CROSS-REFERENCE TO RELATED APPLICATIONSThe present application is a continuation of U.S. patent application Ser. No. 16/020,852, filed Jun. 27, 2018, issued as U.S. Pat. No. 11,013,547 on May 25, 2021, and titled “DERMATOLOGICAL CRYOSPRAY DEVICES HAVING LINEAR ARRAY OF NOZZLES AND METHODS OF USE,” which claims priority from U.S. Patent Application No. 62/527,652, filed Jun. 30, 2017, and titled, “DERMATOLOGICAL CRYOSPRAY DEVICES HAVING LINEAR ARRAY OF NOZZLES AND METHODS OF USE,” the entirety of each of which are hereby incorporated by reference herein.
BACKGROUNDCryotherapy is the local or general use of cold in medical therapy. Cryotherapy can include the controlled freezing of biological tissue, which controlled freezing of biological tissue, such as skin tissue, can produce various effects. Certain tissue freezing procedures and devices, such as conventional cryoprobes, can cause severe freezing of tissue and generate cellular and visible skin damage.
There is a demand for dermatologic products that can lighten the appearance of skin or otherwise controllably affect skin pigmentation. For example, it may be desirable to lighten the overall complexion or color of a region of skin to alter the general appearance for cosmetic reasons. Also, lightening of particular hyperpigmented regions of skin, such as freckles, ‘café au lait’ spots, melasma, or dark circles under the eyes that may result from excessive local amounts of pigment in the skin, may also be desirable for cosmetic reasons. Hyperpigmentation can result from a variety of factors such as UV exposure, aging, stress, trauma, inflammation, etc. Such factors can lead to an excess production of melanin, or melanogenesis, in the skin by melanocytes, which can lead to formation of hyperpigmented areas. Such hyperpigmented areas may be associated with excess melanin within the epidermis and/or dermal-epidermis junction. However, hyperpigmentation can also result from excess melanin deposited within the dermis.
Hypopigmentation of skin tissue has been observed as a side effect in response to temporary cooling or freezing of the tissue, such as may occur during conventional cryosurgery procedures. Loss of pigmentation following skin cooling or freezing may result from decreased melanin production, decreased melanosome production, destruction of melanocytes, or inhibited transfer or regulation of melanosome into the keratinocytes in the lower region of the epidermal layer. The resultant hypopigmentation may be long-lasting or permanent. However, it has also been observed that some of these freezing procedures can generate regions of hyperpigmentation (or skin darkening) of skin tissue. The level of increase or decrease in pigmentation may be dependent upon certain aspects of the cooling or freezing conditions, including the temperature of the cooling treatment, and the length of time the tissue is maintained in a frozen state.
Improved hypopigmentation treatments, devices, and systems have been developed to improve the consistency of skin freezing and the overall hypopigmentation consistency. For example, it has been observed that moderate degrees of freezing (e.g., −4 to −30 degrees Celsius) at shorter time frames (e.g., 30 to 60 seconds) can produce particular dermatological effects, such as affecting the expression of skin pigmentation (e.g., hypopigmentation). Cryotherapy can be provided using a variety of techniques including the direct application of a cryogen spray to the skin of the patient or the application of a cooled probe or plate to the skin of the patient. Exemplary methods and devices are described in: U.S. Patent Publication No. 2011/0313411, filed on Aug. 7, 2009, and entitled “METHOD AND APPARATUS FOR DERMATOLOGICAL HYPOPIGMENTATION”; U.S. Patent Publication No. 2014/0303696, filed on Nov. 16, 2012, and entitled “METHOD AND APPARATUS FOR CRYOGENIC TREATMENT OF SKIN TISSUE”; U.S. Patent Publication No. 2014/0303697, filed on Nov. 16, 2012, and entitled “METHOD AND APPARATUS FOR CRYOGENIC TREATMENT OF SKIN TISSUE”; U.S. Patent Publication No. 2015/0223975, filed on Feb. 12, 2015, and entitled “METHOD AND APPARATUS FOR AFFECTING PIGMENTATION OF TISSUE”; U.S. Patent Publication No. 2017/0065323, filed on Sep. 6, 2016, and entitled “MEDICAL SYSTEMS, METHODS, AND DEVICES FOR HYPOPIGMENTATION COOLING TREATMENTS”, the entirety of each of which is hereby incorporated by reference herein.
While the treatment of skin or a localized lesion to affect pigmentation can be accomplished with cryotherapy, it may be desirable to provide improved methods, systems, and devices for cryotherapy. In particular, improved designs, controls and parameters associated with cryogen delivery to achieve consistent and reliable skin freezing and desired skin treatment effect may be of benefit. Accordingly, improved dermatological cryospray methods, systems, and devices are desirable.
BRIEF SUMMARYThe present invention relates to improved systems, devices, and methods of delivery of a cryogen to the skin of a patient for skin treatment. More specifically, the present invention relates to improved dermatological cryospray methods, devices, and systems that provide consistency of skin treatment by reliably freezing the skin during treatment while limiting adverse side effects from the skin freezing. Exemplary embodiments include a nozzle design comprising a linear array of orifices. This linear array of orifices can deliver a linear spray of cryogen or cold gas to the skin surface when cryogen or cold gas is dispensed through those orifices. Advantageously, this linear spray application provides a line of cooling treatment that facilitates uniform and even treatment of large areas of skin. The linear cooling treatment facilitates a sweeping delivery of cryogen or cold gas to a patient's skin by uniformly delivering cryogen or cold gas through the linear array of orifices. Uniformly and consistently treating large areas of skin may be of particular benefit for a variety of skin indications, such as pigmentation or coloration related indications including hypopigmentation or hyperpigmentation; acne; rosacea; psoriasis melasma; lentigines; freckle; birthmark, liver spot, age spot, or café au lait macule.
