Movatterモバイル変換


[0]ホーム

URL:


US11471105B2 - Two-layer adhesion of electronics to a surface - Google Patents

Two-layer adhesion of electronics to a surface
Download PDF

Info

Publication number
US11471105B2
US11471105B2US16/665,254US201916665254AUS11471105B2US 11471105 B2US11471105 B2US 11471105B2US 201916665254 AUS201916665254 AUS 201916665254AUS 11471105 B2US11471105 B2US 11471105B2
Authority
US
United States
Prior art keywords
adhesive layer
layer
adhesive
solvent
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/665,254
Other versions
US20210121128A1 (en
Inventor
Leanna Pancoast
Katsuyuki Sakuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines CorpfiledCriticalInternational Business Machines Corp
Priority to US16/665,254priorityCriticalpatent/US11471105B2/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATIONreassignmentINTERNATIONAL BUSINESS MACHINES CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: PANCOAST, LEANNA, SAKUMA, KATSUYUKI
Publication of US20210121128A1publicationCriticalpatent/US20210121128A1/en
Priority to US17/823,168prioritypatent/US12290384B2/en
Application grantedgrantedCritical
Publication of US11471105B2publicationCriticalpatent/US11471105B2/en
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

Embodiments of the present invention are directed to a two-layer adhesive and methods of using the same to secure an electronic device to an organism. In a non-limiting embodiment of the invention, a surface of the organism is coated with a first adhesive layer (bottom layer). The first adhesive layer is cured and a surface of the cured first adhesive layer is coated with a second adhesive layer (top layer). An electronic device is positioned on the second adhesive layer prior to curing the second adhesive layer. The second adhesive layer is then cured, thereby embedding the electronic device within the second adhesive layer. The bottom layer and the top layer are selected such that the bottom layer releases upon exposure to a first solvent after a first duration and the top layer releases upon exposure to a second solvent after a second duration more than the first duration.

