardiac Therapeutics, Inc.Contact sensing systems and methods
US10349939B2 (en)2015-03-252019-07-16Ethicon LlcMethod of applying a buttress to a surgical stapler
US20200214699A1 (en)2015-03-252020-07-09Ethicon LlcSurgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10863984B2 (en)2015-03-252020-12-15Ethicon LlcLow inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10136891B2 (en)2015-03-252018-11-27Ethicon LlcNaturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US11322248B2 (en)2015-03-262022-05-03Surgical Safety Technologies Inc.Operating room black-box device, system, method and computer readable medium for event and error prediction
US20180122506A1 (en)2015-03-262018-05-03Surgical Safety Technologies Inc.Operating room black-box device, system, method and computer readable medium for event and error prediction
US10966590B2 (en)2015-03-262021-04-06Sony CorporationSurgical system, information processing device, and method
US20160321400A1 (en)2015-03-302016-11-03Zoll Medical CorporationClinical Data Handoff in Device Management and Data Sharing
US20160287316A1 (en)2015-03-302016-10-06Ethicon Endo-Surgery, LlcControl of cutting and sealing based on tissue mapped by segmented electrode
US10390825B2 (en)2015-03-312019-08-27Ethicon LlcSurgical instrument with progressive rotary drive systems
US10433844B2 (en)2015-03-312019-10-08Ethicon LlcSurgical instrument with selectively disengageable threaded drive systems
US20160287337A1 (en)2015-03-312016-10-06Luke J. AramOrthopaedic surgical system and method for patient-specific surgical procedure
US20160287312A1 (en)2015-03-312016-10-06St. Jude Medical, Cardiology Division, Inc.Methods and devices for delivering pulsed RF energy during catheter ablation
US10213201B2 (en)2015-03-312019-02-26Ethicon LlcStapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10383518B2 (en)2015-03-312019-08-20Midmark CorporationElectronic ecosystem for medical examination room
US20160292456A1 (en)2015-04-012016-10-06Abbvie Inc.Systems and methods for generating longitudinal data profiles from multiple data sources
US9629560B2 (en)2015-04-062017-04-25Thomas Jefferson UniversityImplantable vital sign sensor
US9937014B2 (en)2015-04-102018-04-10Mako Surgical Corp.System and method of controlling a surgical tool during autonomous movement of the surgical tool
US20160302210A1 (en)2015-04-102016-10-13Enovate Medical, LlcCommunication hub and repeaters
US10327779B2 (en)2015-04-102019-06-25Covidien LpAdapter, extension, and connector assemblies for surgical devices
US10117702B2 (en)2015-04-102018-11-06Ethicon LlcSurgical generator systems and related methods
US20160296246A1 (en)2015-04-132016-10-13Novartis AgForceps with metal and polymeric arms
US20180228557A1 (en)2015-04-202018-08-16Medrobotics CorporationArticulating robotic probes, systems and methods incorporating the same, and methods for performing surgical procedures
US20170231553A1 (en)2015-04-212017-08-17Olympus CorporationMedical apparatus
US10806506B2 (en)2015-04-212020-10-20Smith & Nephew, Inc.Vessel sealing algorithm and modes
US10426466B2 (en)2015-04-222019-10-01Covidien LpHandheld electromechanical surgical system
US10426468B2 (en)2015-04-222019-10-01Covidien LpHandheld electromechanical surgical system
US20160310204A1 (en)2015-04-232016-10-27Covidien LpSystems and methods for controlling power in an electrosurgical generator
US10617484B2 (en)2015-04-232020-04-14Sri InternationalHyperdexterous surgical system user interface devices
US20160342753A1 (en)2015-04-242016-11-24StarslideMethod and apparatus for healthcare predictive decision technology platform
US20160314716A1 (en)2015-04-272016-10-27KindHeart, Inc.Telerobotic surgery system for remote surgeon training using remote surgery station and party conferencing and associated methods
US20160314717A1 (en)2015-04-272016-10-27KindHeart, Inc.Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods
US20160323283A1 (en)2015-04-302016-11-03Samsung Electronics Co., Ltd.Semiconductor device for controlling access right to resource based on pairing technique and method thereof
US10169862B2 (en)2015-05-072019-01-01Novadaq Technologies ULCMethods and systems for laser speckle imaging of tissue using a color image sensor
US20160331460A1 (en)2015-05-112016-11-17Elwha LlcInteractive surgical drape, system, and related methods
US10653489B2 (en)2015-05-112020-05-19Covidien LpCoupling instrument drive unit and robotic surgical instrument
US10674897B2 (en)2015-05-122020-06-09270 Surgical Ltd.Dynamic field of view endoscope
US9566708B2 (en)2015-05-142017-02-14Daniel KurniantoControl mechanism for end-effector maneuver
US10206752B2 (en)2015-05-142019-02-19Cmr Surgical LimitedTorque sensing in a surgical robotic wrist
US10555675B2 (en)2015-05-152020-02-11Gauss Surgical, Inc.Method for projecting blood loss of a patient during a surgery
US10226302B2 (en)2015-05-152019-03-12Mako Surgical CorporationSystems and methods for providing guidance for a robotic medical procedure
US20160342916A1 (en)2015-05-202016-11-24Schlumberger Technology CorporationDownhole tool management system
JP2016214553A (en)2015-05-202016-12-22ソニー株式会社Electrosurgical treatment device, control method of electrosurgical treatment device, and electrosurgical system
EP3095399A2 (en)2015-05-222016-11-23Covidien LPSurgical instruments for performing tonsillectomy, adenoidectomy, and other surgical procedures
US9519753B1 (en)2015-05-262016-12-13Virtual Radiologic CorporationRadiology workflow coordination techniques
US10022120B2 (en)2015-05-262018-07-17Ethicon LlcSurgical needle with recessed features
US9918326B2 (en)2015-05-272018-03-13Comcast Cable Communications, LlcOptimizing resources in data transmission
US10349941B2 (en)2015-05-272019-07-16Covidien LpMulti-fire lead screw stapling device
US9943964B2 (en)2015-05-292018-04-17Cmr Surgical LimitedCharacterising robot environments
US10736498B2 (en)2015-06-022020-08-11Olympus CorporationSpecial light endoscope
US20160354162A1 (en)2015-06-022016-12-08National Taiwan UniversityDrilling control system and drilling control method
US10959788B2 (en)2015-06-032021-03-30Covidien LpOffset instrument drive unit
US20160354160A1 (en)2015-06-032016-12-08Covidien LpMedical instrument with sensor for use in a system and method for electromagnetic navigation
US20180153436A1 (en)2015-06-032018-06-07St. Jude Medical International Holding S.À R.L.Active magnetic position sensor
US10799304B2 (en)2015-06-082020-10-13Covidien LpMounting device for surgical systems and method of use
US10118119B2 (en)2015-06-082018-11-06Cts CorporationRadio frequency process sensing, control, and diagnostics network and system
US20180153632A1 (en)2015-06-092018-06-07Intuitive Surgical Operation, Inc.Configuring surgical system with surgical procedures atlas
US11058501B2 (en)2015-06-092021-07-13Intuitive Surgical Operations, Inc.Configuring surgical system with surgical procedures atlas
US20210015568A1 (en)2015-06-102021-01-21Intuitive Surgical Operations, Inc.System and method for patient-side instrument control
US20160361070A1 (en)2015-06-102016-12-15OrthoDrill Medical Ltd.Sensor technologies with alignment to body movements
US10004491B2 (en)2015-06-152018-06-26Ethicon LlcSuturing instrument with needle motion indicator
US10339496B2 (en)2015-06-152019-07-02Milwaukee Electric Tool CorporationPower tool communication system
US9888914B2 (en)2015-06-162018-02-13Ethicon Endo-Surgery, LlcSuturing instrument with motorized needle drive
US9782164B2 (en)2015-06-162017-10-10Ethicon Endo-Surgery, LlcSuturing instrument with multi-mode cartridges
US9839419B2 (en)2015-06-162017-12-12Ethicon Endo-Surgery, LlcSuturing instrument with jaw having integral cartridge component
US10507068B2 (en)2015-06-162019-12-17Covidien LpRobotic surgical system torque transduction sensing
US20160367305A1 (en)2015-06-172016-12-22Medtronic, Inc.Catheter breach loop feedback fault detection with active and inactive driver system
US10178992B2 (en)2015-06-182019-01-15Ethicon LlcPush/pull articulation drive systems for articulatable surgical instruments
US10052102B2 (en)2015-06-182018-08-21Ethicon LlcSurgical end effectors with dual cam actuated jaw closing features
US10154841B2 (en)2015-06-182018-12-18Ethicon LlcSurgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing
US10368861B2 (en)2015-06-182019-08-06Ethicon LlcDual articulation drive system arrangements for articulatable surgical instruments
US10405863B2 (en)2015-06-182019-09-10Ethicon LlcMovable firing beam support arrangements for articulatable surgical instruments
US10335149B2 (en)2015-06-182019-07-02Ethicon LlcArticulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
US10182818B2 (en)2015-06-182019-01-22Ethicon LlcSurgical end effectors with positive jaw opening arrangements
US10512499B2 (en)2015-06-192019-12-24Covidien LpSystems and methods for detecting opening of the jaws of a vessel sealer mid-seal
US10675104B2 (en)2015-06-192020-06-09Covidien LpRobotic surgical assemblies
US10667877B2 (en)2015-06-192020-06-02Covidien LpControlling robotic surgical instruments with bidirectional coupling
US10792118B2 (en)2015-06-232020-10-06Matrix It Medical Tracking Systems, Inc.Sterile implant tracking device, system and method of use
US10779897B2 (en)2015-06-232020-09-22Covidien LpRobotic surgical assemblies
US20160379504A1 (en)2015-06-242016-12-29Brian D. BAILEYMethod and system for surgical instrumentation setup and user preferences
WO2016206015A1 (en)2015-06-242016-12-29Covidien LpSurgical clip applier with multiple clip feeding mechanism
US10905415B2 (en)2015-06-262021-02-02Ethicon LlcSurgical stapler with electromechanical lockout
US10265066B2 (en)2015-06-262019-04-23Ethicon LlcSurgical stapler with incomplete firing indicator
US10478189B2 (en)2015-06-262019-11-19Ethicon LlcMethod of applying an annular array of staples to tissue
US10034704B2 (en)2015-06-302018-07-31Ethicon LlcSurgical instrument with user adaptable algorithms
US10898256B2 (en)2015-06-302021-01-26Ethicon LlcSurgical system with user adaptable techniques based on tissue impedance
US10765470B2 (en)2015-06-302020-09-08Ethicon LlcSurgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US20170000553A1 (en)2015-06-302017-01-05Ethicon Endo-Surgery, LlcSurgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11141213B2 (en)2015-06-302021-10-12Cilag Gmbh InternationalSurgical instrument with user adaptable techniques
US20170000516A1 (en)2015-06-302017-01-05Ethicon Endo-Surgery, LlcSurgical system with user adaptable techniques based on tissue type
US9839470B2 (en)2015-06-302017-12-12Covidien LpElectrosurgical generator for minimizing neuromuscular stimulation
US20170005911A1 (en)2015-07-022017-01-05Qualcomm IncorporatedSystems and Methods for Incorporating Devices into a Medical Data Network
US10864037B2 (en)2015-07-082020-12-15Research & Business Foundation Sungkyunkwan UniversityApparatus and method for discriminating biological tissue, surgical apparatus using the apparatus
WO2017011382A1 (en)2015-07-132017-01-19Surgimatix, Inc.Laparoscopic suture device with release mechanism
US10881464B2 (en)2015-07-132021-01-05Mako Surgical Corp.Lower extremities leg length calculation method
WO2017011646A1 (en)2015-07-142017-01-19Smith & Nephew, Inc.Instrumentation identification and re-ordering system
US10835206B2 (en)2015-07-162020-11-17Koninklijke Philips N.V.Wireless ultrasound probe pairing with a mobile ultrasound system
US10136246B2 (en)2015-07-212018-11-20Vitanet Japan, Inc.Selective pairing of wireless devices using shared keys
US10463436B2 (en)2015-07-222019-11-05Cmr Surgical LimitedDrive mechanisms for robot arms
US10080618B2 (en)2015-07-222018-09-25Cmr Surgical LimitedGear packaging for robotic arms
US10420558B2 (en)2015-07-302019-09-24Ethicon LlcSurgical instrument comprising a system for bypassing an operational step of the surgical instrument
US10045782B2 (en)2015-07-302018-08-14Covidien LpSurgical stapling loading unit with stroke counter and lockout
US10194913B2 (en)2015-07-302019-02-05Ethicon LlcSurgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
US20180161062A1 (en)2015-08-052018-06-14Olympus CorporationTreatment tool
US10679758B2 (en)2015-08-072020-06-09Abbott Cardiovascular Systems Inc.System and method for supporting decisions during a catheterization procedure
US9532845B1 (en)2015-08-112017-01-03ITKR Software LLCMethods for facilitating individualized kinematically aligned total knee replacements and devices thereof
US10143948B2 (en)2015-08-142018-12-043M Innovative Properties CompanyIdentification of filter media within a filtration system
US20180235719A1 (en)2015-08-172018-08-23Intuitive Sergical Operations, Inc.Ungrounded master control devices and methods of use
US10136949B2 (en)2015-08-172018-11-27Ethicon LlcGathering and analyzing data for robotic surgical systems
US10205708B1 (en)2015-08-212019-02-12Teletracking Technologies, Inc.Systems and methods for digital content protection and security in multi-computer networks
US10639039B2 (en)2015-08-242020-05-05Ethicon LlcSurgical stapler buttress applicator with multi-zone platform for pressure focused release
US20180250825A1 (en)2015-08-252018-09-06Kawasaki Jukogyo Kabushiki KaishaRobot system
US10028744B2 (en)2015-08-262018-07-24Ethicon LlcStaple cartridge assembly including staple guides
US11051817B2 (en)2015-08-262021-07-06Cilag Gmbh InternationalMethod for forming a staple against an anvil of a surgical stapling instrument
US10098642B2 (en)2015-08-262018-10-16Ethicon LlcSurgical staples comprising features for improved fastening of tissue
US11510675B2 (en)2015-08-262022-11-29Cilag Gmbh InternationalSurgical end effector assembly including a connector strip interconnecting a plurality of staples
US10213203B2 (en)2015-08-262019-02-26Ethicon LlcStaple cartridge assembly without a bottom cover
US20180271603A1 (en)2015-08-302018-09-27M.S.T. Medical Surgery Technologies LtdIntelligent surgical tool control system for laparoscopic surgeries
US10687905B2 (en)2015-08-312020-06-23KB Medical SARobotic surgical systems and methods
JP2017047022A (en)2015-09-032017-03-09株式会社メディカルプラットフォームInformation processor, information processing method and information processing program
US20170068792A1 (en)2015-09-032017-03-09Bruce ReinerSystem and method for medical device security, data tracking and outcomes analysis
US11051902B2 (en)2015-09-092021-07-06Koninklijke Philips N.V.System and method for planning and performing a repeat interventional procedure
US10849700B2 (en)2015-09-112020-12-01Covidien LpRobotic surgical system control scheme for manipulating robotic end effectors
EP3141181A1 (en)2015-09-112017-03-15Bernard Boon Chye LimAblation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element
US10189157B2 (en)2015-09-152019-01-29Karl Storz Se & Co. KgManipulating system and manipulating apparatus for surgical instruments
US10076326B2 (en)2015-09-232018-09-18Ethicon LlcSurgical stapler having current mirror-based motor control
US10806454B2 (en)2015-09-252020-10-20Covidien LpRobotic surgical assemblies and instrument drive connectors thereof
US20190053866A1 (en)2015-09-252019-02-21Covidien LpElastic surgical interface for robotic surgical
US10130432B2 (en)2015-09-252018-11-20Ethicon LlcHybrid robotic surgery with locking mode
US10898280B2 (en)2015-09-252021-01-26Covidien LpRobotic surgical assemblies and electromechanical instruments thereof
US10639111B2 (en)2015-09-252020-05-05Covidien LpSurgical robotic assemblies and instrument adapters thereof
US20180206905A1 (en)2015-09-252018-07-26GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies AmericaMultifunctional medical device
US10687884B2 (en)2015-09-302020-06-23Ethicon LlcCircuits for supplying isolated direct current (DC) voltage to surgical instruments
US9900787B2 (en)2015-09-302018-02-20George OuMulticomputer data transferring system with a base station
US10610286B2 (en)2015-09-302020-04-07Ethicon LlcTechniques for circuit topologies for combined generator
WO2017058695A1 (en)2015-09-302017-04-06Ethicon Endo-Surgery, LlcGenerator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
WO2017058617A2 (en)2015-09-302017-04-06Ethicon Endo-Surgery, LlcCircuit topologies for combined generator
US20170086829A1 (en)2015-09-302017-03-30Ethicon Endo-Surgery, LlcCompressible adjunct with intermediate supporting structures
US10624691B2 (en)2015-09-302020-04-21Ethicon LlcTechniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US20190320929A1 (en)2015-10-052019-10-24Infobionic, Inc.Electrode patch for health monitoring
US20170367771A1 (en)2015-10-142017-12-28Surgical Theater LLCSurgical Navigation Inside A Body
US10595930B2 (en)2015-10-162020-03-24Ethicon LlcElectrode wiping surgical device
US20170105754A1 (en)2015-10-192017-04-20Ethicon Endo-Surgery, LlcSurgical instrument with dual mode end effector and side-loaded clamp arm assembly
US10058393B2 (en)2015-10-212018-08-28P Tech, LlcSystems and methods for navigation and visualization
US20180296286A1 (en)2015-10-222018-10-18Covidien LpVariable sweeping for input devices
US20170116873A1 (en)2015-10-262017-04-27C-SATS, Inc.Crowd-sourced assessment of performance of an activity
US10639027B2 (en)2015-10-272020-05-05Ethicon LlcSuturing instrument cartridge with torque limiting features
US20190006047A1 (en)2015-10-292019-01-03Sharp Fluidics LlcSystems and methods for data capture in an operating room
US20170367583A1 (en)2015-10-302017-12-28Cedars-Sinai Medical CenterMethods and systems for performing tissue classification using multi-channel tr-lifs and multivariate analysis
US10517686B2 (en)2015-10-302019-12-31Covidien LpHaptic feedback controls for a robotic surgical system interface
US10772688B2 (en)2015-10-302020-09-15Covidien LpInput handles for robotic surgical systems having visual feedback
US10818383B2 (en)2015-10-302020-10-27Koninklijke Philips N.V.Hospital matching of de-identified healthcare databases without obvious quasi-identifiers
US20180317916A1 (en)2015-11-062018-11-08Intuitive Surgical Operations, Inc.Knife With Mechanical Fuse
US20170132785A1 (en)2015-11-092017-05-11Xerox CorporationMethod and system for evaluating the quality of a surgical procedure from in-vivo video
