Movatterモバイル変換


[0]ホーム

URL:


US10792152B2 - Closed band for percutaneous annuloplasty - Google Patents

Closed band for percutaneous annuloplasty
Download PDF

Info

Publication number
US10792152B2
US10792152B2US15/919,452US201815919452AUS10792152B2US 10792152 B2US10792152 B2US 10792152B2US 201815919452 AUS201815919452 AUS 201815919452AUS 10792152 B2US10792152 B2US 10792152B2
Authority
US
United States
Prior art keywords
sleeve
annulus
longitudinal
applications
contracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/919,452
Other versions
US20190167425A1 (en
Inventor
Tal Reich
Amir Gross
Tal Sheps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valtech Cardio Ltd
Original Assignee
Valtech Cardio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/167,444external-prioritypatent/US9011530B2/en
Priority claimed from US13/167,476external-prioritypatent/US8940044B2/en
Priority claimed from US13/167,492external-prioritypatent/US8926697B2/en
Priority claimed from PCT/IL2012/000250external-prioritypatent/WO2012176195A2/en
Priority claimed from US14/589,100external-prioritypatent/US9918840B2/en
Priority claimed from US15/474,543external-prioritypatent/US10470882B2/en
Priority to US15/919,452priorityCriticalpatent/US10792152B2/en
Application filed by Valtech Cardio LtdfiledCriticalValtech Cardio Ltd
Assigned to VALTECH CARDIO, LTDreassignmentVALTECH CARDIO, LTDASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: GROSS, AMIR, REICH, TAL, SHEPS, TAL
Publication of US20190167425A1publicationCriticalpatent/US20190167425A1/en
Priority to US17/063,549prioritypatent/US12409032B2/en
Publication of US10792152B2publicationCriticalpatent/US10792152B2/en
Application grantedgrantedCritical
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A method is provided, including, during a percutaneous transcatheter procedure, placing an annuloplasty device entirely around an annulus of a mitral valve of a subject in a closed loop. The annuloplasty device includes a flexible sleeve, which is fastened to the annulus by coupling a plurality of tissue anchors to a posterior portion of the annulus, without coupling any tissue anchors to any anterior portion of the annulus between left and right fibrous trigones of the annulus. After (a) placing the annuloplasty device entirely around the annulus in the closed loop and (b) fastening the flexible sleeve to the annulus, a longitudinal portion of the flexible sleeve is longitudinally contracted. Other embodiments are also described.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a divisional of U.S. application Ser. No. 14/589,100, filed Jan. 5, 2015. The present application is also a continuation-in-part of U.S. application Ser. No. 15/474,543, filed Mar. 30, 2017, which is a continuation of U.S. application Ser. No. 14/128,756, filed Feb. 6, 2014, now U.S. Pat. No. 9,662,209, which is the U.S. national stage of International Application PCT/IL2012/000250, filed Jun. 21, 2012, which (a) is a continuation-in-part of U.S. application Ser. No. 13/167,444, filed Jun. 23, 2011, now U.S. Pat. No. 9,011,530, (b) is a continuation-in-part of U.S. application Ser. No. 13/167,476, filed Jun. 23, 2011, now U.S. Pat. No. 8,940,044, and (c) is a continuation-in-part of U.S. application Ser. No. 13/167,492, filed Jun. 23, 2011, now U.S. Pat. No. 8,926,697, which is assigned to the assignee of the present application and each of the foregoing applications is incorporated herein by reference.
FIELD OF THE APPLICATION
Some applications of the present invention relate in general to valve repair, and more specifically to repair of an atrioventricular valve of a patient.
BACKGROUND OF THE APPLICATION
Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium. Dilation of the annulus is sometimes treated by annuloplasty, in which a partial or full ring is implanted around the annulus to cause the leaflets to coapt when the valve is closed.
SUMMARY
In some applications of the present invention, an implantable structure is provided that comprises a flexible sleeve having first and second sleeve ends, a contracting assembly, and a plurality of tissue anchors. The contracting assembly is configured to longitudinally contract the sleeve, and comprises a contracting mechanism and a longitudinal contracting member having first and second member ends. The contracting mechanism is disposed longitudinally at a first site of the sleeve, and the second member end is coupled to the sleeve longitudinally at a second site longitudinally between the first site and the second sleeve end, exclusive. The contracting member also has a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member, and is coupled to the contracting mechanism. A first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, and a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site. The sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. The implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites, and not along the overlapping portion. The longitudinal contracting force longitudinally contracts at least a portion of the sleeve only between the first and the second sites, and not along the overlapping portion. Typically, the contracting member extends along neither the first nor the second portion of the sleeve.
In some applications of the present invention, the contracting assembly includes one or more longitudinal contracting members coupled to the contracting mechanism. The implantable structure is placed completely around an annulus of an atrioventricular valve of a subject, such that none of the one or more longitudinal contracting members is positioned along an anterior portion of the annulus between fibrous trigones of the valve. The implantable structure is fastened to the annulus. The contracting assembly is then actuated to contract a longitudinal portion of the sleeve not positioned along the anterior portion of the annulus. Tightening of the implantable structure therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of annulus, especially the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
In some applications of the present invention, one or more of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second site and the second sleeve end, exclusive. Typically, the implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites. The longitudinal contracting force contracts at least a portion of the sleeve only between the first and the second sites. Providing the one or more anchors beyond the ends of the contracting member generally distributes force applied by contraction of the contracting assembly over the tissue interfaces of these anchors. In contrast, in some configurations of the implantable structure in which anchors are not provided beyond the ends of the contracting member, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest the second end of the contracting member.
For some applications, at least two of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second member end and the second sleeve end, exclusive. For some applications, the second site is at least 5 mm from the second sleeve end, measured when the sleeve is in a straight, relaxed, non-contracted state, such as at least 9 mm, e.g., at least 18 mm. For some applications, the second site is at a longitudinal distance from the second sleeve end, which distance is no greater than 30% of a total length of the sleeve, the distance and length measured when the sleeve is in the straight, relaxed, non-contracted state. For some applications, at least three of the tissue anchors are coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive. Typically, the sleeve is substantially longitudinally non-extensible.
For some applications, the sleeve has first and second sleeve ends, and first and second portions that longitudinally extend from the first and the second sleeve ends, respectively. The sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve positioned at least partially along the anterior portion of the annulus, and none of the one or more longitudinal contracting members is positioned along the overlapping portion of the sleeve. For some applications, at least one of the tissue anchors penetrates both the first and second portions of the sleeve at the overlapping portion. Such a mutual anchor helps ensure that the first and second portions remain tightly coupled together and to the tissue, so that the sleeve retains its closed loop shape. Alternatively, for some applications, the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
The implantable structure, when in this closed-loop configuration, is deployed around the entire annulus of the native valve, including an anterior portion of the annulus (on the aortic side of the valve) between the fibrous trigones. Typically, the contracting member does not extend along the portion of the sleeve deployed along the anterior portion of the annulus, and thus does not extend along the first portion, the second portion, or the overlapping portion of the sleeve. The portion of the sleeve deployed along the anterior portion of the annulus (between the trigones) is thus non-contractible. As mentioned above, tightening of the implantable structure therefore tightens the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. For some applications, this deployment configuration may also help achieve a closed loop that serves as a base ring to which a prosthetic valve is coupled.
In some applications of the present invention, the implantable structure further comprises an elongated linking member, which is positioned along an anterior portion of the annulus, so as to join the ends of the implantable structure in a complete loop. Over time after implantation, the linking member becomes fixed to the anterior portion of the annulus, thereby helping prevent long-term dilation of the anterior annulus. Typically, at least a portion of the linking member is disposed within and covered by the sleeve, into and/or over which fibrous tissue grows over time, helping anchor the linking member to tissue of the anterior annulus. Typically, in this configuration of the implantable structure, none of the anchors is coupled to the anterior portion of the annulus.
A first end of the linking member is typically fixed between 2 and 6 cm from a first end of the sleeve. A second end of the linking member is positioned within 1.5 cm of the same end of the sleeve, either protruding from the end of the sleeve, or recessed within the sleeve. The second end of the linking member comprises (e.g., is shaped so as to define) a first coupling element. The implantable structure further comprises a second coupling element, which is configured to be coupleable to the first coupling element. The second coupling element is coupled to the implantable structure within 1.5 cm of the second end of the sleeve. The second coupling element may be coupled to the housing, directly to the sleeve, or otherwise coupled to the implantable structure. Typically, the linking member is substantially longitudinally non-extensible, i.e., its length is fixed.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall. For some applications, at least two of the tissue anchors are coupled to the sleeve at respective, different longitudinal sites alongside the linking member, within 6 cm of the first end of the linking member. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
For some applications, the implantable structure further comprises an elongated radial-force application element, which is disposed entirely within a first longitudinal portion of the sleeve. The elongated radial-force application element is configured to apply a force against a wall of the first longitudinal portion of the sleeve in at least one radially-outward direction. The applied force pushes the first longitudinal portion of the sleeve against tissue of the left atrium, such as against tissue of the annulus and/or the atrial wall, so as to inhibit blood flow between the sleeve and the tissue. It is generally desirable to inhibit blood flow between the sleeve and the annulus on anterior side, to avoid creating turbulence. When implanting the implantable structure, the elongated radial-force application element is placed along the anterior portion of the annulus, between the fibrous trigones.
For some applications, the elongated radial-force application element comprises a springy element. For some applications, at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric. For other applications, the elongated radial-force application element is helically symmetric; for these applications, the springy element typically comprises a coiled spring.
For some applications, the sleeve has first and second sleeve ends. For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the annuloplasty ring further comprises (a) a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second coupling element. The second coupling element is configured to be coupleable to the first coupling element, and is fixed to the implantable structure (e.g., the annuloplasty ring) within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended. For some applications, at least one of the first and second coupling elements comprises a hook.
For some applications, the contracting mechanism (e.g., the housing thereof) is fixed along the sleeve within 30 mm, such as within 15 mm, of the second sleeve end (i.e., the same end of the sleeve near which the second coupling element is coupled), measured when the sleeve is fully longitudinally extended. For example, the contracting mechanism (e.g., the housing thereof) may be fixed at the second sleeve end. Alternatively, for some applications, the contracting mechanism (e.g., the housing thereof) is fixed at least 5 mm from the second sleeve end, e.g., between 5 and 30 mm, such as between 5 and 15 mm, from the second sleeve end. The second coupling element may be coupled to the contracting mechanism (e.g., to the housing).
For some applications, the annuloplasty ring further comprises a substantially longitudinally non-extensible linking member, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. The linking member typically helps prevent long-term dilation of the anterior annulus. The linking member is typically configured not to apply any force to the wall of the first longitudinal portion of the sleeve. Typically, the linking member is not configured as a spring.
For some applications, at least the first longitudinal portion of the sleeve is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. In these applications, the first longitudinal portion typically helps prevent long-term dilation of the anterior annulus. For some applications, the first coupling element is fixed to the wall of the sleeve within 1.5 cm offirst sleeve end51, measured when the sleeve is fully longitudinally extended. The implantable structure typically does not comprise the linking member in these applications. In these applications, at least the first longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first longitudinal portion typically helps prevent long-term dilation of the anterior annulus.
For some applications, during placement, after fastening the sleeve to the portion of the annulus, the healthcare professional twists the first longitudinal portion of the sleeve. Optionally, such twisting may serve one or both of the following purposes: (1) the twisting may store energy in the springy element for exertion of torque against the wall of the sleeve, and (2) the twisting may rotationally align the springy element in the desired radial direction. Alternatively or additionally to twisting for the first of these purposes, the springy element may be pre-loaded (twisted) to store energy before implantation in the subject, such as immediately before implantation or during manufacture.
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus. The tissue anchors are coupled with:
    • a first non-zero longitudinal density along a posterior portion of the annulus between the left and right fibrous trigones of the annulus, including the trigones, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the posterior portion of the annulus divided by (b) a length of the posterior portion of the annulus (measured along the annulus),
    • and a second non-zero longitudinal density along the anterior portion of the annulus between the left and right fibrous trigones of the annulus, not including the trigones, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the anterior portion of the annulus divided by (b) a length of the anterior portion of the annulus (measured along the annulus).
The first longitudinal density is greater than the second longitudinal density. For some applications, the first longitudinal density is at least twice the second longitudinal density, such as at least 2.5 the second longitudinal density, e.g., at least 3 times the second longitudinal density. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating the contracting assembly.
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus, including first, second, and third tissue anchors, as follows:
    • one or more first tissue anchors are coupled to the annulus along a lateral scallop (P1) of the posterior leaflet, with a first longitudinal density, which density is equal to (a) a number of the first tissue anchors coupled to the annulus along the lateral scallop (P1) divided by (b) a length of the lateral scallop (P1) along the annulus,
    • a plurality of second tissue anchors (e.g., at least 3 tissue anchors) are coupled to the annulus along a middle scallop (P2) of the posterior leaflet, with a second longitudinal density, which density is equal to (a) a number of the second tissue anchors coupled to the annulus along the middle scallop (P2) divided by (b) a length of the middle scallop (P2) along the annulus, and
    • one or more third tissue anchors are coupled to the annulus along a medial scallop (P3) of the posterior leaflet, with a third longitudinal density, which density is equal to (a) a number of the third tissue anchors coupled to the annulus along the medial scallop (P3) divided by (b) a length of the medial scallop (P3) along the annulus.
The longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density. For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density.
For some applications, the tissue anchors, including the second tissue anchors, comprise respective anchor heads and tissue coupling elements. Typically, the anchor heads are circular; alternatively, they have another shape, such as of an ellipse or a polygon (e.g., a hexagon or a square). The plurality of tissue anchors are coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted, each of the anchor heads of at least two of the second tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head; for example, each of the anchor heads of at least three of tissue anchors touches at least one longitudinally-adjacent anchor head320.
Typically, before the longitudinal portion of the sleeve has been contracted, the anchor heads of the at least two of the second tissue anchors do not touch any longitudinally-adjacent the anchor heads. Before the longitudinal portion of the sleeve has been contracted, the anchors are coupled to the sleeve and tissue at distances between the anchors that are less than the planned distances that the anchors move toward each other during contraction of the longitudinal portion of the sleeve. As a result, the anchor heads touch each other upon such contraction.
This touching of the longitudinally-adjacent anchors heads inhibits longitudinal contraction of the sleeve in the longitudinal area of these anchors, so as to facilitate reshaping of the annulus in a desired manner. These longitudinally-adjacent the anchor heads thus are dual-function, and serve to both anchor their respective anchors to the sleeve and to inhibit contraction of the sleeve.
For some applications, the plurality of tissue anchors is coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted:
    • none of the anchor heads of the first tissue anchors coupled along the lateral scallop (P1) touches any of the other anchor heads of the tissue anchors; and/or
    • none of the anchor heads of the third tissue anchors coupled along the medial scallop (P3) touches any of the other anchor heads of the tissue anchors.
For some applications, the plurality of tissue anchors are coupled to the annulus such that, after the longitudinal portion of the sleeve has been contracted:
    • a first number of the anchor heads of the first tissue anchors coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head, and (b) a second number of the anchors heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number; and/or
    • a second number of the anchor heads of the second tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and (b) a third number of the anchors heads of the third tissue anchors coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the third number.
For some applications, the sleeve is fastened to the annulus by coupling a plurality of tissue anchors to the annulus, such that:
    • a first set of exactly three of the tissue anchors is disposed in succession along a first portion of the longitudinal contracting member with a first distance between longitudinal-end tissue anchors of the first set, measured along the annulus, and
    • a second set of exactly three of the tissue anchors is disposed in succession along a second portion of the longitudinal contracting member with a second distance between longitudinal-end tissue anchors of the second set, measured along the annulus,
The first distance equals at least twice the second distance, such as at least 2.5 times the second distance, e.g., at least 3 times the second distance. The first distance is measured between closest portions of the longitudinal-end tissue anchors of the first set, and the second distance is measured between closest portions of the longitudinal-end tissue anchors of the second set. The first and second sets do not share any common tissue anchors. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted. Providing the greater number of anchoring points with the second set better distributes forces among the anchors of this set.
For some applications, the contracting mechanism comprises a rotatable structure, and a housing in which the rotatable structure is positioned. The contracting mechanism and the longitudinal contracting member are arranged such that rotation of the rotatable structure contracts the implantable structure. Typically, an anchor deployment manipulator is advanced into a lumen of the sleeve, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of a valve annulus.
For some applications, the implantable structure comprises an adjustable annuloplasty ring for repairing a dilated valve annulus of an atrioventricular valve, such as a mitral valve. The annuloplasty ring may be used for treating functional mitral regurgitation (FMR) or degenerative mitral valve disease. For other applications, a prosthetic heart valve is further provided, which is configured to be coupled to the sleeve.
For some applications in which the implantable structure is implanted around the annulus of a valve, the implantable structure may be advanced toward the annulus of a valve in any suitable procedure, e.g., a transcatheter procedure, a percutaneous procedure, a minimally invasive procedure, or an open heart procedure.
There is therefore provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of a mitral valve of a subject in a closed loop;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to a posterior portion of the annulus, without coupling any tissue anchors to an anterior portion of the annulus between left and right fibrous trigones of the annulus; and
thereafter, contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, the sleeve has first and second sleeve ends, and placing the sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications, the annuloplasty ring further includes an elongated linking member, which is coupled to and disposed within the sleeve, and placing the flexible sleeve entirely around the annulus includes placing the linking member along the anterior portion of the annulus.
For some applications, the linking member is configured as a spring. For some applications, the linking member is curved. For some applications, the linking member has a length of between 2 and 6 cm. For some applications, the linking member includes metal. For some applications, the linking member is substantially longitudinally non-extensible.
For some applications:
the linking member includes a first coupling element,
the annuloplasty ring includes a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of one of the first and the second sleeve ends, measured when the sleeve is fully longitudinally extended,
the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the one of the first and the second sleeve ends, and
placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
For some applications:
the linking member is disposed within a longitudinal portion of the sleeve,
the annuloplasty ring further includes an elongated radial-force application element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the elongated radial-force application element is springy.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the elongated radial-force application element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the elongated radial-force application element is disposed entirely within the first longitudinal portion of the sleeve.
There is further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of a mitral valve of a subject in a closed loop;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, with:
a first non-zero longitudinal density of the tissue anchors along a posterior portion of the annulus between left and right fibrous trigones of the annulus, including the trigones, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the posterior portion of the annulus divided by (b) a length of the posterior portion of the annulus, and
a second non-zero longitudinal density of the tissue anchors along an anterior portion of the annulus between left and right fibrous trigones of the annulus, not including the trigones, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the anterior portion of the annulus divided by (b) a length of the anterior portion of the annulus, wherein the first longitudinal density is greater than the second longitudinal density; and
thereafter, contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, the first longitudinal density is at least twice the second longitudinal density.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, the sleeve has first and second sleeve ends, and placing the flexible sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications, the annuloplasty ring further includes an elongated linking member, which is coupled to and disposed within the sleeve, and placing the flexible sleeve entirely around the annulus includes placing the linking member along the anterior portion of the annulus.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications:
the linking member includes a first coupling element,
the annuloplasty ring includes a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of one of the first and the second sleeve ends, measured when the sleeve is fully longitudinally extended,
the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the one of the first and the second sleeve ends, and
placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
For some applications:
the linking member is disposed within a longitudinal portion of the sleeve,
the annuloplasty ring further includes an elongated radial-force application element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the elongated radial-force application element is springy.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the elongated radial-force application element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the elongated radial-force application element is disposed entirely within the first longitudinal portion of the sleeve.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, and (b) a contracting assembly;
during a percutaneous transcatheter procedure, placing the flexible sleeve at least partially around an annulus of a mitral valve of a subject;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, with:
a first longitudinal density of the tissue anchors along a lateral scallop (P1) of a posterior leaflet of the mitral valve, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the lateral scallop (P1) divided by (b) a length of the lateral scallop (P1) along the annulus,
a second longitudinal density of the tissue anchors along a middle scallop (P2) of the posterior leaflet, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the middle scallop (P2) divided by (b) a length of the middle scallop (P2) along the annulus, and
a third longitudinal density of the tissue anchors along a medial scallop (P3) of the posterior leaflet, which density is equal to (a) a number of the tissue anchors coupled to the annulus along the medial scallop (P3) divided by (b) a length of the medial scallop (P3) along the annulus, wherein the longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density; and
thereafter, contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density, and (b) the second longitudinal density is at least twice the third longitudinal density.
For some applications, the second longitudinal density is at least twice the first longitudinal density.
For some applications, the second longitudinal density is at least twice the third longitudinal density.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling at least 3 tissue anchors to the annulus along the middle scallop (P2).
For some applications, the tissue anchors have respective anchor heads, and coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, each of the anchor heads of at least two of the tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, before contracting the longitudinal portion of the sleeve, the anchor heads of the at least two of the tissue anchors do not touch the at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, each of the anchor heads of at least three of the tissue anchors coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, none of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, none of the anchor heads of the tissue anchors coupled along the medial scallop (P3) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) none of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touches any of the other anchor heads of the tissue anchors, and (b) none of the anchor heads of the tissue anchors coupled along the medial scallop (P3) touches any of the other anchor heads of the tissue anchors.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) a first number of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head, and (b) a second number of the anchors heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve, (a) a second number of the anchor heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and (b) a third number of the anchors heads of the tissue anchors coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the third number.
For some applications, coupling the plurality of tissue anchors to the annulus includes coupling the plurality of tissue anchors to the annulus such that, after contracting the longitudinal portion of the sleeve:
a first number of the anchor heads of the tissue anchors coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head,
a second number of the anchors heads of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and
a third number of the anchors heads of the tissue anchors coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number, and the second number greater than the third number.
For some applications, the sleeve has first and second sleeve ends, and placing the sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other.
For some applications, placing the sleeve includes arranging the sleeve entirely around the annulus to form a closed loop, after introducing the flexible sleeve into the left atrium while the first and the second sleeve ends are not coupled to each other.
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
There is additionally provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve and (b) a contracting assembly, which includes a longitudinal contracting member;
during a percutaneous transcatheter procedure, placing the flexible sleeve at least partially around an annulus of a mitral valve of a subject;
fastening the sleeve to the annulus by coupling a plurality of tissue anchors to the annulus, such that:
a first set of exactly three of the tissue anchors is disposed in succession along the longitudinal contracting member with a first distance between longitudinal-end tissue anchors of the first set, measured along the annulus, and
a second set of exactly three of the tissue anchors is disposed in succession along the longitudinal contracting member with a second distance between longitudinal-end tissue anchors of the second set, measured along the annulus, wherein the first distance equals at least twice the second distance, and wherein the first and the second sets do not share any common tissue anchors; and
thereafter, contracting a longitudinal portion of the sleeve by causing the longitudinal contracting member to apply a contracting force to the longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve by causing the longitudinal contracting member to apply the contracting force to the longitudinal portion of the sleeve.
There is yet additionally provided, in accordance with an application of the present invention, apparatus including an annuloplasty ring, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly;
a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended; and
an elongated springy element, which is disposed entirely within a longitudinal portion of the sleeve, wherein the springy element has (a) a first springy-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second springy-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended,
wherein the springy element is configured to press the longitudinal portion of the sleeve against tissue.
