Movatterモバイル変換


[0]ホーム

URL:


US11903690B2 - Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment - Google Patents

Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
Download PDF

Info

Publication number
US11903690B2
US11903690B2US16/865,031US202016865031AUS11903690B2US 11903690 B2US11903690 B2US 11903690B2US 202016865031 AUS202016865031 AUS 202016865031AUS 11903690 B2US11903690 B2US 11903690B2
Authority
US
United States
Prior art keywords
impedance
electrical conductivity
sensors
array
conductivity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/865,031
Other versions
US20200260987A1 (en
Inventor
Rafael V. Davalos
Mohammad Bonakdar
Eduardo L. Latouche
Roop L. Mahajan
John L. Robertson
Christopher B. ARENA
Michael B. Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virginia Tech Intellectual Properties Inc
Virginia Polytechnic Institute and State University
Original Assignee
Virginia Tech Intellectual Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/865,031priorityCriticalpatent/US11903690B2/en
Application filed by Virginia Tech Intellectual Properties IncfiledCriticalVirginia Tech Intellectual Properties Inc
Publication of US20200260987A1publicationCriticalpatent/US20200260987A1/en
Assigned to VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.reassignmentVIRGINIA TECH INTELLECTUAL PROPERTIES, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Assigned to VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITYreassignmentVIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ROBERTSON, JOHN L., MAHAJAN, ROOP L., ARENA, CHRISTOPHER B., DAVALOS, RAFAEL V., SANO, MICHAEL B., BONAKDAR, Mohammad, LATOUCHE, Eduardo L.
Assigned to VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.reassignmentVIRGINIA TECH INTELLECTUAL PROPERTIES, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Assigned to VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITYreassignmentVIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: LATOUCHE, Eduardo L., MAHAJAN, ROOP L., ROBERTSON, JOHN L., BONAKDAR, Mohammad, ARENA, CHRISTOPHER B., DAVALOS, RAFAEL V., SANO, MICHAEL B.
Priority to US17/152,379prioritypatent/US20210137410A1/en
Priority to US18/404,473prioritypatent/US20240277245A1/en
Publication of US11903690B2publicationCriticalpatent/US11903690B2/en
Application grantedgrantedCritical
Assigned to NATIONAL SCIENCE FOUNDATIONreassignmentNATIONAL SCIENCE FOUNDATIONCONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS).Assignors: VIRGINIA POLYTECHNIC INST AND ST UNIV
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a Continuation application of U.S. application Ser. No. 15/536,333, filed Jun. 15, 2017, which '333 Application is a National Stage application under 35 U.S.C. § 371 of International Application No. PCT/US2015/065792, filed Dec. 15, 2015, which international application claims the benefit of U.S. Provisional Application Ser. No. 62/091,703 filed on Dec. 15, 2014 having the title “Real-Time Monitoring of Electrophysical Effects During Tissue Focal Ablation”, each of which are herein incorporated by reference in their entireties.
STATEMENT OF GOVERNMENT INTEREST
This invention was made with government support under IIP-1346343 awarded by the National Science Foundation. The government has certain rights in the invention.
BACKGROUND
Focal ablation and other cell membrane disruption therapies and molecule delivery mechanisms are used in many clinical and research applications. As such, monitoring techniques for lesion/treatment area are desirable. As such, there exists a need for improved monitoring techniques for use, inter alia, focal ablation and other cell membrane disruption therapies.
SUMMARY
Provided herein are embodiments of an electrical conductivity sensor having an impedance sensor, where the impedance sensor can be configured to measure a low-frequency and a high-frequency impedance and a substrate, where the impedance sensor is coupled to the substrate. The substrate can be flexible. In embodiments, the impedance sensor can contain two or more electrical conductors. The electrical conductors can be in a bipolar configuration. The electrical conductors can be in a tetrapolar configuration. In embodiments, the electrical conductivity sensor can have two impedance sensors that can be coupled to the substrate such that they are orthogonal to each other.
In embodiments, the electrical conductivity sensor can have more than one impedance sensor. In some embodiments, the impedance sensors can be configured in an array. In embodiments having more than one impedance sensor, the electrical conductivity sensor can further contain a common ground, where each impedance sensor is coupled to the common ground. In embodiments having more than one impedance sensor, the electrical conductivity sensor can further contain a common counter electrode, wherein the common counter electrode can be coupled to the substrate.
In embodiments, the impedance sensor(s) can have interdigitated electrodes. In embodiments, the impedance sensor(s) can further contain a receptor molecule configured to specifically bind a target molecule, wherein the receptor molecule is coupled to the sensor(s).
In embodiments, the electrical conductivity sensor can contain one or more sensors configured to detect a tissue characteristic selected from the group of: pH, temperature, a chemical concentration, a nucleic acid concentration, a gas amount, or combinations thereof.
Also provided herein are embodiments of an electrical conductivity probe having an elongated member and an electrical conductivity sensor as described herein where the electrical conductivity sensor can be coupled to the elongated member. In embodiments, the electrical conductivity sensor can be removably coupled to the elongated member.
Also provided herein are embodiments of a system having an electrical conductivity probe as described herein, a treatment probe configured to deliver an energy to a tissue, where the energy can be sufficient to disrupt a cell membrane, an impedance analyzer, where the impedance analyzer can be coupled to the electrical conductivity probe, a low voltage power supply, where the low voltage power supply can be coupled to the electrical conductivity probe and can be configured to deliver a low voltage energy to the electrical conductivity probe, a waveform generator, where the waveform generator can be coupled to the low voltage power supply, a gate driver, where the gate driver can be coupled to the waveform generator and the low voltage power supply, a high voltage switch, where the high voltage switch can be coupled to the treatment probe and the impedance analyzer; and a high voltage power supply, where the high voltage power supply can be coupled to the high voltage switch.
In embodiments, the system can further contain a computer. The computer can be coupled to the impedance analyzer and the computer can contain processing logic that can be configured to determine the position of lesion or treated area front within a tissue undergoing focal ablation/cell membrane disruption therapy. The processing logic can be further configured to generate a signal to a user when the position of lesion or treated area front has reached a predetermined position within the tissue. The processing logic can be configured to automatically manipulate the system to adjust or stop treatment of a tissue by the treatment probe when the position of lesion or treated area front has reached a predetermined position within the tissue.
In embodiments, the treatment probe and the electrical conductivity probe can be the same probe. In embodiments, the treatment probe and the electrical conductivity probe are separate probes. The treatment probe can be coupled to a grounding pad located elsewhere relative to the treatment probe in or on the body of a subject being treated.
Also provided herein are embodiments of a method of monitoring the lesion or treated area front or size during focal ablation or cell membrane disruption therapy, the method have the steps of inserting an electrical conductivity probe as described herein into a tissue, inserting a treatment probe into the tissue, applying a treatment to the tissue, wherein the treatment comprises applying an energy to the tissue via the treatment probe, and measuring a characteristic of the tissue continuously during treatment, determining if there is a change in the tissue characteristic. The characteristic can be impedance. In some embodiments, the step of measuring can include measuring both low-frequency impedance and high-frequency impedance and further comprising the step of stopping or adjusting treatment when low-frequency impedance is equal to high-frequency impedance. In embodiments, the characteristic can be pH, temperature, a gas concentration, a chemical concentration, a nucleic acid concentration, or a combination thereof. In some embodiments, the method can contain the step of stopping or adjusting a treatment when a change in the tissue characteristic is detected. In embodiments, the method can contain the step of alerting a user when a change in the tissue characteristic is detected.
In some embodiments, where the electrical conductivity probe includes an impedance sensor array, the method can include the step of determining the location of the lesion or treated area front or size by comparing impedance data between two or more impedance sensors of the impedance sensor array. In embodiments, the method can include the step of comparing the lesion or treated area front or size to a threshold value and stopping treatment when lesion or treated area front or size is greater than or equal to the threshold value. In embodiments, the method can include the step of comparing the lesion or treated area front or size to a threshold value and alerting a user when lesion or treated area front or size is greater than or equal to the threshold value.
The method can include the steps of comparing measured changes in impedance to a solution for the electric field distribution during focal ablation or cell membrane disruption and determining the 2D/3D lesion or treated area geometry of the lesion or treated area volume. In embodiments, the method can include the step of overlaying the 2D/3D lesion or treated area geometry on one or more medical images of a subject to generate an image overlay. The method can include the step of visualizing lesion or treatment area front migration or lesion or treatment area growth from the image overlay.
BRIEF DESCRIPTION OF THE DRAWINGS
Further aspects of the present disclosure will be readily appreciated upon review of the detailed description of its various embodiments, described below, when taken in conjunction with the accompanying drawings.
FIG.1 shows embodiments of an electrical conductivity sensor.
FIG.2 shows embodiments of an electrical conductivity sensor.
FIG.3 shows embodiments of an electrical conductivity sensor.
FIG.4 shows embodiments of an electrical conductivity sensor.
FIG.5 shows embodiments of an electrical conductivity sensor.
FIG.6 shows embodiments of an electrical conductivity sensor.
FIG.7 shows embodiments of an electrical conductivity sensor.
FIG.8 shows embodiments of an electrical conductivity sensor.
FIG.9 shows embodiments of an electrical conductivity probe.
FIG.10 shows embodiments of an electrical conductivity probe.
FIG.11 shows embodiments of an electrical conductivity probe.
FIG.12 shows embodiments of an electrical conductivity probe.
FIG.13 shows embodiments of an electrical conductivity probe.
FIG.14 shows embodiments of a system configured to monitor lesion/treated area formation in real-time.
FIG.15 shows embodiments of a system configured to monitor lesion/treated area formation in real-time.
FIGS.16A-16B show embodiments of operation of an electrical conductivity probe during treatment to monitor lesion/treated area formation in real-time.
FIGS.17A-17C show embodiments of operation of an electrical conductivity probe during treatment to monitor lesion/treated area formation in real-time.
FIG.18 shows an image of an embodiment of an electrical conductivity sensor.
FIG.19 shows an image of an embodiment of an electrical conductivity sensor.
FIG.20 shows an image of an embodiment of an electrical conductivity sensor.
FIG.21 shows an image of an embodiment of an electrical conductivity probe.
FIGS.22A-22J shows steps in a process for manufacturing an electrical conductivity sensor.
FIGS.23A-23B show a three dimensional finite element model to simulate IRE treatment of liver tissue with two needle electrodes.
FIGS.24A-24B show the simulated electrical conductivity in the tissue resulted from IRE (FIG.24A) and simulated extrapolation of point specific measurements in three dimensions to determine the spatial-temporal conductivity map and electric field distribution (FIG.24B).
FIGS.25A and25B show images of a probeFIG.25A and placement within a sample of porcine liver. The dashed circle inFIG.25B indicates the treated area. The black dots indicate location of the sensors of the probe within the tissue.
FIG.26 shows a graph demonstrating tissue resistance (ohms) after delivery of a series of high-frequency irreversible electroporation (HFIRE) pulses to the porcine liver ofFIG.25B as measured by the probe ofFIG.25A.
FIG.27 shows a graph demonstrating % change in tissue resistance between varying sensors after delivery of a series of high-frequency irreversible electroporation (HFIRE) pulses to the porcine liver ofFIG.25B as measured by the probe ofFIG.25A.
FIGS.28A-28D show images of a 3D isometric view of the probe onto ortho-planes from stacked CT images of patient anatomy.
FIGS.29A-29C show graphs demonstrating finite element modeling (FEM) of electric field magnitude along the length of the probe in a potato model, where N=10 (FIG.29A), N=30 (FIG.29B), and N=100 (FIG.29C).
FIGS.30A-30C show graphs demonstrating experimental results of conductivity change as measured by different sensor pairs along the length of the probe in a potato model, where N=10 (FIG.30A), N=30 (FIG.30B), and N=100 (FIG.30C).
FIGS.31A-31C show photos demonstrating experimental ablations after delivering a series of IRE pulses to a potato model where N=10 (FIG.31A), N=30 (FIG.31B), and N=100 (FIG.31C).
FIG.32 shows embodiments of installation of a sensor array on a probe and the electrical connections to the sensor.
FIGS.33A-33B shows the electrical impedance spectrum of the porcine liver (FIG.33A) along with the equivalent circuit model of the tissue (FIG.33B).
FIG.34 shows an embodiment of a system where a monopolar electrode and a grounding pad are used to deliver the high voltage pulses.
FIG.35 shows another embodiment of a system where a monopolar electrode and a grounding pad are used to deliver the high voltage pulses.
DETAILED DESCRIPTION
Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, and as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of mechanical engineering, electrical engineering, physiology, medical science, veterinary science, bioengineering, biomechanical engineering, physics, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
Definitions
As used herein, “about,” “approximately,” and the like, when used in connection with a numerical variable, generally refers to the value of the variable and to all values of the variable that are within the experimental error (e.g., within the 95% confidence interval for the mean) or within plus or minus 10% of the indicated value, whichever is greater.
As used herein, “control” is an alternative subject or sample used in an experiment for comparison purposes and included to minimize or distinguish the effect of variables other than an independent variable. A “control” can be a positive control, a negative control, or an assay or reaction control (an internal control to an assay or reaction included to confirm that the assay was functional). In some instances, the positive or negative control can also be the assay or reaction control.
As used interchangeably herein, “subject,” “individual,” or “patient,” refers to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. The term “pet” includes a dog, cat, guinea pig, mouse, rat, rabbit, ferret, and the like. The term farm animal includes a horse, sheep, goat, chicken, pig, cow, donkey, llama, alpaca, turkey, and the like.
As used herein, “biocompatible” or “biocompatibility” refers to the ability of a material to be used by a patient without eliciting an adverse or otherwise inappropriate host response in the patient to the material or an active derivative thereof, such as a metabolite, as compared to the host response in a normal or control patient.
As used herein, “therapeutic” can refer to curing and/or treating a symptom of a disease or condition.
The term “treating”, as used herein, can include inhibiting and/or resolving the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition. Treating the disease, disorder, or condition can include ameliorating at least one symptom of the particular disease, disorder, or condition, even if the underlying pathophysiology is not affected, such as treating the pain of a subject by administration of an analgesic agent even though such agent does not treat the cause of the pain.
The term “preventing”, as used herein includes preventing a disease, disorder or condition from occurring in a subject, which can be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it. As used herein, “preventative” can refer to hindering or stopping a disease or condition before it occurs or while the disease or condition is still in the sub-clinical phase.
The term “target molecule” can refer to any specific desired molecule including, but not limited to, a nucleic acid, oligonucleotide, polynucleotide, peptide, polypeptide, chemical compound, or other molecule that can specifically bind to a receptor molecule. Typically, the target molecule refers to a molecule that can be located in a sample or tissue whose presence and/or amount can be determined by detecting its binding to known receptor molecule.
The term “receptor molecule” can refer to a molecule that can specifically bind to a target molecule. A receptor molecule can be a nucleic acid, oligonucleotide, polynucleotide, peptide, polypeptide, chemical compound, or other molecule. Receptor molecules can be, for example, antibodies or fragments thereof or aptamers. The receptor molecule can be bound, fixed, or otherwise attached to a surface, sometimes in known location (e.g. as in an array), and can be exposed to a sample such that if a target molecule is present, the target molecule can interact and specifically bind with the receptor molecule. The specific binding can, in some cases, trigger a signal that can provide quantitative and/or qualitative information regarding the target molecule.
As used herein, “specific binding,” “specifically bound,” and the like, refer to binding that occurs between such paired species as nucleotide/nucleotide, enzyme/substrate, receptor/agonist, antibody/antigen, and lectin/carbohydrate that can be mediated by covalent or non-covalent interactions or a combination of covalent and non-covalent interactions. When the interaction of the two species produces a non-covalently bound complex, the binding which occurs is typically electrostatic, hydrogen-bonding, or the result of lipophilic interactions. Accordingly, “specific binding” occurs between a paired species where there is interaction between the two which produces a bound complex having the characteristics of an antibody/antigen or enzyme/substrate interaction. In particular, the specific binding is characterized by the binding of one member of a pair to a particular species and to no other species within the family of compounds to which the corresponding member of the binding member belongs. Thus, for example, an antibody preferably binds to a single epitope and to no other epitope within the family of proteins.
As used herein, “aptamer” refers to single-stranded DNA or RNA molecules that can bind to pre-selected targets including proteins with high affinity and specificity. Their specificity and characteristics are not directly determined by their primary sequence, but instead by their tertiary structure.
Discussion
Focal cell ablation and focal cell membrane disruption techniques can be used to selectively destroy undesired tissue, deliver drugs to cells and tissues, and deliver nucleic acids to cells. Focal ablation and membrane disruption techniques can be thermally or non-thermally based. Thermally based techniques use heat to ablate cells or disrupt cell membranes and include, but are not limited to, radiofrequency (RF) ablation, laser ablation, cryo-ablation, and ultrasound. Other thermal focal ablation/membrane disruption techniques will be appreciated by those of ordinary skill in the art. Non-thermal techniques can rely on the generation or application of an electric field to cells to disrupt (reversibly or irreversibly) the cell membrane, which increases the permeability or kills the cells. Non-thermal focal ablation/membrane disruption techniques include, but are not limited to electroporation. Other Non-thermal focal ablation/membrane disruption techniques will be appreciated by those of ordinary skill in the art. During these techniques, it is difficult to determine the extent of treatment within a tissue being treated. As such, current procedures relying on focal ablation and membrane disruption techniques are imprecise, which can result in undesirable side effects, destruction of, or gene/transcript/protein modification in normal or otherwise healthy cells.
Membrane permeability changes induced by focal ablation/cell membrane disruption techniques at the cell level can translate into changes in impedance at the tissue level. Known devices and methods of monitoring tissue impedance, such as during electroporation, have several drawbacks. Primarily, they rely on bulk tissue properties as opposed to measurements at well-defined points within the tissue being treated. Bulk changes can be useful in describing how the dielectric properties of the tissue change as a whole during treatment. However, there is no specificity in terms of the location where treatment is occurring. In known devices and methods, this information is usually inferred from correlations with predications of the electric field distribution in the tissue. In other words, the treatment zone is defined as the area above a pre-determined threshold that is based on the inferred correlations and predications. The bulk measurements can be made either through the treatment electrodes or with a separate set of electrodes, where the electrodes located in proximity to each other.
As an alternative, electrical impedance tomography (EIT) can be used to map the tissue dielectric potential throughout the entire treatment region based on solutions to a nonlinear inverse that accounts for surface electrical measurements. However, this imaging technique is complicated by the required placement of an electrode array around the periphery of the target tissue. Placement of the electrode array can be difficult to implement clinically because some tumors and other target tissues do not accommodate the placement of such an array due to geometrical/anatomical constraints or the presence of highly insulating anatomical structures such as the skull or skin. Further, EIT suffers from the limitations associated with the resolution of reconstructed images, which relies heavily on the accurate placement and number of external electrodes. Moreover, none of the existing technologies and methods can achieve active, real-time monitoring of the lesion or treated area front during focal ablation and cell membrane disruption procedures.
With these shortcomings in mind, described herein are devices and systems that can be configured to monitor a lesion or treated area front in real-time during focal ablation/membrane disruption therapy. The devices and systems can be configured with a sensor array to detect a lesion or treated area front. The devices and systems provided herein can be used to actively monitor focal ablation/cell membrane disruption therapy in real-time and thus can allow a practitioner to control, adjust, and/or discontinue treatment in response to front migration to minimize treatment side effects.
Also described herein are methods of monitoring a lesion or treated area front in real-time in tissue during focal ablation/membrane disruption. The methods can include alerting a user when the front has reached a desired location. The methods can utilize both low- and high-frequency electrical impedance measurements to determine if the tissue area surrounding a sensor has been ablated or treated. The devices, systems and methods described herein can provide for focal ablation/membrane disruption techniques and therapies with improved specificity than current techniques and devices. Other devices, systems, methods, features, and advantages of the present disclosure will be or become apparent to one having ordinary skill in the art upon examination of the following drawings, detailed description, and examples. It is intended that all such additional compositions, compounds, methods, features, and advantages be included within this description, and be within the scope of the present disclosure.
Systems and Devices for Real-Time Impedance Monitoring
During focal ablation or cell membrane disruption procedures, as the procedure continues the treated area or lesion expands out from the treatment source. A feature common to these types of therapies is a change in the membrane permeability of the cell membranes that have been stimulated during focal ablation or cell membrane disruption. Focal ablation and other membrane disruption techniques can result in a change in impedance in due to a change in the permeability of the cells that have been sufficiently stimulated during focal ablation or cell membrane disruption.
As the lesion or treated area forms as treatment continues, an increasing number of cells in the tissue surrounding the treatment source undergo a membrane disruption and thus a change in the impedance of the cells in that area. As the lesion/treated area grows, a front can be formed that forms a boundary between treated and untreated cells. The treated cells and the untreated cells can have different impedances or other characteristics (e.g. pH and temperature). By measuring the impedance or other characteristic between two or more points in the tissue during treatment, it can be possible to determine if the front lies between those two points. The position of the lesion/treated area front within a tissue being treated can also be made by measuring impedance or other tissue characteristic at a single point and comparing that to a base line or prior measurement from that point.
Provided herein are systems and devices that can be configured to detect and determine the location of a lesion/treated area front in real-time during a focal ablation or cell membrane disruption therapy. The systems and devices can also be configured to generate 3D images and models from lesion/treated area front measurements that can provide the volume of a lesion/treated area. The systems and devices can be configured to provide automatic control of a treatment in response to detection of the migration of the lesion/treated area front. The systems and devices can be configured to provide a signal to a user in response to detection of the migration of the lesion/treated area front.
Biological tissue is a combination of extracellular space, cellular membranes, and subcellular structures, each of which contains organic molecules and ions in different structural arrangements. This can result in a broad spectrum of dielectric properties across multiple frequencies. In other words, the dielectric properties of tissue are frequency dependent. From around 0.1 Hz to 10 MHz, there exist two main dispersive regions: (1) the α, or low frequency, dispersion region and (2) the β, or high frequency, region. The α region ranges from about 0.1 Hz to about 10 Hz and the β region ranges from about 0.1 MHz to about 10 MHz. The α region is due to counter ion polarization effects along cell membranes. The β region is due to the Maxwell-Wagner effects. This describes the charging and relaxation effects along cell membranes, which act as barriers to the movement of ions.
Above the β dispersion, cell membranes have negligible impedance and current can pass freely through the cell membrane. This is similar to what happens during, for example, electroporation, when pore formation reduces the membrane impedance and permits current to enter the cell. As a result, low frequency (α region) electrical measurements at a location in a tissue before and after focal ablation or cell membrane disruption can be compared to determine if the focal ablation or cell membrane disruption has reached its endpoint at that position in the tissue. At the endpoint, the low frequency (α region) impedance is about equal to the high-frequency (β region) impedance, which is due to the focal ablation or cell membrane disruption in that region of the tissue. Stated differently, in a formed lesion or treated area, the low frequency (α region) impedance is about equal to the high-frequency (βregion) impedance. Thus, comparison of the low frequency (α region) impedance and the high-frequency (β region) impedance can be used to determine lesion formation in that area of tissue due to focal ablation/cell membrane disruption treatment.
In some embodiments, the systems and devices can be configured to detect a focal ablation or cell membrane disruption in treatment area by simultaneously measuring both α region and β region impedance in a tissue. The systems and devices described herein can be configured to monitor, in real-time, the size of a treated area during a focal ablation or cell membrane disruption procedure. The devices and systems can contain an electrical conductivity sensor, which can contain an impedance sensor or impedance sensor array. The electrical conductivity sensor can be configured to measure both low-frequency (α region) impedance and high-frequency (β region) impedance. The electrical conductivity sensor can be integrated with or operatively coupled to an electrical conductivity probe and/or be integrated with or operatively coupled to a treatment probe. In embodiments, the frequency is between 0.0001 Hz and 100 GHz, preferably between 1 kHz and 1 MHz.
Electrical Conductivity Sensors
With a general description in mind, attention is directed toFIGS.1-8, which show embodiments of electrical conductivity sensors that can be configured to measure tissue impedance, a change in tissue impedance between points in a tissue, migration of a lesion/treated area front, and/or both low-frequency (α region) impedance and high-frequency (β region) impedance.
Discussion begins withFIG.1, which shows one embodiment of anelectrical conductivity sensor100 that can be configured to measure a change in tissue impedance between points in a of tissue, and/or both low-frequency (α region) impedance and high-frequency (β region) impedance. Theelectrical conductivity sensor100 can have animpedance sensor110 at least twoelectrical conductors120a,b(collectively110). In some embodiments, theimpedance sensor110 can have an even number ofelectrical conductors120. In some embodiments theimpedance sensor110 can have 2, 3, 4, 5, 6, 7, 8, 9, 10 or moreelectrical conductors120. In some embodiments, theimpedance sensor110 can be configured to measure impedance using a bipolar configuration of electrodes120 (see e.g.FIG.1). In other embodiments, theimpedance sensor110 can be configured to measure impedance using a tetrapolar configuration (see e.g.FIG.3). It will be appreciated that the sensor electrodes, in any given configuration, can be separate from any source and sink electrodes that can be used for delivering the focal ablation/cell membrane disruption therapy.
Theelectrical conductors120 can be coupled tobonding pads140a,b(collectively140). In some embodiments, eachelectrical conductor120 is coupled to anindividual bonding pad140. Theelectrical conductors120 can be coupled to the bonding pad(s)140 viaelectrical leads150a,b(collectively150). Theelectrical conductor120, the bonding pad(s)140, and the lead(s)150 can be coupled to asubstrate160. In some embodiments, theelectrical conductors120 can be coupled to animpedance sensor substrate130. Theimpedance sensor substrate130 can be coupled to thesubstrate160. In some embodiments, theelectrical conductors120 can be attached directly to thesubstrate160. Theelectrical conductivity sensor100 can be configured such that at least a portion of one or more of the electrodes is exposed to the tissue when in use.
Theelectrical conductivity sensor100 can have a length (l), a width (w), and a thickness. The length can range from about 1 mm to 1000 mm or more. The width can range from about 0.1 mm to about 50 mm or more. The thickness can range from about 0.1 micron to about 1000 microns or more.
As shown inFIG.2, theelectrical conductivity sensor100 can be flexible. Thesubstrate160 and the optionalimpedance sensor substrate130 can be made out of any suitable material. The material can be biocompatible. Suitable materials include, but are not limited to ceramics (porcelain, alumina, hydroxyapatite, zirconia), polymers (e.g. thermoplastic elastomers (e.g. silicone elastomers, styrene block copolymers, thermoplastic copolyesters, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic polyurethanes, thermoplastic vulcanizates), polyvinyl chloride, fluoropolymers (PTFE, modified PTFE, FEP, ETE, PFA, MFA), polyurethane, polycarbonate, silicone, acrylics, polypropylene, low density polyethylenes, nylon, sulfone resins, high density polyethylenes, natural polymers (cellulose, rubber, alginates, carrageenan), polyimide, polyether ether ketone), metals (e.g. gold, silver, titanium, platinum), metal alloys (e.g. stainless steel, cobalt alloys, titanium alloys), glass, and combinations thereof.
The leads150,bonding pads140 andelectrical conductors120 can be made of a suitable conductive or semi-conductive material. The material can be flexible. The materials can be biocompatible. Suitable conductive and semi-conductive materials include, without limitation, gold, silver, copper, aluminum, nickel, platinum, palladium, zinc, molybdenum, tungsten, graphite, Indium tin oxide, conductive organic polymers (e.g. polyacetylene, polyphenylene vinylene, polypyrrole, polythiophene, polyaniline, and polyphenylene sulfide), silicon, germanium, cadmium, indium, and combinations thereof.
In operation, a known electrical current can be passed through at least one of theelectrical conductors120. A voltage is then induced in at least one of the otherelectrical conductors120 As such, in embodiments, where there are only two electrical conductors120 (a bipolar configuration) (see e.g.FIG.1), a known current can be passed through one electrical conductor (120a) and a voltage is then induced in the other electrical conductor (120b). As shown inFIG.3, where there are more than twoelectrical conductors120a-d(e.g. a tetrapolar configuration), a current can be passed through the outer mostelectrical conductors120a,dand the induced voltage across the innerelectrical conductors120b,ccan be measured. Other suitable configurations will be appreciated by those of skill in the art. In any embodiment, the high-frequency and low frequency impedance can be measured from the induced voltages. As described elsewhere herein, the high-frequency and low-frequency impedance can be used to determine if a particular region of tissue has been treated and/or the area and/or volume of tissue that has been effectively treated.
Some tissues have anisotropic electrical properties, which can be due to the directional growth of the cell. As such, in some instances it is desirable to measure the electrical conductivities in two orthogonal directions. With this in mind, attention is directed toFIG.4, which shows an embodiment of an electrical conductivity sensor configured to measure both high- and low-frequency impedance in two orthogonal directions.
As shown inFIG.4, the electrical conductivity sensor can have at least twoimpedance sensors110 and111. Thefirst impedance sensor110 can have a first set ofelectrical conductors120a-d. Thesecond impedance sensor111 can have a second set ofelectrical conductors121a-d. The first120 and second121 sets of electrical conductors can be coupled to asubstrate160 and/orimpedance sensor substrate130 such that the first set ofelectrical conductors120 and the second set ofelectrical conductors121 are orthogonal to each other. In this way, the first110 and the second111 impedance sensors can be said to be orthogonal to each other in these embodiments.
WhileFIG.4 shows theimpedance sensors110,111 in a tetrapolar configuration it will be appreciated by those of skill in the art that they can be configured in any suitable manner, for example, as previously described with respect toFIGS.1-3. Likewise, eachimpedance sensor110,111 can have at least twoelectrical conductors120,121. In some embodiments, eachimpedance sensor110,111 can have 3, 4, 5, 6, 7, 8, 9, 10 or more electrical conductors. Theimpedance sensors110,111 can have the same number or a different number ofelectrical conductors120,121 as each other. The dimensions of these embodiments of theelectrical conductivity sensor100 can be as described with respect toFIGS.1-3 above. Theelectrical conductivity sensor100 and components thereof can be made from suitable materials as previously described with respect toFIGS.1-3. As previously described, eachelectrical conductor120,121, can be coupled to abonding pad140a-dand141a-dvia anelectrical leads150a-dand151a-d. The operation of each set ofelectrodes120,121 to measure impedance can be as described with respect toFIGS.1-3 above.
FIGS.1-4 demonstrate embodiments of anelectrical conductivity sensor100 that contain electrical conductors at a single location on theelectrical conductivity sensor100. As described elsewhere herein it can be desirable to measure the size of a treatment area in a tissue during focal ablation/cell membrane disruption therapy. During therapy, the lesion formed will grow in size, and as such, it can be desirable to measure this growth without the need for repositioning the electrical conductivity sensor, or probe that it can be coupled to, during treatment.
With this in mind, attention is directed toFIGS.5-8 which show embodiments of anelectrical conductivity sensor100 that has a sensor array. Theelectrical conductivity sensor100 having a sensor array can be configured to measure impedance. In some embodiments, theelectrical conductivity sensor100 having asensor array200 can be configured to detect both high- and low-frequency impedance having animpedance sensor array200. In some embodiments thesensor array200 can be configured to detect another tissue characteristic, including but not limited to, pH, temperature, drug concentration, chemical concentration, gas concentration and combinations thereof. As such, in some embodiments, the lesion/treated area front can be determined by measuring these characteristics.
Discussion continues withFIG.5 which shows one embodiment of anelectrical conductivity sensor100 having animpedance sensor array200. In the embodiments depicted byFIG.5, theimpedance sensor array200 has at least twoimpedance sensors110a-h. WhileFIG.5 shows animpedance sensor array200 having eight (8)impedance sensors110, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ormore impedance sensors110. Eachimpedance sensor110 can be coupled to abonding pad140a-hand acommon ground210 viaelectrical leads150a-hand152a-h. WhileFIG.5 shows animpedance sensor array200 having eight (8)bonding pads140, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ormore bonding pads140. The dimensions of these embodiments of theelectrical conductivity sensor100 can be as described with respect toFIGS.1-3 above. Theelectrical conductivity sensor100 and components thereof can be made from suitable materials as previously described with respect toFIGS.1-3. In some embodiments, theelectrical conductivity sensor100 having animpedance sensor array200 can contain include two current injection electrodes on either end of the electrode array.
Measurement of low-frequency and/or high-frequency impedance of eachimpedance sensor110 of theimpedance sensor array200 can be as previously described with respect toFIGS.1-3. Further, differences in impedance measurements between two or moredifferent impedance sensors110 of theimpedance sensor array200 can be determined. In this way it is possible to determine the extent of the lesion formed by focal ablation/cell membrane disruption therapy. Stated differently, the change in the electrical impedance of different combinations ofimpedance sensors110 of theimpedance sensor array200 can be evaluated and the lesion size, and/or lesion/treated area front can be determined based on the impedance or other tissue characteristic measurements evaluated. This is discussed in greater detail elsewhere herein.
In some embodiments, thesensors110 can be functionalized with one or more receptor molecules configured to specifically bind a target molecule. This can make the impedance measurement more selective toward identification of certain intracellular substances, including proteins and ions that are released during electroporation. This modification can enhance the capability of the sensor to detect the lesion front.
FIG.6 shows another embodiment of anelectrical conductivity sensor100 having animpedance sensor array200. Theimpedance sensor array200 has at least twoimpedance sensors110a-e. WhileFIG.6 shows animpedance sensor array200 having five (5)impedance sensors110, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ormore impedance sensors110. Eachimpedance sensor110 can be coupled to abonding pad140a-eviaelectrical leads150a-e. WhileFIG.6 shows animpedance sensor array200 having five (5)bonding pads140, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ormore bonding pads140. The electrical impedance measured by any combination of impedance sensors can be determined and correlated to the lesion size. The dimensions of these embodiments of theelectrical conductivity sensor100 can be as described with respect toFIGS.1-3 above. Theelectrical conductivity sensor100 and components thereof can be made from suitable materials as previously described with respect toFIGS.1-3.
FIG.7 shows further embodiments of anelectrical conductivity sensor100 having animpedance sensor array200. These embodiments are the same as those described in relation toFIG.6 except that they further contain acommon counter electrode220. Thecommon counter electrode220 can be coupled to thesubstrate160. Thecommon counter electrode220 can be coupled to abonding pad230 via anelectrical lead240, which both can also be coupled to thesubstrate160. In operation, all impedances measured by theimpedance sensors110 of theimpedance sensor array220 can be measured with respect to thecommon counter electrode220. It will be appreciated that a common counter electrode can also be used in embodiments described inFIG.5. The dimensions of these embodiments of theelectrical conductivity sensor100 can be as described with respect toFIGS.1-3 above. Theelectrical conductivity sensor100 and components thereof can be made from suitable materials as previously described with respect toFIGS.1-3.
FIG.8 shows further embodiments of anelectrical conductivity sensor100 having animpedance sensor array200. Theimpedance sensor array200 can containimpedance sensors110 having interdigitatedelectrodes300. In embodiments, the impedance sensor can have a pair of electrode sets310a,b(collectively310), where each electrode set has an even number of electrodes (e.g. 2, 4, 6, 8, 10 etc.) and can be interdigitated with each other as shown inFIG.8. This interdigitated configuration can increase the sensitivity of theimpedance sensor110. While not being bound to theory, it is believed that the increase in sensitivity can be attributed to the increased current density across the interdigitated pair of electrode sets310 relative to a non-interdigitated electrode set.
WhileFIG.8 shows animpedance sensor array200 having five (5)impedance sensors110, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 16, 17, 18, 19, 20 ormore impedance sensors110. Theimpedance sensors110 can be coupled to asubstrate160 as previously described in relation to e.g.FIGS.5-7. Eachimpedance sensor110 can be coupled to abonding pad140 viaelectrical leads150a-e. WhileFIG.8 shows animpedance sensor array200 having five (5)bonding pads140, it will be appreciated that theimpedance sensor array200 can have 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ormore bonding pads140. In some embodiments, the impedance sensors can all be coupled to acommon ground210 as previously described with respect toFIG.5. In further embodiments, theelectrical conductivity sensor100 having animpedance sensors110 withinterdigitated electrodes300 can further contain acommon counter electrode230, which can be configured as shown and described with respect toFIG.7 The dimensions of these embodiments of theelectrical conductivity sensor100 can be as described with respect toFIGS.1-3 above. Theelectrical conductivity sensor100 and components thereof can be made from suitable materials as previously described with respect toFIGS.1-3.
In some embodiments, theelectrical conductivity sensor100 as described in relation to any ofFIGS.1-8 can further contain one or more additional sensors to measure additional tissue characteristics. Additional sensors include, but are not limited to, pH sensors, temperature sensors, chemical sensors, and gas (e.g. CO2, NO, O2) sensors. There can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more additional sensors. The additional sensors can also be configured as an array akin to the impedance sensor array on theelectrical conductivity sensor100. The additional sensor(s) can be coupled to thesubstrate160. The additional sensors can be coupled to one or more additional bonding pads via leads as will be appreciated by those of skill in the art.
Theelectrical conductivity sensor100 and/or any component(s) thereof as described in relation to any ofFIGS.1-8 can be disposable, reusable, recyclable, biocompatible, sterile, and/or sterilizable.
Theelectrical conductivity sensor100 and components thereof described herein can be manufactured by any suitable method and in any suitable way. Suitable methods include, but are not limited to, injection molding, 3-D printing, glass/plastic molding processes, optical fiber production process, casting, chemical deposition, electrospinning, machining, die casting, evaporative-pattern casting, resin casting, sand casting, shell molding, vacuum molding, thermoforming, laminating, dip molding, embossing, drawing, stamping, electroforming, laser cutting, welding, soldering, sintering, bonding, composite material winding, direct metal laser sintering, fused deposition molding, photolithography, spinning, metal evaporation, chemical etching and sterolithography. Other techniques will be appreciated by those of skill in the art.
Electrical Conductivity Probes
Theelectrical conductivity sensors100 described in relation toFIGS.1-8 can be coupled to or integrated with a probe. In some embodiments, the probe can be a treatment probe (i.e. the probe delivering the focal ablation/cell membrane disruption therapy). The probe that contains theelectrical conductivity sensor100 can be separate from the treatment probe. With the general concept in mind, attention is directed toFIGS.9-11, which show various embodiments of probes includingelectrical conductivity sensors100 as described in relation toFIGS.1-8. As shown inFIGS.9-11, which show embodiments of anelectrical conductivity probe400 having one or more electrical conductivity sensor100a,b,c(collectively100). The electrical conductivity sensor(s)100 can be any electrical conductivity sensor described in relation toFIGS.1-8.
Theelectrical conductivity probe400 can have anelongated member410 having adistal portion420 and aproximal portion430. Theelongated member400 can be any three dimensional shape, including but not limited to, an irregular shape, a cylinder, a cannula, a cuboid, and a triangular prism. Theelongated member400 can have a width. The width can range from about 0.1 mm to about 10 mm or more. The elongated member can have a length. The length can range from about 5 mm to about 50 cm or more. The elongated member can have a diameter. The diameter can range from about 10 microns to about 10 mm or more. The distal portion can have a tapered, beveled, pointed, blunt, sharp, rounded, or flat end. Other configurations for the elongated member will be appreciated by those of skill in the ar. At least one electrical conductivity sensor100a,b,c(collectively100) coupled to or otherwise integrated with an outer surface of the elongated member. In some embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or moreelectrical conductivity sensors100 can be coupled to theelongated member410. In some embodiments the electrical conductivity sensor(s)100 can be removably coupled to theelongated member410. The electrical conductivity sensor(s)100 can be electrically coupled to theelongated member410. The electrical conductivity sensor(s)100 can be coupled to the elongated member in any desired configuration, e.g. linearly, radially, and the like, as will be appreciated by those of skill in the art.
Theelectrical conductivity probe400 can include sensors configured to detect tissue characteristics (e.g. pH, temperature, chemical, gas sensors) and circuitry as needed. In some embodiments, theelectrical conductivity probe400 can be configured to deliver an energy to result in focal ablation/cell membrane disruption in a tissue. Stated differently, theelectrical conductivity probe400 can also be a treatment probe in some embodiments. In other embodiments, theelectrical conductivity probe400 can be separate from a treatment probe. Theelectrical conductivity probe400 and/or components thereof can be disposable, reusable, recyclable, biocompatible, sterile, and/or sterilizable.
In some embodiments, the impedance sensors and impedance sensor arrays can be integrated directly with an elongated member510 of anelectrical conductivity probe500. In other words, the impedance sensor and impedance sensor arrays and associated circuitry are not coupled to a substrate (e.g.160,FIGS.1-8), but rather directly integrated with an elongated member510 of a probe. With this in mind attention is directed toFIGS.12-13, which show embodiments of anelectrical conductivity probe500 having one (FIG.12) or more (FIG.13)impedance sensors110, which can be configured to measure tissue impedance, a change in tissue impedance across regions of tissue, and/or both low-frequency (α region) impedance and high-frequency (β region) impedance. The impedance sensor(s) can be as described in relation to any ofFIGS.1-8. As shown inFIG.13, the impedance sensor(s) can be positioned on the elongated member such that they can form animpedance sensor array540. The elongated member can be as described in relation toFIGS.9-11.
The impedance sensor(s)110 can be electrically coupled to theelongated member410. Theelectrical conductivity probe500 can include additional sensors (e.g. pH, temperature, chemical, gas sensors) and additional circuitry as needed. In some embodiments, theelectrical conductivity probe500 can be configured to deliver an energy to result in focal ablation/cell membrane disruption in a tissue. Stated differently, theelectrical conductivity probe500 can also be a treatment probe in some embodiments. In other embodiments, theelectrical conductivity probe500 can be separate from a treatment probe. Theelectrical conductivity probe500 and/or components thereof can be disposable, reusable, recyclable, biocompatible, sterile, and/or sterilizable.
The electrical conductivity probes400,500 described herein can be manufactured by any suitable method and in any suitable way. Suitable methods include, but are not limited to, injection molding, 3-D printing, glass/plastic molding processes, optical fiber production process, casting, chemical deposition, electrospinning, machining, die casting, evaporative-pattern casting, resin casting, sand casting, shell molding, vacuum molding, thermoforming, laminating, dip molding, embossing, drawing, stamping, electroforming, laser cutting, welding, soldering, sintering, bonding, composite material winding, direct metal laser sintering, fused deposition molding, photolithography, spinning, metal evaporation, chemical etching and sterolithography. Other techniques will be appreciated by those of skill in the art.
Real-Time Lesion/Treated Area Monitoring Systems
Also provided herein are lesion and treated area monitoring systems that can include one or more electrical conductivity probes and components thereof described in relation toFIGS.1-13 that can monitor lesion formation during focal ablation/cell membrane disruption therapy. Discussion of the various systems begins withFIG.14, which shows embodiments of a real-timelesion monitoring system600. Anelectrical conductivity probe610 can be coupled to animpedance analyzer620. Theelectrical conductivity probe610 can be any electrical conductivity probe as described in relation toFIGS.9-13. Theimpedance analyzer620 can be electrically coupled to the impedance sensor(s)110 of theelectrical conductivity probe610. In some embodiments, the impedance analyzer can contain one ormore switches630, where each switch can be coupled to a single impedance sensor on theelectrical conductivity probe610.
Theimpedance analyzer620 can include or be coupled to one or morecurrent injection electrodes640 configured to inject a low voltage (0.1-1000 mV or more) signal into the impedance sensor(s)110 of theelectrical conductivity probe610. The injection electrode(s)640 can each be coupled to animpedance sensor110 via a switch. Not all of the impedance sensors need be coupled to aninjection electrode640. Stated differently, in some embodiments, only some of the impedance sensors are coupled to an injection electrode via a switch. In some embodiments, the injection electrodes641a,bare separate from the impedance sensor(s)110 and can be placed on the outside of animpedance sensor array200. (see e.g.FIG.14). The impedance analyzer and/or injection electrodes can be coupled to a lowvoltage power supply650.
Theimpedance analyzer620 can be coupled to and/or in communication with a computer or other data storage/processing device660. Theimpedance analyzer620 can be wirelessly coupled to thecomputer660. The impedance analyzer can be hard wired to thecomputer660. Thecomputer660 can contain processing logic configured to analyze data from theimpedance analyzer620 or other sensor information received from theelectrical conductivity probe610 and determine the size of the lesion or treatedarea730 in thetissue740. Thecomputer660 can contain processing logic configured to generate or initiate a signal (visual, audible, digital or otherwise) to alert a user that the lesion or treated are has reached a threshold size. Thecomputer660 can contain processing logic that can be configured to analyze data received from theimpedance analyzer620 and/orelectrical conductivity probe610 can contain processing logic configured to analyze data from theimpedance analyzer620 or other sensor information received from theelectrical conductivity probe610 and generate an electrical tomographic image of the treatment area. In some embodiments, the processing logic can be configured to determine the ratio of low-frequency impedance to high frequency impedance at a givenimpedance sensor110 from impedance sensor data received from theimpedance analyzer620 and/orelectrical conductivity probe610. Thecomputer660 can contain processing logic configured to determine the amount of high voltage that should be applied to the treatment area via atreatment probe670 in response to the impedance data and/or other sensory information received.
Thecomputer660 can be coupled to awaveform generator680. Thewaveform generator680 can be coupled to agate driver690. Thegate driver690 and/orimpedance analyzer620 can be coupled to ahigh voltage switch700. The high voltage switch can be coupled to anenergy storage device710. The energy storage device can be coupled to a highvoltage power supply720, configured to deliver a high voltage that can range from 50 to 10000 V or more. Atreatment probe670 can be coupled to thehigh voltage switch700. Thehigh voltage switch700 can be controlled by and/or responsive to thewaveform generator680 and/orgate driver690. Insofar as thewaveform generator680 and/orgate driver690 can be controlled by thecomputer660, treatment can be, in some embodiments, autonomously controlled in response to impedance and other sensory data obtained by theelectrical conductivity probe610 during treatment. The operation of the system is discussed in further detail below.
In some embodiments, such as those shown inFIG.15, the electrical conductivity sensor only includes one sensing area as opposed to an array of sensors which provides ease of fabrication and could be used to tell if the lesion front has reached a certain point rather than monitoring its location. Thesystem800 can be configured the same as that described in relation toFIG.14, except that asingle probe750, which can contain one or more impedance sensor or an impedance sensor array, is coupled to both thehigh voltage switch700 and the lowvoltage power supply650.
Real-Time Lesion Front/Treated Area Monitoring
The devices and systems described herein can be used to monitor the lesion formation/front and/or treated area during focal ablation/cell membrane disruption therapies, which include, but are not limited to radiofrequency (RF) ablation, microwave ablation, laser ablation, cryo-ablation, ultrasound, electroporation (reversible and irreversible), supraporation, and radiation therapy. Thus, these devices and systems have application for tumor and undesired ablation, drug delivery, and gene therapy and nucleic acid and other molecule delivery. In principle, an electrical conductivity probe as described in relation toFIGS.1-13 can be inserted into a tissue. During focal ablation or cell membrane disruption, the treated portion of the tissue undergoes changes due to changes in the permeability of the cell membrane. This results in the formation of a lesion or treated area (e.g. area of tissue to which a drug or other molecule has been delivered). As treatment continues the size of the lesion or treated area can grow. Impedance and other sensors on the electrical conductivity probe can measure electrical conductivity, pH, temperature, chemicals, and/or gasses at locations in the tissue. The systems and devices described herein can then determine the lesion size based upon the electrical conductivity data and other sensory information determined by the probe. In some embodiments, the system can be configured to autonomously control the treatment probe such that when the lesion has reach a desired size, the system can stop treatment in the tissue. In embodiments, the system can be configured to alert a user that the lesion/treated are has reached a desired size. In some embodiments, a user can alter treatment in response to the determined lesion/treated area size. The operation of the systems and devices is discussed in greater detail with respect toFIGS.16A-17C.
Discussion of the operation of the systems and devices begins withFIGS.16A-16B, which show monitoring of a lesion/treated area formation and front using an electrical conductivity probe having an impedance sensor during treatment (FIG.16A) and at the treatment endpoint (FIG.16B). The treatment probe is not shown inFIGS.16A and16B for clarity. However, it will be appreciated that treatment may be provided by a separate treatment probe or be provided by the electrical conductivity probe, which can be configured to deliver high voltage treatment as well as measure tissue characteristics.FIGS.16A-16B demonstrate monitoring of lesion/treated area formation and front during treatment when using a single impedance sensor (or other sensor) or multiple impedance sensors (or other sensors) placed radially about the surface of the probe such that the sensors are all at the same point along the length of the probe.
As shown inFIG.16A, theelectrical conductivity probe900 can be inserted into thetissue910. Theelectrical conductivity probe900 can be inserted into the tissue such that the impedance or other sensor is at the outer edge of the desired treatment area. As treatment begins, a lesion or treatedarea920 begins to form as the permeability of the cell membranes change. During this time impedance and/or other tissue characteristics are being measured by the sensor(s)930 on the electrical conductivity probe. The sensors (impedance or other types) can be as described in relation toFIGS.1-8. As such, during treatment, the impedance and/or other tissue characteristics can be continually determined during treatment and compared to prior measurements, including any baseline measurements taken prior to the start of treatment, to determine if the lesion/treated area has reached the desired size. As shown inFIG.16B, when the lesion/treated area has grown such that it reaches the point in the tissue where the impedance or other sensor(s)930 is located, the sensor(s) will measure a change in electrical conductivity and/or pH, chemical concentration, gas concentration, or other molecule concentration and the system can alert a user that the size of the lesion/treated area has reached the desired size. For example, in some embodiments, when the lesion/treated area reaches the sensor(s)930 on theelectrical conductivity probe900, the low-frequency impedance is equal to the high-frequency impedance. In other embodiments, the system can automatically stop treatment via the treatment probe in response to a detected change in the impedance or other tissue characteristic.
While systems and devices employing sensor(s) at a single point along the length of the probe can be suitable for some applications, they can only determine the size of a lesion/treated area when it reaches a single point. With that in mind attention is directed toFIGS.17A-17C, which show the operation of an electrical conductivity probe having a sensor array (e.g. an electrical impedance sensor array) during treatment. The treatment probe is not shown inFIGS.17A-17B for clarity. However, it will be appreciated that treatment may be provided by a separate treatment probe or be provided by the electrical conductivity probe, which can be configured to deliver high voltage treatment as well as measure tissue characteristics.
As shown inFIG.17A, theelectrical conductivity probe900 can be inserted in atissue910 to be treated. Baseline impedance and other tissue characteristic measurements can be obtained prior to the start of treatment. As treatment begins a lesion/treatedarea920 can form in thetissue910. During treatment the sensors of thesensor array940 can be measuring impedance and/or other tissue characteristics (e.g. pH, chemical concentration, gas concentration, temperature, other molecule concentration, and the system (not shown for clarity) can be determining if there is a change in the impedance and/or other tissue characteristics at any given sensor along thesensor array940 or between any combination of sensors along thesensor array940. As the lesion front/treatment area920 grows (seeFIG.17B), the system will determine that there is a change relative to base line and/or that of another sensor in the impedance and/or other tissue characteristic between certain sensors within the array. From that data the system can determine the size of the lesion and/or determine the position of the lesion front as the lesion grows during treatment. For example, as shown inFIG.17B the lesion/treatedarea920 has grown such that the lesion front is between the second950band third sensor950cof thesensor array940. As such, the system can determine that there is a change in the impedance (or other tissue characteristic) at the second sensor950brelative to baseline. The system can determine that there is no change in the impedance (or other tissue characteristic) at the third sensor950crelative to baseline. From this, the system can determine that the lesion front/treated area has reached the position on the probe that lies between the second950band third950csensor on theelectrical conductivity probe900. The process of continually measuring impedance (other tissue characteristic) by the sensors of thesensor array940 and comparing them to baseline/and or other data from other sensors of thesensor array940 can continue until the lesion/treatedarea920 has reached a desired size. The desired size can be predetermined and the system can be configured to alert a user via a signal when the system calculates that the desired size has been reached. In other embodiments, the system can be configured to automatically stop treatment when the system calculates that the desired size has been reached.
It will be appreciated that any number of electrical conductivity probes900 can be used at the same time. By placing electrical conductivity probes900 at different locations and depths into the tissue, the data provided can be used by the system to determine a volume of the lesion/treated area and/or generate a three dimensional image of the treated area.
EXAMPLES
Now having described the embodiments of the present disclosure, in general, the following Examples describe some additional embodiments of the present disclosure. While embodiments of the present disclosure are described in connection with the following examples and the corresponding text and figures, there is no intent to limit embodiments of the present disclosure to this description. On the contrary, the intent is to cover all alternatives, modifications, and equivalents included within the spirit and scope of embodiments of the present disclosure.
Example 1
FIGS.18-20 show images demonstrating an electrical conductivity sensor as described in relation to any ofFIGS.1-8. The fabricated probe is about 15 micron thick, 8 cm long and 8 mm wide. The gold wires are sandwiched between two polyimide layers. The polyimide layer over the bonding pads and the sensor area is removed to expose these parts. The small dimensions of the sensor can enable conductivity measurement with a high spatial resolution. The electrical conductivity sensor can be wrapped around a probe, such as an irreversible electroporation probe (IRE) or other treatment probe to create a device capable of both treating tissue with electroporation and monitoring the extent of the treatment in real-time. In this probe, the conductivity measurement can be conducted at one point next to the beginning of the exposed area of the IRE probe. The electrode can be flexible enough to be easily wrapped around IRE probes with a small diameter of 1 mm.FIG.21 shows an image of an electrical conductivity sensor that has been coupled to an IRE probe.
Example 2
FIGS.22A-22J demonstrate a fabrication process for the construction of the electrical conductivity sensor of Example 1. A 4″Si wafer2200 was used as the fabrication substrate. The wafer edge was treated with a solution of adhesion promoter (HD Microsystems, Parlin, NJ) to provide adhesion between thewafer2200 and the polyimide layer2210 (FIG.22B). The adhesion should be enough to keep the construct on thewafer2200 during the fabrication steps. (FIG.22B) Polyimide (HD Microsystems, Parlin, NJ)substrate2210 was spun and cured over theSi wafer2200. The spin speed was adjusted to achieve a thickness of about 15 microns. The spin step could be repeated if a greater film thickness is desired. (FIG.22C) A layer of about 300 nm of gold was deposited on the polyimide layer by PVD. For a better adhesion of gold to the polyimide substrate aCr layer2200 was deposited first. (FIG.22C) Aphotoresist layer2230 was spun and patterned as the desired gold electrodes using the photolithography techniques.FIG.22D The patterned photoresist was used as a mask for wet etching of gold in the next step. Gold and Cr layers were etched2240 (FIG.22E) using appropriate wet etching solutions and thephotoresist layer2230 was washed away. Another layer ofpolyimide2250 was spun and cured to act as an insulator over the electrodeFIG.22F. The insulator should cover the wires of the electrode and leave the sensor and bond pads exposed. ATi mask2260 was deposited by PVD and patterned by photolithography techniques followed by wet etching (FIG.22G). The Ti mask was used to etch the upper polyimide layer in RIE (Reactive Ion Etching) to expose2270 the sensing areas and bond pads (FIG.22H). The Ti mask was washed away using wet etching (FIG.22I). The whole electrode structure was peeled off the Si wafer2200 (FIG.22J). To protect the impedance electrodes from high voltage electric discharge of the pulsing leads, a thin passivation layer such as silicon dioxide or silicon nitride can be coated on the sensor area. This passivation layer acts as a capacitor which protects the sensor from high voltage of the DC pulses however has a minimal impact on the AC impedance readings. Functionalization of the sensors with receptor molecules configured to specifically bind a target molecule can performed after metal patterning as an option using techniques known in the art.
Example 3
A three dimensional finite element model was constructed in Comsol 4.2a (Burlington, MA) to simulate IRE treatment of liver tissue with two needle electrodes (FIGS.23A-23B). The electric potential distribution within the tissue was obtained by transiently solving:
0=−∇·(σ(|E|)∇Φ)  (Equation 1)
Where ϕ is the electric potential, E is the electric field, and a is the electric conductivity.Equation 1 is obtained from Maxwell's equations assuming no external current density (J=σE), no remnant displacement (D=ε0εr,E), and the quasi-static approximation. This approximation implies a negligible coupling between the electric and magnetic fields (∇×E=0), which allows for the expression of electric field only in terms of electric potential:
E=−∇ϕ  (Equation 2)
As depicted inEquation 1, the electric conductivity is a function of the electric field magnitude. This equation is used to describe the nonlinear of effects of pore formation in the cell membrane at the tissue scale. Specifically, this can be described by a step function with a certain degree of smoothing, or by other functions that follow similar relationships between the electric conductivity and electric field, such as sigmoid or Gompertz functions. The step function chosen here increased from a baseline conductivity of 0.3 S/m to a plateau of 1.05 S/m across a transition zone of 500 V/cm centered at 500 V/cm. Therefore, regions of tissue subject to an electric field above 750 V/cm were maximally electroporated.
An electric potential boundary condition of 1500 V was applied along the energized surface of one of the electrodes, with the corresponding ground portion of the alternate electrode set to 0 V. The dielectric properties of the exposed portion of the electrodes for performing IRE and the insulative portion for protecting healthy tissue can be found in Garcia, P. A., et al.,Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. Journal of Membrane Biology, 2010. 236(1): 127-136. All remaining interior boundaries were treated as continuity, and all remaining outer boundary conditions were treated as electrical insulation. The stationary problem consisting of 100,497 mesh elements was solved using an iterative, conjugate gradient solver.
The electrical conductivity in the tissue resulting from IRE is shown inFIG.24A. Experimentally, voltage drop measurements made between any combination of sensing electrodes can be used to determine this conductivity. Through comparisons to electrical measurements made prior to treatment, it is then possible to determine the extent to which tissue adjacent to each of the sensors has undergone electroporation. If impedance measurements are obtained between electroporative pulses of a multiple pulse protocol, then a real-time, dynamic representation of how the treated tissue expands along the length of the electrode can be obtained. Point specific measurements can also be extrapolated in three dimensions to determine the spatial-temporal conductivity map and electric field distribution (FIG.24B).
Example 4
FIGS.25A-27 describe results of delivering a series of high-frequency irreversible electroporation (HFIRE) pulses to porcine liver through the high voltage portion of a probe that also contains an impedance sensor array.FIG.25A shows an experimental probe model with 5 microelectrodes and 4 sensing pairs (SP). InFIG.25B, TTC Stained HFIRE ablation in liver (2000 V) can be observed in which viable tissue was stained red while dead tissue whitened. Ablation (marked by dotted line) reached only SP1. The impedance signature throughout delivery of HFIRE pulses as measured by SP1 is shown inFIG.26). The largest change in impedance was observed at 5 kHz, which indicated current was no longer confined to extracellular pathways and its flowing through the cell membrane—indicating electroporation of tissue. This progressive decline in resistance can be used to monitor ablation growth throughout the therapy.FIG.27 presents the resulting changes in tissue impedance during HFIRE therapy at 5 kHz. Major changes in impedance were only observed on probe pair in contact with treated tissue (FIG.25B). FEM results for electric field distribution along the length of the probe for different pulse parameters can be correlated to these spatio-temporal changes in electrical conductivity during IRE procedures to indicate the electric field threshold for cell death in a tissue of interest.
Example 5
A real-time visualization tool for monitoring of reversible and irreversible electroporation treatments. Once the threshold for cell death in terms of bulk tissue conductivity has been characterized this information can be used to reconstruct the ablation in 3D. The volume of the ablation geometry can be described in 2D with a Cassini oval plot that has the results from one axis extrapolated into a third dimension.
The Cassini oval is a curve that derives its values based on the distance of any given point, a, from the fixed location of two foci, q1and q2, located at (x1, y1) and (x2, y2). The equation is similar to that of an ellipse, except that it is based on the product of distances from the foci, rather than the sum. This makes the equation for such an oval:
[(x2−a)2+(y2−a)2]=b4  (Equation 3)
where b4is a scaling factor to determine the value at any given point. For incorporation of this equation into shapes that represent the electric field distribution, it is assumed that the two foci are located at the center of the pulsing electrodes along the length of the probe (e.g., x-axis) at (±x,0).
Here, the parameter a represents the location of the ablation front along the length of an IRE needle. This is used to solve for b giving a complete equation to describe the ablation volume. After the probe is placed, software can record baseline values for impedance along a micro-sensor array. After treatment begins, impedance measurements can be recorded in real-time. The location of the ablation(lesion) front can be determined according to the characteristic conductivity of the tissue of interested after it has been irreversibly electroporated. Finally, this data can be used to calculate the ablation geometry, which can be projected as a 3D isometric view of SMART probe onto ortho-planes from stacked CT images of patient anatomy (FIG.28A). Similarly, the ablation progression can be observed during treatment at 10 (green), 50 (red), and 100 (blue) pulses in axial (FIG.28B), sagittal (FIG.28C), and coronal planes (FIG.28D). Ultimately this system can provide healthcare professions and other practitioners with real-time feedback of any IRE therapy, by displaying the ablation volume relative to a targeted tumor in medical scans such as MRI, PET, or CT.
Example 6
FIGS.29A-31C describe parts of the methodology related to determining the location of the ablation front and the resulting geometry of the volume of ablation from a series of irreversible electroporation (IRE) pulses through the high voltage portion of a bipolar probe, also containing an impedance sensor array.FIGS.29A-29C shows the finite element model (FEM) results for electric field distribution along the length of the probe for IRE pulses with a magnitude of 1500V. The dotted line corresponds to a characterized threshold for cell death dependent of a specific number of pulses (N) (e.g., 10, 30, 100). After the tissue has been treated with several IRE pulses an ablation front can be detected in the form of a change in tissue resistivity at different points along the probe (FIGS.30A-30C).FIGS.31A-31C shows the resulting volumes of ablationpost IRE treatments 10, 30 and 100 pulses of 1500V.
Lesion growth in the perpendicular direction of the probe is also reflected in the impedance measurement by the probe. For example, it is predicted by FEM model (FIGS.29A-29C, solid line) and observed inFIGS.31A-31C that for 30 and 100 pulse treatments, probes 1 and 2 would fall within the lesion. However, the corresponding impedance measurement shows 400% and 500% increase in conductivity for 30 and 100 pulses, respectively. This difference is attributed to the depth of lesion in the perpendicular direction. For the case of 10 pulses of 1500V, the small depth of the lesion in perpendicular direction and the marginal location ofprobe 2 compared with the lesion, results in 200% relative conductivity for sensors 1-2 measurement. For all treatments, the measurements showing 100% relative conductivity correspond to electrodes completely outside of the lesion.
These experimental results show that device (electroporation leads and micro-electrode array) used during these experiments is not only capable of monitoring the lesion length along the probe, but also gives relevant information regarding its other dimensions. This information when combined with FEM modeling can give accurate shape and size of the lesion.
Example 7
FIG.32 shows a diagram demonstrating how the electrical connections to aconductivity probe1000 can be made through conductive flexible silicon pads or any other flexible conductive material or structure that can be installed in the handle and in opposite side of theconductive pads140. The conductive silicon pads can be connected to the external wires. Upon assembly, the conductive silicon pads come in conformal contact with the gold pads on the conductivity sensor and make the electrical connection.
Example 8
FIG.33A shows a graph demonstrating the impedance spectrum of porcine liver as measured by the conductivity sensor. Fitting of the spectrum to the equivalent circuit model of tissue reveals critical tissue properties at cellular level which could be used for determination of lesion size during ablation.FIG.33B shows one example of tissue electric circuit model.
Example 9
FIGS.34 and35 demonstrate additional embodiments of a system configured to monitor a lesion/treated area front in real-time. In this embodiment, the high voltage energy for tissue ablation can be delivered to the tissue through a single high voltage probe and a large grounding pad, which can be positioned on the surface of the organ/tissue. Due to electric field concentration around the tip of the high voltage electrode, a spherical lesion can form. The spherical lesion can be monitored using the conductivity sensor as described before.