US10084833B2 (en)2015-11-092018-09-25Cisco Technology, Inc.Initiating a collaboration session between devices using an audible message
US20180235722A1 (en)2015-11-102018-08-23Gsi Group, Inc.Cordless and wireless surgical display system
US10390831B2 (en)2015-11-102019-08-27Covidien LpEndoscopic reposable surgical clip applier
US20170132374A1 (en)2015-11-112017-05-11Zyno Medical, LlcSystem for Collecting Medical Data Using Proxy Inputs
US20170132385A1 (en)2015-11-112017-05-11Abbott Medical Optics Inc.Systems and methods for providing virtual access to a surgical console
US20180233235A1 (en)2015-11-122018-08-16Vivante Health, Inc.Systems and methods for developing individualized health improvement plans
US10912619B2 (en)2015-11-122021-02-09Intuitive Surgical Operations, Inc.Surgical system with training or assist functions
WO2017083863A2 (en)*2015-11-132017-05-18Humanscale CorporationA medical technology station and method of use
US10898189B2 (en)2015-11-132021-01-26Intuitive Surgical Operations, Inc.Push-pull stapler with two degree of freedom wrist
US10772630B2 (en)2015-11-132020-09-15Intuitive Surgical Operations, Inc.Staple pusher with lost motion between ramps
US10973517B2 (en)2015-11-132021-04-13Intuitive Surgical Operations, Inc.Stapler with composite cardan and screw drive
US10751239B2 (en)*2015-11-132020-08-25Humanscale CorporationMedical technology station and method of use
JP2017096359A (en)2015-11-202017-06-01国立大学法人東京工業大学 Interference drive type transmission and interference drive type speed change drive device using the same
US20170154156A1 (en)2015-11-232017-06-01Koninklijke Philips N.V.Structured finding objects for integration of third party applications in the image interpretation workflow
US20170147759A1 (en)2015-11-242017-05-25Raj R. IyerPatient Centered Medical Home for Perioperative Hospital Surgical Care
US10966798B2 (en)2015-11-252021-04-06Camplex, Inc.Surgical visualization systems and displays
US20170143284A1 (en)2015-11-252017-05-25Carestream Health, Inc.Method to detect a retained surgical object
US20170143366A1 (en)2015-11-252017-05-25Ethicon Endo-Surgery, LlcRestricted usage features for surgical instrument
US10939313B2 (en)2015-11-272021-03-02Samsung Electronics Co., Ltd.Method and apparatus for managing electronic device through wireless communication
US10143526B2 (en)2015-11-302018-12-04Auris Health, Inc.Robot-assisted driving systems and methods
US9888975B2 (en)2015-12-042018-02-13Ethicon Endo-Surgery, LlcMethods, systems, and devices for control of surgical tools in a robotic surgical system
US10222750B2 (en)2015-12-092019-03-05Samsung Electronics Co., Ltd.Watch-type wearable device
US10311036B1 (en)2015-12-092019-06-04Universal Research Solutions, LlcDatabase management for a logical registry
US20170164997A1 (en)2015-12-102017-06-15Ethicon Endo-Surgery, LlcMethod of treating tissue using end effector with ultrasonic and electrosurgical features
US10499891B2 (en)2015-12-102019-12-10Cmr Surgical LimitedPulley arrangement for articulating a surgical instrument
US20170165012A1 (en)2015-12-102017-06-15Cambridge Medical Robotics LimitedGuiding engagement of a robot arm and surgical instrument
US10265130B2 (en)2015-12-112019-04-23Ethicon LlcSystems, devices, and methods for coupling end effectors to surgical devices and loading devices
US10686805B2 (en)2015-12-112020-06-16Servicenow, Inc.Computer network threat assessment
US20180206884A1 (en)2015-12-112018-07-26Reach Surgical, Inc.Modular signal interface system and powered trocar
US20170165008A1 (en)2015-12-142017-06-15Nuvasive, Inc.3D Visualization During Surgery with Reduced Radiation Exposure
US10751768B2 (en)2015-12-142020-08-25Buffalo Filter LlcMethod and apparatus for attachment and evacuation
US9662104B1 (en)2015-12-152017-05-30Heartstitch, Inc.Throw and catch suturing device with a curved needle
US10238413B2 (en)2015-12-162019-03-26Ethicon LlcSurgical instrument with multi-function button
US20170172614A1 (en)2015-12-172017-06-22Ethicon Endo-Surgery, LlcSurgical instrument with multi-functioning trigger
US20170178069A1 (en)2015-12-182017-06-22Amazon Technologies, Inc.Data transfer tool for secure client-side data transfer to a shippable storage device
US20190122330A1 (en)2015-12-182019-04-25Orthogrid Systems Inc.Method of providing surgical guidance
US20170172550A1 (en)2015-12-182017-06-22Covidien LpSurgical instruments including sensors
US20170177807A1 (en)2015-12-212017-06-22Gavin FabianEnhanced user interface for a system and method for optimizing surgical team composition and surgical team procedure resource management
US10368894B2 (en)2015-12-212019-08-06Ethicon LlcSurgical instrument with variable clamping force
US20180310986A1 (en)2015-12-212018-11-01GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies AmericaHigh surface energy portion on a medical instrument
US20180263710A1 (en)2015-12-252018-09-20Sony CorporationMedical imaging apparatus and surgical navigation system
US10779900B2 (en)2015-12-292020-09-22Covidien LpRobotic surgical systems and instrument drive assemblies
US20170185732A1 (en)2015-12-292017-06-29Ethicon Endo-Surgery, Inc.Patient monitoring system with network of treatment equipment
US10265068B2 (en)2015-12-302019-04-23Ethicon LlcSurgical instruments with separable motors and motor control circuits
US10470791B2 (en)2015-12-302019-11-12Ethicon LlcSurgical instrument with staged application of electrosurgical and ultrasonic energy
US10368865B2 (en)2015-12-302019-08-06Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en)2015-12-302019-05-21Ethicon LlcMechanisms for compensating for battery pack failure in powered surgical instruments
US20180296289A1 (en)2016-01-082018-10-18Levita Magnetics International Corp.One-operator surgical system and methods of use
US20210186454A1 (en)2016-01-112021-06-24Kambiz BehzadiAnatomical locator tags and uses
US20170202591A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10842523B2 (en)2016-01-152020-11-24Ethicon LlcModular battery powered handheld surgical instrument and methods therefor
US20170202595A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with a plurality of control programs
US20170202607A1 (en)2016-01-152017-07-20Ethicon Endo-Surgery, LlcModular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10537351B2 (en)2016-01-152020-01-21Ethicon LlcModular battery powered handheld surgical instrument with variable motor control limits
US10716615B2 (en)2016-01-152020-07-21Ethicon LlcModular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11504191B2 (en)2016-01-192022-11-22Titan Medical Inc.Graphical user interface for a robotic surgical system
US20190025040A1 (en)2016-01-202019-01-24Lucent Medical Systems, Inc.Low-frequency electromagnetic tracking
US10582962B2 (en)2016-01-232020-03-10Covidien LpSystem and method for harmonic control of dual-output generators
US10258415B2 (en)2016-01-292019-04-16Boston Scientific Scimed, Inc.Medical user interfaces and related methods of use
US20190053801A1 (en)2016-01-292019-02-21Intuitive Surgical Operations, Inc.System and method for variable velocity surgical instrument
US9943379B2 (en)2016-01-292018-04-17Millennium Healthcare Technologies, Inc.Laser-assisted periodontics
US20170215944A1 (en)2016-01-292017-08-03Covidien LpJaw aperture position sensor for electrosurgical forceps
US20190069966A1 (en)2016-02-022019-03-07Intuitive Surgical Operations, Inc.Instrument force sensor using strain gauges in a faraday cage
USD784270S1 (en)2016-02-082017-04-18Vivint, Inc.Control panel
US20170224334A1 (en)2016-02-092017-08-10Ethicon Endo-Surgery, LlcArticulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en)2016-02-092017-08-10Ethicon Endo-Surgery, LlcSurgical instruments with non-symmetrical articulation arrangements
US10588625B2 (en)2016-02-092020-03-17Ethicon LlcArticulatable surgical instruments with off-axis firing beam arrangements
US10413291B2 (en)2016-02-092019-09-17Ethicon LlcSurgical instrument articulation mechanism with slotted secondary constraint
US10433837B2 (en)2016-02-092019-10-08Ethicon LlcSurgical instruments with multiple link articulation arrangements
US10653413B2 (en)2016-02-092020-05-19Ethicon LlcSurgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10470764B2 (en)2016-02-092019-11-12Ethicon LlcSurgical instruments with closure stroke reduction arrangements
US10245030B2 (en)2016-02-092019-04-02Ethicon LlcSurgical instruments with tensioning arrangements for cable driven articulation systems
US10245029B2 (en)2016-02-092019-04-02Ethicon LlcSurgical instrument with articulating and axially translatable end effector
US9980140B1 (en)2016-02-112018-05-22Bigfoot Biomedical, Inc.Secure communication architecture for medical devices
US10420559B2 (en)2016-02-112019-09-24Covidien LpSurgical stapler with small diameter endoscopic portion
US10448948B2 (en)2016-02-122019-10-22Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231627A1 (en)2016-02-122017-08-17Ethicon Endo-Surgery, LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en)2016-02-122017-08-17Ethicon Endo-Surgery, LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en)2016-02-122019-04-16Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en)2016-02-222020-02-11Ethicon LlcFlexible circuits for electrosurgical instrument
US10582931B2 (en)2016-02-242020-03-10Covidien LpEndoscopic reposable surgical clip applier
US10864050B2 (en)2016-02-262020-12-15Think Surgical, Inc.Method and system for guiding user positioning of a robot
US20190069964A1 (en)2016-02-262019-03-07Covidien LpRobotic surgical systems and robotic arms thereof
US10717194B2 (en)2016-02-262020-07-21Intuitive Surgical Operations, Inc.System and method for collision avoidance using virtual boundaries
US10786298B2 (en)2016-03-012020-09-29Covidien LpSurgical instruments and systems incorporating machine learning based tissue identification and methods thereof
US10561753B2 (en)2016-03-022020-02-18Asp Global Manufacturing GmbhMethod of sterilizing medical devices, analyzing biological indicators, and linking medical device sterilization equipment
US20200281665A1 (en)2016-03-042020-09-10Covidien LpElectromechanical surgical systems and robotic surgical instruments thereof
US10893884B2 (en)2016-03-042021-01-19Covidien LpUltrasonic instruments for robotic surgical systems
WO2017151996A1 (en)2016-03-042017-09-08Covidien LpInverse kinematic control systems for robotic surgical system
US10293129B2 (en)2016-03-072019-05-21Hansa Medical Products, Inc.Apparatus and method for forming an opening in patient's tissue
US10962449B2 (en)2016-03-082021-03-30Hitachi, Ltd.Diagnostic device and diagnostic method for rotary machine
US20190005641A1 (en)2016-03-082019-01-03Fujifilm CorporationVascular information acquisition device, endoscope system, and vascular information acquisition method
US10305926B2 (en)2016-03-112019-05-28The Toronto-Dominion BankApplication platform security enforcement in cross device and ownership structures
US20180078170A1 (en)2016-03-152018-03-22Advanced Cardiac Therapeutics, Inc.Methods of determining catheter orientation
US20170265943A1 (en)2016-03-162017-09-21Gal SelaTrajectory alignment system and methods
US10631858B2 (en)2016-03-172020-04-28Intuitive Surgical Operations, Inc.Stapler with cable-driven advanceable clamping element and distal pulley
US10350016B2 (en)2016-03-172019-07-16Intuitive Surgical Operations, Inc.Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10716473B2 (en)2016-03-222020-07-21Koninklijke Philips N.V.Automated procedure-determination and decision-generation
US20190038364A1 (en)2016-03-302019-02-07Sony CorporationImage processing device and method, surgical system, and surgical member
US11382715B2 (en)2016-03-312022-07-12Sony CorporationJig-holding device and medical observation device
US10561349B2 (en)2016-03-312020-02-18Dexcom, Inc.Systems and methods for display device and sensor electronics unit communication
US10568632B2 (en)2016-04-012020-02-25Ethicon LlcSurgical stapling system comprising a jaw closure lockout
US10376263B2 (en)2016-04-012019-08-13Ethicon LlcAnvil modification members for surgical staplers
US20170281186A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcSurgical stapling system comprising a contourable shaft
US10357246B2 (en)2016-04-012019-07-23Ethicon LlcRotary powered surgical instrument with manually actuatable bailout system
US10485542B2 (en)2016-04-012019-11-26Ethicon LlcSurgical stapling instrument comprising multiple lockouts
US10314582B2 (en)2016-04-012019-06-11Ethicon LlcSurgical instrument comprising a shifting mechanism
US20170281171A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcMethod for operating a surgical stapling system
US10709446B2 (en)2016-04-012020-07-14Ethicon LlcStaple cartridges with atraumatic features
US20170281189A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcCircular stapling system comprising an incisable tissue support
US10682136B2 (en)2016-04-012020-06-16Ethicon LlcCircular stapling system comprising load control
US10307159B2 (en)2016-04-012019-06-04Ethicon LlcSurgical instrument handle assembly with reconfigurable grip portion
US10675021B2 (en)2016-04-012020-06-09Ethicon LlcCircular stapling system comprising rotary firing system
US10531874B2 (en)2016-04-012020-01-14Ethicon LlcSurgical cutting and stapling end effector with anvil concentric drive member
US10433849B2 (en)2016-04-012019-10-08Ethicon LlcSurgical stapling system comprising a display including a re-orientable display field
US10478190B2 (en)2016-04-012019-11-19Ethicon LlcSurgical stapling system comprising a spent cartridge lockout
US20170281173A1 (en)2016-04-012017-10-05Ethicon Endo-Surgery, LlcSurgical stapling instrument
US10285705B2 (en)2016-04-012019-05-14Ethicon LlcSurgical stapling system comprising a grooved forming pocket
US10342543B2 (en)2016-04-012019-07-09Ethicon LlcSurgical stapling system comprising a shiftable transmission
US10617413B2 (en)2016-04-012020-04-14Ethicon LlcClosure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10175096B2 (en)2016-04-012019-01-08Ethicon LlcSystem and method to enable re-use of surgical instrument
US10413297B2 (en)2016-04-012019-09-17Ethicon LlcSurgical stapling system configured to apply annular rows of staples having different heights
US10420552B2 (en)2016-04-012019-09-24Ethicon LlcSurgical stapling system configured to provide selective cutting of tissue
US10271851B2 (en)2016-04-012019-04-30Ethicon LlcModular surgical stapling system comprising a display
US20170289617A1 (en)2016-04-012017-10-05Yahoo! Inc.Computerized system and method for automatically detecting and rendering highlights from streaming videos
US10856867B2 (en)2016-04-012020-12-08Ethicon LlcSurgical stapling system comprising a tissue compression lockout
US10542991B2 (en)2016-04-012020-01-28Ethicon LlcSurgical stapling system comprising a jaw attachment lockout
US10456140B2 (en)2016-04-012019-10-29Ethicon LlcSurgical stapling system comprising an unclamping lockout
US10413293B2 (en)2016-04-012019-09-17Ethicon LlcInterchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10722233B2 (en)2016-04-072020-07-28Intuitive Surgical Operations, Inc.Stapling cartridge
US10905420B2 (en)2016-04-122021-02-02Applied Medical Resources CorporationReload shaft assembly for surgical stapler
US10492783B2 (en)2016-04-152019-12-03Ethicon, LlcSurgical instrument with improved stop/start control during a firing motion
US10426467B2 (en)2016-04-152019-10-01Ethicon LlcSurgical instrument with detection sensors
US20170296185A1 (en)2016-04-152017-10-19Ethicon LlcSystems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en)2016-04-152019-07-23Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10828028B2 (en)2016-04-152020-11-10Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10405859B2 (en)2016-04-152019-09-10Ethicon LlcSurgical instrument with adjustable stop/start control during a firing motion
US11350932B2 (en)2016-04-152022-06-07Cilag Gmbh InternationalSurgical instrument with improved stop/start control during a firing motion
US10456137B2 (en)2016-04-152019-10-29Ethicon LlcStaple formation detection mechanisms
US20170296213A1 (en)2016-04-152017-10-19Ethicon Endo-Surgery, LlcSystems and methods for controlling a surgical stapling and cutting instrument
US20170296169A1 (en)2016-04-152017-10-19Ethicon Endo-Surgery, LlcSystems and methods for controlling a surgical stapling and cutting instrument
US10368867B2 (en)2016-04-182019-08-06Ethicon LlcSurgical instrument comprising a lockout
US20170296173A1 (en)2016-04-182017-10-19Ethicon Endo-Surgery, LlcMethod for operating a surgical instrument
US10363037B2 (en)2016-04-182019-07-30Ethicon LlcSurgical instrument system comprising a magnetic lockout
US10478181B2 (en)2016-04-182019-11-19Ethicon LlcCartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
WO2017183353A1 (en)2016-04-192017-10-26オリンパス株式会社Endoscope system
US10954935B2 (en)2016-04-192021-03-23ClearMotion, Inc.Active hydraulic ripple cancellation methods and systems
US20170304020A1 (en)2016-04-202017-10-26Samson NgNavigation arm system and methods
US10363032B2 (en)2016-04-202019-07-30Ethicon LlcSurgical stapler with hydraulic deck control
US10285700B2 (en)2016-04-202019-05-14Ethicon LlcSurgical staple cartridge with hydraulic staple deployment
WO2017189317A1 (en)2016-04-262017-11-02KindHeart, Inc.Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device
US20170312456A1 (en)2016-04-272017-11-02David Bruce PHILLIPSSkin Desensitizing Device
US10772673B2 (en)2016-05-022020-09-15Covidien LpSurgical energy system with universal connection features
DE102016207666A1 (en)2016-05-032017-11-09Olympus Winter & Ibe Gmbh Medical smoke evacuation apparatus and method of operating the same
US10456193B2 (en)2016-05-032019-10-29Ethicon LlcMedical device with a bilateral jaw configuration for nerve stimulation
US10531579B2 (en)2016-05-042020-01-07Shenzhen China Star Optoelectronics Technology Co., LtdDisplay apparatus, backplane and mold for making backplane bracket
US20200348662A1 (en)2016-05-092020-11-05Strong Force Iot Portfolio 2016, LlcPlatform for facilitating development of intelligence in an industrial internet of things system