For some applications, the contracting assembly further includes a longitudinal contracting member and a locking mechanism, which is configured to lock the longitudinal contracting member with respect to the contracting assembly.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and the contracting assembly is configured to contract at least a portion of a second longitudinal portion of the sleeve, which second longitudinal portion is entirely longitudinally distinct from the first longitudinal portion.
For some applications, a first end of the elongated springy element includes the first coupling element.
There is also provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve, having first and second sleeve ends, (b) a contracting assembly, (c) a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended, (d) a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended, and (e) an elongated springy element, which is disposed entirely within a first longitudinal portion of the sleeve, wherein the springy element has (a) a first springy-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second springy-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
during a percutaneous transcatheter procedure, placing the flexible sleeve around a portion of an annulus of an atrioventricular valve of a subject, which portion includes a posterior portion of the annulus;
placing the first longitudinal portion of the sleeve along an anterior portion of the annulus between fibrous trigones of the valve;
fastening the flexible sleeve to the portion of the annulus, such that the springy element presses the first longitudinal portion of the sleeve against tissue;
coupling the first and the second coupling elements together; and
contracting at least a portion of a second longitudinal portion of the sleeve, which second longitudinal portion is entirely longitudinally distinct from the first longitudinal portion.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the at least a portion of the second longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the at least a portion of the second longitudinal portion of the sleeve includes actuating the contracting assembly to contract the at least a portion of the second longitudinal portion of the sleeve.
For some applications, a first end of the elongated springy element includes the first coupling element.
There is further provided, in accordance with an application of the present invention, apparatus including an annuloplasty ring, which includes:
a flexible sleeve; and
an elongated radial-force application element, which (a) is disposed entirely within a longitudinal portion of the sleeve, (b) which has a length of no more than 6 cm, measured when the sleeve is fully longitudinally extended, and (c) is configured to apply a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 100% of a perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 50% of the perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force with a variation of less than 20% along a length of the elongated radial-force application element.
For some applications, the sleeve has first and second sleeve ends.
For some applications, the annuloplasty ring further includes:
a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended; and
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications:
the annuloplasty ring further includes a contracting assembly, which includes a housing that is fixed to the sleeve, and
the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the housing, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the housing, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element is configured to push the longitudinal portion of the sleeve against atrial tissue.
For some applications, the annuloplasty ring further includes a substantially longitudinally non-extensible linking member, which has first and second linking-member ends and is at least partially disposed within the longitudinal portion of the sleeve, and the second linking-member end includes the first coupling element.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, at least the longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first coupling element is fixed to the wall of the sleeve within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes a springy element.
For some applications, where at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, at least a portion of the springy element is serpentine.
For some applications, the at least a portion of the springy element is curved at least partially about the inner surface of the wall in a single circumferential direction.
For some applications, at least a first portion of the springy element is curved at least partially about the inner surface of the wall in a first circumferential direction, and at least a second portion of the springy element is curved at least partially about the inner surface of the wall in a second circumferential direction circumferentially opposite the first circumferential direction.
For some applications, at least a portion of the springy element is serpentine.
For some applications, springy element includes a coiled spring.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications,
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and
the annuloplasty ring further includes a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes the longitudinal contracting member and a contracting mechanism.
For some applications, a first average internal diameter of the first longitudinal portion of the sleeve is greater than a second average internal diameter of the second longitudinal portion of the sleeve, when both the first and the second longitudinal portions are fully radially expanded.
For some applications, the first longitudinal portion of the sleeve is radially elastic, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve are substantially longitudinally non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve have a same diameter when the first longitudinal portion is not elastically stretched.
For some applications, the first and the second longitudinal portions of the sleeve are woven, and the first longitudinal portion of the sleeve is more loosely woven than the second longitudinal portion of the sleeve.
For some applications, the first longitudinal portion of the sleeve is radially stretchable, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the annuloplasty ring further includes a plurality of tissue anchors, at least two of which are coupled to the sleeve at respective, different longitudinal sites alongside the elongated radial-force application member.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is fixed to the sleeve within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the elongated radial-force application member includes metal.
For some applications, the metal includes Nitinol.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an annuloplasty ring, which includes (a) a flexible sleeve and (b) an elongated radial-force application element, which is disposed entirely within a longitudinal portion of the sleeve;
during a percutaneous transcatheter procedure, placing the flexible sleeve entirely around an annulus of an atrioventricular valve of a subject, such that the longitudinal portion of the sleeve is disposed along an anterior portion of the annulus between fibrous trigones of the valve; and
fastening the flexible sleeve at least to a posterior portion of the annulus, such that the elongated radial-force application element applies a force against the wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the elongated radial-force application element is rotationally asymmetric and not helically symmetric.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 100% of a perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force against the wall around less than 50% of the perimeter of the wall.
For some applications, the elongated radial-force application element is configured to apply the force with a variation of less than 20% along a length of the elongated radial-force application element.
For some applications, the flexible sleeve has first and second sleeve ends, and placing the flexible sleeve includes introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and thereafter, in the left atrium, arranging the flexible sleeve entirely around the annulus to form the closed loop.
For some applications:
the annuloplasty ring further includes (a) a first coupling element, which is coupled to the annuloplasty ring within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended, (b) a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty ring within 1.5 cm of the second sleeve end, measured when the sleeve is fully longitudinally extended, and
coupling the first and the second sleeve ends to each other to form the closed loop includes coupling the first and the second coupling elements together.
For some applications, the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the first sleeve end, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended,
For some applications, providing the annuloplasty ring includes providing the annuloplasty ring in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications:
the annuloplasty ring further includes a contracting assembly, which includes a housing that is fixed to the sleeve, and
the elongated radial-force application element has (a) a first radial-force-application-element longitudinal end that is between 2 and 6 cm from the housing, measured when the sleeve is fully longitudinally extended, and (b) a second radial-force-application-element longitudinal end that is within 1.5 cm of the housing, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes an inflatable element.
For some applications, placing the elongated radial-force application element includes placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the longitudinal portion of the sleeve against atrial tissue.
For some applications, the annuloplasty ring further includes a substantially longitudinally non-extensible linking member, which has first and second linking-member ends and is at least partially disposed within the longitudinal portion of the sleeve, and the second linking-member end includes the first coupling element.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, at least the longitudinal portion of the sleeve is substantially longitudinally non-extensible, and the first coupling element is fixed to the wall of the sleeve within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the elongated radial-force application element includes a springy element.
For some applications, placing the longitudinal portion of the sleeve includes twisting the longitudinal portion of the sleeve after fastening the sleeve to the portion of the annulus.
For some applications, placing the longitudinal portion of the sleeve includes twisting the springy element after fastening the sleeve to the portion of the annulus.
For some applications, where at least a portion of the springy element is curved at least partially about an inner surface of the wall of the sleeve.
For some applications, at least a portion of the springy element is serpentine.
For some applications, the at least a portion of the springy element is curved at least partially about the inner surface of the wall in a single circumferential direction.
For some applications, at least a first portion of the springy element is curved at least partially about the inner surface of the wall in a first circumferential direction, and at least a second portion of the springy element is curved at least partially about the inner surface of the wall in a second circumferential direction circumferentially opposite the first circumferential direction.
For some applications, at least a portion of the springy element is serpentine.
For some applications, springy element includes a coiled spring.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion, and the method further includes, after fastening the flexible sleeve at least to a posterior portion of the annulus, contracting a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve, and the annuloplasty ring further includes a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes the longitudinal contracting member and a contracting mechanism.
For some applications, a first average internal diameter of the first longitudinal portion of the sleeve is greater than a second average internal diameter of the second longitudinal portion of the sleeve, when both the first and the second longitudinal portions are fully radially expanded.
For some applications, the first longitudinal portion of the sleeve is radially elastic, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve are substantially longitudinally non-extensible.
For some applications, the first and the second longitudinal portions of the sleeve have a same diameter when the first longitudinal portion is not elastically stretched.
For some applications, the first and the second longitudinal portions of the sleeve are woven, and the first longitudinal portion of the sleeve is more loosely woven than the second longitudinal portion of the sleeve.
For some applications, the first longitudinal portion of the sleeve is radially stretchable, and the second longitudinal portion of the sleeve is substantially radially non-extensible.
For some applications, the annuloplasty ring further includes a contracting assembly, which includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is fixed to the sleeve within 30 mm of the second sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the springy member includes metal.
For some applications, the metal includes Nitinol.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
There is additionally provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly;
an elongated linking member, having a first and second linking member ends, which second linking member end includes a first coupling element, wherein the linking member is coupled to the sleeve such that (a) at least a portion of the linking member is disposed within the sleeve, and (b) the first linking member end is longitudinally between the second linking member end and the first sleeve end, exclusive; and
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the implantable structure within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the contracting assembly is configured to longitudinal contract the sleeve.
For some applications, the implantable structure further includes a plurality of tissue anchors, at least two of which are coupled to the sleeve at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the longitudinal contracting member includes at least one wire.
For some applications, the linking member is configured as a spring.
For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal.
For some applications, the metal includes Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, at least 75% of the length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
For some applications, the at least a portion of the linking member is disposed within a longitudinal portion of the sleeve, and the implantable structure further includes an elongated springy element, which is disposed within the longitudinal portion of the sleeve, and which is configured to apply a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the linking member is not configured as a spring.
For some applications, the linking member is configured not to apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the springy element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the springy element is disposed entirely within the first longitudinal portion of the sleeve.
For some applications, the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the first sleeve end.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve, having first and second sleeve ends, (b) a contracting assembly, (c) an elongated linking member, having a first and second linking member ends, which second linking member end includes a first coupling element, wherein the linking member is coupled to the sleeve such that (i) at least a portion of the linking member is disposed within the sleeve, and (ii) the first linking member end is longitudinally between the second linking member end and the first sleeve end, exclusive, and (d) a second coupling element, which is coupled to the implantable structure within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended;
during a percutaneous transcatheter procedure, placing the flexible sleeve around a portion of an annulus of an atrioventricular valve of a subject, which portion includes a posterior portion of the annulus;
placing the linking member along an anterior portion of the annulus between fibrous trigones of the valve;
fastening the flexible sleeve to the portion of the annulus;
coupling the first and the second coupling elements together; and
contracting a longitudinal portion of the sleeve.
For some applications, the contracting assembly further includes a locking mechanism, and the method further includes, after contracting the longitudinal portion of the sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
For some applications, contracting the second longitudinal portion of the sleeve includes actuating the contracting assembly to contract the longitudinal portion of the sleeve.
For some applications, fastening includes fastening the sleeve to the annulus using a plurality of tissue anchors, including coupling at least two of the anchors to the sleeve and tissue of the annulus at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end.
For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the linking member is configured as a spring.
For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal.
For some applications, the metal includes Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, at least 75% of the length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook.
For some applications, at least one of the first and second coupling elements includes a loop.
For some applications:
the at least a portion of the linking member is disposed within a longitudinal portion of the sleeve,
the implantable structure further includes an elongated springy element, which is disposed within the longitudinal portion of the sleeve, and
placing the linking member includes placing the springy element along the anterior portion of the annulus, such that the springy element applies a force against a wall of the longitudinal portion of the sleeve in at least one radially-outward direction.
For some applications, the linking member is not configured as a spring.
For some applications, placing the linking member includes placing the linking member such that the linking member does not apply any force to the wall of the longitudinal portion of the sleeve.
For some applications, at least 90% of a length of the linking member is straight when in a resting state.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, the springy element has a length of between 2 and 6 cm, measured when the sleeve is fully longitudinally extended.
For some applications:
the longitudinal portion of the sleeve is a first longitudinal portion of the sleeve,
the contracting assembly includes (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged only along a second longitudinal portion of the sleeve that is entirely longitudinally distinct from the first longitudinal portion of the sleeve, and
the springy element is disposed entirely within the first longitudinal portion of the sleeve.
For some applications, the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the first sleeve end, and placing the linking member along the anterior portion of the annulus includes setting an effective length of the linking member while coupling the first and the second coupling elements together.
There is also provided, in accordance with an application of the present invention, apparatus including an annuloplasty system, which includes:
an implantable structure, which includes a flexible sleeve, having first and second sleeve ends;
a linking bridge element, which includes first and second bridge coupling interfaces, which are configured to be coupled to the sleeve in order to link the first and the second sleeve ends via the linking bridge element; and
first and second flexible longitudinal guide members, which (a) are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended, and (b) extend from the first and the second sleeve ends, respectively, away from the sleeve, and (c) removably pass through respective openings defined by the linking bridge member, so as to guide the first and the second bridge coupling interfaces to corresponding locations on the sleeve.
For some applications, the respective openings defined by the linking bridge member are defined by the first and the second bridge coupling interfaces, respectively.
For some applications, the sleeve includes first and second sleeve coupling interfaces, to which the first and the second bridge coupling interfaces are configured to be coupled, respectively.
For some applications, the first and the second sleeve coupling interfaces are disposed within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, the linking bridge element has a length of between 1 and 5 cm.
For some applications, the implantable structure includes a longitudinal contracting member, which is configured to longitudinally contract a longitudinal portion of the sleeve, and the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
There is further provided, in accordance with an application of the present invention, a method including:
during a percutaneous transcatheter procedure, placing a flexible sleeve of an implantable structure partially around an annulus of a mitral valve of a subject, such that first and second flexible longitudinal guide members, which are removably coupled to the sleeve, extend from first and second sleeve ends of the sleeve, respectively, away from the sleeve, wherein the longitudinal guide members are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends of the sleeve, respectively, measured when the sleeve is fully longitudinally extended;
advancing a linking bridge element into a left atrium of the subject, while the longitudinal guide members removably pass through respective openings defined by the linking bridge member;
using the first and the second longitudinal guide members to guide first and second bridge coupling interfaces of the linking bridge member to corresponding locations on the sleeve; and
coupling the linking bridge member to the sleeve by coupling the first and the second bridge coupling interfaces to the sleeve, in order to link the first and the second sleeve ends via the linking bridge element.
For some applications, the respective openings defined by the linking bridge member are defined by the first and the second bridge coupling interfaces, respectively.
For some applications, the sleeve includes first and second sleeve coupling interfaces, and coupling the first and the second bridge coupling interfaces to the sleeve includes coupling the first and the second bridge coupling interfaces to the sleeve to the first and the second sleeve coupling interfaces, respectively.
For some applications, the first and the second sleeve coupling interfaces are disposed within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, the linking bridge element has a length of between 1 and 5 cm.
For some applications:
the implantable structure includes a longitudinal contracting member,
the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member, and
the method further includes, after coupling the linking bridge member to the sleeve, contracting a longitudinal portion of the sleeve by causing the longitudinal contracting member to apply a contracting force to the longitudinal portion of the sleeve.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
There is still further provided, in accordance with an application of the present invention, apparatus including an annuloplasty system, which includes:
an implantable structure, which includes a flexible sleeve, having first and second sleeve ends; and
first and second flexible longitudinal guide members, which (a) are removably coupled to the sleeve within 1.5 cm of the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended, and (b) extend from the first and the second sleeve ends, respectively, away from the sleeve.
For some applications, the implantable structure includes a longitudinal contracting member, which is configured to longitudinally contract a longitudinal portion of the sleeve, and the first and the second flexible longitudinal guide members are separate and distinct from the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members do not longitudinally overlap the longitudinal contracting member.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, no portion of either the first flexible longitudinal guide member or the second flexible longitudinal guide member is disposed more than 1.5 cm from the first and the second sleeve ends, respectively, measured when the sleeve is fully longitudinally extended.
For some applications, wherein, when the first and the second flexible longitudinal guide members are removably coupled to the sleeve, the first and the second flexible longitudinal guide members are collectively disposed along less than 30% of a length of the sleeve, measured when the sleeve is fully longitudinally extended.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a system for repairing a dilated atrioventricular valve, such as a mitral valve, in accordance with an application of the present invention;
FIGS. 2A-I are schematic illustrations of a procedure for implanting the implantable structure ofFIG. 1 to repair a mitral valve, in accordance with an application of the present invention;
FIG. 3 is a schematic illustration of another configuration of the implantable structure ofFIG. 1, prior to implantation, in accordance with an application of the present invention;
FIG. 4 is a schematic illustration of the implantable structure ofFIG. 3 after implantation around the annulus of a mitral valve, in accordance with an application of the present invention;
FIG. 5 is a schematic illustration of a closed-loop configuration of the implantable structure ofFIG. 1, in accordance with an application of the present invention;
FIG. 6 is a schematic illustration of yet another configuration of the implantable structure ofFIG. 1, prior to implantation, in accordance with an application of the present invention;
FIGS. 7A-B are schematic illustrations of the implantable structure ofFIG. 6 after implantation around the annulus of a mitral valve, in accordance with respective applications of the present invention;
FIGS. 8A-D are schematic illustrations of coupling elements, in accordance with respective applications of the present invention;
FIG. 9 is a schematic illustration of another configuration of the implantable structure ofFIG. 1, prior to implantation, further comprising an elongated radial-force application element, in accordance with an application of the present invention;
FIG. 10 is a schematic illustration of the implantable structure ofFIG. 9 implanted around the mitral valve, in accordance with an application of the present invention;
FIGS. 11A-D are schematic illustrations of several configurations of the elongated radial-force application element of the implantable structure ofFIGS. 9 and 10, in accordance with an application of the present invention;
FIG. 12 is a schematic illustration of another configuration of the elongated radial-force application element of the implantable structure ofFIGS. 9 and 10, in accordance with an application of the present invention;
FIG. 13 is a schematic illustration of yet another configuration of the elongated radial-force application element of the implantable structure ofFIGS. 9 and 10, in which the elongated radial-force application element is helically symmetric, in accordance with an application of the present invention;
FIG. 14 is a schematic illustration of a configuration of the sleeve of the implantable structure ofFIGS. 9 and 10, in accordance with an application of the present invention;
FIG. 15 is a schematic illustration of another configuration of the implantable structure ofFIGS. 9 and 10, in accordance with an application of the present invention;
FIGS. 16A-B are schematic illustrations of another configuration of the implantable structure ofFIGS. 9 and 10, in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends, in accordance with an application of the present invention;
FIG. 17 is a schematic illustration of another configuration of the implantable structure ofFIG. 9 implanted around the mitral valve, in accordance with an application of the present invention
FIGS. 18A and 18B are schematic illustrations of yet another configuration of the implantable structure ofFIG. 1, prior to implantation and upon implantation around the mitral valve, respectively, in accordance with an application of the present invention;
FIG. 19 is a schematic illustration of still another configuration of the implantable structure ofFIG. 1 implanted around the mitral valve, in accordance with an application of the present invention;
FIG. 20 is a schematic illustration of another configuration of the implantable structure ofFIG. 1 implanted around the mitral valve, in accordance with an application of the present invention;
FIG. 21 is a schematic illustration of still another configuration of the implantable structure ofFIG. 1 implanted around the mitral valve, in accordance with an application of the present invention;
FIGS. 22A-D are schematic illustrations of another system for repairing a dilated atrioventricular valve, and a method for deploying the system, in accordance with an application of the present invention;
FIGS. 23A-B are schematic illustrations of another configuration of a linking bridge element of the system ofFIGS. 22A-D, in accordance with an application of the present invention;
FIG. 24 is a schematic illustration of a contracting mechanism, disassembled to show a relationship among individual components of the contracting mechanism, in accordance with an application of the present invention; and
FIGS. 25A-B and26 are schematic illustrations of a valve prosthesis assembly, in accordance with respective applications of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS
FIG. 1 is a schematic illustration of asystem20 for repairing a dilated atrioventricular valve, such as a mitral valve or a tricuspid valve, in accordance with an application of the present invention.System20 comprises an adjustableimplantable structure22, shown inFIG. 1 in a straight, relaxed, non-contracted state, and an anchor deployment manipulator24 (shown inFIGS. 2G-H). For some applications,implantable structure22 is configured to be deployed as an annuloplasty ring, while for other applications,implantable structure22 is configured to be deployed as a base ring to which a prosthetic valve is coupled, such as described hereinbelow with reference toFIGS. 25A-B or26.Implantable structure22 comprises aflexible sleeve26.Anchor deployment manipulator24 is advanced intosleeve26, as shown inFIGS. 2G-H, and, from within the sleeve, deploys tissue anchors through a wall of the sleeve into cardiac tissue, thereby anchoring the ring around at least a portion of the valve annulus. For some applications, anchor deployment manipulator is implemented using techniques described in US Patent Application Publication 2010/0280604, which is incorporated herein by reference, with reference toFIGS. 2, 3, 4, 5A, 5B, 6A, 6B, 7, 8, 13, and/or20A-E thereof.
For some applications,implantable structure22 comprises a partial annuloplasty ring. In these applications,sleeve26 is configured to be placed only partially around the valve annulus (i.e., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. For other applications,sleeve26 is configured to be implanted entirely around the valve annulus in a closed loop, such as described hereinbelow with reference toFIG. 4, 5, 7A-B,10,16A-B,17 or18B.
Implantable structure22 further comprises acontracting assembly40, which facilitates contracting of the implantable structure.Contracting assembly40 typically comprises acontracting mechanism28, and alongitudinal contracting member30, which is coupled tocontracting mechanism28, extends along a portion of the sleeve, and is typically flexible. For example, contractingmember30 may comprise at least one wire.Contracting assembly40 is configured to contract a longitudinal portion ofsleeve26, and is described in more detail hereinbelow. In addition, the implantable structure typically comprises a plurality of tissue anchors38, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. InFIG. 1, anchors38 are shown coupled toimplantable structure22, deployed through the wall ofsleeve26. For some applications, anchors38 are configured as described with reference toFIGS. 5A-C,5D,5E,5F,5G,5H, and/or5I in US Patent Application Publication 2012/0330411, which is incorporated herein by reference, while for other applications, anchors38 comprise tissue anchors known in the art.
Flexible sleeve26 may comprise a braided, knitted, or woven mesh or a tubular structure comprising ePTFE. For some applications, the braid comprises metal and fabric fibers. The metal fibers, which may comprise Nitinol for example, may help define the shape of the sleeve, e.g., hold the sleeve open to provide space for passage and manipulation ofdeployment manipulator24 within the sleeve. The fabric fibers may promote tissue growth into the braid. Typically,sleeve26 is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Alternatively, the sleeve is somewhat elastic, which gives the sleeve a tendency to longitudinally contract, thereby helping tighten the sleeve. For example, the sleeve may be bellows- or accordion-shaped.
For some applications, the sleeve is configured to have a tendency to assume a straight shape when in its relaxed, non-contracted state. This straightness may help the surgeon locate the next site for each subsequent anchor during the implantation procedure. For example, because the sleeve assumes a generally straight shape, the sleeve may help provide an indication of distance between adjacent anchoring sites. For some applications, the sleeve is configured to have a controllably variable stiffness. For example, a somewhat stiff wire may be placed in the sleeve to provide the stiffness, and subsequently be removed at the conclusion of the implantation procedure when the stiffness is no longer useful.