One aspect of the present disclosure relates to a method of cooling an area of skin of a patient. This method includes: positioning a cryospray applicator to a position proximate to the area of the skin tissue of the patient to be treated; and directing a planar spray of cyrogen through a linear array of orifices of the cryospray applicator to cool the area of the skin tissue of the patient in a line of cooling treatment to effect a treatment of the skin.
In some embodiments, this method includes heating a tank containing liquid and gaseous cryogen with a tank heater such that the tank maintains a desired pressure. In some embodiments, the cryogen can include: a liquid cryogen; a gaseous cryogen; a two-phase fluid; cooled air; and/or carbon dioxide. In some embodiments, directing the planar spray of cryogen or cold gas through the linear array of orifices includes transporting cryogen such as liquid cryogen from the tank to an applicator via a supply tube. In some embodiments, a pressure of the liquid cryogen in the supply tube is substantially equal to the desired pressure in the tank. In some embodiments, the method includes moving the cryospray applicator so as to provide a linear curtain of cooling treatment to the area of the skin tissue of the patient. In some embodiments, directing the planar spray of liquid cryogen or cold gas through the linear array of orifices includes locally freezing an epidermis to alter a pigmentation of the area of the skin tissue of the patient.
In some embodiments, directing the planar spray of cryogen, which can include liquid cryogen, cold gas, or two-phase fluid including liquid cryogen and gas, through the linear array of orifices includes locally disrupting an epidermis to produce gradual skin lightening in the area of the skin tissue of the patient. In some embodiments, the planar spray of cryogen can comprise one or several liquid cryogen droplets, and in some embodiments, the liquid cryogen can be liquid carbon dioxide. In some embodiments, the planar spray of liquid cryogen has a temperature at the skin surface of between −4 C to −80 C.
In some embodiments, each orifice can be and/or include a cylindrical opening. In some embodiments, the linear array of orifices can be a single row of orifices or a plurality of rows of orifices. In some embodiments, the method includes delivering a gas to form a protective curtain through which the liquid cryogen or cold gas moves downstream of the orifices. In some embodiments, the protective curtain prevents water entrainment or ambient air entrainment as the liquid cryogen or cold gas moves downstream of the orifices. In some embodiments, the gas is expelled from the orifices before or during the directing the planar spray of liquid cryogen or cold gas from the orifices. In some embodiments, the gas includes at least one of: a dry gas; or an inert gas.
In some embodiments, positioning the cryospray applicator to the position proximate to the area of the skin tissue of the patient includes contacting the area of skin tissue of the patient with a mechanical spacer to maintain a predetermined distance between the cryospray applicator and the skin tissue. In some embodiments, the predetermined distance includes a range from 0.125 inches to 3 inches. In some embodiments, the mechanical spacer includes at least one of: a wheeled spacer; and a sliding spacer. In some embodiments, positioning the cryospray applicator to the position proximate to the area of the skin tissue of the patient to be treated includes positioning a non-contact cryospray applicator proximate to the area of the skin tissue of the patient.
In some embodiments, the method includes applying a mask to the area of the skin tissue of the patient prior to directing the planar spray of liquid cryogen or cold gas from the linear array of orifices. In some embodiments, the mask can be a perforated film. In some embodiments, the method includes warming the area of skin tissue of the patient after the cooling treatment. In some embodiments, the area of skin tissue of the patient is warmed by delivery of warm gas or liquid from the same or different orifices for convective warming.
One aspect of the present disclosure relates to a skin cooling treatment system. The system includes: a cryogen source; a non-contact cryospray applicator fluidly coupled to the cryogen source, which cryospray applicator can direct a planar spray of liquid cryogen to an area of skin tissue of a patient to be treated, which non-contact cryospray applicator includes a linear array of orifices that can spray the liquid cryogen or cold gas to cool the area of the skin tissue of the patient in a line of cooling treatment.
In some embodiments, the treatment system includes a supply tube fluidly coupling to a bottom portion of the cryogen source. In some embodiments, the cryogen source further includes a heater to maintain the cryogen source at a desired pressure or temperature range. In some embodiments, the desired temperature range can include a temperature above an ambient temperature. In some embodiments, the cryogen source includes a liquid and gaseous cryogen. In some embodiments, the linear array of orifices includes a single row of orifices or a plurality of rows of orifices. In some embodiments, the orifices in the linear array of orifices have the same dimensions, or have different dimensions. In some embodiments, the orifices are uniformly spaced or at least some of the orifices are staggered. In some embodiments, each orifice includes a cylindrical opening.
In some embodiments, the non-contact cryospray applicator further includes a nozzle tube and a shroud extending at least partially around the linear array of orifices of the nozzle tube. In some embodiments, the shroud creates a stagnation zone at distal openings of the orifices. In some embodiments, the nozzle tube can be made from a first material and the shroud can be made from a second material. In some embodiments, the second material of the shroud has a lower thermal conductivity than the first material of the nozzle tube. In some embodiments, the shroud has a depth equal to at least two times a diameter of one of the orifices of the linear array of orifices. In some embodiments, the treatment system includes a temperature control mask or a perforated film. The temperature control mask or perforated skin can contact the area of the skin tissue of the patient.
One aspect of the present disclosure relates to a cryospray device for delivering a cryogen to a patient's skin for altering a pigmentation appearance. The cryo—spray device includes: an applicator including a head portion; a supply channel extending at least partially through the head portion; and a nozzle assembly coupled to the head portion and fluidly coupled to the supply channel, the nozzle assembly including a linear array of orifices that can spray the cryogen to cool an area of a skin tissue of the patient in a linear cooling treatment to alter a pigmentation appearance thereof.