US20170325878A1 (en)2016-05-112017-11-16Ethicon LlcSuction and irrigation sealing grasper
US10751136B2 (en)2016-05-182020-08-25Virtual Incision CorporationRobotic surgical devices, systems and related methods
US20170333147A1 (en)2016-05-202017-11-23Intuitive Surgical Operations, Inc.Instrument drape
US10624667B2 (en)2016-05-202020-04-21Ethicon LlcSystem and method to track usage of surgical instrument
US10507278B2 (en)2016-05-232019-12-17Boston Scientific Scimed, Inc.Fluidic devices, methods, and systems
US10555748B2 (en)2016-05-252020-02-11Ethicon LlcFeatures and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument
US10736219B2 (en)2016-05-262020-08-04Covidien LpInstrument drive units
WO2017205308A1 (en)2016-05-262017-11-30Covidien LpRobotic surgical assemblies
US20190290389A1 (en)2016-05-262019-09-26Covidien LpCannula assemblies for use with robotic surgical systems
US20190142535A1 (en)2016-05-262019-05-16Covidien LpRobotic surgical assemblies and instrument drive units thereof
US20190145942A1 (en)2016-05-302019-05-16Givaudan SaImprovements in or Relating to Organic Compounds
US10265035B2 (en)2016-06-012019-04-23Siemens Healthcare GmbhMethod and device for motion control of a mobile medical device
US10980610B2 (en)2016-06-032021-04-20Covidien LpSystems, methods, and computer-readable storage media for controlling aspects of a robotic surgical device and viewer adaptive stereoscopic display
US20190133703A1 (en)2016-06-032019-05-09Covidien LpRobotic surgical assemblies and instrument drive units thereof
WO2017210501A1 (en)2016-06-032017-12-07Covidien LpControl arm assemblies for robotic surgical systems
WO2017210499A1 (en)2016-06-032017-12-07Covidien LpControl arm for robotic surgical systems
US20180085102A1 (en)2016-06-032018-03-29Olympus CorporationMedical device
US20190307520A1 (en)2016-06-032019-10-10Covidien LpPassive axis system for robotic surgical systems
US10898105B2 (en)2016-06-062021-01-26Temple University—Of the Commonwealth System of Higher EducationMagnetometer surgical device
US20170348047A1 (en)2016-06-062017-12-07Buffalo Filter LlcSensor systems for use in connection with medical procedures
US20180366213A1 (en)2016-06-082018-12-20Healthcare Value Analytics, LLCSystem and method for determining and indicating value of healthcare
US20170360358A1 (en)2016-06-152017-12-21Louis-Philippe AmiotImplants, systems and methods for surgical planning and assessment
US20170360499A1 (en)2016-06-172017-12-21Megadyne Medical Products, Inc.Hand-held instrument with dual zone fluid removal
US20190333626A1 (en)2016-06-232019-10-31Siemens Healthcare GmbhSystem and method for artificial agent based cognitive operating rooms
USD826405S1 (en)2016-06-242018-08-21Ethicon LlcSurgical fastener
USD850617S1 (en)2016-06-242019-06-04Ethicon LlcSurgical fastener cartridge
US10675024B2 (en)2016-06-242020-06-09Ethicon LlcStaple cartridge comprising overdriven staples
US10542979B2 (en)2016-06-242020-01-28Ethicon LlcStamped staples and staple cartridges using the same
USD822206S1 (en)2016-06-242018-07-03Ethicon LlcSurgical fastener
US11000278B2 (en)2016-06-242021-05-11Ethicon LlcStaple cartridge comprising wire staples and stamped staples
US20170370710A1 (en)2016-06-242017-12-28Syracuse UniversityMotion sensor assisted room shape reconstruction and self-localization using first-order acoustic echoes
US10702270B2 (en)2016-06-242020-07-07Ethicon LlcStapling system for use with wire staples and stamped staples
USD847989S1 (en)2016-06-242019-05-07Ethicon LlcSurgical fastener cartridge
US10893863B2 (en)2016-06-242021-01-19Ethicon LlcStaple cartridge comprising offset longitudinal staple rows
USD896379S1 (en)2016-06-242020-09-15Ethicon LlcSurgical fastener cartridge
CN106027664A (en)2016-06-292016-10-12上海吉功信息技术有限公司Medical device running management system and method
US20200078096A1 (en)2016-06-302020-03-12Intuitive Surgical Operations, Inc.Systems and methods for fault reaction mechanisms for medical robotic systems
US10313137B2 (en)2016-07-052019-06-04General Electric CompanyMethod for authenticating devices in a medical network
CN206097107U (en)2016-07-082017-04-12山东威瑞外科医用制品有限公司Ultrasonic knife frequency tracking device
US10258362B2 (en)2016-07-122019-04-16Ethicon LlcUltrasonic surgical instrument with AD HOC formed blade
US10842522B2 (en)2016-07-152020-11-24Ethicon LlcUltrasonic surgical instruments having offset blades
US20180014764A1 (en)2016-07-182018-01-18Vioptix, Inc.Oximetry Device with Laparoscopic Extension
US20190150975A1 (en)2016-07-252019-05-23Olympus CorporationEnergy control device and treatment system
US20190167296A1 (en)2016-07-262019-06-06Olympus CorporationEnergy control device, treatment system, and actuating method of energy control device
US10378893B2 (en)2016-07-292019-08-13Ca, Inc.Location detection sensors for physical devices
US9844321B1 (en)2016-08-042017-12-19Novartis AgEnhanced ophthalmic surgical experience using a virtual reality head-mounted display
US10376305B2 (en)2016-08-052019-08-13Ethicon LlcMethods and systems for advanced harmonic energy
US20180042659A1 (en)2016-08-092018-02-15Covidien LpUltrasonic and radiofrequency energy production and control from a single power converter
US10037641B2 (en)2016-08-102018-07-31Elwha LlcSystems and methods for individual identification and authorization utilizing conformable electronics
US10592067B2 (en)2016-08-122020-03-17Boston Scientific Scimed, Inc.Distributed interactive medical visualization system with primary/secondary interaction features
US10813703B2 (en)2016-08-162020-10-27Ethicon LlcRobotic surgical system with energy application controls
US10548673B2 (en)2016-08-162020-02-04Ethicon LlcSurgical tool with a display
US10231775B2 (en)2016-08-162019-03-19Ethicon LlcRobotic surgical system with tool lift control
US9943377B2 (en)2016-08-162018-04-17Ethicon Endo-Surgery, LlcMethods, systems, and devices for causing end effector motion with a robotic surgical system
US10390895B2 (en)2016-08-162019-08-27Ethicon LlcControl of advancement rate and application force based on measured forces
US10531929B2 (en)2016-08-162020-01-14Ethicon LlcControl of robotic arm motion based on sensed load on cutting tool
US10398517B2 (en)2016-08-162019-09-03Ethicon LlcSurgical tool positioning based on sensed parameters
US20180050196A1 (en)2016-08-192018-02-22Nicholas Charles PawseyAdvanced electrode array insertion
US20180052971A1 (en)2016-08-222018-02-22Aic Innovations Group, Inc.Method and apparatus for determining health status
US10695134B2 (en)2016-08-252020-06-30Verily Life Sciences LlcMotion execution of a robotic system
US10555750B2 (en)2016-08-252020-02-11Ethicon LlcUltrasonic surgical instrument with replaceable blade having identification feature
US20180055529A1 (en)2016-08-252018-03-01Ethicon LlcUltrasonic transducer techniques for ultrasonic surgical instrument
US20180056496A1 (en)2016-08-262018-03-01Robert Bosch Tool CorporationModular Handheld Power Tool
US10485450B2 (en)2016-08-302019-11-26Mako Surgical Corp.Systems and methods for intra-operative pelvic registration
US20180065248A1 (en)2016-09-062018-03-08Verily Life Sciences LlcSystems and methods for prevention of surgical mistakes
US20190192044A1 (en)2016-09-092019-06-27Sunnybrook Research InstituteSystem and method for magnetic occult lesion localization and imaging
US20190201076A1 (en)2016-09-132019-07-04Olympus CorporationEnergy treatment system and output control method thereof
US20180082480A1 (en)2016-09-162018-03-22John R. WhiteAugmented reality surgical technique guidance
US10568704B2 (en)2016-09-212020-02-25Verb Surgical Inc.User console system for robotic surgery
US20180098049A1 (en)2016-09-302018-04-05Medi Plus Inc.Medical video display system
US10069633B2 (en)2016-09-302018-09-04Data I/O CorporationUnified programming environment for programmable devices
US10786327B2 (en)2016-10-032020-09-29Verb Surgical Inc.Immersive three-dimensional display for robotic surgery
US20180098816A1 (en)2016-10-062018-04-12Biosense Webster (Israel) Ltd.Pre-Operative Registration of Anatomical Images with a Position-Tracking System Using Ultrasound
US10278778B2 (en)2016-10-272019-05-07Inneroptic Technology, Inc.Medical device navigation using a virtual 3D space
US20190254759A1 (en)2016-11-042019-08-22Intuitive Surgical Operations, Inc.Reconfigurable display in computer-assisted tele-operated surgery
US10492784B2 (en)2016-11-082019-12-03Covidien LpSurgical tool assembly with compact firing assembly
US20190282311A1 (en)2016-11-112019-09-19Intuitive Surgical Operations, Inc.Teleoperated surgical system with patient health records based instrument control
US20180221598A1 (en)2016-11-142018-08-09Conmed CorporationSmoke evacuation system for continuously removing gas from a body cavity
US20180132895A1 (en)2016-11-142018-05-17Conmed CorporationMultimodal surgical gas delivery system having continuous pressure monitoring of a continuous flow of gas to a body cavity
US20180144314A1 (en)2016-11-212018-05-24Lisa Therese MillerInvoice Analytics System
US20180144243A1 (en)2016-11-232018-05-24General Electric CompanyHardware system design improvement using deep learning algorithms
CN106777916A (en)2016-11-292017-05-31上海市质子重离子医院有限公司A kind of method of workflow management and equipment the operation operation of radiotherapy system
US10463371B2 (en)2016-11-292019-11-05Covidien LpReload assembly with spent reload indicator
US20190278262A1 (en)2016-12-012019-09-12Kinze Manufacturing, Inc.Systems, methods, and/or apparatus for providing a user display and interface for use with an agricultural implement
US20180154297A1 (en)2016-12-062018-06-07Fellowes, Inc.Air purifier with intelligent sensors and airflow
US10881446B2 (en)2016-12-192021-01-05Ethicon LlcVisual displays of electrical pathways
US10736705B2 (en)2016-12-202020-08-11Verb Surgical Inc.Sterile adapter with integrated wireless interface for use in a robotic surgical system
US20180172420A1 (en)2016-12-202018-06-21Boston Scientific Scimed Inc.Hybrid navigation sensor
US10586074B2 (en)2016-12-202020-03-10Privacy Analytics Inc.Smart de-identification using date jittering
US10485543B2 (en)2016-12-212019-11-26Ethicon LlcAnvil having a knife slot width
US10492785B2 (en)2016-12-212019-12-03Ethicon LlcShaft assembly comprising a lockout
US10667811B2 (en)2016-12-212020-06-02Ethicon LlcSurgical stapling instruments and staple-forming anvils
US20180168650A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcConnection portions for disposable loading units for surgical stapling instruments
US10856868B2 (en)2016-12-212020-12-08Ethicon LlcFiring member pin configurations
US20180168577A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcAxially movable closure system arrangements for applying closure motions to jaws of surgical instruments
US10667809B2 (en)2016-12-212020-06-02Ethicon LlcStaple cartridge and staple cartridge channel comprising windows defined therein
US10881401B2 (en)2016-12-212021-01-05Ethicon LlcStaple firing member comprising a missing cartridge and/or spent cartridge lockout
US10758230B2 (en)2016-12-212020-09-01Ethicon LlcSurgical instrument with primary and safety processors
US10568626B2 (en)2016-12-212020-02-25Ethicon LlcSurgical instruments with jaw opening features for increasing a jaw opening distance
US10448950B2 (en)2016-12-212019-10-22Ethicon LlcSurgical staplers with independently actuatable closing and firing systems
US10675026B2 (en)2016-12-212020-06-09Ethicon LlcMethods of stapling tissue
US10888322B2 (en)2016-12-212021-01-12Ethicon LlcSurgical instrument comprising a cutting member
US20180168610A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcFiring assembly comprising a multiple failed-state fuse
US10426471B2 (en)2016-12-212019-10-01Ethicon LlcSurgical instrument with multiple failure response modes
US10667810B2 (en)2016-12-212020-06-02Ethicon LlcClosure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10893864B2 (en)2016-12-212021-01-19EthiconStaple cartridges and arrangements of staples and staple cavities therein
US20180168649A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcArticulatable surgical stapling instruments
US10568625B2 (en)2016-12-212020-02-25Ethicon LlcStaple cartridges and arrangements of staples and staple cavities therein
US10675025B2 (en)2016-12-212020-06-09Ethicon LlcShaft assembly comprising separately actuatable and retractable systems
US20180168615A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20200275930A1 (en)2016-12-212020-09-03Ethicon LlcMethods of stapling tissue
US20190192157A1 (en)2016-12-212019-06-27Ethicon LlcSurgical stapling systems
US10588631B2 (en)2016-12-212020-03-17Ethicon LlcSurgical instruments with positive jaw opening features
US10588630B2 (en)2016-12-212020-03-17Ethicon LlcSurgical tool assemblies with closure stroke reduction features
US10687810B2 (en)2016-12-212020-06-23Ethicon LlcStepped staple cartridge with tissue retention and gap setting features
US10918385B2 (en)2016-12-212021-02-16Ethicon LlcSurgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US20180168592A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcShaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168647A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments having end effectors with positive opening features
US10813638B2 (en)2016-12-212020-10-27Ethicon LlcSurgical end effectors with expandable tissue stop arrangements
US20180168614A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcAnvil arrangements for surgical staplers
US10639035B2 (en)2016-12-212020-05-05Ethicon LlcSurgical stapling instruments and replaceable tool assemblies thereof
US10639034B2 (en)2016-12-212020-05-05Ethicon LlcSurgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10835245B2 (en)2016-12-212020-11-17Ethicon LlcMethod for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10779823B2 (en)2016-12-212020-09-22Ethicon LlcFiring member pin angle
US10945727B2 (en)2016-12-212021-03-16Ethicon LlcStaple cartridge with deformable driver retention features
US10687809B2 (en)2016-12-212020-06-23Ethicon LlcSurgical staple cartridge with movable camming member configured to disengage firing member lockout features
US20180168578A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcProtective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US20180168598A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcStaple forming pocket arrangements comprising zoned forming surface grooves
US10603036B2 (en)2016-12-212020-03-31Ethicon LlcArticulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US20180168648A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcDurability features for end effectors and firing assemblies of surgical stapling instruments
US10736629B2 (en)2016-12-212020-08-11Ethicon LlcSurgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10682138B2 (en)2016-12-212020-06-16Ethicon LlcBilaterally asymmetric staple forming pocket pairs
US10959727B2 (en)2016-12-212021-03-30Ethicon LlcArticulatable surgical end effector with asymmetric shaft arrangement
US10898186B2 (en)2016-12-212021-01-26Ethicon LlcStaple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US20180168590A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcShaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10582928B2 (en)2016-12-212020-03-10Ethicon LlcArticulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10973516B2 (en)2016-12-212021-04-13Ethicon LlcSurgical end effectors and adaptable firing members therefor
US10499914B2 (en)2016-12-212019-12-10Ethicon LlcStaple forming pocket arrangements
US10588632B2 (en)2016-12-212020-03-17Ethicon LlcSurgical end effectors and firing members thereof
US10980536B2 (en)2016-12-212021-04-20Ethicon LlcNo-cartridge and spent cartridge lockout arrangements for surgical staplers
US10624635B2 (en)2016-12-212020-04-21Ethicon LlcFiring members with non-parallel jaw engagement features for surgical end effectors
US20180168597A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod for resetting a fuse of a surgical instrument shaft
US20180168579A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical end effector with two separate cooperating opening features for opening and closing end effector jaws
US10993715B2 (en)2016-12-212021-05-04Ethicon LlcStaple cartridge comprising staples with different clamping breadths
US20180168623A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling systems
US20180168584A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments and staple-forming anvils
US11000276B2 (en)2016-12-212021-05-11Ethicon LlcStepped staple cartridge with asymmetrical staples
US10835247B2 (en)2016-12-212020-11-17Ethicon LlcLockout arrangements for surgical end effectors
US10542982B2 (en)2016-12-212020-01-28Ethicon LlcShaft assembly comprising first and second articulation lockouts
US10517595B2 (en)2016-12-212019-12-31Ethicon LlcJaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10517596B2 (en)2016-12-212019-12-31Ethicon LlcArticulatable surgical instruments with articulation stroke amplification features
US10758229B2 (en)2016-12-212020-09-01Ethicon LlcSurgical instrument comprising improved jaw control
US10610224B2 (en)2016-12-212020-04-07Ethicon LlcLockout arrangements for surgical end effectors and replaceable tool assemblies
US20180168608A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical instrument system comprising an end effector lockout and a firing assembly lockout
US20180168575A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling systems
US10524789B2 (en)2016-12-212020-01-07Ethicon LlcLaterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10835246B2 (en)2016-12-212020-11-17Ethicon LlcStaple cartridges and arrangements of staples and staple cavities therein
US20180168618A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling systems
US20180168633A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments and staple-forming anvils
US10695055B2 (en)2016-12-212020-06-30Ethicon LlcFiring assembly comprising a lockout
US10617414B2 (en)2016-12-212020-04-14Ethicon LlcClosure member arrangements for surgical instruments