For some applications,sleeve26 comprises a plurality ofradiopaque markers39, which are positioned along the sleeve at respective longitudinal sites. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of the sleeve has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance betweenanchors38 along the sleeve. For some applications, the markers comprise a radiopaque ink.
Typically, at least a portion (e.g., at least three, such as all) of the longitudinal sites are longitudinally spaced at a constant interval. Typically, the longitudinal distance between the distal edges of adjacent markers, and/or the distance between the proximal edges of adjacent markers, is set equal to the desired distance between adjacent anchors. For example, the markers may comprise first, second, and third markers, which first and second markers are adjacent, and which second and third markers are adjacent, and the distance between the proximal and/or distal edges of the first and second markers equal the corresponding distance between the proximal and/or distal edges of the second and third markers. For example, the distance may be between 3 and 15 mm, such as 6 mm, and the longitudinal length of each marker may be between 0.1 and 14 mm, such as 2 mm. (If, for example, the distance were 6 mm and the length were 2 mm, the longitudinal gaps between adjacent markers would have lengths of 4 mm.)
Longitudinal contracting member30 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, HDPE, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications,longitudinal contracting member30 comprises a braided polyester suture (e.g., Ticron). For some applications,longitudinal contracting member30 is coated with polytetrafluoroethylene (PTFE). For some applications, contractingmember30 comprises a plurality of wires that are intertwined to form a rope structure. For some applications,implantable structure22 comprises a plurality ofcontracting members30, which may extend along generally the same longitudinal portion ofsleeve26, or along respective, different portions of sleeve26 (e.g., as described with reference toFIG. 13 in above-mentioned US Patent Application Publication 2012/0330411).
For some applications, contractingmember30 is positioned at least partially within a lumen of thesleeve26, such as entirely within the lumen (as shown inFIGS. 1, 2H-I,3,4,6, and7A-B). For some applications in which the contracting member is positioned partially within the lumen, the contracting member is sewn into the wall of the sleeve, such that the contracting member is alternatingly inside and outside of the sleeve along the length of the sleeve (configuration not shown). Optionally,sleeve26 defines an internal channel within whichmember30 is positioned (configuration not shown). Alternatively, the contracting member is disposed outside the lumen of the sleeve, such as alongside an outer wall of the sleeve. For example,sleeve26 may define an external channel within whichcontracting member30 is positioned, or the sleeve may comprise or be shaped so as to define external coupling elements, such as loops or rings (configuration not shown). For some applications, contractingmember30 is positioned approximately opposite the anchors.
For some applications of the present invention,contracting mechanism28 comprises a rotatable structure, such as aspool46. The rotatable structure is arranged such that rotation thereof applies a longitudinal contracting force, thereby contracting at least a longitudinal portion ofimplantable structure22. Typically, in these applications,contracting mechanism28 further comprises ahousing44 in which the rotatable structure, e.g., the spool, is positioned. Contractingmember30 has first and second member ends, and a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member. For some applications, the first member end portion, e.g., the first member end of contractingmember30, is coupled tocontracting mechanism28, such as the rotatable structure, e.g., the spool (alternatively, although the first member end portion is coupled to the contracting mechanism, the first member end protrudes beyond the contracting mechanism). For example,spool46 may be shaped to provide a hole42 or other coupling mechanism for coupling the first end of contractingmember30 to the spool, and thereby tocontracting mechanism28.Contracting assembly40 is arranged such that rotation of the spool winds a portion of the contracting member around the spool. Alternatively, contractingmember30 may comprise at least one wire (e.g., exactly one wire) that passes through a coupling mechanism ofspool46, in order to couple the wire to the spool. The ends of the wire are brought together, and together serve as asecond end53 of contractingmember30. In this configuration, approximately the longitudinal center of the wire serves as the first end of the contracting member.
Alternatively,contracting mechanism28 may comprise a ratchet contracting mechanism, which typically comprises a ratchet-coupling housing. Contractingmember30 is shaped so as to define engaging structures, such as grooves or teeth. Techniques may be used that are described in International Application PCT/IL2009/000593, filed Jun. 15, 2009, which published as PCT Publication WO 10/004546, and in U.S. application Ser. No. 12/996,954, which published as US Patent Application Publication 2011/0166649, in the national stage thereof, all of which applications and publications are incorporated herein by reference.
Further alternatively,contracting mechanism28 may comprise a housing or other structure (e.g., a ring or an eyelet) which is shaped so as to define an opening therethrough. Contractingmember30 is drawn through the opening (such that the first member end protrudes beyond the opening), and, once a desired length has been achieved, is locked, such as using a locking bead, or by crimping or knotting.
Contractingmember30 extends along less than the entire length ofsleeve26. Contracting mechanism28 (e.g.,housing44 thereof) is disposed at afirst site34 ofsleeve26 that is a first longitudinal distance D1 from a first end of the sleeve, either aproximal end49 ofsleeve26, as shown inFIG. 1, or adistal end51 ofsleeve26, as shown inFIGS. 2G-I. (Longitudinal distance D1 is measured between the first end of the sleeve and the portion ofcontracting mechanism28 that is closest to the first end.) For some applications,second end53 of contractingmember30 is coupled to the sleeve at asecond site36 that is a second longitudinal distance D2 from a second end of the sleeve, which second end is longitudinally opposite the first end of the sleeve. For applications in whichcontracting mechanism28 comprises a rotatable structure, rotation of the rotatable structure, such asspool46, longitudinally contracts at least a portion of the sleeve, such as by winding a portion of the contracting member around the spool, thereby pulling the far end of the implantable structure toward the spool and shortening and tightening the implantable structure. Such rotation of the rotatable structure, or other actuation of contractingassembly40, typically applies a longitudinal contracting force only between first andsecond sites34 and36, which longitudinally contracts at least a portion, e.g. all, of the sleeve only between first andsecond sites34 and36. (For example, the longitudinal force may longitudinally contract less than the entire sleeve between first andsecond sites34 and36 in applications in whichsystem20 comprises coiled element240, which provides a contraction-restricting portion of the sleeve, as described hereinbelow with reference toFIGS. 10A-E and/or11A-E in above-mentioned US Patent Application Publication 2012/0330411.) Therefore, the portions of the sleeve beyond first andsecond sites34 and36 (towards the ends of the sleeve) are not contracted by contractingassembly40.
Typically, contractingmember30 extends along (i.e., a distance along the sleeve between first andsecond sites34 and36 equals) no more than 80% of the length of the sleeve, e.g., no more than 60% or no more than 50% of the length. Typically, contractingmember30 extends along no more than 80% of a circumference of the loop when the sleeve is placed around the annulus (i.e., the total length of the loop less the length of any overlapping portion). Typically, contractingmember30 extends along (i.e., a distance along the sleeve between first andsecond sites34 and36 equals) at least 20% of the length of the sleeve, e.g., at least than 40% or at least than 50% of the length. Typically, contractingmember30 extends along at least 20% of the circumference of the loop when the sleeve is placed around the annulus, e.g., at least 30% or at least 50%.
For some applications, first longitudinal distance D1, measured whensleeve26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Alternatively or additionally, for some applications, second longitudinal distance D2, measured whensleeve26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Further alternatively or additionally, first longitudinal distance D1, measured whensleeve26 is in a straight, relaxed, non-contracted state, is no greater than 20%, such as no greater than 10% of a total length of the sleeve, measured whensleeve26 is in a straight, relaxed, non-contracted state. Further alternatively or additionally, second longitudinal distance D2, measured whensleeve26 is in a straight, relaxed, non-contracted state, is no greater than 30%, such as no greater than 20%, e.g., no greater than 10% of the total length of the sleeve measured, whensleeve26 is in a straight, relaxed, non-contracted state. For some applications, the total length of the sleeve, measured when the sleeve is in a straight, relaxed, non-contracted state is at least 5 cm, no more than 25 cm, and/or between 5 and 25 cm. For some applications in which the sleeve is implanted in a closed loop, the total length of the sleeve is selected to be between 1.3 and 1.4 times a circumference of the annulus, in order to provide overlapping portion114, described hereinbelow with reference toFIGS. 3 and 4.
For some applications, at least one of tissue anchors38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled tosleeve26 longitudinally between contracting mechanism28 (e.g.,housing44 thereof) and the first sleeve end (i.e., the end of the sleeve to whichcontracting mechanism28 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors38 are coupled to the sleeve alongside contractingmember30, longitudinally betweenfirst site34 and second site36 (second member end53), exclusive. (As used in the present application, including in the claims, “exclusive,” when used with respect to a range of locations, means excluding the endpoints of the range.)
Alternatively or additionally, for some applications, at least one of tissue anchors38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled tosleeve26 longitudinally between second site36 (second member end53) and the second sleeve end (i.e., the end of the sleeve to whichsecond member end53 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors38 are coupled to the sleeve alongside contractingmember30, longitudinally betweenfirst site34 and second site36 (second member end53), exclusive.
In the exemplary configuration shown inFIG. 1, exactly two tissue anchors38 are coupled to the sleeve longitudinally between the contracting mechanism (e.g., the housing) (first site34) and the first sleeve end, exclusive, exactly two tissue anchors are coupled to the sleeve longitudinally betweenfirst site34 and second site36 (second member end53), exclusive, and exactly six tissue anchors38 are coupled to the sleeve alongside the contracting member, longitudinally betweenfirst site34 and second site36 (second member end53), exclusive.
Providing the one or more anchors beyond first andsecond sites34 and36 (i.e., beyond the contracting portion of contracting member30) generally distributes force applied by contraction of contractingassembly40 over these anchors. In contrast, in some configurations ofimplantable structure22 in which anchors are not provided beyond first andsecond sites34 and36, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest to second end of the contracting member.
For some applications, anchors38 are positioned alongsleeve26 with a longitudinal distance of between 4.5 and 9 mm, such as 6 mm, between each pair of longitudinally-adjacent anchors.
It is noted that the anchors may be positioned as described above by a surgeon during an implantation procedure, such as described hereinbelow with reference toFIGS. 2A-I, or the anchors may be prepositioned in the sleeve.
Reference is now made toFIGS. 2A-I, which are schematic illustrations of a procedure for implantingimplantable structure22 to repair amitral valve130, in accordance with an application of the present invention. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography.
The procedure typically begins by advancing asemi-rigid guidewire102 into aright atrium120 of the patient, as shown inFIG. 2A.
As shown inFIG. 2B, guidewire102 provides a guide for the subsequent advancement of asheath104 therealong and into the right atrium. Oncesheath104 has entered the right atrium, guidewire102 is retracted from the patient's body.Sheath104 typically comprises a 14-20 F sheath, although the size may be selected as appropriate for a given patient.Sheath104 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
    • sheath104 may be introduced into the femoral vein of the patient, through aninferior vena cava122, intoright atrium120, and into aleft atrium124 transseptally, typically through the fossa ovalis;
    • sheath104 may be introduced into the basilic vein, through the subclavian vein to the superior vena cava, intoright atrium120, and intoleft atrium124 transseptally, typically through the fossa ovalis; or
    • sheath104 may be introduced into the external jugular vein, through the subclavian vein to the superior vena cava, intoright atrium120, and intoleft atrium124 transseptally, typically through the fossa ovalis.
For some applications,sheath104 is advanced through aninferior vena cava122 of the patient (as shown) and intoright atrium120 using a suitable point of origin typically determined for a given patient.
Sheath104 is advanced distally until the sheath reaches the interatrial septum.
As shown inFIG. 2D, aresilient needle106 and a dilator (not shown) are advanced throughsheath104 and into the heart. In order to advancesheath104 transseptally intoleft atrium124, the dilator is advanced to the septum, andneedle106 is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequentlysheath104 therethrough and intoleft atrium124. The dilator is passed through the hole in the septum created by the needle. Typically, the dilator is shaped to define a hollow shaft for passage alongneedle106, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created byneedle106. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
The advancement ofsheath104 through the septum and into the left atrium is followed by the extraction of the dilator andneedle106 from withinsheath104, as shown inFIG. 2E.
As shown inFIG. 2F, implantable structure22 (withanchor deployment manipulator24 therein) is advanced throughsheath104 intoleft atrium124.
As shown inFIG. 2G,distal end51 ofsleeve26 is positioned in a vicinity of a leftfibrous trigone142 of anannulus140 ofmitral valve130. (It is noted that for clarity of illustration,distal end51 ofsleeve26 is shown schematically in the cross-sectional view of the heart, although leftfibrous trigone142 is in reality not located in the shown cross-sectional plane, but rather out of the page closer to the viewer.) Alternatively, the distal end is positioned in a vicinity of a rightfibrous trigone144 of the mitral valve (configuration not shown). Further alternatively, the distal end of the sleeve is not positioned in the vicinity of either of the trigones, but is instead positioned elsewhere in a vicinity of the mitral valve, such as in a vicinity of the anterior or posterior commissure. Still further alternatively, for some applications, the distal end is positioned along an anterior portion of the annulus, such as described hereinbelow with reference toFIG. 4. For some applications, outer tube66 ofanchor deployment manipulator24 is steerable, as is known in the catheter art, while for other applications, a separate steerable tube is provided, such as described in the above-mentioned '604 publication, with reference toFIG. 15 andFIG. 16 thereof. In either case, the steering functionality typically allows the area near the distal end of the deployment manipulator to be positioned with six degrees of freedom. Once positioned at the desired site near the selected trigone,deployment manipulator24 deploys afirst anchor38 through the wall ofsleeve26 into cardiac tissue near the trigone.
As shown inFIG. 2H,deployment manipulator24 is repositioned alongannulus140 to another site selected for deployment of asecond anchor38. Typically, the first anchor is deployed most distally in the sleeve (generally at or within a few millimeters of the distal end of the sleeve), and each subsequent anchor is deployed more proximally, such that the sleeve is gradually pulled off (i.e., withdrawn from) the deployment manipulator in a distal direction during the anchoring procedure. The already-deployedfirst anchor38 holds the anchored end ofsleeve26 in place, so that the sleeve is drawn from the site of the first anchor towards the site of the second anchor. Typically, as the sleeve is pulled off (i.e., withdrawn from) the deployment manipulator, the deployment manipulator is moved generally laterally along the cardiac tissue, as shown inFIG. 2H.Deployment manipulator24 deploys the second anchor through the wall of the sleeve into cardiac tissue at the second site. Depending on the tension applied between the first and second anchor sites, the portion ofsleeve26 therebetween may remain tubular in shape, or may become flattened, which may help reduce any interference of the implantable structure with blood flow.
For some applications, in order to provide the second and subsequent anchors,anchor driver68 is withdrawn from the subject's body via sheath104 (typically while leaving outer tube66 of the deployment manipulator in place in the sleeve), provided with an additional anchor, and then reintroduced into the subject's body and into the outer tube. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced upon being provided with another anchor. Further alternatively,deployment manipulator24 is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time at the selected sites.
As shown inFIG. 2I, the deployment manipulator is repositioned along the annulus to additional sites, at which respective anchors are deployed, until the last anchor is deployed in a vicinity of right fibrous trigone144 (or leftfibrous trigone142 if the anchoring began at the right trigone), thereby fasteningsleeve26 andimplantable structure22 to the annulus. Alternatively, the last anchor is not deployed in the vicinity of a trigone, but is instead deployed elsewhere in a vicinity of the mitral valve, such as in a vicinity of the anterior or posterior commissure.
For applications in whichcontracting mechanism28 comprisesspool46, a rotation tool is typically used to rotatespool46 ofcontracting mechanism28, in order to tightenimplantable structure22. For some applications, the rotation tool is used that is described and shown in the above-mentioned '604 publication, with reference toFIGS. 6A-B,7, and8 thereof. As described therein,contracting mechanism28 compriseslongitudinal member86 that is attached to the contracting mechanism and passes out of the body of the subject, typically viasheath104. In order to readily bring the rotation tool to a driving interface ofcontracting mechanism28, the rotation tool is guided overlongitudinal member86. For some applications,spool46 is configured as described in the '604 publication with reference toFIGS. 1-4, 6A-B,7, and/or8 thereof.
Contracting assembly40 typically comprises a locking mechanism that locks contractingmember30 with respect to contractingassembly40, thereby preventing loosening (and typically tightening) of contractingmember30. For some applications,spool46 comprises the locking mechanism that prevents rotation of the spool after contractingmember30 has been tightened. For example, locking techniques may be used that are described and shown in US Application Publication 2010/0161047, which is incorporated herein by reference, with reference toFIG. 4 thereof, and/or with reference toFIGS. 6B, 7, and 8 of the above-mentioned '604 publication. Alternatively, for some applications,contracting mechanism28 is configured to tighten contractingmember30, crimp the contracting member to hold the contracting member taut, and subsequently cut the excess length of the contracting member.
For some applications, a rotation handle is used to tighten the implantable structure, such as described and shown in the above-mentioned '604 publication, with reference toFIGS. 9A-C and10A-D thereof. As mentioned above, deploying the one or more anchors beyond the contracting portion of contractingmember30 generally distributes force applied by contraction of contractingassembly40 over these anchors.
For some applications,sleeve26 is filled with a material (e.g., polyester, polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), or expanded polytetrafluoroethylene (ePTFE)) after being implanted. The material is packed within at least a portion, e.g., 50%, 75%, or 100%, of the lumen ofsleeve26. The filler material functions to prevent (1) formation within the lumen ofsleeve26 of clots or (2) introduction of foreign material into the lumen which could obstruct the sliding movement of contractingmember30.
For some applications,proximal end49 ofsleeve26 is closed upon completion of the implantation procedure. Alternatively, the proximal end of the sleeve may have a natural tendency to close when not held open bydeployment manipulator24.
For some applications, following initial contraction ofimplantable structure22 during the implantation procedure, the structure may be further contracted or relaxed at a later time after the initial implantation, such as between several weeks and several months after the initial implantation. Using real-time monitoring and tactile feedback, optionally in combination with fluoroscopic imaging, a rotation tool or anchor driver of a deployment manipulator may be reintroduced into the heart and used to contract or relaximplantable structure22.
Reference is now made toFIGS. 3 and 4, which are schematic illustrations of another configuration ofimplantable structure22, in accordance with an application of the present invention.FIG. 3 showsimplantable structure22 in a straight, relaxed, non-contracted state, prior to implantation.FIG. 4 shows the implantable structure after implantation around the annulus ofmitral valve130, in accordance with an application of the present invention.
In this configuration,sleeve26 is implanted in a closed loop. More particularly, afirst portion110 ofsleeve26 longitudinally extends from the first sleeve end (i.e., the end of the sleeve to whichcontracting mechanism28, e.g.,housing44 thereof, is closest) towardcontracting mechanism28, e.g.,housing44 thereof (but typically does not extend all of the way to the contracting mechanism), and asecond portion112 of the sleeve longitudinally extends from the second sleeve end (i.e., the end of the sleeve to whichsecond member end53 is closest) toward second member end53 (but typically does not extend all of the way to the second member end). As shown inFIG. 4, once implanted,sleeve26 is arranged in a closed loop, such that first andsecond portions110 and112 of the sleeve together define a longitudinally overlapping portion114 of the sleeve. The overlapping portion typically has a length of at least 2 mm (e.g., at least 5 mm), no more than 60 mm (e.g., no more than 50 mm), and/or between 2 mm (e.g., 5 mm) and 60 mm (e.g., 50 mm), and/or a length that is at least 1% of a total length of the sleeve, no more than 40% of the total length (e.g., no more than 30%), and/or between 1% and 40% (e.g., 30%) of the total length of the sleeve, measured when the sleeve is in a straight, relaxed, non-contracted state.
For some applications, at least one of tissue anchors38 (labeled as38E inFIGS. 3 and 4) penetrates both first andsecond portions110 and112 of the sleeve at overlapping portion114. Such a mutual anchor helps ensure that the first and second portions remain tightly coupled together and to the tissue, so that the sleeve retains its closed loop shape. For some applications in which tissue anchor38E comprises a coupling head and a tissue coupling element, such as described hereinbelow with reference toFIG. 5D, 5E, 5F, 5G, or5I in above-mentioned US Patent Application Publication 2012/0330411, the tissue coupling element penetrates both first andsecond portions110 and112 of the sleeve at overlapping portion114, and the coupling head is positioned within one of first andsecond portions110 and112 of the sleeve at the overlapping portion. For example, in the deployment configuration shown inFIG. 4, the coupling head ofanchor38E is positioned withinsecond portion112.
This configuration ofimplantable structure22 may be implanted using the procedure described hereinabove with reference toFIGS. 2A-I, with the following differences. Unlike in the deployment shown inFIGS. 2G-I, in thisconfiguration sleeve26 is deployed as a closed band around the entire annulus of the native valve, including ananterior portion116 of the annulus (on the aortic side of the valve) betweenfibrous trigones142 and144. Typically, both first andsecond portions110 and112 of sleeve26 (and thus overlapping portion114) are positioned alonganterior portion116 of the annulus.
For some applications, during the implantation procedure, the first sleeve end (i.e., the end of the sleeve to whichcontracting mechanism28, e.g.,housing44 thereof, is closest) is placed along at least a portion ofanterior portion116 andfirst portion110 is extended along this portion. At least oneanchor38D is deployed through the wall offirst portion110 ofsleeve26 into cardiac tissue at the anterior portion of the annulus.Additional anchors38A and/or38C are deployed through the wall of the sleeve around the non-anterior remainder of the annulus, including the posterior portion thereof, as described hereinabove with reference toFIG. 2H. (Anchors38C, if provided, are deployed beyond the ends of the contracting portion of contractingmember30, whileanchors38A are deployed along the portion of the sleeve including the contracting portion of the contracting member.)
A portion of the sleeve is placed on at least a portion ofanterior portion116 of the annulus, and, typically, one ormore anchors38B are deployed through the wall of the sleeve into tissue at the anterior portion of the annulus.
The sleeve is further extended around the annulus untilsecond portion112 overlaps with previously-deployedfirst portion110 at overlapping portion114, forming a complete ring. At least oneanchor38E is deployed from withinsecond portion112 through the wall of the sleeve and into the cardiac tissue, typically atanterior portion116 of the annulus, or at a portion of the annulus nearanterior portion116. Typically,anchor38E is deployed such that it additionally passes through previously-deployed first portion110 (passing through the wall offirst portion110 twice). (Optionally, anchors38B and/or38E are of a different configuration thananchors38A,38C, and/or38D, such as described with reference toFIGS. 5A-I in above-mentioned US Patent Application Publication 2012/0330411; anchors38B and38E may be of the same configuration as one another, or of different configurations.)
Alternatively, the second sleeve end (i.e., the end of the sleeve to whichsecond member end53 is closest) is first placed at least partially alonganterior portion116, in which casesecond portion112 is deployed beforefirst portion110, andanchor38E is deployed from withinfirst portion110.
The sleeve may be deployed in either a clockwise direction or a counterclockwise direction, as viewed from the atrium.
Contracting assembly40 is actuated, e.g., the rotatable structure ofcontracting mechanism28 is rotated, in order to tightenimplantable structure22, as described hereinabove with reference toFIG. 2I. Typically, contractingmember30 does not extend along the portion ofsleeve26 deployed alonganterior portion116 of the annulus, and thus does not extend alongfirst portion110,second portion112, or overlapping portion114 ofsleeve26. The portion of the sleeve deployed alonganterior portion116 of the annulus (between the trigones) is thus non-contractible. For some applications, contractingmember30 is positioned along a non-anterior portion of the annulus, which non-anterior portion does not reach either of the fibrous trigones, e.g., does not reach within 5 mm of either of the trigones. Tightening ofimplantable structure22 therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length ofanterior portion116 of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and, as mentioned above, the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
For some applications, the non-contractible portion of sleeve26 (the portion without contracting member30) extends somewhat beyond one or both oftrigones142 or144 (in the posterior direction, away fromanterior portion116 of the annulus), such as up to 20 mm, such as up to 10 mm. In general, since the non-contractible portions of the sleeve are preset, the surgeon is able to decide during the implantation procedure the lengths of the anterior non-contractible area and the posterior contractible area, by selecting the length of overlapping portion114. The greater the length of overlapping portion114, the greater the relative length of the posterior contractible portion, and the lesser the relative length of the non-contractible portion.
For some applications, at least oneanchor38C is coupled to cardiac tissue on the posterior side of rightfibrous trigone144, between the trigone and the end of contractingmember30. Similarly, at least oneanchor38C may be coupled to cardiac tissue on the posterior side of leftfibrous trigone142, between the trigone and the other end of contracting member30 (which, for some applications, is coupled tocontracting mechanism28, as shown inFIG. 4).
For some applications, at least one (either one or both) of first and second longitudinal distances D1 and D2 (described hereinabove with reference toFIG. 1), taken separately, is greater than 40 mm, such as greater than 60 mm. This sleeve portion(s) beyond the contracting portion of contractingmember30 provide the non-contractible portion of the sleeve positioned alonganterior portion116 of the annulus, and, optionally, the non-contractible portion(s) that extend beyond the anterior portion.
Reference is still made toFIGS. 3 and 4. For some applications, anchors38 deployed alonganterior portion116 of the annulus (between the trigones) are of a different configuration fromanchors38 deployed along the remainder of the annulus (including the posterior portion of the annulus). Unlike the remainder of the annulus,anterior portion116 does not comprise muscular or fibrous tissue, but rather thinner aortic tissue (typically the anchors positioned alonganterior portion116 enter the aorta below the aortic leaflets). The anchors that are deployed along the remainder of the annulus are configured for strong coupling to the thicker and stronger fibrous tissue of these portions of the annulus. Such anchors may be inappropriate for coupling toanterior portion116.Anchors38 are thus provided that are particularly configured for coupling toanterior portion116. For example, different configurations ofanchors38 are described with reference toFIGS. 5A-I in above-mentioned US Patent Application Publication 2012/0330411.
For these applications, anchors38 include a plurality of first tissue anchors of a first configuration, and a plurality of second tissue anchors of a second configuration different from the first configuration. (The first tissue anchors are labeled38A and38C inFIG. 4, and for the sake of brevity, are referenced as38A hereinbelow. The second tissue anchors are labeled38B,38D, and38E inFIG. 4, and for the save of brevity, are referenced as38B hereinbelow.) For some applications,implantable structure22 comprises more first tissue anchors38A than second tissue anchors38B, e.g., at least twice as many first tissue anchors as second tissue anchors.
For these applications,sleeve26 is typically arranged as a loop. For example, as described hereinabove with reference toFIG. 4, the sleeve may be shaped so as to define first and second sleeve ends, which are coupled to each other (optionally, with overlapping portion114) to form the loop. Alternatively, as described hereinbelow with reference toFIG. 6, the sleeve may be shaped so as to define an integrally closed loop having no sleeve ends. First tissue anchors38A are coupled tosleeve26 at intervals along a first longitudinally-contiguous portion of the loop, and second tissue anchors38B are coupled tosleeve26 at intervals along a second longitudinally-contiguous portion of the loop different from the first longitudinally-contiguous portion. The second portion of the loop is deployed alonganterior portion116 of the annulus, and the first portion of the loop is deployed along at least a portion of the remainder of the annulus (including the posterior portion of the annulus).
Reference is made toFIG. 5, which is a schematic illustration of an alternative closed-loop configuration ofimplantable structure22, in accordance with an application of the present invention. In this configuration,flexible sleeve26 is shaped so as to define an integrally closed loop having no sleeve ends. For some applications, anchors38 deployed alonganterior portion116 of the annulus are of a different configuration fromanchors38 deployed along the remainder of the annulus, as described hereinabove with reference toFIGS. 3-4. The anchors may be configured as described with reference toFIGS. 5A-I in above-mentioned US Patent Application Publication 2012/0330411.
Typically, contractingmember30 does not extend along the portion ofsleeve26 deployed alonganterior portion116 of the annulus. The portion of the sleeve deployed alonganterior portion116 of the annulus (between the trigones) is thus non-contractible. Tightening ofimplantable structure22 therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length ofanterior portion116 of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and, as mentioned above, the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