Claims (26)

We claim:
1. An electrical conductivity sensor comprising:
an array of impedance sensors, wherein the array of impedance sensors is configured to measure impedance:
at a first frequency in the range of about 0.001 Hz to 1 kHz; and
at a second frequency in the range of about 0.1 MHz to 100 GHz;
one or more temperature sensors; and
a substrate, wherein the array of impedance sensors and the one or more temperature sensors are coupled to the substrate.
2. The electrical conductivity sensor ofclaim 1, wherein the substrate is flexible.
3. The electrical conductivity sensor ofclaim 1, wherein the array of impedance sensors comprises two or more electrical conductors.
4. The electrical conductivity sensor ofclaim 3, wherein the electrical conductors are in a bipolar configuration.
5. The electrical conductivity sensor ofclaim 4, wherein the electrical conductors are in a tetrapolar configuration.
6. The electrical conductivity sensor ofclaim 3, wherein the array of impedance sensors comprises two impedance sensors coupled to the substrate such that they are orthogonal to each other.
7. The electrical conductivity sensor ofclaim 3, wherein each of the electrical conductors of the array of impedance sensors is coupled with a bonding pad.
8. The electrical conductivity sensor ofclaim 1, further comprising a common ground, wherein each impedance sensor of the array is coupled to the common ground.
9. The electrical conductivity sensor ofclaim 1, further comprising a common counter electrode, wherein the common counter electrode is coupled to the substrate.
10. The electrical conductivity sensor ofclaim 1, wherein the array of impedance sensors comprises interdigitated electrodes.
11. The electrical conductivity sensor ofclaim 10, further comprising one or more sensors configured to detect pH, a chemical concentration, a nucleic acid concentration, a gas amount, or combinations thereof.
12. The electrical conductivity sensor ofclaim 1, wherein the array of impedance sensors further comprises a receptor molecule configured to specifically bind a target molecule, wherein the receptor molecule is coupled to one or more of the impedance sensors of the array.
13. The electrical conductivity sensor ofclaim 12, wherein the array of impedance sensors comprises interdigitated electrodes.
14. The electrical conductivity sensor ofclaim 12, further comprising one or more sensors configured to detect pH, a chemical concentration, a nucleic acid concentration, a gas amount, or combinations thereof.
15. The electrical conductivity sensor ofclaim 1, further comprising one or more sensors configured to detect pH, a chemical concentration, a nucleic acid concentration, a gas amount, or combinations thereof.
16. An electrical conductivity probe comprising:
an elongated member; and
an electrical conductivity sensor coupled to a flexible substrate, wherein the flexible substrate is coupled to the elongated member; and
wherein the electrical conductivity sensor comprises:
an array of impedance sensors, wherein the array of impedance sensors is configured to measure impedance at a first frequency within the range of 0.001 Hz to 1 kHz and at a second frequency within the range of about 0.1 MHz to 100 GHz; and one or more temperature sensors.
17. The electrical conductivity probe ofclaim 16, wherein the electrical conductivity sensor is removably coupled to the elongated member at the substrate.
18. A system comprising:
a waveform generator;
an impedance analyzer; and
a treatment probe comprising an elongated member and configured to operatively couple to the waveform generator and the impedance analyzer, wherein the treatment probe comprises:
i) one or more electrodes configured to deliver electrical energy to a tissue; and
ii) one or more impedance sensors configured to measure impedance within two different frequency ranges, wherein a first frequency range is 0.001 Hz to 1 kHz and a second frequency range is about 0.1 MHz to 100 GHz; wherein the impedance analyzer is configured for operable communication with the one or more impedance sensors to measure the impedance; and
wherein the waveform generator is further configured for delivering the electrical energy to the one or more electrodes and for delivering an electrical signal to the one or more impedance sensors.
19. The system ofclaim 18, further comprising a computer, wherein the computer is configured for operable communication with the impedance analyzer and to determine a location of treated tissue.
20. The system ofclaim 19, wherein the computer comprises a processing logic further configured to generate a signal to a user when the location of treated tissue has reached a predetermined position.
21. The system ofclaim 18, wherein the one or more electrodes are needle electrodes.
22. The system ofclaim 18, wherein the elongated member comprises a proximal portion and a distal portion, the distal portion having a pointed, rounded, or flat end.
23. The system ofclaim 22, wherein the one or more electrodes are located at or along the distal portion of the elongated member.
24. The system ofclaim 23, wherein the one or more impedance sensors comprise an array of impedance sensors, and the array of impedance sensors is located between the proximal portion of the elongated member and the one or more electrodes.
25. The system ofclaim 18, wherein the one or more impedance sensors comprise an array of impedance sensors.
26. The system ofclaim 18, wherein the first frequency range is about 0.1 Hz to about 10 Hz and the second frequency range is about 0.1 MHz to about 10 MHz.
US16/865,0312014-12-152020-05-01Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatmentActive2037-07-28US11903690B2 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US16/865,031US11903690B2 (en)2014-12-152020-05-01Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US17/152,379US20210137410A1 (en)2014-12-152021-01-19Intelligent surgical probe for real-time monitoring of electroporation-based therapies
US18/404,473US20240277245A1 (en)2014-12-152024-01-04Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US201462091703P2014-12-152014-12-15
PCT/US2015/065792WO2016100325A1 (en)2014-12-152015-12-15Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US201715536333A2017-06-152017-06-15
US16/865,031US11903690B2 (en)2014-12-152020-05-01Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Related Parent Applications (2)

Application NumberTitlePriority DateFiling Date
US15/536,333ContinuationUS10694972B2 (en)2014-12-152015-12-15Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
PCT/US2015/065792ContinuationWO2016100325A1 (en)2014-12-152015-12-15Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Related Child Applications (2)

Application NumberTitlePriority DateFiling Date
US17/152,379Continuation-In-PartUS20210137410A1 (en)2014-12-152021-01-19Intelligent surgical probe for real-time monitoring of electroporation-based therapies
US18/404,473ContinuationUS20240277245A1 (en)2014-12-152024-01-04Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Publications (2)

Publication NumberPublication Date
US20200260987A1 US20200260987A1 (en)2020-08-20
US11903690B2true US11903690B2 (en)2024-02-20

Family

ID=56127458

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US15/536,333Active2036-01-03US10694972B2 (en)2014-12-152015-12-15Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US16/865,031Active2037-07-28US11903690B2 (en)2014-12-152020-05-01Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US18/404,473PendingUS20240277245A1 (en)2014-12-152024-01-04Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US15/536,333Active2036-01-03US10694972B2 (en)2014-12-152015-12-15Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US18/404,473PendingUS20240277245A1 (en)2014-12-152024-01-04Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment

Country Status (2)

CountryLink
US (3)US10694972B2 (en)
WO (1)WO2016100325A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11950835B2 (en)2019-06-282024-04-09Virginia Tech Intellectual Properties, Inc.Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
US11974800B2 (en)2008-04-292024-05-07Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US12102376B2 (en)2012-02-082024-10-01Angiodynamics, Inc.System and method for increasing a target zone for electrical ablation
US12114911B2 (en)2014-08-282024-10-15Angiodynamics, Inc.System and method for ablating a tissue site by electroporation with real-time pulse monitoring
US12173280B2 (en)2008-04-292024-12-24Virginia Tech Intellectual Properties, Inc.Methods of reducing adverse effects of non-thermal ablation
US12201349B2 (en)2009-04-032025-01-21Angiodynamics, Inc.Congestive obstruction pulmonary disease (COPD)
US12214189B2 (en)2019-07-242025-02-04Virginia Tech Intellectual Properties, Inc.Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies
US12232792B2 (en)2011-07-152025-02-25Virginia Tech Intellectual Properties, Inc.Device and method for electroporation based treatment
US12303182B2 (en)2016-11-172025-05-20Angiodynamics, Inc.Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US12390262B2 (en)2018-03-132025-08-19Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
US12390268B2 (en)2008-04-292025-08-19Virginia Tech Intellectual Properties, Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8992517B2 (en)2008-04-292015-03-31Virginia Tech Intellectual Properties Inc.Irreversible electroporation to treat aberrant cell masses
US10245098B2 (en)2008-04-292019-04-02Virginia Tech Intellectual Properties, Inc.Acute blood-brain barrier disruption using electrical energy based therapy
US10117707B2 (en)2008-04-292018-11-06Virginia Tech Intellectual Properties, Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10238447B2 (en)2008-04-292019-03-26Virginia Tech Intellectual Properties, Inc.System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US9283051B2 (en)2008-04-292016-03-15Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US10272178B2 (en)2008-04-292019-04-30Virginia Tech Intellectual Properties Inc.Methods for blood-brain barrier disruption using electrical energy
US9198733B2 (en)2008-04-292015-12-01Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
US11638603B2 (en)2009-04-092023-05-02Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US11382681B2 (en)2009-04-092022-07-12Virginia Tech Intellectual Properties, Inc.Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
WO2010138919A2 (en)2009-05-282010-12-02Angiodynamics, Inc.System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en)2009-06-192018-02-20Angiodynamics, Inc.Methods of sterilization and treating infection using irreversible electroporation
EP2627274B1 (en)2010-10-132022-12-14AngioDynamics, Inc.System for electrically ablating tissue of a patient
WO2012088149A2 (en)2010-12-202012-06-28Virginia Tech Intellectual Properties, Inc.High-frequency electroporation for cancer therapy
US9078665B2 (en)2011-09-282015-07-14Angiodynamics, Inc.Multiple treatment zone ablation probe
WO2015175570A1 (en)2014-05-122015-11-19Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US10694972B2 (en)2014-12-152020-06-30Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US11077475B2 (en)*2017-05-232021-08-03International Business Machines CorporationNeuro-chemical sensor with inhibition of fouling on nano-electrode
WO2019190596A1 (en)*2017-10-202019-10-03Rutgers, The State University Of New JerseyTranscutaneous wearable apparatus for continuous monitoring of biomarkers in blood
US10583282B2 (en)2017-11-132020-03-10International Business Machines CorporationNeuro-stem cell stimulation and growth enhancement with implantable nanodevice
US11607537B2 (en)2017-12-052023-03-21Virginia Tech Intellectual Properties, Inc.Method for treating neurological disorders, including tumors, with electroporation
US11925405B2 (en)2018-03-132024-03-12Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11311329B2 (en)2018-03-132022-04-26Virginia Tech Intellectual Properties, Inc.Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
GR1009704B (en)*2018-12-312020-02-07Κωνσταντινος Γεωργιου ΠαπαγεωργιουMethod for real-time recognition and mapping of neoplastic cells and a system therefor
EP4240469A4 (en)*2020-11-032024-10-02Dignity HealthSystems and methods for measuring electric field in biological tissues
CN113081261B (en)*2021-05-252023-11-21天津市环湖医院Hematoma puncture navigation probe device and brain magnetic detection electrical impedance imaging system
WO2024049119A1 (en)*2022-08-302024-03-07프로바랩스 주식회사Non-destructive bioprofiling device including spatial resolution, and method of operating same