US20180168609A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcFiring assembly comprising a fuse
US20180168619A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling systems
US10537324B2 (en)2016-12-212020-01-21Ethicon LlcStepped staple cartridge with asymmetrical staples
US10537325B2 (en)2016-12-212020-01-21Ethicon LlcStaple forming pocket arrangement to accommodate different types of staples
US20180168625A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments with smart staple cartridges
WO2018116247A1 (en)2016-12-222018-06-28Baylis Medical Company Inc.Multiplexing algorithm with power allocation
US20180183684A1 (en)2016-12-282018-06-28Google Inc.Auto-prioritization of device traffic across local network
US20180177383A1 (en)2016-12-282018-06-28Auris Surgical Robotics, Inc.Detecting endolumenal buckling of flexible instruments
US20180193579A1 (en)2017-01-102018-07-12General Electric CompanyLung protective ventilation control
US10842897B2 (en)2017-01-202020-11-24Éclair Medical Systems, Inc.Disinfecting articles with ozone
US20180211726A1 (en)2017-01-252018-07-26International Business Machines CorporationPatient Communication Priority By Compliance Dates, Risk Scores, and Organizational Goals
US20190365569A1 (en)2017-02-092019-12-05Norlase ApsApparatus for Photothermal Ophthalmic Treatment
US20210306176A1 (en)2017-02-102021-09-30Johnson Controls Technology CompanyBuilding management system with space graphs including software components
WO2018152141A1 (en)2017-02-152018-08-23Covidien LpSystem and apparatus for crush prevention for medical robot applications
US20180233222A1 (en)2017-02-162018-08-16Mako Surgical CorporationSurgical procedure planning system with multiple feedback loops
US20200038120A1 (en)2017-02-172020-02-06Nz Technologies Inc.Methods and systems for touchless control of surgical environment
US20180242967A1 (en)2017-02-262018-08-30Endoevolution, LlcApparatus and method for minimally invasive suturing
US20180247711A1 (en)2017-02-272018-08-30Applied Logic, Inc.System and method for managing the use of surgical instruments
US9788907B1 (en)2017-02-282017-10-17Kinosis Ltd.Automated provision of real-time custom procedural surgical guidance
US20210358599A1 (en)2017-02-282021-11-18Digital Surgery LimitedSurgical tracking and procedural map analysis tool
US20180247128A1 (en)2017-02-282018-08-30Digital Surgery LimitedSurgical tracking and procedural map analysis tool
US20170173262A1 (en)2017-03-012017-06-22François Paul VELTZMedical systems, devices and methods
US20180250086A1 (en)2017-03-022018-09-06KindHeart, Inc.Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
US10675100B2 (en)2017-03-062020-06-09Covidien LpSystems and methods for improving medical instruments and devices
US20200168323A1 (en)2017-03-082020-05-28Deborah T. BullingtonDirectional signal fencing for medical appointment progress tracking
US20180263699A1 (en)2017-03-142018-09-20Stephen B. MurphySystems and methods for determining leg length change during hip surgery
US20200000509A1 (en)2017-03-152020-01-02Olympus CorporationEnergy source apparatus
US20200000470A1 (en)2017-03-172020-01-02Covidien LpAnvil plate for a surgical stapling instrument
US20180268320A1 (en)2017-03-202018-09-20Amino, Inc.Machine learning models in location based episode prediction
US10028402B1 (en)2017-03-222018-07-17Seagate Technology LlcPlanar expansion card assembly
CN108652695A (en)2017-03-312018-10-16江苏风和医疗器材股份有限公司Surgical instruments
WO2018176414A1 (en)2017-03-312018-10-04Fengh Medical Co., Ltd.Staple cartridge assembly and surgical instrument with the same
US20180294060A1 (en)2017-04-102018-10-11Ghassan S. KassabTechnological devices and systems and methods to use the same to obtain biological information
US20180333207A1 (en)2017-04-142018-11-22Stryker CorporationSurgical systems and methods for facilitating ad-hoc intraoperative planning of surgical procedures
US20180300506A1 (en)2017-04-172018-10-18Fujitsu LimitedInformation processing apparatus and information processing system
US20180304471A1 (en)2017-04-192018-10-25Fuji Xerox Co., Ltd.Robot device and non-transitory computer readable medium
US20180303552A1 (en)2017-04-212018-10-25Medicrea InternationalSystems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
US20180315492A1 (en)2017-04-262018-11-01Darroch Medical Solutions, Inc.Communication devices and systems and methods of analyzing, authenticating, and transmitting medical information
US10932705B2 (en)2017-05-082021-03-02Masimo CorporationSystem for displaying and controlling medical monitoring data
US20180325619A1 (en)2017-05-092018-11-15Boston Scientific Scimed, Inc.Operating room devices, methods, and systems
US20180333209A1 (en)2017-05-172018-11-22Covidien LpSystems and methods of tracking and analyzing use of medical instruments
USD834541S1 (en)2017-05-192018-11-27Universal Remote Control, Inc.Remote control
US20200162896A1 (en)2017-05-222020-05-21Becton, Dickinson And CompanySystems, apparatuses and methods for secure wireless pairing between two devices using embedded out-of-band (oob) key generation
US20180333188A1 (en)2017-05-222018-11-22Ethicon LlcCombination ultrasonic and electrosurgical instrument with adjustable energy modalities and method for limiting blade temperature
US10806532B2 (en)2017-05-242020-10-20KindHeart, Inc.Surgical simulation system using force sensing and optical tracking and robotic surgery system
US10478185B2 (en)2017-06-022019-11-19Covidien LpTool assembly with minimal dead space
US10992698B2 (en)2017-06-052021-04-27Meditechsafe, Inc.Device vulnerability management
US20180357383A1 (en)2017-06-072018-12-13International Business Machines CorporationSorting Medical Concepts According to Priority
US10932784B2 (en)2017-06-092021-03-02Covidien LpHandheld electromechanical surgical system
US20200405304A1 (en)2017-06-092020-12-31Covidien LpHandheld electromechanical surgical system
US20180353186A1 (en)2017-06-092018-12-13Covidien LpHandheld electromechanical surgical system
US20200197027A1 (en)2017-06-092020-06-25Stryker CorporationSurgical Systems With Twist-Lock Battery Connection
US10980537B2 (en)2017-06-202021-04-20Ethicon LlcClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US20180360456A1 (en)2017-06-202018-12-20Ethicon LlcSurgical instrument having controllable articulation velocity
US10595882B2 (en)2017-06-202020-03-24Ethicon LlcMethods for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en)2017-06-202019-06-04Ethicon LlcMethod for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en)2017-06-202021-01-12Ethicon LlcSystems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881399B2 (en)2017-06-202021-01-05Ethicon LlcTechniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US20180368930A1 (en)2017-06-222018-12-27NavLab, Inc.Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure
US10765427B2 (en)2017-06-282020-09-08Ethicon LlcMethod for articulating a surgical instrument
US10903685B2 (en)2017-06-282021-01-26Ethicon LlcSurgical shaft assemblies with slip ring assemblies forming capacitive channels
US20190000478A1 (en)2017-06-282019-01-03Ethicon LlcSurgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10639037B2 (en)2017-06-282020-05-05Ethicon LlcSurgical instrument with axially movable closure member
US10299870B2 (en)2017-06-282019-05-28Auris Health, Inc.Instrument insertion compensation
USD893717S1 (en)2017-06-282020-08-18Ethicon LlcStaple cartridge for surgical instrument
US10258418B2 (en)2017-06-292019-04-16Ethicon LlcSystem for controlling articulation forces
US10898183B2 (en)2017-06-292021-01-26Ethicon LlcRobotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en)2017-06-292021-05-18Ethicon LlcClosed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en)2017-06-292021-03-02Ethicon LlcMethods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en)2017-06-292019-09-03Ethicon LlcClosed loop velocity control of closure member for robotic surgical instrument
US20190036688A1 (en)2017-07-172019-01-31Thirdwayv, Inc.Secure communication for medical devices
US10602007B2 (en)2017-07-212020-03-24Toshibe Tec Kabushiki KaishaInformation processing apparatus configured to block inputs from an operation panel when the operation panel is swiveled
US20190046198A1 (en)2017-08-102019-02-14Ethicon LlcJaw for clip applier
US10751052B2 (en)2017-08-102020-08-25Ethicon LlcSurgical device with overload mechanism
US20190059997A1 (en)2017-08-222019-02-28Covidien LpSystems and methods for planning a surgical procedure and evaluating the performance of a surgical procedure
US20190059986A1 (en)2017-08-292019-02-28Ethicon LlcMethods, systems, and devices for controlling electrosurgical tools
US10912567B2 (en)2017-08-292021-02-09Ethicon LlcCircular stapler
US20200178760A1 (en)2017-08-312020-06-11Sony CorporationMedical image processing apparatus, medical image processing system, and driving method of medical image processing apparatus
US20190070731A1 (en)2017-09-062019-03-07Stryker CorporationTechniques For Controlling Position Of An End Effector Of A Robotic Device Relative To A Virtual Constraint
USD831209S1 (en)2017-09-142018-10-16Ethicon LlcSurgical stapler cartridge
US20190083190A1 (en)2017-09-182019-03-21Verb Surgical Inc.Robotic Surgical System and Method for Communicating Synchronous and Asynchronous Information to and From Nodes of a Robotic Arm
US20190087544A1 (en)2017-09-212019-03-21General Electric CompanySurgery Digital Twin
US20190099221A1 (en)2017-09-292019-04-04K2M, Inc.Systems and methods for modeling spines and treating spines based on spine models
US10743872B2 (en)2017-09-292020-08-18Ethicon LlcSystem and methods for controlling a display of a surgical instrument
US20200230803A1 (en)2017-10-022020-07-23Okamura CorporationManagement system and control method
US20190099226A1 (en)2017-10-042019-04-04Novartis AgSurgical suite integration and optimization
US20190105468A1 (en)2017-10-052019-04-11Canon U.S.A., Inc.Medical continuum robot with multiple bendable sections
US10806499B2 (en)2017-10-102020-10-20Javier E. CastanedaUniversal orthopedic clamp
US20190110828A1 (en)2017-10-162019-04-18Cryterion Medical, Inc.Fluid detection assembly for a medical device
US20190110856A1 (en)2017-10-172019-04-18Verily Life Sciences LlcSystems and Methods for Segmenting Surgical Videos
US20190110855A1 (en)2017-10-172019-04-18Verily Life Sciences LlcDisplay of preoperative and intraoperative images
US20190115108A1 (en)2017-10-172019-04-18Novartis AgCustomized ophthalmic surgical profiles
US10398348B2 (en)2017-10-192019-09-03Biosense Webster (Israel) Ltd.Baseline impedance maps for tissue proximity indications
US20190125361A1 (en)2017-10-302019-05-02Ethicon LlcMethod for operating a powered articulating multi-clip applier
US20190125457A1 (en)2017-10-302019-05-02Ethicon LlcMethod for communicating with surgical instrument systems
US10980560B2 (en)2017-10-302021-04-20Ethicon LlcSurgical instrument systems comprising feedback mechanisms
US11026687B2 (en)2017-10-302021-06-08Cilag Gmbh InternationalClip applier comprising clip advancing systems
US20190125388A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument systems comprising handle arrangements
US20190125324A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument with modular power sources
US20190125379A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instruments comprising an articulation drive that provides for high articulation angles
US10772651B2 (en)2017-10-302020-09-15Ethicon LlcSurgical instruments comprising a system for articulation and rotation compensation
US11026712B2 (en)2017-10-302021-06-08Cilag Gmbh InternationalSurgical instruments comprising a shifting mechanism
US10736616B2 (en)2017-10-302020-08-11Ethicon LlcSurgical instrument with remote release
US10959744B2 (en)2017-10-302021-03-30Ethicon LlcSurgical dissectors and manufacturing techniques
US20190125352A1 (en)2017-10-302019-05-02Ethicon LlcSurgical clip applier comprising an empty clip cartridge lockout
US20190125321A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instruments comprising a biased shifting mechanism
US20190125455A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US10952708B2 (en)2017-10-302021-03-23Ethicon LlcSurgical instrument with rotary drive selectively actuating multiple end effector functions
US10932804B2 (en)2017-10-302021-03-02Ethicon LlcSurgical instrument with sensor and/or control systems
US20190125336A1 (en)2017-10-302019-05-02Ethicon LlcSurgical suturing instrument comprising a non-circular needle
US11026713B2 (en)2017-10-302021-06-08Cilag Gmbh InternationalSurgical clip applier configured to store clips in a stored state
US10932806B2 (en)2017-10-302021-03-02Ethicon LlcReactive algorithm for surgical system
US20190125359A1 (en)2017-10-302019-05-02Ethicon LlcSurgical system comprising a surgical tool and a surgical hub
US20190125357A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising a clip crimping system
US20230165642A1 (en)2017-10-302023-06-01Cilag Gmbh InternationalMethod for producing a surgical instrument comprising a smart electrical system
US20190125353A1 (en)2017-10-302019-05-02Ethicon LlcSurgical clip applier comprising an automatic clip feeding system
US20190125355A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising a movable clip magazine
US20220054158A1 (en)2017-10-302022-02-24Frederick E. Shelton, IVSurgical clip applier comprising an automatic clip feeding system
US20190159778A1 (en)2017-10-302019-05-30Ethicon LlcClip applier comprising a reciprocating clip advancing member
US20190125377A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument systems comprising battery arrangements
US20190125338A1 (en)2017-10-302019-05-02Ethicon LlcAdaptive control programs for a surgical system comprising more than one type of cartridge
US20190125356A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising a rotatable clip magazine
US20220241027A1 (en)2017-10-302022-08-04Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US20220331018A1 (en)2017-10-302022-10-20Cilag Gmbh InternationalMethod for communicating with surgical instrument systems
US20190125456A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US10842473B2 (en)2017-10-302020-11-24Ethicon LlcSurgical instrument having dual rotatable members to effect different types of end effector movement
US20190125384A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument with rotary drive selectively actuating multiple end effector functions
US20190125454A1 (en)2017-10-302019-05-02Ethicon LlcMethod of hub communication with surgical instrument systems
US20190125320A1 (en)2017-10-302019-05-02Ethicon LlcControl system arrangements for a modular surgical instrument
US20220401099A1 (en)2017-10-302022-12-22Cilag Gmbh InternationalClip applier comprising interchangeable clip reloads
US20190125348A1 (en)2017-10-302019-05-02Ethicon LlcSurgical clip applier comprising adaptive firing control
US20190125354A1 (en)2017-10-302019-05-02Ethicon LlcSurgical clip applier comprising adaptive control in response to a strain gauge circuit
US20190125430A1 (en)2017-10-302019-05-02Ethicon LlcSurgical dissectors configured to apply mechanical and electrical energy
US20190125378A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument comprising an adaptive electrical system
US20190125476A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instrument systems comprising lockout mechanisms
US20190125431A1 (en)2017-10-302019-05-02Ethicon LlcSurgical suturing instrument configured to manipulate tissue using mechanical and electrical power
US20190125380A1 (en)2017-10-302019-05-02Ethicon LlcArticulation features for surgical end effector
US20230146947A1 (en)2017-10-302023-05-11Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US20190125358A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising interchangeable clip reloads
US20190125432A1 (en)2017-10-302019-05-02Ethicon LlcElectrical power output control based on mechanical forces
US20190125387A1 (en)2017-10-302019-05-02Ethicon LlcSurgical instruments comprising a lockable end effector socket
US20190125335A1 (en)2017-10-302019-05-02Ethicon LlcSurgical suturing instrument comprising a capture width which is larger than trocar diameter
US20190125458A1 (en)2017-10-302019-05-02Ethicon LlcMethod for producing a surgical instrument comprising a smart electrical system
US20190125360A1 (en)2017-10-302019-05-02Ethicon LlcClip applier comprising a motor controller
US11478244B2 (en)2017-10-312022-10-25Cilag Gmbh InternationalCartridge body design with force reduction based on firing completion
US10842490B2 (en)2017-10-312020-11-24Ethicon LlcCartridge body design with force reduction based on firing completion
CN107811710A (en)2017-10-312018-03-20微创(上海)医疗机器人有限公司Operation aided positioning system
US10783634B2 (en)2017-11-222020-09-22General Electric CompanySystems and methods to deliver point of care alerts for radiological findings
US20190163875A1 (en)2017-11-272019-05-30International Business Machines CorporationMedical Concept Sorting Based on Machine Learning of Attribute Value Differentiation
US10631916B2 (en)2017-11-292020-04-28Megadyne Medical Products, Inc.Filter connection for a smoke evacuation device
US10786317B2 (en)2017-12-112020-09-29Verb Surgical Inc.Active backdriving for a robotic arm
US11071595B2 (en)2017-12-142021-07-27Verb Surgical Inc.Multi-panel graphical user interface for a robotic surgical system
US10729509B2 (en)2017-12-192020-08-04Ethicon LlcSurgical instrument comprising closure and firing locking mechanism
US20190192236A1 (en)2017-12-212019-06-27Ethicon LlcSurgical instrument comprising a display
US10849697B2 (en)2017-12-282020-12-01Ethicon LlcCloud interface for coupled surgical devices
US20190201086A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and display
US10695081B2 (en)2017-12-282020-06-30Ethicon LlcControlling a surgical instrument according to sensed closure parameters
US20230254257A1 (en)2017-12-282023-08-10Cilag Gmbh InternationalSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20230233245A1 (en)2017-12-282023-07-27Cilag Gmbh InternationalEstimating state of ultrasonic end effector and control system therefor