In some embodiments, the linear array of orifices includes a single row of orifices or a plurality of rows of orifices. In some embodiments, each orifice includes a cylindrical opening. In some embodiments, the nozzle assembly includes a nozzle tube and a shroud extending at least partially around the linear array of orifices. In some embodiments, the shroud creates a stagnation zone at distal openings of the orifices. In some embodiments, the nozzle tube can be made from a first material and the shroud can be made from a second material. In some embodiments, the second material of the shroud has a lower thermal conductivity than the first material of the nozzle tube. In some embodiments, the shroud has a depth equal to at least two times a diameter of one of the orifices of the linear array of orifices.
In some embodiments, the cryospray device includes a filter located within the head portion and upstream of the linear array of orifices. In some embodiments, the filter includes a sintered metal filter. In some embodiments, the cryospray device includes an array of curtain apertures in the nozzle assembly. In some embodiments, the array of curtain apertures can be configured to deliver a protective gas to prevent water entrainment or ambient air entrainment as the liquid cryogen or cold gas moves downstream of the orifices.
In some embodiments, the cryospray device includes a mechanical spacer coupled to the head portion. In some embodiments, the mechanical spacer can maintain at least a minimum or constant distance between the linear array of orifices and a surface of the patient's skin. In some embodiments, the mechanical spacer is adjustable to change the minimum distance. In some embodiments, the mechanical spacer includes a wheeled spacer. In some embodiments, the wheeled spacer includes a first wheel located proximate to a first end of the linear array of orifices and a second wheel located proximate to a second end of the linear array of orifices. In some embodiments, the mechanical spacer includes a slider spacer, and in some embodiments, the slider spacer includes a plurality of adjustable legs or prongs. In some embodiments, the applicator further includes a handle portion sized and shaped to be held by an operator of the cryospray device.
Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings, and each claim.
The invention will be better understood upon reading the following description and examining the figures which accompany it. These figures are provided by way of illustration only and are in no way limiting on the invention.
BRIEF DESCRIPTION OF THE DRAWINGSFIG.1 is a schematic illustration of one embodiment of a cryogenic treatment system.
FIG.2 is a side-section view of one embodiment of an applicator of a cryogenic treatment system.
FIG.3 is a side-section, close-up view of aspects of a head portion of an applicator.
FIG.4 is a front-section, close-up view of a nozzle including an elongate member.
FIG.5 is a bottom view of one embodiment of a nozzle and an elongate member including a linear array of orifices.
FIG.6 is a schematic illustration of one embodiment of a linear array of uniformly spaced orifices located on an elongate member of a nozzle.
FIG.7 is a schematic illustration of one embodiment of a linear array of staggered orifices located on an elongate member of a nozzle.
FIG.8 is a schematic illustration of one embodiment of the application of cryogen to the skin of a patient.
FIG.9 is a perspective view of one embodiment of a wheeled spacer.
FIG.10 is a perspective view of one embodiment of a slider spacer.
FIG.11 is a flowchart illustrating one embodiment of a process for cooling skin of a patient by applying a cryogen spray.
DETAILED DESCRIPTIONEmbodiments of the present disclosure relate to systems, methods, and devices for providing cryotherapy skin treatments. In some embodiments, these can include a cryospray applicator utilizing a nozzle comprising a linear array of orifices to direct cryogen or cold gas toward the skin in a planar manner that produces a line of frozen tissue to effect the desired skin treatment, such as skin lightening or hypopigmentation. The linear array of orifices can be arranged in a single row of orifices or in a plurality of rows of orifices. This linear array nozzle design can direct a curtain application of cryogen or cold gas such that it impinges on the skin surface, which can facilitate uniform and controlled application of cooling treatment to large treatment areas of the skin of a patient without undesirable side effects.
The fine-tuned linear array nozzle design of the present invention provides advantages over conventional spray nozzle designs, which frequently include a single opening or a cluster of openings. For example, a single opening has limited treatment area and is difficult to provide uniform cooling treatment when sprayed over an area. A cluster of openings may provide a larger treatment area, but the cluster of openings may undesirably increase an intensity of the cryogen or cold gas spray against the patient's skin resulting in undesirable blasting on the skin and lack of control. Conventional nozzle designs may also increase the difficulty of providing reliable and consistent cryospray dosing over large areas of skin tissue. In contrast, nozzles of the present disclosure comprise a linear array of orifices to facilitate uniform and even delivery of cryogen or cold gas toward large areas of the skin in a planar manner that produces a line of skin treatment. This linear coverage facilitates sweeping of the nozzle over the skin, while delivering controlled and consistent dosing of cryogen to the skin.
The nozzle can include features and/or be controlled to prevent obstruction of some or all of the orifices in the linear array of orifices and/or to prevent the entrainment of undesired amounts of moisture in dispensed cryogen. These features can include a shroud that can be part of the nozzle. The shroud can extend wholly or partially around the linear array of orifices. The shroud can, in some embodiments, decrease the likelihood of ice crystals forming at the orifices and thereby block flow of cryogen through the orifices.
The nozzle can further include one or several orifices from which a protective gas can be dispensed. In some embodiments, this protective gas can form a protective curtain through or inside of which the cryogen can be dispensed to prevent the entrainment of ambient moisture in the cryogen and to prevent icing of the nozzle surface during or following the spray or cryogen. The protective gas can be dispensed from the same orifices or applicator from which the cryogen is dispensed by delivering the protective gas before or after the delivery of the cryogen, or the protective gas can be delivered from separate orifices than those from which the cryogen is dispensed. The protective gas can be, in some embodiments, nitrogen, carbon dioxide, helium, hydrogen, neon, oxygen, fluorine, argon, methane, a refrigerant, and/or air. In some embodiments, the protective gas can be an inert gas.