Citations (735)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1653819A (en)1926-08-071927-12-27Northcott EphraimElectrotherapeutical apparatus
DE863111C (en)1951-07-031953-01-15Walter Hallegger Instrument for transcutaneous and subcutaneous heating and iontophoresis and method of its use
US3730238A (en)1971-09-211973-05-01R ButlerFriction type screwdriver
US3746004A (en)1971-06-141973-07-17B JankelsonDisposable electrodes for electrical stimulation of muscles and nerves of the head
US3871359A (en)1973-06-251975-03-18Interscience Technology CorpImpedance measuring system
US4016886A (en)1974-11-261977-04-12The United States Of America As Represented By The United States Energy Research And Development AdministrationMethod for localizing heating in tumor tissue
US4037341A (en)1973-08-131977-07-26Johns-Manville CorporationLuminaire for lighting a sign and method
US4216860A (en)1978-12-111980-08-12Electro-Catheter CorporationMedical device container and method of manufacture
US4226246A (en)1977-05-271980-10-07Carba Societe AnonymeApparatus for maintaining the negative potential of human, animal, and plant cells
US4262672A (en)1978-01-021981-04-21Horst KiefAcupuncture instrument
US4267047A (en)1977-02-111981-05-12Akzo N.V. Of Arnhem/NederlandDialyzing membrane with adsorbent layer
US4278092A (en)1979-07-051981-07-14American Hospital Supply CorporationPeritoneal catheter
US4299217A (en)1977-06-031981-11-10Terumo CorporationIntravascular catheter
US4311148A (en)1980-05-191982-01-19Mitchell V. Kaminski, Jr.Micro-jejunostomy feeding tube
US4336881A (en)1979-06-141982-06-29Diachem, Inc.Aqueous acid concentrate for hemodialysis dialysate
US4344436A (en)1980-01-161982-08-17Yukio KubotaDevice for determining location of the tip of catheter
US4392855A (en)1980-05-081983-07-12Oreopoulos Dimitrios GCatheter
US4406827A (en)1979-09-041983-09-27Minnesota Mining And Manufacturing CompanyCohesive nonsticky electrically conductive gel composition
US4407943A (en)1976-12-161983-10-04Millipore CorporationImmobilized antibody or antigen for immunoassay
US4416276A (en)1981-10-261983-11-22Valleylab, Inc.Adaptive, return electrode monitoring system
US4447235A (en)1981-05-071984-05-08John M. ClarkeThoracentesis device
US4469098A (en)1978-12-181984-09-04Davi Samantha KApparatus for and method of utilizing energy to excise pathological tissue
US4489535A (en)1980-10-021984-12-25Veltman Preston LeonardMaterials and method for preparing dialysis solutions containing bicarbonate ions
US4512765A (en)1983-06-091985-04-23Rudolph MutoSelective tracheal bronchial catheter
US4580572A (en)1983-06-011986-04-08Bio-Stimu Trend Corp.Garment apparatus for delivering or receiving electric impulses
US4636199A (en)1984-07-091987-01-13Victor Lyle DDevice for inserting a catheter within the intercostal space
EP0218275A1 (en)1985-08-301987-04-15Fijneman, Martinus Jacobus Antonius JohannesMulti-purpose catheter
US4672969A (en)1983-10-061987-06-16Sonomo CorporationLaser healing method
US4676258A (en)1983-01-241987-06-30Kureha Kagaku Kogyo Kabushiki KaishaDevice for hyperthermia
US4676782A (en)1984-09-211987-06-30Vitaphore CorporationPositionable tissue interfacing device for the management of percutaneous conduits
US4687471A (en)1985-05-011987-08-18Curators Of The University Of MissouriPeritoneal dialysis catheter
US4716896A (en)1986-08-011988-01-05Ackrad LaboratoriesBronchial catheter
US4723549A (en)1986-09-181988-02-09Wholey Mark HMethod and apparatus for dilating blood vessels
USD294519S (en)1985-07-291988-03-01Peter LaHayeInstrument for tattooing
US4756838A (en)1980-02-211988-07-12Veltman Preston LeonardPreparation of dry dialysate products
US4772269A (en)1985-05-011988-09-20Curators Of The University Of MissouriPeritoneal dialysis catheter
US4798585A (en)1986-06-061989-01-17Asahi Kogaku Kogyo Kabushiki KaishaSupport for biomedical implant device
US4810963A (en)1984-04-031989-03-07Public Health Laboratory Service BoardMethod for investigating the condition of a bacterial suspension through frequency profile of electrical admittance
US4813929A (en)1987-02-191989-03-21Neal SemradChest tube device and method of inserting device
US4819637A (en)1987-09-011989-04-11Interventional Therapeutics CorporationSystem for artificial vessel embolization and devices for use therewith
US4822470A (en)1987-10-091989-04-18Baylor College Of MedicineMethod of and apparatus for cell poration and cell fusion using radiofrequency electrical pulses
US4836204A (en)1987-07-061989-06-06Landymore Roderick WMethod for effecting closure of a perforation in the septum of the heart
US4840172A (en)1986-09-041989-06-20Augustine Scott DDevice for positioning an endotracheal tube
US4863426A (en)1987-08-181989-09-05Ferragamo Michael CPercutaneous venous catheter
EP0339501A2 (en)1988-04-261989-11-02Arturo Dr. MutiBronchial examination catheter
US4885003A (en)1988-07-251989-12-05Cordis CorporationDouble mesh balloon catheter device
US4886502A (en)1986-12-091989-12-12Thermedics, Inc.Peritoneal access catheter
US4886496A (en)1988-02-041989-12-12Conoscenti Craig SBronchoscopic balloon tipped catheter and method of making the same
US4889634A (en)1988-10-041989-12-26Gynex, Inc.Dialysate solution containing hydroxypropyl-beta-cyclodextrin and method of using same
US4903707A (en)1988-04-221990-02-27Camino LaboratoriesVentricular catheter assembly
US4907601A (en)1988-06-151990-03-13Etama AgElectrotherapy arrangement
US4919148A (en)1988-06-131990-04-24Muccio Philip EApparatus and method for transcutaneous electrical stimulation
US4920978A (en)1988-08-311990-05-01Triangle Research And Development CorporationMethod and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia
US4921484A (en)1988-07-251990-05-01Cordis CorporationMesh balloon catheter device
EP0378132A2 (en)1989-01-091990-07-18S.L. Cit IonoforA device for the administration of medication by iontopheresis for local - regional treatment.
US4946793A (en)1986-05-091990-08-07Electropore, Inc.Impedance matching for instrumentation which electrically alters vesicle membranes
US4976709A (en)1988-12-151990-12-11Sand Bruce JMethod for collagen treatment
US4981477A (en)1988-04-161991-01-01Rudolf SchonCatheter for introduction into the trachea and the bronchial system
US4986810A (en)1989-09-011991-01-22Neal SemradToggle catheter
US4987895A (en)1986-10-061991-01-29Heimlich Henry JTracheal tube
WO1991004014A1 (en)1989-09-211991-04-04Synergen, Inc.Method for transporting compositions across the blood brain barrier
US5019034A (en)1988-01-211991-05-28Massachusetts Institute Of TechnologyControl of transport of molecules across tissue using electroporation
US5031775A (en)1990-02-141991-07-16Angeion CorporationMedical instrument holder
DE4000893A1 (en)1990-01-151991-07-18Bosch Gmbh RobertMultichannel appts. for electro-simulation - provides several current circuits for patient with electrodes applying pulse signals
US5053013A (en)1990-03-011991-10-01The Regents Of The University Of MichiganImplantable infusion device
US5052391A (en)1990-10-221991-10-01R.F.P., Inc.High frequency high intensity transcutaneous electrical nerve stimulator and method of treatment
US5058605A (en)1989-02-221991-10-22Ceske Vysoke Uceni TechnickeMethod and device for the controlled local, non-invasive application of dc pulses to human and animal tissues
US5071558A (en)1989-08-111991-12-10Nikkiso Co., Ltd.Sodium bicarbonate dialysate
US5098843A (en)1987-06-041992-03-24Calvin Noel MApparatus for the high efficiency transformation of living cells
US5122137A (en)1990-04-271992-06-16Boston Scientific CorporationTemperature controlled rf coagulation
US5134070A (en)1990-06-041992-07-28Casnig Dael RMethod and device for cell cultivation on electrodes
US5137517A (en)1989-11-281992-08-11Scimed Life Systems, Inc.Device and method for gripping medical shaft
US5141499A (en)1991-10-091992-08-25Zappacosta Anthony RPeritoneal dialysis catheter
USD329496S (en)1990-02-201992-09-15Celia ClarkeNeedle depth gauge
US5156597A (en)1989-12-301992-10-20B. Braun Melsungen AgTranscutaneous implantation catheter
US5173158A (en)1991-07-221992-12-22Schmukler Robert EApparatus and methods for electroporation and electrofusion
US5186715A (en)1990-12-061993-02-16E-Z-Em, Inc.Biliary drainage method
US5186800A (en)1988-04-181993-02-16Bio-Rad Laboratories, Inc.Electroporation of prokaryotic cells
US5188592A (en)1991-06-241993-02-23Hakki Sam IDynamic pressurized catheter with simultaneous oxygen delivery and suction
US5190541A (en)1990-10-171993-03-02Boston Scientific CorporationSurgical instrument and method
US5192312A (en)1991-03-051993-03-09Colorado State University Research FoundationTreated tissue for implantation and methods of treatment and use
US5193537A (en)1990-06-121993-03-16Zmd CorporationMethod and apparatus for transcutaneous electrical cardiac pacing
EP0533511A1 (en)1991-07-221993-03-24Thomas Schmitz-RodeDevice for maintaining the patency of a bodily duct, and especially of a blood vessel, and uses thereof
US5209723A (en)1990-01-081993-05-11The Curators Of The University Of MissouriMultiple lumen catheter for hemodialysis
US5215530A (en)1991-07-111993-06-01City Of HopeSleeved extension and anchoring system for percutaneous catheters
US5224933A (en)1992-03-231993-07-06C. R. Bard, Inc.Catheter purge device
US5227730A (en)1992-09-141993-07-13Kdc Technology Corp.Microwave needle dielectric sensors
US5242415A (en)1992-08-141993-09-07L-Vad Technology, Inc.Percutaneous access device
US5273525A (en)1992-08-131993-12-28Btx Inc.Injection and electroporation apparatus for drug and gene delivery
US5277201A (en)1992-05-011994-01-11Vesta Medical, Inc.Endometrial ablation apparatus and method
US5279564A (en)1992-09-111994-01-18Edward Weck IncorporatedCannula retention device
US5281213A (en)1992-04-161994-01-25Implemed, Inc.Catheter for ice mapping and ablation
USD343687S (en)1992-01-061994-01-25Becton, Dickinson And CompanyBiopsy procedure tray
US5290263A (en)1989-02-021994-03-01Regents Of The University Of MinnesotaBidirectional check valve catheter
US5308338A (en)1993-04-221994-05-03Helfrich G BairdCatheter or the like with medication injector to prevent infection
US5308325A (en)1991-01-281994-05-03Corpak, Inc.Retention balloon for percutaneous catheter
US5318563A (en)1992-06-041994-06-07Valley Forge Scientific CorporationBipolar RF generator
US5318543A (en)1992-10-081994-06-07Abbott LaboratoriesLaparoscopic jejunostomy instrumentation kit
US5328451A (en)1991-08-151994-07-12Board Of Regents, The University Of Texas SystemIontophoretic device and method for killing bacteria and other microbes
US5334167A (en)1993-11-191994-08-02Cocanower David AModified nasogastric tube for use in enteral feeding
US5348554A (en)1992-12-011994-09-20Cardiac Pathways CorporationCatheter for RF ablation with cooled electrode
USD351661S (en)1993-02-161994-10-18Ultradent Products, Inc.Combined organizer and tray for an endodontic dental kit
US5383917A (en)1991-07-051995-01-24Jawahar M. DesaiDevice and method for multi-phase radio-frequency ablation
US5389069A (en)1988-01-211995-02-14Massachusetts Institute Of TechnologyMethod and apparatus for in vivo electroporation of remote cells and tissue
US5391158A (en)1994-02-241995-02-21Peters; Michael J.Nasogastric tube
US5403311A (en)1993-03-291995-04-04Boston Scientific CorporationElectro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5405320A (en)1990-01-081995-04-11The Curators Of The University Of MissouriMultiple lumen catheter for hemodialysis
US5425752A (en)1991-11-251995-06-20Vu'nguyen; Dung D.Method of direct electrical myostimulation using acupuncture needles
US5439440A (en)1993-04-011995-08-08Genetronics, Inc.Electroporation system with voltage control feedback for clinical applications
US5458625A (en)1994-05-041995-10-17Kendall; Donald E.Transcutaneous nerve stimulation device and method for using same
US5484401A (en)1992-11-041996-01-16Denver Biomaterials, Inc.Treatment method for pleural effusion
US5484400A (en)1992-08-121996-01-16Vidamed, Inc.Dual channel RF delivery system
US5533999A (en)1993-08-231996-07-09Refractec, Inc.Method and apparatus for modifications of visual acuity by thermal means
US5536267A (en)1993-11-081996-07-16Zomed InternationalMultiple electrode ablation apparatus
US5536240A (en)1992-08-121996-07-16Vidamed, Inc.Medical probe device and method
US5540737A (en)1991-06-261996-07-30Massachusetts Institute Of TechnologyMinimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas
US5546940A (en)1994-01-281996-08-20Ep Technologies, Inc.System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5562720A (en)1992-05-011996-10-08Vesta Medical, Inc.Bipolar/monopolar endometrial ablation device and method
WO1996034571A1 (en)1995-05-041996-11-07Cosman Eric RCool-tip electrode thermosurgery system
US5575811A (en)1993-07-081996-11-19Urologix, Inc.Benign prostatic hyperplasia treatment catheter with urethral cooling
US5582588A (en)1993-04-191996-12-10Olympus Optical Co., Ltd.Ultrasonic therapeutic apparatus
WO1996039531A1 (en)1995-06-061996-12-12Massachusetts Institute Of TechnologyDelivery of nucleotides into organisms by electroporation
USD376652S (en)1995-07-071996-12-17Hunt Ilyssa AMedical instrument tray
US5586982A (en)1992-04-101996-12-24Abela; George S.Cell transfection apparatus and method
US5588424A (en)1995-06-281996-12-31The Cleveland Clinic FoundationBronchial blocker endotracheal apparatus
US5588960A (en)1994-12-011996-12-31Vidamed, Inc.Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5599311A (en)1994-07-251997-02-04Raulerson; J. DanielSubcutaneous catheter stabilizing devices
US5616126A (en)1995-03-031997-04-01Malekmehr; FarshadLow residual bladder catheter
US5620479A (en)1992-11-131997-04-15The Regents Of The University Of CaliforniaMethod and apparatus for thermal therapy of tumors
US5626146A (en)1992-12-181997-05-06British Technology Group LimitedElectrical impedance tomography
US5634899A (en)1993-08-201997-06-03Cortrak Medical, Inc.Simultaneous cardiac pacing and local drug delivery method
USD380272S (en)1995-07-071997-06-24Becton, Dickinson And CompanySkin preparation tray
US5643197A (en)1993-12-211997-07-01Angeion CorporationFluid cooled and perfused tip for a catheter
US5645855A (en)1996-03-131997-07-08Ridge Scientific Enterprises, Inc.Adhesive compositions including polyvinylpyrrolidone acrylic acid polymers, and polyamines
US5672173A (en)1995-08-151997-09-30Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5674267A (en)1993-03-301997-10-07Centre National De La Recherche ScientifiqueElectric pulse applicator using pairs of needle electrodes for the treatment of biological tissue
US5683384A (en)1993-11-081997-11-04ZomedMultiple antenna ablation apparatus
US5687723A (en)1993-12-031997-11-18Avitall; BoazMapping and ablation catheter system
US5690620A (en)1996-05-141997-11-25Knott; Michael McfarlandAnatomically conforming nasogastric tube with normally-curved tip and method for using same
US5697905A (en)1995-06-191997-12-16Leo T. d'AmbrosioTriple-lumen intra-aortic catheter
US5700252A (en)1995-11-011997-12-23Klingenstein; Ralph JamesLumen-seeking nasogastric tube and method
US5702359A (en)1995-06-061997-12-30Genetronics, Inc.Needle electrodes for mediated delivery of drugs and genes
US5718246A (en)1996-01-031998-02-17Preferential, Inc.Preferential induction of electrically mediated cell death from applied pulses
US5720921A (en)1995-03-101998-02-24Entremed, Inc.Flow electroporation chamber and method
WO1998010745A1 (en)1996-09-111998-03-19Aksys, Ltd.Batch quantity dialysate chemical formulations
US5735847A (en)1995-08-151998-04-07Zomed International, Inc.Multiple antenna ablation apparatus and method with cooling element
WO1998014238A1 (en)1996-07-181998-04-09Bertil PerssonA method and an apparatus for treating tumoral diseases (cancer)
US5752939A (en)1992-12-241998-05-19Kabushiki Kaisha Hayashidera MedinooruCatheter for continuous ambulatory peritoneal dialysis
US5778894A (en)1996-04-181998-07-14Elizabeth Arden Co.Method for reducing human body cellulite by treatment with pulsed electromagnetic energy
US5782882A (en)1995-11-301998-07-21Hewlett-Packard CompanySystem and method for administering transcutaneous cardiac pacing with transcutaneous electrical nerve stimulation
US5800484A (en)1995-08-151998-09-01Rita Medical Systems, Inc.Multiple antenna ablation apparatus with expanded electrodes
US5807395A (en)1993-08-271998-09-15Medtronic, Inc.Method and apparatus for RF ablation and hyperthermia
US5807306A (en)1992-11-091998-09-15Cortrak Medical, Inc.Polymer matrix drug delivery apparatus
US5807272A (en)1995-10-311998-09-15Worcester Polytechnic InstituteImpedance spectroscopy system for ischemia monitoring and detection
US5810762A (en)1995-04-101998-09-22Genetronics, Inc.Electroporation system with voltage control feedback for clinical applications
US5810742A (en)1994-10-241998-09-22Transcan Research & Development Co., Ltd.Tissue characterization based on impedance images and on impedance measurements
US5830184A (en)1996-03-061998-11-03Medical Components, Inc.Composite catheter stabilizing devices, methods of making the same and catheter extracting device
US5836905A (en)1994-06-201998-11-17Lemelson; Jerome H.Apparatus and methods for gene therapy
US5836897A (en)1990-02-021998-11-17Olympus Optical Co., Ltd.Ultrasonic treatment apparatus
US5843182A (en)1994-03-141998-12-01Cryolife, Inc.Treated tissue for implantation and methods of preparation
US5843026A (en)1992-08-121998-12-01Vidamed, Inc.BPH ablation method and apparatus
WO1999001076A1 (en)1997-07-021999-01-14Broncus Technologies, Inc.Bleb reducer
CA2297846A1 (en)1997-07-251999-02-04Eric R. CosmanCluster ablation electrode system
US5868708A (en)1997-05-071999-02-09Applied Medical Resources CorporationBalloon catheter apparatus and method
US5873849A (en)1997-04-241999-02-23Ichor Medical Systems, Inc.Electrodes and electrode arrays for generating electroporation inducing electrical fields
US5904648A (en)1996-06-181999-05-18Cook IncorporatedGuided endobronchial blocker catheter
US5919191A (en)1995-01-301999-07-06Boston Scientific CorporationElectro-surgical tissue removal
US5919142A (en)1995-06-221999-07-06Btg International LimitedElectrical impedance tomography method and apparatus
US5921982A (en)1993-07-301999-07-13Lesh; Michael D.Systems and methods for ablating body tissue
US5944710A (en)1996-06-241999-08-31Genetronics, Inc.Electroporation-mediated intravascular delivery
US5947889A (en)1995-01-171999-09-07Hehrlein; ChristophBalloon catheter used to prevent re-stenosis after angioplasty and process for producing a balloon catheter
US5947284A (en)1998-02-131999-09-07United States Surgical CorporationPackage with guide for flexible medical instruments
US5951546A (en)1994-12-131999-09-14Lorentzen; TorbenElectrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US5954745A (en)1997-05-161999-09-21Gertler; JonathanCatheter-filter set having a compliant seal
US5957963A (en)1998-01-231999-09-28Del Mar Medical Technologies, Inc.Selective organ hypothermia method and apparatus
US5968006A (en)1997-11-041999-10-19Genetronics, Inc.Method and apparatus for a combination of electroporation and iontophoresis for the delivery of drugs and genes
US5983131A (en)1995-08-111999-11-09Massachusetts Institute Of TechnologyApparatus and method for electroporation of tissue
US5984896A (en)1997-10-281999-11-16Ojp #73, Inc.Fixated catheter
US5991697A (en)1996-12-311999-11-23The Regents Of The University Of CaliforniaMethod and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US5999847A (en)1997-10-211999-12-07Elstrom; John A.Apparatus and method for delivery of surgical and therapeutic agents
US6004339A (en)1996-11-131999-12-21Angiodynamics IncorporatedBalloon catheter with multiple distensibilities
US6009347A (en)1998-01-271999-12-28Genetronics, Inc.Electroporation apparatus with connective electrode template
US6009877A (en)1994-06-242000-01-04Edwards; Stuart D.Method for treating a sphincter
US6010613A (en)1995-12-082000-01-04Cyto Pulse Sciences, Inc.Method of treating materials with pulsed electrical fields
US6016452A (en)1996-03-192000-01-18Kasevich; Raymond S.Dynamic heating method and radio frequency thermal treatment
US6029090A (en)1997-01-272000-02-22Herbst; EwaMulti-functional electrical stimulation system
US6041252A (en)1995-06-072000-03-21Ichor Medical Systems Inc.Drug delivery system and method
US6043066A (en)1997-09-042000-03-28Mangano; Joseph A.Cell separation using electric fields
WO2000020554A1 (en)1998-10-082000-04-13Astrazeneca AbMicrofabricated cell injector
US6050994A (en)1998-05-052000-04-18Cardiac Pacemakers, Inc.RF ablation apparatus and method using controllable duty cycle with alternate phasing
US6055453A (en)1997-08-012000-04-25Genetronics, Inc.Apparatus for addressing needle array electrodes for electroporation therapy
US6059780A (en)1995-08-152000-05-09Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method with cooling element
US6066134A (en)1992-01-072000-05-23Arthrocare CorporationMethod for electrosurgical cutting and ablation
US6068121A (en)1998-03-112000-05-30Schneider (Usa) Inc.Universal catheter tray
US6071281A (en)1998-05-052000-06-06Ep Technologies, Inc.Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6074389A (en)1995-03-102000-06-13Seedling Enterprises, LlcElectrosurgery with cooled electrodes
US6074374A (en)1998-07-312000-06-13Angiodynamics, Inc.Catheter with lumen occluding means
US6085115A (en)1997-05-222000-07-04Massachusetts Institite Of TechnologyBiopotential measurement including electroporation of tissue surface
EP0528891B1 (en)1990-04-232000-07-05Alkermes, Inc.Method for increasing blood-brain barrier permeability
US6090105A (en)1995-08-152000-07-18Rita Medical Systems, Inc.Multiple electrode ablation apparatus and method
US6090106A (en)1996-01-092000-07-18Gyrus Medical LimitedElectrosurgical instrument
US6090016A (en)1998-11-182000-07-18Kuo; Hai PinCollapsible treader with enhanced stability
US6096035A (en)1995-08-182000-08-01Sodhi; ChrisMultipolar transmural probe
US6102885A (en)1996-08-082000-08-15Bass; Lawrence S.Device for suction-assisted lipectomy and method of using same
US6106521A (en)1996-08-162000-08-22United States Surgical CorporationApparatus for thermal treatment of tissue
US6110192A (en)1996-09-232000-08-29Boston Scientific CorporationCatheter balloon having raised radial segments
US6109270A (en)1997-02-042000-08-29The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMultimodality instrument for tissue characterization
USD430015S (en)1998-06-112000-08-29Pharmacia & Upjohn AbBlister pack for a syringe
US6113593A (en)1999-02-012000-09-05Tu; Lily ChenAblation apparatus having temperature and force sensing capabilities
US6116330A (en)1999-06-232000-09-12The University Of DaytonHeat storage system utilizing phase change materials government rights
US6120493A (en)1998-01-272000-09-19Genetronics, Inc.Method for the introduction of therapeutic agents utilizing an electroporation apparatus
US6122599A (en)1998-02-132000-09-19Mehta; ShaileshApparatus and method for analyzing particles
US6123701A (en)1997-10-092000-09-26Perfect Surgical Techniques, Inc.Methods and systems for organ resection
US6132419A (en)1992-05-222000-10-17Genetronics, Inc.Electroporetic gene and drug therapy
US6134460A (en)1988-11-022000-10-17Non-Invasive Technology, Inc.Spectrophotometers with catheters for measuring internal tissue
US6132397A (en)1997-05-012000-10-17Chase Medical Inc.Integral aortic arch infusion clamp catheter
US6135999A (en)*1997-02-122000-10-24Oratec Internationals, Inc.Concave probe for arthroscopic surgery
US6139545A (en)1998-09-092000-10-31VidadermSystems and methods for ablating discrete motor nerve regions
US6150148A (en)1998-10-212000-11-21Genetronics, Inc.Electroporation apparatus for control of temperature during the process
US6159163A (en)1998-05-072000-12-12Cedars-Sinai Medical CenterSystem for attenuating pain during bone marrow aspiration and method
US6178354B1 (en)1998-12-022001-01-23C. R. Bard, Inc.Internal mechanism for displacing a slidable electrode
CA2378110A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaCell/tissue analysis via controlled electroporation
WO2001007584A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
WO2001007585A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaElectrical impedance tomography to control electroporation
WO2001010319A1 (en)1999-08-042001-02-15Eastern Virginia Medical School Of The Medical College Of Hampton RoadsMethod and apparatus for intracellular electro-manipulation
USD437941S1 (en)1999-10-272001-02-20J F Medical L.L.C.Equipment storage tray
US6193715B1 (en)1999-03-192001-02-27Medical Scientific, Inc.Device for converting a mechanical cutting device to an electrosurgical cutting device
US6198970B1 (en)1995-10-272001-03-06Esd Limited Liability CompanyMethod and apparatus for treating oropharyngeal respiratory and oral motor neuromuscular disorders with electrical stimulation
US6200314B1 (en)1998-05-052001-03-13Cardiac Pacemakers, Inc.RF ablation apparatus and method using unipolar and bipolar techniques
US6208893B1 (en)1998-01-272001-03-27Genetronics, Inc.Electroporation apparatus with connective electrode template
US6210402B1 (en)1995-11-222001-04-03Arthrocare CorporationMethods for electrosurgical dermatological treatment
US6212433B1 (en)1998-07-282001-04-03Radiotherapeutics CorporationMethod for treating tumors near the surface of an organ
US6216034B1 (en)1997-08-012001-04-10Genetronics, Inc.Method of programming an array of needle electrodes for electroporation therapy of tissue
AU7656800A (en)1999-09-152001-04-17Delaval Holding AbMilking arrangement
US6219577B1 (en)1998-04-142001-04-17Global Vascular Concepts, Inc.Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US6233490B1 (en)1999-02-092001-05-15Kai Technologies, Inc.Microwave antennas for medical hyperthermia, thermotherapy and diagnosis
US6235023B1 (en)1995-08-152001-05-22Rita Medical Systems, Inc.Cell necrosis apparatus
USD442697S1 (en)1997-10-272001-05-22Mohammed Ali HajianpourAccessory tray for hip replacement surgery
US6241725B1 (en)1993-12-152001-06-05Sherwood Services AgHigh frequency thermal ablation of cancerous tumors and functional targets with image data assistance
USD443360S1 (en)2000-03-222001-06-05Dexterity Surgical Inc.Distal end of obturator for a trocar
US6241702B1 (en)1992-08-122001-06-05Vidamed, Inc.Radio frequency ablation device for treatment of the prostate
WO2001048153A1 (en)1999-12-292001-07-05Children's Medical Center CorporationReconstructing organs from decellularized biomaterial scaffold
US6258100B1 (en)1999-08-242001-07-10Spiration, Inc.Method of reducing lung size
USD445198S1 (en)1999-10-272001-07-17J F Medical L.L.C.Equipment storage tray
US6261831B1 (en)1999-03-262001-07-17The United States Of America As Represented By The Secretary Of The Air ForceUltra-wide band RF-enhanced chemotherapy for cancer treatmeat
US6277114B1 (en)1998-04-032001-08-21Gyrus Medical LimitedElectrode assembly for an electrosurical instrument
US6280441B1 (en)1997-12-152001-08-28Sherwood Services AgApparatus and method for RF lesioning
US6283988B1 (en)1997-04-072001-09-04Broncus Technologies, Inc.Bronchial stenter having expandable electrodes
US6283989B1 (en)1997-04-072001-09-04Broncus Technolgies, Inc.Method of treating a bronchial tube with a bronchial stenter having diametrically adjustable electrodes
US6284140B1 (en)1992-12-182001-09-04Fresenius AgDialysis solution for peritoneal dialysis
US6287293B1 (en)1999-09-282001-09-11C. R. Bard, Inc.Method and apparatus for locating the injection point of an implanted medical device
US6287304B1 (en)1999-10-152001-09-11Neothermia CorporationInterstitial cauterization of tissue volumes with electrosurgically deployed electrodes
WO2001070114A1 (en)2000-03-172001-09-27Rita Medical Systems Inc.Lung treatment apparatus
US6296636B1 (en)1994-05-102001-10-02Arthrocare CorporationPower supply and methods for limiting power in electrosurgery
US6299633B1 (en)1997-04-072001-10-09Broncus Technologies, Inc.Bronchial stenter
US6298726B1 (en)1998-06-252001-10-09Olympus Optical Co., Ltd.Acoustic impedance measuring apparatus using ultrasonic waves
WO2001081533A1 (en)2000-04-212001-11-01Igea S.R.L.Electroporation device and method, where amplitude of the electric pulse or pulses is automatically set according to pre-pulse measurement of electric properties of the sample
US6312428B1 (en)1995-03-032001-11-06Neothermia CorporationMethods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US20010039393A1 (en)1997-11-052001-11-08Kenji MoriApparatus and method for in vivo delivery of therapeutic agents
USD450391S1 (en)1995-07-072001-11-13Arrow International, Inc.Medical instrument tray
US20010044596A1 (en)2000-05-102001-11-22Ali JaafarApparatus and method for treatment of vascular restenosis by electroporation
US20010047167A1 (en)2000-02-032001-11-29Heggeness Michael H.Methods and devices for intraosseous nerve ablation
US6327505B1 (en)1998-05-072001-12-04Medtronic, Inc.Method and apparatus for rf intraluminal reduction and occlusion
US6328689B1 (en)2000-03-232001-12-11Spiration, Inc.,Lung constriction apparatus and method
US20020002393A1 (en)1998-11-162002-01-03James MitchellApparatus for thermal treatment of tissue
US20020010491A1 (en)1999-08-042002-01-24Schoenbach Karl H.Method and apparatus for intracellular electro-manipulation
US6347247B1 (en)1998-05-082002-02-12Genetronics Inc.Electrically induced vessel vasodilation
US6349233B1 (en)1993-02-222002-02-19Angeion CorporationNeuro-stimulation to control pain during cardioversion defibrillation
US20020022864A1 (en)2000-06-072002-02-21Mahvi David M.Multipolar electrode system for radiofrequency ablation
US6351674B2 (en)1998-11-232002-02-26Synaptic CorporationMethod for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
US20020040204A1 (en)1996-06-242002-04-04Dev Nagendu B.Electroporation-enhanced inhibition of vascular neointimal hyperplasia
US6375634B1 (en)1997-11-192002-04-23Oncology Innovations, Inc.Apparatus and method to encapsulate, kill and remove malignancies, including selectively increasing absorption of x-rays and increasing free-radical damage to residual tumors targeted by ionizing and non-ionizing radiation therapy
US20020049370A1 (en)1999-08-052002-04-25Laufer Michael D.Devices for creating collateral channels in the lungs
US20020052601A1 (en)1997-05-302002-05-02Goldberg S. NahumSystem and method for performing plate type radiofrequency ablation
US20020055731A1 (en)1997-10-242002-05-09Anthony AtalaMethods for promoting cell transfection in vivo
US20020065541A1 (en)2000-09-072002-05-30Raymond FredricksApparatus and method for treatment of an intervertebral disc
US6398779B1 (en)1998-10-232002-06-04Sherwood Services AgVessel sealing system
US20020072742A1 (en)2000-07-062002-06-13Schaefer Dean A.Tumor ablation needle with independently activated and independently traversing tines
US6405732B1 (en)1994-06-242002-06-18Curon Medical, Inc.Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US20020077314A1 (en)1991-07-032002-06-20Rudolf E. FalkUse of hyaluronic acid and forms to prevent arterial restenosis
US20020077676A1 (en)1999-04-092002-06-20Schroeppel Edward A.Implantable device and method for the electrical treatment of cancer
US6411852B1 (en)1997-04-072002-06-25Broncus Technologies, Inc.Modification of airways by application of energy
US20020082543A1 (en)2000-12-142002-06-27Jung-Hwan ParkMicroneedle devices and production thereof
US6419674B1 (en)1996-11-272002-07-16Cook Vascular IncorporatedRadio frequency dilator sheath
US20020099323A1 (en)1998-07-132002-07-25Nagendu B. DevSkin and muscle-targeted gene therapy by pulsed electrical field
US6428802B1 (en)1999-12-292002-08-06Children's Medical Center Corp.Preparing artificial organs by forming polylayers of different cell populations on a substrate
US20020104318A1 (en)2001-02-082002-08-08Ali JaafarMiniature thermoelectric cooler
US20020111615A1 (en)1993-12-152002-08-15Eric R. CosmanCluster ablation electrode system
US20020112729A1 (en)2001-02-212002-08-22Spiration, Inc.Intra-bronchial obstructing device that controls biological interaction with the patient
US20020115208A1 (en)2000-08-162002-08-22Shannon MitchellDecellularized tissue engineered constructs and tissues
US20020119437A1 (en)2000-09-202002-08-29Grooms Jamie M.Method of preparing and processing transplant tissue
US6443952B1 (en)1997-07-292002-09-03Medtronic, Inc.Tissue sealing electrosurgery device and methods of sealing tissue
US20020133324A1 (en)2000-11-032002-09-19Weaver James C.Functional simulation method
US20020138117A1 (en)2000-06-212002-09-26Son Young TaeApparatus and method for selectively removing a body fat mass in human body
US20020137121A1 (en)1999-07-212002-09-26Boris RubinskyCell viability detection using electrical measurements
US6463331B1 (en)1999-04-192002-10-08Novasys Medical, Inc.Application of energy and substances in the treatment of uro-genital disorders
US20020147462A1 (en)2000-09-112002-10-10Closure Medical CorporationBronchial occlusion method and apparatus
WO2002078527A2 (en)2001-03-302002-10-10Ethicon Endo-Surgery, Inc.Endoscopic ablation system with sealed sheath
US6470211B1 (en)1997-06-032002-10-22Uab Research FoundationMethod and apparatus for treating cardiac arrhythmia
US20020156472A1 (en)2000-06-072002-10-24Lee Fred T.Radio-frequency ablation system using multiple electrodes
US20020161361A1 (en)1998-05-052002-10-31Sherman Marshall L.RF ablation system and method having automatic temperature control
WO2002089686A1 (en)2001-05-102002-11-14Rita Medical Systems, Inc.Rf tissue ablation apparatus and method
US6482221B1 (en)2000-08-212002-11-19Counter Clockwise, Inc.Manipulatable delivery catheter for occlusive devices (II)
US6485487B1 (en)1998-05-052002-11-26Cardiac Pacemakers, Inc.RF ablation apparatus having high output impedance drivers
US6488680B1 (en)2000-04-272002-12-03Medtronic, Inc.Variable length electrodes for delivery of irrigated ablation
US6488673B1 (en)1997-04-072002-12-03Broncus Technologies, Inc.Method of increasing gas exchange of a lung
US20020183735A1 (en)2000-04-252002-12-05Edwards Stuart D.Ablation of rectal and other internal body structures
US6493589B1 (en)1998-05-072002-12-10Medtronic, Inc.Methods and apparatus for treatment of pulmonary conditions
US6493592B1 (en)1999-12-012002-12-10Vertis Neuroscience, Inc.Percutaneous electrical therapy system with electrode position maintenance
US6491706B1 (en)2001-07-102002-12-10Spiration, Inc.Constriction device including fixation structure
US20020188242A1 (en)2001-06-122002-12-12Allan WuMethod and invention for the treatment of diseases and disorders of the cervix
US20020193784A1 (en)2001-03-072002-12-19Mchale Anthony PatrickUltrasound therapy for selective cell ablation
US20020193831A1 (en)2001-04-262002-12-19Smith Edward DeweyMethod and apparatus for the treatment of cosmetic skin conditions
WO2002100459A2 (en)2001-06-112002-12-19Endobionics, Inc.Electroporation microneedle and methods for its use
US6500173B2 (en)1992-01-072002-12-31Ronald A. UnderwoodMethods for electrosurgical spine surgery
US6503248B1 (en)2000-10-302003-01-07Seedling Enterprises, LlcCooled, non-sticking electrosurgical devices
US20030009110A1 (en)2001-07-062003-01-09Hosheng TuDevice for tumor diagnosis and methods thereof
US20030016168A1 (en)2001-07-182003-01-23Fastlocation.Net, LlcMethod and system for processing positioning signals in a stand-alone mode
US6514248B1 (en)1999-10-152003-02-04Neothermia CorporationAccurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US6520183B2 (en)2001-06-112003-02-18Memorial Sloan-Kettering Cancer CenterDouble endobronchial catheter for one lung isolation anesthesia and surgery
USD471641S1 (en)2002-02-282003-03-11Kimberly-Clark Worldwide, Inc.Surgical kit tray
USD471640S1 (en)2002-02-282003-03-11Kimberly-Clark Worldwide, Inc.Surgical kit for percutaneous endoscopic gastrostomy procedures
US6533784B2 (en)2001-02-242003-03-18Csaba TruckaiElectrosurgical working end for transecting and sealing tissue
US20030055420A1 (en)2001-09-182003-03-20Kadhiresan Veerichetty ASystem and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
US20030055220A1 (en)2001-01-122003-03-20Pierre LegrainProtein-protein interactions between Shigella flexneri polypeptides and mammalian polypeptides
US6537976B1 (en)1997-08-072003-03-25Ajay GuptaDialysis solutions containing water soluble vitamins and nutrients
US20030059945A1 (en)2001-02-212003-03-27Dzekunov Sergey M.Apparatus and method for flow electroporation of biological samples
US20030060856A1 (en)2001-08-132003-03-27Victor ChornenkyApparatus and method for treatment of benign prostatic hyperplasia
US6540695B1 (en)1998-04-082003-04-01Senorx, Inc.Biopsy anchor device with cutter
US20030078490A1 (en)1999-05-262003-04-24Damasco Sanford D.System for providing computer guided ablation of tissue
US20030088189A1 (en)2001-11-052003-05-08Hosheng TuApparatus and methods for monitoring tissue impedance
US20030088199A1 (en)1999-10-012003-05-08Toshikuni KawajiAnalgesic and anti-inflammatory patches for external use containing 4-biphenylylylacetic acid
US20030096407A1 (en)2001-11-162003-05-22Anthony AtalaCreation of tissue engineered female reproductive organs
US6569162B2 (en)2001-03-292003-05-27Ding Sheng HePassively self-cooled electrode design for ablation catheters
US20030105454A1 (en)1990-12-142003-06-05Cucin Robert L.Power-assisted liposuction instrument with cauterizing cannula assembly
US6575969B1 (en)1995-05-042003-06-10Sherwood Services AgCool-tip radiofrequency thermosurgery electrode system for tumor ablation
US20030109871A1 (en)2000-07-252003-06-12Johnson Theodore C.Apparatus for detecting and treating tumors using locaIized impedance measurement
WO2003047684A2 (en)2001-12-042003-06-12University Of Southern CaliforniaMethod for intracellular modifications within living cells using pulsed electric fields
US6589161B2 (en)2001-10-182003-07-08Spiration, Inc.Constriction device including tear resistant structures
US20030127090A1 (en)2001-11-142003-07-10Emphasys Medical, Inc.Active pump bronchial implant devices and methods of use thereof
US20030130711A1 (en)2001-09-282003-07-10Pearson Robert M.Impedance controlled tissue ablation apparatus and method
US6592594B2 (en)2001-10-252003-07-15Spiration, Inc.Bronchial obstruction device deployment system and method
US20030135242A1 (en)2000-07-272003-07-17Mongeon Luc R.Forced deceleration algorithm for synchronization of atrial cardioversion shock and technique for the implementation
US20030149451A1 (en)2001-08-172003-08-07Chomenky Victor I.Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US20030153960A1 (en)2001-08-172003-08-14Chornenky Victor I.Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6607529B1 (en)1995-06-192003-08-19Medtronic Vidamed, Inc.Electrosurgical device
US20030154988A1 (en)2002-02-212003-08-21Spiration, Inc.Intra-bronchial device that provides a medicant intra-bronchially to the patient
US6611706B2 (en)1998-11-092003-08-26Transpharma Ltd.Monopolar and bipolar current application for transdermal drug delivery and analyte extraction
US6613211B1 (en)1999-08-272003-09-02Aclara Biosciences, Inc.Capillary electrokinesis based cellular assays
US6616657B2 (en)1998-05-052003-09-09Cardiac Pacemakers, Inc.RF ablation catheter tip electrode with multiple thermal sensors
US6627421B1 (en)1999-04-132003-09-30Imarx Therapeutics, Inc.Methods and systems for applying multi-mode energy to biological samples
USD480816S1 (en)2002-02-282003-10-14Kimberly-Clark Worldwide, Inc.Surgical kit for percutaneous endoscopic gastrostomy procedures
US20030195385A1 (en)2002-04-162003-10-16Spiration, Inc.Removable anchored lung volume reduction devices and methods
US20030195406A1 (en)1999-11-222003-10-16Jenkins Thomas R.Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6634363B1 (en)1997-04-072003-10-21Broncus Technologies, Inc.Methods of treating lungs having reversible obstructive pulmonary disease
US6638253B2 (en)2001-07-172003-10-28Eugene Michael BreznockMethod and apparatus for chest drainage
US20030208200A1 (en)2002-05-032003-11-06Palanker Daniel V.Method and apparatus for plasma-mediated thermo-electrical ablation
US20030208236A1 (en)2002-05-062003-11-06Cardiac Pacemakers, Inc.System and method for providing temporary stimulation therapy to optimize chronic electrical performance for electrodes used in conjunction with a cardiac rhythm management system
US20030212412A1 (en)2002-05-092003-11-13Spiration, Inc.Intra-bronchial obstructing device that permits mucus transport
US6653091B1 (en)1998-09-302003-11-25Cyngnus, Inc.Method and device for predicting physiological values
US20030225360A1 (en)2002-03-112003-12-04Jonathan EppsteinTransdermal drug delivery patch system, method of making same and method of using same
WO2003099382A1 (en)2002-05-232003-12-04Gendel LimitedAblation device
US20030228344A1 (en)2002-03-082003-12-11Fields Antony J.Methods and devices for inducing collapse in lung regions fed by collateral pathways
US6666858B2 (en)2001-04-122003-12-23Scimed Life Systems, Inc.Cryo balloon for atrial ablation
US6669691B1 (en)2000-07-182003-12-30Scimed Life Systems, Inc.Epicardial myocardial revascularization and denervation methods and apparatus
US6673070B2 (en)1994-06-242004-01-06Curon Medical, Inc.Sphincter treatment apparatus
US6678558B1 (en)1999-03-252004-01-13Genetronics, Inc.Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US20040009459A1 (en)2002-05-062004-01-15Anderson James H.Simulation system for medical procedures
US20040019371A1 (en)2001-02-082004-01-29Ali JaafarApparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6689096B1 (en)1997-10-312004-02-10Soprane S.A.Multipurpose catheter
US6692493B2 (en)1998-02-112004-02-17Cosman Company, Inc.Method for performing intraurethral radio-frequency urethral enlargement
US6694984B2 (en)2001-03-272004-02-24Imperial College Innovations LimitedLiver surgery
US6694979B2 (en)2000-03-042004-02-24Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US6695861B1 (en)2002-09-202004-02-24Interrad Medical, Inc.Sutureless retention device
US6702808B1 (en)2000-09-282004-03-09Syneron Medical Ltd.Device and method for treating skin
US20040059328A1 (en)2001-01-112004-03-25Rita Medical Systems, Inc.Bone-treatment instrument and method