For some applications, the non-contractible portion of sleeve26 (the portion without contracting member30) extends somewhat beyond one or both oftrigones142 or144 (in the posterior direction, away fromanterior portion116 of the annulus), such as up to 20 mm, such as up to 10 mm.
For some applications, at least oneanchor38 is coupled to cardiac tissue on the posterior side of rightfibrous trigone144, between the trigone and the end of contractingmember30. Similarly, at least oneanchor38 may be coupled to cardiac tissue on the posterior side of leftfibrous trigone142, between the trigone and the other end of contracting member30 (which, for some applications, is coupled tocontracting mechanism28, as shown inFIG. 5).
Reference is now made toFIGS. 6 and 7A-B, which are schematic illustrations of another configuration ofimplantable structure22, in accordance with an application of the present invention.FIG. 6 showsimplantable structure22 in a relaxed, non-contracted state, andFIGS. 7A-B shows the implantable structure implanted aroundmitral valve130. This configuration ofimplantable structure22 is generally similar to the configuration described hereinabove with reference toFIG. 1, except as follows. In this configuration,implantable structure22 further comprises an elongated linkingmember250, which is positioned at least partially alonganterior portion116 of the annulus, so as to join the ends ofimplantable structure22 in a complete loop. Over time after implantation, linkingmember250 becomes fixed toanterior portion116 of the annulus, thereby helping prevent long-term dilation of the anterior annulus. Typically, at least a portion (e.g., at least 30%, such as at least 75% or at least 90%) of a length of linkingmember250 is disposed within and covered bysleeve26, into and/or over which fibrous tissue grows over time, helping anchor the linking member to tissue of the anterior annulus. Alternatively or additionally, a separate flexible sleeve or a coating (e.g., a polymeric coating) may be provided that covers at least 20%, e.g., between 20% and 80%, of the linking member. Typically, in the configuration ofimplantable structure22 shown inFIGS. 6 and 7A-B, none ofanchors38 is coupled toanterior portion116 of the annulus. For some applications, as shown inFIG. 7A,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications, as shown inFIG. 7B,implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144. This latter arrangement may facilitate placement of the first-deployed,distal-most anchor38 near rightfibrous trigone144, which is above the fossa ovalis, and the linking of first andsecond coupling elements256 and260 later in the implantation procedure.
Linkingmember250 has first and second linking member ends252 and254. Second linkingmember end254 comprises (e.g., is shaped so as to define, or is fixed to) afirst coupling element256. First linkingmember end252 is disposed longitudinally between second linkingmember end254 and a first sleeve end (eitherproximal end49, as shown, ordistal end51, not shown), exclusive. Second linkingmember end254 either protrudes from the second end of the sleeve, or is recessed within the second end of the sleeve (as shown, the second end of the sleeve is distal end51). A longitudinal portion of linkingmember250 in a vicinity of first linkingmember end252 is coupled to the sleeve. For example, the portion may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the linking member in place during deployment, and the linking member may be held in place after implantation by one or more ofanchors38, such as two ormore anchors38F. Optionally, the linking member is not initially coupled to the sleeve, but is instead held in place by a delivery tool during the implantation procedure, until being coupled to the sleeve by one or more of the anchors, for example. The coupled longitudinal portion may have a length of between 2 and 10 mm, and optionally includes first linking member end252 of the linking member.
Implantable structure22 further comprises asecond coupling element260, which is configured to be coupleable tofirst coupling element256.Second coupling element260 typically is coupled toimplantable structure22 within 1.5 cm of the first end of sleeve26 (opposite the end mentioned above near which first linkingmember end252 is fixed), measured when the sleeve is fully longitudinally extended. As mentioned above, in the configuration shown inFIGS. 6 and 7A-B, this first end isproximal end49.
For some applications, such as shown inFIGS. 6 and 7A-B, contracting mechanism28 (e.g.,housing44 thereof) is disposed alongsleeve26 within 30 mm, such as within 15 mm, of the first sleeve end (i.e., the same end of the sleeve near which the second coupling element is coupled), measured whensleeve26 is fully longitudinally extended. For example, contracting mechanism28 (e.g.,housing44 thereof) may be fixed at the first sleeve end. Alternatively, for some applications, contracting mechanism28 (e.g.,housing44 thereof) is fixed at least 5 mm from the first sleeve end, e.g., between 5 and 30 mm, such as between 5 and 15 mm, from the first sleeve end.Second coupling element260 may be coupled to contracting mechanism28 (e.g., to housing44). Alternatively,second coupling element260 may be otherwise coupled to sleeve26 (such as directly coupled), in whichcase contracting mechanism28, e.g.,housing44 thereof, may be coupled tosleeve26 at a greater longitudinal distance from the end of the sleeve, and one or more ofanchors38 may be coupled to the sleeve longitudinally between the contracting mechanism and the sleeve end, such as described hereinabove with reference toFIGS. 1, 2A-I,3, and4.
Typically, linkingmember250 is substantially longitudinally non-extensible, i.e., its length is fixed. Typically, linkingmember250 comprises metal, such as Nitinol or stainless steel. For some applications, the linking member has a length of at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall.
For some applications, at least two of tissue anchors38 are coupled tosleeve26 at respective, different longitudinal sites alongside linkingmember250, within 6 cm of first linkingmember end252, such as within 2 to 6 cm of the first end. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
Reference is made toFIGS. 8A-D, which are schematic illustrations ofcoupling elements256 and260, in accordance with respective applications of the present invention. For some applications, at least one of first andsecond coupling elements256 and260 comprises ahook270. Alternatively or additionally, for some applications, at least one of the first and second coupling elements comprises aloop272. In the configuration shown inFIG. 8A (andFIGS. 6 and 7A-B),first coupling element256 compriseshook270, andsecond coupling element260 comprises aloop272. In the configuration shown inFIG. 8B, both first andsecond coupling elements256 and260 comprisesrespective loops272, and the coupling elements are coupled together such as by placing one ofanchors38 through both loops and into cardiac tissue.
For some applications, first andsecond coupling elements256 and260 are configured to provide an adjustable-length connection between linkingmember250 and the first end of sleeve. Such an adjustable-length connection allows the effective length of linkingmember250 to be set during the implantation procedure in order to accommodate variations in individual patient anatomy. For some applications, such as shown inFIG. 8C,first coupling element256 comprises a flexibleelongate member274, which comprises a plurality ofprotrusions276 distributed along a portion of flexibleelongate member274. Flexibleelongate member274 is drawn through a loop defined bysecond coupling element260 until a desired length of linkingmember250 is achieved; one of the protrusions prevents loosening. Alternatively,second coupling element260 comprises flexible elongate member274 (having protrusions276), andfirst coupling element256 defines the loop through which flexibleelongate member274 is drawn (configuration not shown). For some applications, such as shown inFIG. 8D,first coupling element256 comprises a plurality ofloops272, arranged longitudinally (each loop is connected to an adjacent loop, either directly or such as by a short length of wire), andsecond coupling element260 comprises asingle loop272. The healthcare professional selects which ofloops272 offirst coupling element256 to couple with thesingle loop272 ofsecond coupling element260, in order to set the length of linkingmember250. Alternatively,second coupling element260 comprises the plurality ofloops272, andfirst coupling element256 comprises thesingle loop272, or both first andsecond coupling elements256 and260 comprise pluralities of loops (configurations not shown).
Reference is now made toFIGS. 9-17, which are schematic illustrations of additional configurations ofimplantable structure22, in accordance with respective applications of the present invention.FIGS. 9 and 12-16B show implantable structure22 (which typically comprises an annuloplasty ring) in a relaxed, non-contracted state.FIGS. 11A-D show several configurations of an elongated radial-force application element482, labeled withreference numerals482A,482B,482C, and482D, respectively. These configurations ofimplantable structure22 are generally similar to the configuration described hereinabove with reference toFIG. 1, except as follows, and may incorporate any of the features of the configuration described hereinabove with reference toFIG. 1, mutatis mutandis.
FIG. 10 showsimplantable structure22 implanted aroundmitral valve130, before a longitudinal portion ofsleeve26 has been contracted. For some applications, as shown inFIG. 10,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144. This latter arrangement may facilitate placement of the first-deployed,distal-most anchor38 near rightfibrous trigone144, which is above the fossa ovalis, and the linking of first andsecond coupling elements456 and260 later in the implantation procedure, for applications in which these coupling elements are provided, such as described hereinbelow.
In these configurations,implantable structure22 further comprises elongated radial-force application element482, which is disposed entirely within a first longitudinal portion ofsleeve26. Elongated radial-force application element482 is configured to apply a force against a wall of the first longitudinal portion ofsleeve26 in at least one radially-outward direction. The applied force pushes the first longitudinal portion ofsleeve26 against tissue of the left atrium, such as against tissue of the annulus and/or the atrial wall, so as to inhibit blood flow betweensleeve26 and the tissue. It is generally desirable to inhibit blood flow betweensleeve26 and the annulus on anterior side, to avoid creating turbulence.
For some applications, elongated radial-force application element482 is configured to apply a force against the wall of at least 20 gram-force, no more than 1 kg-force, and/or between 20 gram-force and 1 kg-force, such as at least 50 gram-force, no more than 500 gram-force (e.g., no more than 300 gram-force), and/or between 50 gram-force and 500 gram-force (e.g., between 50 gram-force and 300 gram-force). For some applications, elongated radial-force application element482 is configured to apply the force generally constantly along the length of elongated radial-force application element482, e.g., with a variation of less than 20% along the length.
When implantingimplantable structure22, elongated radial-force application element482 is placed alonganterior portion116 of the annulus, betweenfibrous trigones142 and144 (a portion of elongated radial-force application element482 may extend beyond one or both of the trigones, such as for coupling toanchors38F, as described hereinbelow). If, upon initial placement, radial-force application element482 does not apply the force against the wall ofsleeve26 in the desired radial direction (e.g., in the direction of the atrial wall), the healthcare professional may rotate the radial-force application element482 within the sleeve, and/or rotate (e.g., twist) the first longitudinal portion ofsleeve26. Typically,longitudinal portion480 extends along at least 20 mm ofanterior portion116 of the annulus, and/or along at least 20%, no more than 100%, and/or between 20% and 100% ofanterior portion116 of the annulus, such as at least 30%, no more than 60%, and/or between 30% and 60% ofanterior portion116. Typically, in the configuration ofimplantable structure22 shown inFIGS. 9-10 and 12-16B, none ofanchors38 is coupled toanterior portion116 of the annulus.
Typically, elongated radial-force application element482 has a length of no more than 6 cm, measured whensleeve26 is fully longitudinally extended.
For some applications, elongated radial-force application element482 is rotationally asymmetric and not helically symmetric, such as shown inFIGS. 9-12 and 14-16B.
For some applications, such as shown inFIGS. 9-16B, elongated radial-force application element482 comprises aspringy element484. For some applications, at least a portion ofspringy element484 is curved at least partially about an inner surface of the wall ofsleeve26, such as shown inFIGS. 9, 10, 12, 14, 15, and 16A-B. Typically,springy element484 comprises an elastic material, such as a metal, such as Nitinol or stainless steel.
For some applications (such as when elongated radial-force application element482 comprises springy element484), as labeled inFIGS. 11A-D, elongated radial-force application element482 is shaped so as to define one or more axial base sections510 (e.g., exactly twoaxial base sections510A and510B, as shown inFIGS. 11A-D), and one or more offset sections512 (e.g., exactly one offsetsection512, as shown inFIG. 11A (andFIG. 10), or a plurality of offset sections512 (e.g., between two and 20, e.g., between two and ten, such as between two and six), as shown inFIGS. 11B-D). The one or more axial base sections510 are coaxial with alongitudinal axis514 of elongated radial-force application element482, and the one or more offsetsections512 are not coaxial withlongitudinal axis514. A greatest distance D between the one or more offsetsections512 andlongitudinal axis514 is typically at least 2 mm, no more than 10 mm (e.g., no more than 6 mm), and/or between 2 and 10 mm (e.g., between 2 and 6 mm), e.g., 4 mm.
For some applications, offset section(s)512 are at least partially straight, such as shown inFIGS. 11A and 11B. For some applications, offsetsections512 are at least partially curved, such as shown inFIGS. 11C and 11D. For some applications, offsetsections512 are at least partially serpentine, such as shown inFIG. 11D.
For some applications, the at least a portion ofspringy element484 is curved at least partially about the inner surface of the wall ofsleeve26 in a single circumferential direction, such as shown inFIGS. 9, 10, 14, 15, and 16A-B. Alternatively, for some applications, at least afirst portion485A ofspringy element484 is curved at least partially about the inner surface of the wall ofsleeve26 in a firstcircumferential direction486A, and at least asecond portion485B ofspringy element484 is curved at least partially about the inner surface of the wall ofsleeve26 in a secondcircumferential direction486B circumferentially opposite the first circumferential direction, such as shown inFIG. 12. This configuration may use any of the shapes shown inFIGS. 11A-D (with the shapes doubled), or other shapes. This configuration pushes against the wall ofsleeve26 and the tissue at at least two circumferential locations around the sleeve, and may help hold the rotational position of the sleeve, allow less accurate rotational alignment, and/or help compensate for anatomical variability.
For some applications, such as shown in Section A-A ofFIG. 9, elongated radial-force application element482 is configured to apply the force against the wall ofsleeve26 around an angle α (alpha) that is less than 100% of a perimeter of the wall ofsleeve26 around a centrallongitudinal axis516 ofsleeve26, such as around less than 75%, e.g., less than 50%, such as less than 25%, of the perimeter of the wall ofsleeve26. (Centrallongitudinal axis516 runs alongsleeve26; the cross-section shown in Section A-A ofFIG. 9 is perpendicular to the central longitudinal axis.) Force is not required to be applied around 100% of the perimeter of the wall ofsleeve26 because a circumferential portion of the wall faces the blood-filled volume of the chamber, rather than atrial tissue, and there would be no benefit to pushing the wall ofsleeve26 against the blood-filled volume.
For some applications, such as shown inFIG. 13, elongated radial-force application element482 is helically symmetric; for these applications,springy element484 typically comprises acoiled spring490. For some applications, when in a relaxed state, coiledspring490 has an outer diameter of at least 2.5 mm, no more than 10 mm, and/or between 2.5 and 10 mm, such as at least 3.5 mm, no more than 6 mm, and/or between 3.5 and 6 mm. For some applications, when in a relaxed state, the outer diameter of coiledspring490 is greater than (e.g., equals at least 110% of, such as at least 130% of, e.g. at least 150% of) an inner diameter of a secondlongitudinal portion492 that is entirely longitudinally distinct from firstlongitudinal portion480 ofsleeve26, when secondlongitudinal portion492 is fully radially expanded.Coiled spring490 is typically initially held constrained with a smaller diameter in a separate tube smaller than the inner diameter of the deployment sheath.
Reference is again made toFIGS. 9-16B. For some applications,longitudinal contracting member30 ofcontracting assembly40 is arranged only along at least a portion of secondlongitudinal portion492. For some of these applications, contractingassembly40 is configured to contract the at least a portion of the secondlongitudinal portion492.
Reference is made toFIG. 14. For some applications, first and secondlongitudinal portions480 and492 ofsleeve26 are configured such that firstlongitudinal portion480 either has, or is configured to assume, a first average internal diameter D1 that is greater than a second average internal diameter D2 of secondlongitudinal portion492. For example, first average internal diameter D1 may be at least 110% of D2, such as at least 150% of second average internal diameter D2. This larger average diameter enables elongated radial-force application element482 (e.g., springy element484) to push a large surface area ofsleeve26 against the atrial tissue, thereby better encouraging tissue growth, better inhibiting blood between the sleeve and the atrial tissue, and accommodating variations in individual patient anatomy. For some applications, first and secondlongitudinal portions480 and492 collectively extend along an entire length ofsleeve26. This configuration, as well as the various options described below, may be used in combination with any of the configurations described herein with reference toFIGS. 9-13 and/or 15.
For some applications, first average internal diameter D1 of firstlongitudinal portion480 ofsleeve26 is greater than second average internal diameter D2 of secondlongitudinal portion492 ofsleeve26, when both first and secondlongitudinal portions480 and492 are fully radially expanded (in these applications, typically both first and secondlongitudinal portions480 and492 are substantially radially non-extensible).
For some other applications, firstlongitudinal portion480 ofsleeve26 is radially elastic and thus able to stretch from an initial smaller average internal diameter to first average internal diameter D1, and secondlongitudinal portion492 ofsleeve26 is substantially radially non-extensible, and thus cannot expand to a diameter beyond second average internal diameter D2. For example, firstlongitudinal portion480 may comprise a first plurality of substantially non-extensible fibers that extend longitudinally along the first longitudinal portion, and a second plurality of elastic fibers that are arranged circumferentially around the first longitudinal portion (typically, woven with the first plurality of fibers). Typically, first and secondlongitudinal portions480 and492 ofsleeve26 are substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Optionally, first and secondlongitudinal portions480 and492 ofsleeve26 have a same diameter (equal to second average internal diameter D2) when firstlongitudinal portion480 is not elastically stretched. Alternatively, for some applications, first and secondlongitudinal portions480 and492 ofsleeve26 are woven, and firstlongitudinal portion480 ofsleeve26 is more loosely woven than secondlongitudinal portion492 ofsleeve26. Further alternatively, for some applications, firstlongitudinal portion480 ofsleeve26 is radially stretchable, and secondlongitudinal portion492 ofsleeve26 is substantially radially non-extensible. For example, firstlongitudinal portion480 may comprise a first plurality of substantially non-extensible fibers that extend longitudinally along the first longitudinal portion, and a second plurality of stretchable fibers that are arranged circumferentially around the first longitudinal portion (typically, woven with the first plurality of fibers).
For some applications, such as shown inFIGS. 9-10 and 12-15,sleeve26 has (a) a first sleeve end51 (which may correspond todistal end51 ofsleeve26, as shown, or to the proximal end, configuration not shown), and (b) a second sleeve end49 (which may correspond toproximal end49 ofsleeve26, as shown, or to the distal end, configuration not shown). For some applications, elongated radial-force application element482 has (a) a first radial-force-application-elementlongitudinal end496 that is between 2 and 6 cm fromfirst sleeve end51, measured whensleeve26 is fully longitudinally extended, and (b) a second radial-force-application-elementlongitudinal end498 that is within 1.5 cm offirst sleeve end51, measured whensleeve26 is fully longitudinally extended.
For some applications, such as shown inFIGS. 9-10 and 12-15, implantable structure22 (e.g., the annuloplasty ring) further comprises (a) afirst coupling element456, which is coupled to the annuloplasty ring within 1.5 cm offirst sleeve end51, measured whensleeve26 is fully longitudinally extended, and (b)second coupling element260, as described above with reference toFIGS. 6 and 7A-B.Second coupling element260 is configured to be coupleable tofirst coupling element456, and is fixed to implantable structure22 (e.g., the annuloplasty ring) within 1.5 cm ofsecond sleeve end49, measured whensleeve26 is fully longitudinally extended. For some applications, at least one of first andsecond coupling elements456 and260 comprises a hook. Alternatively or additionally, for some applications, at least one of the first and second coupling elements comprises a loop. For example, in the configurations shown inFIGS. 9-15,first coupling element456 comprises a hook, andsecond coupling element260 comprises a loop. Alternatively, for example, both the first and the second coupling elements comprises loops, such as shown inFIGS. 8B and 8D, and the coupling elements are coupled together such as by placing one ofanchors38 through both loops and into cardiac tissue.
Elongated radial-force application element482 is typically fixed tosleeve26 at least near first radial-force-application-elementlongitudinal end496, such that elongated radial-force application element482 is arranged as a cantilever. Typically, elongated radial-force application element482 is fixed tosleeve26 at least near first radial-force-application-elementlongitudinal end496, such that first radial-force-application-elementlongitudinal end496 is rotationally fixed with respect to the sleeve, in order to allow twisting of elongated radial-force application element482 to store spring energy in elongated radial-force application element482 near first radial-force-application-elementlongitudinal end496. The shape of first radial-force-application-elementlongitudinal end496 may aid in rotationally fixing the end with respect to the sleeve. For example, first radial-force-application-elementlongitudinal end496 may include a circumferentially-oriented component, as shown in the figures.
A portion of elongated radial-force application element482 may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the elongated radial-force application element in place during deployment, and/or the elongated radial-force application element may be held in place after implantation by one or more ofanchors38, such as two ormore anchors38F.
For some applications, such as shown inFIGS. 9-15, contracting mechanism28 (e.g.,housing44 thereof) is fixed alongsleeve26 within 30 mm, such as within 15 mm, of second sleeve end49 (i.e., the same end of the sleeve near whichsecond coupling element260 is coupled), measured whensleeve26 is fully longitudinally extended. For example, contracting mechanism28 (e.g.,housing44 thereof) may be fixed atsecond sleeve end49. Alternatively, for some applications, contracting mechanism28 (e.g.,housing44 thereof) is fixed at least 5 mm fromsecond sleeve end49, e.g., between 5 and 30 mm, such as between 5 and 15 mm, fromsecond sleeve end49.Second coupling element260 may be coupled to contracting mechanism28 (e.g., to housing44). Alternatively,second coupling element260 may be otherwise coupled to sleeve26 (such as directly coupled), in whichcase contracting mechanism28, e.g.,housing44 thereof, may be coupled tosleeve26 at a greater longitudinal distance from the end of the sleeve, and one or more ofanchors38 may be coupled to the sleeve longitudinally between the contracting mechanism and the sleeve end, such as described hereinabove with reference toFIGS. 1, 2A-I,3, and4.
For some applications, such as shown inFIGS. 9-14, implantable structure22 (e.g., the annuloplasty ring) further comprises a substantially longitudinallynon-extensible linking member450, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Linkingmember450 typically helps prevent long-term dilation of the anterior annulus. Linkingmember450 is typically configured not to apply any force to the wall of firstlongitudinal portion480 ofsleeve26. Typically, linkingmember450 is not configured as a spring. For some applications, linkingmember450 comprises a metal (e.g., Nitinol or stainless steel) or a polymer. For some applications, linkingmember450 is rigid, while for other applications, the linking member is not rigid.
Linkingmember450 has first and second linking-member ends452 and454. Linkingmember450 is at least partially disposed within and covered by firstlongitudinal portion480 ofsleeve26. Typically, at least 30%, such as at least 75% or at least 90% of a length of linkingmember450 is disposed within and covered by firstlongitudinal portion480 ofsleeve26. Over time after implantation, linkingmember450 becomes fixed toanterior portion116 of the annulus. Second linking-member end454 comprises (e.g., is shaped so as to define, or is fixed to)first coupling element456. Second linking-member end454 either protrudes fromfirst sleeve end51, or is recessed withinfirst sleeve end51. A longitudinal portion of linkingmember450 in a vicinity of first linking-member end452 is typically coupled tosleeve26. For example, the portion may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the linking member in place during deployment. Optionally, a longitudinal portion of linkingmember450 in a vicinity of first linking-member end452 is held in place after implantation by one or more ofanchors38, such as two ormore anchors38F (configuration not shown). Optionally, the linking member is not initially coupled to the sleeve, but is instead held in place by a delivery tool during the implantation procedure, until being coupled to the sleeve during the implantation procedure. Typically, linkingmember250 has a length of at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm.
For some applications, at least firstlongitudinal portion480 ofsleeve26 is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. In these applications, firstlongitudinal portion480 typically helps prevent long-term dilation of the anterior annulus.
For some applications, such as shown inFIG. 15,first coupling element456 is fixed to the wall ofsleeve26 within 1.5 cm offirst sleeve end51, measured whensleeve26 is fully longitudinally extended.Implantable structure22 typically does not comprise linkingmember450 in these applications. In these applications, at least firstlongitudinal portion480 ofsleeve26 is substantially longitudinally non-extensible, and firstlongitudinal portion480 typically helps prevent long-term dilation of the anterior annulus.
Reference is made toFIGS. 9-15. Typically,sleeve26 is placed entirely around an annulus of the atrioventricular valve, e.g., the mitral valve. For applications in whichsleeve26 has first and second sleeve ends51 and49, as described hereinabove with reference toFIGS. 9-14,sleeve26 is introduced into the left atrium while first and second sleeve ends51 and49 are not coupled to each other, and thereafter, in the left atrium,sleeve26 is arranged entirely around the annulus to form the closed loop.
Reference is still made toFIGS. 9-16. For some applications, during placement, after fasteningsleeve26 to the portion of the annulus, the healthcare professional twists elongated radial-force application element482 (and optionally firstlongitudinal portion480 of sleeve26), and then, typically, links first andsecond coupling elements456 and260. Optionally, such twisting may serve one or both of the following purposes: (1) the twisting may store energy inspringy element484 for exertion of torque against the wall of the sleeve, and (2) the twisting may rotationally alignspringy element484 in the desired radial direction. Alternatively or additionally to twisting for the first of these purposes,springy element484 may be pre-loaded (twisted) to store energy before implantation in the subject, such as immediately before implantation or during manufacture.
Reference is again made toFIGS. 8A-D. The techniques described with reference to these figures regardingcoupling element256 may be implemented forcoupling element456 of the configuration described with reference toFIGS. 9-15.
Reference is made toFIGS. 16A-B, which are schematic illustrations ofimplantable structure22 in whichsleeve26 is shaped so as to define an integrally closed loop having no sleeve ends, in accordance with respective applications of the present invention. In these applications, the wall ofsleeve26 typically is shaped so as to define alateral opening500 through which anchordeployment manipulator24 is introduced. For some applications, elongated radial-force application element482 has (a) a first radial-force-application-elementlongitudinal end496 that is at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm fromhousing44 of contracting assembly40 (housing44 is fixed to sleeve26), measured whensleeve26 is fully longitudinally extended, and (b) a second radial-force-application-elementlongitudinal end498 that is within 1.5 cm ofhousing44, measured whensleeve26 is fully longitudinally extended. Alternatively, for some applications, first radial-force-application-elementlongitudinal end496 is within 1.5 cm ofhousing44, measured whensleeve26 is fully longitudinally extended, and second radial-force-application-elementlongitudinal end498 is at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm fromhousing44 ofcontracting assembly40, measured whensleeve26 is fully longitudinally extended.
For some applications, such as shown inFIG. 16B, first and secondlongitudinal portions480 and492 ofsleeve26 are configured such that firstlongitudinal portion480 either has, or is configured to assume, a first average internal diameter D1 that is greater than a second average internal diameter D2 of secondlongitudinal portion492. For example, first average internal diameter D1 may be at least 110% of second average internal diameter D2, such as at least 150% of second average internal diameter D2. First average internal diameter D1 may be achieved using the techniques described hereinabove with reference toFIG. 14. For other applications, such as shown inFIG. 16A, the entire sleeve (i.e., first and secondlongitudinal portions480 and492) has a constant internal diameter.
For some applications, as shown inFIGS. 16A-B,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144.
Reference is now made toFIG. 17, which is a schematic illustration of another configuration ofimplantable structure22 implanted around the mitral valve, in accordance with an application of the present invention. In this configuration, elongated radial-force application element482 comprises aninflatable element494, such as a balloon. After fasteningsleeve26 to the portion of the annulus (and, optionally, after linking first andsecond coupling elements456 and260), the healthcare professional inflatesinflatable element494, typically with a liquid (such as saline solution) or a gel. For some applications,inflatable element494 is provided separately fromimplantable structure22, and the healthcare professional introducesinflatable element494, while uninflated, intosleeve26, typically after fasteningsleeve26 to the portion of the annulus (and, optionally, after linking first andsecond coupling elements456 and260), and then inflatesinflatable element494. These inflation techniques may be used with any of the techniques described herein with reference toFIGS. 9-16B, mutatis mutandis.
For some applications, as shown inFIG. 17,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144. This latter arrangement may facilitate placement of the first-deployed,distal-most anchor38 near rightfibrous trigone144, which is above the fossa ovalis, and the linking of first andsecond coupling elements456 and260 later in the implantation procedure, for applications in which these coupling elements are provided, such as described hereinbelow.
Reference is now made toFIGS. 18A and 18B.FIG. 18A is a schematic illustration of another configuration ofimplantable structure22, prior to implantation, in accordance with an application of the present invention, andFIG. 18B is a schematic illustration ofimplantable structure22 in the configuration ofFIG. 18A after implantation entirely around the annulus ofmitral valve130, before a longitudinal portion ofsleeve26 has been contracted, in accordance with an application of the present invention. In this configuration,flexible sleeve26 is placed entirely around an annulus ofmitral valve130 in a closed loop. For some applications,sleeve26 is introduced intoleft atrium124 while first and second sleeve ends are not coupled to each other. Thereafter, in the left atrium, the sleeve is arranged entirely around the annulus to form the closed loop.