With reference now toFIG.1, one embodiment of acryogenic treatment system100 is shown. Thecryogenic treatment system100 can contain and/or deliver a cryogen. This cryogen can include, in some embodiments, a liquefied gas such as liquid helium, liquid hydrogen, liquid neon, liquid oxygen, liquefied fluorine, liquefied argon, liquefied methane, liquefied air, or the like. In some embodiments, the cryogen can include a cooled or cold gas such as, for example cooled or cold air. In some embodiments, the cryogen in the tank can be a mixture of liquid and gas such as a liquid and gaseous cryogen, or in other words, can be partially liquid. Thecryogenic treatment system100 can include atank102, also referred to herein as acontainer102, acryogen source102, or acanister102. Thetank102 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, thetank102 can comprise a metal cylinder defining an internal volume that can contain the cryogen and/or they can contain pressurized cryogen. In some embodiments, the metal cylinder can be made of aluminum or steel.
Thetank102 can, in some embodiments, include aheater104, athermostat106, and/orcontroller108. Theheater104 can comprise any desired heater capable of heating thetank102 and/or the cryogen contained in thetank102 to a desired temperature and/or until the cryogen contained in thetank102 attains a desired pressure. The desired pressure can be, in some embodiments, less than 100 psi, less than 500 psi, less than 1,000 psi, less than 2,000 psi, less than 5,000 psi, between 0 and 2,000 psi, between 500 and 1,500 psi, approximately 1,000 psi, or any other or intermediate pressure. In some embodiments, theheater104 can be located at or on abottom110 of thetank102 and/or proximate to thebottom110 of thetank102. In some embodiments, this location of theheater104 on and/or in thetank102 can facilitate heating of the cryogen contained within thetank102 and specifically the heating of a liquid portion of the cryogen contained within the tank.
Thethermostat106 can comprise one or several features configured to measure the temperature within thetank102. These can include, for example, one or several thermocouples, thermistors, thermometers, or the like. Thethermostat106 can be positioned at any desired location on thetank102 and can, in some embodiments, be positioned proximate to theheater104.
Thecontroller108 can be communicatively coupled with theheater104 and/or with thethermostat106. In some embodiments, thecontroller108 can include one or several features that display one or several attributes of thetank102 and/or the cryogen such as, for example, the pressure in thetank102, the amount of cryogen in thetank102, the temperature of the cryogen or thetank102, or the like. Thecontroller108 can further include one or several features whereby set point information can be provided by the user to the controller and/or whereby set points can be changed.
Thecontroller108 can, via the communicative coupling with theheater104 and/or with thethermostat106 control the temperature of the cryogen and/or of thetank102. In some embodiments, for example, the controller can receive one or several signals indicative of a temperature of the cryogen and/or of thetank102 from thethermostat106. The controller can compare the signals to set point information and can determine whether to increase or decrease the temperature of the cryogen and/or of thetank102. Control the temperature of the cryogen and/or of the tank by, for example, controlling the powering of theheater104 such as by, for example, controlling the amount of current going to theheater104. In some embodiments, thecontroller108, theheater104, and thethermostat106 can sufficiently heat thetank102 to maintain a constant pressure and/or temperature during dispensing of the cryogen.
Thetank102 can include aswitch112 such as a safety switch. In some embodiments, the safety switch can be communicatively coupled with thecontroller108 and/or theheater104. In some embodiments, manipulation of theswitch112 can cut power to theheater104 to prevent any further heating of thetank102 and/or of the cryogen in thetank102. In some embodiments, theswitch112 can be separate from thecontroller108, and in some embodiments, theswitch112 can be integrated in thecontroller108.
Thecryogenic treatment system100 can include anapplicator114, also referred to herein as acryospray applicator114, which applicator114 can include anozzle116, also referred to herein as anozzle assembly116, that can include a linear array of orifices. In some embodiments, thecryospray applicator114 can be a non-contact cryospray applicator in that thenozzle116 or other portion of theapplicator114 does not contact the skin of the patient to cool the skin of the patient, but rather the cryogen is dispensed by thenozzle116 to the skin of the patient to cool the skin of the patient.
Theapplicator114, and specifically thenozzle116 can dispense cryogen from thetank102 to the skin of the patient. In some embodiments, theapplicator114 can be fluidly connected with thetank102 via atube118, also referred to herein as thehose118, thesupply tube118, or connectingtube118. In some embodiments, thetube118 can be fluidly connected with the internal volume of the tank via a port or aperture extending through the tank. In some embodiments, thetube118 can connect to thetank102 at or proximate to thebottom110 of thetank102. The connection of thetube118 at or proximate to thebottom110 of thetank102 can facilitate the drawing of cryogen, and specifically the drawing of liquid cryogen into thetube118 and the delivering of cryogen, and specifically the delivering of liquid cryogen to theapplicator114 and thenozzle116.
Thetube118 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, the tube can be made from a material that is able to withstand the temperature and/or pressure of the cryogen and/or to withstand the cryogen. In some embodiments, thetube118 can have a diameter, a shape, and/or a link such that the pressure of the cryogen at thenozzle116 and/or at theapplicator114 is the same or substantially the same as at thetank102. As used herein, substantially or approximately referred to a value deviating by less than 10%, 5%, 2%, or 1% from the value or values with which they are associated. Thus, the pressure of the cryogen at thenozzle116 and/or at theapplicator114 is the same or substantially the same as in the tank when the pressure of the cryogen at thenozzle116 and/or at theapplicator114 deviates by less than 10%, 5%, 2%, or 1% from the pressure of the cryogen in thetank102.