US20040055606A1 (en)2001-03-022004-03-25Emphasys Medical, Inc.Bronchial flow control devices with membrane seal
US20040059389A1 (en)2002-08-132004-03-25Chornenky Victor I.Apparatus and method for the treatment of benign prostatic hyperplasia
US6712811B2 (en)1998-02-202004-03-30Arthrocare CorporationMethods for electrosurgical spine surgery
US20040068228A1 (en)2002-10-042004-04-08Jon CunninghamDevice and method for stabilizing catheters
WO2004037341A2 (en)2002-05-072004-05-06Schroeppel Edward AMethod and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US6733516B2 (en)2001-01-172004-05-11Scimed Life Systems, Inc.Method and apparatus for limiting revascularization to viable tissue
USD489973S1 (en)2003-06-022004-05-18Vascular Solutions, Inc.Medical device package
US20040116965A1 (en)2002-12-112004-06-17Eric FalkenbergAtrial fibrillation therapy with pulmonary vein support
US6753171B2 (en)1998-03-122004-06-22Center For Advanced Science And Technology Incubation, Ltd.Site-specific cell perforation technique
US20040133194A1 (en)2003-01-042004-07-08Eum Jay J.Open system heat exchange catheters and methods of use
US20040138715A1 (en)2003-01-132004-07-15Van Groeningen Christianus J.J.E.Synchronized atrial anti-tachy pacing system and method
JP2004203224A (en)2002-12-252004-07-22Asmo Co LtdActuator
US20040146877A1 (en)2001-04-122004-07-29Diss James K.J.Diagnosis and treatment of cancer:I
EP1442765A1 (en)2001-10-162004-08-04Daiken Iki Kabushiki KaishaIMPLEMENT FOR ASSISTING INFLATION OF MEDICAL IMPLEMENT WITH CUFF, AND BRONCHUS CLOSING IMPLEMENT WITH THE IMPLEMENT
US20040153057A1 (en)1998-11-202004-08-05Arthrocare CorporationElectrosurgical apparatus and methods for ablating tissue
USD495807S1 (en)2003-06-232004-09-07Codman & Shurtleff, Inc.Tray
US20040176855A1 (en)2003-03-072004-09-09Acell, Inc.Decellularized liver for repair of tissue and treatment of organ deficiency
WO2004080347A2 (en)2003-03-122004-09-23Spiration Inc.Apparatus, method and assembly for delivery of intra-bronchial devices
US20040193097A1 (en)1999-05-102004-09-30Hofmann Gunter A.Devices for needle-free injection and electroporation
US20040193042A1 (en)*2003-03-272004-09-30Steven ScampiniGuidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
US6801804B2 (en)2002-05-032004-10-05Aciont, Inc.Device and method for monitoring and controlling electrical resistance at a tissue site undergoing iontophoresis
US20040199159A1 (en)2001-09-122004-10-07Manoa Medical, Inc., A Delaware CorporationDevices and methods for tissue severing and removal
US20040200484A1 (en)2003-04-082004-10-14Springmeyer Steven C.Bronchoscopic lung volume reduction method
US20040206349A1 (en)2001-09-112004-10-21Alferness Clifton A.Removable lung reduction devices, systems, and methods
JP2004303590A (en)2003-03-312004-10-28Sanyo Electric Co LtdLaminated battery, and manufacturing method of the same
US6812204B1 (en)1999-07-232004-11-02Gendel LimitedDelivery of an agent
EP1061983B1 (en)1998-03-112004-11-17Oldfield Family Holdings PTY LimitedEndotracheal tube for selective bronchial occlusion
US20040236376A1 (en)2001-06-042004-11-25Damijan MiklavcicElectroporation device which reduces muscle contraction and pain sensation
US20040243107A1 (en)2001-10-012004-12-02Macoviak John AMethods and devices for treating atrial fibrilation
US20040267189A1 (en)2001-10-242004-12-30Daniela MavorDevice and method for controlled delivery of active substance into the skin
US20040267340A1 (en)2002-12-122004-12-30Wit Ip CorporationModular thermal treatment systems with single-use disposable catheter assemblies and related methods
US6837886B2 (en)2000-05-032005-01-04C.R. Bard, Inc.Apparatus and methods for mapping and ablation in electrophysiology procedures
US20050004507A1 (en)2000-03-132005-01-06Oncostim. Inc.Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20050010209A1 (en)2000-06-072005-01-13Lee Fred T.Radiofrequency ablation system using multiple prong probes
US20050010259A1 (en)2002-09-062005-01-13Medtronic, Inc.Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US20050013870A1 (en)2003-07-172005-01-20Toby FreymanDecellularized extracellular matrix of conditioned body tissues and uses thereof
US6847848B2 (en)2003-01-072005-01-25Mmtc, IncInflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
US20050020965A1 (en)2003-03-202005-01-27Scimed Life Systems, Inc.Devices and methods for delivering agents to tissue region while preventing leakage
US20050043726A1 (en)2001-03-072005-02-24Mchale Anthony PatrickDevice II
US6860847B2 (en)2001-07-102005-03-01Spiration, Inc.Constriction device viewable under X ray fluoroscopy
US20050048651A1 (en)1997-11-062005-03-03Frida RyttsenMethod and apparatus for spatially confined electroporation
US20050049541A1 (en)2001-10-122005-03-03Francine BeharDevice for medicine delivery by intraocular iontophoresis or electroporation
US20050061322A1 (en)2003-01-202005-03-24PulmonxMethod and arrangement for reducing the volume of a lung
US20050066974A1 (en)2002-05-282005-03-31Antony FieldsModification of lung region flow dynamics using flow control devices implanted in bronchial wall channels
US6881213B2 (en)2002-06-282005-04-19Ethicon, Inc.Device and method to expand treatment array
US6895267B2 (en)2001-10-242005-05-17Scimed Life Systems, Inc.Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US20050112141A1 (en)2000-08-302005-05-26Terman David S.Compositions and methods for treatment of neoplastic disease
US6905480B2 (en)2001-02-282005-06-14Rex Medical, L.P.Apparatus for delivering ablation fluid to treat lesions
US6912417B1 (en)2002-04-052005-06-28Ichor Medical Systmes, Inc.Method and apparatus for delivery of therapeutic agents
US20050143817A1 (en)2003-11-102005-06-30Angiotech International AgMedical implants and anti-scarring agents
WO2005065284A2 (en)2003-12-242005-07-21The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20050165393A1 (en)1996-12-312005-07-28Eppstein Jonathan A.Microporation of tissue for delivery of bioactive agents
US20050171522A1 (en)2004-01-302005-08-04Christopherson Mark A.Transurethral needle ablation system with needle position indicator
US20050197619A1 (en)2003-04-222005-09-08Rule Peter R.Ultrasound enhanced central venous catheter
US6941950B2 (en)2001-10-112005-09-13Emphasys Medical, Inc.Bronchial flow control devices and methods of use
US6942681B2 (en)2001-02-162005-09-13Cordis CorporationMethod of balloon catheter stent delivery system with ridges
US6958062B1 (en)1993-11-082005-10-25Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US6960189B2 (en)2002-03-292005-11-01Gore Enterprise HoldingsProximal catheter assembly allowing for natural and suction-assisted aspiration
US20050261672A1 (en)2004-05-182005-11-24Mark DeemSystems and methods for selective denervation of heart dysrhythmias
US20050267407A1 (en)2002-02-012005-12-01Vascular Designs, Inc.Multi-function catheter and use thereof
US6972013B1 (en)1998-07-132005-12-06Genetronics, Inc.Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US20050283149A1 (en)2004-06-082005-12-22Thorne Jonathan OElectrosurgical cutting instrument
US20050282284A1 (en)1999-07-212005-12-22The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes in tissue
US20050288730A1 (en)2002-04-082005-12-29Mark DeemMethods and apparatus for renal neuromodulation
US20050288702A1 (en)2004-06-162005-12-29Mcgurk ErinIntra-bronchial lung volume reduction system
US20060004356A1 (en)2002-11-262006-01-05Bilski W JCooling Element for electrosurgery
US20060015147A1 (en)1998-03-312006-01-19Aditus Medical Ab.Apparatus for controlling the generation of electric fields
US6989010B2 (en)2001-04-262006-01-24Medtronic, Inc.Ablation system and method of use
US20060020347A1 (en)2004-03-082006-01-26Michael BarrettImplanted bronchial isolation devices and methods
US20060025760A1 (en)2002-05-062006-02-02Podhajsky Ronald JBlood detector for controlling anesu and method therefor
US20060024359A1 (en)1995-06-072006-02-02Walker Jeffrey PDrug delivery system and method
US6994689B1 (en)1995-06-052006-02-07Medtronic Vascular, Inc.Occlusion of a vessel
US7012061B1 (en)1998-10-192006-03-14New York UniversityMethod for increasing the permeability of the blood brain barrier
US7011094B2 (en)2001-03-022006-03-14Emphasys Medical, Inc.Bronchial flow control devices and methods of use
WO2006031541A1 (en)2004-09-092006-03-23Vnus Medical Technologies, Inc.Methods and apparatus for treatment of hollow anatomical structures
US20060074413A1 (en)2004-06-282006-04-06Kamran BehzadianMethod and apparatus for substantial and uniform ablation about a linear bipolar array of electrodes
US7027869B2 (en)1998-01-072006-04-11Asthmatx, Inc.Method for treating an asthma attack
US20060079838A1 (en)2004-10-082006-04-13Walker Steven CMovable Balloon anchor for medical devices
US20060079883A1 (en)2004-10-132006-04-13Ahmed ElmouelhiTransurethral needle ablation system
US20060079845A1 (en)2004-10-082006-04-13Eben Howard And Pamela A. HowardMovable inflatable anchor for medical devices
US20060089635A1 (en)2004-10-222006-04-27Scimed Life Systems, Inc.Methods and apparatus for focused bipolar tissue ablation using an insulated shaft
US7036510B2 (en)2003-04-282006-05-02Cook Critical Care IncorporatedPercutaneous tracheostomy balloon apparatus
US7063698B2 (en)2002-06-142006-06-20Ncontact Surgical, Inc.Vacuum coagulation probes
US20060142801A1 (en)2002-04-082006-06-29Ardian, Inc.Methods and apparatus for intravascularly-induced neuromodulation
US20060149123A1 (en)2000-03-212006-07-06Myocor, Inc.Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US20060173490A1 (en)2005-02-012006-08-03Boston Scientific Scimed, Inc.Filter system and method
US7087040B2 (en)2001-02-282006-08-08Rex Medical, L.P.Apparatus for delivering ablation fluid to treat lesions
US20060182684A1 (en)2003-01-032006-08-17Richard BeliveauMethod for transporting a compound across the blood-brain barrier
US7097612B2 (en)2003-07-292006-08-29Endoscopic Technologies, Inc.Tissue positioner
US20060195146A1 (en)2004-02-112006-08-31Tracey Michael RSystem and method for selectively stimulating different body parts
US20060212078A1 (en)2002-04-082006-09-21Ardian, Inc.Methods and apparatus for treating congestive heart failure
US20060212032A1 (en)2005-01-182006-09-21Daniel Steven ADevice and method for thermal ablation of biological tissue using spherical ablation patterns
US7113821B1 (en)1999-08-252006-09-26Johnson & Johnson Consumer Companies, Inc.Tissue electroperforation for enhanced drug delivery
US20060224188A1 (en)2005-04-052006-10-05Cardiac Pacemakers, Inc.Method and apparatus for synchronizing neural stimulation to cardiac cycles
US20060235474A1 (en)2002-04-082006-10-19Ardian, Inc.Methods and apparatus for multi-vessel renal neuromodulation
US20060247619A1 (en)2004-11-052006-11-02Asthmatx, Inc.Medical device with procedure improvement features
US20060264807A1 (en)2002-03-072006-11-23Advisys, Inc.Electrode assembly for constant-current electroporation and use
US20060264752A1 (en)2005-04-272006-11-23The Regents Of The University Of CaliforniaElectroporation controlled with real time imaging
US20060269531A1 (en)2003-07-182006-11-30Eastern Virginia Medical SchoolApparatus for generating electrical pulses and methods of using the same
US20060276710A1 (en)2005-03-032006-12-07Krishnan Subramaniam CMethod and apparatus for locating the fossa ovalis, creating a virtual fossa ovalis and performing transseptal puncture
WO2006130194A2 (en)2005-05-272006-12-07Boston Scientific LimitedFiber mesh controlled expansion balloon catheter
US20060278241A1 (en)2004-12-142006-12-14Gualberto RuanoPhysiogenomic method for predicting clinical outcomes of treatments in patients
US20060293725A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating fatty tissue sites using electroporation
US20060293731A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating tumors using electroporation
US20060293713A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating BPH using electroporation
US20060293734A1 (en)2005-04-272006-12-28Scott David JApparatus and method for providing enhanced heat transfer from a body
US20060293730A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating restenosis sites using electroporation
US20070010805A1 (en)2005-07-082007-01-11Fedewa Russell JMethod and apparatus for the treatment of tissue
US20070016125A1 (en)2005-06-292007-01-18National Cheng Kung UniversityPainless electroporating apparatus
US20070016183A1 (en)2005-07-012007-01-18Bruce LeeRadio frequency ablation device for the destruction of tissue masses
US20070016185A1 (en)2005-04-292007-01-18Tullis Philip JMedical Bipolar Electrode Assembly With A Cannula Having A Bipolar Active Tip And A Separate Supply Electrode And Medical Monopolar Electrode Assembly With A Cannula Having A Monopolar Active Tip And A Separate Temperature-Transducer Post
US20070021803A1 (en)2005-07-222007-01-25The Foundry Inc.Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US20070025919A1 (en)2005-07-222007-02-01The Foundry Inc.Systems and methods for delivery of a therapeutic agent
US20070060989A1 (en)2005-09-072007-03-15Deem Mark EApparatus and method for disrupting subcutaneous structures
US20070078391A1 (en)2005-09-302007-04-05Angiodynamics Inc.Implantable medical device
US20070088347A1 (en)2005-10-132007-04-19Boston Scientific Scimed, Inc.Magnetically augmented radio frequency ablation
US20070093789A1 (en)2005-09-302007-04-26Transcutaneous Technologies Inc.Iontophoresis apparatus and method for delivery of angiogenic factors to enhance healing of injured tissue
US7211083B2 (en)2003-03-172007-05-01Minnesota Medical Physics, LlcApparatus and method for hair removal by electroporation
US20070096048A1 (en)2005-10-142007-05-03Claude ClercBronchoscopic lung volume reduction valve
US20070129760A1 (en)2002-04-082007-06-07Ardian, Inc.Methods and apparatus for intravasculary-induced neuromodulation or denervation
US20070129711A1 (en)1999-01-082007-06-07Altshuler Gregory BCooling system for a photocosmetic device
US20070129720A1 (en)2002-04-082007-06-07Ardian, Inc.Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
CA2632604A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
WO2007067940A2 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US7232437B2 (en)2003-10-302007-06-19Medical Cv, Inc.Assessment of lesion transmurality
WO2007070361A2 (en)2005-12-062007-06-21St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20070151848A1 (en)*2006-01-052007-07-05Nano-Proprietary, Inc.Capacitance based biosensor
US20070156135A1 (en)2006-01-032007-07-05Boris RubinskySystem and methods for treating atrial fibrillation using electroporation
US7250048B2 (en)2001-04-262007-07-31Medtronic, Inc.Ablation system and method of use
US7257450B2 (en)2003-02-132007-08-14Coaptus Medical CorporationSystems and methods for securing cardiovascular tissue
US20070191889A1 (en)2006-02-152007-08-16Biotronik Crm Patent AgAtrial defibrillator
USD549332S1 (en)2004-04-092007-08-21Olympus CorporationEndoscope
US20070203486A1 (en)2004-10-142007-08-30Boston Scientific Scimed, Inc.Ablation probe with distal inverted electrode array
WO2007100727A2 (en)2006-02-242007-09-07Eastern Virginia Medical SchoolNanosecond pulsed electric fields cause melanomas to self-destruct
US20070230757A1 (en)2006-04-042007-10-04John TrachtenbergSystem and method of guided treatment within malignant prostate tissue
US20070239099A1 (en)2006-03-032007-10-11Paul GoldfarbMethod and device for treating microscopic tumors remaining in tissues following surgical resection
US20070244521A1 (en)2002-02-142007-10-18Pacesetter, Inc.Systems and methods for preventing, detecting, and terminating pacemaker mediated tachycardia in biventricular implantable cardiac stimulation systems
WO2007123690A2 (en)2006-03-312007-11-01Spiration, Inc.Articulable anchor
US7291146B2 (en)2003-09-122007-11-06Minnow Medical, Inc.Selectable eccentric remodeling and/or ablation of atherosclerotic material
WO2007137303A2 (en)2006-05-242007-11-29Myelin Repair Foundation, Inc.Permeability of blood-brain barrier
US20070287950A1 (en)2006-02-112007-12-13Rune KjekenDevice and method for single-needle in vivo electroporation
US20070295336A1 (en)2006-06-222007-12-27Nelson Donald SEndotracheal cuff and technique for using the same
US20070295337A1 (en)2006-06-222007-12-27Nelson Donald SEndotracheal cuff and technique for using the same
US20080027314A1 (en)2003-10-232008-01-31Osamu MiyazakiImage Processor for Medical Treatment Support
US20080033340A1 (en)2000-02-222008-02-07University Of South FloridaElectroporation and Electrophoresis System and Method for Achieving Molecular Penetration into Cells In Vivo
US20080033417A1 (en)2006-08-042008-02-07Nields Morgan WApparatus for planning and performing thermal ablation
US7331949B2 (en)2003-02-272008-02-19Margaret Grahn MarisiUrinary catheter with check valve
US7331940B2 (en)2003-05-302008-02-19Codman & Shurtleff, Inc.Percutaneous access device
US20080045880A1 (en)2006-02-112008-02-21Rune KjekenDevice and method for single-needle in vivo electroporation
US20080052786A1 (en)2006-08-242008-02-28Pei-Cheng LinAnimal Model of Prostate Cancer and Use Thereof
US7341558B2 (en)2003-09-192008-03-11Medcanica, LlcPericardial retractor
US20080065062A1 (en)2002-03-052008-03-13Baylis Medical Company Inc.Electrosurgical tissue treatment method
WO2008034103A2 (en)2006-09-142008-03-20Lazure Technologies, LlcDevice and method for destruction of cancer cells
USD565743S1 (en)2007-04-122008-04-01Vector Surgical, Inc.Surgical container with applicators
US20080097422A1 (en)1998-02-192008-04-24Curon Medical Inc.Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US20080097139A1 (en)2006-07-142008-04-24Boston Scientific Scimed, Inc.Systems and methods for treating lung tissue
US20080103529A1 (en)2006-10-262008-05-01Old Dominion UniversityApparatus and methods for performing cellular electro-manipulations
WO2008063195A1 (en)2006-10-122008-05-29St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20080121375A1 (en)2006-11-272008-05-29Honeywell International Inc.Systems and methods for passive thermal management using phase change material
US20080125772A1 (en)2004-09-102008-05-29Minnow Medical, IncTuned RF energy and electrical tissue characterization for selective treatment of target tissues
US20080132826A1 (en)2003-01-182008-06-05Shadduck John HMedical instruments and techniques for treating pulmonary disorders
US20080132885A1 (en)2006-12-012008-06-05Boris RubinskyMethods for treating tissue sites using electroporation
US20080132884A1 (en)2006-12-012008-06-05Boris RubinskySystems for treating tissue sites using electroporation
EP1406685B1 (en)2001-06-012008-06-11Baxter International Inc.Hemodialyzer having improved dialysate perfusion
US20080140064A1 (en)2006-12-072008-06-12Cierra, Inc.Energy delivery apparatus with tissue piercing thermocouple
USD571478S1 (en)2006-10-252008-06-17American Sterilizer CompanyContainer for reprocessing medical devices
US20080146934A1 (en)2006-12-082008-06-19Gerald CzyganImplantable medical system with acoustic sensor to measure mitral blood flow
US20080154259A1 (en)1995-08-152008-06-26Angiodynamics, Inc.Ablation apparatus and method
US20080167649A1 (en)1994-08-122008-07-10Angiodynamics, Inc.Ablation apparatus and method
US7399747B1 (en)1998-11-302008-07-15Synt:EmPeptides carrying substances across the blood brain barrier
US20080171985A1 (en)2006-10-162008-07-17Y.K.K. Saglik Hizmetleri Limited SirketiFlexible and Rigid Catheter Resector Balloon
US20080190434A1 (en)2004-05-132008-08-14Anaesthetiq B.V.Bronchus Blocker and Artificial Respiration System
USD575402S1 (en)2005-05-232008-08-19Sandor Marilyn CDisposable prophylaxis
US20080200912A1 (en)2007-02-152008-08-21Long Gary LElectroporation ablation apparatus, system, and method
US20080200911A1 (en)2007-02-152008-08-21Long Gary LElectrical ablation apparatus, system, and method
US20080208052A1 (en)2004-04-162008-08-28Lepivert PatrickSystems and methods for improving image-guided tissue ablation
US20080214986A1 (en)2006-10-162008-09-04The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
US20080210243A1 (en)2007-03-022008-09-04Jessica ClaytonEndotracheal cuff and technique for using the same
US20080236593A1 (en)2006-06-222008-10-02Nellcor Puritan Bennett LlcEndotracheal cuff and technique for using the same
US7434578B2 (en)2002-05-172008-10-14Spiration, Inc.Methods of achieving lung volume reduction with removable anchored devices
US20080262489A1 (en)2007-04-232008-10-23Minnow Medical, LlcThrombus removal
US20080269838A1 (en)2000-02-232008-10-30The Trustees Of The University Of PennsylvaniaRegulation of genes via application of specific and selective electrical and electromagnetic signals
US7449019B2 (en)1999-01-252008-11-11Smith & Nephew, Inc.Intervertebral decompression
US7451765B2 (en)2004-11-182008-11-18Mark AdlerIntra-bronchial apparatus for aspiration and insufflation of lung regions distal to placement or cross communication and deployment and placement system therefor
US20080283065A1 (en)2007-05-152008-11-20Portaero, Inc.Methods and devices to maintain patency of a lumen in parenchymal tissue of the lung
US7455675B2 (en)2002-11-062008-11-25Angiodynamics, Inc.Device and method for withdrawing a tubular body part
US20080306427A1 (en)2007-06-052008-12-11Cook IncorporatedChronic Hemodialysis Catheter with Balloon
US20080312599A1 (en)2007-06-152008-12-18Interrad Medical, Inc.Anchor instrumentation and methods
US7476203B2 (en)2002-09-242009-01-13Spiration, Inc.Device and method for measuring the diameter of an air passageway
US20090018206A1 (en)2005-09-062009-01-15Meditor Pharmaceuticals Ltd.Prevention of hypotension and stabilization of blood pressure in hemodialysis patients
US20090029407A1 (en)2005-12-192009-01-29Yissum Research Development Company Of The Hebrew University Of JerusalemSystems And Methods For Analyzing And Manipulating Biological Samples
US20090038752A1 (en)2005-02-092009-02-12Adel WengReinforced balloon for a catheter
US20090062795A1 (en)2007-08-312009-03-05Ethicon Endo-Surgery, Inc.Electrical ablation surgical instruments
US20090062792A1 (en)2007-08-312009-03-05Ethicon Endo-Surgery, Inc.Electrical ablation surgical instruments
US20090062788A1 (en)2007-08-312009-03-05Long Gary LElectrical ablation surgical instruments
US20090081272A1 (en)2007-09-242009-03-26John ClarkeMedical devices having a metal particulate composition for controlled diffusion
WO2009046176A1 (en)2007-10-022009-04-09C. R. Bard, Inc.Drainage catheter with one-way valve
US20090105703A1 (en)2000-12-092009-04-23Shadduck John HMethod for treating tissue
US7533671B2 (en)2003-08-082009-05-19Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US20090138014A1 (en)1998-02-062009-05-28Bonutti Peter MApparatus and method for securing bone
US7544301B2 (en)2004-08-192009-06-09Hhd LlcCitrate-based dialysate chemical formulations
US20090157166A1 (en)2007-12-122009-06-18Boston Scientific Scimed, Inc.Medical Devices Having Porous Component For Controlled Diffusion
US20090163904A1 (en)2005-12-062009-06-25St. Jude Medical, Atrial Fibrillation Division, Inc.System and Method for Assessing Coupling Between an Electrode and Tissue
USD595422S1 (en)2008-06-182009-06-30Wire • Caddy, LLCSupport device for interventional instruments
US20090171280A1 (en)2006-05-182009-07-02Peter SamuelCatheter
US20090177111A1 (en)2006-12-062009-07-09Miller Stephan PSystem and method for displaying contact between a catheter and tissue
US7565208B2 (en)2004-03-252009-07-21Boston Scientific Scimed, Inc.Catheter with sensor tips, tool and device and methods of use of same
US20090186850A1 (en)2002-11-212009-07-23Kowa Co., Ltd.Peritoneal dialysis method
US20090198231A1 (en)2007-12-062009-08-06Massachusetts Institute Of TechnologyMethods to treat unwanted tissue with electric pulses
US7571729B2 (en)2004-03-092009-08-11Usgi Medical, Inc.Apparatus and methods for performing mucosectomy
US20090228001A1 (en)2005-03-102009-09-10Emcision LimitedDevice and method for the treatment of diseased tissue such as tumors
US20090248012A1 (en)2008-03-272009-10-01The Regents Of The University Of CaliforniaIrreversible electroporation device and method for attenuating neointimal
US20090269317A1 (en)2008-04-292009-10-29Davalos Rafael VIrreversible electroporation to create tissue scaffolds
WO2009135070A1 (en)2008-05-012009-11-05Spiration, Inc.Direct lung sensor systems, methods, and apparatuses
US20090275827A1 (en)2005-12-062009-11-05Aiken Robert DSystem and method for assessing the proximity of an electrode to tissue in a body
WO2009137800A2 (en)2008-05-092009-11-12Angiodynamics, Inc.Electroporation device and method
US20090306545A1 (en)2008-06-092009-12-10Mamdouh ElsakkaBronchoalveolar lavage catheter assembly
US20090306544A1 (en)2008-06-092009-12-10Ho-Kin NgInstillation/aspiration device
US20090301480A1 (en)2008-06-092009-12-10Mamdouh ElsakkaDiagnostic sample collection system and method of use
US7632291B2 (en)2003-06-132009-12-15Trivascular2, Inc.Inflatable implant
US20090318905A1 (en)2008-06-232009-12-24Angiodynamics, Inc.Treatment Devices and Methods
US20090326366A1 (en)2008-06-252009-12-31Robert KriegMethod for visually monitoring an irreversible electroporation treatment, and magnetic resonance imaging apparatus with integrated electroporation treatment device
US20090326436A1 (en)2003-12-242009-12-31The Regents Of The University Of CaliforniaElectroporation to deliver chemotherapeutics and enhance tumor regression
US20090326570A1 (en)2008-06-272009-12-31Kenneth BrownTreated needle holding tube for use in tattooing
US20100004623A1 (en)2008-03-272010-01-07Angiodynamics, Inc.Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
US20100006441A1 (en)*2006-02-012010-01-14Ecole Polytechnique Federale De LausanneApparatus for manipulating, modifying and characterizing particles in a micro channel
US20100023004A1 (en)2008-07-282010-01-28David FrancischelliSystems and methods for cardiac tissue electroporation ablation
US20100030211A1 (en)2008-04-292010-02-04Rafael DavalosIrreversible electroporation to treat aberrant cell masses
US20100049190A1 (en)2008-08-252010-02-25Ethicon Endo-Surgery, Inc.Electrical ablation devices
US20100057074A1 (en)2008-09-022010-03-04Roman Ricardo DIrrigated Ablation Catheter System and Methods
US20100069921A1 (en)2006-12-062010-03-18Miller Stephan PSystem and method for assessing lesions in tissue
USD613418S1 (en)2008-07-232010-04-06Smiths Medical Asd, Inc.Tray assembly
WO2010064154A1 (en)2008-12-032010-06-10Koninklijke Philips Electronics, N.V.Feedback system for integrating interventional planning and navigation
US20100147701A1 (en)2008-12-172010-06-17Tennant CompanyMethod and apparatus for applying electrical charge through a liquid to enhance sanitizing properties
US20100152725A1 (en)2008-12-122010-06-17Angiodynamics, Inc.Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US7742795B2 (en)2005-03-282010-06-22Minnow Medical, Inc.Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US20100168735A1 (en)2005-12-062010-07-01Don Curtis DenoSystem and method for assessing coupling between an electrode and tissue
US20100174282A1 (en)2002-04-082010-07-08Ardian, Inc.Apparatus for thermal modulation of nerves contributing to renal function
US20100179530A1 (en)2009-01-122010-07-15Ethicon Endo-Surgery, Inc.Electrical ablation devices
US7771401B2 (en)2006-06-082010-08-10Angiodynamics, Inc.Selective renal cannulation and infusion systems and methods
US20100204638A1 (en)2009-02-102010-08-12Angiodynamics, Inc.Irreversible electroporation and tissue regeneration
US20100204560A1 (en)2008-11-112010-08-12Amr SalahiehLow profile electrode assembly
US20100222677A1 (en)2009-02-272010-09-02Gynesonics, Inc.Needle and tine deployment mechanism
US20100228234A1 (en)2009-02-252010-09-09Searete Llc, A Limited Liability Corporaiton Of The State Of DelawareDevice for actively removing a target cell from blood or lymph of a vertebrate subject
US20100250209A1 (en)2009-03-312010-09-30Pearson Robert MSystem and method for estimating a treatment region for a medical treatment device
US20100256630A1 (en)2009-04-072010-10-07Angiodynamics, Inc.Irreversible electroporation (ire) for esophageal disease
US20100255795A1 (en)2007-06-182010-10-07The Regents Of The University Of CaliforniaCellular Phone Enabled Medical Imaging System
US20100256628A1 (en)2009-04-032010-10-07Angiodynamics, Inc.Irreversible Electroporation (IRE) for Congestive Obstructive Pulmonary Disease (COPD)
US20100261994A1 (en)2009-04-092010-10-14Rafael DavalosIntegration of very short electric pulses for minimally to noninvasive electroporation
USRE42016E1 (en)2001-08-132010-12-28Angiodynamics, Inc.Apparatus and method for the treatment of benign prostatic hyperplasia
USD630321S1 (en)2009-05-082011-01-04Angio Dynamics, Inc.Probe handle
US20110017207A1 (en)2001-03-022011-01-27Pulmonx CorporationBronchial flow control devices with membrane seal
US20110034209A1 (en)2007-06-182011-02-10Boris RubinskyWireless technology as a data conduit in three-dimensional ultrasonogray
US20110064671A1 (en)2008-03-102011-03-17Cornell UniversityModulation of blood brain barrier permeability
WO2011047387A2 (en)2009-10-162011-04-21Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
US7937143B2 (en)2004-11-022011-05-03Ardian, Inc.Methods and apparatus for inducing controlled renal neuromodulation
US20110106221A1 (en)2008-04-292011-05-05Neal Ii Robert ETreatment planning for electroporation-based therapies
US20110112531A1 (en)2005-02-252011-05-12Boston Scientific Scimed, Inc.Dual mode lesion formation apparatus, systems and methods
US20110118732A1 (en)2009-11-192011-05-19The Regents Of The University Of CaliforniaControlled irreversible electroporation
US20110118727A1 (en)2005-12-062011-05-19Fish Jeffrey MSystem and method for assessing the formation of a lesion in tissue
US20110144524A1 (en)2005-12-062011-06-16Fish Jeffrey MGraphical user interface for real-time rf lesion depth display
US20110144657A1 (en)2009-12-112011-06-16Fish Jeffrey MSystems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation
US20110144635A1 (en)2009-12-162011-06-16Tyco Healthcare Group LpSystem and Method for Tissue Sealing
US20110152678A1 (en)2005-01-202011-06-23Pulmonx CorporationMethods and devices for passive residual lung volume reduction and functional lung volume expansion
US20110176037A1 (en)*2010-01-152011-07-21Benkley Iii Fred GElectronic Imager Using an Impedance Sensor Grid Array and Method of Making
US20110202053A1 (en)2010-02-162011-08-18Angiodynamics, Inc.Ablation Device with Guide Sleeves
USD647628S1 (en)2008-02-122011-10-25Stryker Leibinger Gmbh & Co. KgStorage module for surgical devices, in particular for boneplate templates
US20110301587A1 (en)2010-04-062011-12-08Innovative Pulmonary Solutions, Inc.System and method for pulmonary treatment
US20120034131A1 (en)2009-03-302012-02-09Boris Rubinsky apparatus, system and method for preventing biological contamination to materials during storage using pulsed electrical energy
US20120059255A1 (en)2010-09-022012-03-08Saurav PaulCatheter systems
US20120071870A1 (en)2008-11-112012-03-22Amr SalahiehLow Profile Electrode Assembly
US20120089009A1 (en)2010-10-112012-04-12Omary Reed AMethods and apparatus to deliver nanoparticles to tissue usingelectronanotherapy
US20120085649A1 (en)2010-03-092012-04-12Virginia Tech Intellectual Properties, Inc.Dielectrophoresis devices and methods therefor
WO2012051433A2 (en)2010-10-132012-04-19Angiodynamics, Inc.System and method for electrically ablating tissue of a patient
US20120090646A1 (en)2009-09-032012-04-19Arakawa Chemical Industries, Ltd.Cleaning agent for removal of, removal method for, and cleaning method for water-soluble, lead-free solder flux
US20120109122A1 (en)2009-04-092012-05-03Arena Christopher BHigh-frequency electroporation for cancer therapy
US20120130289A1 (en)2002-04-082012-05-24Ardian, Inc.Methods for renal neuromodulation
WO2012071526A2 (en)2010-11-232012-05-31Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US20120150172A1 (en)2009-08-202012-06-14Mark OrtizMulti-Electrode Energy Delivery Device and Method of Using the Same
US8240468B2 (en)2005-04-222012-08-14Becton, Dickinson And CompanyPrepackaged medical device and packaging tray
US8251986B2 (en)2000-08-172012-08-28Angiodynamics, Inc.Method of destroying tissue cells by eletroporation
US20120226218A1 (en)2009-09-042012-09-06Mary PhillipsExtracellular matrix material created using non-thermal irreversible electroporation
US20120226271A1 (en)2005-03-252012-09-06Peter CallasVacuum Ablation Apparatus and Method
US8267927B2 (en)2007-01-242012-09-18Koninklijke Philips Electronics N.V.Advanced ablation planning
US8267936B2 (en)2007-09-282012-09-18Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US20120265186A1 (en)2009-05-202012-10-18Keith BurgerSteerable curvable ablation catheter for vertebroplasty
US20130023871A1 (en)*2011-07-192013-01-24Tyco Healthcare Group LpMicrowave and rf ablation system and related method for dynamic impedance matching
US20130030239A1 (en)2010-01-112013-01-31Thomas WeyhMagnetic stimulation having a freely selectable pulse shape
USD677798S1 (en)2012-06-252013-03-12Angiodynamics, Inc.Medical device package tray
US20130090646A1 (en)2011-09-282013-04-11Angiodynamics, Inc.Multiple Treatment Zone Ablation Probe
US8425455B2 (en)2010-03-302013-04-23Angiodynamics, Inc.Bronchial catheter and method of use
US20130108667A1 (en)2011-10-272013-05-02Soiwisa SoikumMethod, apparatus and system for electroporation
US20130110106A1 (en)2011-10-282013-05-02Boston Scientific Scimed, Inc.Expandable structure for off-wall ablation electrode
US8465464B2 (en)2010-08-062013-06-18WalkMed Infusion LLCInfusion pump and slide clamp apparatus and method
US20130184702A1 (en)2011-07-152013-07-18II Robert E. NealDevice and Method for Electroporation Based Treatment of Stenosis of a Tubular Body Part
US20130197425A1 (en)2011-12-162013-08-01The Regents Of The University Of CaliforniaCurrent cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment
US20130196441A1 (en)2010-06-032013-08-01The Regents Of The University Of CaliforniaElectroporation electrode configuration and methods
US20130202766A1 (en)2012-02-062013-08-08Elmedtech, LLCComposition, Methods and Devices for Reduction of Cells in a Volume of Matter Using Low Voltage High Electric Field (LVHEF) Electrical Energy
US8506564B2 (en)2009-12-182013-08-13Ethicon Endo-Surgery, Inc.Surgical instrument comprising an electrode
US8511317B2 (en)2006-05-122013-08-20Vytronus, Inc.Method for ablating body tissue
US20130218157A1 (en)2012-02-082013-08-22Angiodynamics, Inc.System and method for increasing a target zone for electrical ablation
US8518031B2 (en)2008-10-312013-08-27The Invention Science Fund I, LlcSystems, devices and methods for making or administering frozen particles
US20130253415A1 (en)2008-04-292013-09-26Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US20130345697A1 (en)2008-04-292013-12-26Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20130345779A1 (en)2012-01-122013-12-26The Regents Of The University Of CaliforniaTwo dimensional and one dimensional field electroporation
US20140017218A1 (en)2012-07-122014-01-16Canadian Blood ServicesMethod for Inducing Immune Tolerance Using Viable Polymer-Modified Allogeneic Leukocytes
US20140039489A1 (en)2008-04-292014-02-06Virginia Tech Intellectual Properties, Inc.Acute blood-brain barrier disruption using electrical energy based therapy
US20140066913A1 (en)2012-09-062014-03-06Medtronic Ablation Frontiers LlcAblation device and method for electroporating tissue cells
US20140088578A1 (en)2011-04-012014-03-27The Regents Of The University Of CaliforniaCryoelectric systems and methods for treatment of biological matter
US20140121728A1 (en)2012-10-252014-05-01Oncosec Medical IncorporatedElectroporation device
US8753335B2 (en)2009-01-232014-06-17Angiodynamics, Inc.Therapeutic energy delivery device with rotational mechanism
US20140207133A1 (en)2013-01-222014-07-24Angiodynamics, Inc.Integrated pump and generator device and method of use
US20140276748A1 (en)*2013-03-152014-09-18Medtronic Ardian Luxembourg S.a.r.I.Helical Push Wire Electrode
US20140296844A1 (en)2010-02-162014-10-02Angiodynamics, Inc.Dual bracketed energy delivery probe and method of use
US8880195B2 (en)2007-09-142014-11-04Lazure Technologies, LlcTransurethral systems and methods for ablation treatment of prostate tissue
US8903488B2 (en)2009-05-282014-12-02Angiodynamics, Inc.System and method for synchronizing energy delivery to the cardiac rhythm
US20140378964A1 (en)2009-06-192014-12-25Angiodynamics, Inc.Methods of Sterilization and Treating Infection Using Irreversible Electroporation
US8968542B2 (en)2009-03-092015-03-03Virginia Tech Intellectual Properties, Inc.Devices and methods for contactless dielectrophoresis for cell or particle manipulation
US20150088120A1 (en)2008-04-292015-03-26Virginia Tech Intellectual Properties Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US20150126922A1 (en)2011-06-012015-05-07Angiodynamics, Inc.Coaxial dual function probe and method of use
US20150152504A1 (en)2012-05-012015-06-04Board Of Regents, The University Of Texas SystemMethod for determining complete response to anticancer therapy
US9149331B2 (en)2007-04-192015-10-06Miramar Labs, Inc.Methods and apparatus for reducing sweat production
US20150289923A1 (en)2014-04-142015-10-15Virginia Tech Intellectual Properties, Inc.Treatment planning for electrical-energy based therapies based on cell characteristics
US9173704B2 (en)2008-06-202015-11-03Angiodynamics, Inc.Device and method for the ablation of fibrin sheath formation on a venous catheter
US20150320999A1 (en)2013-06-032015-11-12Nanoblate Corp.Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US20150320478A1 (en)2014-05-062015-11-12Chenes LlcElectrosurgical generator
WO2015175570A1 (en)2014-05-122015-11-19Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US20160066977A1 (en)2008-04-292016-03-10Angiodynamics, Inc.System and Method for Ablating a Tissue Site by Electroporation with Real-Time monitoring of Treatment Progress
WO2016100325A1 (en)2014-12-152016-06-23Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
WO2016164930A1 (en)2015-04-102016-10-13Angiodynamics Inc.System and method for irreversible electroporation with thermally controlled electrodes
US20160367310A1 (en)2013-12-052016-12-22Rfemb Holdings, LlcCancer immunotherapy by radiofrequency electrical membrane breakdown (rf-emb)
WO2017117418A1 (en)2015-12-302017-07-06Anthrogenesis CorporationT lymphocyte production methods and t lymphocytes produced thereby
US20170189579A1 (en)2008-04-292017-07-06Virginia Tech Intellectual Properties Inc.Irreversible electroporation to create tissue scaffolds
US20170319851A1 (en)2016-05-062017-11-09Pulse Biosciences, Inc.Low-voltage impedance check pulse generator
US20170348525A1 (en)2016-06-072017-12-07The Board Of Trustees Of The Leland Stanford Junior UniversityMethods for enhancing and modulating reversible and irreversible electroporation lesions by manipulating pulse waveforms
US9943599B2 (en)2011-12-222018-04-17Herlev HospitalTherapeutic applications of calcium electroporation to effectively induce tumor necrosis
US20180198218A1 (en)2014-11-102018-07-12Rhythmlink International, LlcElectrode cable system for neurological monitoring and imaging
US20190023804A1 (en)2016-01-152019-01-24Rfemb Holdings, LlcImmunologic treatment of cancer
US20190029749A1 (en)2008-04-292019-01-31Virginia Tech Intellectual Properties Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US20190076528A1 (en)2014-05-082019-03-14University College CorkMethod for treating cancer
US20190083169A1 (en)2008-05-092019-03-21Angiodynamics, Inc.Techniques for Controlling an Irreversible Electroporation System
US20190223938A1 (en)2009-04-092019-07-25Virgnia Tech Intellectual Properties, Inc.Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US20190232048A1 (en)2017-12-052019-08-01Eduardo LatoucheMethod for treating neurological disorders, including tumors, with electroporation
US20190256839A1 (en)2008-04-292019-08-22Virginia Tech Intellectual Properties, Inc.Devices and methods for high frequency electroporation
US20190282294A1 (en)2018-03-132019-09-19Virginia Tech Intellectual Properties, Inc.Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US20190328445A1 (en)2009-04-092019-10-31Virginia Tech Intellectual Properties, Inc.High-frequency electroporation for cancer therapy
US20200046967A1 (en)2016-10-062020-02-13Virginia Tech Intellectual Properties, Inc.Induced cell morphology electroporation
WO2020061192A1 (en)2018-09-182020-03-26Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
US20200405373A1 (en)2019-06-282020-12-31Virginia Tech Intellectual Properties, Inc.Cycled Pulsing to Mitigate Thermal Damage for Multi-Electrode Irreversible Electroporation Therapy
US20210023362A1 (en)2019-07-242021-01-28Virginia Tech Intellectual Properties, Inc.Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies
US20210052882A1 (en)2019-08-212021-02-25Virginia Tech Intellectual Properties, Inc.Enhanced treatment volume and selective ablation using electroporation with adjuvant calcium
US20210113265A1 (en)2019-10-212021-04-22DyaMX, Inc.Devices, systems, and methods for pulsed electric field treatment of the duodenum
US20210137410A1 (en)2014-12-152021-05-13Virginia Tech Intellectual Properties, Inc.Intelligent surgical probe for real-time monitoring of electroporation-based therapies
US20210393312A1 (en)2018-03-132021-12-23Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
WO2022066768A1 (en)2020-09-222022-03-31Virginia Tech Intellectual Properties, Inc.Electroporation-based platform for generation of tumor-activated t cells
US20220161027A1 (en)2020-11-252022-05-26Virginia Tech Intellectual Properties Inc.Methods for modulating temporal infrastructure of pulsed electric fields
US20220290183A1 (en)2019-08-302022-09-15Virginia Tech Intellectual Properties, Inc.Method for intracellular delivery of compounds using cell force and shape with electric fields
US20230157759A1 (en)2008-04-292023-05-25Virginia Tech Intellectual Properties Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20230248414A1 (en)2009-04-092023-08-10Virginia Tech Intellectual Properties Inc.Selective modulation of intracellular effects of cells using pulsed electric fields