US20230210611A1 (en)2017-12-282023-07-06Cilag Gmbh InternationalUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US20200178971A1 (en)2017-12-282020-06-11Ethicon LlcMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20230200889A1 (en)2017-12-282023-06-29Cilag Gmbh InternationalSurgical evacuation sensor arrangements
US20230190390A1 (en)2017-12-282023-06-22Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness
US20230187060A1 (en)2017-12-282023-06-15Cilag Gmbh InternationalCloud-based medical analytics for customization and recommendations to a user
US10595887B2 (en)2017-12-282020-03-24Ethicon LlcSystems for adjusting end effector parameters based on perioperative information
US20230171304A1 (en)2017-12-282023-06-01Cilag Gmbh InternationalMethod of robotic hub communication, detection, and control
US20190045515A1 (en)2017-12-282019-02-07Intel CorporationAssessment and mitigation of radio frequency interference of networked devices
US20230116571A1 (en)2017-12-282023-04-13Cilag Gmbh InternationalDisplay arrangements for robot-assisted surgical platforms
US20230098870A1 (en)2017-12-282023-03-30Cilag Gmbh InternationalMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20230092371A1 (en)2017-12-282023-03-23Cilag Gmbh InternationalMethod for smart energy device infrastructure
US20230064821A1 (en)2017-12-282023-03-02Cilag Gmbh InternationalMethod for operating surgical instrument systems
US20230037577A1 (en)2017-12-282023-02-09Cilag Gmbh InternationalActivation of energy devices
US20190201138A1 (en)2017-12-282019-07-04Ethicon LlcCloud-based medical analytics for security and authentication trends and reactive measures
US20220409302A1 (en)2017-12-282022-12-29Cilag Gmbh InternationalSensing arrangements for robot-assisted surgical platforms
US20220406452A1 (en)2017-12-282022-12-22Cilag Gmbh InternationalMethod for operating surgical instrument systems
US20190206003A1 (en)2017-12-282019-07-04Ethicon LlcAdaptive control program updates for surgical devices
US20220395276A1 (en)2017-12-282022-12-15Cilag Gmbh InternationalMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US20190201045A1 (en)2017-12-282019-07-04Ethicon LlcMethod for smoke evacuation for surgical hub
US20220370117A1 (en)2017-12-282022-11-24Cilag Gmbh InternationalUltrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US20220370126A1 (en)2017-12-282022-11-24Cilag Gmbh InternationalCapacitive coupled return path pad with separable array elements
US20220374414A1 (en)2017-12-282022-11-24Cilag Gmbh InternationalSurgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US20190201114A1 (en)2017-12-282019-07-04Ethicon LlcAdaptive control program updates for surgical hubs
US20190200981A1 (en)2017-12-282019-07-04Ethicon LlcMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20220331011A1 (en)2017-12-282022-10-20Cilag Gmbh InternationalSurgical instrument with a sensing array
US20190200905A1 (en)2017-12-282019-07-04Ethicon LlcCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US20220323092A1 (en)2017-12-282022-10-13Cilag Gmbh InternationalSurgical systems for detecting end effector tissue distribution irregularities
US20220323150A1 (en)2017-12-282022-10-13Cilag Gmbh InternationalRadio frequency energy device for delivering combined electrical signals
US20190200997A1 (en)2017-12-282019-07-04Ethicon LlcStapling device with both compulsory and discretionary lockouts based on sensed parameters
US20190201073A1 (en)2017-12-282019-07-04Ethicon LlcEstimating state of ultrasonic end effector and control system therefor
US20220249097A1 (en)2017-12-282022-08-11Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US20190201126A1 (en)2017-12-282019-07-04Ethicon LlcUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US20220230738A1 (en)2017-12-282022-07-21Cilag Gmbh InternationalReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US20190206561A1 (en)2017-12-282019-07-04Ethicon LlcData handling and prioritization in a cloud analytics network
US20190201034A1 (en)2017-12-282019-07-04Ethicon LlcPowered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
US20190201159A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a tissue marking assembly
US20220160438A1 (en)2017-12-282022-05-26Cilag Gmbh InternationalWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US20190200844A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication, processing, storage and display
US10755813B2 (en)2017-12-282020-08-25Ethicon LlcCommunication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US20190201140A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub situational awareness
US20190201115A1 (en)2017-12-282019-07-04Ethicon LlcAggregation and reporting of surgical hub data
US20190201116A1 (en)2017-12-282019-07-04Ethicon LlcCooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20220000484A1 (en)2017-12-282022-01-06Cilag Gmbh InternationalControl algorithm adjustment for a surgical stapling assembly based on situational awareness
US20190205566A1 (en)2017-12-282019-07-04Ethicon LlcData stripping method to interrogate patient records and create anonymized record
US20190201594A1 (en)2017-12-282019-07-04Ethicon LlcMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US20190201044A1 (en)2017-12-282019-07-04Ethicon LlcVariation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US10758310B2 (en)2017-12-282020-09-01Ethicon LlcWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US20190201135A1 (en)2017-12-282019-07-04Ethicon LlcControllers for robot-assisted surgical platforms
US20210336939A1 (en)2017-12-282021-10-28Ethicon LlcInteractive surgical systems with encrypted communication capabilities
US20210322018A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of hub communication
US20210322015A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of cloud based data analytics for use with the hub
US20210322017A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of hub communication, processing, storage and display
US20210322020A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of hub communication
US20210322019A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of hub communication
US20210322014A1 (en)2017-12-282021-10-21Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US20210315582A1 (en)2017-12-282021-10-14Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US20210315579A1 (en)2017-12-282021-10-14Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US20210315580A1 (en)2017-12-282021-10-14Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US20210315581A1 (en)2017-12-282021-10-14Cilag Gmbh InternationalMethod of hub communication, processing, display, and cloud analytics
US20190201120A1 (en)2017-12-282019-07-04Ethicon LlcSensing arrangements for robot-assisted surgical platforms
US20190201081A1 (en)2017-12-282019-07-04Ethicon LlcPowered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US20210282781A1 (en)2017-12-282021-09-16Ethicon LlcMethod for facility data collection and interpretation
US20210282780A1 (en)2017-12-282021-09-16Ethicon LlcMethod for facility data collection and interpretation
US20190201139A1 (en)2017-12-282019-07-04Ethicon LlcCommunication arrangements for robot-assisted surgical platforms
US20210259697A1 (en)2017-12-282021-08-26Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US20210259698A1 (en)2017-12-282021-08-26Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US20210251487A1 (en)2017-12-282021-08-19Ethicon LlcCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US20210249125A1 (en)2017-12-282021-08-12Ethicon LlcCloud-based medical analytics for customization and recommendations to a user
US20210240852A1 (en)2017-12-282021-08-05Ethicon LlcData stripping method to interrogate patient records and create anonymized record
US20210241898A1 (en)2017-12-282021-08-05Ethicon LlcData handling and prioritization in a cloud analytics network
US20190201118A1 (en)2017-12-282019-07-04Ethicon LlcDisplay arrangements for robot-assisted surgical platforms
US20210220058A1 (en)2017-12-282021-07-22Ethicon LlcSterile field interactive control displays
US20210212782A1 (en)2017-12-282021-07-15Ethicon LlcSurgical hub coordination of control and communication of operating room devices
US20210212770A1 (en)2017-12-282021-07-15Ethicon LlcSterile field interactive control displays
US20210212602A1 (en)2017-12-282021-07-15Ethicon LlcDual cmos array imaging
US20210212694A1 (en)2017-12-282021-07-15Ethicon LlcMethod for facility data collection and interpretation
US20210212774A1 (en)2017-12-282021-07-15Ethicon LlcUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US20210212717A1 (en)2017-12-282021-07-15Ethicon LlcSurgical system distributed processing
US20210212719A1 (en)2017-12-282021-07-15Ethicon LlcControlling an ultrasonic surgical instrument according to tissue location
US20210212775A1 (en)2017-12-282021-07-15Ethicon LlcCooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190201084A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation flow paths
US20210205031A1 (en)2017-12-282021-07-08Ethicon LlcAdaptive control program updates for surgical hubs
US20210205028A1 (en)2017-12-282021-07-08Ethicon LlcDrive arrangements for robot-assisted surgical platforms
US20210205029A1 (en)2017-12-282021-07-08Ethicon LlcComputer implemented interactive surgical systems
US20210205021A1 (en)2017-12-282021-07-08Ethicon LlcSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US20210205030A1 (en)2017-12-282021-07-08Ethicon LlcImage capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US20210205020A1 (en)2017-12-282021-07-08Ethicon LlcSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US20190201113A1 (en)2017-12-282019-07-04Ethicon LlcControls for robot-assisted surgical platforms
US20190201092A1 (en)2017-12-282019-07-04Ethicon LlcIncreasing radio frequency to create pad-less monopolar loop
US20210201646A1 (en)2017-12-282021-07-01Ethicon LlcDetection and escalation of security responses of surgical instruments to increasing severity threats
US20190201125A1 (en)2017-12-282019-07-04Ethicon LlcInteractive surgical system
US20210192914A1 (en)2017-12-282021-06-24Ethicon LlcSurgical hub and modular device response adjustment based on situational awareness
US20210177489A1 (en)2017-12-282021-06-17Ethicon LlcBipolar combination device that automatically adjusts pressure based on energy modality
US20210177452A1 (en)2017-12-282021-06-17Ethicon LlcDetermining the state of an ultrasonic electromechanical system according to frequency shift
US20210176179A1 (en)2017-12-282021-06-10Ethicon LlcSurgical network determination of prioritzation of communication, interaction, or processing based on system or device needs
US20210169516A1 (en)2017-12-282021-06-10Ethicon LlcControlling an ultrasonic surgical instrument according to tissue location
US20190201082A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and motor control
US20190201046A1 (en)2017-12-282019-07-04Ethicon LlcMethod for controlling smart energy devices
US11026751B2 (en)2017-12-282021-06-08Cilag Gmbh InternationalDisplay of alignment of staple cartridge to prior linear staple line
US20190206542A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub and modular device response adjustment based on situational awareness
US20190201128A1 (en)2017-12-282019-07-04Ethicon LlcSensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US20210153889A1 (en)2017-12-282021-05-27Ethicon LlcDetermining the state of an ultrasonic electromechanical system according to frequency shift
US20190201029A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument comprising a control system that uses input from a strain gage circuit
US11013563B2 (en)2017-12-282021-05-25Ethicon LlcDrive arrangements for robot-assisted surgical platforms
US20190201104A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub spatial awareness to determine devices in operating theater
US20190200988A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems with prioritized data transmission capabilities
US20190201024A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with environment sensing
US20190201021A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument having a flexible circuit
US20190201041A1 (en)2017-12-282019-07-04Ethicon LlcActivation of energy devices
US20190201129A1 (en)2017-12-282019-07-04Ethicon LlcImage capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US20190201146A1 (en)2017-12-282019-07-04Ethicon LlcSafety systems for smart powered surgical stapling
US20190201090A1 (en)2017-12-282019-07-04Ethicon LlcCapacitive coupled return path pad with separable array elements
US20190206569A1 (en)2017-12-282019-07-04Ethicon LlcMethod of cloud based data analytics for use with the hub
US20190206563A1 (en)2017-12-282019-07-04Ethicon LlcMethod for adaptive control schemes for surgical network control and interaction
US20190201037A1 (en)2017-12-282019-07-04Ethicon LlcControlling an ultrasonic surgical instrument according to tissue location
US20190200987A1 (en)2017-12-282019-07-04Ethicon LlcVariable output cartridge sensor assembly
US20190200998A1 (en)2017-12-282019-07-04Ethicon LlcMethod for circular stapler control algorithm adjustment based on situational awareness
US20190200906A1 (en)2017-12-282019-07-04Ethicon LlcDual cmos array imaging
US20190206050A1 (en)2017-12-282019-07-04Ethicon LlcUse of laser light and red-green-blue coloration to determine properties of back scattered light
US20190200977A1 (en)2017-12-282019-07-04Ethicon LlcMethod for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US20210000555A1 (en)2017-12-282021-01-07Ethicon LlcWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US20190200986A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument cartridge sensor assemblies
US10892899B2 (en)2017-12-282021-01-12Ethicon LlcSelf describing data packets generated at an issuing instrument
US20190201158A1 (en)2017-12-282019-07-04Ethicon LlcControl of a surgical system through a surgical barrier
US10892995B2 (en)2017-12-282021-01-12Ethicon LlcSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20190201141A1 (en)2017-12-282019-07-04Ethicon LlcSurgical hub coordination of control and communication of operating room devices
US20190201074A1 (en)2017-12-282019-07-04Ethicon LlcBipolar combination device that automatically adjusts pressure based on energy modality
US20190201075A1 (en)2017-12-282019-07-04Ethicon LlcMechanisms for controlling different electromechanical systems of an electrosurgical instrument
US20190201145A1 (en)2017-12-282019-07-04Ethicon LlcCooperative surgical actions for robot-assisted surgical platforms
US20190201080A1 (en)2017-12-282019-07-04Ethicon LlcUltrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US10898622B2 (en)2017-12-282021-01-26Ethicon LlcSurgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US20190201043A1 (en)2017-12-282019-07-04Ethicon LlcDetection of end effector emersion in liquid
US20190205001A1 (en)2017-12-282019-07-04Ethicon LlcSterile field interactive control displays
US20190201091A1 (en)2017-12-282019-07-04Ethicon LlcRadio frequency energy device for delivering combined electrical signals
US20190201102A1 (en)2017-12-282019-07-04Ethicon LlcSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US20190201127A1 (en)2017-12-282019-07-04Ethicon LlcAdjustment of a surgical device function based on situational awareness
US20190201040A1 (en)2017-12-282019-07-04Ethicon LlcControlling activation of an ultrasonic surgical instrument according to the presence of tissue
US20190201042A1 (en)2017-12-282019-07-04Ethicon LlcDetermining the state of an ultrasonic electromechanical system according to frequency shift
US20190200980A1 (en)2017-12-282019-07-04Ethicon LlcSurgical system for presenting information interpreted from external data
US20190201085A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensing and generator control
US20190201123A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems with autonomously adjustable control programs
US20190206562A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication, processing, display, and cloud analytics
US20190206551A1 (en)2017-12-282019-07-04Ethicon LlcSpatial awareness of surgical hubs in operating rooms
US20190201027A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with acoustic-based motor control
US20190206555A1 (en)2017-12-282019-07-04Ethicon LlcCloud-based medical analytics for customization and recommendations to a user
US20190200863A1 (en)2017-12-282019-07-04Ethicon LlcCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US20190206556A1 (en)2017-12-282019-07-04Ethicon LlcReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US20190206004A1 (en)2017-12-282019-07-04Ethicon LlcInteractive surgical systems with condition handling of devices and data capabilities
US20190201025A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a hardware-only control circuit
US20190201087A1 (en)2017-12-282019-07-04Ethicon LlcSmoke evacuation system including a segmented control circuit for interactive surgical platform
US20190201083A1 (en)2017-12-282019-07-04Ethicon LlcSurgical evacuation sensor arrangements
US20190200984A1 (en)2017-12-282019-07-04Ethicon LlcSafety systems for smart powered surgical stapling
US20190201047A1 (en)2017-12-282019-07-04Ethicon LlcMethod for smart energy device infrastructure
US20190201077A1 (en)2017-12-282019-07-04Ethicon LlcInterruption of energy due to inadvertent capacitive coupling
US10932872B2 (en)2017-12-282021-03-02Ethicon LlcCloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US20190205567A1 (en)2017-12-282019-07-04Ethicon LlcData pairing to interconnect a device measured parameter with an outcome
US20190201023A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument with a sensing array
US20190201028A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instruments comprising button circuits
US20190201130A1 (en)2017-12-282019-07-04Ethicon LlcCommunication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity
US20210059674A1 (en)2017-12-282021-03-04Ethicon LlcSurgical instrument cartridge sensor assemblies