FIG.2 is a side-section view of one embodiment of theapplicator114 including thenozzle116. Theapplicator114 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, theapplicator114 can be a hand-heldapplicator114, and in other embodiments, theapplicator114 can be part of an automated system or device such as a robotic system or device, a teleoperated system or device, or the like.
Theapplicator114 can include ahandle portion200 and ahead portion202. Thehandle portion200 can include agrip204 connected to thehead portion202. Thegrip204 can be sized and shaped to be held in the hand of an operator of theapplicator114. Thehead portion202 can connect to thenozzle116 and can specifically be coupled to anelongate member206, also referred to herein as anozzle tube206, of thenozzle116 via anozzle base208. In some embodiments, thenozzle base208 can comprise a threaded plug such as, for example, a NPT threaded plug. Thenozzle base208 can be made from a variety of materials including, for example, brass, steel, stainless steel, nickel, a nickel alloy, or the like.
As seen inFIG.2, thetube118 can extend along thegrip204 and can couple to thehead portion202 atcoupling210. Thecoupling210 can include, for example, ahose coupler212 that can include, for example, a female hose coupling. Thehose coupler212 can threadingly engage with ahead coupler214, whichhead coupler214 can be, for example, a threaded coupling. In some embodiments, and as depicted inFIG.2, thehead coupler214 threadingly engages features of thehead portion202 of theapplicator114 to couple thehead coupler214 to thehead portion202.
Theapplicator114 can include afilter216. Thefilter216 can comprise a variety of shapes and sizes and can be made from a variety of materials. Thefilter216 can be located in numerous positions throughout theapplicator114 and/or thetube118. In some embodiments, thefilter216 can be located between thetube118 and thenozzle116, in thenozzle116 such as in, for example, thenozzle base208, in thecoupling210 such as, for example, in thehead coupler214, or the like.
Thefilter216 can be sized to eliminate and/or minimize clogs at thenozzle116. In some embodiments, thefilter216 can be a 1μ filter, a 10μ filter, a 25μ filter, a 50μ filter, 100μ filter, a between 10μ and 100μ filter, a between 40μ and 50μ filter, an approximately 50μ filter, or any other desired filter. In some embodiments, thefilter216 can comprise a ceramic filter, a polymer filter, a sintered metal filter, or any other desired filter type. In some embodiments, thefilter216 can comprise a sintered stainless steel filter or mesh screen.
Thehead portion202 of theapplicator114 can include avalve218 that can control the flow of cryogen to thenozzle116 and/or the dispensing of cryogen from thenozzle116. Thevalve218 can, in some embodiments, be controlled by acontrol feature220 that can be, for example, a button. In some embodiments, for example, manipulation of thecontrol feature220 can result in the opening or closing of thevalve218 and can thus result in the initiation or the termination of dispensing of cryogen. Thehead portion202 of theapplicator114 can, in some embodiments, include afiller plug222. In some embodiments, thefiller plug222 can comprise a dead volume filler plug and can be located in asupply channel224 of thehead portion202 proximate to thenozzle116 and specifically proximate to thenozzle base208. In some embodiments, thesupply channel224 can extend through at least a portion of thehead portion202 of the applicator. In some embodiments, thevalve218 interacts with thefiller plug222 to provide cryogen to thenozzle116 and/or to dispense cryogen from thenozzle116.
As seen in the side-section, close-up view ofFIG.3 and in the front-section, close-up view ofFIG.4, theelongate member206 of the nozzle includes aninternal volume400 defined bywalls402 of theelongate member206. A plurality oforifices404, some or all of which can comprise a cylindrical aperture or cylindrical opening and thus can becylindrical orifices404, extend through thewalls402 of theelongate member206 to fluidly couple theinternal volume400 of theelongate member206 to outside of theelongate member206. Specifically, theorifices404 extend from aproximal opening406 contacting theinternal volume400 of theelongate member206 todistal openings408. As seenFIG.4, achannel500 extending through thenozzle base208 fluidly connects with theinternal volume400 of theelongate member206. Thechannel500 can further fluidly connect with thetube118 and/or with thevalve218 or thefill plug222.
In some embodiments, theorifices404 can each have the same, or approximately the same diameter and/or depth, and in some embodiments, some or all of theorifices404 can have different diameters and/or depths. In some embodiments, theorifices404 can be sized and shaped so that the expansion of cryogen passing through theorifices404 is a nearly adiabatic expansion. In some embodiments, for example, eachorifice404 can have a diameter of: approximately 0.001 inches, approximately 0.005 inches, approximately 0.007 inches, approximately 0.008 inches, approximately 0.01 inches, approximately 0.02 inches, approximately 0.05 inches, approximately 0.08 inches, approximately 0.1 inches, between approximately 0.001 and 0.01 inches, between approximately 0.005 and 0.008 inches, or any other or intermediate diameter. In some embodiments, the orifices can have a depth of approximately 0.001 inches, approximately 0.005 inches, approximately 0.008 inches, approximately 0.01 inches, approximately 0.02 inches, approximately 0.05 inches, approximately 0.08 inches, approximately 0.1 inches, approximately 0.5 inches, between approximately 0.001 and 0.05 inches, between approximately 0.005 and 0.02 inches, and/or any other or intermediate depth.