Description

BACKGROUND
The present invention relates generally to wearable, flexible, healthcare and medical related electronics. More specifically, the present invention relates to a two-layer adhesive for securing flexible wearable sensor electronics to a surface of a live organism, including, but not limited to, the organism's fingernails, toenails, teeth, claw, hoof, and skin.
The development of technologies that enable the wireless collection and analysis of quantitative, clinically relevant information on a patient's physiological status is of growing interest. In particular, soft, biocompatible systems are widely regarded as important because they facilitate the mounting of wearable sensors on external (e.g., skin or nail) and internal (e.g., heart and brain) surfaces of the body. Wearable sensors allow for the collection and analysis of clinically relevant information directly on the patient, and ultraminiaturized, lightweight, and battery-free wearable devices have the potential to establish complementary options in biointegration, where longer duration (e.g., months) interfaces are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Some example wearable sensors include strain gauges, temperature sensors, accelerometers, photoplethysmograms (PPGs), electrocardiograms (ECGs), electroencephalography (EEG) devices, respiration sensors, gyroscopes, and piezoelectric sensors.
Strain gauges, for example, are useful for measuring or monitoring stresses, forces, torques and a host of other stimuli including displacement, acceleration and position of the patient's body. The electrical conductance of a strain gauge (typically formed of a doped silicon or metal) varies with its geometry, such that a deformation of the strain gauge results in a change in its electrical resistance. The stress on a strain gauge can therefore be inferred from a measured resistance of the strain gauge using a known gauge factor, which is a ratio of relative change is resistance to the strain on the test piece. The resistance of the strain gauge can be measured using a Wheatstone bridge.
Regardless of the specific type of wearable sensor used in a given application, an adhesive is typically applied at the interface between the patient and the sensor to bond these wearable sensors to the patient's body. For example, cyanoacrylate-based adhesives can ensure the strong adhesion of a strain gauge to a fingernail or toenail. Cyanoacrylates are popular adhesives for wearable sensors because they offer a fast drying, semi-permanent bond that can be easily and conformally coated over a portion of the patient's body, such as a fingernail.
SUMMARY
Embodiments of the invention are directed to a method for using a two-layer adhesive to secure an electronic device to a patient (e.g., to a live nail) or an animal (e.g., claw, hoof). A non-limiting example of the method includes coating a surface of the nail with a first adhesive layer (bottom layer). The first adhesive layer is cured and a surface of the cured first adhesive layer is coated with a second adhesive layer (top layer). An electronic device is positioned on the second adhesive layer prior to curing the second adhesive layer. The second adhesive layer is then cured, thereby embedding the electronic device within the second adhesive layer. The bottom layer and the top layer are selected such that the bottom layer releases upon exposure to a first solvent after a first duration and the top layer releases upon exposure to a second solvent after a second duration more than the first duration.
Embodiments of the invention are directed to a method for removing an electronic device from a patient (e.g., from a live nail). A non-limiting example of the method includes forming an adhesive stack on a surface of the patient. The adhesive stack can include a bottom layer positioned between a top layer and the surface of the patient. The electronic device can be embedded in the top layer. The bottom layer and the top layer are selected such that the bottom layer releases upon exposure to a first solvent after a first duration and the top layer releases upon exposure to a second solvent after a second duration more than the first duration. The method can include exposing the adhesive stack to the first solvent for the first duration to release the adhesive stack from the surface of the patient. The method can include removing the adhesive stack from the patient.
Embodiments of the invention are directed to an adhesive stack for securing an electronic device to a live nail. A non-limiting example of the adhesive stack includes a top layer and a bottom layer positioned between the top layer and a surface of the live nail. The adhesive stack can further include an electronic device embedded in the top layer. The bottom layer and the top layer are selected such that the bottom layer releases upon exposure to a first solvent after a first duration and the top layer releases upon exposure to a second solvent after a second duration more than the first duration.
Additional technical features and benefits are realized through the techniques of the present invention. Embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed subject matter. For a better understanding, refer to the detailed description and to the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The specifics of the exclusive rights described herein are particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the embodiments of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 depicts an electronic device attached to a body surface according to one or more embodiments of the invention;
FIG. 2 depicts a cross-sectional view of the electronic device and the two-layer adhesive shown inFIG. 1 according to one or more embodiments of the invention;
FIG. 3 depicts a system employing the electronic device shown inFIG. 1 according to one or more embodiments of the invention;
FIG. 4 depicts a block diagram for implementing the electronic device shown inFIG. 1 according to one or more embodiments of the invention;
FIG. 5 depicts a flow diagram illustrating a method according to one or more embodiments of the invention; and
FIG. 6 depicts a flow diagram illustrating a method according to one or more embodiments of the invention.
The diagrams depicted herein are illustrative. There can be many variations to the diagram or the operations described therein without departing from the spirit of the invention. For instance, the actions can be performed in a differing order or actions can be added, deleted or modified.
In the accompanying figures and following detailed description of the described embodiments of the invention, the various elements illustrated in the figures are provided with two or three-digit reference numbers. With minor exceptions, the leftmost digit(s) of each reference number correspond to the figure in which its element is first illustrated.
DETAILED DESCRIPTION
It is understood in advance that although example embodiments of the invention are described in connection with a particular wearable sensor (e.g., a strain gauge), embodiments of the invention are not limited to the particular sensor architectures described in this specification. Rather, embodiments of the present invention are easily capable of being implemented to bond a wide range of wearable sensors, such as an accelerometers, photoplethysmograms (PPGs), electrocardiograms (ECGs), electroencephalography (EEG) devices, gyroscopes, temperature sensors, respiration sensors, piezoelectric sensors, heart-monitoring devices, glucose-monitoring devices, and TENS (transcutaneous electrical nerve stimulation) electrode therapy devices, among others, to a body surface of an organism, including, for example, the organism's fingernails, toenails, teeth, claw, hoof, and skin.
Turning now to an overview of technologies that are more specifically relevant to aspects of the present invention, an adhesive such as a cyanoacrylate is commonly used to bond wearable sensors (electronic devices such as strain gauges) to a patient's body (often a fingernail). An ideal adhesive needs to satisfy several criteria. First, an adhesive should be stiff enough to allow viable signals to be read by a sensor/monitor. In other words, the young's modulus of the adhesive material needs to be large enough to allow deformations to not be dampened. An adhesive should be strong, allowing for the wearable sensor to remain on the patient for as long as needed. To ease application and patient distress, the adhesive should cure or dry in as short a time as possible. Similarly, the patient's body should not need to be put into an awkward position during application, due to patient's comfort as well as an inability to stay still long enough to allow the application of the sensor. Finally, once the wearable sensor is no longer needed, the adhesive should be easily removable, without causing harm to the patient's body or to the sensor itself (for reusability or further study).