US10944728B2 (en)2017-12-282021-03-09Ethicon LlcInteractive surgical systems with encrypted communication capabilities
US10943454B2 (en)2017-12-282021-03-09Ethicon LlcDetection and escalation of security responses of surgical instruments to increasing severity threats
US20190208641A1 (en)2017-12-282019-07-04Ethicon LlcMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US20190201039A1 (en)2017-12-282019-07-04Ethicon LlcSituational awareness of electrosurgical systems
US20190201033A1 (en)2017-12-282019-07-04Ethicon LlcSurgical system distributed processing
US20190201079A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument having a flexible electrode
US20190201112A1 (en)2017-12-282019-07-04Ethicon LlcComputer implemented interactive surgical systems
US20190201030A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument comprising a plurality of drive systems
US20190201137A1 (en)2017-12-282019-07-04Ethicon LlcMethod of robotic hub communication, detection, and control
US20190201020A1 (en)2017-12-282019-07-04Ethicon LlcSurgical systems for detecting end effector tissue distribution irregularities
US20190200985A1 (en)2017-12-282019-07-04Ethicon LlcSystems for detecting proximity of surgical end effector to cancerous tissue
US10987178B2 (en)2017-12-282021-04-27Ethicon LlcSurgical hub control arrangements
US20190201026A1 (en)2017-12-282019-07-04Ethicon LlcSurgical instrument comprising a control circuit
US20190201038A1 (en)2017-12-282019-07-04Ethicon LlcDetermining tissue composition via an ultrasonic system
US20190201136A1 (en)2017-12-282019-07-04Ethicon LlcMethod of hub communication
US20190201124A1 (en)2017-12-282019-07-04Ethicon LlcAdjustment of device control programs based on stratified contextual data in addition to the data
US10966791B2 (en)2017-12-282021-04-06Ethicon LlcCloud-based medical analytics for medical facility segmented individualization of instrument function
US20190201142A1 (en)2017-12-282019-07-04Ethicon LlcAutomatic tool adjustments for robot-assisted surgical platforms
US20190204201A1 (en)2017-12-282019-07-04Ethicon LlcAdjustments based on airborne particle properties
US20190206576A1 (en)2017-12-282019-07-04Ethicon LlcAutomated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US20190200996A1 (en)2017-12-282019-07-04Ethicon LlcAdjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US20190201036A1 (en)2017-12-282019-07-04Ethicon LlcTemperature control of ultrasonic end effector and control system therefor
US20190206564A1 (en)2017-12-282019-07-04Ethicon LlcMethod for facility data collection and interpretation
US20190201597A1 (en)2017-12-282019-07-04Ethicon LlcDual in-series large and small droplet filters
US20190205441A1 (en)2017-12-282019-07-04Ethicon LlcSurgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US20190206565A1 (en)2017-12-282019-07-04Ethicon LlcMethod for operating surgical instrument systems
US20190224434A1 (en)2018-01-172019-07-25Zoll Medical CorporationSystems and methods for assisting patient airway management
US10856768B2 (en)2018-01-252020-12-08Biosense Webster (Israel) Ltd.Intra-cardiac scar tissue identification using impedance sensing and contact measurement
US20200352664A1 (en)2018-02-022020-11-12Covidien LpSurgical robotic system including synchronous and asynchronous networks and a method employing the same
US20210007760A1 (en)2018-02-032021-01-14Caze TechnologiesSurgical systems with sesnsing and machine learning capabilities and methods thereof
US20200237372A1 (en)2018-02-112020-07-30Chul Hi ParkDevice and Method for Assisting Selection of Surgical Staple Height
US20190261984A1 (en)2018-02-272019-08-29Applied Medical Resources CorporationSurgical stapler having a powered handle
US20190272917A1 (en)2018-03-052019-09-05Medtech S.A.Robotically-assisted surgical procedure feedback techniques
US20190274720A1 (en)2018-03-082019-09-12Ethicon LlcStart temperature of blade
US20190274719A1 (en)2018-03-082019-09-12Ethicon LlcIn-the-jaw classifier based on a model
US20190274718A1 (en)2018-03-082019-09-12Ethicon LlcUltrasonic sealing algorithm with temperature control
US20220323095A1 (en)2018-03-082022-10-13Cilag Gmbh InternationalMethods for controlling temperature in ultrasonic device
US20190274712A1 (en)2018-03-082019-09-12Ethicon LlcSmart blade technology to control blade instability
US20190274749A1 (en)2018-03-082019-09-12Ethicon LlcDetection of large vessels during parenchymal dissection using a smart blade
US20230000518A1 (en)2018-03-082023-01-05Cilag Gmbh InternationalMethods for estimating and controlling state of ultrasonic end effector
US20190274713A1 (en)2018-03-082019-09-12Ethicon LlcCalcified vessel identification
US20190274708A1 (en)2018-03-082019-09-12Ethicon LlcSmart blade and power pulsing
US20190274752A1 (en)2018-03-082019-09-12Ethicon LlcFine dissection mode for tissue classification
US20190274709A1 (en)2018-03-082019-09-12Ethicon LlcAdaptive advanced tissue treatment pad saver mode
US20190274717A1 (en)2018-03-082019-09-12Ethicon LlcMethods for controlling temperature in ultrasonic device
US20190274750A1 (en)2018-03-082019-09-12Ethicon LlcLive time tissue classification using electrical parameters
US20190274716A1 (en)2018-03-082019-09-12Ethicon LlcDetermining the state of an ultrasonic end effector
US20190274714A1 (en)2018-03-082019-09-12Ethicon LlcSmart blade application for reusable and disposable devices
US20190274662A1 (en)2018-03-082019-09-12Ethicon LlcAdjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US20190274707A1 (en)2018-03-082019-09-12Ethicon LlcApplication of smart blade technology
US20190274710A1 (en)2018-03-082019-09-12Ethicon LlcUsing spectroscopy to determine device use state in combo instrument
US20190274706A1 (en)2018-03-082019-09-12Ethicon LlcMethods for estimating and controlling state of ultrasonic end effector
US20190274705A1 (en)2018-03-082019-09-12Ethicon LlcApplication of smart ultrasonic blade technology
US20190274711A1 (en)2018-03-082019-09-12Ethicon LlcVessel sensing for adaptive advanced hemostasis
US20210353287A1 (en)2018-03-282021-11-18Cilag Gmbh InternationalSurgical instrument assemblies with instrument locking features
US20190298357A1 (en)2018-03-282019-10-03Ethicon LlcSurgical instrument comprising a jaw closure lockout
US10973520B2 (en)2018-03-282021-04-13Ethicon LlcSurgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US20190298342A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US20220346792A1 (en)2018-03-282022-11-03Cilag Gmbh InternationalSurgical instruments with asymmetric jaw arrangements and separate closure and firing systems
US20210361284A1 (en)2018-03-282021-11-25Cilag Gmbh InternationalSurgical end effectors with firing member and closure locking features
US20220175374A1 (en)2018-03-282022-06-09Cilag Gmbh InternationalSurgical instrument comprising an adaptive control system
US20190298347A1 (en)2018-03-282019-10-03Ethicon LlcStapling instrument comprising a deactivatable lockout
US20190298341A1 (en)2018-03-282019-10-03Ethicon LlcSurgical instrument comprising co-operating lockout features
US20190298350A1 (en)2018-03-282019-10-03Ethicon LlcMethods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US20190298355A1 (en)2018-03-282019-10-03Ethicon LlcRotary driven firing members with different anvil and channel engagement features
US20190298343A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with cartridge compatible closure and firing lockout arrangements
US20190298353A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with asymmetric closure features
US20190298352A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with improved rotary driven closure systems
US20190298346A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US20190298356A1 (en)2018-03-282019-10-03Ethicon LlcSurgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US20190298354A1 (en)2018-03-282019-10-03Ethicon LlcSurgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US20210353288A1 (en)2018-03-282021-11-18Cilag Gmbh InternationalSurgical cartridges with surgical instrument unlocking features
US20190298340A1 (en)2018-03-282019-10-03Ethicon LlcStaple cartridge comprising a lockout key configured to lift a firing member
US20190314015A1 (en)2018-03-282019-10-17Ethicon LlcSurgical instrument comprising an adaptive control system
US20190298464A1 (en)2018-03-292019-10-03Intuitive Surgical Operations, Inc.Teleoperated surgical instruments
USD876466S1 (en)2018-03-292020-02-25Mitsubishi Electric CorporationDisplay screen with graphical user interface
US20190311802A1 (en)2018-04-102019-10-10DGSHAPE CorporationSurgical instrument management system
US20200054317A1 (en)2018-05-042020-02-20Arch Day Design, LlcSuture passing device
US20190374292A1 (en)2018-06-062019-12-12Verily Life Sciences LlcSystems and methods for fleet management of robotic surgical systems
US20190378610A1 (en)2018-06-062019-12-12Verily Life Sciences LlcRobotic surgery using multi-user authentication without credentials
US20190374140A1 (en)2018-06-082019-12-12East Carolina UniversityDetermining Peripheral Oxygen Saturation (SpO2) and Hemoglobin Concentration Using Multi-Spectral Laser Imaging (MSLI) Methods and Systems
US10292769B1 (en)2018-08-072019-05-21Sony CorporationSurgical assistive device and method for providing assistance in surgery of anatomical portions of internal organ affected by intraoperative shift
US20200222149A1 (en)2018-08-132020-07-16Covidien LpSurgical devices with moisture control
US20200237452A1 (en)2018-08-132020-07-30Theator inc.Timeline overlay on surgical video
USD904612S1 (en)2018-08-132020-12-08Ethicon LlcCartridge for linear surgical stapler
US20200046353A1 (en)2018-08-132020-02-13Ethicon LlcClamping assembly for linear surgical stapler
US20200054322A1 (en)2018-08-202020-02-20Ethicon LlcFabricating techniques for surgical stapler anvils
US20200054326A1 (en)2018-08-202020-02-20Ethicon LlcSurgical stapler anvils with staple directing protrusions and tissue stability features
US20200054321A1 (en)2018-08-202020-02-20Ethicon LlcSurgical instruments with progressive jaw closure arrangements
US20200054323A1 (en)2018-08-202020-02-20Ethicon LlcMethod for fabricating surgical stapler anvils
US20200054330A1 (en)2018-08-202020-02-20Ethicon LlcArticulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10779821B2 (en)2018-08-202020-09-22Ethicon LlcSurgical stapler anvils with tissue stop features configured to avoid tissue pinch
US20200054320A1 (en)2018-08-202020-02-20Ethicon LlcMethod for operating a powered articulatable surgical instrument
USD914878S1 (en)2018-08-202021-03-30Ethicon LlcSurgical instrument anvil
US20200054328A1 (en)2018-08-202020-02-20Ethicon LlcPowered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en)2018-08-202021-02-09Ethicon LlcReinforced deformable anvil tip for surgical stapler anvil
US10842492B2 (en)2018-08-202020-11-24Ethicon LlcPowered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10856870B2 (en)2018-08-202020-12-08Ethicon LlcSwitching arrangements for motor powered articulatable surgical instruments
US20200078119A1 (en)2018-09-072020-03-12Ethicon LlcModular surgical energy system with module positional awareness sensing with voltage detection
US20200078120A1 (en)2018-09-072020-03-12Ethicon LlcModular surgical energy system with module positional awareness with digital logic
US20200078078A1 (en)2018-09-072020-03-12Ethicon LlcCoordinated energy outputs of separate but connected modules
US20200078081A1 (en)2018-09-072020-03-12Ethicon LlcGrounding arrangement of energy modules
US20200078110A1 (en)2018-09-072020-03-12Ethicon LlcPassive header module for a modular energy system
US20200078117A1 (en)2018-09-072020-03-12Ethicon LlcEnergy module for drivig multiple energy modalities through a port
US11471206B2 (en)2018-09-072022-10-18Cilag Gmbh InternationalMethod for controlling a modular energy system user interface
US20200078116A1 (en)2018-09-072020-03-12Ethicon LlcBackplane connector design to connect stacked energy modules
US20200078089A1 (en)2018-09-072020-03-12Ethicon LlcSmart return pad sensing through modulation of near field communication and contact quality monitoring signals
US20200100825A1 (en)2018-09-072020-04-02Ethicon LlcMethod for communicating between modules and devices in a modular surgical system
US20200100830A1 (en)2018-09-072020-04-02Ethicon LlcMethod for constructing and using a modular surgical energy system with multiple devices
US20200106220A1 (en)2018-09-072020-04-02Ethicon LlcFlexible hand-switch circuit
US20200090808A1 (en)2018-09-072020-03-19Ethicon LlcFirst and second communication protocol arrangement for driving primary and secondary devices through a single port
US20200078070A1 (en)2018-09-072020-03-12Ethicon LlcMethod for energy distribution in a surgical modular energy system
US11350978B2 (en)2018-09-072022-06-07Cilag Gmbh InternationalFlexible neutral electrode
US20200078111A1 (en)2018-09-072020-03-12Ethicon LlcAdaptably connectable and reassignable system accessories for modular energy system
US20200078082A1 (en)2018-09-072020-03-12Ethicon LlcSurgical instrument utilizing drive signal to power secondary function
US20200078114A1 (en)2018-09-072020-03-12Ethicon LlcRegional location tracking of components of a modular energy system
US20200078076A1 (en)2018-09-072020-03-12Ethicon LlcMethod for controlling an energy module output
US20200081585A1 (en)2018-09-072020-03-12Ethicon LlcConsolidated user interface for modular energy system
US20200078112A1 (en)2018-09-072020-03-12Ethicon LlcSurgical modular energy system with a segmented backplane
US20200078080A1 (en)2018-09-072020-03-12Ethicon LlcEnergy module for driving multiple energy modalities
US20200078118A1 (en)2018-09-072020-03-12Ethicon LlcPower and communication mitigation arrangement for modular surgical energy system
US11510720B2 (en)2018-09-072022-11-29Cilag Gmbh InternationalManaging simultaneous monopolar outputs using duty cycle and synchronization
US20200078113A1 (en)2018-09-072020-03-12Ethicon LlcPort presence detection system for modular energy system
US20200078071A1 (en)2018-09-072020-03-12Ethicon LlcInstrument tracking arrangement based on real time clock information
US20200078115A1 (en)2018-09-072020-03-12Ethicon LlcSurgical modular energy system with footer module
US20200193600A1 (en)2018-12-142020-06-18Acclarent, Inc.Surgical system with combination of sensor-based navigation and endoscopy
US20200203004A1 (en)2018-12-222020-06-25General Electric CompanySystems and methods for predicting outcomes using raw data
US20200226751A1 (en)2019-01-102020-07-16Verily Life Sciences LlcSurgical workflow and activity detection based on surgical videos
US20200261089A1 (en)2019-02-192020-08-20Ethicon LlcSurgical staple cartridges with integral authentication keys
US20200261084A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridge retainer with frangible authentication key
US20200261083A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridge retainers with frangible retention features and methods of using same
US20200261077A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US20200261088A1 (en)2019-02-192020-08-20Ethicon LlcDeactivator element for defeating surgical stapling device lockouts
US20200261081A1 (en)2019-02-192020-08-20Ethicon LlcSurgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US20200261086A1 (en)2019-02-192020-08-20Ethicon LlcInsertable deactivator element for surgical stapler lockouts
US20200261078A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridge retainer with retractable authentication key
US20200261075A1 (en)2019-02-192020-08-20Ethicon LlcUniversal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US20200261085A1 (en)2019-02-192020-08-20Ethicon LlcStaple cartridge retainer system with authentication keys
US20200261087A1 (en)2019-02-192020-08-20Ethicon LlcSurgical staple cartridges with movable authentication key arrangements
US20200261080A1 (en)2019-02-192020-08-20Ethicon LlcMethod for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US20200261076A1 (en)2019-02-192020-08-20Ethicon LlcDual cam cartridge based feature for unlocking a surgical stapler lockout
US20220079591A1 (en)2019-02-192022-03-17Cilag Gmbh InternationalMethod for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US20200261082A1 (en)2019-02-192020-08-20Ethicon LlcSurgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
US20200273581A1 (en)2019-02-212020-08-27Theator inc.Post discharge risk prediction
US20200305924A1 (en)2019-03-292020-10-01Ethicon LlcAutomatic ultrasonic energy activation circuit design for modular surgical systems
US11218822B2 (en)2019-03-292022-01-04Cilag Gmbh InternationalAudio tone construction for an energy module of a modular energy system
US20200305945A1 (en)2019-03-292020-10-01Ethicon LlcModular surgical energy system with module positional awareness sensing with time counter
US20200388385A1 (en)2019-06-072020-12-10Emblemhealth, Inc.Efficient diagnosis confirmation of a suspect condition for certification and/or re-certification by a clinician
USD952144S1 (en)2019-06-252022-05-17Cilag Gmbh InternationalSurgical staple cartridge retainer with firing system authentication key
USD964564S1 (en)2019-06-252022-09-20Cilag Gmbh InternationalSurgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en)2019-06-252022-05-03Cilag Gmbh InternationalSurgical staple cartridge
US20200405375A1 (en)2019-06-272020-12-31Ethicon LlcRobotic surgical system with safety and cooperative sensing control
US11376098B2 (en)2019-06-282022-07-05Cilag Gmbh InternationalSurgical instrument system comprising an RFID system
US20210022731A1 (en)2019-07-262021-01-28Covidien LpKnife lockout wedge
US20210128149A1 (en)2019-11-012021-05-06Covidien LpSurgical staple cartridge
US10902944B1 (en)2020-01-062021-01-26Carlsmed, Inc.Patient-specific medical procedures and devices, and associated systems and methods
US20220157306A1 (en)2020-11-192022-05-19Carl Zeiss Meditec AgMethod for controlling a microscope, and microscope
US20230171266A1 (en)2021-11-262023-06-01At&T Intellectual Property Ii, L.P.Method and system for predicting cyber threats using deep artificial intelligence (ai)-driven analytics