In some embodiments, and as seen inFIGS.5 through7, the plurality oforifices404 can be arranged in alinear array600 oforifices404. Thisarray600 oforifices404 can include, for example, 3 orifices, 5 orifices, 8 orifices, 10 orifices, 11 orifices, 15 orifices, 20 orifices, 30 orifices, 50 orifices, 100 orifices, between 0 and 100 orifices, between 0 and 50 orifices, between 0 and 25 orifices, between 0 and 11 orifices, or any other or intermediate number of orifices. In some embodiments, thelinear array600 can have a length of approximately 10 inches, approximately 5 inches, approximately 2 inches, approximately 1 inch, approximately 0.5 inches, between 0 and 10 inches, between 0 and 5 inches, between 0 and 2 inches, or any other or intermediate length. In some embodiments, each of the nozzles can be separated by a distance of: approximately 1 inch, approximately 0.5 inches, approximately 0.1 inches, approximately 0.05 inches, approximately 0.01 inches, between 0 and 1 inches, between 0 and 0.5 inches, between 0 and 0.2 inches, or any other or intermediate distance.
In some embodiments, the plurality oforifices404 forming the linear array of orifices can be arranged in a single row of orifices as shown inFIG.5, or in a plurality of rows602-A,602-B,602-C oforifices404. In some embodiments, thelinear array600 can comprise one row of orifices, two rows of orifices, three rows of orifices, 5 rows of orifices, 7 rows of orifices, 10 rows of orifices, 20 rows of orifices, between 1 and 10 rows of orifices, or any other or intermediate number of rows of orifices. In some embodiments, each of the rows602-A,602-B,602-C oforifices404 can have the same number oforifices404, and in some embodiments, some or all of the rows602-A,602-B,602-C oforifices404 can have a different number of orifices. In embodiments in which thelinear array600 comprises multiple rows oforifices404, theorifices404 in the different rows can be aligned as shown inFIG.6, or the orifices can be staggered as shown inFIG.7. In some embodiments, theorifices404 in the different rows oforifices404 can have the same size or dimensions, and in some embodiments, the orifices can have different sizes or dimensions. In some embodiments, some or all of theorifices404 in thelinear array600 can be equally and/or uniformly spaced, and in some embodiments, some or all of theorifices404 in thelinear array600 can be unequally spaced and/or staggered.
In some embodiments, some or all of the plurality oforifices404 can dispense the cryogen, and in some embodiments, some or all of the plurality oforifices404 can dispense a protective gas such as an inert gas. In some embodiments, this inert gas can have a desired water content such as, for example, less than 10% water by weight, less than 5% water by weight, less than 1% water by weight, less than 0.1% water by weight, less than 0.05% water by weight, less than 0.01% water by weight, less than 0.005% water by weight, less than 0.001% water by weight, or any other or intermediate value. This protective gas can form a protective curtain through which the cryogen can be dispensed to prevent the entrainment of ambient moisture in the cryogen. In some embodiments, for example, the entrainment of ambient moisture in the cryogen can adversely impact the temperature of the cryogen and/or the ability to control the temperature of the skin or the cryogen at the skin. Entrained moisture can be detrimental to the operation of theapplicator114 as entrained moisture can block one orseveral orifices404 and prevent proper dispensing of cryogen. Further, entrained moisture can result in the creation of a “snow” layer on the skin from the accumulation of ice crystals formed from the entrained moisture. This layer of ice can insulate the skin and can prevent the providing of the desired treatment to the skin.
The protective gas can be dispensed from thesame orifices404 from which the cryogen is dispensed by delivering the protective gas before the delivery of the cryogen, or the protective gas can be delivered fromseparate orifices404, such ascurtain orifices604, also referred to herein ascurtain apertures604 orcurtain openings604, than those from which the cryogen is dispensed. As used herein, acurtain orifice604 refers to anorifice404 through which the protective gas is delivered, and acryogen orifice606, also referred to herein as acryogen aperture606 or acryogen opening606, refers to anorifice404 through which a cryogen is delivered. In some embodiments, a plurality ofcurtain orifices604 can create an array ofcurtain orifices604, and a plurality ofcryogen orifices606 can create an array ofcryogen orifices606.
In some embodiments, for example, one or more of the rows602-A,602-B,602-C oforifices404 can be selected for delivery of cryogen and one or more of the rows602-A,602-B,602-C oforifices404 can be selected for delivery of the protective gas. In one embodiment, for example, one or several of theorifices404 and/or one or several of the rows602-A,602-B,602-C oforifices404 are selected for delivery of the protective gas simultaneously or partially simultaneously with the delivery of the cryogen. In one such embodiment, for example, some or all of theorifices404 in one or both of the rows602-A and602-C can be curtain orifices603 configured for delivery of protective gas simultaneously or partially simultaneously with the delivery of the cryogen from one or several cryogen orifices that can be located in the row604-B. In some embodiments,curtain orifices604 can be positioned to form a perimeter around thecryogen orifices606. In such an embodiment, theorifices404 in the rows602-A and602-C arecurtain orifices604 and additionally, theorifice404 in row602-B most proximate to afirst end806 of thenozzle tube206 and theorifice404 in row602-B most proximate to asecond end808 of thenozzle tube206 are curtain orifices.
In some embodiments, some or all of theorifices404 can deliver a heated gas. In some embodiments, for example, the cryogen and the heated gas can be alternative delivered to cycle temperature of the skin of the patient. In some embodiments, the heated gas can be delivered throughorifices404 distinct from theorifices404 through which cryogen is delivered, and in some embodiments, the heated gas can be delivered through thesame orifices404 through which cryogen is delivered.
Thenozzle116 can further include ashroud700 that can shield one or several of theorifices404. In some embodiments, for example, theshroud700 can be sized and shaped to shield the plurality oforifices404 from contact with moist air and/or from the formation of ice crystals that could obstruct one or several of theorifices404. Specifically, in some embodiments, theshroud700 can create a stagnation zone at the external and/or distal openings of the orifices. In some embodiments, theshroud700 can comprise the same material as thenozzle tube206, and in some embodiments, theshroud700 can comprise a different material than thenozzle tube706. In some embodiments, for example, the shroud can comprise a material having a lower thermal conductivity than the material of thenozzle tube706, or specifically, in some embodiments, thenozzle tube706 can comprise a metal such as, for example, a steel, stainless steel, nickel or a nickel alloy, aluminum, or brass, and theshroud700 can comprise a polymer.