Cyanoacrylates are ubiquitous as medical device adhesives, particularly with respect to wearable sensors placed on a patient's fingernail, in part because the cyanoacrylate family satisfies so many characteristics of an ideal adhesive. Cyanoacrylates are fast drying (typically around 30 seconds) adhesives that can be conformally coated onto a patient's body to provide a strong, semi-permanent bond. As a result, many methods used to attach a sensor to a fingernail rely upon products whose main ingredient is cyanoacrylate.
Cyanoacrylates make excellent adhesives, but they are very difficult to remove. Cyanoacrylates are typically removed using mechanical force—scratching off, scoring, scraping, etc. While effective at removing a cyanoacrylate-based adhesive, these methods are slow, will damage a patient's nail or skin, and can destroy the wearable sensor. This results in harm to the patient and prevents reuse of the sensor. To mitigate the damage to the patient and to the electronics and to speed up the removal process, the interface between the patient and the wearable sensor can be soaked in a solvent to release the adhesive. Acetone is typically used as exposure to acetone will soften a dried cyanoacrylate.
Adhesive removal even with a solvent soak, however, can take up to 30 minutes or even longer (depending on thickness of application) before the adhesive fully releases from the nail. Oftentimes, repeat soakings in the solvent are needed. This removal process is impractically long and burdensome. In addition, a surface such as a fingernail provides a very limited contact area between the solvent with the adhesive, further increasing removal time and inconvenience. Even worse, prolonged soaks in solvents such as acetone can weaken a nail—resulting in the same type of damage to the nail that a solvent soak is trying to prevent.
Turning now to an overview of aspects of the present invention, one or more embodiments of the invention address the above-described shortcomings of the prior art by providing a new two-layer adhesive for securing electronics to a patient's body (nails, skin, teeth, etc.). This two-layer adhesive includes a top adhesive layer and a bottom adhesive layer. The top adhesive layer is a fast drying, permanent bonding material that secures the sensor. As used herein, a “permanent” bonding material includes adhesive materials that require mechanical force (scratching off, scoring, scraping, etc.) or long solvent soaks (greater than about 5 minutes) to remove. This top layer can include strong adhesives such as cyanoacrylates. The bottom adhesive layer is a fast drying, temporary bonding material that is applied directly to the patient's body (e.g., nail) and binds the top adhesive layer to the patient. As used herein, a “temporary” bonding material includes adhesive materials that can be peeled or wiped off without requiring a long solvent soak time (e.g., materials that can be removed after a solvent soak of less than about 5 minutes, or materials that do not required any solvent soak). In other words, the material for the bottom adhesive layer is selected to be easily removable, ensuring that the two-layer adhesive can be removed from the patient without resorting to damaging mechanical processes or prolonged soak periods (e.g., soaks greater than 5 minutes).
Advantageously, the bottom adhesive layer prevents the top adhesive layer from making direct contact with the patient's body. This allows for the use of conventionally strong adhesives (e.g., cyanoacrylates) without needing to worry about the difficult removal requirements of those adhesives. In other words, this two-layer adhesive inserts an easily removable temporary adhesion material between a strong, permanent bonding material and the patient's body. Once removed from the patient's body, the top adhesive layer and the sensor layer can be soaked in a solvent for separation and eventual reuse of the sensor layer (without patient aggravation).
Turning now to a more detailed description of aspects of the present invention,FIG. 1 depicts anelectronic device102 attached to a body surface (as shown, a fingernail104) in accordance with one or more embodiments of the present invention. In some embodiments of the invention, multiple instances of theelectronic device102 are attached to the same or various body surfaces (e.g., to the same fingernail or to a combination of fingernails, toenails, teeth, skin, etc.), optionally at different orientations/locations. However, embodiments are contemplated herein where a singleelectronic device102 is employed at a single location of a person's body.
In some embodiments of the invention, theelectronic device102 is a wearable sensor. For example, theelectronic device102 can be a strain gauge. In some embodiments of the invention, theelectronic device102 is an accelerometer, photoplethysmogram (PPG), electrocardiogram (ECG), electroencephalography (EEG), temperature sensor, respiration sensor, gyroscope, piezoelectric sensor, heart-monitoring device, glucose-monitoring device, TENS (transcutaneous electrical nerve stimulation) electrode therapy device, or any other type of wearable device. In some embodiments of the invention, the body surface is thefingernail104. In some embodiments of the invention, the body surface is one or more of a patient's fingernails, toenails, teeth, or skin. Although the body surface depicted inFIG. 1 is afingernail104, the two-layer adhesion processes and resulting structures described in connection with thefingernail104 apply equally to various body surfaces, including, for example, toenails, teeth, and skin.
As further shown inFIG. 1, the footprint of theelectronic device102 can be configured to fit on the respective body surface (e.g., 15 mm×15 mm or less for a human fingernail104). For instance, in the present example, each sensor (electronic device102) is smaller than therespective fingernail104 to which it is attached, thereby enabling multiple sensors to be attached to thesame fingernail104. In some embodiments of the invention, the footprint (a×b) of theelectronic device102 is less than or equal to 15 mm×15 mm, although other sizes are within the contemplated scope of the invention. In other words, the configuration shown inFIG. 1 is merely an example, and the number, orientation, and size of the sensors can be adjusted (e.g., the footprints can be scaled up or down, etc.) depending on the particular application.
A magnifiedview106 of theelectronic device102 is provided. In some embodiments of the invention, theelectronic device102 is a strain gauge sensor having multiple stacked layers. In some embodiments of the invention, the strain gauge sensor version of theelectronic device102 can include ametal sensor wire108 placed over aflexible substrate110. As will be described in detail below, embodiments of the invention are contemplated herein where theflexible substrate110 includes a two-layer adhesive112.
As further shown inFIG. 1, themetal sensor wire108 can be configured to have a serpentine layout to increase the available length of themetal sensor wire108, and hence the resistance. While a serpentine layout of themetal sensor wire108 is shown, other configurations are possible. With the constraints on the overall footprint of the electronic device102 (see above), the length of thesensor wire108 can only be made so long. In some embodiments of the invention, to further increase the overall resistance, and thereby decrease the total current and power consumption of the sensor, multiple sensor layers are stacked (not shown). Interconnects can be used to electrically couple the stacked layers.
FIG. 2 depicts a cross-sectional view of theelectronic device102 and the two-layer adhesive112 shown inFIG. 1. As discussed previously herein, theelectronic device102 is built on aflexible substrate110. Theflexible substrate110 can include the two-layer adhesive112.
In some embodiments of the invention, the two-layer adhesive112 can include a topadhesive layer114 and a bottomadhesive layer116. The topadhesive layer114 can include a fast drying, permanent bonding material that secures themetal sensor wire108. For example, the topadhesive layer114 can include strong adhesives such as cyanoacrylates.
The bottomadhesive layer116 can include a fast drying, temporary bonding material that is applied directly to the patient's body (e.g., fingernail104). The bottomadhesive layer116 binds the topadhesive layer114 to thefingernail104. As discussed previously herein, the material for the bottomadhesive layer116 is selected to be easily removable, ensuring that the two-layer adhesive112 can be removed from the patient without resorting to damaging mechanical processes or prolonged soak periods (e.g., soaks greater than 5 minutes). In some embodiments of the invention, the bottomadhesive layer116 is selected from one of three classes of composite materials, described sequentially below.