Sleeve26 is fastened to the annulus by coupling a plurality of tissue anchors38 to the annulus. Tissue anchors38 are coupled with:
    • a first non-zero longitudinal density along a posterior portion of the annulus between left and rightfibrous trigones142 and144 of the annulus, including the trigones, which density is equal to (a) a number of tissue anchors38 coupled to the annulus along the posterior portion of the annulus divided by (b) a length of the posterior portion of the annulus (measured along the annulus),
    • and a second non-zero longitudinal density along an anterior portion of the annulus between left and rightfibrous trigones142 and144 of the annulus, not including the trigones, which density is equal to (a) a number of tissue anchors38 coupled to the annulus along the anterior portion of the annulus divided by (b) a length of the anterior portion of the annulus (measured along the annulus).
The first longitudinal density is greater than the second longitudinal density. For some applications, the first longitudinal density is at least twice the second longitudinal density, such as at least 2.5 the second longitudinal density, e.g., at least 3 times the second longitudinal density. For example, tissue anchors38A (and, optionally38C) may be fastened along the posterior portion of the annulus, and tissue anchors38B may be fastened along the anterior portion of the annulus. After the tissue anchors are fastened to the annulus, a longitudinal portion of the sleeve is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuatingcontracting assembly40.
Alternatively or additionally, for some applications,sleeve26 comprises a plurality ofradiopaque markers39, which are positioned along the sleeve at respective longitudinal sites, such as described hereinabove with reference toFIG. 1. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of the sleeve has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance betweenanchors38 along the sleeve, and thus the desired differing longitudinal densities of the anchors.
For some applications, as shown inFIG. 18B,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144.
Reference is now made toFIG. 19, which is a schematic illustration ofimplantable structure22 after implantation around the annulus ofmitral valve130, in accordance with an application of the present invention. In this configuration,flexible sleeve26 is placed at least partially around an annulus ofmitral valve130, such as partially around the annulus, as shown inFIG. 19, or entirely around the annulus in a closed loop, such as shown inFIG. 4, 5, 7A-B,10,16A-B,17, or18B, optionally using any of the techniques described herein with reference to these figures. For some applications in which the sleeve is placed entirely around the annulus,sleeve26 is introduced intoleft atrium124 while first and second sleeve ends are not coupled to each other; thereafter, in the left atrium,sleeve26 is arranged entirely around the annulus to form the closed loop.FIG. 19 shows the annulus before a longitudinal portion ofsleeve26 has been contracted, as described below.
Sleeve26 is fastened to the annulus by coupling a plurality of tissue anchors38 to the annulus, including first, second, and third tissue anchors38G,38H, and38I, as follows:
    • one or more first tissue anchors38G are coupled to the annulus along a lateral scallop (P1) of the posterior leaflet, with a first longitudinal density, which density is equal to (a) a number of first tissue anchors38G coupled to the annulus along the lateral scallop (P1) divided by (b) a length of the lateral scallop (P1) along the annulus,
    • a plurality of second tissue anchors38H (e.g., at least 3 tissue anchors, such as at least five tissue anchors) are coupled to the annulus along a middle scallop (P2) of the posterior leaflet, with a second longitudinal density, which density is equal to (a) a number of second tissue anchors38H coupled to the annulus along the middle scallop (P2) divided by (b) a length of the middle scallop (P2) along the annulus, and
    • one or more third tissue anchors38I are coupled to the annulus along a medial scallop (P3) of the posterior leaflet, with a third longitudinal density, which density is equal to (a) a number of third tissue anchors38I coupled to the annulus along the medial scallop (P3) divided by (b) a length of the medial scallop (P3) along the annulus.
Tissue anchors38 may optionally comprise additional tissue anchors other than tissue anchors38G,38H, and38I, not coupled along the posterior leaflet. After the tissue anchors are fastened to the annulus, a longitudinal portion ofsleeve26 is contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuatingcontracting assembly40.
The longitudinal densities are characterized by at least one of the following: (a) the second longitudinal density is at least twice the first longitudinal density (such as at least 2.5 the first longitudinal density, e.g., at least 3 times the first longitudinal density), and (b) the second longitudinal density is at least twice the third longitudinal density (such as at least 2.5 the third longitudinal density, e.g., at least 3 times the third longitudinal density). For some applications, both (a) the second longitudinal density is at least twice the first longitudinal density (such as at least 2.5 the first longitudinal density, e.g., at least 3 times the first longitudinal density), and (b) the second longitudinal density is at least twice the third longitudinal density (such as at least 2.5 the third longitudinal density, e.g., at least 3 times the third longitudinal density).
For some applications, as shown inFIG. 19,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144.
Reference is now made toFIG. 20, which is a schematic illustration ofimplantable structure22 after implantation around the annulus ofmitral valve130, in accordance with an application of the present invention.FIG. 20 showsimplantable structure22 after a longitudinal portion ofsleeve26 has been contracted, such as by actuatingcontracting assembly40. The techniques described with reference toFIG. 20 may optionally be used in combination with the techniques described above with reference toFIG. 19.
Tissue anchors38, including second tissue anchors38H, comprise respective anchor heads320 andtissue coupling elements322. Typically, anchor heads320 are circular; alternatively, they have another shape, such as of an ellipse or a polygon (e.g., a hexagon or a square). The plurality of tissue anchors38 are coupled to the annulus such that, after the longitudinal portion ofsleeve26 has been contracted (such as by actuatingcontracting assembly40 to contract the longitudinal portion), each of anchor heads320 of at least two of second tissue anchors38H coupled along the middle scallop (P2) touches at least one longitudinally-adjacent anchor head320; for example, each of anchor heads320 of at least three of tissue anchors38H touches at least one longitudinally-adjacent anchor head320.
Typically, before the longitudinal portion ofsleeve26 has been contracted, anchor heads320 of the at least two of second tissue anchors38H do not touch any longitudinally-adjacent anchor heads320. Before the longitudinal portion ofsleeve26 has been contracted, the anchors are coupled to the sleeve and tissue at distances between the anchors that are less than the planned distances that the anchors move toward each other during contraction of the longitudinal portion ofsleeve26. As a result, the anchor heads touch each other upon such contraction.
By way of example,FIG. 20 shows three oftissue anchors38H touching at least one longitudinally-adjacent anchor head320. Each of the longitudinally-outer touching anchor heads touches one longitudinally-adjacent anchor head (the middle longitudinally-touching anchor head), and the middle longitudinally-touching anchor head touches two longitudinally-adjacent anchor heads (the outer touching anchor heads).
This touching of longitudinally-adjacent anchor heads320 inhibits longitudinal contraction ofsleeve26 in the longitudinal area of these anchors, so as to facilitate reshaping of the annulus in a desired manner. These longitudinally-adjacent anchor heads320 thus are dual-function, and serve to both anchor their respective anchors to the sleeve and to inhibit contraction of the sleeve.
For some applications, as shown inFIG. 20, the plurality of tissue anchors38 is coupled to the annulus such that, after the longitudinal portion ofsleeve26 has been contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly40:
    • none of anchor heads320 of first tissue anchors38G coupled along the lateral scallop (P1) touches any of the other anchor heads of tissue anchors38; and/or
    • none of anchor heads320 of third tissue anchors38I coupled along the medial scallop (P3) touches any of the other anchor heads of tissue anchors38.
For some applications, the plurality of tissue anchors38 are coupled to the annulus such that, after the longitudinal portion ofsleeve26 has been contracted, such as by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuating contracting assembly40:
    • a first number of anchor heads320 of first tissue anchors38G coupled along the lateral scallop (P1) touch at least one longitudinally-adjacent anchor head, and (b) a second number of anchor heads320 of the tissue anchors coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, the second number greater than the first number; and/or
    • a second number of anchor heads320 of second tissue anchors38H coupled along the middle scallop (P2) touch at least one longitudinally-adjacent anchor head, and (b) a third number of anchor heads320 of third tissue anchors38I coupled along the medial scallop (P3) touch at least one longitudinally-adjacent anchor head, the second number greater than the third number.
For some applications, as shown inFIG. 20,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144.
Reference is now made toFIG. 21, which is a schematic illustration ofimplantable structure22 after implantation around the annulus ofmitral valve130, in accordance with an application of the present invention.FIG. 21 shows the annulus before a longitudinal portion ofsleeve26 has been contracted, as described below. The techniques described with reference toFIG. 21 may optionally be used in combination with the techniques described hereinabove with reference toFIG. 19, and/or the techniques described hereinabove with reference toFIG. 20.
In this configuration,flexible sleeve26 is placed at least partially around an annulus ofmitral valve130, such as partially around the annulus, as shown inFIG. 21, or entirely around the annulus in a closed loop, such as shown inFIGS. 4, 5, 7A-B,10,16A-B,17, or18B, optionally using any of the techniques described with reference to these figures. For some applications in which the sleeve is placed entirely around the annulus,sleeve26 is introduced intoleft atrium124 while first and second sleeve ends are not coupled to each other; thereafter, in the left atrium,sleeve26 is arranged entirely around the annulus to form the closed loop.
Sleeve26 is fastened to the annulus by coupling a plurality of tissue anchors38 to the annulus, including tissue anchors38J and38K, such that:
    • afirst set324 of exactly three of tissue anchors38J is disposed in succession along a first portion oflongitudinal contracting member30 with a first distance D9 between longitudinal-end tissue anchors offirst set324, measured along the annulus, and
    • asecond set328 of exactly three of tissue anchors38K is disposed in succession along a second portion oflongitudinal contracting member30 with a second distance D10 between longitudinal-end tissue anchors ofsecond set328, measured along the annulus,
First distance D9 equals at least twice second distance D10, such as at least 2.5 times second distance D10, e.g., at least 3 times second distance D10. First distance D9 is measured between closest portions of the longitudinal-end tissue anchors offirst set324, and second distance D10 is measured between closest portions of the longitudinal-end tissue anchors ofsecond set328. First andsecond sets324 and328 do not share any common tissue anchors38. Typically, the plurality of tissue anchors38 comprises additional tissue anchors other than tissue anchors38J and38K. After the tissue anchors are fastened to the annulus, a longitudinal portion ofsleeve26 is contracted by causing the longitudinal contracting member to apply a force to the longitudinal portion of the sleeve, such as by actuatingcontracting assembly40. Providing the greater number of anchoring points withsecond set328 better distributes forces among the anchors of this set.
For some applications, as shown inFIG. 21,implantable structure22 is implanted withcontracting mechanism28 disposed near leftfibrous trigone142, while for other applications (not shown, but similar to the arrangement shown inFIG. 7B),implantable structure22 is implanted withcontracting mechanism28 disposed near rightfibrous trigone144.
Reference is now made toFIGS. 22A-D, which are schematic illustrations of another configuration ofsystem20 for repairing a dilated atrioventricular valve, and a method for deploying the system, in accordance with an application of the present invention. This configuration may be used in combination with any of the techniques and configurations described herein with reference toFIGS. 1, 2A-I,3,19,20,21,24,25A-B, and/or26.
In this configuration,system20 further comprises a linkingbridge element200, which is configured to be coupled tosleeve26 in order to link first and second sleeve ends51 and49 ofsleeve26 ofimplantable structure22 via linkingbridge element200. To this end, linkingbridge element200 typically comprises first and secondbridge coupling interfaces210A and210B, which are configured to be coupled to corresponding first and secondsleeve coupling interfaces212A and212B ofsleeve26, which are disposed within 1.5 cm of first and second sleeve ends51 and49, respectively, measured when the sleeve is fully longitudinally extended, such as at first and second sleeve ends51 and49, respectively. For example, first and secondbridge coupling interfaces210A and210B may comprise female interfaces (as shown), and first and secondsleeve coupling interfaces212A and212B may comprise male interfaces (as shown), which are configured to snap into the female interfaces. Alternatively, first and secondsleeve coupling interfaces212A and212B may comprise female interfaces, such as rings (e.g., comprising a metal or a plastic) integrated into the wall of sleeve26 (configurations not shown), and first and secondbridge coupling interfaces210A and210B may comprise male interfaces (configuration not shown), which are configured to snap into the female interfaces. Further alternatively, the interfaces comprise other coupling structures, as is known in the art, such as coupling structures that snap together.
Typically, linkingbridge element200 has a length of at least 1 cm, no more than 5 cm, and/or between 1 and 5 cm, such as at least 1.5 cm, no more than 3.5 cm, and/or between 1.5 and 3.5 cm, e.g., 2 cm. Typically, first and secondbridge coupling interfaces210A and210B are disposed within 1 cm (such as within 0.5 cm) of first and second ends216A and216B of linkingbridge element200, respectively, e.g., between 0.5 cm and 1 cm of first and second ends216A and216B of linkingbridge element200, respectively. For some applications, linkingbridge element200 comprises a metal or a polymer that provides longitudinal stability while maintaining some flexibility in other directions. Optionally, linkingbridge element200 further comprises a fabric or other coating for tissue growth enhancement. For some applications, linkingbridge element200 comprises elongated radial-force application element482, such as described hereinabove with reference toFIGS. 9-15 and/or 17.
For some applications,system20 comprises first and second flexiblelongitudinal guide members214A and214B, which are removably coupled tosleeve26 within 1.5 cm of first and second sleeve ends51 and49 (e.g., with 0.5 cm of the sleeve ends, or at the sleeve ends), respectively, measured when the sleeve is fully longitudinally extended. First and second flexiblelongitudinal guide members214A and214B extend from first and second sleeve ends51 and49, respectively, away fromsleeve26. First and second flexiblelongitudinal guide members214A and214B may be directly or indirectly coupled tosleeve26. For configurations in which first and second flexiblelongitudinal guide members214A and214B are indirectly coupled tosleeve26, the longitudinal guide members may be coupled to respective intermediary elements at locations beyond the end of the sleeve (but still within 1.5 cm of the respective sleeve ends). For example, first and second flexiblelongitudinal guide members214A and214B may be (a) removably coupled to first and secondsleeve coupling interfaces212A and212B, respectively (in which case the longitudinal guide members may be indirectly coupled to the sleeve), and/or (b) the wall of sleeve26 (in which case the longitudinal guide members are directly coupled to the sleeve). For example, first and second flexiblelongitudinal guide members214A and214B may comprise respective sutures, wires, or strings.
The longitudinal guide members are configured to guide first and secondbridge coupling interfaces210A and210B to corresponding locations onsleeve26, such as first and secondsleeve coupling interfaces212A and212B, during an implantation procedure, as shown inFIGS. 22A-C. The longitudinal guide members removably pass through respective openings defined by linkingbridge element200, and then through adelivery tube220 in which linkingbridge element200 is disposed for delivery to the atrium. For some applications, the respective openings are defined by first and secondbridge coupling interfaces210A and210B, respectively (as shown). For other applications, the respective openings are located elsewhere on linkingbridge element200, typically within 10 mm, such as within 5 mm, of first and secondbridge coupling interfaces210A and210B, respectively. (Optionally,longitudinal member86, described hereinabove with reference toFIG. 2I, also passes throughdelivery tube220.)
For some applications, each of the longitudinal guide members is doubled over and threaded through its respective sleeve coupling interface and/or sleeve end. After the linking bridge element has been coupled tosleeve26 ofimplantable structure22, the longitudinal guide members are removed by pulling on one end of each of the longitudinal guide members, typically from outside of the patient's body. Alternatively, each of the longitudinal guide members is decoupled from the sleeve in some other manner, such as using techniques described in the above-mentioned '604 application for decouplinglongitudinal member86 fromcontracting mechanism40.
Typically, as described hereinabove,implantable structure22 compriseslongitudinal contracting member30, which is configured to longitudinally contract a longitudinal portion ofsleeve26, as described hereinabove.Longitudinal contracting member30 may be disposed with respect to the sleeve in any of the arrangements described hereinabove, including those regarding the extent to which the contracting member extends along the length of sleeve. First and second flexiblelongitudinal guide members214A and214B are separate and distinct fromlongitudinal contracting member30; in other words, first and second flexiblelongitudinal guide members214A and214B are not fixed tolongitudinal contracting member30, and are not parts of a common longitudinal member.
Typically, when first and second flexiblelongitudinal guide members214A and214B are removably coupled tosleeve26 of implantable structure22:
    • no portion of either first flexiblelongitudinal guide member214A or second flexiblelongitudinal guide member214B is disposed more than 1.5 cm from first and second sleeve ends51 and49, respectively, measured when the sleeve is fully longitudinally extended;
    • first and second flexiblelongitudinal guide members214A and214B are collectively disposed along less than 30% of a length ofsleeve26, such as less than 5% of the length of the sleeve, measured when the sleeve is fully longitudinally extended; and/or
    • for applications in whichimplantable structure22 compriseslongitudinal contracting member30, first and second flexiblelongitudinal guide members214A and214B do not longitudinally overlap longitudinal contracting member30 (i.e., are not disposed at any common longitudinal locations with longitudinal contracting member30).
Alternatively, for some applications,system20 comprises a single flexible longitudinal guide member214 which removably passes through the entire sleeve26 (configuration not shown). After the linking bridge element has been coupled tosleeve26 ofimplantable structure22, the longitudinal guide member is removed by pulling on one end of the longitudinal guide member, typically from outside of the patient's body. Alternatively, the longitudinal guide member is decoupled from the sleeve in some other manner, such as using techniques described in the above-mentioned '604 application for decouplinglongitudinal member86 fromcontracting mechanism40.
After first and secondbridge coupling interfaces210A and210B have been guided over first and second flexiblelongitudinal guide members214A and214B to corresponding first and secondsleeve coupling interfaces212A and212B, as shown in FIGS.22A-C, first and secondbridge coupling interfaces210A and210B are coupled to corresponding first and secondsleeve coupling interfaces212A and212B, also as shown inFIG. 24C. For example, first andsecond tubes222A and222B may be introduced throughdelivery tube220 and over first and second flexiblelongitudinal guide members214A and214B, respectively, and used to push the corresponding coupling interfaces against each other, until they snap together, as shown inFIG. 22C.
FIG. 22D shows linkingbridge element200 coupled tosleeve26 ofimplantable structure22, after the delivery tool has been removed from the atrium.
For applications in whichimplantable structure22 compriseslongitudinal contracting member30, the implantation method typically comprises:
    • during a percutaneous transcatheter procedure, placingsleeve26 ofimplantable structure22 partially around an annulus of a valve of a subject, such as a mitral valve or tricuspid valve (typically around all or a portion of a posterior portion of the annulus between fibrous trigones of the valve);
    • anchoringsleeve26 to cardiac tissue, such as described hereinabove with reference toFIGS. 2G-I;
    • coupling linkingbridge element200 tosleeve26, as described hereinabove, typically along all or a portion of an anterior portion of the annulus between the fibrous trigones; and
    • thereafter, contracting a longitudinal portion ofsleeve26 by causinglongitudinal contracting member30 to apply a contracting force to the longitudinal portion of the sleeve, as described hereinabove.
Thus, the contracting of the sleeve is not performed simultaneously with the coupling of the linking bridge element to the sleeve. Moreover,longitudinal contracting member30 does not serve as either of first and second flexiblelongitudinal guide members214A and214B.
Optionally, for some applications,system20 comprises one or more bridge anchors224 (e.g., one, two, or three bridge anchors224), which are used to couple linkingbridge element200 to tissue at the anterior portion of the annulus. For some applications, the one or more bridge anchors224 are deployed usinganchor deployment manipulator24, described hereinabove.
Reference is now made toFIGS. 23A-B, which are schematic illustrations of another configuration of linkingbridge element200, in accordance with an application of the present invention. Other than as described below, this configuration is identical to the configuration described hereinabove with reference toFIGS. 22A-D.
In this configuration, first and secondbridge coupling interfaces210A and210B are male interfaces, which are configured to pierce the wall ofsleeve26, thereby becoming coupled to the sleeve. For example, the coupling elements may be shaped as harpoons or other barbed structures. In this configuration,sleeve26 typically does not comprise any coupling interfaces or coupling elements.
Reference is now made toFIG. 24, which is a schematic illustration ofcontracting mechanism28, disassembled to show a relationship among individual components of the contracting mechanism, in accordance with an application of the present invention. The components are arranged and function as described with reference toFIG. 7 of the above-mentioned '604 publication, mutatis mutandis.
Reference is made toFIGS. 25A-B and26, which are schematic illustrations of avalve prosthesis assembly400, in accordance with respective applications of the present invention.Valve prosthesis assembly400 comprises aprosthetic heart valve410 that is couplable to a base ring422.Prosthetic heart valve410 is used to replace a native diseased heart valve.Valve410 comprises a plurality ofartificial leaflets430, which comprise a pliant material.Valve410 may implement techniques known in the artificial valve art, such as described, for example, in US Patent Application Publication 2007/0255400 to Parravicini et al., US Patent Application Publication 2004/0122514 to Fogarty et al., US Patent Application Publication 2007/0162111 to Fukamachi et al., and/or US Patent Application Publication 2008/0004697 to Lichtenstein et al., all of which are incorporated herein by reference.
Valve410 further comprises anannular base432, to whichartificial leaflets430 are coupled.Annular base432 is configured to be couplable to base ring422 during an implantation procedure. For example, as shown inFIG. 26, base ring422 may comprise one ormore coupling elements434, such as clips or magnets, which are configured to be coupled to corresponding coupling elements on a lower surface of annular base432 (not visible in the figures). Alternatively or additionally,annular base432 may be configured to be placed within the opening defined by base ring422, as shown inFIG. 25A. To hold the annular base coupled to the base ring, the base ring is tightened around the annular base, as shown inFIG. 25B, typically using one or more of the techniques described hereinabove for contracting implantable structures. Typically,valve prosthesis assembly400, such asannular base432 thereof, is configured to push and hold open the intact diseased native leaflets.
Base ring422 implements one or more of the techniques ofimplantable structure22 described hereinabove. In particular, base ring422 may be coupled to the annulus of the native diseased valve using the anchoring techniques described hereinabove. In addition, base ring422 typically comprisessleeve26 andcontracting mechanism28, which may, for some applications, comprise a rotatable structure, such as aspool46, which is typically implemented using techniques described herein. The contracting mechanism is arranged to contract base ring422, e.g., the rotatable structure is arranged such that rotation thereof contracts base ring422, typically using techniques described herein. Such tightening may serve to couple base ring422 toannular base432, as shown inFIG. 25B. Alternatively or additionally, such tightening sets the desired dimensions of the base ring, in order to align the coupling elements of the base ring with those ofvalve410, thereby enabling tight coupling, such as for the applications described with reference toFIG. 26.
For some applications, as shown inFIG. 26, base ring422 comprises a partial ring, such as described hereinabove with reference toFIGS. 2A-I,19,20, and21. For other applications, as shown inFIGS. 25A-B, the base ring is arranged as a full ring, such as described hereinabove with reference toFIGS. 4, 5, 7A-B,10,16A-B,17, and18B.
Valve prosthesis assembly400 is typically implanted in a minimally invasive transcatheter or percutaneous procedure. The procedure begins with the introduction and implantation of base ring422 into the heart, such as using techniques for implantingimplantable structure22, described hereinabove with reference toFIGS. 2A-I.Prosthetic heart valve410 is subsequently introduced into the heart and coupled to base ring422, as described above.Valve prosthesis assembly400 is typically used for replacement of a diseased native mitral valve, aortic valve, tricuspid valve, or pulmonary valve.
For some applications,system20 further comprises a closure mechanism, such as described in above-mentioned US Patent Application Publication 2012/0330411, with reference toFIGS. 16-17B thereof.
For some applications,system20 further comprises a flexible pusher element, such as described and shown in US Patent Application Publication 2010/0286767, which is incorporated herein by reference, with reference toFIG. 8 thereof. The pusher element aids with accurately positioningsuccessive anchors38 during an implantation procedure, such as described hereinabove with reference toFIGS. 2H and 21. For some applications,system20 further comprises a pusher tube that is applied toproximal end49 ofsleeve26, such as described in the above-mentioned '604 *publication, with reference toFIGS. 14 and/or 18A-B thereof. For some applications,system20 further comprises a steerable tube, such as described in the above-mentioned '604 publication, with referenced toFIG. 15 thereof, or with reference toFIG. 16 thereof. For some applications,system20 further comprises a pulling wire, such as described in the above-mentioned '604 publication, with referenced toFIG. 17 thereof. For some applications,system20 further comprises an external control handle, such as described in the above-mentioned '604 publication, with referenced toFIG. 19 thereof. For some applications, contractingassembly40 andimplantable structure22 are configured as described with reference toFIG. 23 of the above-mentioned '604 publication, mutatis mutandis.
For some applications of the present invention,system20 is used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications,implantable structure22 and other components ofsystem20 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Althoughimplantable structure22 is described hereinabove as being placed in an atrium, for some application the implantable structure is instead placed in either the left or right ventricle.
The scope of the present invention includes applications described in the following applications, which are incorporated herein by reference. In an application, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
    • PCT Publication WO 06/097931 to Gross et al., entitled, “Mitral Valve treatment techniques,” filed Mar. 15, 2006;
    • U.S. Provisional Patent Application 60/873,075 to Gross et al., entitled, “Mitral valve closure techniques,” filed Dec. 5, 2006;
    • U.S. Provisional Patent Application 60/902,146 to Gross et al., entitled, “Mitral valve closure techniques,” filed on Feb. 16, 2007;
    • U.S. Provisional Patent Application 61/001,013 to Gross et al., entitled, “Segmented ring placement,” filed Oct. 29, 2007;
    • PCT Patent Application PCT/IL07/001503 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as PCT Publication WO 08/068756;
    • U.S. patent application Ser. No. 11/950,930 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as US Patent Application Publication 2008/0262609;
    • U.S. Provisional Patent Application 61/132,295 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 16, 2008;
    • U.S. patent application Ser. No. 12/341,960 to Cabin, entitled, “Adjustable partial annuloplasty ring and mechanism therefor,” filed on Dec. 22, 2008, which published as US Patent Application Publication 2010/0161047;
    • U.S. Provisional Patent Application 61/207,908 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2009;
    • U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed on May 4, 2009, which published as US Patent Application Publication 2010/0161041;
    • U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed on May 7, 2009, which published as US Patent Application Publication 2010/0286767;
    • PCT Patent Application PCT/IL2009/000593 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 15, 2009, which published as PCT Publication WO 10/004546;
    • U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on Aug. 27, 2009, which published as US Patent Application Publication 2010/0161042;
    • U.S. patent application Ser. No. 12/608,316 to Miller et al., entitled, “Tissue anchor for annuloplasty ring,” filed on Oct. 29, 2009, which published as US Patent Application Publication 2011/0106247;
    • U.S. Provisional Patent Application 61/265,936 to Miller et al., entitled, “Delivery tool for implantation of spool assembly coupled to a helical anchor,” filed Dec. 2, 2009;
    • PCT Patent Application PCT/IL2009/001209 to Cabin et al., entitled, “Adjustable annuloplasty devices and mechanisms therefor,” filed on Dec. 22, 2009, which published as PCT Publication WO 10/073246;
    • U.S. patent application Ser. No. 12/689,635 to Zipory et al., entitled, “Over-wire rotation tool,” filed on Jan. 19, 2010, which published as US Patent Application Publication 2010/0280604;
    • U.S. patent Ser. No. 12/689,693 to Hammer et al., entitled, “Deployment techniques for annuloplasty ring,” filed on Jan. 19, 2010, which published as US Patent Application Publication 2010/0280605;
    • U.S. patent application Ser. No. 12/706,868 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2010, which published as US Patent Application Publication 2010/0211166;
    • PCT Patent Application PCT/IL2010/000357 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed May 4, 2010, which published as PCT Publication WO 10/128502;
    • PCT Patent Application PCT/IL2010/000358 to Zipory et al., entitled, “Deployment techniques for annuloplasty ring and over-wire rotation tool,” filed May 4, 2010, which published as PCT Publication WO 10/128503; and/or
    • U.S. patent application Ser. No. 13/167,476 to Hammer et al., filed Jun. 23, 2011, entitled, “Closure element for use with an annuloplasty structure,” which published as US Patent Application Publication 2012/0330410.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims (20)