Theshroud700 can extend wholly or partially around thelinear array600 oforifices404. In some embodiments, the shroud comprises a rectangular orovular aperture702 that extends around thelinear array600 oforifices404. Theaperture702 can have awidth704, a depth, and alength706. In some embodiments, theshroud700 can have a depth of approximately: 1× the diameter of theorifices404, 2× the diameter of theorifices404, 3× the diameter of theorifices404, 5× the diameter of theorifices404, 10× the diameter of theorifices404, between 1× and 10× the diameter of theorifices404, between 1× and 4× the diameter of theorifices404, or any other or intermediate depth.
FIG.8 is a schematic illustration of one embodiment of the application of cryogen to the skin of a patient. As seen, thecryospray applicator114 can be positioned at a location proximate to a portion ofskin300, also referred to herein asskin tissue300, of the patient to be treated. Theapplicator114 can be controlled to direct aplanar spray302, also referred to herein as a linear curtain, of cryogen, which can be or include liquid cryogen, or cold gas through thelinear array600 oforifices404 in thenozzle116 of theapplicator114. In some embodiments, the planar spray comprises a cryogen mist such as a liquid cryogen mist, and in some embodiments, the liquid cryogen can comprise liquid carbon dioxide. This liquid cryogen or cold gas can cool anarea304 ofskin tissue300 of the patient in a line of cooling treatment to effect a treatment of theskin300. In some embodiments, theplanar spray302 can have a temperature at the skin surface of between −4° C. and −80° C.
Theapplicator114 can be moved as indicated byarrow306 in the direction indicated byarrow306 which can result in the movement of thearea304 as indicated byarrow308 in the direction indicated byarrow308. This movement of thearea304 across theskin300 of the patient can create a treatedarea310 that can be continuous when theapplicator114 delivers a continuousplanar spray302 or interrupted when theapplicator114 delivers a non-continuousplanar spray302 such as by, for example, intermittently delivering theplanar spray302.
In some embodiments, amask312 can be applied to and/or overlaid upon the skin prior to delivery of the cryogen. Thismask312 can comprise an object, item, or substance. In some embodiments, themask312 can comprise a perforated member, a perforated film, a mesh, and/or a temperature controlled member. In some embodiments, for example, the temperature of themask312 can be controlled to control a temperature of all or portions of the skin, and specifically, in some embodiments, themask312 can be heated to heat the skin and/or to cyclically heat the skin. In some embodiments, themask312 can affect the temperature of theskin300 by insulating and/or shielding theskin300 from some of the cryogen applied to theskin300 and/or to themask312 by theapplicator114.
In some embodiments, theapplicator114 can further include a spacer, and specifically amechanical spacer800 as shown inFIGS.9 and10. Themechanical spacer800 can be configured to engage with the skin of the patient so as to maintain and/or at least maintain a desired, constant, and/or minimum spacing and/or distance between thenozzle116 and/ororifices404 orlinear array600 and the skin of the patient. Themechanical spacer800 can be coupled to thehead portion202 and/or to thenozzle116. Themechanical spacer800 can comprise a variety of shapes, sizes, and designs. In some embodiments, themechanical spacer800 can maintain a fixed spacing between the skin of the patient and thenozzle116 and/ororifices404 orlinear array600, and in some embodiments, themechanical spacer800 can be adjustable to change the desired, constant, and/or minimum spacing and/or distance.
Themechanical spacer800 can comprise awheeled spacer802. Thewheeled spacer800 can include one orseveral wheels804 including, for example, 1, 2, 3, 4, 6, 8, 10, or any other or intermediate number ofwheels804. In the embodiment ofFIG.8, thewheeled spacer802 includes a first wheel804-A and a second wheel8004-B. The first wheel804-A is located proximate to thefirst end806 of thenozzle tube206 and/or of thelinear array600, and the second wheel804-B is located proximate to thesecond end808 of thenozzle tube206 and/or of thelinear array600.
Themechanical spacer800 can comprise aslider spacer900. Theslider spacer900 can include a plurality oflegs902 orprongs902 including, for example, 1, 2, 3, 4, 6, 8, 10, or any other or intermediate number oflegs902. In some embodiments, thelegs902 can be adjustable with respect to thenozzle116 and/or thelinear array600 oforifices404 to change the distance between thenozzle116 and/or thelinear array600 oforifices404 and the patient's skin.
With reference now toFIG.11, a flowchart illustrating one embodiment of aprocess1000 for cooling skin of a patient and/or for applying the cryogen is shown. In some embodiments, the skin can be cooled and/or the cryogen can be applied as part of a cryogenic treatment. In some embodiments, this treatment can alter a pigmentation appearance and/or pigmentation of the treated skin, and in some embodiments, this treatment can alter a texture, tension, tone, smoothness, or tightness of the treated skin. In some embodiments, this cryogenic treatment can be to treat one or several indications that can affect large areas of skin such as, for example: pigmentation or coloration related indications including hypopigmentation or hyperpigmentation; acne; rosacea; psoriasis or the like. In some embodiments, this cryogenic treatment can be to treat blemishes including pigmentation related blemishes. Such blemishes may include: melasma; lentigo; freckle; birthmark, liver spot, age spot, or café au lait macule.