In some embodiments of the invention, the bottomadhesive layer116 includes a film former, plasticizer, and solubilizing agent (also referred to as a stabilizer). The film former, plasticizer, and solubilizing agent collectively define a first class of adhesive materials. In some embodiments of the invention, the film former can include polyurethane-35 or acrylic or vinyl pyrrolidone (VP) crosspolymer resins. In some embodiments of the invention, the plasticizer can include glycerine. In some embodiments of the invention, the solubilizing agent can include laureth-21. Forming the bottomadhesive layer116 from a film former, plasticizer, and solubilizing agent in this manner results in the bottomadhesive layer116 having an air dry time of about 30 to 300 seconds. Advantageously, a removal time of only about 3 to 120 seconds can be achieved using only a water soak. The bottomadhesive layer116 can be removed after the water soak by peeling or rubbing.
In some embodiments of the invention, the bottomadhesive layer116 includes a film former, chain transfer agent, and photoinitiator. The film former, chain transfer agent, and photoinitiator collectively define a second class of adhesive materials. In some embodiments of the invention, the film former can include acrylates copolymer. In some embodiments of the invention, the chain transfer agent can include pentaerythrityl tetra mercaptopropionate. In some embodiments of the invention, the photoinitiator can include trimethyl benzoyl diphenyl phosphine oxide. In some embodiments of the invention, the bottomadhesive layer116 includes a film former, chain transfer agent, photoinitiator, plasticizer, and photosensitizer. The plasticizer can include, for example, dimethicone. The photosensitizer can include, for example, isopropyl thioxanthone. Forming the bottomadhesive layer116 from a film former, chain transfer agent, and photoinitiator in this manner results in the bottomadhesive layer116 having a UV-based dry time of about 60 seconds. Advantageously, a removal time of only about 3 to 120 seconds can be achieved using only a water soak. The bottomadhesive layer116 can be removed after the water soak by peeling or rubbing.
In some embodiments of the invention, the bottomadhesive layer116 includes a film former, solvent, and plasticizer. The film former, solvent, and plasticizer collectively define a third class of adhesive materials. In some embodiments of the invention, the film former can include nitrocellulose, tosylamide-based resins, or formaldehyde-based resins (e.g., tosylamide formaldehyde resin). In some embodiments of the invention, the solvent can include ethyl acetate, butyl acetate, propyl acetate, isopropyl alcohol, or diacetone alcohol. In some embodiments of the invention, the plasticizer can include trimethyl pentanyl diisobutyrate, triphenyl phosphate, ethyl tosylamide, or camphor. In some embodiments of the invention, the bottomadhesive layer116 includes a film former, solvent, plasticizer, and diluent. The diluent can include, for example, dimethicone. Forming the bottomadhesive layer116 from a film former, solvent, and plasticizer in this manner results in the bottomadhesive layer116 having an air dry time of about 60 to 300 seconds. Advantageously, a removal time of only about 10 to 120 seconds can be achieved using an acetone soak. The bottomadhesive layer116 can be removed after the acetone soak by soaking or wiping.
Anexemplary system300 employing theelectronic device102 attached to a patient via the two-layer adhesive112 is depicted schematically inFIG. 3. In some embodiments of the invention,system300 can include a strain gauge sensor andWheatstone bridge circuit302, anamplifier304, an analog todigital converter module306 that includes an analog todigital converter306a(i.e., ADC), a radio frequency (RF)controller306band amicro-controller306c, anetwork antenna308, and aportable device310. As further shown inFIG. 3, theelectronic device102 serves as a resistor in theWheatstone bridge circuit302. In some embodiments of the invention, theWheatstone bridge circuit302 receives power frompower supply312. It is notable that the values (i.e., power supply voltage, resistances, etc.) shown inFIG. 3 are merely given as examples and not intended to in any way limit the embodiments to these particular values.
Amplifier304 serves to amplify the (voltage) signal output from theWheatstone bridge circuit302. Analog todigital converter306a(i.e., ADC) inmodule306 converts that amplified signal into a digital signal.Module306 can also include amicro-controller306c(e.g., a processor—CPU) that prepares (e.g., conditions, buffers, etc.) the signal for the radio frequency (RF)controller306bthat then transfers the digitized signals to a receiver.
Network antenna308 transmits the digital signals from analog todigital converter306. These digital signals are transmitted, for example, via near-field communication (NFC), WiFi, Bluetooth® technology, etc. to one or more user devices, such as a smartphone314 (or other smart devices such as a smartwatch, smart glasses, etc.) and/orcomputer316.
Turning now toFIG. 4, a block diagram is shown of anapparatus400 for implementing one or more of the techniques presented herein. By way of example only,apparatus400 can be configured to serve as themicro-controller306cand/or as one or more of the user devices (e.g.,smartphone314,computer316, etc.) of system300 (FIG. 3).
In some embodiments of the invention,apparatus400 includes acomputer system410 andremovable media450.Computer system410 includes aprocessor device420, anetwork interface425, amemory430, amedia interface435 and anoptional display440.Network interface425 allowscomputer system410 to connect to a network, whilemedia interface435 allowscomputer system410 to interact with media, such as a hard drive orremovable media450.
Theprocessor device420 can be configured to implement the methods, steps, and functions described herein. Thememory430 can be distributed or local and theprocessor device420 could be distributed or singular. Thememory430 could be implemented as an electrical, magnetic or optical memory, or any combination of these or other types of storage devices. Moreover, the term “memory” should be construed broadly enough to encompass any information able to be read from, or written to, an address in the addressable space accessed byprocessor device420. With this definition, information on a network, accessible throughnetwork interface425, is still withinmemory430 because theprocessor device420 can retrieve the information from the network. It should be noted that each distributed processor that makes upprocessor device420 generally contains its own addressable memory space. It should also be noted that some or all ofcomputer system410 can be incorporated into an application-specific or general-use integrated circuit.
In some embodiments of the invention, theoptional display440 can include any type of display suitable for interacting with a human user ofapparatus400. Generally,display440 is a computer monitor, LCD or LED screen, or other similar display.
FIG. 5 depicts a flow diagram500 illustrating a method for securing an electronic device to a live nail using a two-layer adhesive according to one or more embodiments of the invention. As shown atblock502, a surface of the nail is coated with a first adhesive layer. In some embodiments of the invention, the first adhesive layer is selected from a first class of materials, a second class of materials, and a third class of materials.
In some embodiments of the invention, the first adhesive layer includes a film former, a plasticizer, and a solubilizing agent (collectively the first class of materials). In some embodiments of the invention, the film former includes one of polyurethane-35, acrylic crosspolymer resin, and vinyl pyrrolidone (VP) crosspolymer resin. In some embodiments of the invention, the plasticizer includes glycerine and wherein the solubilizing agent includes laureth-21.
In some embodiments of the invention, the first adhesive layer includes a film former, a chain transfer agent, and a photoinitiator (collectively the second class of materials). In some embodiments of the invention, the film former includes an acrylates copolymer, the chain transfer agent includes pentaerythrityl tetra mercaptopropionate, and the photoinitiator includes trimethyl benzoyl diphenyl phosphine oxide.
In some embodiments of the invention, the first adhesive layer includes a film former, a solvent, and a plasticizer (collectively the third class of materials). In some embodiments of the invention, the film former includes at least one of nitrocellulose, a tosylamide-based resin, or a formaldehyde-based resin. In some embodiments of the invention, the solvent includes one or more of ethyl acetate, butyl acetate, propyl acetate, isopropyl alcohol, and diacetone alcohol. In some embodiments of the invention, the plasticizer includes one or more of trimethyl pentanyl diisobutyrate, triphenyl phosphate, ethyl tosylamide, and camphor.