Non-Patent Citations (61)

* Cited by examiner, † Cited by third party
Title
"ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001" ATM Standard, The ATM Forum Technical Committee, published Aug. 2003.
"Surgical instrumentation: the true cost of instrument trays and a potential strategy for optimization"; Mhlaba et al.; Sep. 23, 2015 (Year: 2015).
Allan et al., "3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery," IEEE Transactions on Medical Imaging, vol. 37, No. 5, May 1, 2018, pp. 1204-1213.
Altenberg et al., "Genes of Glycolysis are Ubiquitously Overexpressed in 24 Cancer Classes," Genomics, vol. 84, pp. 1014-1020 (2004).
Anonymous, "Internet of Things Powers Connected Surgical Device Infrastructure Case Study", Dec. 31, 2016 (Dec. 31, 2016), Retrieved from the Internet: URL:https://www.cognizant.com/services-resources/150110_IoT_connected_surgical_devices.pdf.
Anonymous: "Cloud computing—Wikipedia", Dec. 19, 2017, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=816206558 [retrieved Feb. 14, 2023], pp. 1-21.
Anonymous: "Differentiated services—Wikipedia", Dec. 14, 2017, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Differentiated_services&oldid=815415620 [retrieved on Feb. 14, 2023], pp. 1-7.
Anonymous: "Quality of service—Wikipedia", Dec. 7, 2017, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Quality_of_service&oldid=814298744#Applications [retrieved on Feb. 14, 2023], pp. 1-12.
Anonymous: "Screwdriver—Wikipedia", en.wikipedia.org, Jun. 23, 2019, XP055725151, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Screwdriver&oldid=903111203 [retrieved on Mar. 20, 2021].
Anonymous: "Titanium Key Chain Tool 1.1, Ultralight Multipurpose Key Chain Tool, Forward Cutting Can Opener—Vargo Titanium," vargooutdoors.com, Jul. 5, 2014 (Jul. 5, 2014), retrieved from the internet: https://vargooutdoors.com/titanium-key-chain-tool-1-1.html.
Benkmann et al., "Concept of iterative optimization of minimally invasive surgery," 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE pp. 443-446, Aug. 28, 2017.
Bonaci et al., "To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots," May 13, 2015. Retrieved from the Internet: URL:https://arxiv.org/pdf/1504.04339v2.pdf [retrieved on Aug. 24, 2019].
Cengiz, et al., "A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring," Article, Jun. 2009, pp. S11-S16, vol. 11, Supplement 1, Diabetes Technology & Therapeutics.
Choi et al., A haptic augmented reality surgeon console for a laparoscopic surgery robot system, 2013, IEEE, p. 355-357 (Year: 2013).
CRC Press, "The Measurement, Instrumentation and Sensors Handbook," 1999, Section VII, Chapter 41, Peter O'Shea, "Phase Measurement," pp. 1303-1321, ISBN 0-8493-2145-X.
Dottorato, "Analysis and Design of the Rectangular Microstrip Patch Antennas for TM0n0 operating mode," Article, Oct. 8, 2010, pp. 1-9, Microwave Journal.
Draijer, Matthijs et al., "Review of laser speckle contrast techniques for visualizing tissue perfusion," Lasers in Medical Science, Springer-Verlag, LO, vol. 24, No. 4, Dec. 3, 2008, pp. 639-651.
Engel et al. "A safe robot system for craniofacial surgery", 2013 IEEE International Conference on Robotics and Automation (ICRA); May 6-10, 2013; Karlsruhe, Germany, vol. 2, Jan. 1, 2001, pp. 2020-2024.
Flores et al., "Large-scale Offloading in the Internet of Things," 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp. 479-484, Mar. 13, 2017.
Giannios, et al., "Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies," Article, Jun. 14, 2016, pp. 1-10, Scientific Reports 6, Article No. 27910, Nature.
Harold I. Brandon and V. Leroy Young, Mar. 1997, Surgical Services Management vol. 3 No. 3. retrieved from the internet <https://www.surgimedics.com/Research%20Articles/Electrosurgical%20Plume/Characterization%20And%20Removal%20Of%20Electrosurgical%20Smoke.pdf> (Year: 1997).
Hirayama et al., "Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry," Article, Jun. 2009, pp. 4918-4925, vol. 69, Issue 11, Cancer Research.
Homa Alemzadeh et al., "Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation," 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Jun. 28, 2016, pp. 395-406.
Horn et al., "Effective data validation of high-frequency data: Time-point-time-interval-, and trend-based methods," Computers in Biology and Medic, New York, NY, vol. 27, No. 5, pp. 389-409 (1997).
Hsiao-Wei Tang, "ARCM", Video, Sep. 2012, YouTube, 5 screenshots, Retrieved from internet: <https://www.youtube.com/watch?v=UldQaxb3fRw&feature=youtu.be>.
Hu, Jinwen, Stimulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment, Jan. 9, 2012, Ultrasonics 53, pp. 171-177, (Year: 2012).
Hussain et al., "A survey on resource allocation in high performance distributed computing systems", Parallel Computing, vol. 39, No. 11, pp. 709-736 (2013).
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012.
IEEE Std No. 177, "Standard Definitions and Methods of Measurement for Piezoelectric Vibrators," published May 1966, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y.
Jiang, "‘Sound of Silence’: a secure indoor wireless ultrasonic communication system," Article, 2014, pp. 46-50, Snapshots of Doctoral Research at University College Cork, School of Engineering—Electrical & Electronic Engineering, UCC, Cork, Ireland.
Kalantarian et al., "Computation Offloading for Real-Time Health-Monitoring Devices," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC), IEEE, pp. 4971-4974, Aug. 16, 2016.
Kassahun et al., "Surgical Robotics Beyond Enhanced Dexterity Instrumentation: A Survey of the Machine Learning Techniques and their Role in Intelligent and Autonomous Surgical Actions." International Journal of Computer Assisted Radiology and Surgery, vol. 11, No. 4, Oct. 8, 2015, pp. 553-568.
Khazaei et al., "Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective," IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-9, Oct. 21, 2015.
Lalys, et al., "Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures", Int J CARS, vol. 8, No. 1, pp. 1-49, Apr. 19, 2012.
Li, et al., "Short-range ultrasonic communications in air using quadrature modulation," Journal, Oct. 30, 2009, pp. 2060-2072, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 10, IEEE.
Marshall Brain, How Microcontrollers Work, 2006, retrieved from the internet <https://web.archive.org/web/20060221235221/http://electronics.howstuffworks.com/microcontroller.htm/printable> (Year: 2006).
Miksch et al., "Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants," Artificial Intelligence in Medicine, vol. 8, No. 6, pp. 543-576 (1996).
Miller, et al., "Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study," Article, Apr. 2018, pp. 707-723, vol. 35 (Issue 5), Advances in Therapy.
Misawa, et al. "Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience," Article, Jun. 2018, pp. 2027-2029, vol. 154, Issue 8, American Gastroenterolgy Association.
Nabil Simaan et al, "Intelligent Surgical Robots with Situational Awareness: From Good to Great Surgeons", DOI: 10.1115/1.2015-Sep-6 external link, Sep. 2015 (Sep. 2015), p. 3-6, Retrieved from the Internet: URL:http://memagazineselect.asmedigitalcollection.asme.org/data/journals/meena/936888/me-2015-sep6.pdf XP055530863.
Nordlinger, Christopher, "The Internet of Things and the Operating Room of the Future," May 4, 2015, https://medium.com/@chrisnordlinger/the-internet-of-things-and-the-operating-room-of-the-future-8999a143d7b1, retrieved from the internet on Apr. 27, 2021, 9 pages.
Phumzile Malindi, "5. QoS in Telemedicine," "Telemedicine," Jun. 20, 2011, IntechOpen, pp. 119-138.
Roy D Cullum, "Handbook of Engineering Design", ISBN: 9780408005586, Jan. 1, 1988 (Jan. 1, 1988), XP055578597, ISBN: 9780408005586, 10-20, Chapter 6, p. 138, right-hand column, paragraph 3.
Salamon, "AI Detects Polyps Better Than Colonoscopists" Online Article, Jun. 3, 2018, Medscape Medical News, Digestive Disease Week (DDW) 2018: Presentation 133.
Screen captures from YouTube video clip entitled "Four ways to use the Lego Brick Separator Tool," 2 pages, uploaded on May 29, 2014 by user "Sarah Lewis". Retrieved from internet: https://www.youtube.com/watch?v=ucKiRD6U1LU (Year: 2014).
Shen, et al., "An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor," Article, Feb. 3, 2007, pp. 106-113, vol. 125, Issue 1, Sensors and Actuators B: Chemical, Science Direct.
Shi et al., An intuitive control console for robotic syrgery system, 2014, IEEE, p. 404-407 (Year: 2014).
Slocinski et al., "Distance measure for impedance spectra for quantified evaluations," Lecture Notes on Impedance Spectroscopy, vol. 3, Taylor and Francis Group (Jul. 2012)—Book Not Attached.
Sorrells, P., "Application Note AN680. Passive RFID Basics," retrieved from http://ww1.microchip.com/downloads/en/AppNotes/00680b.pdf on Feb. 26, 2020, Dec. 31, 1998, pp. 1-7.
Stacey et al., "Temporal abstraction in intelligent clinical data analysis: A survey," Artificial Intelligence in Medicine, vol. 39, No. 1, pp. 1-24 (2006).
Staub et al., "Contour-based Surgical Instrument Tracking Supported by Kinematic Prediction," Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sep. 1, 2010, pp. 746-752.
Sun et al., Innovative effector design for simulation training in robotic surgery, 2010, IEEE, p. 1735-1759 (Year: 2010).
Takahashi et al., "Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation," Surgical Endoscopy, vol. 27, No. 8, pp. 2980-2987, Feb. 23, 2013.
Trautman, Peter, "Breaking the Human-Robot Deadlock: Surpassing Shared Control Performance Limits with Sparse Human-Robot Interaction," Robotics: Science and Systems XIIII, pp. 1-10, Jul. 12, 2017.
US 10,504,709, 8/2018, Karancsi et al. (withdrawn)
Vander Heiden, et al., "Understanding the Warburg effect: the metabolic requirements of cell proliferation," Article, May 22, 2009, pp. 1-12, vol. 324, Issue 5930, Science.
Weede et al. "An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery," 2013 IEEE International Conference on Robotics ad Automation (ICRA), May 6-10, 2013. Karlsruhe, Germany, May 1, 2011, pp. 5762-5768.
Xie et al., Development of stereo vision and master-slave controller for a compact surgical robot system, 2015, IEEE, p. 403-407 (Year: 2015).
Yang et al., "A dynamic stategy for packet scheduling and bandwidth allocation based on channel quality in IEEE 802.16e OFDMA system," Journal of Network and Computer Applications, vol. 39, pp. 52-60, May 2, 2013.
Yuyi Mao et al., "A Survey on Mobile Edge Computing: The Communication Perspective," IEEE Communications Surveys & Tutorials, pp. 2322-2358, Jun. 13, 2017.
Zoccali, Bruno, "A Method for Approximating Component Temperatures at Altitude Conditions Based on CFD Analysis at Sea Level Conditions," (white paper), www.tdmginc.com, Dec. 6, 2018 (9 pages).