The invention claimed is:
1. A method comprising:
during a percutaneous transcatheter procedure, placing an annuloplasty device entirely around an annulus of a mitral valve of a subject in a closed loop, the annuloplasty device comprising a flexible sleeve;
fastening the flexible sleeve to the annulus by coupling a plurality of tissue anchors to a posterior portion of the annulus, without coupling any tissue anchors to any anterior portion of the annulus between left and right fibrous trigones of the annulus; and
after (a) placing the annuloplasty device entirely around the annulus in the closed loop and (b) fastening the flexible sleeve to the annulus, longitudinally contracting a longitudinal portion of the flexible sleeve, wherein the longitudinal portion has a length less than a length of the entire flexible sleeve.
2. The method according toclaim 1, wherein the annuloplasty device further comprises a contracting assembly, and wherein longitudinally contracting the longitudinal portion of the flexible sleeve comprises actuating the contracting assembly to longitudinally contract the longitudinal portion of the flexible sleeve.
3. The method according toclaim 2, wherein the contracting assembly further comprises a longitudinal contracting member and a locking mechanism, and wherein the method further comprises, after longitudinally contracting the longitudinal portion of the flexible sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
4. The method according toclaim 1, wherein the flexible sleeve has first and second sleeve ends, and wherein placing the annuloplasty device comprises:
introducing the flexible sleeve into a left atrium while the first and the second sleeve ends are not coupled to each other; and
thereafter, in the left atrium, arranging the annuloplasty device entirely around the annulus to form the closed loop.
5. The method according toclaim 4,
wherein the annuloplasty device further comprises an elongated linking member, which is coupled to and disposed within the flexible sleeve, and
wherein placing the annuloplasty device entirely around the annulus comprises placing the linking member along the anterior portion of the annulus.
6. The method according toclaim 5, wherein the linking member is configured as a spring.
7. The method according toclaim 5, wherein the linking member is substantially longitudinally non-extensible.
8. The method according toclaim 5,
wherein the linking member comprises a first coupling element,
wherein the annuloplasty device comprises a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the annuloplasty device within 1.5 cm of one of the first and the second sleeve ends, measured when the flexible sleeve is fully longitudinally extended,
wherein the first and the second coupling elements are configured to provide an adjustable-length connection between the linking member and the one of the first and the second sleeve ends, and
wherein placing the linking member along the anterior portion of the annulus comprises setting an effective length of the linking member while coupling the first and the second coupling elements together.
9. The method according toclaim 5,
wherein the linking member is disposed within a linking-member-containing longitudinal portion of the flexible sleeve,
wherein the annuloplasty device further comprises an elongated radial-force application element, which is disposed within the linking-member-containing longitudinal portion of the flexible sleeve, and
wherein placing the linking member comprises placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element applies a force against a wall of the linking-member-containing longitudinal portion of the flexible sleeve in at least one radially-outward direction.
10. The method according toclaim 9, wherein placing the elongated radial-force application element comprises placing the elongated radial-force application element along the anterior portion of the annulus, such that the elongated radial-force application element pushes the linking-member-containing longitudinal portion of the flexible sleeve against atrial tissue.
11. The method according toclaim 9, wherein the elongated radial-force application element is springy.
12. The method according toclaim 9, wherein the linking member is not configured as a spring.
13. The method according toclaim 9, wherein placing the linking member comprises placing the linking member such that the linking member does not apply any force to the wall of the linking-member-containing longitudinal portion of the flexible sleeve.
14. The method according toclaim 9, wherein at least 90% of a length of the linking member is straight when in a resting state.
15. The method according toclaim 9,
wherein the linking-member-containing longitudinal portion of the flexible sleeve is a first longitudinal portion of the flexible sleeve,
wherein the annuloplasty device further comprises a contracting assembly, which comprises (a) a contracting mechanism, and (b) a longitudinal contracting member, which is arranged along a second longitudinal portion of the flexible sleeve that is entirely longitudinally distinct from the first longitudinal portion of the flexible sleeve, and
wherein the elongated radial-force application element is disposed entirely within the first longitudinal portion of the flexible sleeve.
16. The method according toclaim 1, wherein placing the annuloplasty device entirely around the annulus in the closed loop comprises placing the flexible sleeve entirely around the annulus in the closed loop.
17. The method according toclaim 16, wherein the flexible sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
18. The method according toclaim 1,
wherein placing the annuloplasty device entirely around the annulus in the closed loop comprises advancing a sheath into a left atrium, and advancing the annuloplasty device through the sheath into the left atrium, and
wherein coupling the plurality of tissue anchors to the posterior portion of the annulus comprises coupling a first one of the plurality of tissue anchors to the posterior portion of the annulus while the annuloplasty device is partially disposed within the sheath.
19. The method according toclaim 1, wherein coupling the plurality of tissue anchors to the posterior portion of the annulus comprises separately introducing each of the plurality of tissue anchors into the flexible sleeve during the coupling of the plurality of tissue anchors to the posterior portion of the annulus.
20. A method comprising:
during a percutaneous transcatheter procedure, placing an annuloplasty device around an annulus of a mitral valve of a subject, the annuloplasty device comprising a flexible sleeve;
fastening the flexible sleeve to the annulus by coupling a plurality of tissue anchors to a posterior portion of the annulus, without coupling any tissue anchors to any anterior portion of the annulus between left and right fibrous trigones of the annulus, wherein coupling the plurality of tissue anchors to the posterior portion of the annulus comprises separately introducing each of the plurality of tissue anchors into the flexible sleeve during the coupling of the plurality of tissue anchors to the posterior portion of the annulus;
after (a) placing the annuloplasty device around the annulus and (b) fastening the flexible sleeve to the annulus, actuating a contracting assembly comprising a longitudinal contracting member and a locking mechanism to longitudinally contract a longitudinal portion of the flexible sleeve; and
after longitudinally contracting the longitudinal portion of the flexible sleeve, locking the longitudinal contracting member with respect to the contracting assembly using the locking mechanism.
US15/919,4522011-06-232018-03-13Closed band for percutaneous annuloplastyActive2031-10-27US10792152B2 (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US15/919,452US10792152B2 (en)2011-06-232018-03-13Closed band for percutaneous annuloplasty
US17/063,549US12409032B2 (en)2011-06-232020-10-05Percutaneous implantation of an annuloplasty structure