Atblock504, the first adhesive layer is cured. In some embodiments of the invention, curing the first adhesive layer includes an air cure of about 30 to 300 seconds (e.g., for the first class of materials). In some embodiments of the invention, curing the first adhesive layer includes exposing the first adhesive layer to UV light for about 60 (e.g., for the second class of materials). In some embodiments of the invention, curing the first adhesive layer includes an air cure of about 60 to 300 seconds (e.g., for the third class of materials).
Atblock506, a surface of the cured first adhesive layer is coated with a second adhesive layer. In some embodiments of the invention, the second adhesive layer includes cyanoacrylate.
Atblock508, an electronic device is positioned on the uncured second adhesive layer (i.e., prior to curing the second adhesive layer). Atblock510, the second adhesive layer is cured. In some embodiments of the invention, curing the second adhesive layer embeds the electronic device within the second adhesive layer or to the surface of the second adhesive layer. In some embodiments of the invention, the second adhesive layer is cured using an air cure of about 30 seconds, although other cure durations are within the contemplated scope of the invention depending on the particular material selected for the second adhesive layer.
FIG. 6 depicts a flow diagram600 illustrating a method for removing an electronic device from a patient (e.g., a patient's live nail) using a two-layer adhesive according to one or more embodiments of the invention. As shown atblock602, an adhesive stack is formed on a surface of the patient.
In some embodiments of the invention, the adhesive stack releases upon exposure to a first solvent after a first duration and an electric device releases upon exposure to a second solvent after a second duration more than the first duration. For example, the bottom layer can be removed using water as a first solvent, and the cyanoacrylate top layer can be removed using acetone as the second solvent. In other words, the whole adhesive stack including the organism surface, bottom layer, top layer, and the electronic device will be exposed to the first solvent (e.g., water) for a set duration (e.g., 3 minutes). Exposure to the first solvent minimizes the amount of bottom layer material leftover and releases the remaining stack from the organism surface, exposing a discrete stack of top layer (e.g., cyanoacrylate) and the electronic device. The second solvent exposure releases the electronic device from the top layer. As discussed previously, in some embodiments of the invention, the second solvent exposure is done after separation from the organism and can include an arbitrarily longer duration than the first solvent exposure (e.g., 5 minutes, 10 minutes, 30 minutes, hours, etc.).
In some embodiments of the invention, the adhesive stack releases upon exposure to a first solvent (e.g., acetone) after a first duration and the electric device releases upon exposure to the first solvent (e.g., acetone) after a second duration more than the first duration. In other words, complete separation can be achieved using two soaks in the same solvent. For example, a relatively short soak in acetone can be used to remove the adhesive stack and electronic device from the surface of the organism, and a second, relatively longer soak in acetone can be used to remove the top layer from the electronic device.
In some embodiments of the invention, the electronic device is released from the adhesive stack prior to removal of the adhesive stack from the organism. In other words, in some embodiments of the invention, the adhesive stack is exposed to the second solvent prior to the first solvent.
In some embodiments of the invention, the top layer includes cyanoacrylate. In some embodiments of the invention, the bottom layer includes one or more of polyurethane-35, acrylic crosspolymer resin, vinyl pyrrolidone (VP) crosspolymer resin, an acrylates copolymer, nitrocellulose, a tosylamide-based resin, or a formaldehyde-based resin.
Atblock604, the adhesive stack is exposed to the second solvent for the second duration to release the adhesive stack from the surface of the patient. Atblock606, the adhesive stack is removed from the patient.
Atblock608, after removing the adhesive stack, the adhesive stack is exposed to the second solvent for the second duration to separate the electronic device from the top layer. In some embodiments of the invention, the first solvent and the second solvent are the same. In some embodiments of the invention, the first solvent includes water and the second solvent includes acetone.
As can be seen from the foregoing detailed descriptions, technical effects and benefits of embodiments of the invention provide a new two-layer adhesive and methods of using the same to secure an electronic device to an organism (e.g., to a live nail of a patient). This new two-layer adhesive can be easily and quickly removed due to the inclusion of a temporary bottom layer, directly addressing the shortcomings of conventional adhesives (e.g., cyanoacrylate-based adhesives). Advantageously, the top layer of the two-layer adhesive can include conventionally strong, long lasting adhesives such as cyanoacrylates (for binding the electronic device), while the bottom layer can include an easily removable resin, such as one or more of polyurethane-35, acrylic crosspolymer resin, vinyl pyrrolidone (VP) crosspolymer resin, an acrylates copolymer, nitrocellulose, a tosylamide-based resin, or a formaldehyde-based resin.
Various embodiments of the present invention are described herein with reference to the related drawings. Alternative embodiments can be devised without departing from the scope of this invention. Although various connections and positional relationships (e.g., over, below, adjacent, etc.) are set forth between elements in the following description and in the drawings, persons skilled in the art will recognize that many of the positional relationships described herein are orientation-independent when the described functionality is maintained even though the orientation is changed. These connections and/or positional relationships, unless specified otherwise, can be direct or indirect, and the present invention is not intended to be limiting in this respect. Similarly, the term “coupled” and variations thereof describes having a communications path between two elements and does not imply a direct connection between the elements with no intervening elements/connections between them. All of these variations are considered a part of the specification. Accordingly, a coupling of entities can refer to either a direct or an indirect coupling, and a positional relationship between entities can be a direct or indirect positional relationship. As an example of an indirect positional relationship, references in the present description to forming layer “A” over layer “B” include situations in which one or more intermediate layers (e.g., layer “C”) is between layer “A” and layer “B” as long as the relevant characteristics and functionalities of layer “A” and layer “B” are not substantially changed by the intermediate layer(s).
The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “at least one” and “one or more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include an indirect “connection” and a direct “connection.”
References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described can include a particular feature, structure, or characteristic, but every embodiment may or may not include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
For purposes of the description hereinafter, the terms “upper,” “lower,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” and derivatives thereof shall relate to the described structures and methods, as oriented in the drawing figures. The terms “overlying,” “atop,” “on top,” “positioned on” or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements such as an interface structure can be present between the first element and the second element. The term “direct contact” means that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating or semiconductor layers at the interface of the two elements.
Spatially relative terms, e.g., “beneath,” “below,” “lower,” “above,” “upper,” and the like, are used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device can be otherwise oriented (e.g., rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein should be interpreted accordingly.
The terms “about,” “substantially,” “approximately,” and variations thereof, are intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” can include a range of ±8% or 5%, or 2% of a given value.
The present invention may include a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instruction by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments described herein