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20210338366A1 (en)*2018-10-262021-11-04Intuitive Surgical Operations, Inc.Mixed reality systems and methods for indicating an extent of a field of view of an imaging device
USD1066405S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066404S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066378S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066379S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066381S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066382S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface
USD1066380S1 (en)*2023-01-132025-03-11Covidien LpDisplay screen with graphical user interface

Also Published As

Publication numberPublication date
US11857152B2 (en)2024-01-02
EP3506288A1 (en)2019-07-03
US20190201104A1 (en)2019-07-04
JP2021509031A (en)2021-03-18
US20250072715A1 (en)2025-03-06
CN111602204A (en)2020-08-28
BR112020012604A2 (en)2020-11-24
JP7225243B2 (en)2023-02-20
CN111602204B (en)2024-11-15
US20210212771A1 (en)2021-07-15
WO2019133069A1 (en)2019-07-04
EP3506288B1 (en)2025-07-09

Similar Documents

PublicationPublication DateTitle
US12059124B2 (en)Surgical hub spatial awareness to determine devices in operating theater
US11864845B2 (en)Sterile field interactive control displays
US12137991B2 (en)Display arrangements for robot-assisted surgical platforms
US11432885B2 (en)Sensing arrangements for robot-assisted surgical platforms

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

ASAssignment

Owner name:ETHICON LLC, PUERTO RICO

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHELTON, FREDERICK E., IV;YATES, DAVID C.;HARRIS, JASON L.;AND OTHERS;SIGNING DATES FROM 20180602 TO 20180629;REEL/FRAME:055985/0888

ASAssignment

Owner name:CILAG GMBH INTERNATIONAL, SWITZERLAND

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056601/0339

Effective date:20210405

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:FINAL REJECTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:ADVISORY ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAANotice of allowance and fees due

Free format text:ORIGINAL CODE: NOA

ZAABNotice of allowance mailed

Free format text:ORIGINAL CODE: MN/=.

STPPInformation on status: patent application and granting procedure in general

Free format text:PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCFInformation on status: patent grant

Free format text:PATENTED CASE


[8]ページ先頭

©2009-2025 Movatter.jp