Applications Claiming Priority (8)

Application NumberPriority DateFiling DateTitle
US13/167,444US9011530B2 (en)2008-12-222011-06-23Partially-adjustable annuloplasty structure
US13/167,492US8926697B2 (en)2011-06-232011-06-23Closed band for percutaneous annuloplasty
US13/167,476US8940044B2 (en)2011-06-232011-06-23Closure element for use with an annuloplasty structure
PCT/IL2012/000250WO2012176195A2 (en)2011-06-232012-06-21Closure element for use with annuloplasty structure
US201414128756A2014-02-062014-02-06
US14/589,100US9918840B2 (en)2011-06-232015-01-05Closed band for percutaneous annuloplasty
US15/474,543US10470882B2 (en)2008-12-222017-03-30Closure element for use with annuloplasty structure
US15/919,452US10792152B2 (en)2011-06-232018-03-13Closed band for percutaneous annuloplasty

Related Parent Applications (3)

Application NumberTitlePriority DateFiling Date
US14/589,100Continuation-In-PartUS9918840B2 (en)2011-06-232015-01-05Closed band for percutaneous annuloplasty
US14/589,100DivisionUS9918840B2 (en)2011-06-232015-01-05Closed band for percutaneous annuloplasty
US15/474,543Continuation-In-PartUS10470882B2 (en)2008-12-222017-03-30Closure element for use with annuloplasty structure

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US17/063,549ContinuationUS12409032B2 (en)2011-06-232020-10-05Percutaneous implantation of an annuloplasty structure

Publications (2)

Publication NumberPublication Date
US20190167425A1 US20190167425A1 (en)2019-06-06
US10792152B2true US10792152B2 (en)2020-10-06

Family

ID=66658383

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US15/919,452Active2031-10-27US10792152B2 (en)2011-06-232018-03-13Closed band for percutaneous annuloplasty
US17/063,549Active2034-01-12US12409032B2 (en)2011-06-232020-10-05Percutaneous implantation of an annuloplasty structure

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US17/063,549Active2034-01-12US12409032B2 (en)2011-06-232020-10-05Percutaneous implantation of an annuloplasty structure

Country Status (1)

CountryLink
US (2)US10792152B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8845717B2 (en)2011-01-282014-09-30Middle Park Medical, Inc.Coaptation enhancement implant, system, and method
US8888843B2 (en)2011-01-282014-11-18Middle Peak Medical, Inc.Device, system, and method for transcatheter treatment of valve regurgitation
US10166098B2 (en)2013-10-252019-01-01Middle Peak Medical, Inc.Systems and methods for transcatheter treatment of valve regurgitation
EP3157469B2 (en)2014-06-182024-10-02Polares Medical Inc.Mitral valve implants for the treatment of valvular regurgitation
CA2958065C (en)2014-06-242023-10-31Middle Peak Medical, Inc.Systems and methods for anchoring an implant
US9592121B1 (en)2015-11-062017-03-14Middle Peak Medical, Inc.Device, system, and method for transcatheter treatment of valvular regurgitation
US11833034B2 (en)2016-01-132023-12-05Shifamed Holdings, LlcProsthetic cardiac valve devices, systems, and methods
JP7159230B2 (en)2017-03-132022-10-24ポラレス・メディカル・インコーポレイテッド Devices, systems and methods for transcatheter treatment of valvular regurgitation
US10478303B2 (en)2017-03-132019-11-19Polares Medical Inc.Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en)2017-03-132020-05-19Polares Medical Inc.Device, system, and method for transcatheter treatment of valvular regurgitation
AU2019325548B2 (en)2018-08-212025-06-26Shifamed Holdings, LlcProsthetic cardiac valve devices, systems, and methods
CN113260337A (en)2018-10-052021-08-13施菲姆德控股有限责任公司Prosthetic heart valve devices, systems, and methods
CN113056302B (en)2018-10-192023-03-28施菲姆德控股有限责任公司Adjustable medical device
EP3941391B1 (en)2019-03-192024-12-04Shifamed Holdings, LLCProsthetic cardiac valve devices, systems
CN116456937A (en)2020-08-312023-07-18施菲姆德控股有限责任公司 Prosthetic Valve Delivery System
US12329635B2 (en)2020-12-042025-06-17Shifamed Holdings, LlcFlared prosthetic cardiac valve delivery devices and systems
US11464634B2 (en)2020-12-162022-10-11Polares Medical Inc.Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US12201521B2 (en)2021-03-222025-01-21Shifamed Holdings, LlcAnchor position verification for prosthetic cardiac valve devices
US11759321B2 (en)2021-06-252023-09-19Polares Medical Inc.Device, system, and method for transcatheter treatment of valvular regurgitation
CN116889485B (en)*2023-08-312024-06-14上海傲流医疗科技有限公司Valve fixing ring for pure aortic regurgitation replacement