Claims (12)

What is claimed is:
1. A method for securing electronics to an organism, the method comprising:
coating a surface of the organism with a first adhesive layer, the first adhesive layer comprising a film former, a plasticizer, and a solubilizing agent, the solubilizing agent comprising laureth-21;
curing the first adhesive layer;
coating a surface of the cured first adhesive layer with a second adhesive layer;
positioning an electronic device on the second adhesive layer prior to curing the second adhesive layer; and
curing the second adhesive layer.
2. The method ofclaim 1, wherein the surface of the organism is selected from the group consisting of a fingernail, a toenail, a tooth, a claw, a hoof, and an area of skin.
3. The method ofclaim 1, wherein:
the film former comprises one of polyurethane-35, acrylic crosspolymer resin, and vinyl pyrrolidone (VP) crosspolymer resin.
4. The method ofclaim 3, wherein the plasticizer comprises glycerine.
5. The method ofclaim 2, wherein curing the first adhesive layer comprises an air cure of up to about 300 seconds.
6. The method ofclaim 1, wherein the first adhesive layer further comprises a chain transfer agent and a photoinitiator.
7. The method ofclaim 6, wherein the film former comprises an acrylates copolymer, the chain transfer agent comprises pentaerythrityl tetra mercaptopropionate, and the photoinitiator comprises trimethyl benzoyl diphenyl phosphine oxide.
8. The method ofclaim 7, wherein curing the first adhesive layer comprises exposing the first adhesive layer to UV light for about 60 seconds.
9. The method ofclaim 1, wherein the first adhesive layer further comprises a solvent.
10. The method ofclaim 9, wherein the film former comprises at least one of nitrocellulose, a tosylamide-based resin, or a formaldehyde-based resin.
11. The method ofclaim 10, wherein the solvent comprises one or more of ethyl acetate, butyl acetate, propyl acetate, isopropyl alcohol, and diacetone alcohol.
12. The method ofclaim 11, wherein the plasticizer comprises one or more of trimethyl pentanyl diisobutyrate, triphenyl phosphate, ethyl tosylamide, and camphor.
US16/665,2542019-10-282019-10-28Two-layer adhesion of electronics to a surfaceActive2041-03-23US11471105B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US16/665,254US11471105B2 (en)2019-10-282019-10-28Two-layer adhesion of electronics to a surface
US17/823,168US12290384B2 (en)2019-10-282022-08-30Two-layer adhesion of electronics to a surface