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE86311C (en)
US6437551B1 (en)1999-11-022002-08-20The Regents Of The University Of CaliforniaMicrofabricated AC impedance sensor

Patent Citations (1068)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1653819A (en)1926-08-071927-12-27Northcott EphraimElectrotherapeutical apparatus
DE863111C (en)1951-07-031953-01-15Walter Hallegger Instrument for transcutaneous and subcutaneous heating and iontophoresis and method of its use
US3746004A (en)1971-06-141973-07-17B JankelsonDisposable electrodes for electrical stimulation of muscles and nerves of the head
US3730238A (en)1971-09-211973-05-01R ButlerFriction type screwdriver
US3871359A (en)1973-06-251975-03-18Interscience Technology CorpImpedance measuring system
US4037341A (en)1973-08-131977-07-26Johns-Manville CorporationLuminaire for lighting a sign and method
US4016886A (en)1974-11-261977-04-12The United States Of America As Represented By The United States Energy Research And Development AdministrationMethod for localizing heating in tumor tissue
US4407943A (en)1976-12-161983-10-04Millipore CorporationImmobilized antibody or antigen for immunoassay
US4267047A (en)1977-02-111981-05-12Akzo N.V. Of Arnhem/NederlandDialyzing membrane with adsorbent layer
US4226246A (en)1977-05-271980-10-07Carba Societe AnonymeApparatus for maintaining the negative potential of human, animal, and plant cells
US4299217A (en)1977-06-031981-11-10Terumo CorporationIntravascular catheter
US4262672A (en)1978-01-021981-04-21Horst KiefAcupuncture instrument
US4216860A (en)1978-12-111980-08-12Electro-Catheter CorporationMedical device container and method of manufacture
US4469098A (en)1978-12-181984-09-04Davi Samantha KApparatus for and method of utilizing energy to excise pathological tissue
US4336881A (en)1979-06-141982-06-29Diachem, Inc.Aqueous acid concentrate for hemodialysis dialysate
US4278092A (en)1979-07-051981-07-14American Hospital Supply CorporationPeritoneal catheter
US4406827A (en)1979-09-041983-09-27Minnesota Mining And Manufacturing CompanyCohesive nonsticky electrically conductive gel composition
US4344436A (en)1980-01-161982-08-17Yukio KubotaDevice for determining location of the tip of catheter
US4756838A (en)1980-02-211988-07-12Veltman Preston LeonardPreparation of dry dialysate products
US4392855A (en)1980-05-081983-07-12Oreopoulos Dimitrios GCatheter
US4311148A (en)1980-05-191982-01-19Mitchell V. Kaminski, Jr.Micro-jejunostomy feeding tube
US4489535A (en)1980-10-021984-12-25Veltman Preston LeonardMaterials and method for preparing dialysis solutions containing bicarbonate ions
US4447235A (en)1981-05-071984-05-08John M. ClarkeThoracentesis device
US4416276A (en)1981-10-261983-11-22Valleylab, Inc.Adaptive, return electrode monitoring system
US4676258A (en)1983-01-241987-06-30Kureha Kagaku Kogyo Kabushiki KaishaDevice for hyperthermia
US4580572A (en)1983-06-011986-04-08Bio-Stimu Trend Corp.Garment apparatus for delivering or receiving electric impulses
US4512765A (en)1983-06-091985-04-23Rudolph MutoSelective tracheal bronchial catheter
US4672969A (en)1983-10-061987-06-16Sonomo CorporationLaser healing method
US4810963A (en)1984-04-031989-03-07Public Health Laboratory Service BoardMethod for investigating the condition of a bacterial suspension through frequency profile of electrical admittance
US4636199A (en)1984-07-091987-01-13Victor Lyle DDevice for inserting a catheter within the intercostal space
US4676782A (en)1984-09-211987-06-30Vitaphore CorporationPositionable tissue interfacing device for the management of percutaneous conduits
US4772269A (en)1985-05-011988-09-20Curators Of The University Of MissouriPeritoneal dialysis catheter
US4687471A (en)1985-05-011987-08-18Curators Of The University Of MissouriPeritoneal dialysis catheter
US4772269B1 (en)1985-05-011992-05-19Univ Missouri
USD294519S (en)1985-07-291988-03-01Peter LaHayeInstrument for tattooing
EP0218275A1 (en)1985-08-301987-04-15Fijneman, Martinus Jacobus Antonius JohannesMulti-purpose catheter
US4946793A (en)1986-05-091990-08-07Electropore, Inc.Impedance matching for instrumentation which electrically alters vesicle membranes
US4798585A (en)1986-06-061989-01-17Asahi Kogaku Kogyo Kabushiki KaishaSupport for biomedical implant device
US4716896A (en)1986-08-011988-01-05Ackrad LaboratoriesBronchial catheter
US4840172A (en)1986-09-041989-06-20Augustine Scott DDevice for positioning an endotracheal tube
US4723549A (en)1986-09-181988-02-09Wholey Mark HMethod and apparatus for dilating blood vessels
US4987895A (en)1986-10-061991-01-29Heimlich Henry JTracheal tube
US4886502A (en)1986-12-091989-12-12Thermedics, Inc.Peritoneal access catheter
US4813929A (en)1987-02-191989-03-21Neal SemradChest tube device and method of inserting device
US5098843A (en)1987-06-041992-03-24Calvin Noel MApparatus for the high efficiency transformation of living cells
US4836204A (en)1987-07-061989-06-06Landymore Roderick WMethod for effecting closure of a perforation in the septum of the heart
US4863426A (en)1987-08-181989-09-05Ferragamo Michael CPercutaneous venous catheter
US4819637A (en)1987-09-011989-04-11Interventional Therapeutics CorporationSystem for artificial vessel embolization and devices for use therewith
US4822470A (en)1987-10-091989-04-18Baylor College Of MedicineMethod of and apparatus for cell poration and cell fusion using radiofrequency electrical pulses
US5389069A (en)1988-01-211995-02-14Massachusetts Institute Of TechnologyMethod and apparatus for in vivo electroporation of remote cells and tissue
US5019034A (en)1988-01-211991-05-28Massachusetts Institute Of TechnologyControl of transport of molecules across tissue using electroporation
US5019034B1 (en)1988-01-211995-08-15Massachusetts Inst TechnologyControl of transport of molecules across tissue using electroporation
US4886496A (en)1988-02-041989-12-12Conoscenti Craig SBronchoscopic balloon tipped catheter and method of making the same
US4981477A (en)1988-04-161991-01-01Rudolf SchonCatheter for introduction into the trachea and the bronchial system
US5186800A (en)1988-04-181993-02-16Bio-Rad Laboratories, Inc.Electroporation of prokaryotic cells
US4903707A (en)1988-04-221990-02-27Camino LaboratoriesVentricular catheter assembly
EP0339501A2 (en)1988-04-261989-11-02Arturo Dr. MutiBronchial examination catheter
US4919148A (en)1988-06-131990-04-24Muccio Philip EApparatus and method for transcutaneous electrical stimulation
US4907601A (en)1988-06-151990-03-13Etama AgElectrotherapy arrangement
US4921484A (en)1988-07-251990-05-01Cordis CorporationMesh balloon catheter device
US4885003A (en)1988-07-251989-12-05Cordis CorporationDouble mesh balloon catheter device
US4920978A (en)1988-08-311990-05-01Triangle Research And Development CorporationMethod and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia
US4889634A (en)1988-10-041989-12-26Gynex, Inc.Dialysate solution containing hydroxypropyl-beta-cyclodextrin and method of using same
US6134460A (en)1988-11-022000-10-17Non-Invasive Technology, Inc.Spectrophotometers with catheters for measuring internal tissue
US4976709A (en)1988-12-151990-12-11Sand Bruce JMethod for collagen treatment
EP0378132A2 (en)1989-01-091990-07-18S.L. Cit IonoforA device for the administration of medication by iontopheresis for local - regional treatment.
US5290263A (en)1989-02-021994-03-01Regents Of The University Of MinnesotaBidirectional check valve catheter
US5058605A (en)1989-02-221991-10-22Ceske Vysoke Uceni TechnickeMethod and device for the controlled local, non-invasive application of dc pulses to human and animal tissues
US5071558A (en)1989-08-111991-12-10Nikkiso Co., Ltd.Sodium bicarbonate dialysate
US4986810A (en)1989-09-011991-01-22Neal SemradToggle catheter
WO1991004014A1 (en)1989-09-211991-04-04Synergen, Inc.Method for transporting compositions across the blood brain barrier
US5137517A (en)1989-11-281992-08-11Scimed Life Systems, Inc.Device and method for gripping medical shaft
US5156597A (en)1989-12-301992-10-20B. Braun Melsungen AgTranscutaneous implantation catheter
US5405320A (en)1990-01-081995-04-11The Curators Of The University Of MissouriMultiple lumen catheter for hemodialysis
US5209723A (en)1990-01-081993-05-11The Curators Of The University Of MissouriMultiple lumen catheter for hemodialysis
DE4000893A1 (en)1990-01-151991-07-18Bosch Gmbh RobertMultichannel appts. for electro-simulation - provides several current circuits for patient with electrodes applying pulse signals
US5836897A (en)1990-02-021998-11-17Olympus Optical Co., Ltd.Ultrasonic treatment apparatus
US5031775A (en)1990-02-141991-07-16Angeion CorporationMedical instrument holder
USD329496S (en)1990-02-201992-09-15Celia ClarkeNeedle depth gauge
US5053013A (en)1990-03-011991-10-01The Regents Of The University Of MichiganImplantable infusion device
EP0528891B1 (en)1990-04-232000-07-05Alkermes, Inc.Method for increasing blood-brain barrier permeability
US5122137A (en)1990-04-271992-06-16Boston Scientific CorporationTemperature controlled rf coagulation
US5134070A (en)1990-06-041992-07-28Casnig Dael RMethod and device for cell cultivation on electrodes
US5193537A (en)1990-06-121993-03-16Zmd CorporationMethod and apparatus for transcutaneous electrical cardiac pacing
US5190541A (en)1990-10-171993-03-02Boston Scientific CorporationSurgical instrument and method
US5052391A (en)1990-10-221991-10-01R.F.P., Inc.High frequency high intensity transcutaneous electrical nerve stimulator and method of treatment
US5186715A (en)1990-12-061993-02-16E-Z-Em, Inc.Biliary drainage method
US20030105454A1 (en)1990-12-142003-06-05Cucin Robert L.Power-assisted liposuction instrument with cauterizing cannula assembly
US5308325A (en)1991-01-281994-05-03Corpak, Inc.Retention balloon for percutaneous catheter
US5192312A (en)1991-03-051993-03-09Colorado State University Research FoundationTreated tissue for implantation and methods of treatment and use
US5188592A (en)1991-06-241993-02-23Hakki Sam IDynamic pressurized catheter with simultaneous oxygen delivery and suction
US5540737A (en)1991-06-261996-07-30Massachusetts Institute Of TechnologyMinimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas
US20020077314A1 (en)1991-07-032002-06-20Rudolf E. FalkUse of hyaluronic acid and forms to prevent arterial restenosis
US5383917A (en)1991-07-051995-01-24Jawahar M. DesaiDevice and method for multi-phase radio-frequency ablation
US5215530A (en)1991-07-111993-06-01City Of HopeSleeved extension and anchoring system for percutaneous catheters
US5173158A (en)1991-07-221992-12-22Schmukler Robert EApparatus and methods for electroporation and electrofusion
US5283194A (en)1991-07-221994-02-01Schmukler Robert EApparatus and methods for electroporation and electrofusion
EP0533511A1 (en)1991-07-221993-03-24Thomas Schmitz-RodeDevice for maintaining the patency of a bodily duct, and especially of a blood vessel, and uses thereof
US5328451A (en)1991-08-151994-07-12Board Of Regents, The University Of Texas SystemIontophoretic device and method for killing bacteria and other microbes
US5141499A (en)1991-10-091992-08-25Zappacosta Anthony RPeritoneal dialysis catheter
US5425752A (en)1991-11-251995-06-20Vu'nguyen; Dung D.Method of direct electrical myostimulation using acupuncture needles
USD343687S (en)1992-01-061994-01-25Becton, Dickinson And CompanyBiopsy procedure tray
US6500173B2 (en)1992-01-072002-12-31Ronald A. UnderwoodMethods for electrosurgical spine surgery
US6066134A (en)1992-01-072000-05-23Arthrocare CorporationMethod for electrosurgical cutting and ablation
US5224933A (en)1992-03-231993-07-06C. R. Bard, Inc.Catheter purge device
US5586982A (en)1992-04-101996-12-24Abela; George S.Cell transfection apparatus and method
US5281213A (en)1992-04-161994-01-25Implemed, Inc.Catheter for ice mapping and ablation
US5277201A (en)1992-05-011994-01-11Vesta Medical, Inc.Endometrial ablation apparatus and method
US5562720A (en)1992-05-011996-10-08Vesta Medical, Inc.Bipolar/monopolar endometrial ablation device and method
US6132419A (en)1992-05-222000-10-17Genetronics, Inc.Electroporetic gene and drug therapy
US5318563A (en)1992-06-041994-06-07Valley Forge Scientific CorporationBipolar RF generator
US5536240A (en)1992-08-121996-07-16Vidamed, Inc.Medical probe device and method
US6610054B1 (en)1992-08-122003-08-26Vidamed, Inc.Medical probe device and method
US5800378A (en)1992-08-121998-09-01Vidamed, Inc.Medical probe device and method
US5484400A (en)1992-08-121996-01-16Vidamed, Inc.Dual channel RF delivery system
US20020183740A1 (en)1992-08-122002-12-05Vidamed, Inc.Medical probe device and method relationship to copending application
US5599294A (en)1992-08-121997-02-04Vidamed, Inc.Microwave probe device and method
US5843026A (en)1992-08-121998-12-01Vidamed, Inc.BPH ablation method and apparatus
US6241702B1 (en)1992-08-122001-06-05Vidamed, Inc.Radio frequency ablation device for treatment of the prostate
US7387626B2 (en)1992-08-122008-06-17Medtronic Vidamed, Inc.Medical probe device and method
US5273525A (en)1992-08-131993-12-28Btx Inc.Injection and electroporation apparatus for drug and gene delivery
US5242415A (en)1992-08-141993-09-07L-Vad Technology, Inc.Percutaneous access device
US5279564A (en)1992-09-111994-01-18Edward Weck IncorporatedCannula retention device
US5227730A (en)1992-09-141993-07-13Kdc Technology Corp.Microwave needle dielectric sensors
US5865787A (en)1992-10-061999-02-02Cortrak Medical, Inc.Simultaneous cardiac pacing and local drug delivery
US5318543A (en)1992-10-081994-06-07Abbott LaboratoriesLaparoscopic jejunostomy instrumentation kit
US5484401A (en)1992-11-041996-01-16Denver Biomaterials, Inc.Treatment method for pleural effusion
US5807306A (en)1992-11-091998-09-15Cortrak Medical, Inc.Polymer matrix drug delivery apparatus
US5620479A (en)1992-11-131997-04-15The Regents Of The University Of CaliforniaMethod and apparatus for thermal therapy of tumors
US5348554A (en)1992-12-011994-09-20Cardiac Pathways CorporationCatheter for RF ablation with cooled electrode
US6284140B1 (en)1992-12-182001-09-04Fresenius AgDialysis solution for peritoneal dialysis
US5626146A (en)1992-12-181997-05-06British Technology Group LimitedElectrical impedance tomography
US5752939A (en)1992-12-241998-05-19Kabushiki Kaisha Hayashidera MedinooruCatheter for continuous ambulatory peritoneal dialysis
USD351661S (en)1993-02-161994-10-18Ultradent Products, Inc.Combined organizer and tray for an endodontic dental kit
US6349233B1 (en)1993-02-222002-02-19Angeion CorporationNeuro-stimulation to control pain during cardioversion defibrillation
US5403311A (en)1993-03-291995-04-04Boston Scientific CorporationElectro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5674267A (en)1993-03-301997-10-07Centre National De La Recherche ScientifiqueElectric pulse applicator using pairs of needle electrodes for the treatment of biological tissue
US5439440A (en)1993-04-011995-08-08Genetronics, Inc.Electroporation system with voltage control feedback for clinical applications
US5582588A (en)1993-04-191996-12-10Olympus Optical Co., Ltd.Ultrasonic therapeutic apparatus
US5308338A (en)1993-04-221994-05-03Helfrich G BairdCatheter or the like with medication injector to prevent infection
US5575811A (en)1993-07-081996-11-19Urologix, Inc.Benign prostatic hyperplasia treatment catheter with urethral cooling
US5921982A (en)1993-07-301999-07-13Lesh; Michael D.Systems and methods for ablating body tissue
US5634899A (en)1993-08-201997-06-03Cortrak Medical, Inc.Simultaneous cardiac pacing and local drug delivery method
US5533999A (en)1993-08-231996-07-09Refractec, Inc.Method and apparatus for modifications of visual acuity by thermal means
US5807395A (en)1993-08-271998-09-15Medtronic, Inc.Method and apparatus for RF ablation and hyperthermia
US6958062B1 (en)1993-11-082005-10-25Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5536267A (en)1993-11-081996-07-16Zomed InternationalMultiple electrode ablation apparatus
US5683384A (en)1993-11-081997-11-04ZomedMultiple antenna ablation apparatus
US5334167A (en)1993-11-191994-08-02Cocanower David AModified nasogastric tube for use in enteral feeding
US5687723A (en)1993-12-031997-11-18Avitall; BoazMapping and ablation catheter system
US20020111615A1 (en)1993-12-152002-08-15Eric R. CosmanCluster ablation electrode system
US6241725B1 (en)1993-12-152001-06-05Sherwood Services AgHigh frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US6530922B2 (en)1993-12-152003-03-11Sherwood Services AgCluster ablation electrode system
US5643197A (en)1993-12-211997-07-01Angeion CorporationFluid cooled and perfused tip for a catheter
US5546940A (en)1994-01-281996-08-20Ep Technologies, Inc.System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5391158A (en)1994-02-241995-02-21Peters; Michael J.Nasogastric tube
US5843182A (en)1994-03-141998-12-01Cryolife, Inc.Treated tissue for implantation and methods of preparation
US5458625A (en)1994-05-041995-10-17Kendall; Donald E.Transcutaneous nerve stimulation device and method for using same
US6296636B1 (en)1994-05-102001-10-02Arthrocare CorporationPower supply and methods for limiting power in electrosurgery
US5836905A (en)1994-06-201998-11-17Lemelson; Jerome H.Apparatus and methods for gene therapy
US6673070B2 (en)1994-06-242004-01-06Curon Medical, Inc.Sphincter treatment apparatus
US6405732B1 (en)1994-06-242002-06-18Curon Medical, Inc.Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US6009877A (en)1994-06-242000-01-04Edwards; Stuart D.Method for treating a sphincter
US5599311A (en)1994-07-251997-02-04Raulerson; J. DanielSubcutaneous catheter stabilizing devices
US20080167649A1 (en)1994-08-122008-07-10Angiodynamics, Inc.Ablation apparatus and method
US5810742A (en)1994-10-241998-09-22Transcan Research & Development Co., Ltd.Tissue characterization based on impedance images and on impedance measurements
US5588960A (en)1994-12-011996-12-31Vidamed, Inc.Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5951546A (en)1994-12-131999-09-14Lorentzen; TorbenElectrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US5947889A (en)1995-01-171999-09-07Hehrlein; ChristophBalloon catheter used to prevent re-stenosis after angioplasty and process for producing a balloon catheter
US5919191A (en)1995-01-301999-07-06Boston Scientific CorporationElectro-surgical tissue removal
US6312428B1 (en)1995-03-032001-11-06Neothermia CorporationMethods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5616126A (en)1995-03-031997-04-01Malekmehr; FarshadLow residual bladder catheter
US6074389A (en)1995-03-102000-06-13Seedling Enterprises, LlcElectrosurgery with cooled electrodes
US5720921A (en)1995-03-101998-02-24Entremed, Inc.Flow electroporation chamber and method
US5810762A (en)1995-04-101998-09-22Genetronics, Inc.Electroporation system with voltage control feedback for clinical applications
US6575969B1 (en)1995-05-042003-06-10Sherwood Services AgCool-tip radiofrequency thermosurgery electrode system for tumor ablation
EP1011495B1 (en)1995-05-042005-11-09Sherwood Services AGCool-tip electrode thermosurgery system
EP1462065A2 (en)1995-05-042004-09-29Sherwood Services AGCool-tip electrode thermosurgery system
WO1996034571A1 (en)1995-05-041996-11-07Cosman Eric RCool-tip electrode thermosurgery system
US6506189B1 (en)1995-05-042003-01-14Sherwood Services AgCool-tip electrode thermosurgery system
US6994689B1 (en)1995-06-052006-02-07Medtronic Vascular, Inc.Occlusion of a vessel
US5702359A (en)1995-06-061997-12-30Genetronics, Inc.Needle electrodes for mediated delivery of drugs and genes
WO1996039531A1 (en)1995-06-061996-12-12Massachusetts Institute Of TechnologyDelivery of nucleotides into organisms by electroporation
US20060024359A1 (en)1995-06-072006-02-02Walker Jeffrey PDrug delivery system and method
US6041252A (en)1995-06-072000-03-21Ichor Medical Systems Inc.Drug delivery system and method
US5697905A (en)1995-06-191997-12-16Leo T. d'AmbrosioTriple-lumen intra-aortic catheter
US6607529B1 (en)1995-06-192003-08-19Medtronic Vidamed, Inc.Electrosurgical device
US5919142A (en)1995-06-221999-07-06Btg International LimitedElectrical impedance tomography method and apparatus
US5588424A (en)1995-06-281996-12-31The Cleveland Clinic FoundationBronchial blocker endotracheal apparatus
USD376652S (en)1995-07-071996-12-17Hunt Ilyssa AMedical instrument tray
USD450391S1 (en)1995-07-072001-11-13Arrow International, Inc.Medical instrument tray
USD380272S (en)1995-07-071997-06-24Becton, Dickinson And CompanySkin preparation tray
US5983131A (en)1995-08-111999-11-09Massachusetts Institute Of TechnologyApparatus and method for electroporation of tissue
US5800484A (en)1995-08-151998-09-01Rita Medical Systems, Inc.Multiple antenna ablation apparatus with expanded electrodes
US6235023B1 (en)1995-08-152001-05-22Rita Medical Systems, Inc.Cell necrosis apparatus
US5672173A (en)1995-08-151997-09-30Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US6090105A (en)1995-08-152000-07-18Rita Medical Systems, Inc.Multiple electrode ablation apparatus and method
US20080154259A1 (en)1995-08-152008-06-26Angiodynamics, Inc.Ablation apparatus and method
US6059780A (en)1995-08-152000-05-09Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method with cooling element
US5735847A (en)1995-08-151998-04-07Zomed International, Inc.Multiple antenna ablation apparatus and method with cooling element
US6096035A (en)1995-08-182000-08-01Sodhi; ChrisMultipolar transmural probe
US6198970B1 (en)1995-10-272001-03-06Esd Limited Liability CompanyMethod and apparatus for treating oropharyngeal respiratory and oral motor neuromuscular disorders with electrical stimulation
US5807272A (en)1995-10-311998-09-15Worcester Polytechnic InstituteImpedance spectroscopy system for ischemia monitoring and detection
US5700252A (en)1995-11-011997-12-23Klingenstein; Ralph JamesLumen-seeking nasogastric tube and method
US6210402B1 (en)1995-11-222001-04-03Arthrocare CorporationMethods for electrosurgical dermatological treatment
US5782882A (en)1995-11-301998-07-21Hewlett-Packard CompanySystem and method for administering transcutaneous cardiac pacing with transcutaneous electrical nerve stimulation
US6010613A (en)1995-12-082000-01-04Cyto Pulse Sciences, Inc.Method of treating materials with pulsed electrical fields
US5718246A (en)1996-01-031998-02-17Preferential, Inc.Preferential induction of electrically mediated cell death from applied pulses
US6090106A (en)1996-01-092000-07-18Gyrus Medical LimitedElectrosurgical instrument
US5830184A (en)1996-03-061998-11-03Medical Components, Inc.Composite catheter stabilizing devices, methods of making the same and catheter extracting device
US5645855A (en)1996-03-131997-07-08Ridge Scientific Enterprises, Inc.Adhesive compositions including polyvinylpyrrolidone acrylic acid polymers, and polyamines
US6016452A (en)1996-03-192000-01-18Kasevich; Raymond S.Dynamic heating method and radio frequency thermal treatment
US5778894A (en)1996-04-181998-07-14Elizabeth Arden Co.Method for reducing human body cellulite by treatment with pulsed electromagnetic energy
US5690620A (en)1996-05-141997-11-25Knott; Michael McfarlandAnatomically conforming nasogastric tube with normally-curved tip and method for using same
US5904648A (en)1996-06-181999-05-18Cook IncorporatedGuided endobronchial blocker catheter
US20020183684A1 (en)1996-06-242002-12-05GenetronicsElectroporation-enhanced inhibition of vascular neointimal hyperplasia
US5944710A (en)1996-06-241999-08-31Genetronics, Inc.Electroporation-mediated intravascular delivery
US20020040204A1 (en)1996-06-242002-04-04Dev Nagendu B.Electroporation-enhanced inhibition of vascular neointimal hyperplasia
EP0935482B1 (en)1996-07-182005-05-04Radinvent ABAn apparatus for treating tumoral diseases (cancer)
WO1998014238A1 (en)1996-07-181998-04-09Bertil PerssonA method and an apparatus for treating tumoral diseases (cancer)
US6102885A (en)1996-08-082000-08-15Bass; Lawrence S.Device for suction-assisted lipectomy and method of using same
US6106521A (en)1996-08-162000-08-22United States Surgical CorporationApparatus for thermal treatment of tissue
WO1998010745A1 (en)1996-09-111998-03-19Aksys, Ltd.Batch quantity dialysate chemical formulations
US6110192A (en)1996-09-232000-08-29Boston Scientific CorporationCatheter balloon having raised radial segments
US6004339A (en)1996-11-131999-12-21Angiodynamics IncorporatedBalloon catheter with multiple distensibilities
US6419674B1 (en)1996-11-272002-07-16Cook Vascular IncorporatedRadio frequency dilator sheath
US5991697A (en)1996-12-311999-11-23The Regents Of The University Of CaliforniaMethod and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US20050165393A1 (en)1996-12-312005-07-28Eppstein Jonathan A.Microporation of tissue for delivery of bioactive agents
US6029090A (en)1997-01-272000-02-22Herbst; EwaMulti-functional electrical stimulation system
US20020143365A1 (en)1997-01-272002-10-03Ewa HerbstMulti-functional electrical stimulation system
US6109270A (en)1997-02-042000-08-29The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMultimodality instrument for tissue characterization
US6135999A (en)*1997-02-122000-10-24Oratec Internationals, Inc.Concave probe for arthroscopic surgery
US20090143705A1 (en)1997-04-072009-06-04Asthmatx, Inc.Modification of airways by application of ultrasound energy
US6283989B1 (en)1997-04-072001-09-04Broncus Technolgies, Inc.Method of treating a bronchial tube with a bronchial stenter having diametrically adjustable electrodes
US20030159700A1 (en)1997-04-072003-08-28Laufer Michael D.Method of increasing gas exchange of a lung
US6283988B1 (en)1997-04-072001-09-04Broncus Technologies, Inc.Bronchial stenter having expandable electrodes
US20090192508A1 (en)1997-04-072009-07-30Asthmatx, Inc.Modification of airways by application of mechanical energy
US6411852B1 (en)1997-04-072002-06-25Broncus Technologies, Inc.Modification of airways by application of energy
US6634363B1 (en)1997-04-072003-10-21Broncus Technologies, Inc.Methods of treating lungs having reversible obstructive pulmonary disease
US6488673B1 (en)1997-04-072002-12-03Broncus Technologies, Inc.Method of increasing gas exchange of a lung
US6299633B1 (en)1997-04-072001-10-09Broncus Technologies, Inc.Bronchial stenter
US5873849A (en)1997-04-241999-02-23Ichor Medical Systems, Inc.Electrodes and electrode arrays for generating electroporation inducing electrical fields
US6278895B1 (en)1997-04-242001-08-21Ichor Medical Systems, Inc.Electrodes and electrode arrays for generating electroporation inducing electrical fields
US6132397A (en)1997-05-012000-10-17Chase Medical Inc.Integral aortic arch infusion clamp catheter
US5868708A (en)1997-05-071999-02-09Applied Medical Resources CorporationBalloon catheter apparatus and method
US5954745A (en)1997-05-161999-09-21Gertler; JonathanCatheter-filter set having a compliant seal
US6085115A (en)1997-05-222000-07-04Massachusetts Institite Of TechnologyBiopotential measurement including electroporation of tissue surface
US20020052601A1 (en)1997-05-302002-05-02Goldberg S. NahumSystem and method for performing plate type radiofrequency ablation
US6470211B1 (en)1997-06-032002-10-22Uab Research FoundationMethod and apparatus for treating cardiac arrhythmia
US5957919A (en)1997-07-021999-09-28Laufer; Michael D.Bleb reducer
WO1999001076A1 (en)1997-07-021999-01-14Broncus Technologies, Inc.Bleb reducer
WO1999004710A1 (en)1997-07-251999-02-04Cosman Eric RCluster ablation electrode system
EP1493397A1 (en)1997-07-252005-01-05Sherwood Services AGCluster ablation electrode system
CA2297846A1 (en)1997-07-251999-02-04Eric R. CosmanCluster ablation electrode system
EP0998235A1 (en)1997-07-252000-05-10Eric Richard CosmanCluster ablation electrode system
JP2001510702A (en)1997-07-252001-08-07エリック アール コスマン Collective electrode system
US6443952B1 (en)1997-07-292002-09-03Medtronic, Inc.Tissue sealing electrosurgery device and methods of sealing tissue
US6055453A (en)1997-08-012000-04-25Genetronics, Inc.Apparatus for addressing needle array electrodes for electroporation therapy
US6068650A (en)1997-08-012000-05-30Gentronics Inc.Method of Selectively applying needle array configurations
US6216034B1 (en)1997-08-012001-04-10Genetronics, Inc.Method of programming an array of needle electrodes for electroporation therapy of tissue
US6537976B1 (en)1997-08-072003-03-25Ajay GuptaDialysis solutions containing water soluble vitamins and nutrients
US20030199050A1 (en)1997-09-042003-10-23Joseph ManganoCell separation using electric fields
US6043066A (en)1997-09-042000-03-28Mangano; Joseph A.Cell separation using electric fields
US6123701A (en)1997-10-092000-09-26Perfect Surgical Techniques, Inc.Methods and systems for organ resection
US5999847A (en)1997-10-211999-12-07Elstrom; John A.Apparatus and method for delivery of surgical and therapeutic agents
US20020055731A1 (en)1997-10-242002-05-09Anthony AtalaMethods for promoting cell transfection in vivo
USD442697S1 (en)1997-10-272001-05-22Mohammed Ali HajianpourAccessory tray for hip replacement surgery
US5984896A (en)1997-10-281999-11-16Ojp #73, Inc.Fixated catheter
US6689096B1 (en)1997-10-312004-02-10Soprane S.A.Multipurpose catheter
US5968006A (en)1997-11-041999-10-19Genetronics, Inc.Method and apparatus for a combination of electroporation and iontophoresis for the delivery of drugs and genes
US20010039393A1 (en)1997-11-052001-11-08Kenji MoriApparatus and method for in vivo delivery of therapeutic agents
US20050048651A1 (en)1997-11-062005-03-03Frida RyttsenMethod and apparatus for spatially confined electroporation
US6375634B1 (en)1997-11-192002-04-23Oncology Innovations, Inc.Apparatus and method to encapsulate, kill and remove malignancies, including selectively increasing absorption of x-rays and increasing free-radical damage to residual tumors targeted by ionizing and non-ionizing radiation therapy
US6280441B1 (en)1997-12-152001-08-28Sherwood Services AgApparatus and method for RF lesioning
US7027869B2 (en)1998-01-072006-04-11Asthmatx, Inc.Method for treating an asthma attack
US5957963A (en)1998-01-231999-09-28Del Mar Medical Technologies, Inc.Selective organ hypothermia method and apparatus
US6009347A (en)1998-01-271999-12-28Genetronics, Inc.Electroporation apparatus with connective electrode template
US6208893B1 (en)1998-01-272001-03-27Genetronics, Inc.Electroporation apparatus with connective electrode template
US6120493A (en)1998-01-272000-09-19Genetronics, Inc.Method for the introduction of therapeutic agents utilizing an electroporation apparatus
US20090138014A1 (en)1998-02-062009-05-28Bonutti Peter MApparatus and method for securing bone
US6692493B2 (en)1998-02-112004-02-17Cosman Company, Inc.Method for performing intraurethral radio-frequency urethral enlargement
US6122599A (en)1998-02-132000-09-19Mehta; ShaileshApparatus and method for analyzing particles
US5947284A (en)1998-02-131999-09-07United States Surgical CorporationPackage with guide for flexible medical instruments
US20020138075A1 (en)1998-02-192002-09-26Curon Medical, Inc.Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US20080097422A1 (en)1998-02-192008-04-24Curon Medical Inc.Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6712811B2 (en)1998-02-202004-03-30Arthrocare CorporationMethods for electrosurgical spine surgery
EP1061983B1 (en)1998-03-112004-11-17Oldfield Family Holdings PTY LimitedEndotracheal tube for selective bronchial occlusion
US6068121A (en)1998-03-112000-05-30Schneider (Usa) Inc.Universal catheter tray
US6753171B2 (en)1998-03-122004-06-22Center For Advanced Science And Technology Incubation, Ltd.Site-specific cell perforation technique
US8187269B2 (en)1998-03-272012-05-29Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US20070118069A1 (en)1998-03-312007-05-24Aditus Medical AbApparatus for controlling the generation of electric fields
US20060015147A1 (en)1998-03-312006-01-19Aditus Medical Ab.Apparatus for controlling the generation of electric fields
US6277114B1 (en)1998-04-032001-08-21Gyrus Medical LimitedElectrode assembly for an electrosurical instrument
US6540695B1 (en)1998-04-082003-04-01Senorx, Inc.Biopsy anchor device with cutter
US6219577B1 (en)1998-04-142001-04-17Global Vascular Concepts, Inc.Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US6071281A (en)1998-05-052000-06-06Ep Technologies, Inc.Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6200314B1 (en)1998-05-052001-03-13Cardiac Pacemakers, Inc.RF ablation apparatus and method using unipolar and bipolar techniques
US20020161361A1 (en)1998-05-052002-10-31Sherman Marshall L.RF ablation system and method having automatic temperature control
US6485487B1 (en)1998-05-052002-11-26Cardiac Pacemakers, Inc.RF ablation apparatus having high output impedance drivers
US6488678B2 (en)1998-05-052002-12-03Cardiac Pacemakers, Inc.RF ablation apparatus and method using unipolar and bipolar techniques
US6050994A (en)1998-05-052000-04-18Cardiac Pacemakers, Inc.RF ablation apparatus and method using controllable duty cycle with alternate phasing
US6616657B2 (en)1998-05-052003-09-09Cardiac Pacemakers, Inc.RF ablation catheter tip electrode with multiple thermal sensors
US6558378B2 (en)1998-05-052003-05-06Cardiac Pacemakers, Inc.RF ablation system and method having automatic temperature control
US6493589B1 (en)1998-05-072002-12-10Medtronic, Inc.Methods and apparatus for treatment of pulmonary conditions
US6327505B1 (en)1998-05-072001-12-04Medtronic, Inc.Method and apparatus for rf intraluminal reduction and occlusion
US6159163A (en)1998-05-072000-12-12Cedars-Sinai Medical CenterSystem for attenuating pain during bone marrow aspiration and method
US6865416B2 (en)1998-05-082005-03-08Genetronics, Inc.Electrically induced vessel vasodilation
US6347247B1 (en)1998-05-082002-02-12Genetronics Inc.Electrically induced vessel vasodilation
US7264002B2 (en)1998-06-102007-09-04Asthmatx, Inc.Methods of treating reversible obstructive pulmonary disease
US7273055B2 (en)1998-06-102007-09-25Asthmatx, Inc.Methods of treating asthma
USD430015S (en)1998-06-112000-08-29Pharmacia & Upjohn AbBlister pack for a syringe
US6298726B1 (en)1998-06-252001-10-09Olympus Optical Co., Ltd.Acoustic impedance measuring apparatus using ultrasonic waves
US20020099323A1 (en)1998-07-132002-07-25Nagendu B. DevSkin and muscle-targeted gene therapy by pulsed electrical field
US6697669B2 (en)1998-07-132004-02-24Genetronics, Inc.Skin and muscle-targeted gene therapy by pulsed electrical field
US6972013B1 (en)1998-07-132005-12-06Genetronics, Inc.Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US6212433B1 (en)1998-07-282001-04-03Radiotherapeutics CorporationMethod for treating tumors near the surface of an organ
US6074374A (en)1998-07-312000-06-13Angiodynamics, Inc.Catheter with lumen occluding means
US6139545A (en)1998-09-092000-10-31VidadermSystems and methods for ablating discrete motor nerve regions
US6653091B1 (en)1998-09-302003-11-25Cyngnus, Inc.Method and device for predicting physiological values
WO2000020554A1 (en)1998-10-082000-04-13Astrazeneca AbMicrofabricated cell injector
US7012061B1 (en)1998-10-192006-03-14New York UniversityMethod for increasing the permeability of the blood brain barrier
US6150148A (en)1998-10-212000-11-21Genetronics, Inc.Electroporation apparatus for control of temperature during the process
US6398779B1 (en)1998-10-232002-06-04Sherwood Services AgVessel sealing system
US6611706B2 (en)1998-11-092003-08-26Transpharma Ltd.Monopolar and bipolar current application for transdermal drug delivery and analyte extraction
US6526320B2 (en)1998-11-162003-02-25United States Surgical CorporationApparatus for thermal treatment of tissue
US20020002393A1 (en)1998-11-162002-01-03James MitchellApparatus for thermal treatment of tissue
US6090016A (en)1998-11-182000-07-18Kuo; Hai PinCollapsible treader with enhanced stability
US20040153057A1 (en)1998-11-202004-08-05Arthrocare CorporationElectrosurgical apparatus and methods for ablating tissue
US6351674B2 (en)1998-11-232002-02-26Synaptic CorporationMethod for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
US7399747B1 (en)1998-11-302008-07-15Synt:EmPeptides carrying substances across the blood brain barrier
US6178354B1 (en)1998-12-022001-01-23C. R. Bard, Inc.Internal mechanism for displacing a slidable electrode
US20070129711A1 (en)1999-01-082007-06-07Altshuler Gregory BCooling system for a photocosmetic device
US7449019B2 (en)1999-01-252008-11-11Smith & Nephew, Inc.Intervertebral decompression
US6113593A (en)1999-02-012000-09-05Tu; Lily ChenAblation apparatus having temperature and force sensing capabilities
US6233490B1 (en)1999-02-092001-05-15Kai Technologies, Inc.Microwave antennas for medical hyperthermia, thermotherapy and diagnosis
US6193715B1 (en)1999-03-192001-02-27Medical Scientific, Inc.Device for converting a mechanical cutting device to an electrosurgical cutting device
US7054685B2 (en)1999-03-252006-05-30Genetronics, Inc.Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6678558B1 (en)1999-03-252004-01-13Genetronics, Inc.Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6261831B1 (en)1999-03-262001-07-17The United States Of America As Represented By The Secretary Of The Air ForceUltra-wide band RF-enhanced chemotherapy for cancer treatmeat
US20090024075A1 (en)1999-04-092009-01-22Schroeppel Edward AMethod and Device for Treating Abnormal Tissue Growth With Electrical Therapy
US20020077676A1 (en)1999-04-092002-06-20Schroeppel Edward A.Implantable device and method for the electrical treatment of cancer
US6627421B1 (en)1999-04-132003-09-30Imarx Therapeutics, Inc.Methods and systems for applying multi-mode energy to biological samples
US6463331B1 (en)1999-04-192002-10-08Novasys Medical, Inc.Application of energy and substances in the treatment of uro-genital disorders
US20040193097A1 (en)1999-05-102004-09-30Hofmann Gunter A.Devices for needle-free injection and electroporation
US20030078490A1 (en)1999-05-262003-04-24Damasco Sanford D.System for providing computer guided ablation of tissue
US6116330A (en)1999-06-232000-09-12The University Of DaytonHeat storage system utilizing phase change materials government rights
WO2001007584A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
CA2378110A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaCell/tissue analysis via controlled electroporation
JP2003505072A (en)1999-07-212003-02-12ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Cell / tissue analysis by controlled electroporation
US7955827B2 (en)1999-07-212011-06-07The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US6403348B1 (en)1999-07-212002-06-11The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US6300108B1 (en)1999-07-212001-10-09The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US20030194808A1 (en)1999-07-212003-10-16Boris RubinskyControlled electroporation and mass transfer across cell membranes
US20050282284A1 (en)1999-07-212005-12-22The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes in tissue
US20060121610A1 (en)1999-07-212006-06-08The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US20030166181A1 (en)1999-07-212003-09-04The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US6387671B1 (en)1999-07-212002-05-14The Regents Of The University Of CaliforniaElectrical impedance tomography to control electroporation
EP1196550A2 (en)1999-07-212002-04-17The Regents Of The University Of CaliforniaCell/tissue analysis via controlled electroporation
US20010046706A1 (en)1999-07-212001-11-29Boris RubinskyControlled electroporation and mass transfer across cell membranes
US20010051366A1 (en)1999-07-212001-12-13Boris RubinskyControlled electroporation and mass transfer across cell membranes
WO2001007585A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaElectrical impedance tomography to control electroporation
WO2001007583A1 (en)1999-07-212001-02-01The Regents Of The University Of CaliforniaCell/tissue analysis via controlled electroporation
US20100196984A1 (en)1999-07-212010-08-05The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US7718409B2 (en)1999-07-212010-05-18The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US7053063B2 (en)1999-07-212006-05-30The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes in tissue
US20020137121A1 (en)1999-07-212002-09-26Boris RubinskyCell viability detection using electrical measurements
US6482619B1 (en)1999-07-212002-11-19The Regents Of The University Of CaliforniaCell/tissue analysis via controlled electroporation
US6927049B2 (en)1999-07-212005-08-09The Regents Of The University Of CaliforniaCell viability detection using electrical measurements
US6562604B2 (en)1999-07-212003-05-13The Regents Of The University Of CaliforniaControlled electroporation and mass transfer across cell membranes
US6812204B1 (en)1999-07-232004-11-02Gendel LimitedDelivery of an agent
ES2300272T3 (en)1999-08-042008-06-16Eastern Virginia Medical School Of The Medical College Of Hampton Roads METHOD AND APPARATUS FOR INTRACELLULAR ELECTROMANIPULATION.
DE60038026T2 (en)1999-08-042009-02-05Eastern Virginia Medical School Of The Medical College Of Hampton Roads METHOD OF INTRA-CELLULAR ELECTRO-MANIPULATION
JP2011137025A (en)1999-08-042011-07-14Eastern Virginia Medical School Of The Medical College Of Hampton RoadsMethod for intracellular electro-manipulation
JP2003506064A (en)1999-08-042003-02-18イースタン バージニア メディカル スクール オブ ザ メディカル カレッジ オブ ハンプトン ローズ Intracellular electromanipulation method
EP1207797B1 (en)1999-08-042008-02-13Eastern Virginia Medical School of the Medical College of Hampton RoadsMethod and apparatus for intracellular electro-manipulation
WO2001010319A1 (en)1999-08-042001-02-15Eastern Virginia Medical School Of The Medical College Of Hampton RoadsMethod and apparatus for intracellular electro-manipulation
US6326177B1 (en)1999-08-042001-12-04Eastern Virginia Medical School Of The Medical College Of Hampton RoadsMethod and apparatus for intracellular electro-manipulation
US20020010491A1 (en)1999-08-042002-01-24Schoenbach Karl H.Method and apparatus for intracellular electro-manipulation
US20020049370A1 (en)1999-08-052002-04-25Laufer Michael D.Devices for creating collateral channels in the lungs
US6258100B1 (en)1999-08-242001-07-10Spiration, Inc.Method of reducing lung size
US7113821B1 (en)1999-08-252006-09-26Johnson & Johnson Consumer Companies, Inc.Tissue electroperforation for enhanced drug delivery
US6613211B1 (en)1999-08-272003-09-02Aclara Biosciences, Inc.Capillary electrokinesis based cellular assays
AU7656800A (en)1999-09-152001-04-17Delaval Holding AbMilking arrangement
US6287293B1 (en)1999-09-282001-09-11C. R. Bard, Inc.Method and apparatus for locating the injection point of an implanted medical device
US20030088199A1 (en)1999-10-012003-05-08Toshikuni KawajiAnalgesic and anti-inflammatory patches for external use containing 4-biphenylylylacetic acid
US6287304B1 (en)1999-10-152001-09-11Neothermia CorporationInterstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6514248B1 (en)1999-10-152003-02-04Neothermia CorporationAccurate cutting about and into tissue volumes with electrosurgically deployed electrodes
USD437941S1 (en)1999-10-272001-02-20J F Medical L.L.C.Equipment storage tray
USD445198S1 (en)1999-10-272001-07-17J F Medical L.L.C.Equipment storage tray
US20030195406A1 (en)1999-11-222003-10-16Jenkins Thomas R.Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6493592B1 (en)1999-12-012002-12-10Vertis Neuroscience, Inc.Percutaneous electrical therapy system with electrode position maintenance
US6428802B1 (en)1999-12-292002-08-06Children's Medical Center Corp.Preparing artificial organs by forming polylayers of different cell populations on a substrate
WO2001048153A1 (en)1999-12-292001-07-05Children's Medical Center CorporationReconstructing organs from decellularized biomaterial scaffold
US20010047167A1 (en)2000-02-032001-11-29Heggeness Michael H.Methods and devices for intraosseous nerve ablation
US20080033340A1 (en)2000-02-222008-02-07University Of South FloridaElectroporation and Electrophoresis System and Method for Achieving Molecular Penetration into Cells In Vivo
US20080269838A1 (en)2000-02-232008-10-30The Trustees Of The University Of PennsylvaniaRegulation of genes via application of specific and selective electrical and electromagnetic signals
US6694979B2 (en)2000-03-042004-02-24Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US20090114226A1 (en)2000-03-042009-05-07Deem Mark EMethods and devices for use in performing pulmonary procedures
US20050004507A1 (en)2000-03-132005-01-06Oncostim. Inc.Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
WO2001070114A1 (en)2000-03-172001-09-27Rita Medical Systems Inc.Lung treatment apparatus
US20060149123A1 (en)2000-03-212006-07-06Myocor, Inc.Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
USD443360S1 (en)2000-03-222001-06-05Dexterity Surgical Inc.Distal end of obturator for a trocar
US6328689B1 (en)2000-03-232001-12-11Spiration, Inc.,Lung constriction apparatus and method
WO2001081533A1 (en)2000-04-212001-11-01Igea S.R.L.Electroporation device and method, where amplitude of the electric pulse or pulses is automatically set according to pre-pulse measurement of electric properties of the sample
US20020183735A1 (en)2000-04-252002-12-05Edwards Stuart D.Ablation of rectal and other internal body structures
US6488680B1 (en)2000-04-272002-12-03Medtronic, Inc.Variable length electrodes for delivery of irrigated ablation
US6837886B2 (en)2000-05-032005-01-04C.R. Bard, Inc.Apparatus and methods for mapping and ablation in electrophysiology procedures
US20010044596A1 (en)2000-05-102001-11-22Ali JaafarApparatus and method for treatment of vascular restenosis by electroporation
US20050010209A1 (en)2000-06-072005-01-13Lee Fred T.Radiofrequency ablation system using multiple prong probes
US7520877B2 (en)2000-06-072009-04-21Wisconsin Alumni Research FoundationRadiofrequency ablation system using multiple prong probes
US20040230187A1 (en)2000-06-072004-11-18Lee Fred T.Multipolar electrode system for volumetric radiofrequency ablation
US20020022864A1 (en)2000-06-072002-02-21Mahvi David M.Multipolar electrode system for radiofrequency ablation
US20020156472A1 (en)2000-06-072002-10-24Lee Fred T.Radio-frequency ablation system using multiple electrodes
US20020138117A1 (en)2000-06-212002-09-26Son Young TaeApparatus and method for selectively removing a body fat mass in human body
US20020072742A1 (en)2000-07-062002-06-13Schaefer Dean A.Tumor ablation needle with independently activated and independently traversing tines
US6669691B1 (en)2000-07-182003-12-30Scimed Life Systems, Inc.Epicardial myocardial revascularization and denervation methods and apparatus
US20030109871A1 (en)2000-07-252003-06-12Johnson Theodore C.Apparatus for detecting and treating tumors using locaIized impedance measurement
US20140081255A1 (en)2000-07-252014-03-20Angiodynamics, Inc.Method and Apparatuses for Tissue Treatment
US6962587B2 (en)2000-07-252005-11-08Rita Medical Systems, Inc.Method for detecting and treating tumors using localized impedance measurement
US7419487B2 (en)2000-07-252008-09-02Angiodynamics, Inc.Apparatus for detecting and treating tumors using localized impedance measurement
US20030135242A1 (en)2000-07-272003-07-17Mongeon Luc R.Forced deceleration algorithm for synchronization of atrial cardioversion shock and technique for the implementation
US20020115208A1 (en)2000-08-162002-08-22Shannon MitchellDecellularized tissue engineered constructs and tissues
US20120303020A1 (en)2000-08-172012-11-29Chornenky Victor IMethod of Destroying Tissue Cells by Electroporation
US8647338B2 (en)2000-08-172014-02-11Angiodynamics, Inc.Method of destroying tissue cells by electroporation
US20050182462A1 (en)2000-08-172005-08-18Chornenky Victor I.Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
USRE42277E1 (en)2000-08-172011-04-05Angiodynamics, Inc.Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US7938824B2 (en)2000-08-172011-05-10Angiodynamics, Inc.Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
USRE42835E1 (en)2000-08-172011-10-11Angiodynamics, Inc.Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
USRE43009E1 (en)2000-08-172011-12-06Angiodynamics, Inc.Apparatus and method for reducing subcutaneous fat deposits by electroporation
US8251986B2 (en)2000-08-172012-08-28Angiodynamics, Inc.Method of destroying tissue cells by eletroporation
US8906006B2 (en)2000-08-172014-12-09Angiodynamics, Inc.Method of destroying tissue cells by electroporation
US20160338761A1 (en)2000-08-172016-11-24Angiodynamics, Inc.Method of Destroying Tissue Cells by Electroporation
US6482221B1 (en)2000-08-212002-11-19Counter Clockwise, Inc.Manipulatable delivery catheter for occlusive devices (II)
US20050112141A1 (en)2000-08-302005-05-26Terman David S.Compositions and methods for treatment of neoplastic disease
US20020065541A1 (en)2000-09-072002-05-30Raymond FredricksApparatus and method for treatment of an intervertebral disc
US20020147462A1 (en)2000-09-112002-10-10Closure Medical CorporationBronchial occlusion method and apparatus
US20020119437A1 (en)2000-09-202002-08-29Grooms Jamie M.Method of preparing and processing transplant tissue
US6702808B1 (en)2000-09-282004-03-09Syneron Medical Ltd.Device and method for treating skin
US6503248B1 (en)2000-10-302003-01-07Seedling Enterprises, LlcCooled, non-sticking electrosurgical devices
US20020133324A1 (en)2000-11-032002-09-19Weaver James C.Functional simulation method
US20090105703A1 (en)2000-12-092009-04-23Shadduck John HMethod for treating tissue
US20020082543A1 (en)2000-12-142002-06-27Jung-Hwan ParkMicroneedle devices and production thereof
US20040059328A1 (en)2001-01-112004-03-25Rita Medical Systems, Inc.Bone-treatment instrument and method
US20030055220A1 (en)2001-01-122003-03-20Pierre LegrainProtein-protein interactions between Shigella flexneri polypeptides and mammalian polypeptides
US6733516B2 (en)2001-01-172004-05-11Scimed Life Systems, Inc.Method and apparatus for limiting revascularization to viable tissue
US20020104318A1 (en)2001-02-082002-08-08Ali JaafarMiniature thermoelectric cooler
US20040019371A1 (en)2001-02-082004-01-29Ali JaafarApparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6892099B2 (en)2001-02-082005-05-10Minnesota Medical Physics, LlcApparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6942681B2 (en)2001-02-162005-09-13Cordis CorporationMethod of balloon catheter stent delivery system with ridges
US20020112729A1 (en)2001-02-212002-08-22Spiration, Inc.Intra-bronchial obstructing device that controls biological interaction with the patient
US20030059945A1 (en)2001-02-212003-03-27Dzekunov Sergey M.Apparatus and method for flow electroporation of biological samples
US6533784B2 (en)2001-02-242003-03-18Csaba TruckaiElectrosurgical working end for transecting and sealing tissue
US7087040B2 (en)2001-02-282006-08-08Rex Medical, L.P.Apparatus for delivering ablation fluid to treat lesions
US6905480B2 (en)2001-02-282005-06-14Rex Medical, L.P.Apparatus for delivering ablation fluid to treat lesions
US20040055606A1 (en)2001-03-022004-03-25Emphasys Medical, Inc.Bronchial flow control devices with membrane seal
US20110017207A1 (en)2001-03-022011-01-27Pulmonx CorporationBronchial flow control devices with membrane seal
US7011094B2 (en)2001-03-022006-03-14Emphasys Medical, Inc.Bronchial flow control devices and methods of use
US20050043726A1 (en)2001-03-072005-02-24Mchale Anthony PatrickDevice II
US20020193784A1 (en)2001-03-072002-12-19Mchale Anthony PatrickUltrasound therapy for selective cell ablation
US6694984B2 (en)2001-03-272004-02-24Imperial College Innovations LimitedLiver surgery
US6569162B2 (en)2001-03-292003-05-27Ding Sheng HePassively self-cooled electrode design for ablation catheters
WO2002078527A2 (en)2001-03-302002-10-10Ethicon Endo-Surgery, Inc.Endoscopic ablation system with sealed sheath
US6666858B2 (en)2001-04-122003-12-23Scimed Life Systems, Inc.Cryo balloon for atrial ablation
US20040146877A1 (en)2001-04-122004-07-29Diss James K.J.Diagnosis and treatment of cancer:I
US7250048B2 (en)2001-04-262007-07-31Medtronic, Inc.Ablation system and method of use
US6989010B2 (en)2001-04-262006-01-24Medtronic, Inc.Ablation system and method of use
US20020193831A1 (en)2001-04-262002-12-19Smith Edward DeweyMethod and apparatus for the treatment of cosmetic skin conditions
WO2002089686A1 (en)2001-05-102002-11-14Rita Medical Systems, Inc.Rf tissue ablation apparatus and method
JP4252316B2 (en)2001-05-102009-04-08リタ メディカル システムズ インコーポレイテッド RF tissue excision apparatus and method
CN1525839A (en)2001-05-102004-09-01ҽ������ϵͳ���޹�˾RF tissue ablation apparatus and method
CA2445392A1 (en)2001-05-102002-11-14Rita Medical Systems, Inc.Rf tissue ablation apparatus and method
JP2004525726A (en)2001-05-102004-08-26リタ メディカル システムズ インコーポレイテッド RF tissue resection device and method
US20030212394A1 (en)2001-05-102003-11-13Rob PearsonTissue ablation apparatus and method
EP1406685B1 (en)2001-06-012008-06-11Baxter International Inc.Hemodialyzer having improved dialysate perfusion
US20040236376A1 (en)2001-06-042004-11-25Damijan MiklavcicElectroporation device which reduces muscle contraction and pain sensation
WO2002100459A2 (en)2001-06-112002-12-19Endobionics, Inc.Electroporation microneedle and methods for its use
AU2002315095A1 (en)2001-06-112002-12-23Endobionics, Inc.Electroporation microneedle and methods for its use
US6520183B2 (en)2001-06-112003-02-18Memorial Sloan-Kettering Cancer CenterDouble endobronchial catheter for one lung isolation anesthesia and surgery
US20020188242A1 (en)2001-06-122002-12-12Allan WuMethod and invention for the treatment of diseases and disorders of the cervix
US20030009110A1 (en)2001-07-062003-01-09Hosheng TuDevice for tumor diagnosis and methods thereof
US6491706B1 (en)2001-07-102002-12-10Spiration, Inc.Constriction device including fixation structure
US6860847B2 (en)2001-07-102005-03-01Spiration, Inc.Constriction device viewable under X ray fluoroscopy
US6638253B2 (en)2001-07-172003-10-28Eugene Michael BreznockMethod and apparatus for chest drainage
US20030016168A1 (en)2001-07-182003-01-23Fastlocation.Net, LlcMethod and system for processing positioning signals in a stand-alone mode
USRE42016E1 (en)2001-08-132010-12-28Angiodynamics, Inc.Apparatus and method for the treatment of benign prostatic hyperplasia
US20170035501A1 (en)2001-08-132017-02-09Angiodynamics, Inc.Method for Treating a Tubular Anatomical Structure
US20060217703A1 (en)2001-08-132006-09-28Chornenky Victor IApparatus and method for treatment of benign prostatic hyperplasia
US7765010B2 (en)2001-08-132010-07-27Angiodynamics, Inc.Apparatus and method for treatment of benign prostatic hyperplasia
US20150112333A1 (en)2001-08-132015-04-23Angiodynamics, Inc.Method for Treating a Tubular Anatomical Structure
US8634929B2 (en)2001-08-132014-01-21Angiodynamics, Inc.Method for treatment of neoplastic cells in the prostate of a patient
US6994706B2 (en)2001-08-132006-02-07Minnesota Medical Physics, LlcApparatus and method for treatment of benign prostatic hyperplasia
US8958888B2 (en)2001-08-132015-02-17Angiodynamics, Inc.Method for relaxing muscle tension on a tubular anatomical structure
US20030060856A1 (en)2001-08-132003-03-27Victor ChornenkyApparatus and method for treatment of benign prostatic hyperplasia
US20030153960A1 (en)2001-08-172003-08-14Chornenky Victor I.Apparatus and method for reducing subcutaneous fat deposits by electroporation
US20030149451A1 (en)2001-08-172003-08-07Chomenky Victor I.Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6697670B2 (en)2001-08-172004-02-24Minnesota Medical Physics, LlcApparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6795728B2 (en)2001-08-172004-09-21Minnesota Medical Physics, LlcApparatus and method for reducing subcutaneous fat deposits by electroporation
KR101034682B1 (en)2001-08-282011-05-16위스콘신 얼럼나이 리서어치 화운데이션 Radiofrequency Ablation System Using Multiple Electrodes
CA2458676A1 (en)2001-08-282003-03-13Wisconsin Alumni Research FoundationRadio-frequency ablation system using multiple electrodes
JP2005501596A (en)2001-08-282005-01-20ウイスコンシン アラムナイ リサーチ フオンデーシヨン Radio frequency ablation system using multiple electrodes
WO2003020144A1 (en)2001-08-282003-03-13Wisconsin Alumni Research FoundationRadio-frequency ablation system using multiple electrodes
EP1439792A1 (en)2001-08-282004-07-28Wisconsin Alumni Research FoundationRadio-frequency ablation system using multiple electrodes
US20040206349A1 (en)2001-09-112004-10-21Alferness Clifton A.Removable lung reduction devices, systems, and methods
EP1424970B1 (en)2001-09-112008-12-31Spiration, Inc.Removable lung reduction devices and systems
US20040199159A1 (en)2001-09-122004-10-07Manoa Medical, Inc., A Delaware CorporationDevices and methods for tissue severing and removal
US6761716B2 (en)2001-09-182004-07-13Cardiac Pacemakers, Inc.System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
US20030055420A1 (en)2001-09-182003-03-20Kadhiresan Veerichetty ASystem and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
US20030130711A1 (en)2001-09-282003-07-10Pearson Robert M.Impedance controlled tissue ablation apparatus and method
US7344533B2 (en)2001-09-282008-03-18Angiodynamics, Inc.Impedance controlled tissue ablation apparatus and method
US20040243107A1 (en)2001-10-012004-12-02Macoviak John AMethods and devices for treating atrial fibrilation
US6941950B2 (en)2001-10-112005-09-13Emphasys Medical, Inc.Bronchial flow control devices and methods of use
US20110130834A1 (en)2001-10-112011-06-02Pulmonx CorporationBronchial flow control devices and methods of use
US20050049541A1 (en)2001-10-122005-03-03Francine BeharDevice for medicine delivery by intraocular iontophoresis or electroporation
EP1442765A1 (en)2001-10-162004-08-04Daiken Iki Kabushiki KaishaIMPLEMENT FOR ASSISTING INFLATION OF MEDICAL IMPLEMENT WITH CUFF, AND BRONCHUS CLOSING IMPLEMENT WITH THE IMPLEMENT
US6589161B2 (en)2001-10-182003-07-08Spiration, Inc.Constriction device including tear resistant structures
US20040267189A1 (en)2001-10-242004-12-30Daniela MavorDevice and method for controlled delivery of active substance into the skin
US6895267B2 (en)2001-10-242005-05-17Scimed Life Systems, Inc.Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US6592594B2 (en)2001-10-252003-07-15Spiration, Inc.Bronchial obstruction device deployment system and method
US20030088189A1 (en)2001-11-052003-05-08Hosheng TuApparatus and methods for monitoring tissue impedance
US20030127090A1 (en)2001-11-142003-07-10Emphasys Medical, Inc.Active pump bronchial implant devices and methods of use thereof
US20030096407A1 (en)2001-11-162003-05-22Anthony AtalaCreation of tissue engineered female reproductive organs
WO2003047684A2 (en)2001-12-042003-06-12University Of Southern CaliforniaMethod for intracellular modifications within living cells using pulsed electric fields
US20030170898A1 (en)2001-12-042003-09-11Gundersen Martin A.Method for intracellular modifications within living cells using pulsed electric fields
US20050267407A1 (en)2002-02-012005-12-01Vascular Designs, Inc.Multi-function catheter and use thereof
US20070244521A1 (en)2002-02-142007-10-18Pacesetter, Inc.Systems and methods for preventing, detecting, and terminating pacemaker mediated tachycardia in biventricular implantable cardiac stimulation systems
US20030154988A1 (en)2002-02-212003-08-21Spiration, Inc.Intra-bronchial device that provides a medicant intra-bronchially to the patient
USD471640S1 (en)2002-02-282003-03-11Kimberly-Clark Worldwide, Inc.Surgical kit for percutaneous endoscopic gastrostomy procedures
USD480816S1 (en)2002-02-282003-10-14Kimberly-Clark Worldwide, Inc.Surgical kit for percutaneous endoscopic gastrostomy procedures
USD471641S1 (en)2002-02-282003-03-11Kimberly-Clark Worldwide, Inc.Surgical kit tray
US20080065062A1 (en)2002-03-052008-03-13Baylis Medical Company Inc.Electrosurgical tissue treatment method
US20060264807A1 (en)2002-03-072006-11-23Advisys, Inc.Electrode assembly for constant-current electroporation and use
US20030228344A1 (en)2002-03-082003-12-11Fields Antony J.Methods and devices for inducing collapse in lung regions fed by collateral pathways
US20080027343A1 (en)2002-03-082008-01-31Emphasys Medical, Inc.Methods and Devices for Lung Treatment
US20080249503A1 (en)2002-03-082008-10-09Fields Antony JMethods and devices for lung treatment
US20060283462A1 (en)2002-03-082006-12-21Fields Antony JMethods and devices for inducing collapse in lung regions fed by collateral pathways
US20030225360A1 (en)2002-03-112003-12-04Jonathan EppsteinTransdermal drug delivery patch system, method of making same and method of using same
US6960189B2 (en)2002-03-292005-11-01Gore Enterprise HoldingsProximal catheter assembly allowing for natural and suction-assisted aspiration
US6912417B1 (en)2002-04-052005-06-28Ichor Medical Systmes, Inc.Method and apparatus for delivery of therapeutic agents
US20070129760A1 (en)2002-04-082007-06-07Ardian, Inc.Methods and apparatus for intravasculary-induced neuromodulation or denervation
US20060212078A1 (en)2002-04-082006-09-21Ardian, Inc.Methods and apparatus for treating congestive heart failure
US20060142801A1 (en)2002-04-082006-06-29Ardian, Inc.Methods and apparatus for intravascularly-induced neuromodulation
US20070129720A1 (en)2002-04-082007-06-07Ardian, Inc.Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US20060235474A1 (en)2002-04-082006-10-19Ardian, Inc.Methods and apparatus for multi-vessel renal neuromodulation
US20100174282A1 (en)2002-04-082010-07-08Ardian, Inc.Apparatus for thermal modulation of nerves contributing to renal function
US20120130289A1 (en)2002-04-082012-05-24Ardian, Inc.Methods for renal neuromodulation
US20050288730A1 (en)2002-04-082005-12-29Mark DeemMethods and apparatus for renal neuromodulation
US8454594B2 (en)2002-04-082013-06-04Medtronic Ardian Luxembourg S.A.R.L.Apparatus for performing a non-continuous circumferential treatment of a body lumen
US20030195385A1 (en)2002-04-162003-10-16Spiration, Inc.Removable anchored lung volume reduction devices and methods
US20030208200A1 (en)2002-05-032003-11-06Palanker Daniel V.Method and apparatus for plasma-mediated thermo-electrical ablation
US6801804B2 (en)2002-05-032004-10-05Aciont, Inc.Device and method for monitoring and controlling electrical resistance at a tissue site undergoing iontophoresis