The process can be performed with all or portions of thecryogenic treatment system100. Theprocess1000 begins atblock1002, wherein themask312 is applied to the skin and/or placed on the skin. After the mask is applied to the skin, thecryogen supply102 is heated as indicated byblock1004 ofprocess1000. In some embodiments, the mask can be applied to the skin prior to directing the planar spray from thelinear array600 oforifices404. Thecryogen supply102 can contain cryogen that can be, for example, in both a liquid and a gaseous form. In some embodiments, thetank102 can be heated by theheater104 as controlled by thecontroller108 according to information received from thethermostat106. In some embodiments, thetank102 can be heated to a desired temperature and/or until a desired pressure inside thetank102 is reached. Thetank102 can be heated, in some embodiments, such that thetank102 maintains the desired pressure.
After the tank is heated, the cryogen, and specifically liquid cryogen is transported from thecryogen supply102 to theapplicator114 via thesupply tube118 as indicated inblock1006 ofprocess1000. In some embodiments, the cryogen can be transported through thetube118 via a pressure differential that can arise, for example, from the opening of thevalve218. In some embodiments, the pressure of the liquid cryogen in thetube118 can be equal and/or approximately equal to the pressure of the liquid cryogen in thetank102.
Atblock1008 ofprocess1000, theapplicator114 is positioned proximate to the skin of the patient. In some embodiments, positioning thecryospray applicator114 proximate to the skin of the patient, and particularly to the area of the skin tissue of the patient to be treated can include positioning anon-contact cryospray applicator114 proximate to the area of the skin tissue of the patient, or positioning acryospray applicator114 including amechanical spacer800 proximate to the area of the skin tissue of the patient. In some embodiments, this can include positioning the applicator a desired distance from the skin of the patient, which can include, for example, adjusting themechanical spacer800 so that theapplicator114 is maintained at the desired distance from the skin of the patient by themechanical spacer800. Themechanical spacer800 can, in some embodiments, comprise thewheeled spacer802 and/or the slidingspacer900. In some embodiments, and as part of positioning theapplicator114, the skin of the patient can be contacted with themechanical spacer800. In some embodiments, the mechanical spacer can maintain the predetermined distance between theapplicator114 and the skin. In some embodiments, this predetermined distance can be, for example, between 1 inch and 3 inches, and/or between 0.125 inches and 3 inches.
Atblock1010, the protective gas is delivered to form a protective curtain. In some embodiments, the creation of a protective curtain can include the dispensing of protective gas that can include an inert gas and/or a dry gas. In some embodiments, the protective gas can be delivered before, during, and/or after delivery of the cryogen. The protective gas can be delivered from thesame orifices404 from which the cryogen is delivered, or fromdifferent orifices404, such as one orseveral curtain orifices604, than theorifices404 from which the cryogen is delivered. In some embodiments, this protective curtain can prevent water entrainment or ambient air entrainment as the cryogen, which can include: a liquid cryogen; a gaseous cryogen; a two-phase fluid; cooled air; and/or carbon dioxide and/or cold gas moves downstream of theorifices404 as delivery of the cryogen from theorifices404.
Atblock1012, the cryogen is dispensed, delivered, and/or expelled from theapplicator114, and specifically, aplanar spray302 of cryogen or cold gas is directed through thelinear array600 oforifices404 of thecryospray applicator114. In some embodiments, this can include the control of theapplicator114 to dispense and/or expel the cryogen. In some embodiments this can include, for example, the manipulation of thecontrol feature220 to cause the dispensing and/or expelling of the cryogen from theapplicator114. In some embodiments, the cryogen can be dispensed and/or expelled from thenozzle206, and particularly from the linear array oforifices600 to form a linear curtain of cryogen downstream from thenozzle206.
In some embodiments, directing the planar spray of cryogen or cold gas through the linear array of orifices can include locally freezing an epidermis. This local freezing of the epidermis can alter a pigmentation of the area of the skin tissue of the patient. In some embodiments, directing the planar spray of cryogen or cold gas through the linear array of orifices can include locally disrupting an epidermis. This local disruption of the epidermis can result in the gradual skin lightening in the area of the skin tissue of the patient.
In some embodiments, the step ofblock1012 can include transporting cryogen from thecryogen supply102 to theapplicator114 via thesupply tube118, and in other embodiments, this can be a separate step as indicated inFIG.11. In some embodiments, a pressure of the cryogen at thesupply tube118 can be substantially equal to the desired pressure in thecryogen supply102.
Atblock1014, thecryospray applicator114 can be moved with respect to the skin as indicated, for example, inFIG.8. In some embodiments, the movement of theapplicator114 can provide a linear curtain of cooling treatment to the skin, and specifically to thearea304 ofskin tissue300 of the patient. In some embodiments, theapplicator114 can be moved by hand, and in other embodiments, theapplicator114 can be moved by a machine.
After thecryospray applicator114 has been moved, theprocess1000 can proceed to block1016, wherein all or portions of the skin are warmed. In some embodiments, this warming can be performed via themask312, and in some embodiments, this warming can be performed via theapplicator114. In one embodiment, for example, a warm gas, cryogen, and/or air can be dispensed by thenozzle116 to the skin to warm the skin, and specifically to convectively warm the skin. In some embodiments, the warm gas, cryogen, and/or air can be dispensed by the same ordifferent orifices404 as dispense the protective gas and/or the cryogen.
In some embodiments some or all of the steps ofprocess1000 can be repeated in the course of a single treatment. In some embodiments, for example, some or all of the steps ofblocks1010 through1016 can be repeated one or several times as part of a treatment. This can include, for example, the repeated directing of the planar spray and/or the delivering of the cryogen or cold gas, the moving of the applicator, and the warming of the skin. In some embodiments, this cyclical warming and cooling of the skin may provide treatment benefits and this cycle can be performed to maximize these treatment benefits and/or to achieve a desired treatment benefit.
The subject matter of the present invention is described here with specificity, but the claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies.
This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described. Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.