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US16/665,254US11471105B2 (en)2019-10-282019-10-28Two-layer adhesion of electronics to a surface

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US17/823,168DivisionUS12290384B2 (en)2019-10-282022-08-30Two-layer adhesion of electronics to a surface

Publications (2)

Publication NumberPublication Date
US20210121128A1 US20210121128A1 (en)2021-04-29
US11471105B2true US11471105B2 (en)2022-10-18

Family

ID=75586642

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US16/665,254Active2041-03-23US11471105B2 (en)2019-10-282019-10-28Two-layer adhesion of electronics to a surface
US17/823,168Active2040-10-08US12290384B2 (en)2019-10-282022-08-30Two-layer adhesion of electronics to a surface

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US17/823,168Active2040-10-08US12290384B2 (en)2019-10-282022-08-30Two-layer adhesion of electronics to a surface

Country Status (1)

CountryLink
US (2)US11471105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11471105B2 (en)2019-10-282022-10-18International Business Machines CorporationTwo-layer adhesion of electronics to a surface
US11850068B2 (en)*2019-11-272023-12-26International Business Machines CorporationModular sensing unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20180085061A1 (en)2016-09-282018-03-29International Business Machines CorporationCharacterizing primate nail deformation
US20180165566A1 (en)2015-06-012018-06-14The Board Of Trustees Of The University Of IllinoisMiniaturized electronic systems with wireless power and near-field communication capabilities
WO2018104574A1 (en)2016-12-092018-06-14Toral Bardina Manuel EnriqueFalse nail and method for shaping same on a natural nail
US20180271643A1 (en)*2017-03-242018-09-27Novartis AgOptic nerve support implant
US20180368961A1 (en)*2017-06-262018-12-27Align Technology, Inc.Biosensor performance indicator for intraoral appliances
US20190076334A1 (en)*2017-09-082019-03-14Ormco CorporationOrthodontic adhesives and methods of using same
US20190351262A1 (en)*2017-01-112019-11-21Landa Labs (2012) LtdNail metallization
US20210024785A1 (en)*2018-03-142021-01-28Pimea 6Detachable adhesive composition systems and methods
US20220011493A1 (en)*2018-12-192022-01-13Corning IncorporatedLong length uniform illumination light diffusing fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19541605C2 (en)*1995-11-081999-06-24Hewlett Packard Co Sensor and method for performing medical measurements, in particular pulse oximetric measurements, on the human finger
CH706836B1 (en)*2012-08-282014-10-31Yves Swiss AgArtificial nail with an embedded transponder and access to a software application, to be placed on a finger or toe nail.
IN2015DN02936A (en)*2012-09-112015-09-18Zansors Llc
US11471105B2 (en)2019-10-282022-10-18International Business Machines CorporationTwo-layer adhesion of electronics to a surface