US20030208236A1 (en)2002-05-062003-11-06Cardiac Pacemakers, Inc.System and method for providing temporary stimulation therapy to optimize chronic electrical performance for electrodes used in conjunction with a cardiac rhythm management system
US20060025760A1 (en)2002-05-062006-02-02Podhajsky Ronald JBlood detector for controlling anesu and method therefor
US20040009459A1 (en)2002-05-062004-01-15Anderson James H.Simulation system for medical procedures
WO2004037341A2 (en)2002-05-072004-05-06Schroeppel Edward AMethod and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US20030212412A1 (en)2002-05-092003-11-13Spiration, Inc.Intra-bronchial obstructing device that permits mucus transport
US7434578B2 (en)2002-05-172008-10-14Spiration, Inc.Methods of achieving lung volume reduction with removable anchored devices
AU2003227960A1 (en)2002-05-232003-12-12Gendel LimitedAblation device
ES2315493T3 (en)2002-05-232009-04-01Gendel Limited ABLATION DEVICE.
JP2005526579A (en)2002-05-232005-09-08ジェンデル・リミテッド Shochu device
WO2003099382A1 (en)2002-05-232003-12-04Gendel LimitedAblation device
CA2487284A1 (en)2002-05-232003-12-04Gendel LimitedAblation device
EP1506039A1 (en)2002-05-232005-02-16Gendel LimitedAblation device
US20050066974A1 (en)2002-05-282005-03-31Antony FieldsModification of lung region flow dynamics using flow control devices implanted in bronchial wall channels
US7063698B2 (en)2002-06-142006-06-20Ncontact Surgical, Inc.Vacuum coagulation probes
US6881213B2 (en)2002-06-282005-04-19Ethicon, Inc.Device and method to expand treatment array
US20040059389A1 (en)2002-08-132004-03-25Chornenky Victor I.Apparatus and method for the treatment of benign prostatic hyperplasia
US7130697B2 (en)2002-08-132006-10-31Minnesota Medical Physics LlcApparatus and method for the treatment of benign prostatic hyperplasia
US20050010259A1 (en)2002-09-062005-01-13Medtronic, Inc.Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US6695861B1 (en)2002-09-202004-02-24Interrad Medical, Inc.Sutureless retention device
US7476203B2 (en)2002-09-242009-01-13Spiration, Inc.Device and method for measuring the diameter of an air passageway
US20040068228A1 (en)2002-10-042004-04-08Jon CunninghamDevice and method for stabilizing catheters
US7455675B2 (en)2002-11-062008-11-25Angiodynamics, Inc.Device and method for withdrawing a tubular body part
US20090186850A1 (en)2002-11-212009-07-23Kowa Co., Ltd.Peritoneal dialysis method
US20060004356A1 (en)2002-11-262006-01-05Bilski W JCooling Element for electrosurgery
US20040116965A1 (en)2002-12-112004-06-17Eric FalkenbergAtrial fibrillation therapy with pulmonary vein support
US20040267340A1 (en)2002-12-122004-12-30Wit Ip CorporationModular thermal treatment systems with single-use disposable catheter assemblies and related methods
JP2004203224A (en)2002-12-252004-07-22Asmo Co LtdActuator
US20060182684A1 (en)2003-01-032006-08-17Richard BeliveauMethod for transporting a compound across the blood-brain barrier
US6972014B2 (en)2003-01-042005-12-06Endocare, Inc.Open system heat exchange catheters and methods of use
US20040133194A1 (en)2003-01-042004-07-08Eum Jay J.Open system heat exchange catheters and methods of use
US6847848B2 (en)2003-01-072005-01-25Mmtc, IncInflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
US20040138715A1 (en)2003-01-132004-07-15Van Groeningen Christianus J.J.E.Synchronized atrial anti-tachy pacing system and method
US20080132826A1 (en)2003-01-182008-06-05Shadduck John HMedical instruments and techniques for treating pulmonary disorders
US20050061322A1 (en)2003-01-202005-03-24PulmonxMethod and arrangement for reducing the volume of a lung
US7257450B2 (en)2003-02-132007-08-14Coaptus Medical CorporationSystems and methods for securing cardiovascular tissue
US7331949B2 (en)2003-02-272008-02-19Margaret Grahn MarisiUrinary catheter with check valve
US20040176855A1 (en)2003-03-072004-09-09Acell, Inc.Decellularized liver for repair of tissue and treatment of organ deficiency
US20040210248A1 (en)2003-03-122004-10-21Spiration, Inc.Apparatus, method and assembly for delivery of intra-bronchial devices
WO2004080347A2 (en)2003-03-122004-09-23Spiration Inc.Apparatus, method and assembly for delivery of intra-bronchial devices
US7267676B2 (en)2003-03-172007-09-11Minnesota Medical Physics LlcMethod for hair removal by electroporation
US7211083B2 (en)2003-03-172007-05-01Minnesota Medical Physics, LlcApparatus and method for hair removal by electroporation
US20050020965A1 (en)2003-03-202005-01-27Scimed Life Systems, Inc.Devices and methods for delivering agents to tissue region while preventing leakage
US20040193042A1 (en)*2003-03-272004-09-30Steven ScampiniGuidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
JP2004303590A (en)2003-03-312004-10-28Sanyo Electric Co LtdLaminated battery, and manufacturing method of the same
US20040200484A1 (en)2003-04-082004-10-14Springmeyer Steven C.Bronchoscopic lung volume reduction method
US7100616B2 (en)2003-04-082006-09-05Spiration, Inc.Bronchoscopic lung volume reduction method
US20050197619A1 (en)2003-04-222005-09-08Rule Peter R.Ultrasound enhanced central venous catheter
US7036510B2 (en)2003-04-282006-05-02Cook Critical Care IncorporatedPercutaneous tracheostomy balloon apparatus
US7331940B2 (en)2003-05-302008-02-19Codman & Shurtleff, Inc.Percutaneous access device
USD489973S1 (en)2003-06-022004-05-18Vascular Solutions, Inc.Medical device package
US7632291B2 (en)2003-06-132009-12-15Trivascular2, Inc.Inflatable implant
USD495807S1 (en)2003-06-232004-09-07Codman & Shurtleff, Inc.Tray
US20050013870A1 (en)2003-07-172005-01-20Toby FreymanDecellularized extracellular matrix of conditioned body tissues and uses thereof
US20060269531A1 (en)2003-07-182006-11-30Eastern Virginia Medical SchoolApparatus for generating electrical pulses and methods of using the same
US7097612B2 (en)2003-07-292006-08-29Endoscopic Technologies, Inc.Tissue positioner
US7533671B2 (en)2003-08-082009-05-19Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US7291146B2 (en)2003-09-122007-11-06Minnow Medical, Inc.Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7341558B2 (en)2003-09-192008-03-11Medcanica, LlcPericardial retractor
US20080027314A1 (en)2003-10-232008-01-31Osamu MiyazakiImage Processor for Medical Treatment Support
US7232437B2 (en)2003-10-302007-06-19Medical Cv, Inc.Assessment of lesion transmurality
US20050143817A1 (en)2003-11-102005-06-30Angiotech International AgMedical implants and anti-scarring agents
US20150173824A1 (en)2003-12-242015-06-25The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20080269586A1 (en)2003-12-242008-10-30The Regents Of The University Of CaliforniaElectroporation to interrupt blood flow
US9005189B2 (en)2003-12-242015-04-14The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20120277741A1 (en)2003-12-242012-11-01The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US8298222B2 (en)2003-12-242012-10-30The Regents Of The University Of CaliforniaElectroporation to deliver chemotherapeutics and enhance tumor regression
US8282631B2 (en)2003-12-242012-10-09The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20120071874A1 (en)2003-12-242012-03-22The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US8048067B2 (en)2003-12-242011-11-01The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20190046255A1 (en)2003-12-242019-02-14The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
WO2005065284A2 (en)2003-12-242005-07-21The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US10117701B2 (en)2003-12-242018-11-06The Regents Of The University Of CaliforniaTissue ablation with irreversible electroporation
US20070043345A1 (en)2003-12-242007-02-22Rafael DavalosTissue ablation with irreversible electroporation
US20090326436A1 (en)2003-12-242009-12-31The Regents Of The University Of CaliforniaElectroporation to deliver chemotherapeutics and enhance tumor regression
US20050171574A1 (en)2003-12-242005-08-04The Regents Of The University Of CaliforniaElectroporation to interrupt blood flow
US20050171523A1 (en)2003-12-242005-08-04The Regents Of The University Of CaliforniaIrreversible electroporation to control bleeding
US20050171522A1 (en)2004-01-302005-08-04Christopherson Mark A.Transurethral needle ablation system with needle position indicator
US20060195146A1 (en)2004-02-112006-08-31Tracey Michael RSystem and method for selectively stimulating different body parts
US20060020347A1 (en)2004-03-082006-01-26Michael BarrettImplanted bronchial isolation devices and methods
US7571729B2 (en)2004-03-092009-08-11Usgi Medical, Inc.Apparatus and methods for performing mucosectomy
US7565208B2 (en)2004-03-252009-07-21Boston Scientific Scimed, Inc.Catheter with sensor tips, tool and device and methods of use of same
USD549332S1 (en)2004-04-092007-08-21Olympus CorporationEndoscope
USD575399S1 (en)2004-04-092008-08-19Olympus CorporationEndoscope
US20080208052A1 (en)2004-04-162008-08-28Lepivert PatrickSystems and methods for improving image-guided tissue ablation
US20080190434A1 (en)2004-05-132008-08-14Anaesthetiq B.V.Bronchus Blocker and Artificial Respiration System
US20050261672A1 (en)2004-05-182005-11-24Mark DeemSystems and methods for selective denervation of heart dysrhythmias
US20050283149A1 (en)2004-06-082005-12-22Thorne Jonathan OElectrosurgical cutting instrument
US20050288702A1 (en)2004-06-162005-12-29Mcgurk ErinIntra-bronchial lung volume reduction system
US20060004400A1 (en)2004-06-162006-01-05Mcgurk ErinMethod of treating a lung
US20060009748A1 (en)2004-06-162006-01-12Mathis Mark LMethod of compressing a portion of a lung
US7549984B2 (en)2004-06-162009-06-23Pneumrx, Inc.Method of compressing a portion of a lung
US20050288684A1 (en)2004-06-162005-12-29Aronson Nathan AMethod of reducing collateral flow in a portion of a lung
US20060074413A1 (en)2004-06-282006-04-06Kamran BehzadianMethod and apparatus for substantial and uniform ablation about a linear bipolar array of electrodes
JP2008508946A (en)2004-08-052008-03-27ウイスコンシン アラムナイ リサーチ フオンデーシヨン High-frequency ablation system using a multi-prong probe
WO2006017666A2 (en)2004-08-052006-02-16Wisconsin Alumni Research FoundationRadiofrequency ablation system using multiple-prong probes
AU2005271471A2 (en)2004-08-052006-02-16Wisconsin Alumni Research FoundationRadiofrequency ablation system using multiple-prong probes
CA2575792A1 (en)2004-08-052006-02-16Wisconsin Alumni Research FoundationRadiofrequency ablation system using multiple-prong probes
EP1791485B1 (en)2004-08-052014-12-31Wisconsin Alumni Research FoundationRadiofrequency ablation system using multiple-prong probes
US7544301B2 (en)2004-08-192009-06-09Hhd LlcCitrate-based dialysate chemical formulations
US20060085054A1 (en)2004-09-092006-04-20Zikorus Arthur WMethods and apparatus for treatment of hollow anatomical structures
US20090125009A1 (en)2004-09-092009-05-14Zikorus Arthur WMethods and apparatus for treatment of hollow anatomical structures
WO2006031541A1 (en)2004-09-092006-03-23Vnus Medical Technologies, Inc.Methods and apparatus for treatment of hollow anatomical structures
US8715276B2 (en)2004-09-092014-05-06Covidien LpMethods and apparatus for treatment of hollow anatomical structures
EP1796568A1 (en)2004-09-092007-06-20Vnus Medical Technologies, Inc.Methods and apparatus for treatment of hollow anatomical structures
US20080125772A1 (en)2004-09-102008-05-29Minnow Medical, IncTuned RF energy and electrical tissue characterization for selective treatment of target tissues
US20060079838A1 (en)2004-10-082006-04-13Walker Steven CMovable Balloon anchor for medical devices
US20060079845A1 (en)2004-10-082006-04-13Eben Howard And Pamela A. HowardMovable inflatable anchor for medical devices
US20060079883A1 (en)2004-10-132006-04-13Ahmed ElmouelhiTransurethral needle ablation system
US20070203486A1 (en)2004-10-142007-08-30Boston Scientific Scimed, Inc.Ablation probe with distal inverted electrode array
US20060089635A1 (en)2004-10-222006-04-27Scimed Life Systems, Inc.Methods and apparatus for focused bipolar tissue ablation using an insulated shaft
US7937143B2 (en)2004-11-022011-05-03Ardian, Inc.Methods and apparatus for inducing controlled renal neuromodulation
US20060247619A1 (en)2004-11-052006-11-02Asthmatx, Inc.Medical device with procedure improvement features
US7451765B2 (en)2004-11-182008-11-18Mark AdlerIntra-bronchial apparatus for aspiration and insufflation of lung regions distal to placement or cross communication and deployment and placement system therefor
US20060278241A1 (en)2004-12-142006-12-14Gualberto RuanoPhysiogenomic method for predicting clinical outcomes of treatments in patients
US20060212032A1 (en)2005-01-182006-09-21Daniel Steven ADevice and method for thermal ablation of biological tissue using spherical ablation patterns
US8845635B2 (en)2005-01-182014-09-30S.D.M.H. Pty. Ltd.Device and method for thermal ablation of biological tissue using spherical ablation patterns
US20110152678A1 (en)2005-01-202011-06-23Pulmonx CorporationMethods and devices for passive residual lung volume reduction and functional lung volume expansion
US20060173490A1 (en)2005-02-012006-08-03Boston Scientific Scimed, Inc.Filter system and method
US20090038752A1 (en)2005-02-092009-02-12Adel WengReinforced balloon for a catheter
US20110112531A1 (en)2005-02-252011-05-12Boston Scientific Scimed, Inc.Dual mode lesion formation apparatus, systems and methods
US20060276710A1 (en)2005-03-032006-12-07Krishnan Subramaniam CMethod and apparatus for locating the fossa ovalis, creating a virtual fossa ovalis and performing transseptal puncture
US20090228001A1 (en)2005-03-102009-09-10Emcision LimitedDevice and method for the treatment of diseased tissue such as tumors
US20120226271A1 (en)2005-03-252012-09-06Peter CallasVacuum Ablation Apparatus and Method
US7742795B2 (en)2005-03-282010-06-22Minnow Medical, Inc.Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US20060224188A1 (en)2005-04-052006-10-05Cardiac Pacemakers, Inc.Method and apparatus for synchronizing neural stimulation to cardiac cycles
US8240468B2 (en)2005-04-222012-08-14Becton, Dickinson And CompanyPrepackaged medical device and packaging tray
US20060264752A1 (en)2005-04-272006-11-23The Regents Of The University Of CaliforniaElectroporation controlled with real time imaging
US20060293734A1 (en)2005-04-272006-12-28Scott David JApparatus and method for providing enhanced heat transfer from a body
US20150201996A1 (en)2005-04-272015-07-23The Regents Of The University Of CaliforniaElectroporation controlled with real time imaging
US20070016185A1 (en)2005-04-292007-01-18Tullis Philip JMedical Bipolar Electrode Assembly With A Cannula Having A Bipolar Active Tip And A Separate Supply Electrode And Medical Monopolar Electrode Assembly With A Cannula Having A Monopolar Active Tip And A Separate Temperature-Transducer Post
US7918852B2 (en)2005-04-292011-04-05Stryker CorporationBipolar cannula for use with an electrode assembly having a separate supply electrode
USD575402S1 (en)2005-05-232008-08-19Sandor Marilyn CDisposable prophylaxis
WO2006130194A2 (en)2005-05-272006-12-07Boston Scientific LimitedFiber mesh controlled expansion balloon catheter
US20080021371A1 (en)2005-06-242008-01-24Boris RubinskyMethods and systems for treating restenosis using electroporation
US8603087B2 (en)2005-06-242013-12-10Angiodynamics, Inc.Methods and systems for treating restenosis using electroporation
US20080015571A1 (en)2005-06-242008-01-17Boris RubinskyMethods and systems for treating tumors using electroporation
US8114070B2 (en)2005-06-242012-02-14Angiodynamics, Inc.Methods and systems for treating BPH using electroporation
US20060293713A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating BPH using electroporation
US20060293730A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating restenosis sites using electroporation
US20090292342A1 (en)2005-06-242009-11-26Boris RubinskyMethods and Systems for Treating BPH Using Electroporation
US20060293731A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating tumors using electroporation
US20060293725A1 (en)2005-06-242006-12-28Boris RubinskyMethods and systems for treating fatty tissue sites using electroporation
US20070016125A1 (en)2005-06-292007-01-18National Cheng Kung UniversityPainless electroporating apparatus
US20070016183A1 (en)2005-07-012007-01-18Bruce LeeRadio frequency ablation device for the destruction of tissue masses
US20120165813A1 (en)2005-07-012012-06-28Halt Medical Inc.Radio frequency ablation device for the destruction of tissue masses
US20070010805A1 (en)2005-07-082007-01-11Fedewa Russell JMethod and apparatus for the treatment of tissue
US20070021803A1 (en)2005-07-222007-01-25The Foundry Inc.Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US20070025919A1 (en)2005-07-222007-02-01The Foundry Inc.Systems and methods for delivery of a therapeutic agent
US20090018206A1 (en)2005-09-062009-01-15Meditor Pharmaceuticals Ltd.Prevention of hypotension and stabilization of blood pressure in hemodialysis patients
US20070060989A1 (en)2005-09-072007-03-15Deem Mark EApparatus and method for disrupting subcutaneous structures
US20110166499A1 (en)2005-09-202011-07-07Ardian, Inc.Methods and apparatus for inducing controlled renal neuromodulation
US20070078391A1 (en)2005-09-302007-04-05Angiodynamics Inc.Implantable medical device
US20070093789A1 (en)2005-09-302007-04-26Transcutaneous Technologies Inc.Iontophoresis apparatus and method for delivery of angiogenic factors to enhance healing of injured tissue
US20070088347A1 (en)2005-10-132007-04-19Boston Scientific Scimed, Inc.Magnetically augmented radio frequency ablation
US20070096048A1 (en)2005-10-142007-05-03Claude ClercBronchoscopic lung volume reduction valve
EP1962710B1 (en)2005-12-062015-08-12St. Jude Medical, Atrial Fibrillation Division, Inc.Apparatus for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US20100298823A1 (en)2005-12-062010-11-25Hong CaoAssessment of electrode coupling for tissue ablation
US20110118727A1 (en)2005-12-062011-05-19Fish Jeffrey MSystem and method for assessing the formation of a lesion in tissue
JP2009518130A (en)2005-12-062009-05-07セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Evaluation of electrode coupling for tissue ablation
WO2007067628A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
WO2007070361A2 (en)2005-12-062007-06-21St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20090163904A1 (en)2005-12-062009-06-25St. Jude Medical, Atrial Fibrillation Division, Inc.System and Method for Assessing Coupling Between an Electrode and Tissue
US20100168735A1 (en)2005-12-062010-07-01Don Curtis DenoSystem and method for assessing coupling between an electrode and tissue
AU2006321918A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division Inc.Assessment of electrode coupling for tissue ablation
EP1962945B1 (en)2005-12-062016-04-20St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20100228247A1 (en)2005-12-062010-09-09Saurav PaulAssessment of electrode coupling of tissue ablation
WO2007067943A2 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
AU2006321570A1 (en)2005-12-062007-06-14St. Jude Medical Atrial Fibrillation Division, Inc.Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US20100241117A1 (en)2005-12-062010-09-23Saurav PaulAssessment of Electrode Coupling for Tissue Ablation
WO2007067941A2 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20100286690A1 (en)2005-12-062010-11-11Saurav PaulAssessment of electrode coupling for tissue ablation
CA2632604A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
CN101534736A (en)2005-12-062009-09-16圣朱德医疗有限公司房颤分公司Electrode coupling assessment for tissue ablation
WO2007067937A2 (en)2005-12-062007-06-14St. Jude Medical, Atrial Figriliation Division, Inc.Design of handle set for ablation catheter with indicators of catheter and tissue parameters
CA2631940A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
WO2007067938A2 (en)2005-12-062007-06-14St. Jude Medical Atrial Fibrillation Division, Inc.Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US20080300589A1 (en)2005-12-062008-12-04Saurav PaulAssessment of Electrode Coupling for Tissue Ablation
US20080288038A1 (en)2005-12-062008-11-20Saurav PaulMethod for Displaying Catheter Electrode-Tissue Contact in Electro-Anatomic Mapping and Navigation System
US20090275827A1 (en)2005-12-062009-11-05Aiken Robert DSystem and method for assessing the proximity of an electrode to tissue in a body
US20080281319A1 (en)2005-12-062008-11-13Saurav PaulAssessment of Electrode Coupling For Tissue Ablation
CA2631946A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20080275465A1 (en)2005-12-062008-11-06Saurav PaulDesign of Handle Set for Ablation Catheter with Indicators of Catheter and Tissue Parameters
AU2006321574A1 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
WO2007067939A2 (en)2005-12-062007-06-14St. Jude Medical, Arial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
JP2009518150A (en)2005-12-062009-05-07セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Method for displaying catheter electrode-tissue contact in an electroanatomical mapping and navigation system
JP2009518151A (en)2005-12-062009-05-07セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Evaluation of electrode coupling for tissue ablation
WO2007067940A2 (en)2005-12-062007-06-14St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
EP1962708B1 (en)2005-12-062015-09-09St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US20110144524A1 (en)2005-12-062011-06-16Fish Jeffrey MGraphical user interface for real-time rf lesion depth display
US20090029407A1 (en)2005-12-192009-01-29Yissum Research Development Company Of The Hebrew University Of JerusalemSystems And Methods For Analyzing And Manipulating Biological Samples
US20110217730A1 (en)2005-12-192011-09-08Yissum Research Development Company Of The Hebrew University Of JerusalemSystems and methods for analyzing and manipulating biological samples
US7951582B2 (en)2005-12-192011-05-31Yissum Research Development Company Of The Hebrew University Of JerusalemSystems and methods for analyzing and manipulating biological samples
US20070156135A1 (en)2006-01-032007-07-05Boris RubinskySystem and methods for treating atrial fibrillation using electroporation
US20070151848A1 (en)*2006-01-052007-07-05Nano-Proprietary, Inc.Capacitance based biosensor
US20100006441A1 (en)*2006-02-012010-01-14Ecole Polytechnique Federale De LausanneApparatus for manipulating, modifying and characterizing particles in a micro channel
US20070287950A1 (en)2006-02-112007-12-13Rune KjekenDevice and method for single-needle in vivo electroporation
US20080045880A1 (en)2006-02-112008-02-21Rune KjekenDevice and method for single-needle in vivo electroporation
US20070191889A1 (en)2006-02-152007-08-16Biotronik Crm Patent AgAtrial defibrillator
WO2007100727A2 (en)2006-02-242007-09-07Eastern Virginia Medical SchoolNanosecond pulsed electric fields cause melanomas to self-destruct
US20110092973A1 (en)2006-02-242011-04-21Eastern Virginia Medical SchoolNanosecond pulsed electric fields cause melanomas to self-destruct
JP2009532077A (en)2006-02-242009-09-10イースタン バージニア メディカル スクール Nanosecond pulsed electric field causing self-destruction of melanoma
US20070239099A1 (en)2006-03-032007-10-11Paul GoldfarbMethod and device for treating microscopic tumors remaining in tissues following surgical resection
WO2007123690A2 (en)2006-03-312007-11-01Spiration, Inc.Articulable anchor
US20070230757A1 (en)2006-04-042007-10-04John TrachtenbergSystem and method of guided treatment within malignant prostate tissue
US8511317B2 (en)2006-05-122013-08-20Vytronus, Inc.Method for ablating body tissue
US20090171280A1 (en)2006-05-182009-07-02Peter SamuelCatheter
WO2007137303A2 (en)2006-05-242007-11-29Myelin Repair Foundation, Inc.Permeability of blood-brain barrier
US7771401B2 (en)2006-06-082010-08-10Angiodynamics, Inc.Selective renal cannulation and infusion systems and methods
US20080236593A1 (en)2006-06-222008-10-02Nellcor Puritan Bennett LlcEndotracheal cuff and technique for using the same
US20070295336A1 (en)2006-06-222007-12-27Nelson Donald SEndotracheal cuff and technique for using the same
US20070295337A1 (en)2006-06-222007-12-27Nelson Donald SEndotracheal cuff and technique for using the same
US20080097139A1 (en)2006-07-142008-04-24Boston Scientific Scimed, Inc.Systems and methods for treating lung tissue
US20080033417A1 (en)2006-08-042008-02-07Nields Morgan WApparatus for planning and performing thermal ablation
US20080052786A1 (en)2006-08-242008-02-28Pei-Cheng LinAnimal Model of Prostate Cancer and Use Thereof
US7722606B2 (en)2006-09-142010-05-25LaZúre Technologies, LLCDevice and method for destruction of cancer cells
US7680543B2 (en)2006-09-142010-03-16Lazure Technologies, LlcTissue ablation and removal
WO2008034103A3 (en)2006-09-142008-11-20Lazure Technologies LlcDevice and method for destruction of cancer cells
JP2010503496A (en)2006-09-142010-02-04ラジュール・テクノロジーズ・エルエルシイ Apparatus and method for destroying cancer cells
WO2008034103A2 (en)2006-09-142008-03-20Lazure Technologies, LlcDevice and method for destruction of cancer cells
US8109926B2 (en)2006-09-142012-02-07Lazure Scientific, Inc.Ablation probe with deployable electrodes
US20080071262A1 (en)2006-09-142008-03-20Larry AzureTissue ablation and removal
WO2008063195A1 (en)2006-10-122008-05-29St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US8348921B2 (en)2006-10-162013-01-08The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
US20100160850A1 (en)2006-10-162010-06-24The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
US20120179091A1 (en)2006-10-162012-07-12Antoni IvorraGels with predetermined conductivity used in electroporation of tissue
US7674249B2 (en)2006-10-162010-03-09The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
US20080171985A1 (en)2006-10-162008-07-17Y.K.K. Saglik Hizmetleri Limited SirketiFlexible and Rigid Catheter Resector Balloon
US20080214986A1 (en)2006-10-162008-09-04The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
US8162918B2 (en)2006-10-162012-04-24The Regents Of The University Of CaliforniaGels with predetermined conductivity used in electroporation of tissue
USD571478S1 (en)2006-10-252008-06-17American Sterilizer CompanyContainer for reprocessing medical devices
US20080103529A1 (en)2006-10-262008-05-01Old Dominion UniversityApparatus and methods for performing cellular electro-manipulations
US20080121375A1 (en)2006-11-272008-05-29Honeywell International Inc.Systems and methods for passive thermal management using phase change material
US20120071872A1 (en)2006-12-012012-03-22Boris RubinskySystems for Treating Tissue Sites Using Electroporation
US20080132884A1 (en)2006-12-012008-06-05Boris RubinskySystems for treating tissue sites using electroporation
US20080132885A1 (en)2006-12-012008-06-05Boris RubinskyMethods for treating tissue sites using electroporation
US20100069921A1 (en)2006-12-062010-03-18Miller Stephan PSystem and method for assessing lesions in tissue
US20090177111A1 (en)2006-12-062009-07-09Miller Stephan PSystem and method for displaying contact between a catheter and tissue
US20080140064A1 (en)2006-12-072008-06-12Cierra, Inc.Energy delivery apparatus with tissue piercing thermocouple
US20080146934A1 (en)2006-12-082008-06-19Gerald CzyganImplantable medical system with acoustic sensor to measure mitral blood flow
US8267927B2 (en)2007-01-242012-09-18Koninklijke Philips Electronics N.V.Advanced ablation planning
US20100087813A1 (en)2007-02-152010-04-08Ethicon Endo-Surgery, Inc.Electroporation ablation apparatus, system, and method
US7655004B2 (en)2007-02-152010-02-02Ethicon Endo-Surgery, Inc.Electroporation ablation apparatus, system, and method
US20100130975A1 (en)2007-02-152010-05-27Ethicon Endo-Surgery, Inc.Electroporation ablation apparatus, system, and method
US8425505B2 (en)2007-02-152013-04-23Ethicon Endo-Surgery, Inc.Electroporation ablation apparatus, system, and method
US20080200911A1 (en)2007-02-152008-08-21Long Gary LElectrical ablation apparatus, system, and method
US20080200912A1 (en)2007-02-152008-08-21Long Gary LElectroporation ablation apparatus, system, and method
US20080210243A1 (en)2007-03-022008-09-04Jessica ClaytonEndotracheal cuff and technique for using the same
USD565743S1 (en)2007-04-122008-04-01Vector Surgical, Inc.Surgical container with applicators
US9149331B2 (en)2007-04-192015-10-06Miramar Labs, Inc.Methods and apparatus for reducing sweat production
US20080262489A1 (en)2007-04-232008-10-23Minnow Medical, LlcThrombus removal
US20080283065A1 (en)2007-05-152008-11-20Portaero, Inc.Methods and devices to maintain patency of a lumen in parenchymal tissue of the lung
US20080306427A1 (en)2007-06-052008-12-11Cook IncorporatedChronic Hemodialysis Catheter with Balloon
US20080312599A1 (en)2007-06-152008-12-18Interrad Medical, Inc.Anchor instrumentation and methods
US20110034209A1 (en)2007-06-182011-02-10Boris RubinskyWireless technology as a data conduit in three-dimensional ultrasonogray
US20100255795A1 (en)2007-06-182010-10-07The Regents Of The University Of CaliforniaCellular Phone Enabled Medical Imaging System
US20090062788A1 (en)2007-08-312009-03-05Long Gary LElectrical ablation surgical instruments
US20090062795A1 (en)2007-08-312009-03-05Ethicon Endo-Surgery, Inc.Electrical ablation surgical instruments
US20090062792A1 (en)2007-08-312009-03-05Ethicon Endo-Surgery, Inc.Electrical ablation surgical instruments
US8880195B2 (en)2007-09-142014-11-04Lazure Technologies, LlcTransurethral systems and methods for ablation treatment of prostate tissue
US20090081272A1 (en)2007-09-242009-03-26John ClarkeMedical devices having a metal particulate composition for controlled diffusion
US8267936B2 (en)2007-09-282012-09-18Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
WO2009046176A1 (en)2007-10-022009-04-09C. R. Bard, Inc.Drainage catheter with one-way valve
US20090198231A1 (en)2007-12-062009-08-06Massachusetts Institute Of TechnologyMethods to treat unwanted tissue with electric pulses
US20090157166A1 (en)2007-12-122009-06-18Boston Scientific Scimed, Inc.Medical Devices Having Porous Component For Controlled Diffusion
USD647628S1 (en)2008-02-122011-10-25Stryker Leibinger Gmbh & Co. KgStorage module for surgical devices, in particular for boneplate templates
US20110064671A1 (en)2008-03-102011-03-17Cornell UniversityModulation of blood brain barrier permeability
US20140163551A1 (en)2008-03-272014-06-12The Regents Of The University Of CaliforniaIrreversible electroporation device and method for attenuating neointimal formation
US20090247933A1 (en)2008-03-272009-10-01The Regents Of The University Of California; Angiodynamics, Inc.Balloon catheter method for reducing restenosis via irreversible electroporation
US20140309579A1 (en)2008-03-272014-10-16Angiodynamics, Inc.Balloon catheter method for reducing restenosis via irreversible electroporation
US20100004623A1 (en)2008-03-272010-01-07Angiodynamics, Inc.Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
US20090248012A1 (en)2008-03-272009-10-01The Regents Of The University Of CaliforniaIrreversible electroporation device and method for attenuating neointimal
US10828086B2 (en)2008-04-292020-11-10Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US9598691B2 (en)2008-04-292017-03-21Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US20160338758A9 (en)2008-04-292016-11-24Virginia Tech Intellectual Properties, Inc.Acute blood-brain barrier disruption using electrical energy based therapy
US20190133671A1 (en)2008-04-292019-05-09Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US20130345697A1 (en)2008-04-292013-12-26Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20160143698A1 (en)2008-04-292016-05-26Virginia Tech Intellectual Properties Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20130281968A1 (en)2008-04-292013-10-24Virginia Tech Intellectual Properties, Inc.Irreversible Electroporation using Nanoparticles
CA2722296A1 (en)2008-04-292009-11-05Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US9283051B2 (en)2008-04-292016-03-15Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20160066977A1 (en)2008-04-292016-03-10Angiodynamics, Inc.System and Method for Ablating a Tissue Site by Electroporation with Real-Time monitoring of Treatment Progress
AU2009243079A2 (en)2008-04-292011-01-06Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US9198733B2 (en)2008-04-292015-12-01Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
WO2009134876A1 (en)2008-04-292009-11-05Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US20220151688A1 (en)2008-04-292022-05-19Virginia Tech Intellectual Properties Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11607271B2 (en)2008-04-292023-03-21Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20170189579A1 (en)2008-04-292017-07-06Virginia Tech Intellectual Properties Inc.Irreversible electroporation to create tissue scaffolds
US10286108B2 (en)2008-04-292019-05-14Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US11272979B2 (en)2008-04-292022-03-15Virginia Tech Intellectual Properties, Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11254926B2 (en)2008-04-292022-02-22Virginia Tech Intellectual Properties, Inc.Devices and methods for high frequency electroporation
US20150327944A1 (en)2008-04-292015-11-19Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
US20210361341A1 (en)2008-04-292021-11-25Virginia Tech Intellectual Properties Inc.System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US20210186600A1 (en)2008-04-292021-06-24Virginia Tech Intellectual Properties, Inc.Electroporation with cooling to treat tissue
US20170209620A1 (en)2008-04-292017-07-27Virginia Tech Intellectual Properties Inc.Irreversible electroporation to create tissue scaffolds
US20230157759A1 (en)2008-04-292023-05-25Virginia Tech Intellectual Properties Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20130253415A1 (en)2008-04-292013-09-26Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9867652B2 (en)2008-04-292018-01-16Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US20090269317A1 (en)2008-04-292009-10-29Davalos Rafael VIrreversible electroporation to create tissue scaffolds
US10245105B2 (en)2008-04-292019-04-02Virginia Tech Intellectual Properties, Inc.Electroporation with cooling to treat tissue
US10959772B2 (en)2008-04-292021-03-30Virginia Tech Intellectual Properties, Inc.Blood-brain barrier disruption using electrical energy
US20180125565A1 (en)2008-04-292018-05-10Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11453873B2 (en)2008-04-292022-09-27Virginia Tech Intellectual Properties, Inc.Methods for delivery of biphasic electrical pulses for non-thermal ablation
US20210022795A1 (en)2008-04-292021-01-28Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using electroporation
US20180161086A1 (en)2008-04-292018-06-14Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US20140039489A1 (en)2008-04-292014-02-06Virginia Tech Intellectual Properties, Inc.Acute blood-brain barrier disruption using electrical energy based therapy
US20150164584A1 (en)2008-04-292015-06-18Virginia Tech Intellectual Properties Inc.Electroporation with cooling to treat tissue
US10117707B2 (en)2008-04-292018-11-06Virginia Tech Intellectual Properties, Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US20190175248A1 (en)2008-04-292019-06-13Virginia Tech Intellectual Properties Inc.System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10272178B2 (en)2008-04-292019-04-30Virginia Tech Intellectual Properties Inc.Methods for blood-brain barrier disruption using electrical energy
US11655466B2 (en)2008-04-292023-05-23Virginia Tech Intellectual Properties, Inc.Methods of reducing adverse effects of non-thermal ablation
US20190175260A1 (en)2008-04-292019-06-13Virginia Tech Intellectual Properties Inc.Electroporation with cooling to treat tissue
US10245098B2 (en)2008-04-292019-04-02Virginia Tech Intellectual Properties, Inc.Acute blood-brain barrier disruption using electrical energy based therapy
US8992517B2 (en)2008-04-292015-03-31Virginia Tech Intellectual Properties Inc.Irreversible electroporation to treat aberrant cell masses
US20230212551A1 (en)2008-04-292023-07-06Virginia Tech Intellectual Properties, Inc.Methods of reducing adverse effects of non-thermal ablation
US20150088120A1 (en)2008-04-292015-03-26Virginia Tech Intellectual Properties Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10828085B2 (en)2008-04-292020-11-10Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US10154874B2 (en)2008-04-292018-12-18Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US20100030211A1 (en)2008-04-292010-02-04Rafael DavalosIrreversible electroporation to treat aberrant cell masses
US20190029749A1 (en)2008-04-292019-01-31Virginia Tech Intellectual Properties Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US20110106221A1 (en)2008-04-292011-05-05Neal Ii Robert ETreatment planning for electroporation-based therapies
US8814860B2 (en)2008-04-292014-08-26Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using nanoparticles
US20190069945A1 (en)2008-04-292019-03-07Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using irreversible electroporation
US20200197073A1 (en)2008-04-292020-06-25Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US20190233809A1 (en)2008-04-292019-08-01Virginia Tech Intellectual Properties, Inc.Device and methods for delivery of biphasic electrical pulses for non-thermal ablation
US20200093541A9 (en)2008-04-292020-03-26Virginia Tech Intellectual Properties, Inc.Methods of reducing adverse effects of non-thermal ablation
US20200046432A1 (en)2008-04-292020-02-13Virginia Tech Intellectual Properties Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US10537379B2 (en)2008-04-292020-01-21Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11737810B2 (en)2008-04-292023-08-29Virginia Tech Intellectual Properties, Inc.Immunotherapeutic methods using electroporation
US20190376055A1 (en)2008-04-292019-12-12Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
US10470822B2 (en)2008-04-292019-11-12Virginia Tech Intellectual Properties, Inc.System and method for estimating a treatment volume for administering electrical-energy based therapies
US20100331758A1 (en)2008-04-292010-12-30Davalos Rafael VIrreversible electroporation using nanoparticles
EP2280741A1 (en)2008-04-292011-02-09Virginia Tech Intellectual Properties, Inc.Irreversible electroporation to create tissue scaffolds
US8465484B2 (en)2008-04-292013-06-18Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using nanoparticles
US10238447B2 (en)2008-04-292019-03-26Virginia Tech Intellectual Properties, Inc.System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US20190256839A1 (en)2008-04-292019-08-22Virginia Tech Intellectual Properties, Inc.Devices and methods for high frequency electroporation
WO2009135070A1 (en)2008-05-012009-11-05Spiration, Inc.Direct lung sensor systems, methods, and apparatuses
US20090281477A1 (en)2008-05-092009-11-12Angiodynamics, Inc.Electroporation device and method
WO2009137800A2 (en)2008-05-092009-11-12Angiodynamics, Inc.Electroporation device and method
US20190083169A1 (en)2008-05-092019-03-21Angiodynamics, Inc.Techniques for Controlling an Irreversible Electroporation System
USD631154S1 (en)2008-05-092011-01-18Angiodynamics, Inc.Probe handle tip
US20090306545A1 (en)2008-06-092009-12-10Mamdouh ElsakkaBronchoalveolar lavage catheter assembly
US20090306544A1 (en)2008-06-092009-12-10Ho-Kin NgInstillation/aspiration device
US20090301480A1 (en)2008-06-092009-12-10Mamdouh ElsakkaDiagnostic sample collection system and method of use
USD595422S1 (en)2008-06-182009-06-30Wire • Caddy, LLCSupport device for interventional instruments
US20160022957A1 (en)2008-06-202016-01-28Angiodynamics, Inc.Device and Method for the Ablation of Fibrin Sheath Formation on a Venous Catheter
US9173704B2 (en)2008-06-202015-11-03Angiodynamics, Inc.Device and method for the ablation of fibrin sheath formation on a venous catheter
US20090318905A1 (en)2008-06-232009-12-24Angiodynamics, Inc.Treatment Devices and Methods
US20090326366A1 (en)2008-06-252009-12-31Robert KriegMethod for visually monitoring an irreversible electroporation treatment, and magnetic resonance imaging apparatus with integrated electroporation treatment device
US20090326570A1 (en)2008-06-272009-12-31Kenneth BrownTreated needle holding tube for use in tattooing
USD613418S1 (en)2008-07-232010-04-06Smiths Medical Asd, Inc.Tray assembly
US20100023004A1 (en)2008-07-282010-01-28David FrancischelliSystems and methods for cardiac tissue electroporation ablation
US8221411B2 (en)2008-07-282012-07-17Medtronic, Inc.Systems and methods for cardiac tissue electroporation ablation
US20100049190A1 (en)2008-08-252010-02-25Ethicon Endo-Surgery, Inc.Electrical ablation devices
US20100057074A1 (en)2008-09-022010-03-04Roman Ricardo DIrrigated Ablation Catheter System and Methods
US8518031B2 (en)2008-10-312013-08-27The Invention Science Fund I, LlcSystems, devices and methods for making or administering frozen particles
US20100204560A1 (en)2008-11-112010-08-12Amr SalahiehLow profile electrode assembly
US20120071870A1 (en)2008-11-112012-03-22Amr SalahiehLow Profile Electrode Assembly
CN102238921A (en)2008-12-032011-11-09皇家飞利浦电子股份有限公司Feedback system for integrating interventional planning and navigation
EP2373241B1 (en)2008-12-032015-01-07Koninklijke Philips N.V.Feedback system for integrating interventional planning and navigation
US20110251607A1 (en)2008-12-032011-10-13Koninklijke Philips Electronics N.V.Feedback system for integrating interventional planning and navigation
JP2012510332A (en)2008-12-032012-05-10コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ A feedback system that integrates interventional planning and navigation
WO2010064154A1 (en)2008-12-032010-06-10Koninklijke Philips Electronics, N.V.Feedback system for integrating interventional planning and navigation
US20100152725A1 (en)2008-12-122010-06-17Angiodynamics, Inc.Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US20100147701A1 (en)2008-12-172010-06-17Tennant CompanyMethod and apparatus for applying electrical charge through a liquid to enhance sanitizing properties
JP2012515018A (en)2009-01-122012-07-05エシコン・エンド−サージェリィ・インコーポレイテッド Electrical ablation device
US8361066B2 (en)2009-01-122013-01-29Ethicon Endo-Surgery, Inc.Electrical ablation devices
WO2010080974A1 (en)2009-01-122010-07-15Ethicon Endo-Surgery Inc.Electrical ablation devices
US20100179530A1 (en)2009-01-122010-07-15Ethicon Endo-Surgery, Inc.Electrical ablation devices
US8753335B2 (en)2009-01-232014-06-17Angiodynamics, Inc.Therapeutic energy delivery device with rotational mechanism
US20150320488A1 (en)2009-01-232015-11-12Angiodynamics, Inc.Therapeutic energy delivery device with rotational mechanism
US8231603B2 (en)2009-02-102012-07-31Angiodynamics, Inc.Irreversible electroporation and tissue regeneration
US20100204638A1 (en)2009-02-102010-08-12Angiodynamics, Inc.Irreversible electroporation and tissue regeneration
US8562588B2 (en)2009-02-102013-10-22Angiodynamics, Inc.Irreversible electroporation and tissue regeneration
US20100228234A1 (en)2009-02-252010-09-09Searete Llc, A Limited Liability Corporaiton Of The State Of DelawareDevice for actively removing a target cell from blood or lymph of a vertebrate subject
US20100222677A1 (en)2009-02-272010-09-02Gynesonics, Inc.Needle and tine deployment mechanism
US20120310236A1 (en)2009-02-272012-12-06Gynesonics, Inc.Needle and tine deployment mechanism
US8968542B2 (en)2009-03-092015-03-03Virginia Tech Intellectual Properties, Inc.Devices and methods for contactless dielectrophoresis for cell or particle manipulation
US20120034131A1 (en)2009-03-302012-02-09Boris Rubinsky apparatus, system and method for preventing biological contamination to materials during storage using pulsed electrical energy
US20100249771A1 (en)2009-03-312010-09-30Pearson Robert MSystem and method for interactively planning and controlling a treatment of a patient with a medical treatment device
CN102421386A (en)2009-03-312012-04-18安吉戴尼克公司 Systems and methods for estimating a treatment area of a medical device and interactively planning patient treatment
JP2012521863A (en)2009-03-312012-09-20アンジオダイナミツクス・インコーポレイテツド System and method for treatment area estimation and interactive patient treatment planning of treatment devices
EP2413833A1 (en)2009-03-312012-02-08AngioDynamics, Inc.System and method for estimating a treatment region for a medical treatment device and for interactively planning a treatment of a patient
US20160354142A1 (en)2009-03-312016-12-08Angiodynamics, Inc.System and Method for Estimating A Treatment Region for a Medical Treatment Device
WO2010117806A1 (en)2009-03-312010-10-14Angiodynamics, Inc.System and method for estimating a treatment region for a medical treatment device and for interactively planning a treatment of a patient
US20100250209A1 (en)2009-03-312010-09-30Pearson Robert MSystem and method for estimating a treatment region for a medical treatment device
US20100256628A1 (en)2009-04-032010-10-07Angiodynamics, Inc.Irreversible Electroporation (IRE) for Congestive Obstructive Pulmonary Disease (COPD)
US20160074114A1 (en)2009-04-032016-03-17Angiodynamics, Inc.Congestive Obstruction Pulmonary Disease (COPD)
US8632534B2 (en)2009-04-032014-01-21Angiodynamics, Inc.Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD)
US20140121663A1 (en)2009-04-032014-05-01Angiodynamics, Inc.Irreversible Electroporation (IRE) for Congestive Obstructive Pulmonary Disease (COPD)
US20100256630A1 (en)2009-04-072010-10-07Angiodynamics, Inc.Irreversible electroporation (ire) for esophageal disease
US20190223938A1 (en)2009-04-092019-07-25Virgnia Tech Intellectual Properties, Inc.Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US20160287314A1 (en)2009-04-092016-10-06Virginia Tech Intellectual Properties, Inc.High frequency electroporation for cancer therapy
US20100261994A1 (en)2009-04-092010-10-14Rafael DavalosIntegration of very short electric pulses for minimally to noninvasive electroporation
US8926606B2 (en)2009-04-092015-01-06Virginia Tech Intellectual Properties, Inc.Integration of very short electric pulses for minimally to noninvasive electroporation
US11382681B2 (en)2009-04-092022-07-12Virginia Tech Intellectual Properties, Inc.Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US10292755B2 (en)2009-04-092019-05-21Virginia Tech Intellectual Properties, Inc.High frequency electroporation for cancer therapy
US20120109122A1 (en)2009-04-092012-05-03Arena Christopher BHigh-frequency electroporation for cancer therapy
US11638603B2 (en)2009-04-092023-05-02Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US20230248414A1 (en)2009-04-092023-08-10Virginia Tech Intellectual Properties Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US10448989B2 (en)2009-04-092019-10-22Virginia Tech Intellectual Properties, Inc.High-frequency electroporation for cancer therapy
WO2010118387A1 (en)2009-04-092010-10-14Virginia Tech Intellectual Properties, Inc.Integration of very short electric pulses for minimally to noninvasive electroporation
US20190328445A1 (en)2009-04-092019-10-31Virginia Tech Intellectual Properties, Inc.High-frequency electroporation for cancer therapy
USD630321S1 (en)2009-05-082011-01-04Angio Dynamics, Inc.Probe handle
EP2381829A1 (en)2009-05-132011-11-02St. Jude Medical Atrial Fibrillation Division, Inc.System and method for assessing the proximity of an electrode to tissue in a body
CA2751462A1 (en)2009-05-132010-11-18Robert D. AikenSystem and method for assessing the proximity of an electrode to tissue in a body
WO2010132472A1 (en)2009-05-132010-11-18St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for assessing the proximity of an electrode to tissue in a body
US20120265186A1 (en)2009-05-202012-10-18Keith BurgerSteerable curvable ablation catheter for vertebroplasty
US8903488B2 (en)2009-05-282014-12-02Angiodynamics, Inc.System and method for synchronizing energy delivery to the cardiac rhythm
US9764145B2 (en)2009-05-282017-09-19Angiodynamics, Inc.System and method for synchronizing energy delivery to the cardiac rhythm
US20150088220A1 (en)2009-05-282015-03-26Angiodynamics, Inc.System and Method for Synchronizing Energy Delivery to the Cardiac Rhythm
US20140378964A1 (en)2009-06-192014-12-25Angiodynamics, Inc.Methods of Sterilization and Treating Infection Using Irreversible Electroporation
WO2010151277A1 (en)2009-06-242010-12-29Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using nanoparticles
US20120150172A1 (en)2009-08-202012-06-14Mark OrtizMulti-Electrode Energy Delivery Device and Method of Using the Same
US20120090646A1 (en)2009-09-032012-04-19Arakawa Chemical Industries, Ltd.Cleaning agent for removal of, removal method for, and cleaning method for water-soluble, lead-free solder flux
US8835166B2 (en)2009-09-042014-09-16The Regents Of The University Of CaliforniaExtracellular matrix material created using non-thermal irreversible electroporation
US20120226218A1 (en)2009-09-042012-09-06Mary PhillipsExtracellular matrix material created using non-thermal irreversible electroporation
WO2011047387A2 (en)2009-10-162011-04-21Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
EP2488251A2 (en)2009-10-162012-08-22Virginia Tech Intellectual Properties, Inc.Treatment planning for electroporation-based therapies
US20160287313A1 (en)2009-11-192016-10-06The Regents Of The University Of CaliforniaControlled irreversible electroporation
US20110118732A1 (en)2009-11-192011-05-19The Regents Of The University Of CaliforniaControlled irreversible electroporation
WO2011062653A1 (en)2009-11-202011-05-26St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for assessing lesions in tissue
US20110144657A1 (en)2009-12-112011-06-16Fish Jeffrey MSystems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation
WO2011072221A1 (en)2009-12-112011-06-16St. Jude Medical, Atrial Fibrillation Division, Inc.Systems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation
US20110144635A1 (en)2009-12-162011-06-16Tyco Healthcare Group LpSystem and Method for Tissue Sealing
US8506564B2 (en)2009-12-182013-08-13Ethicon Endo-Surgery, Inc.Surgical instrument comprising an electrode
US20130030239A1 (en)2010-01-112013-01-31Thomas WeyhMagnetic stimulation having a freely selectable pulse shape
US20110176037A1 (en)*2010-01-152011-07-21Benkley Iii Fred GElectronic Imager Using an Impedance Sensor Grid Array and Method of Making
US20110202053A1 (en)2010-02-162011-08-18Angiodynamics, Inc.Ablation Device with Guide Sleeves
US20140296844A1 (en)2010-02-162014-10-02Angiodynamics, Inc.Dual bracketed energy delivery probe and method of use
US20120085649A1 (en)2010-03-092012-04-12Virginia Tech Intellectual Properties, Inc.Dielectrophoresis devices and methods therefor
US8425455B2 (en)2010-03-302013-04-23Angiodynamics, Inc.Bronchial catheter and method of use
US20110301587A1 (en)2010-04-062011-12-08Innovative Pulmonary Solutions, Inc.System and method for pulmonary treatment
US20130196441A1 (en)2010-06-032013-08-01The Regents Of The University Of CaliforniaElectroporation electrode configuration and methods
US8465464B2 (en)2010-08-062013-06-18WalkMed Infusion LLCInfusion pump and slide clamp apparatus and method
US20120059255A1 (en)2010-09-022012-03-08Saurav PaulCatheter systems
US20120089009A1 (en)2010-10-112012-04-12Omary Reed AMethods and apparatus to deliver nanoparticles to tissue usingelectronanotherapy
WO2012051433A2 (en)2010-10-132012-04-19Angiodynamics, Inc.System and method for electrically ablating tissue of a patient
US20120095459A1 (en)2010-10-132012-04-19Peter CallasSystem and Method for Electrically Ablating Tissue of a Patient
US9700368B2 (en)2010-10-132017-07-11Angiodynamics, Inc.System and method for electrically ablating tissue of a patient
EP2642937A2 (en)2010-11-232013-10-02Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
JP2014501574A (en)2010-11-232014-01-23ヴァージニア テック インテレクチュアル プロパティーズ,インコーポレーテッド Irreversible electroporation using tissue vasculature to treat abnormal cell populations or generate tissue scaffolds
WO2012071526A2 (en)2010-11-232012-05-31Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
WO2012088149A2 (en)2010-12-202012-06-28Virginia Tech Intellectual Properties, Inc.High-frequency electroporation for cancer therapy
US20140088578A1 (en)2011-04-012014-03-27The Regents Of The University Of CaliforniaCryoelectric systems and methods for treatment of biological matter
US20150126922A1 (en)2011-06-012015-05-07Angiodynamics, Inc.Coaxial dual function probe and method of use
US20200323576A1 (en)2011-07-152020-10-15Virginia Tech Intellectual Properties, Inc.Device and method for electroporation based treatment of stenosis of a tubular body part
US10702326B2 (en)2011-07-152020-07-07Virginia Tech Intellectual Properties, Inc.Device and method for electroporation based treatment of stenosis of a tubular body part
US20130184702A1 (en)2011-07-152013-07-18II Robert E. NealDevice and Method for Electroporation Based Treatment of Stenosis of a Tubular Body Part
US20130023871A1 (en)*2011-07-192013-01-24Tyco Healthcare Group LpMicrowave and rf ablation system and related method for dynamic impedance matching
US9078665B2 (en)2011-09-282015-07-14Angiodynamics, Inc.Multiple treatment zone ablation probe
US20150265349A1 (en)2011-09-282015-09-24Angiodynamics, Inc.Multiple Treatment Zone Ablation Probe
US20130090646A1 (en)2011-09-282013-04-11Angiodynamics, Inc.Multiple Treatment Zone Ablation Probe
US20160113708A1 (en)2011-09-282016-04-28Angiodynamics, Inc.Multiple Treatment Zone Ablation Probe
US20130108667A1 (en)2011-10-272013-05-02Soiwisa SoikumMethod, apparatus and system for electroporation
US20130110106A1 (en)2011-10-282013-05-02Boston Scientific Scimed, Inc.Expandable structure for off-wall ablation electrode
US20130197425A1 (en)2011-12-162013-08-01The Regents Of The University Of CaliforniaCurrent cage for reduction of a non-target tissue exposure to electric fields in electroporation based treatment
US9943599B2 (en)2011-12-222018-04-17Herlev HospitalTherapeutic applications of calcium electroporation to effectively induce tumor necrosis
US20130345779A1 (en)2012-01-122013-12-26The Regents Of The University Of CaliforniaTwo dimensional and one dimensional field electroporation
US20130202766A1 (en)2012-02-062013-08-08Elmedtech, LLCComposition, Methods and Devices for Reduction of Cells in a Volume of Matter Using Low Voltage High Electric Field (LVHEF) Electrical Energy
US20130218157A1 (en)2012-02-082013-08-22Angiodynamics, Inc.System and method for increasing a target zone for electrical ablation
US9414881B2 (en)2012-02-082016-08-16Angiodynamics, Inc.System and method for increasing a target zone for electrical ablation
US20140046322A1 (en)2012-02-082014-02-13Angiodymamics, Inc.System and Method for Increasing a Target Zone for Electrical Ablation
US20160235470A1 (en)2012-02-082016-08-18Angiodynamics, Inc.System and Method for Increasing a Target Zone for Electrical Ablation
US20150152504A1 (en)2012-05-012015-06-04Board Of Regents, The University Of Texas SystemMethod for determining complete response to anticancer therapy
USD677798S1 (en)2012-06-252013-03-12Angiodynamics, Inc.Medical device package tray
US20140017218A1 (en)2012-07-122014-01-16Canadian Blood ServicesMethod for Inducing Immune Tolerance Using Viable Polymer-Modified Allogeneic Leukocytes
US20140066913A1 (en)2012-09-062014-03-06Medtronic Ablation Frontiers LlcAblation device and method for electroporating tissue cells
US20140121728A1 (en)2012-10-252014-05-01Oncosec Medical IncorporatedElectroporation device
US20140207133A1 (en)2013-01-222014-07-24Angiodynamics, Inc.Integrated pump and generator device and method of use
US20140276748A1 (en)*2013-03-152014-09-18Medtronic Ardian Luxembourg S.a.r.I.Helical Push Wire Electrode
US20150320999A1 (en)2013-06-032015-11-12Nanoblate Corp.Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US20160367310A1 (en)2013-12-052016-12-22Rfemb Holdings, LlcCancer immunotherapy by radiofrequency electrical membrane breakdown (rf-emb)
US20150289923A1 (en)2014-04-142015-10-15Virginia Tech Intellectual Properties, Inc.Treatment planning for electrical-energy based therapies based on cell characteristics
US20230355293A1 (en)2014-04-142023-11-09Virginia Tech Intellectual Properties, Inc.Treatment planning for electrical-energy based therapies based on cell characteristics
US20150320478A1 (en)2014-05-062015-11-12Chenes LlcElectrosurgical generator
US20190076528A1 (en)2014-05-082019-03-14University College CorkMethod for treating cancer
US20190351224A1 (en)2014-05-122019-11-21Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US10471254B2 (en)2014-05-122019-11-12Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
EP3143124A1 (en)2014-05-122017-03-22Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
CN112807074A (en)2014-05-122021-05-18弗吉尼亚暨州立大学知识产权公司Electroporation system
CN106715682A (en)2014-05-122017-05-24弗吉尼亚暨州立大学知识产权公司Selective modulation of intracellular effects of cells using pulsed electric fields
WO2015175570A1 (en)2014-05-122015-11-19Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US20220362549A1 (en)2014-05-122022-11-17Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
US20170266438A1 (en)2014-05-122017-09-21Michael B. SanoSelective modulation of intracellular effects of cells using pulsed electric fields
JP2017518805A (en)2014-05-122017-07-13バージニア テック インテレクチュアル プロパティース インコーポレイテッド Selective modulation of intracellular effects of cells using pulsed electric fields
US11406820B2 (en)2014-05-122022-08-09Virginia Tech Intellectual Properties, Inc.Selective modulation of intracellular effects of cells using pulsed electric fields
AU2015259303A1 (en)2014-05-122016-11-10Arena, Christopher B.Selective modulation of intracellular effects of cells using pulsed electric fields
JP2019193668A (en)2014-05-122019-11-07バージニア テック インテレクチュアル プロパティース インコーポレイテッドSelective modulation of intracellular effects of cells using pulse electric fields
JP6594901B2 (en)2014-05-122019-10-23バージニア テック インテレクチュアル プロパティース インコーポレイテッド Selective modulation of intracellular effects of cells using pulsed electric fields
JP7051188B2 (en)2014-05-122022-04-11バージニア テック インテレクチュアル プロパティース インコーポレイテッド Selective regulation of intracellular effect of cells using pulsed electric field
US20180198218A1 (en)2014-11-102018-07-12Rhythmlink International, LlcElectrode cable system for neurological monitoring and imaging
US10694972B2 (en)2014-12-152020-06-30Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
WO2016100325A1 (en)2014-12-152016-06-23Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US20200260987A1 (en)2014-12-152020-08-20Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US20170360326A1 (en)2014-12-152017-12-21Virginia Tech Intellectual Properties, Inc.Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US20210137410A1 (en)2014-12-152021-05-13Virginia Tech Intellectual Properties, Inc.Intelligent surgical probe for real-time monitoring of electroporation-based therapies
US20180071014A1 (en)2015-04-102018-03-15Angiodynamics, Inc.System and Methods for Irreversible Electroporation with Thermally Controlled Electrodes
WO2016164930A1 (en)2015-04-102016-10-13Angiodynamics Inc.System and method for irreversible electroporation with thermally controlled electrodes
WO2017117418A1 (en)2015-12-302017-07-06Anthrogenesis CorporationT lymphocyte production methods and t lymphocytes produced thereby
US20190023804A1 (en)2016-01-152019-01-24Rfemb Holdings, LlcImmunologic treatment of cancer
US20170319851A1 (en)2016-05-062017-11-09Pulse Biosciences, Inc.Low-voltage impedance check pulse generator
US20170348525A1 (en)2016-06-072017-12-07The Board Of Trustees Of The Leland Stanford Junior UniversityMethods for enhancing and modulating reversible and irreversible electroporation lesions by manipulating pulse waveforms
US20200046967A1 (en)2016-10-062020-02-13Virginia Tech Intellectual Properties, Inc.Induced cell morphology electroporation
US20190232048A1 (en)2017-12-052019-08-01Eduardo LatoucheMethod for treating neurological disorders, including tumors, with electroporation
US11607537B2 (en)2017-12-052023-03-21Virginia Tech Intellectual Properties, Inc.Method for treating neurological disorders, including tumors, with electroporation
US11311329B2 (en)2018-03-132022-04-26Virginia Tech Intellectual Properties, Inc.Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US20190282294A1 (en)2018-03-132019-09-19Virginia Tech Intellectual Properties, Inc.Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US20210393312A1 (en)2018-03-132021-12-23Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
WO2020061192A1 (en)2018-09-182020-03-26Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
EP3852868A1 (en)2018-09-182021-07-28Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
US20200405373A1 (en)2019-06-282020-12-31Virginia Tech Intellectual Properties, Inc.Cycled Pulsing to Mitigate Thermal Damage for Multi-Electrode Irreversible Electroporation Therapy
US20210023362A1 (en)2019-07-242021-01-28Virginia Tech Intellectual Properties, Inc.Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies
US20210052882A1 (en)2019-08-212021-02-25Virginia Tech Intellectual Properties, Inc.Enhanced treatment volume and selective ablation using electroporation with adjuvant calcium
US20220290183A1 (en)2019-08-302022-09-15Virginia Tech Intellectual Properties, Inc.Method for intracellular delivery of compounds using cell force and shape with electric fields
US20210113265A1 (en)2019-10-212021-04-22DyaMX, Inc.Devices, systems, and methods for pulsed electric field treatment of the duodenum
WO2022066768A1 (en)2020-09-222022-03-31Virginia Tech Intellectual Properties, Inc.Electroporation-based platform for generation of tumor-activated t cells
US20230355968A1 (en)2020-09-222023-11-09Virginia Tech Intellectual Properties, Inc.Electroporation-based platform for generation of tumor-activated t cells
US20220161027A1 (en)2020-11-252022-05-26Virginia Tech Intellectual Properties Inc.Methods for modulating temporal infrastructure of pulsed electric fields