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20180165566A1 (en)2015-06-012018-06-14The Board Of Trustees Of The University Of IllinoisMiniaturized electronic systems with wireless power and near-field communication capabilities
US20180085061A1 (en)2016-09-282018-03-29International Business Machines CorporationCharacterizing primate nail deformation
US20180116594A1 (en)2016-09-282018-05-03International Business Machines CorporationCharacterizing primate nail deformation
WO2018104574A1 (en)2016-12-092018-06-14Toral Bardina Manuel EnriqueFalse nail and method for shaping same on a natural nail
US20190351262A1 (en)*2017-01-112019-11-21Landa Labs (2012) LtdNail metallization
US20180271643A1 (en)*2017-03-242018-09-27Novartis AgOptic nerve support implant
US20180368961A1 (en)*2017-06-262018-12-27Align Technology, Inc.Biosensor performance indicator for intraoral appliances
US20190076334A1 (en)*2017-09-082019-03-14Ormco CorporationOrthodontic adhesives and methods of using same
US20210024785A1 (en)*2018-03-142021-01-28Pimea 6Detachable adhesive composition systems and methods
US20220011493A1 (en)*2018-12-192022-01-13Corning IncorporatedLong length uniform illumination light diffusing fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Katsuyuki Sakuma et al., "Wearable Nail Deformation Sensing for Behavioral and Biomechanical Monitoring and Human-Computer Interaction," Nature: Scientific Reports Journal, vol. 8, Article No. 18031, 2018; (11 pages).

Also Published As

Publication numberPublication date
US20210121128A1 (en)2021-04-29
US12290384B2 (en)2025-05-06
US20220409136A1 (en)2022-12-29

Similar Documents

PublicationPublication DateTitle
US12290384B2 (en)Two-layer adhesion of electronics to a surface
Kim et al.Skin preparation–free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control
US10932722B2 (en)Flexible and stretchable electronic device based on biocompatible film and preparation method
Dagdeviren et al.Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring
Jeong et al.Capacitive Epidermal Electronics for Electrically Safe, Long–Term Electrophysiological Measurements
JP7198802B2 (en) Skin-mounted device and attachment method
CN103462601B (en)Electrode for medical service pastes and preparation method thereof
Yang et al.Influence of contamination on zirconia ceramic bonding
López et al.High-performance analog front-end (AFE) for EOG systems
CN110621227A (en)Sensor system and method for producing the same
JP6886540B2 (en) Data acquisition device and biosensor
CN110604566B (en)Flexible deformable degradable brain detection treatment device and system and manufacturing and using methods
US20240427418A1 (en)Wireless soft scalp electronics and virtual reality system for brain-machine interfaces
Yi et al.Portable, wireless wearable piezoelectric arterial pulse monitoring system based on near-field communication approach
DE602005008630D1 (en) IMPLANTABLE MEDICAL DEVICE PROVIDING HIS-PURKINJE ACTIVITY
WO2015142134A1 (en)Method for controlling wearable device and wearable device
Kettlgruber et al.Stretch‐Safe: magnetic connectors for modular stretchable electronics
JP2016506268A5 (en)
JP2018174995A (en) Electrode for biological signal measuring device and biological signal measuring device provided with the same
KR20160094591A (en)Dry adhesive structure and method for forming the same
US20210196181A1 (en)Separate printed traces for ecg and defibrillation circuits
KR20160094592A (en)Electronic patch and method for the same
KR102182598B1 (en)Pulse sensing module, blood pressure calculation module, blood pressure measuring device and method for manufacturing pulse sensing module
KR20200057251A (en)Pulse sensing module, blood pressure calculation module, blood pressure measuring device and method for manufacturing pulse sensing module
EP3869478A1 (en)Data acquisition method and signal measurement system

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW YORK

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANCOAST, LEANNA;SAKUMA, KATSUYUKI;SIGNING DATES FROM 20191023 TO 20191024;REEL/FRAME:050841/0923

FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPPInformation on status: patent application and granting procedure in general

Free format text:PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCFInformation on status: patent grant

Free format text:PATENTED CASE


[8]ページ先頭

©2009-2025 Movatter.jp