Non-Patent Citations (723)

* Cited by examiner, † Cited by third party
Title
(Arena, Christopher B. et al.) Co-Pending Application No. PCT/US11/66239, filed Dec. 20, 2011, Specification, Claims, Figures.
(Arena, Christopher B. et al.) Co-Pending U.S. Appl. No. 13/332,133, filed Dec. 20, 2011 and published as U.S. Publication No. 2012/0109122 on May 3, 2012, Specification, Claims, Figures.
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 15/186,653, filed Jun. 20, 2016, and published as U.S. Publication No. 2016/0287314 on Oct. 6, 2016, Specification, Claims, Figures.
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 16/372,520, filed Apr. 2, 2019, which published as 20190223938 on Jul. 25, 2019, Specification, Claims, Figures.
(Aycock, Kenneth N. et al.) Co-pending U.S. Appl. No. 17/535,742, filed Nov. 26, 2021, Specification, Claims, and Figures.
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US04/43477, filed Dec. 21, 2004, Specification, Claims, Figures.
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US21/51551, filed Sep. 22, 2021, Specification, Claims, Figures.
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/15118, filed Mar. 13, 2023, Specification, Claims, Figures.
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/76626, filed Oct. 11, 2023, Specification, Claims, Figures.
(Davalos, Rafael et al.) Co-pending U.S. Appl. No. 10/571,162, filed Oct. 18, 2006 (published as 2007/0043345 on Feb. 22, 2007), Specification, Figures, Claims.
(Davalos, Rafael et al.) Co-Pending U.S. Appl. No. 12/757,901, filed Apr. 9, 2010, Specification, Claims, Figures.
(Davalos, Rafael V. et al) Co-Pending Application No. PCT/US10/53077, filed Oct. 18, 2010, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending Application No. 19861489.3 filed Apr. 16, 2021, Specification, figures (See PCT/US19/51731), and claims (3 pages).
(Davalos, Rafael V. et al.) Co-Pending Application No. AU 2009243079, filed Apr. 29, 2009 (see PCT/US2009/042100 for documents as filed), Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US09/62806, filed Oct. 30, 2009, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US10/30629, filed Apr. 9, 2010, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending application No. PCT/US19/51731 filed Sep. 18, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending International Application No. PCT/US15/65792, filed Dec. 15, 2015, Specification, Claims, Drawings.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/491,151, filed Jun. 24, 2009, and published as U.S. Publication No. 2010/0030211 on Feb. 4, 2010, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/609,779, filed Oct. 30, 2009, and published as U.S. Publication No. 2010/0331758 on Dec. 30, 2010, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 13/919,640, filed Jun. 17, 2013, and published as U.S. Publication No. 2013/0281968 on Oct. 24, 2013, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/017,210, filed Sep. 3, 2013, and published as U.S. Publication No. 2014/0039489 on Feb. 6, 2014, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/627,046, filed Feb. 20, 2015, and published as U.S. Publication No. 2015/0164584 on Jun. 18, 2015, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015 and Published as US 2015/0289923 on Oct. 15, 2015, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/424,335, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0189579 on Jul. 6, 2017, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/536,333, filed Jun. 15, 2017, and published as U.S. Publication No. 2017/0360326 on Dec. 21, 2017, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/881,414, filed Jan. 26, 2018, and published as U.S. Publication No. 2018/0161086 on Jun. 14, 2018, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/177,745, filed Nov. 1, 2018, and published as U.S. Publication No. 2019/0069945 on Mar. 7, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/232,962, filed Dec. 26, 2018, and published as U.S. Publication No. 2019/0133671 on May 9, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/275,429, filed Feb. 14, 2019, which published as 2019/0175260 on Jun. 13, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/352,759, filed Mar. 13, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/535,451, filed Aug. 8, 2019, and Published as U.S. Publication No. 2019/0376055 on Dec. 12, 2019, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/069,359, filed Oct. 13, 2020, Specification, Claims, Drawings.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/172,731, filed Feb. 10, 2021, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/277,662, filed Mar. 18, 2021, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/027,824, filed Mar. 22, 2023, Specification, Claims, and Figures.
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/130,330, filed Apr. 3, 2023, Specification, Claims, Figures.
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/348,605, filed Jul. 7, 2023, Specification, Claims, Drawings.
(Davalos, Rafael V.) Co-Pending Application No. CA 2,722,296, filed Apr. 29, 2009, Amended Claims (7 pages), Specification, Figures (See PCT/US2009/042100 for Specification and figures as filed).
(Davalos, Rafael V.) Co-Pending Application No. EP 09739678.2 filed Apr. 29, 2009, Amended Claims (3 pages), Specification and Figures (See PCT/US2009/042100).
(Davalos, Rafael V.) Co-Pending Application No. PCT/US09/42100, filed Apr. 29, 2009, Specification, Claims, Figures.
(Davalos, Rafael V.) Co-Pending U.S. Appl. No. 12/432,295, filed Apr. 29, 2009, and published as U.S. Publication No. 2009/0269317-A1 on Oct. 29, 2009, Specification, Figures, Claims.
(Davalos, Rafael V.) Co-pending U.S. Appl. No. 15/423,986, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0209620 on Jul. 27, 2017, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 14/012,832, filed Aug. 28, 2013, and published as U.S. Publication No. 2013/0345697 on Dec. 26, 2013, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 14/558,631, filed Dec. 2, 2014, and published as U.S. Publication No. 2015/0088120 on Mar. 26, 2015, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 15/011,752, filed on Feb. 1, 2016, and published as U.S. Publication No. 2016/0143698 on May 26, 2016, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 16/152,743, filed Oct. 5, 2018, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 16/655,845, filed Oct. 17, 2019, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 17/591,992, filed Feb. 3, 2022, Specification, Claims, Figures.
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 18/100,835, filed Jan. 24, 2023, Specification, Claims, Figures.
(Latouche, Eduardo et al.) Co-pending U.S. Appl. No. 16/210,771, filed Dec. 5, 2018, and which published as US Patent Publication No. 2019/0232048 on Aug. 1, 2019, Specification, Claims, Figures.
(Lorenzo, Melvin F. et al.) Co-pending U.S. Appl. No. 16/938,778, filed Jul. 24, 2020, Specification, Claims, Figures.
(Mahajan, Roop L. et al.) Co-Pending U.S. Appl. No. 13/958,152, filed Aug. 2, 2013, Specification, Claims, Figures.
(Neal, Robert E. et al) Co-Pending U.S. Appl. No. 12/906,923, filed Oct. 18, 2010, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 13/550,307, filed Jul. 16, 2012, and published as U.S. Publication No. 2013/0184702 on Jul. 18, 2013, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/808,679, filed Jul. 24, 2015 and Published as U.S. Publication No. 2015/0327944 on Nov. 19, 2015, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/940,863, filed Nov. 13, 2015 and Published as US 2016/0066977 on Mar. 10, 2016, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/375,878, filed Apr. 5, 2019, which published on Aug. 1, 2019 as US 2019-0233809 A1, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/404,392, filed May 6, 2019, and published as U.S. Publication No. 2019/0256839 on Aug. 22, 2019, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/865,772, filed May 4, 2020, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 18/120,158, filed Mar. 10, 2023, Specification, Claims, Figures.
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 18/502,967, filed Nov. 6, 2023, Specification, Claims, Figures.
(Neal, Robert et al.) Co-Pending Application No. EP 10824248.8, filed May 9, 2012, Amended Claims (3 pages), Specification and Figures (See PCT/US10/53077).
(Neal, Robert et al.) Co-pending U.S. Appl. No. 16/280,511, filed Feb. 20, 2019, and published as U.S. Publication No. 2019/0175248 on Jun. 13, 2019, Specification, Claims, Figures.
(Neal, Robert et al.) Co-pending U.S. Appl. No. 17/338,960, filed Jun. 4, 2021, Specification, Claims, Figures.
(Neal, Robert et al.) Co-pending U.S. Appl. No. 18/528,051, filed Dec. 4, 2023, Specification, Claims, Figures.
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 16/915,760, filed Jun. 29, 2020, Specification, Claims, Figures.
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 17/152,379, filed Jan. 19, 2021, Specification, Claims, Figures.
(Pearson, Robert M. et al) Co-pending Application No. PCT/US2010/029243, filed Mar. 30, 2010, published as WO 2010/117806 on Oct. 14, 2010, Specification, Claims, Figures.
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,826, filed Mar. 31, 2010 (published as 2010/0250209 on Sep. 30, 2010), Specification, Claims, Figures.
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,854, filed Mar. 31, 2010 (published as 2010/0249771 on Sep. 30, 2010), Specification, Claims, Figures.
(Sano, Michael B et al.) Co-Pending Application No. JP 2016-567747, filed Nov. 10, 2016, Specification, Claims, Figures (see PCT/US15/30429 for English Version of documents as filed).
(Sano, Michael B. et al) Co-Pending Application No. PCT/US2015/030429, Filed May 12, 2015, Published on Nov. 19, 2015 as WO 2015/175570, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-Pending Application No. AU 2015259303, filed Oct. 24, 2016, Specification, Figures, Claims.
(Sano, Michael B. et al.) Co-Pending Application No. CN 201580025135.6, filed Nov. 14, 2016, Specification, Claims, Figures (Chinese language and english language versions).
(Sano, Michael B. et al.) Co-Pending Application No. CN 202011281572.3, filed Nov. 16, 2020, Specification, Claims, Figures (Chinese version, 129 pages (see also WO 2015/175570), English Version of claims, 2 pages).
(Sano, Michael B. et al.) Co-Pending Application No. EP 11842994.3, filed Jun. 24, 2013, Amended Claims (18 pages), Specification and Figures (See PCT/US11/62067).
(Sano, Michael B. et al.) Co-Pending Application No. EP 15793361.5, filed Dec. 12, 2016, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending application No. HK 17112121.8, filed Nov. 20, 2017 and published as Publication No. HK1238288 on Apr. 27, 2018, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed).
(Sano, Michael B. et al.) Co-Pending Application No. JP 2013-541050, filed May 22, 2013, Claims, Specification, and Figures (See PCT/US11/62067 for English Version).
(Sano, Michael B. et al.) Co-pending Application No. JP 2019-133057 filed Jul. 18, 2019, 155 pgs, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed).
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 13/989,175, filed May 23, 2013, and published as U.S. Publication No. 2013/0253415 on Sep. 26, 2013, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 15/310,114, filed Nov. 10, 2016, and published as U.S. Publication No. 2017/0266438 on Sep. 21, 2017, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 15/843,888, filed Dec. 15, 2017, and published as U.S. Publication No. 2018/0125565 on May 10, 2018, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/443,351, filed Jun. 17, 2019 (published as 20190328445 on Oct. 31, 2019), Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/520,901, filed Jul. 24, 2019, and published as U.S. Publication No. 2019/0351224 on Nov. 21, 2019, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 16/747,219, filed Jan. 20, 2020, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 17/862,486, filed Jul. 12, 2022, Specification, Claims, Figures.
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 18/123,719, filed Mar. 20, 2023, Specification, Claims, Figures.
(Sano, Michael et al.) Co-Pending Application No. PCT/US11/62067, filed Nov. 23, 2011, Specification, Claims, Figures.
(WASSON, Elisa M. et al.) Co-pending U.S. Appl. No. 17/000,049, filed Aug. 21, 2020, Specification, Claims, Figures.
Abiror, I.G., et al., "Electric Breakdown of Bilayer Lipid-Membranes .1. Main Experimental Facts and Their Qualitative Discussion", Bioelectrochemistry and Bioenergetics, 6(1): p. 37-52 (1979).
Agerholm-Larsen, B., et al., "Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors", Cancer Research 71: 3753-3762 (2011).
Alberts et al., "Molecular Biology of the Cell," 3rd edition, Garland Science, New York, 1994, 1 page.
Alinezhadbalalami, N. et al., "Generation of Tumor-activated T cells Using Electroporation", Bioelectrochemistry 142 (2021) 107886, Jul. 13, 2021, 11 pages.
Al-Sakere et al., "Tumor ablation with irreversible electroporation," PLoS ONE, 2, e1135, 2007, 8 pages.
Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53.
Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993.
Appelbaum, L., et al., "US Findings after Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation" Radiology 262(1), 117-125 (2012).
Arena et al. "High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction." Biomed. Eng. Online, vol. 10, 20 pages (2011).
Arena, C. B. et al., "Theoretical Considerations of Tissue Electroporation With High-Frequency Bipolar Pulses," IEEE Trans. Biomed. Eng., vol. 58, No. 5, 1474-1482, 2011, 9 pages.
Arena, C.B., et al., "A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation." Biophysical Journal, 2012.103(9): p. 2033-2042.
Arena, Christopher B., et al., "Towards the development of latent heat storage electrodes for electroporation-based therapies", Applied Physics Letters, 101, 083902 (2012).
Arena, Christopher B., et al.,"Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation". Proceedings of the ASME 2012 Summer Bioengineering Conference, SBC2012, Jun. 20-23, 2012, Fajardo, Puerto Rico.
Asami et al., "Dielectric properties of mouse lymphocytes and erythrocytes." Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1010 (1989) pp. 49-55.
Bagla, S. and Papadouris, D., "Percutaneous Irreversible Electroporation of Surgically Unresectable Pancreatic Cancer: A Case Report" J. Vascular Int. Radiol. 23(1), 142-145 (2012).
Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978.
Ball, C., K.R. Thomson, and H. Kavnoudias, "Irreversible electroporation: a new challenge in "out of-operating theater" anesthesia." Anesth Analg, 2010. 110(5): p. 1305-9.
Bancroft, et al., Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Engineering, vol. 9, No. 3, 2003, p. 549-554.
Baptista et al., "The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid," Heptatology, vol. 53, No. 2, pp. 604-617 (2011).
Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, pp. 165-173, 1993.
Beebe, S.J., et al., "Diverse effects of nanosecond pulsed electric fields on cells and tissues", DNA and Cell Biology, 22(12): 785-796 (2003).
Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. 1, 2001, pp. 211-215, vol. I, Piscataway, NJ, USA.
Beebe, S.J., et al.,, "Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells", FASEB J, 17(9): p. 1493-5 (2003).
Beitel-White, N., S. Bhonsle, R. Martin, and R. V. Davalos, "Electrical characterization of human biological tissue for irreversible electroporation treatments," in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 4170-4173.
Belehradek, J., et al., "Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin", Biochimica Et Biophysica Acta—Biomembranes, 1190(1): p. 155-163 (1994).
Ben-David, E. et al., "Irreversible Electroporation: Treatment Effect Is Susceptible to Local Environment and Tissue Properties," Radiology, vol. 269, No. 3, 2013, 738-747.
Ben-David, E.,et al., "Characterization of Irreversible Electroporation Ablation in In Vivo Procine Liver" Am. J. Roentgenol. 198(1), W62-W68 (2012).
Benz, R., et al. "Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study". J Membr Biol, 48(2): p. 181-204 (1979).
Bhonsle, S. et al., "Characterization of Irreversible Electroporation Ablation with a Validated Perfused Organ Model," J. Vasc. Interv. Radiol., vol. 27, No. 12, pp. 1913-1922.e2, 2016.
Bhonsle, S. P. et al., "Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses," Biomed. Eng. (NY)., vol. 14, No. Suppl 3, 14 pages, 2015.
Bhonsle, S., M. F. Lorenzo, A. Safaai Jazi, and R. V. Davalos, "Characterization of nonlinearity and dispersion in tissue impedance during high-frequency electroporation," IEEE Transactions on Biomedical Engineering, vol. 65, No. 10, pp. 2190-2201, 2018.
Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115.
Bolland, F., et al., "Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering", Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 28, No. 6, Nov. 28, 2006, pp. 1061-1070.
Bonakdar, M., E. L. Latouche, R. L. Mahajan, and R. V. Davalos, "The feasibility of a smart surgical probe for verification of IRE treatments using electrical impedance spectroscopy," IEEE Trans. Biomed. Eng., vol. 62, No. 11, pp. 2674-2684, 2015.
Bondarenko, A. and G. Ragoisha, Eis spectrum analyser (the program is available online at http://www.abc.chemistry.bsu.by/vi/analyser/.
Boone, K., Barber, D. & Brown, B. Review—Imaging with electricity: report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21, 201-232 (1997).
Boussetta, N., N. Grimi, N. I. Lebovka, and E. Vorobiev, "Cold" electroporation in potato tissue induced by pulsed electric field, Journal of food engineering, vol. 115, No. 2, pp. 232-236, 2013.
Bower et al., "Irreversible electroporation of the pancreas: definitive local therapy without systemic effects." Journal of surgical oncology, 2011. 104(1): p. 22-28.
BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1.
Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179.
Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9.
Buist et al., "Efficacy of multi-electrode linear irreversible electroporation," Europace, vol. 23, No. 3, pp. 464-468, 2021, 5 pages.
Bulvik, B. E. et al. "Irreversible Electroporation versus Radiofrequency Ablation: A Comparison of Local and Systemic Effects in a Small Animal Model," Radiology, vol. 280, No. 2, 2016, 413-424.
Butikofer, R. et al., "Electrocutaneous Nerve Stimulation—I: Model and Experiment," IEEE Trans. Biomed. Eng., vol. BME-25, No. 6, 526-531, 1978, abstract only, 2 pages.
Butikofer, R. et al., "Electrocutaneous Nerve Stimulation—II: Stimulus Waveform Selection," IEEE Trans. Biomed. Eng., vol. BME-26, No. 2, 69-75, 1979, abstract only, 2 pages.
Cannon et al., "Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures." Journal of Surgical Oncology, 6 pages (2012).
Carpenter A.E. et al., "CellProfiler: image analysis software for identifying and quantifying cell phenotypes." Genome Biol. 2006; 7(10): R100. Published online Oct. 31, 2006, 11 pages.
Castellvi, Q., B. Mercadal, and A. Ivorra, "Assessment of electroporation by electrical impedance methods," in Handbook of electroporation. Springer-Verlag, 2016, pp. 671-690.
Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, et al., "Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy", Br J Cancer 84: 565-570 (2001).
Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (TUNA)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001.
Chang, D.C., "Cell Poration and Cell-Fusion Using an Oscillating Electric-Field". Biophysical Journal, 56(4): p. 641-652 (1989).
Charpentier, K.P., et al., "Irreversible electroporation of the pancreas in swine: a pilot study." HPB: the official journal of the International Hepato Pancreato Biliary Association, 2010. 12(5): p. 348-351.
Chen et al., "Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells." Lab on a Chip, vol. 11, pp. 3174-3181 (2011).
Chen, M.T., et al., "Two-dimensional nanosecond electric field mapping based on cell electropermeabilization", PMC Biophys, 2(1):9 (2009).
Clark et al., "The electrical properties of resting and secreting pancreas." The Journal of Physiology, vol. 189, pp. 247-260 (1967).
Coates, C.W.,et al., "The Electrical Discharge of the Electric Eel, Electrophorous Electricus," Zoologica, 1937, 22(1), pp. 1-32.
Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994.
Co-pending Application No. 19861489.3 Extended European Search Report dated May 16, 2022 (8 pages).
Co-Pending U.S. Appl. No. 16/280,511, Notice of Allowance dated Aug. 2, 2021, 7 pgs.
Co-Pending U.S. Appl. No. 16/280,511, Response to Dec. 4, 2020 Non-final Office Action dated Jun. 4, 2021, 8 pgs.
Co-Pending U.S. Appl. No. 16/404,392, Non-Final Office Action dated May 28, 2021, 8 pages.
Co-Pending U.S. Appl. No. 16/404,392, Notice of Allowance, dated Oct. 27, 2021, 7 pages.
Co-Pending U.S. Appl. No. 16/404,392, Response to May 28, 2021 Non-Final Office Action, filed Sep. 23, 2021, 13 pages.
Co-Pending U.S. Appl. No. 16/404,392, Response to the Nov. 13, 2020 Non-Final Office action, filed Feb. 16, 2021, 8 pages.
Corovic et al., "Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations," Biomed Eng Online, 6, 14 pages, 2007.
Cosman, E. R. et al., "Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes," Pain Med., vol. 6, No. 6, 405-424, 2005, 20 pages.
Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997.
Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29.
Creason, S. C., J. W. Hayes, and D. E. Smith, "Fourier transform faradaic admittance measurements iii. comparison of measurement efficiency for various test signal waveforms," Journal of Electroanalytical chemistry and interfacial electrochemistry, vol. 47, No. 1, pp. 9-46, 1973.
Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973.
Dahl et al., "Nuclear shape, mechanics, and mechanotransduction." Circulation Research vol. 102, pp. 1307-1318 (2008).
Daskalov, I., et al., "Exploring new instrumentation parameters for electrochemotherapy—Attacking tumors with bursts of biphasic pulses instead of single pulses", IEEE Eng Med Biol Mag, 18(1): p. 62-66 (1999).
Daud, A.I., et al., "Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma," Journal of Clinical Oncology, 26, 5896-5903, Dec. 20, 2008.
Davalos et al., "Electrical impedance tomography for imaging tissue electroporation," IEEE Transactions on Biomedical Engineering, 51, pp. 761-767, 2004.
Davalos et al., "Theoretical analysis of the thermal effects during in vivo tissue electroporation." Bioelectrochemistry, vol. 61(1-2): pp. 99-107, 2003.
Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002.
Davalos, et al., Tissue Ablation with Irreversible Electroporation, Annals of Biomedical Engineering, vol. 33, No. 2, p. 223-231, Feb. 2005.
Davalos, R. V. & Rubinsky, B. Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51, 5617-5622, doi:10.1016/j.ijheatmasstransfer.2008.04.046 (2008).
Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. in Engineering—Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002.
De Senneville, B. D. et al., "MR thermometry for monitoring tumor ablation," European radiology, vol. 17, No. 9, pp. 2401-2410, 2007.
De Vuyst, E., et al., "In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling", Biophysical Journal, 94(2): p. 469-479 (2008).
Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005.
Demirbas, M. F., "Thermal Energy Storage and Phase Change Materials: An Overview" Energy Sources Part B 1(1), 85-95 (2006).
Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000.
Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343.
Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997.
Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31.
Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237.
Edd et al., "Mathematical modeling of irreversible electroporation for treatment planning." Technology in Cancer Research and Treatment, vol. 6, No. 4, pp. 275-286 (2007).
Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415.
Ellis TL, Garcia PA, Rossmeisl JH, Jr., Henao-Guerrero N, Robertson J, et al., "Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation", J Neurosurg 114: 681-688 (2011).
Eppich et al., "Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants." Nature Biotechnology 18, pp. 882-887 (2000).
Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980.
Ermolina et al., "Study of normal and malignant white blood cells by time domain dielectric spectroscopy." IEEE Transactions on Dielectrics and Electrical Insulation, 8 (2001) pp. 253-261.
Esser, A.T., et al., "Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue". Technol Cancer Res Treat, 6(4): p. 261-74 (2007).
Esser, A.T., et al., "Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields", Technology in Cancer Research & Treatment, 8(4): p. 289-306 (2009).
Faroja, M., et al., "Irreversible Electroporation Ablation: Is the entire Damage Nonthermal?", Radiology, 266(2), 462-470 (2013).
Fischbach et al., "Engineering tumors with 3D scaffolds." Nat Meth 4, pp. 855-860 (2007).
Flanagan et al., "Unique dielectric properties distinguish stem cells and their differentiated progeny." Stem Cells, vol. 26, pp. 656-665 (2008).
Fong et al., "Modeling Ewing sarcoma tumors in vitro with 3D scaffolds." Proceedings of the National Academy of Sciences vol. 110, pp. 6500-6505 (2013).
Foster RS, "High-intensity focused ultrasound in the treatment of prostatic disease", European Urology, 1993, vol. 23 Suppl 1, pp. 29-33.
Foster, R.S., et al., Production of Prostatic Lesions in Canines Using Transrectally Administered High-Intensity Focused Ultrasound. Eur. Urol., 1993; 23: 330-336.
Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997.
Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72:1336-41, 2012.
Freeman, S.A., et al., Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 67(1): p. 42-56 (1994).
Garcia et al., "Irreversible electroporation (IRE) to treat brain cancer." ASME Summer Bioengineering Conference, Marco Island, FL, Jun. 25-29, 2008, 2 pages.
Garcia P.A., et al., "7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation", PLOS ONE, Nov. 2012, 7:11, e50482.
Garcia P.A., et al., "Pilot study of irreversible electroporation for intracranial surgery", Conf Proc IEEE Eng Med Biol Soc, 2009:6513-6516, 2009.
Garcia, et al., "A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure," Biomed Eng Online, vol. 10:34, 22 pages, 2011.
Garcia, P. A., et al., "Non-thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractioned Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient" Technol. Cancer Res. Treatment 10(1), 73-83 (2011).
Garcia, P. A., et al., "Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements," Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 2575-2578, 2012.
Garcia, P. et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236, 127-136 (2010).
Garcia, Paulo A., Robert E. Neal II and Rafael V. Davalos, Chapter 3, Non-Thermal Irreversible Electroporation for Tissue Ablation, In: Electroporation in Laboratory and Clinical Investigations ISBN 978-1-61668-327-6 Editors: Enrico P. Spugnini and Alfonso Baldi, 2010, 22 pages.
García-Sánchez, T., A. Azan, I. Leray, J. Rosell-Ferrer, R. Bragos, and L. M. Mir, "Interpulse multifrequency electrical Impedance measurements during electroporation of adherent differentiated myotubes," Bioelectrochemistry, vol. 105, pp. 123-135, 2015.
Gascoyne et al., "Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis." Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1149, pp. 119-126 (1993).
Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979.
Gawad, S., T. Sun, N. G. Green, and H. Morgan, "Impedance spectroscopy using maximum length sequences: Application to single cell analysis," Review of Scientific Instruments, vol. 78, No. 5, p. 054301, 2007.
Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240.
Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996.
Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14.
Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, IEEE Engineering in Medicine and Biology, 107-111, 1984.
Gilbert, T. W., et al., "Decellularization of tissues and organs", Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 27, No. 19, Jul. 1, 2006, pp. 3675-3683.
Gimsa et al., "Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm." Biophysical Journal, vol. 71, pp. 495-506 (1996).
Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7.
Golberg, A. and Rubinsky, B., "A statistical model for multidimensional irreversible electroporation cell death in tissue." Biomed Eng Online, 9, 13 pages, 2010.
Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387.
Gowrishankar T.R., et al., "Microdosimetry for conventional and supra-electroporation in cells with organelles". Biochem Biophys Res Commun, 341(4): p. 1266-76 (2006).
Granot, Y., A. Ivorra, E. Maor, and B. Rubinsky, "In vivo imaging of irreversible electroporation by means of electrical impedance tomography," Physics in Medicine & Biology, vol. 54, No. 16, p. 4927, 2009.
Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476.
Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444.
Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995.
Groen, M. H. A. et al., "In Vivo Analysis of the Origin and Characteristics of Gaseous Microemboli during Catheter-Mediated Irreversible Electroporation," Europace, 2021, 23(1), 139-146.
Guenther, E. et al., "Electrical breakdown in tissue electroporation," Biochem. Biophys. Res. Commun., vol. 467, No. 4, 736-741, Nov. 2015, 15 pages.
Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999.
Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997.
Helczynska et al., "Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ." Cancer Research, vol. 63, pp. 1441-1444 (2003).
Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999.
Hjouj, M., et al., "Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI", Neuro-Oncology 13: Issue suppl 3, abstract ET-32 (2011).
Hjouj, Mohammad et al., "Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI," Abstracts from 16th Annual Scientific Meeting of the Society for Neuro-Oncology in Conjunction with the AANS/CNS Section on Tumors, Nov. 17-20, 2011, Orange County California, Neuro-Oncology Supplement, vol. 13, Supplement 3, p. iii114.
Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996.
Hoejholt, K. L. et al. Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Scientific Reports (Mar. 18, 2019) 9:4758, p. 1-12.
Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical BI, pp. 512-519, 1999.
Houj, M., et al., "MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption", PLOS ONE, Aug. 2012, 7:8, e42817.
Hu, Q., et al., "Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse", Physical Review E, 71(3) (2005).
Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999.
Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209.
Ibey et al., "Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells." Biochimica Et Biophysica Acta—General Subjects, vol. 1800, pp. 1210-1219 (2010).
Issa, et al., The TUNA Procedure for BPH: Review of the Technology: The TUNA Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998.
Ivanu{hacek over (s)}a, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47.
Ivey, J. W., E. L. Latouche, M. B. Sano, J. H. Rossmeisl, R. V. Davalos, and S. S. Verbridge, "Targeted cellular ablation based on the morphology of malignant cells," Sci. Rep., vol. 5, pp. 1-17, 2015.
Ivorra et al., "In vivo electric impedance measurements during and after electroporation of rat live." Bioelectrochemistry, vol. 70, pp. 287-295 (2007).
Ivorra et al., "In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome." Physics in Medicine and Biology, vol. 54, pp. 5949-5963 (2009).
Ivorra, "Bioimpedance monitoring for physicians: an overview." Biomedical Applications Group, 35 pages (2002).
Ivorra, A., ed. "Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts. Irreversible Electroporation", ed. B. Rubinsky., Springer Berlin Heidelberg. 23-61 (2010).
Jarm et al., "Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases." Expert Rev Anticancer Ther. Vol. 10, pp. 729-746 (2010).
Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999.
Jensen et al., "Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18FFDG-microPET or external caliper." BMC medical Imaging vol. 8:16, 9 Pages (2008).
Jordan, D.W., et al., "Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells". Ieee Transactions on Plasma Science, 32(4): p. 1573-1578 (2004).
Jossinet et al., Electrical Impedance Endo-Tomography: Imaging Tissue From Inside, IEEE Transactions on Medical Imaging, vol. 21, No. 6, Jun. 2002, pp. 560-565.
Katsuki, S., et al., "Biological effects of narrow band pulsed electric fields", Ieee Transactions on Dielectrics and Electrical Insulation,. 14(3): p. 663-668 (2007).
Kingham et al., "Ablation of perivascular hepatic malignant tumors with irreversible electroporation." Journal of the American College of Surgeons, 2012. 215(3), p. 379-387.
Kinosita and Tsong, "Formation and resealing of pores of controlled sizes in human erythrocyte membrane." Nature, vol. 268 (1977) pp. 438-441.
Kinosita and Tsong, "Voltage-induced pore formation and hemolysis of human erythrocytes." Biochimica et Biophysica Acta (BBA)—Biomembranes, 471 (1977) pp. 227-242.
Kinosita et al., "Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope." Biophysical Journal, vol. 53, pp. 1015-1019 (1988).
Kinosita, et al., Hemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977.
Kirson et al., "Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors." Proceedings of the National Academy of Sciences vol. 104, pp. 10152-10157 (2007).
Kolb, J.F., et al., "Nanosecond pulsed electric field generators for the study of subcellular effects", Bioelectromagnetics, 27(3): p. 172-187 (2006).
Kotnik and Miklavcic, "Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields." Biophysical Journal, vol. 90(2), pp. 480-491 (2006).
Kotnik et al., "Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis", Bioelectrochemistry and Bioenergetics, vol. 43, Issue 2, 1997, pp. 285-291.
Kotnik, T. and D. Miklavcic, "Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields", Bioelectromagnetics, 21(5): p. 385-394 (2000).
Kotnik, T., et al., "Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination", Bioelectrochemistry, 54(1): p. 91-5 (2001).
Kotnik, T., et al., "Role of pulse shape in cell membrane electropermeabilization", Biochimica Et Biophysica Acta—Biomembranes, 1614(2): p. 193-200 (2003).
Kranjc, M., S. Kranjc, F. Bajd, G. Sersa, I. Sersa, and D. Miklavcic, "Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography," Scientific reports, vol. 7, No. 1, pp. 1-10, 2017.
Labeed et al., "Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis." Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1760, pp. 922-929 (2006).
Lackovic, I., et al., "Three-dimensional Finite-element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer", Ieee Transactions on Dielectrics and Electrical Insulation, 16(5): p. 1338-1347 (2009).
Latouche, E. L., M. B. Sano, M. F. Lorenzo, R. V. Davalos, and R. C. G. Martin, "Irreversible electroporation for the ablation of pancreatic malignancies: A patient-specific methodology," J. Surg. Oncol., vol. 115, No. 6, pp. 711-717, 2017.
Laufer et al., "Electrical impedance characterization of normal and cancerous human hepatic tissue." Physiological Measurement, vol. 31, pp. 995-1009 (2010).
Lebar et al., "Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers." IEEE Transactions on NanoBioscience, vol. 1 (2002) pp. 116-120.
Lee, E. W. et al. Advanced Hepatic Ablation Technique for Creating Complete Cell Death : Irreversible Electroporation. Radiology 255, 426-433, doi:10.1148/radiol.10090337 (2010).
Lee, E.W., et al., "Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation", Technol Cancer Res Treat 6: 287-294 (2007).
Lee, R. C., D. J. Canaday, and S. M. Hammer. Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J. Burn Care Rehabil. 14:528-540, 1993.
Li, W., et al., "The Effects of Irreversible Electroporation (IRE) on Nerves" PloS One, Apr. 2011, 6(4), e18831.
Liu, et al., Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200.
Long, G., et al., "Targeted Tissue Ablation With Nanosecond Pulses". Ieee Transactions on Biomedical Engineering, 58(8) (2011).
Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with Ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998.
Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997.
Lynn, et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal of General Physiology, vol. 26, 179-193, 1942.
Ma{hacek over (c)}ek Lebar and Miklav{hacek over (c)}i{hacek over (c)}, "Cell electropermeabilization to small molecules in vitro: control by pulse parameters." Radiology and Oncology, vol. 35(3), pp. 193-202 (2001).
Macherey, O. et al., "Asymmetric pulses in cochlear implants: Effects of pulse shape, polarity, and rate," JARO—J. Assoc. Res. Otolaryngol., vol. 7, No. 3, 253-266, 2006, 14 pages.
Mahmood, F., et al., "Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments", Journal of Membrane Biology 240: 131-138 (2011).
Mahnic-Kalamiza, et al., "Educational application for visualization and analysis of electric field strength in multiple electrode electroporation," BMC Med Educ, vol. 12:102, 13 pages, 2012.
Malpica et al., "Grading ovarian serous carcinoma using a two-tier system." The American Journal of Surgical Pathology, vol. 28, pp. 496-504 (2004).
Maor et al., The Effect of Irreversible Electroporation on Blood Vessels, Tech. in Cancer Res. and Treatment, vol. 6, No. 4, Aug. 2007, pp. 307-312.
Maor, E., A. Ivorra, and B. Rubinsky, Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation, PLoS ONE, 2009, 4(3): p. e4757.
Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Trans Biomed Eng, Sep. 2008, 55(9): p. 2268-74.
Marszalek et al., "Schwan equation and transmembrane potential induced by alternating electric field." Biophysical Journal, vol. 58, pp. 1053-1058 (1990).
Martin, n.R.C.G., et al., "Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma." Journal of the American College of Surgeons, 2012. 215(3): p. 361-369.
Martinsen, O. G. and Grimnes, S., Bioimpedance and bioelectricity basics. Academic press, 2011.
Marty, M., et al., "Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study," European Journal of Cancer Supplements, 4, 3-13, 2006.
McIntyre, C. C. et al., "Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle," J. Neurophysiol., vol. 87, No. 2, 995-1006, 2002, 12 pages.
McNeal, D. R., "Analysis of a Model for Excitation of Myelinated Nerve," IEEE Trans. Biomed. Eng., vol. BME-23, No. 4, 329-337, 1976, abstract only, 2 pages.
Mercadal, B. et al., "Avoiding nerve stimulation in irreversible electroporation: A numerical modeling study," Phys. Med. Biol., vol. 62, No. 20, 8060-8079, 2017, 28 pages.
Miklav{hacek over (c)}i{hacek over (c)}, D et al., "The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy," Bioelectrochemistry, vol. 65, 121-128, 2004, 8 pages.
Miklav{hacek over (c)}i{hacek over (c)}, et al., A Validated Model of an in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta 1523 (2000), pp. 73-83.
Miklav{hacek over (c)}i{hacek over (c)}, et al., The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158.
Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706.
Min, M., A. Giannitsis, R. Land, B. Cahill, U. Pliquett, T. Nacke, D. Frense, G. Gastrock, and D. Beckmann, "Comparison of rectangular wave excitations in broad band impedance spectroscopy for microfluidic applications," in World Congress on Medical Physics and Biomedical Engineering, Sep. 7-12, 2009, Munich, Germany. Springer, 2009, pp. 85-88.
Min, M., U. Pliquett, T. Nacke, A. Barthel, P. Annus, and R. Land, "Broadband excitation for short-time impedance spectroscopy," Physiological measurement, vol. 29, No. 6, p. S185, 2008.
Mir et al., "Mechanisms of Electrochemotherapy" Advanced Drug Delivery Reviews 35:107-118 (1999).
Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998.
Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991.
Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991.
Mir, L.M. and Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118.
Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114.
Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000.
Mulhall et al., "Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis." Analytical and Bioanalytical Chemistry, vol. 401, pp. 2455-2463 (2011).
Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, vol. 148, 1600-1604, Nov. 1992.
Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001.
Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997.
Neal II et al., "A Case Report on the Successful Treatment of a Large Soft-Tissue Sarcoma with Irreversible Electroporation," Journal of Clinical Oncology, 29, pp. 1-6, 2011.
Neal II et al., "Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity during Pulsed Electric Fields for Irreversible Electroporation Treatment Planning," Biomedical Engineering, IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1076-1085, 2012.
Neal II, R. E et al. In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment. Annals of Biomedical Engineering, Oct. 29, 2013, 13 pages.
Neal II, R. E., et al., "Successful Treatment of a Large Soft Tissue Sarcoma with Irreversible Electroporation", Journal of Clinical Oncology, 29:13, e372-e377 (2011).
Neal II, R.E., et al., "Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode." Breast Cancer Research and Treatment, 2010. 123(1): p. 295-301.
Neal II, Robert E. and R.V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems, Ann Biomed Eng, 2009, 37(12): p. 2615-2625.
Neal RE II, et al. (2013) Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS ONE 8(5): e64559. https://doi.org/10.1371/journal.pone.0064559.
Nesin et al., "Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses." Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1808, pp. 792-801 (2011).
Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982.
Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972.
Nikolova, B., et al., "Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin". Biotechnology & Biotechnological Equipment, 25(3): p. 2522-2524 (2011).
Nuccitelli, R., et al., "A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence", Int J Cancer, 125(2): p. 438-45 (2009).
O'Brien et al., "Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity." European Journal of Biochemistry, vol. 267, pp. 5421-5426 (2000).
O'Brien, T. J. et al., "Effects of internal electrode cooling on irreversible electroporation using a perfused organ model," Int. J. Hyperth., vol. 35, No. 1, pp. 44-55, 2018.
Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987.
Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985.
Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984.
Onik, G. and B. Rubinsky, eds. "Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer. Irreversible Electroporation", ed. B. Rubinsky 2010, Springer Berlin Heidelberg, pp. 235-247.
Onik, G., P. Mikus, and B. Rubinsky, "Irreversible electroporation: implications for prostate ablation." Technol Cancer Res Treat, 2007. 6(4): p. 295-300.
Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76.
Ott, H. C., et al., "Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart", Nature Medicine, Nature Publishing Group, New York, NY, US, vol. 14, No. 2, Feb. 1, 2008, pp. 213-221.
Pakhomova, O. N., Gregory, B., Semenov I., and Pakhomov, A. G., BBA—Biomembr., 2014, 1838, 2547-2554.
Partridge, B. R. et al., "High-Frequency Irreversible Electroporation for treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma," J. Vasc. Interv. Radiol., vol. 31, No. 3, 482-491.e4, Mar. 2020, 19 pages.
Paszek et al., "Tensional homeostasis and the malignant phenotype." Cancer Cell, vol. 8, pp. 241-254 (2005).
Patent No. JP 7051188, Notice of Reasons for Revocation dated Jan. 30, 2023 (3 pages) with English translation (5 pages).
Patent No. JP 7051188, Opposition dated Jul. 4, 2022 (16 pages) with English translation (13 pages).
Patent No. JP 7051188, Response to Jan. 30, 2023 Notice of Reasons for Revocation, dated Apr. 27, 2023 (9 pages) with English translation (10 pages).
Pavselj, N. et al. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52, 1373-1381 (2005).
Pavselj, N., et al., "A numerical model of skin electroporation as a method to enhance gene transfection in skin. 11th Mediterranean Conference on Medical and Biological Engineering and Computing", vols. 1 and 2, 16(1-2): p. 597-601 (2007).
PCT Application No. PCT/2011/062067, International Preliminary Report on Patentability dated May 28, 2013.
PCT Application No. PCT/2011/066239, International Preliminary Report on Patentability dated Jun. 25, 2013.
PCT Application No. PCT/US09/62806, International Search Report (dated Jan. 19, 2010), Written Opinion (dated Jan. 19, 2010), and International Preliminary Report on Patentability (dated Jan. 4, 2010), 15 pgs.
PCT Application No. PCT/US10/53077, International Search Report (dated Aug. 2, 2011), Written Opinion (dated Aug. 2, 2011), and International Preliminary Report on Patentability (dated Apr. 17, 2012).
PCT Application No. PCT/US15/30429, International Report on Patentability dated Nov. 15, 2016.
PCT Application No. PCT/US15/30429, International Search Report and Written Opinion dated Oct. 16, 2015, 19 pages.
PCT Application No. PCT/US15/65792, International Search Report (dated Feb. 9, 2016), Written Opinion (dated Feb. 9, 2016), and International Preliminary Report on Patentability (dated Jun. 20, 2017), 15 pages.
PCT Application No. PCT/US19/51731, International Preliminary Report on Patentability dated Mar. 23, 2021, 13 pages.
PCT Application No. PCT/US19/51731, International Search Report and Written Opinion dated Feb. 20, 2020, 19 pgs.
PCT Application No. PCT/US19/51731, Invitation to Pay Additional Search Fees dated Oct. 28, 2019, 2 pgs.
PCT Application No. PCT/US2004/043477, International Search Report (dated Aug. 26, 2005), Written Opinion (dated Aug. 26, 2005), and International Preliminary Report on Patentability (dated Jun. 26, 2006).
PCT Application No. PCT/US2009/042100, International Search Report (dated Jul. 9, 2009), Written Opinion (dated Jul. 9, 2009), and International Preliminary Report on Patentability (dated Nov. 2, 2010).
PCT Application No. PCT/US2010/029243, International Search Report, 4 pgs, (dated Jul. 30, 2010), Written Opinion, 7 pgs, (dated Jul. 30, 2010), and International Preliminary Report on Patentability, 8 pgs, (dated Oct. 4, 2011).
PCT Application No. PCT/US2010/030629, International Search Report (dated Jul. 15, 2010), Written Opinion (dated Jul. 15, 2010), and International Preliminary Report on Patentability (dated Oct. 11, 2011).
PCT Application No. PCT/US2011/062067, International Search Report and Written Opinion dated Jul. 25, 2012.
PCT Application No. PCT/US2011/066239, International Search Report (dated Aug. 22, 2012), and Written Opinion (dated Aug. 22, 2012).
Pending Application No. 19861489.3 Response to Communication pursuant to Rules 161(2) and 162 EPC, filed Nov. 16, 2021, 7 pages.
Pending Application No. 19861489.3 Response to May 16, 2022 Extended European Search Report, dated Dec. 13, 2022, 136 pages.
Pending Application No. AU 2009243079, First Examination Report, dated Jan. 24, 2014, 4 pages.
Pending Application No. AU 2009243079, Voluntary Amendment filed Dec. 6, 2010, 35 pages.
Pending Application No. AU 2015259303, Certificate of Grant dated Feb. 10, 2022, 1 page.
Pending Application No. AU 2015259303, First Examination Report dated Oct. 26, 2020, 6 pages.
Pending Application No. AU 2015259303, Notice of Acceptance and Allowed Claims, dated Oct. 15, 2021, 7 pages.
Pending Application No. AU 2015259303, Response to First Examination Report dated Sep. 20, 2021, 126 pages.
Pending Application No. CA 2,722,296 Examination Report dated Apr. 2, 2015, 6 pages.
Pending Application No. CN 201580025135.6 English translation of Apr. 29, 2020 Office action, 7 pages.
Pending Application No. CN 201580025135.6 English translation of Sep. 25, 2019 Office action.
Pending Application No. CN 201580025135.6 Preliminary Amendment filed with application dated Nov. 14, 2016.
Pending Application No. CN 201580025135.6 Response to Sep. 25, 2019 Office action, filed Feb. 10, 2020, English language version and original document.
Pending Application No. CN 201580025135.6, First Office Action, dated Sep. 25, 2019 (Chinese and English Versions, each 6 pages).
Pending Application No. CN 201580025135.6, Response to First Office Action, dated Feb. 7, 2020, (Chinese Vrsion, 13 pages, and English Version, 10 pages).
Pending Application No. CN 201580025135.6, Second Office Action, dated Apr. 29, 2020 (Chinese Version, 4 pages, and English Version, 7 pages).
Pending Application No. CN 202011281572.3, Amendment filed Sep. 8, 2021 (16 pages) with English Version of the Amended Claims (7 pages).
Pending Application No. EP 09739678.2 Extended European Search Report dated May 11, 2012, 7 pages.
Pending Application No. EP 09739678.2, Communication pursuant to Rule 94.3, dated Apr. 16, 2014, 3 pages.
Pending Application No. EP 09739678.2, Office Action dated Apr. 16, 2014, 3 pages.
Pending Application No. EP 09739678.2, Response to Extended European Search Report and Communication pursuant to Rules 70(2) and 70a(2) EPC, dated Dec. 10, 2012.
Pending Application No. EP 10824248.8, Communication Pursuant to Rule 70(2) dated Feb. 6, 2014, 1 page.
Pending Application No. EP 10824248.8, Extended Search Report (dated Jan. 20, 2014), 6 pages.
Pending Application No. EP 10824248.8, Invitation Pursuant to rule 62a(1) EPC (dated Sep. 25, 2013), 2 pages.
Pending Application No. EP 10824248.8, Response to Invitation Pursuant to rule 62a(1) EPC (dated Sep. 25, 2013), Response filed Nov. 18, 2013.
Pending Application No. EP 11842994.3, Communication Pursuant to Rules 70(2) and 70a(2) EPC dated Apr. 28, 2014, 1 page.
Pending Application No. EP 11842994.3, Extended European Search Report dated Apr. 9, 2014, 34 pages.
Pending Application No. EP 15793361.5, Claim amendment filed Jul. 18, 2018, 13 pages.
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated Apr. 4, 2023, 4 pages.
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated May 3, 2021, 4 pages.
Pending Application No. EP 15793361.5, European Search Report dated Dec. 4, 2017, 9 pages.
Pending Application No. EP 15793361.5, Response to Apr. 4, 2023 Communication Pursuant to Article 94(3) EPC, dated Oct. 16, 2023, 13 pages.
Pending Application No. EP 15793361.5, Response to May 3, 2021 Communication Pursuant to Article 94(3) EPC, dated Nov. 12, 2021, 12 pages.
Pending Application No. JP 2013-541050, Voluntary Amendment filed Oct. 29, 2013, 4 pages (with English Version of the Claims, 2 pages).
Pending Application No. JP 2016-567747 Amendment filed Jul. 18, 2019, 7 pgs.
Pending Application No. JP 2016-567747 English translation of amended claims filed Jul. 18, 2019, 6 pgs.
Pending Application No. JP 2016-567747, Decision to Grant with English Version of allowed claims, 9 pages.
Pending Application No. JP 2016-567747, First Office Action (Translation) dated Feb. 21, 2019, 5 pages.
Pending Application No. JP 2016-567747, First Office Action dated Feb. 21, 2019, 4 pages.
Pending Application No. JP 2019-133057, amended claims (English language version) filed Aug. 14, 2019, 5 pages.
Pending Application No. JP 2019-133057, Office Action dated Sep. 1, 2021, 3 pages (and English translation, 4 pages).
Pending Application No. JP 2019-133057, Office Action dated Sep. 14, 2020, 5 pages (and English translation, 6 pages).
Pending Application No. JP 2019-133057, Request for Amendment and Appeal filed Dec. 23, 2021 (8 pages) with English Translation of the Amended Claims (2 pages).
Pending Application No. JP 2019-133057, Response to Sep. 14, 2020 Office Action filed Mar. 18, 2021 (6 pages) with English Version of claims and response (5 pages).
Pending Application No. PCT/US21/51551, International Search Report and Written Opinion dated Dec. 29, 2021, 14 pages.
Pending Application No. PCT/US23/15118, International Search Report and Written Opinion dated Jul. 31, 2023, 18 pages.
Pending Application No. PCT/US23/15118, Invitation to Pay Additional Fees dated May 17, 2023, 3 pages.
Pending U.S. Appl. No. 14/686,380, Advisory Action dated Oct. 20, 2021, 3 pages.
Pending U.S. Appl. No. 14/686,380, Amendment After Board Decision dated Apr. 3, 2023, 8 pages.
Pending U.S. Appl. No. 14/686,380, Amendment after Notice of Appeal, dated Oct. 12, 2021, 6 pages.
Pending U.S. Appl. No. 14/686,380, Appeal Brief filed Nov. 5, 2021, 21 pages.
Pending U.S. Appl. No. 14/686,380, Appeal Decision dated Jan. 30, 2023, 15 pages.
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Feb. 9, 2021, 3 pages.
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Mar. 8, 2021, 2 pages.
Pending U.S. Appl. No. 14/686,380, Examiner's Answer to Appeal Brief, dated Feb. 18, 2022, 16 pages.
Pending U.S. Appl. No. 14/686,380, Final Office Action dated May 9, 2018, 14 pages.
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Oct. 6, 2020, 14 pages.
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Sep. 3, 2019, 28 pages.
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Feb. 13, 2020, 11 pages.
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 1, 2019, 18 pages.
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 7, 2021, 17 pages.
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Nov. 22, 2017, 11 pages.
Pending U.S. Appl. No. 14/686,380, Notice of Non-Compliant Amendment dated May 25, 2023, 3 pages.
Pending U.S. Appl. No. 14/686,380, Reply Brief, dated Apr. 12, 2022, 4 pages.
Pending U.S. Appl. No. 14/686,380, Response to Feb. 13, 2020 Non-Final Office Action, filed Jul. 1, 2020, 8 pages.
Pending U.S. Appl. No. 14/686,380, Response to Jul. 19, 2017 Restriction Requirement, dated Sep. 15, 2017, 2 pages.
Pending U.S. Appl. No. 14/686,380, Response to May 9, 2018 Final Office Action with RCE, dated Aug. 30, 2018, 14 pages.
Pending U.S. Appl. No. 14/686,380, Response to Non-Final Office Action Filed Aug. 1, 2019, 11 pages.
Pending U.S. Appl. No. 14/686,380, Response to Nov. 22, 2017 Non-Final Office Action dated Mar. 28, 2018, 11 pages.
Pending U.S. Appl. No. 14/686,380, Response to Oct. 6, 2020 Final Office Action with RCE, dated Jan. 6, 2020, 11 pages.
Pending U.S. Appl. No. 14/686,380, Response to Sep. 3, 2019 Final Office Action, filed Jan. 3, 2020, 10 pages.
Pending U.S. Appl. No. 14/686,380, Restriction Requirement dated Jul. 19, 2017, 7 pages.
Pending U.S. Appl. No. 14/808,679, 3rd Renewed Petition, Dec. 9, 2019 and Petition Decision Dec. 18. 2019, 11 pages.
Pending U.S. Appl. No. 14/808,679, Appeal Brief, filed Jun. 3, 2021, 25 pages.
Pending U.S. Appl. No. 14/808,679, Appeal Decision dated Jul. 19, 2022, 8 pages.
Pending U.S. Appl. No. 14/808,679, Examiner's Answer to Appeal Brief, dated Sep. 15, 2021, 6 pages.
Pending U.S. Appl. No. 14/808,679, Final Office Action dated Dec. 28, 2020, 11 pages.
Pending U.S. Appl. No. 14/808,679, Final Office Action dated Jan. 11, 2019, 12 pages.
Pending U.S. Appl. No. 14/808,679, Interview Summary, dated Apr. 26, 2019, 3 pages.
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Jun. 12, 2020, 10 pages.
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Sep. 10, 2018, 12 pages.
Pending U.S. Appl. No. 14/808,679, Notice of Allowance dated Aug. 17, 2022, 8 pages.
Pending U.S. Appl. No. 14/808,679, Panel Decision from Pre-Appeal Brief Review, dated Apr. 26, 2021, 2 pages.
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 1, 2019, 5 pages.
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 23, 2019, 6 pages.
Pending U.S. Appl. No. 14/808,679, Petition Decision, Dec. 3, 2019, 5 pages.
Pending U.S. Appl. No. 14/808,679, Petition for Priority and Supplemental Response, filed May 8, 2019, 25 pages.
Pending U.S. Appl. No. 14/808,679, Petition Supplement, Sep. 25, 2019, 10 pages.
Pending U.S. Appl. No. 14/808,679, Petition, May 8, 2019, 2 pages.
Pending U.S. Appl. No. 14/808,679, Pre-Appeal Brief Reasons for Request for Review, dated Mar. 29, 2021, 5 pages.
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment dated Jul. 24, 2015, 6 pages.
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment, filed Jul. 27, 2015, 9 pages.
Pending U.S. Appl. No. 14/808,679, RCE filed Apr. 11, 2019, 8 pages.
Pending U.S. Appl. No. 14/808,679, Renewed Petition, filed Oct. 9, 2019, 1 pages.
Pending U.S. Appl. No. 14/808,679, Reply Brief, dated Nov. 15, 2021, 5 pages.
Pending U.S. Appl. No. 14/808,679, Response to Mar. 19, 2018 Restriction Requirement dated May 21, 2018, 2 pages.
Pending U.S. Appl. No. 14/808,679, Response to Non-Final Office Action dated Jun. 12, 2020, filed Sep. 14, 2020, 9 pages.
Pending U.S. Appl. No. 14/808,679, Response to Sep. 10, 2018 Non-Final Office Action dated Dec. 10, 2018, 9 pages.
Pending U.S. Appl. No. 14/808,679, Restriction Requirement dated Mar. 19, 2018, 7 pages.
Pending U.S. Appl. No. 14/808,679, Second Renewed Petition, filed Oct. 31, 2019, 3 pages.
Pending U.S. Appl. No. 14/808,679, Supplemental Response, dated May 8, 2019, 16 pages.
Pending U.S. Appl. No. 16/152,743 Preliminary Amendment filed Oct. 5, 2018, 7 pages.
Pending U.S. Appl. No. 16/152,743, Final Office Action dated Jul. 15, 2021, 8 pages.
Pending U.S. Appl. No. 16/152,743, Non-Final Office Action dated Sep. 25, 2020, 10 pages.
Pending U.S. Appl. No. 16/152,743, Notice of Allowance, dated Oct. 27, 2021, 8 pages.
Pending U.S. Appl. No. 16/152,743, Petition for Delayed Claim for Priority dated Dec. 28, 2020, 2 pages.
Pending U.S. Appl. No. 16/152,743, Response to Jul. 15, 2021 Final Office Action, filed Oct. 13, 2021, 6 pages.
Pending U.S. Appl. No. 16/152,743, Response to Sep. 25, 2020 Non-Final Office Action dated Dec. 28, 2020, 9 pages.
Pending U.S. Appl. No. 16/152,743, Second Preliminary Amendment filed May 2, 2019, 6 pages.
Pending U.S. Appl. No. 16/210,771, Amendment after Notice of Allowance dated Dec. 29, 2022, 6 pages.
Pending U.S. Appl. No. 16/210,771, Applicant-Initiated Interview Summary dated Aug. 13, 2021, 4 pages.
Pending U.S. Appl. No. 16/210,771, Final Office Action dated Apr. 13, 2022, 10 pages.
Pending U.S. Appl. No. 16/210,771, Final Office Action dated May 14, 2021, 13 pages.
Pending U.S. Appl. No. 16/210,771, Non-Final Office Action dated Oct. 7, 2021, 10 pages.
Pending U.S. Appl. No. 16/210,771, Non-Final Office Action dated Sep. 3, 2020, 9 pages.
Pending U.S. Appl. No. 16/210,771, Notice of Allowance dated Oct. 26, 2022, 8 pages.
Pending U.S. Appl. No. 16/210,771, Preliminary Amendment filed Dec. 5, 2018, 8 pages.
Pending U.S. Appl. No. 16/210,771, Response to Apr. 13, 2022 Final Office Action, dated Jul. 13, 2022, 7 pages.
Pending U.S. Appl. No. 16/210,771, Response to May 14, 2021 Final Office Action, filed Aug. 16, 2021, 6 pages.
Pending U.S. Appl. No. 16/210,771, Response to Oct. 7, 2021 Non-Final Office Action, dated Jan. 7, 2022, 7 pages.
Pending U.S. Appl. No. 16/210,771, Response to Restriction Requirement, filed Jul. 8, 2020, 7 pages.
Pending U.S. Appl. No. 16/210,771, Response to Sep. 3, 2020 Non-Final Office Action filed Jan. 4, 2021, 11 pages.
Pending U.S. Appl. No. 16/210,771, Restriction Requirement, dated Jun. 9, 2020, 7 pages.
Pending U.S. Appl. No. 16/210,771, Rule 1.132 Declaration dated Jan. 7, 2022, 3 pages.
Pending U.S. Appl. No. 16/210,771, Second Preliminary Amendment filed Oct. 14, 2019, 7 pages.
Pending U.S. Appl. No. 16/275,429 Notice of Allowance dated Nov. 10, 2020, 9 pages.
Pending U.S. Appl. No. 16/275,429 Preliminary Amendment Filed Mar. 28, 2019, 6 pages.
Pending U.S. Appl. No. 16/280,511, Non-final Office Action dated Dec. 4, 2020, 10 pgs.
Pending U.S. Appl. No. 16/280,511, Preliminary Amendment filed Nov. 2, 2020, 6 pages.
Pending U.S. Appl. No. 16/352,759, Corrected Notice of Allowability and Examiner's Amendment, dated Feb. 22, 2022, 6 pages.
Pending U.S. Appl. No. 16/352,759, Non-Final Office Action dated Jun. 30, 2021, 7 pages.
Pending U.S. Appl. No. 16/352,759, Notice of Allowance dated Nov. 10, 2021, 7 pages.
Pending U.S. Appl. No. 16/352,759, Response to Non-Final Office Action dated Sep. 27, 2021, 6 pages.
Pending U.S. Appl. No. 16/372,520 Preliminary Amendment filed Apr. 9, 2019, 7 pages.
Pending U.S. Appl. No. 16/372,520, Examiner-Initiated Interview Summary dated Apr. 1, 2022, 2 pages.
Pending U.S. Appl. No. 16/372,520, Notice of Allowance and Examiner's Amendment dated Apr. 8, 2022, 8 pages.
Pending U.S. Appl. No. 16/375,878, Applicant-Initiated Interview Summary dated Aug. 23, 2022, 7 pages.
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Apr. 15, 2022, 8 pages.
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Aug. 18, 2023, 11 pages.
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jan. 23, 2023, 8 pages.
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jun. 24, 2021, 8 pages.
Pending U.S. Appl. No. 16/375,878, Notice of Allowance dated Nov. 15, 2023, 6 pages.
Pending U.S. Appl. No. 16/375,878, Preliminary Amendment, filed Apr. 9, 2019, 9 pages.
Pending U.S. Appl. No. 16/375,878, Response to Apr. 15, 2022 Final Office Action, dated Aug. 15, 2022, 8 pages.
Pending U.S. Appl. No. 16/375,878, Response to Aug. 18, 2023 Final Office Action, dated Oct. 18, 2023, 9 pages.
Pending U.S. Appl. No. 16/375,878, Response to Jan. 23, 2023 Non-Final Office Action, dated Apr. 24, 2023, 10 pages.
Pending U.S. Appl. No. 16/375,878, Response to Jun. 24, 2021 Non-Final Office Action, dated Dec. 22, 2021, 8 pages.
Pending U.S. Appl. No. 16/375,878, Second Preliminary Amendment, filed Feb. 5, 2020, 3 pages.
Pending U.S. Appl. No. 16/404,392, Final Office Action dated Mar. 20, 2020, 8pgs.
Pending U.S. Appl. No. 16/404,392, Interview Summary dated Sep. 6, 2019, 8pgs.
Pending U.S. Appl. No. 16/404,392, Non-Final Office Action dated Nov. 13, 2020, 8pgs.
Pending U.S. Appl. No. 16/404,392, Non-Final Office Action dated Sep. 6, 2019, 8pgs.
Pending U.S. Appl. No. 16/404,392, Petition for Priority, filed Jun. 4, 2019, 2 pages.
Pending U.S. Appl. No. 16/404,392, Preliminary Amendment, filed Jun. 4, 2019, 9 pages.
Pending U.S. Appl. No. 16/404,392, Preliminary Amendment, filed Jun. 6, 2019, 5 pages.
Pending U.S. Appl. No. 16/404,392, Response to Final Office action dated Mar. 20, 2020, filed Sep. 18, 2020, 7 pages.
Pending U.S. Appl. No. 16/404,392, Response to Non-Final Office action dated Sep. 6, 2019, iled Dec. 6, 2019, 8 pages.
Pending U.S. Appl. No. 16/443,351, Non-Final Office Action, dated Jun. 10, 2022, 15 pages.
Pending U.S. Appl. No. 16/443,351, Notice of Allowance, dated Dec. 7, 2022, 8 pages.
Pending U.S. Appl. No. 16/443,351, Preliminary amendment filed Feb. 3, 2020.
Pending U.S. Appl. No. 16/443,351, Response to Jun. 10, 2022 Non-Final Office Action, dated Sep. 12, 2022, 7 pages.
Pending U.S. Appl. No. 16/520,901, Non-Final Office Action, dated Oct. 13, 2021, 9 pages.
Pending U.S. Appl. No. 16/520,901, Notice of Allowance dated Apr. 1, 2022, 5 pages.
Pending U.S. Appl. No. 16/520,901, Preliminary Amendment filed Aug. 14, 2019.
Pending U.S. Appl. No. 16/520,901, Response to Oct. 13, 2021 Non-Final Office Action, dated Mar. 8, 2022, 11 pages.
Pending U.S. Appl. No. 16/520,901, Second Preliminary Amendment filed Feb. 4, 2020.
Pending U.S. Appl. No. 16/535,451 Applicant-Initiated Interview Summary for interview held Apr. 7, 2022, 1 page.
Pending U.S. Appl. No. 16/535,451 Final Office Action, dated Feb. 4, 2022, 7 pages.
Pending U.S. Appl. No. 16/535,451 Non-Final Office Action, dated Apr. 19, 2022, 6 pages.
Pending U.S. Appl. No. 16/535,451 Non-Final Office Action, dated Jun. 24, 2021, 12 pages.
Pending U.S. Appl. No. 16/535,451 Notice of Allowance, dated May 16, 2022, 9 pages.
Pending U.S. Appl. No. 16/535,451 Preliminary Amendment filed Aug. 8, 2019, 3 pages.
Pending U.S. Appl. No. 16/535,451 Response to Apr. 19, 2022 Non-Final Office Action, dated Apr. 27, 2022, 6 pages.
Pending U.S. Appl. No. 16/535,451 Response to Jun. 24, 2021 Non-Final Office Action, dated Oct. 26, 2021, 10 pages.
Pending U.S. Appl. No. 16/535,451 Second Preliminary Amendment filed Oct. 9, 2019, 15 pages.
Pending U.S. Appl. No. 16/535,451 Third Preliminary Amendment filed Nov. 5, 2019, 4 pages.
Pending U.S. Appl. No. 16/655,845, Final Office Action, dated Jul. 26, 2022, 7 pages.
Pending U.S. Appl. No. 16/655,845, Non-Final Office Action, dated Mar. 1, 2022, 8 pages.
Pending U.S. Appl. No. 16/655,845, Notice of Allowance, dated Oct. 26, 2022, 7 pages.
Pending U.S. Appl. No. 16/655,845, Preliminary Amendment filed Oct. 16, 2020, 6 pages.
Pending U.S. Appl. No. 16/655,845, Response to Jul. 26, 2022 Final Office Action, dated Oct. 6, 2022, 7 pages.
Pending U.S. Appl. No. 16/655,845, Response to Mar. 1, 2022 Non-Final Office Action, dated Jun. 1, 2022, 10 pages.
Pending U.S. Appl. No. 16/655,845, Response to Oct. 21, 2021 Restriction Requirement, dated Dec. 21, 2021, 7 pages.
Pending U.S. Appl. No. 16/655,845, Restriction Requirement, dated Oct. 21, 2021, 6 pages.
Pending U.S. Appl. No. 16/747,219, Applicant-Initiated Interview Summary dated Aug. 3, 2022, 4 pages.
Pending U.S. Appl. No. 16/747,219, Final Office Action dated Nov. 10, 2022, 12 pages.
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated Mar. 31, 2022, 12 pages.
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated May 25, 2023, 13 pages.
Pending U.S. Appl. No. 16/747,219, Notice of Allowance dated Dec. 26, 2023, 12 pages.
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 20, 2020, 5 pages.
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 4, 2021, 5 pages.
Pending U.S. Appl. No. 16/747,219, Response to Mar. 31, 2022 Non-Final Office Action, dated Aug. 1, 2022, 8 pages.
Pending U.S. Appl. No. 16/747,219, Response to May 25, 2023 Non-Final Office Action, dated Aug. 25, 2023, 9 pages.
Pending U.S. Appl. No. 16/747,219, Response to Nov. 10, 2022 Final Office Action, dated Feb. 10, 2023, 6 pages.
Pending U.S. Appl. No. 16/865,772, Final Office Action dated Aug. 22, 2022, 18 pages.
Pending U.S. Appl. No. 16/865,772, Final Office Action dated Aug. 4, 2023, 19 pages.
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Apr. 11, 2022, 16 pages.
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Jan. 20, 2023, 17 pages.
Pending U.S. Appl. No. 16/865,772, Preliminary Amendment filed May 4, 2020, 6 pages.
Pending U.S. Appl. No. 16/865,772, Response to Apr. 11, 2022 Non-Final Office Action, dated Jul. 11, 2022, 8 pages.
Pending U.S. Appl. No. 16/865,772, Response to Aug. 22, 2022 Final Office Action, dated Dec. 22, 2022, 8 pages.
Pending U.S. Appl. No. 16/865,772, Response to Jan. 20, 2023 Non-Final Office Action, dated Apr. 20, 2023, 8 pages.
Pending U.S. Appl. No. 16/865,772, Second Preliminary Amendment filed Jun. 30, 2020, 4 pages.
Pending U.S. Appl. No. 16/865,772, Third Preliminary Amendment, filed Sep. 17, 2021, 6 pages.
Pending U.S. Appl. No. 16/915,760, Applicant-Initiated Interview Summary dated Aug. 8, 2023, 2 pages.
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Aug. 10, 2023, 9 pages.
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Jun. 2, 2023, 8 pages.
Pending U.S. Appl. No. 16/915,760, Non-Final Office Action dated Jan. 19, 2023, 8 pages.
Pending U.S. Appl. No. 16/915,760, Notice of Allowance dated Nov. 29, 2023, 7 pages.
Pending U.S. Appl. No. 16/915,760, Preliminary Amendment filed Jul. 6, 2020, 5 pages.
Pending U.S. Appl. No. 16/915,760, Response to Aug. 10, 2023 Final Office Action, dated Nov. 10, 2023, 6 pages.
Pending U.S. Appl. No. 16/915,760, Response to Jan. 19, 2023 Non-Final Office Action, dated Apr. 19, 2023, 8 pages.
Pending U.S. Appl. No. 16/915,760, Response to Sep. 20, 2022 Restriction Requirement, filed Nov. 21, 2022, 2 pages.
Pending U.S. Appl. No. 16/915,760, Restriction Requirement dated Sep. 20, 2022, 6 pages.
Pending U.S. Appl. No. 16/938,778, Non-Final Office Action dated Jan. 2, 2024, 12 pages.
Pending U.S. Appl. No. 16/938,778, Response to Oct. 24, 2023 Restriction Requirement, dated Dec. 13, 2023, 3 pages.
Pending U.S. Appl. No. 16/938,778, Restriction Requirement dated Oct. 24, 2023, 6 pages.
Pending U.S. Appl. No. 17/000,049, Non-Final Office Action dated Dec. 11, 2023, 13 pages.
Pending U.S. Appl. No. 17/000,049, Response to Jul. 31, 2023 Restriction Requirement dated Nov. 9, 2023, 8 pages.
Pending U.S. Appl. No. 17/000,049, Restriction Requirement dated Jul. 31, 2023, 6 pages.
Pending U.S. Appl. No. 17/069,359, Non-Final Office Action dated Nov. 25, 2022, 7 pages.
Pending U.S. Appl. No. 17/069,359, Notice of Allowance dated Apr. 7, 2023, 7 pages.
Pending U.S. Appl. No. 17/069,359, Preliminary Amendment, filed Sep. 17, 2021, 6 pages.
Pending U.S. Appl. No. 17/069,359, Response to Nov. 25, 2022 Non-Final Office Action, dated Feb. 27, 2023, 7 pages.
Pending U.S. Appl. No. 17/172,731, Final Office Action dated Jul. 12, 2023, 11 pages.
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Feb. 15, 2023, 7 pages.
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Oct. 31, 2023, 13 pages.
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Jun. 27, 2022, 9 pages.
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Sep. 17, 2021, 7 pages.
Pending U.S. Appl. No. 17/172,731, Response to Feb. 15, 2023 Non-Final Office Action, dated May 15, 2023, 8 pages.
Pending U.S. Appl. No. 17/172,731, Response to Jul. 12, 2023 Final Office Action, dated Oct. 12, 2023, 10 pages.
Pending U.S. Appl. No. 17/277,662 Non-Final Office Action dated May 5, 2023, 9 pages.
Pending U.S. Appl. No. 17/277,662 Notice of Allowance dated Oct. 2, 2023, 7 pages.
Pending U.S. Appl. No. 17/277,662 Preliminary Amendment filed Mar. 18, 2021, 8 pages.
Pending U.S. Appl. No. 17/277,662 Response to May 5, 2023 Non-Final Office Action, dated Aug. 7, 2023, 8 pages.
Pending U.S. Appl. No. 17/338,960, Ex Parte Quayle Action dated May 24, 2023, 6 pages.
Pending U.S. Appl. No. 17/338,960, Response to May 24, 2023 Ex Parte Quayle Action, dated Aug. 8, 2023, 6 pages.
Pending U.S. Appl. No. 17/338,960, Response to Notice to File Missing Parts and Amendment, filed Aug. 16, 2021, 7 pages.
Pending U.S. Appl. No. 18/027,824, Preliminary Amendment dated Mar. 22, 2023, 8 pages.
Pending U.S. Appl. No. 18/100,835, Preliminary Amendment filed Jan. 26, 2023, 8 pages.
Pending U.S. Appl. No. 18/100,835, Second Preliminary Amendment filed Feb. 6, 2023, 6 pages.
Pending U.S. Appl. No. 18/120,158, Preliminary Amendment dated Mar. 13, 2023, 195 pages.
Pending U.S. Appl. No. 18/123,719, Preliminary Amendment dated Jun. 6, 2023, 6 pages.
Pending U.S. Appl. No. 18/130,330), Preliminary Amendment dated Jun. 20, 2023, 8 pages.
Pending U.S. Appl. No. 18/348,605, Preliminary Amendment dated Oct. 31, 2023, 7 pages.
Pending U.S. Appl. No. 18/502,967, Preliminary Amendment filed Nov. 6, 2023, 6 pages.
Phillips, M., Maor, E. & Rubinsky, B. Non-Thermal Irreversible Electroporation for Tissue Decellularization. J. Biomech. Eng, doi:10.1115/1.4001882 (2010).
Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997.
Polaj{hacek over (z)}er, T. et al., "Cancellation effect is present in high-frequency reversible and irreversible electroporation," Bioelectrochemistry, vol. 132, 2020, 11 pages.
Polak et al., "On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations." The Journal of Membrane Biology, vol. 246, pp. 843-850 (2013).
Pucihar et al., "Numerical determination of transmembrane voltage induced on irregularly shaped cells." Annals of Biomedical Engineering, vol. 34, pp. 642-652 (2006).
Qiao et al. Electrical properties of breast cancer cells from impedance measurement of cell suspensions, 2010, Journal of Physics, 224, 1-4 (2010).
Rajagopal, V. and S.G. Rockson, Coronary restenosis: a review of mechanisms and management, The American Journal of Medicine, 2003, 115(7): p. 547-553.
Reber{hacek over (s)}ek, M. and D. Miklav{hacek over (c)}i{hacek over (c)}, "Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation," AUTOMATIKA 52(2011) 1, 12-19.
Reilly, J. P. et al., "Sensory Effects of Transient Electrical Stimulation—Evaluation with a Neuroelectric Model," IEEE Trans. Biomed. Eng., vol. BME-32, No. 12, 1001-1011, 1985, abstract only, 3 pages.
Ringel-Scaia, V. M. et al., High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine, 2019, 44, 112-125.
Rogers, W. R. et al., "Strength-duration curve an electrically excitable tissue extended down to near 1 nanosecond," IEEE Trans. Plasma Sci., vol. 32, No. 4 II, 1587-1599, 2004, abstract only, 3 pages.
Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121.
Ron et al., "Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy." Biophysical chemistry, 135 (2008) pp. 59-68.
Rossmeisl et al., "Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain." Journal of Veterinary Science vol. 14, pp. 433-440 (2013).
Rossmeisl, "New Treatment Modalities for Brain Tumors in Dogs and Cats." Veterinary Clinics of North America: Small Animal Practice 44, pp. 1013-1038 (2014).
Rossmeisl, John H. et al. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurgery 123.4 (2015): 1008-1025.
Rubinsky et al., "Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation." The Journal of Urology, 180 (2008) pp. 2668-2674.
Rubinsky, B., "Irreversible Electroporation in Medicine", Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 1, 2007, pp. 255-259.
Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187.
Rubinsky, B., et al., "Irreversible Electroporation: A New Ablation Modality—Clinical Implications" Technol. Cancer Res. Treatment 6(1), 37-48 (2007).
Rubinsky, L. et al., "Electrolytic Effects During Tissue Ablation by Electroporation," Technol. Cancer Res. Treat., vol. 15, No. 5, NP95-103, 2016, 9 pages.
Sabuncu et al., "Dielectrophoretic separation of mouse melanoma clones." Biomicrofluidics, vol. 4, 7 pages (2010).
SAI Infusion Technologies, "Rabbit Ear Vein Catheters", https://www.sai-infusion.com/products/rabbit-ear-catheters, Aug. 10, 2017 webpage printout, 5 pages.
Salford, L.G., et al., "A new brain tumour therapy combining bleomycin with in vivo electropermeabilization", Biochem. Biophys. Res. Commun., 194(2): 938-943 (1993).
Salmanzadeh et al., "Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis." Biomicrofluidics, vol. 6, 13 Pages (2012).
Salmanzadeh et al., "Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells" Biomicrofluidics 7, 011809 (2013), 12 pages.
Salmanzadeh et al., "Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model." Integr. Biol., 5(6), pp. 843-852 (2013).
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, "Basics of broadband impedance spectroscopy measurements using periodic excitations," Measurement Science and Technology, vol. 23, No. 10, p. 105501, 2012.
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, "Optimal multisine excitation design for broadband electrical impedance spec-troscopy," Measurement Science and Technology, vol. 22, No. 11, p. 115601, 2011.
Sano et al., "Contactless Dielectrophoretic Spectroscopy: Examination of the Dielectric Properties of Cells Found in Blood." Electrophoresis, 32, pp. 3164-3171, 2011.
Sano et al., "In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies." Bioelectrochemistry vol. 100, pp. 69-79 (2014).
Sano et al., "Modeling and Development of a Low Frequency Contactless Dielectrophoresis (cDEP) Platform to Sort Cancer Cells from Dilute Whole Blood Samples." Biosensors & Bioelectronics, 8 pages (2011).
Sano, M. B. et al., "Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model," Phys. Med. Biol., vol. 63, No. 13, 2018, abstract only, 4 pages.
Sano, M. B. et al., "Reduction of Muscle Contractions During Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model," J. Vasc. Interv. Radiol., vol. 29, No. 6, 893-898.e4, Jun. 2018, 18 pages.
Sano, M. B., et al., "Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion", Biomedical Engineering Online, Biomed Central LTD, London, GB, vol. 9, No. 1, Dec. 10, 2010, p. 83.
Saur et al., "CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer." Gastroenterology, vol. 129, pp. 1237-1250 (2005).
Schmukler, Impedance Spectroscopy of Biological Cells, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual Internal Conference of the IEEE, vol. 1, p. A74, downloaded from IEEE Xplore website, 1994.
Schoenbach et al., "Intracellular effect of ultrashort electrical pulses." Bioelectromagnetics, 22 (2001) pp. 440-448.
Seibert et al., "Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice." Cancer Research, vol. 43, pp. 2223-2239 (1983).
Seidler et al., "A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors." Proceedings of the National Academy of Sciences, vol. 105, pp. 10137-10142 (2008).
Sel, D. et al. Sequential finite element model of tissue electropermeabilization. IEEE Transactions on Biomedical Engineering 52, 816-827, doi: 10.1109/tbme.2005.845212 (2005).
Sel, D., Lebar, A. M. & Miklavcic, D. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54, 773-781 (2007).
Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002.
Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: a Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003.
Shao, Qi et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions, International Journal of Hyperthermia, 2019, DOI: 10.1080/02656736.2018.1539253.
Sharma, A. , et al., "Review on Thermal Energy Storage with Phase Change Materials and Applications", Renewable Sustainable Energy Rev. 13(2), 318-345 (2009).
Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996.
Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8.
Szot et al., "3D in vitro bioengineered tumors based on collagen I hydrogels." Biomaterials vol. 32, pp. 7905-7912 (2011).
Talele, S. and P. Gaynor, "Non-linear time domain model of electropermeabilization: Effect of extracellular conductivity and applied electric field parameters", Journal of Electrostatics, 66(5-6): p. 328-334 (2008).
Talele, S. and P. Gaynor, "Non-linear time domain model of electropermeabilization: Response of a single cell to an arbitrary applied electric field", Journal of Electrostatics, 65(12): p. 775-784 (2007).
Talele, S., et al., "Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii". Journal of Electrostatics, 68(3): p. 261-274 (2010).
Teissie, J. and T.Y. Tsong, "Electric-Field Induced Transient Pores in Phospholipid-Bilayer Vesicles". Biochemistry, 20(6): p. 1548-1554 (1981).
Tekle, Ephrem, R. Dean Astumian, and P. Boon Chock, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Proc. Natl. Acad. Sci., vol. 88, pp. 4230-4234, May 1991, Biochemistry.
Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037.
Thomson et al., "Investigation of the safety of irreversible electroporation in humans," J Vasc Interv Radiol, 22, pp. 611-621, 2011.
Tibbitt et al., "Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture", Jul. 2009, Biotechnol Bioeng, 103(4),655-663.
TUNA—Suggested Local Anesthesia Guidelines, no date available.
U.S. Appl. No. 12/491, 151 (U.S. Pat. No. 8,992,517), file history through Feb. 2015, 113 pages.
U.S. Appl. No. 12/609,779 (U.S. Pat. No. 8,465,484), file history through May 2013, 100 pages.
U.S. Appl. No. 12/757,901 (U.S. Pat. No. 8,926,606), file history through Jan. 2015, 165 pages.
U.S. Appl. No. 12/906,923 (U.S. Pat. No. 9,198,733), file history through Nov. 2015, 55 pages.
U.S. Appl. No. 13/332,133 (U.S. Pat. No. 10,448,989), file history through Sep. 2019, 226 pages.
U.S. Appl. No. 13/550,307 (U.S. Pat. No. 10,702,326), file history through May 2020, 224 bages.
U.S. Appl. No. 13/919,640 (U.S. Pat. No. 8,814,860), file history through Jul. 2014, 41 pages.
U.S. Appl. No. 13/958,152, file history through Dec. 2019, 391 pages.
U.S. Appl. No. 13/989,175 (U.S. Pat. No. 9,867,652), file history through Dec. 2017, 200 pages.
U.S. Appl. No. 14/012,832 (U.S. Pat. No. 9,283,051), file history through Nov. 2015, 17 pages.
U.S. Appl. No. 14/017,210 (U.S. Pat. No. 10,245,098), file history through Jan. 2019, 294 pages.
U.S. Appl. No. 14/558,631 (U.S. Pat. No. 10,117,707), file history through Jul. 2018, 58 pages.
U.S. Appl. No. 14/627,046 (U.S. Pat. No. 10,245,105), file history through Feb. 2019, 77 pages.
U.S. Appl. No. 14/808,679 (U.S. Pat. No. 11,655,466), file history through Aug. 2022, 253 pages.
U.S. Appl. No. 14/940,863 (U.S. Pat. No. 10,238,447), file history through Oct. 2019, 23 pages.
U.S. Appl. No. 15/011,752 (U.S. Pat. No. 10,470,822), file history through Jul. 2019, 54 pages.
U.S. Appl. No. 15/186,653 (U.S. Pat. No. 10,292,755), file history through Mar. 2019, 21 pages.
U.S. Appl. No. 15/310,114 (U.S. Pat. No. 10,471,254), file history through Aug. 2019, 44 pages.
U.S. Appl. No. 15/423,986 (U.S. Pat. No. 10,286,108), file history through Jan. 2019, 124 pages.
U.S. Appl. No. 15/424,335 (U.S. Pat. No. 10,272,178), file history through Feb. 2019, 57 pages.
U.S. Appl. No. 15/536,333 (U.S. Pat. No. 10,694,972) , file history through Apr. 2020, 78 pages.
U.S. Appl. No. 15/843,888 (U.S. Pat. No. 10,537,379), file history through Sep. 2019, 83 pages.
U.S. Appl. No. 15/881,414 (U.S. Pat. No. 10,154,874), file history through Nov. 2018, 43 pages.
U.S. Appl. No. 16/152,743 (U.S. Pat. No. 11,272,979), file history through Jan. 2022, 89 pages.
U.S. Appl. No. 16/177,745 (U.S. Pat. No. 10,828,085), file history through Jun. 2020, 57 pages.
U.S. Appl. No. 16/210,771 (U.S. Pat. No. 11,607,537), file history through Dec. 2022, 139 pages.
U.S. Appl. No. 16/232,962 (U.S. Pat. No. 10,828,086), file history through Jun. 2020, 44 pages.
U.S. Appl. No. 16/275,429 (U.S. Pat. No. 10,959,772), file history through Feb. 2021, 18 pages.
U.S. Appl. No. 16/280,511, file history through Aug. 2021, 31 pages.
U.S. Appl. No. 16/352,759 (U.S. Pat. No. 11,311,329), file history through Mar. 2022, 258 pages.
U.S. Appl. No. 16/372,520 (U.S. Pat. No. 11,382,681), file history through Jun. 2022, 107 pages.
U.S. Appl. No. 16/404,392 (U.S. Pat. No. 11,254,926), file history through Jan. 2022, 153 pages.
U.S. Appl. No. 16/443,351 (U.S. Pat. No. 11,638,603), file history through Mar. 2023, 114 pages.
U.S. Appl. No. 16/520,901 (U.S. Pat. No. 11,406,820), file history through May 2022, 39 pages.
U.S. Appl. No. 16/535,451 (U.S. Pat. No. 11,453,873), file history through Aug. 2022, 85 pages.
U.S. Appl. No. 16/655,845 (U.S. Pat. No. 11,607,271), file history through Jan. 2023, 68 pages.
U.S. Appl. No. 17/069,359 (U.S. Pat. No. 11,737,810), file history through Apr. 2023, 27 pages.
Valdez, C. M. et al., "The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation," Bioelectromagnetics, vol. 39, No. 6, 441-450, 2018, 28 pages.
Van Den Bos, W. et al., "MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase i-ii study in patients undergoing ire followed by radical prostatectomy," European radiology, vol. 26, No. 7, pp. 2252-2260, 2016.
Verbridge et al., "Oxygen-Controlled Three-Dimensional Cultures to Analyze Tumor Angiogenesis." Tissue Engineering, Part A vol. 16, pp. 2133-2141 (2010).
Verma, A. et al., "Primer on Pulsed Electrical Field Ablation: Understanding the Benefits and Limitations," Circ. Arrhythmia Electrophysiol., No. September, pp. 1-16, 2021, abstract only, 2 pages.
Vernier, P.T., et al., "Nanoelectropulse-driven membrane perturbation and small molecule permeabilization", Bmc Cell Biology, 7 (2006).
Vi{hacek over (z)}intin, A. et al., "Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release," Bioelectrochemistry, vol. 134, Aug. 2020, 14 pages.
Vidamed, Inc., Transurethral Needle Ablation (TUNA): Highlights from Worldwide Clinical Studies, Vidamed's Office TUNA System, 2001.
Voyer, D., A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, "Dynamical modeling of tissue electroporation," Bioelectrochemistry, vol. 119, pp. 98-110, 2018.
Wandel, A. et al. "Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode," Journal of Vascular and Interventional Radiology, vol. 27, Issue 9, 1441-1450.e2, 2016, abstract only, 4 pages.
Wandel, A. et al. "Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode," Journal of Vascular and Interventional Radiology, vol. 27, Issue 9, 1441-1450.e2, 2016.
Wasson, Elisa M. et al. The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant. Annals of Biomedical Engineering, vol. 45, No. 11, Nov. 2017 pp. 2535-2547.
Weaver et al., "A brief overview of electroporation pulse strength-duration space: A region where additional Intracellular effects are expected." Bioelectrochemistry vol. 87, pp. 236-243 (2012).
Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993.
Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996.
Weaver, J. C., Electroporation of biological membranes from multicellular to nano scales, IEEE Trns. Dielectr. Electr. Insul. 10, 754-768 (2003).
Weaver, J.C., "Electroporation of cells and tissues", IEEE Transactions on Plasma Science, 28(1): p. 24-33 (2000).
Weisstein: Cassini Ovals. From MathWorld—A. Wolfram Web Resource; Apr. 30, 2010; http://mathworld.wolfram.com/ (updated May 18, 2011).
Wimmer, Thomas, et al., "Planning Irreversible Electroporation (IRE) in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?", Cardiovasc Intervent Radiol. Feb. 2015 ; 38(1): 182-190. doi:10.1007/s00270-014-0905-2.
Yang et al., "Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion." Biophysical Journal, vol. 76, pp. 3307-3314 (1999).
Yao et al., "Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation." IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549.
Yarmush, M. L. et al., "Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges," Annu. Rev. Biomed. Eng., vol. 16, No. 1, 295-320, 2014, 29 pages.
Zhang, Y., et al., MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: preclinical feasibility studies in a rodent model. Radiology, 2010. 256(2): p. 424-32.
Zhao, J. et al. "Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer", Nature Communications (2019) 10:899, 14 pages.
Zhao, Y., S. Bhonsle, S. Dong, Y. Lv, H. Liu, A. Safaai-Jazi, R. V. Davalos, and C. Yao, "Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning," IEEE Transactions on Biomedical Engineering, vol. 65, No. 8, pp. 1810-1819, 2017.
Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974.
Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (TUNA) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001.
Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp. 894-899.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11974800B2 (en)2008-04-292024-05-07Virginia Tech Intellectual Properties, Inc.Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US12173280B2 (en)2008-04-292024-12-24Virginia Tech Intellectual Properties, Inc.Methods of reducing adverse effects of non-thermal ablation
US12390268B2 (en)2008-04-292025-08-19Virginia Tech Intellectual Properties, Inc.System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US12201349B2 (en)2009-04-032025-01-21Angiodynamics, Inc.Congestive obstruction pulmonary disease (COPD)
US12232792B2 (en)2011-07-152025-02-25Virginia Tech Intellectual Properties, Inc.Device and method for electroporation based treatment
US12102376B2 (en)2012-02-082024-10-01Angiodynamics, Inc.System and method for increasing a target zone for electrical ablation
US12114911B2 (en)2014-08-282024-10-15Angiodynamics, Inc.System and method for ablating a tissue site by electroporation with real-time pulse monitoring
US12303182B2 (en)2016-11-172025-05-20Angiodynamics, Inc.Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US12390262B2 (en)2018-03-132025-08-19Virginia Tech Intellectual Properties, Inc.Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11950835B2 (en)2019-06-282024-04-09Virginia Tech Intellectual Properties, Inc.Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
US12214189B2 (en)2019-07-242025-02-04Virginia Tech Intellectual Properties, Inc.Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies

Also Published As

Publication numberPublication date
US20200260987A1 (en)2020-08-20
US20170360326A1 (en)2017-12-21
WO2016100325A1 (en)2016-06-23
US10694972B2 (en)2020-06-30
US20240277245A1 (en)2024-08-22

Similar Documents

PublicationPublication DateTitle
US11903690B2 (en)Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US20210137410A1 (en)Intelligent surgical probe for real-time monitoring of electroporation-based therapies
Kranjc et al.Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography
Bonakdar et al.The feasibility of a smart surgical probe for verification of IRE treatments using electrical impedance spectroscopy
JP6976168B2 (en) A method of operating a device for determining whether a target biological tissue region contains nerve tissue, a computer program product, and a device for determining whether the target biological tissue region contains nerve tissue.
Neal II et al.Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning
JP5766163B2 (en) Tissue ablation by irreversible electroporation
Dermol-Černe et al.Mechanistic view of skin electroporation–models and dosimetry for successful applications: an expert review
Pavšelj et al.A numerical model of skin electropermeabilization based on in vivo experiments
KR101083897B1 (en)Measuring device and measuring method
JP2017529169A (en) Tissue diagnosis and treatment using mini-electrodes
Kalvøy et al.Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method
Meir et al.Electrical impedance tomographic imaging of a single cell electroporation
Chin et al.Optimizing measurement of the electrical anisotropy of muscle
WO2019243596A1 (en)System and method for the estimation of physical parameters of a medium
Kwon et al.Recording characteristics of electrical impedance myography needle electrodes
JP2004534223A (en) Method and apparatus for measuring properties of a target surface
KR101707564B1 (en)Biopsy needle with sensing electrode array and method for manufacturing the same
JP6300208B2 (en) Device for acquiring electrical activity in the brain and use thereof
Neal et al.Experimental characterization of intrapulse tissue conductivity changes for electroporation
Cosoli et al.Bioimpedancemetry for the assessment of periodontal tissue inflammation: A numerical feasibility study
Yoshimatsu et al.Development of contact irreversible electroporation using a comb-shaped miniature electrode
Akamine et al.Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes
EP3860486B1 (en)Electrosurgical apparatus
Yun et al.In-vivo biotissue discrimination using electrochemical impedance spectroscopy on a hypodermic needle with fine interdigitated electrodes

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

ASAssignment

Owner name:VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, VIRGINIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVALOS, RAFAEL V.;BONAKDAR, MOHAMMAD;LATOUCHE, EDUARDO L.;AND OTHERS;SIGNING DATES FROM 20191016 TO 20191030;REEL/FRAME:054051/0048

Owner name:VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, VIRGINIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVALOS, RAFAEL V.;BONAKDAR, MOHAMMAD;LATOUCHE, EDUARDO L.;AND OTHERS;SIGNING DATES FROM 20160302 TO 20191030;REEL/FRAME:054050/0795

Owner name:VIRGINIA TECH INTELLECTUAL PROPERTIES, INC., VIRGINIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY;REEL/FRAME:054050/0882

Effective date:20191030

Owner name:VIRGINIA TECH INTELLECTUAL PROPERTIES, INC., VIRGINIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY;REEL/FRAME:054051/0216

Effective date:20191030

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:FINAL REJECTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPPInformation on status: patent application and granting procedure in general

Free format text:AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED

STPPInformation on status: patent application and granting procedure in general

Free format text:AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPPInformation on status: patent application and granting procedure in general

Free format text:PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCFInformation on status: patent grant

Free format text:PATENTED CASE

ASAssignment

Owner name:NATIONAL SCIENCE FOUNDATION, VIRGINIA

Free format text:CONFIRMATORY LICENSE;ASSIGNOR:VIRGINIA POLYTECHNIC INST AND ST UNIV;REEL/FRAME:070334/0596

Effective date:20230424


[8]ページ先頭

©2009-2025 Movatter.jp