Citations (698)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3604488A (en)1969-11-191971-09-14Vermont American CorpScrewdriver attachment
US3656185A (en)1969-02-041972-04-18Rhone Poulenc SaCardiac valvular support prosthesis
US3840018A (en)1973-01-311974-10-08M HeifetzClamp for occluding tubular conduits in the human body
US3881366A (en)1973-11-191975-05-06Gen Motors CorpAdjustable steering column
US3898701A (en)1974-01-171975-08-12Russa JosephImplantable heart valve
US4042979A (en)1976-07-121977-08-23Angell William WValvuloplasty ring and prosthetic method
US4118805A (en)1977-02-281978-10-10Codman & Shurtleff, Inc.Artificial sphincter
US4214349A (en)1978-11-301980-07-29Midland-Ross CorporationTie wrap
US4261342A (en)1978-10-261981-04-14Iker Aranguren DuoProcess for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US4290151A (en)1979-07-311981-09-22Massana Miguel PAdjustable annular prosthesis for cardiac surgery
US4434828A (en)1982-12-201984-03-06Richard TrinciaScrewdriver with handle for storing bits
US4473928A (en)1980-11-201984-10-02Tridon LimitedHose clamps
US4602911A (en)1982-08-191986-07-29General Resorts S.A.Adjustable ringprosthesis
US4625727A (en)1985-01-241986-12-02Leiboff Arnold RAnastomosis device with excisable frame
US4712549A (en)1985-07-011987-12-15Edward Weck & Co.Automatic hemostatic clip applier
US4778468A (en)1980-09-251988-10-18South African Invention Development CorporationSurgical implant
US4917698A (en)1988-12-221990-04-17Baxter International Inc.Multi-segmented annuloplasty ring prosthesis
US4961738A (en)1987-01-281990-10-09Mackin Robert AAngioplasty catheter with illumination and visualization within angioplasty balloon
US5042707A (en)1990-10-161991-08-27Taheri Syde AIntravascular stapler, and method of operating same
US5061277A (en)1986-08-061991-10-29Baxter International Inc.Flexible cardiac valvular support prosthesis
US5064431A (en)1991-01-161991-11-12St. Jude Medical IncorporatedAnnuloplasty ring
WO1992005093A1 (en)1990-09-251992-04-02Allset Marine Lashing AbA twist lock for joining corner boxes when loading containers
US5104407A (en)1989-02-131992-04-14Baxter International Inc.Selectively flexible annuloplasty ring
US5108420A (en)1991-02-011992-04-28Temple UniversityAperture occlusion device
US5201880A (en)1992-01-271993-04-13Pioneering Technologies, Inc.Mitral and tricuspid annuloplasty rings
US5258008A (en)1992-07-291993-11-02Wilk Peter JSurgical stapling device and associated method
US5300034A (en)1992-07-291994-04-05Minnesota Mining And Manufacturing CompanyIv injection site for the reception of a blunt cannula
US5306296A (en)1992-08-211994-04-26Medtronic, Inc.Annuloplasty and suture rings
US5325845A (en)1992-06-081994-07-05Adair Edwin LloydSteerable sheath for use with selected removable optical catheter
EP0611561A1 (en)1993-02-181994-08-24Lubomyr Ihor KuzmakLaparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5346498A (en)1991-11-061994-09-13Imagyn Medical, Inc.Controller for manipulation of instruments within a catheter
US5383852A (en)1992-12-041995-01-24C. R. Bard, Inc.Catheter with independent proximal and distal control
US5449368A (en)1993-02-181995-09-12Kuzmak; Lubomyr I.Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5450860A (en)1993-08-311995-09-19W. L. Gore & Associates, Inc.Device for tissue repair and method for employing same
US5464404A (en)1993-09-201995-11-07Abela Laser Systems, Inc.Cardiac ablation catheters and method
US5474518A (en)1992-10-051995-12-12Farrer Velazquez; FranciscoCorrective device of urinary incontinence in women
US5477856A (en)1991-02-151995-12-26Lundquist; Ingemar H.Torquable catheter and torquable tubular member for use therewith
US5593424A (en)1994-08-101997-01-14Segmed, Inc.Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5601572A (en)1989-08-161997-02-11Raychem CorporationDevice or apparatus for manipulating matter having a elastic ring clip
US5626609A (en)1990-10-051997-05-06United States Surgical CorporationEndoscopic surgical instrument
US5643317A (en)1992-11-251997-07-01William Cook Europe S.A.Closure prosthesis for transcatheter placement
US5669919A (en)1996-08-161997-09-23Medtronic, Inc.Annuloplasty system
US5674279A (en)1992-01-271997-10-07Medtronic, Inc.Annuloplasty and suture rings
US5676653A (en)1995-06-271997-10-14Arrow International Investment Corp.Kink-resistant steerable catheter assembly
US5683402A (en)1989-07-311997-11-04Baxter International Inc.Flexible suture guide and holder
US5702397A (en)1996-02-201997-12-30Medicinelodge, Inc.Ligament bone anchor and method for its use
US5702398A (en)1997-02-211997-12-30Tarabishy; SamTension screw
US5716370A (en)1996-02-231998-02-10Williamson, Iv; WarrenMeans for replacing a heart valve in a minimally invasive manner
US5716397A (en)1996-12-061998-02-10Medtronic, Inc.Annuloplasty device with removable stiffening element
US5728116A (en)1994-01-131998-03-17Ethicon, Inc.Spiral surgical tack
US5730150A (en)1996-01-161998-03-24B. Braun Medical Inc.Guidewire dispenser
US5749371A (en)1995-10-061998-05-12Zadini; Filiberto P.Automatic guidewire placement device for medical catheters
US5782844A (en)1996-03-051998-07-21Inbae YoonSuture spring device applicator
US5810882A (en)1994-08-051998-09-22Origin Medsystems, Inc.Surgical helical fastener with applicator and method of use
US5824066A (en)1995-12-011998-10-20Medtronic, Inc.Annuloplasty prosthesis
WO1998046149A1 (en)1997-04-111998-10-22Taccor, Inc.Steerable catheter with rotatable tip electrode and method of use
US5830221A (en)1996-09-201998-11-03United States Surgical CorporationCoil fastener applier
US5843120A (en)1994-03-171998-12-01Medinol Ltd.Flexible-expandable stent
US5855614A (en)1993-02-221999-01-05Heartport, Inc.Method and apparatus for thoracoscopic intracardiac procedures
US5876373A (en)1997-04-041999-03-02Eclipse Surgical Technologies, Inc.Steerable catheter
US5935098A (en)1996-12-231999-08-10Conceptus, Inc.Apparatus and method for accessing and manipulating the uterus
US5957953A (en)1996-02-161999-09-28Smith & Nephew, Inc.Expandable suture anchor
US5961440A (en)1997-01-021999-10-05Myocor, Inc.Heart wall tension reduction apparatus and method
US5961539A (en)1997-01-171999-10-05Segmed, Inc.Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US5984959A (en)1997-09-191999-11-16United States SurgicalHeart valve replacement tools and procedures
WO2000009048A1 (en)1998-08-132000-02-24Obtech Medical AgFood intake restriction device
US6042554A (en)1996-05-082000-03-28Heartport, Inc.Valve sizer and method of use
US6045497A (en)1997-01-022000-04-04Myocor, Inc.Heart wall tension reduction apparatus and method
US6050936A (en)1997-01-022000-04-18Myocor, Inc.Heart wall tension reduction apparatus
US6074341A (en)1998-06-092000-06-13Timm Medical Technologies, Inc.Vessel occlusive apparatus and method
US6074401A (en)1997-01-092000-06-13Coalescent Surgical, Inc.Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US6074417A (en)1992-11-162000-06-13St. Jude Medical, Inc.Total mitral heterologous bioprosthesis to be used in mitral or tricuspid heart replacement
US6086582A (en)1997-03-132000-07-11Altman; Peter A.Cardiac drug delivery system
US6102945A (en)1998-10-162000-08-15Sulzer Carbomedics, Inc.Separable annuloplasty ring
US6106550A (en)1998-07-102000-08-22Sulzer Carbomedics Inc.Implantable attaching ring
US6110200A (en)1995-06-072000-08-29St. Jude Medical, Inc.Adjustable sizing apparatus
EP1034753A1 (en)1999-03-092000-09-13Jostra AGAnnuloplasty ring
US6132390A (en)1996-02-282000-10-17Eupalamus LlcHandle for manipulation of a stylet used for deflecting a tip of a lead or catheter
US6143024A (en)1998-06-042000-11-07Sulzer Carbomedics Inc.Annuloplasty ring having flexible anterior portion
US6159240A (en)1998-08-312000-12-12Medtronic, Inc.Rigid annuloplasty device that becomes compliant after implantation
US6174332B1 (en)1997-12-052001-01-16St. Jude Medical, Inc.Annuloplasty ring with cut zone
US6183411B1 (en)1998-09-212001-02-06Myocor, Inc.External stress reduction device and method
US6187040B1 (en)1999-05-032001-02-13John T. M. WrightMitral and tricuspid annuloplasty rings
US6217610B1 (en)1994-07-292001-04-17Edwards Lifesciences CorporationExpandable annuloplasty ring
US6231602B1 (en)1999-04-162001-05-15Edwards Lifesciences CorporationAortic annuloplasty ring
US6251092B1 (en)1997-12-302001-06-26Medtronic, Inc.Deflectable guiding catheter
US6315784B1 (en)1999-02-032001-11-13Zarija DjurovicSurgical suturing unit
US6319281B1 (en)1999-03-222001-11-20Kumar R. PatelArtificial venous valve and sizing catheter
US6328746B1 (en)1998-08-062001-12-11Michael A. GambaleSurgical screw and driver system
US6332893B1 (en)1997-12-172001-12-25Myocor, Inc.Valve to myocardium tension members device and method
US20020022862A1 (en)1996-08-052002-02-21Arthrex, Inc.Hex drive bioabsorbable tissue anchor
US6355030B1 (en)1998-09-252002-03-12Cardiothoracic Systems, Inc.Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US6361559B1 (en)1998-06-102002-03-26Converge Medical, Inc.Thermal securing anastomosis systems
US6368348B1 (en)2000-05-152002-04-09Shlomo GabbayAnnuloplasty prosthesis for supporting an annulus of a heart valve
US6402780B2 (en)1996-02-232002-06-11Cardiovascular Technologies, L.L.C.Means and method of replacing a heart valve in a minimally invasive manner
US6406493B1 (en)2000-06-022002-06-18Hosheng TuExpandable annuloplasty ring and methods of use
US6406420B1 (en)1997-01-022002-06-18Myocor, Inc.Methods and devices for improving cardiac function in hearts
US20020082525A1 (en)2000-10-182002-06-27Oslund John C.Rapid exchange delivery catheter
US20020087048A1 (en)1998-02-242002-07-04Brock David L.Flexible instrument
US6419696B1 (en)2000-07-062002-07-16Paul A. SpenceAnnuloplasty devices and related heart valve repair methods
US20020103532A1 (en)2001-01-302002-08-01Langberg Jonathan J.Transluminal mitral annuloplasty
US20020120292A1 (en)2001-02-282002-08-29Morgan Daniel E.Parabolic eyelet suture anchor
US6451054B1 (en)1993-02-222002-09-17Hearport, Inc.Less-invasive devices and methods for treatment of cardiac valves
US20020133180A1 (en)2001-03-152002-09-19Ryan Timothy R.Annuloplasty band and method
US6458076B1 (en)2000-02-012002-10-015 Star MedicalMulti-lumen medical device
US6461336B1 (en)2000-02-082002-10-08LARRé JORGE CASADOCardiological medical equipment
US6461366B1 (en)1997-09-122002-10-08Evalve, Inc.Surgical device for connecting soft tissue
US20020151916A1 (en)2001-02-052002-10-17Junichi MuramatsuApparatus for ligating living tissues
US20020151970A1 (en)1999-02-102002-10-17Garrison Michi E.Methods and devices for implanting cardiac valves
US6470892B1 (en)2000-02-102002-10-29Obtech Medical AgMechanical heartburn and reflux treatment
WO2002085250A2 (en)2001-04-192002-10-31Mathys Orthopädie GmbHBiologically-functionalised, metabolically-inductive implant surfaces
US20020177904A1 (en)1999-12-222002-11-28Huxel Shawn ThayerRemovable stent for body lumens
US20020188301A1 (en)2001-06-112002-12-12Dallara Mark DouglasTissue anchor insertion system
US20020188350A1 (en)2001-06-112002-12-12Pietro ArruAnnuloplasty prosthesis and a method for its manufacture
US20020198586A1 (en)1995-04-122002-12-26Kanji InoueAppliance collapsible for insertion into a human organ and capable of resilient restoration
US6503274B1 (en)1999-04-162003-01-07Edwards Lifesciences CorporationMethod of implanting a flexible annuloplasty system
US6524338B1 (en)2000-08-252003-02-25Steven R. GundryMethod and apparatus for stapling an annuloplasty band in-situ
US6527780B1 (en)2000-10-312003-03-04Odyssey Medical, Inc.Medical implant insertion system
US6530952B2 (en)1997-12-292003-03-11The Cleveland Clinic FoundationBioprosthetic cardiovascular valve system
US20030050693A1 (en)2001-09-102003-03-13Quijano Rodolfo C.Minimally invasive delivery system for annuloplasty rings
US6533772B1 (en)2000-04-072003-03-18Innex CorporationGuide wire torque device
US6537314B2 (en)2000-01-312003-03-25Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty and cardiac reinforcement
US6547801B1 (en)1998-09-142003-04-15Sofradim ProductionGastric constriction device
US20030078465A1 (en)2001-10-162003-04-24Suresh PaiSystems for heart treatment
US20030078653A1 (en)2001-06-152003-04-24Ivan VeselyTissue engineered mitral valve chordae and methods of making and using same
US6554845B1 (en)2000-09-152003-04-29PARÉ Surgical, Inc.Suturing apparatus and method
US6565603B2 (en)1998-06-162003-05-20Cardiac Concepts, Inc.Mitral valve annuloplasty ring
US6569198B1 (en)2000-03-312003-05-27Richard A. WilsonMitral or tricuspid valve annuloplasty prosthetic device
US20030105519A1 (en)1997-09-042003-06-05Roland FasolArtificial chordae replacement
WO2003047467A1 (en)2001-12-042003-06-12Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template system
US6579297B2 (en)1997-10-012003-06-17Scimed Life Systems, Inc.Stent delivery system using shape memory retraction
US20030114901A1 (en)2001-12-192003-06-19Loeb Marvin P.Device for treatment of atrioventricular valve regurgitation
US20030120340A1 (en)2001-12-262003-06-26Jan LiskaMitral and tricuspid valve repair
US6592593B1 (en)1998-09-182003-07-15United States Surgical CorporationEndovascular fastener applicator
US20030144657A1 (en)2002-01-282003-07-31Cardiac Pacemakers, Inc.Inner and outer telescoping catheter delivery system
US6602288B1 (en)2000-10-052003-08-05Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template, system and method of use
US6602289B1 (en)1999-06-082003-08-05S&A Rings, LlcAnnuloplasty rings of particular use in surgery for the mitral valve
US6613079B1 (en)1998-02-052003-09-02Medtronic, Inc.Radially-expandable stent with controllable force profile
US6613078B1 (en)2000-08-022003-09-02Hector Daniel BaroneMulti-component endoluminal graft assembly, use thereof and method of implanting
US20030171760A1 (en)2000-05-192003-09-11Gambale Richard ATissue capturing and suturing device and method
US6619291B2 (en)2001-04-242003-09-16Edwin J. HlavkaMethod and apparatus for catheter-based annuloplasty
US6626899B2 (en)1999-06-252003-09-30Nidus Medical, LlcApparatus and methods for treating tissue
US6626917B1 (en)1999-10-262003-09-30H. Randall CraigHelical suture instrument
US6626930B1 (en)1999-10-212003-09-30Edwards Lifesciences CorporationMinimally invasive mitral valve repair method and apparatus
US6629534B1 (en)1999-04-092003-10-07Evalve, Inc.Methods and apparatus for cardiac valve repair
US20030199974A1 (en)2002-04-182003-10-23Coalescent Surgical, Inc.Annuloplasty apparatus and methods
US20030204195A1 (en)2002-04-242003-10-30Michael KeaneDevice for inserting surgical implants
US20030204193A1 (en)2002-04-252003-10-30Stefan GabrielSuture anchor insertion tool
US6651671B1 (en)1993-02-222003-11-25Heartport, Inc.Lens-invasive devices and methods for cardiac valve surgery
US6652556B1 (en)1999-10-272003-11-25Atritech, Inc.Filter apparatus for ostium of left atrial appendage
US20030229350A1 (en)1995-08-222003-12-11Kay David B.Open helical organic tissue anchor having recessible head and method of making the organic tissue anchor
US20040010287A1 (en)1999-08-092004-01-15Bonutti Peter M.Method and apparatus for securing tissue
US6682558B2 (en)2001-05-102004-01-273F Therapeutics, Inc.Delivery system for a stentless valve bioprosthesis
US20040019377A1 (en)2002-01-142004-01-29Taylor Daniel C.Method and apparatus for reducing mitral regurgitation
US20040019359A1 (en)2002-07-242004-01-29Worley Seth J.Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US20040024451A1 (en)2002-01-022004-02-05Medtronic, Inc.Prosthetic heart valve system
US6689164B1 (en)1999-10-122004-02-10Jacques SeguinAnnuloplasty device for use in minimally invasive procedure
US6689125B1 (en)2000-04-042004-02-10Spinalabs, LlcDevices and methods for the treatment of spinal disorders
US6695866B1 (en)1998-07-152004-02-24St. Jude Medical, Inc.Mitral and tricuspid valve repair
US20040044350A1 (en)1999-04-092004-03-04Evalve, Inc.Steerable access sheath and methods of use
US6702846B2 (en)1996-04-092004-03-09Endocare, Inc.Urological stent therapy system and method
US6702826B2 (en)2000-06-232004-03-09Viacor, Inc.Automated annular plication for mitral valve repair
US6711444B2 (en)1999-11-222004-03-23Scimed Life Systems, Inc.Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US6709385B2 (en)2000-02-112004-03-23Obtech Medical AgUrinary incontinence treatment apparatus
US20040059413A1 (en)2002-09-202004-03-25Claudio ArgentoSuture template for facilitating implantation of a prosthetic heart valve
US6719786B2 (en)2002-03-182004-04-13Medtronic, Inc.Flexible annuloplasty prosthesis and holder
US6723038B1 (en)2000-10-062004-04-20Myocor, Inc.Methods and devices for improving mitral valve function
US6726717B2 (en)2001-05-172004-04-27Edwards Lifesciences CorporationAnnular prosthesis for mitral valve
US6726716B2 (en)2001-08-242004-04-27Edwards Lifesciences CorporationSelf-molding annuloplasty ring
US20040111095A1 (en)2002-12-052004-06-10Cardiac Dimensions, Inc.Medical device delivery system
US6749630B2 (en)2001-08-282004-06-15Edwards Lifesciences CorporationTricuspid ring and template
US6752813B2 (en)1999-04-092004-06-22Evalve, Inc.Methods and devices for capturing and fixing leaflets in valve repair
US20040122514A1 (en)2002-12-202004-06-24Fogarty Thomas J.Biologically implantable prosthesis and methods of using the same
US20040127982A1 (en)2002-10-012004-07-01Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20040133274A1 (en)2002-11-152004-07-08Webler William E.Cord locking mechanism for use in small systems
US20040133374A1 (en)2003-01-072004-07-08Guide Technology, Inc.System for providing a calibrated path for multi-signal cables in testing of integrated circuits
US20040138744A1 (en)2000-01-312004-07-15Randall LashinskiTransluminal mitral annuloplasty with active anchoring
US20040138745A1 (en)2001-10-012004-07-15Ample Medical, Inc.Methods and devices for heart valve treatments
US6764510B2 (en)2002-01-092004-07-20Myocor, Inc.Devices and methods for heart valve treatment
US6764810B2 (en)2002-04-252004-07-20Taiwan Semiconductor Manufacturing Co., LtdMethod for dual-damascene formation using a via plug
US6764310B1 (en)1999-09-242004-07-20Honda Giken Kogyo Kabushiki KaishaApparatus for simulating ride on vehicle
US20040148020A1 (en)2002-11-122004-07-29Vidlund Robert M.Devices and methods for heart valve treatment
US20040148019A1 (en)2002-11-122004-07-29Vidlund Robert M.Devices and methods for heart valve treatment
US20040148021A1 (en)2002-08-292004-07-29Cartledge Richard G.Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US6786925B1 (en)1998-04-202004-09-07St. Jude Medical Inc.Driver tool with multiple drive gear layers for heart prosthesis fasteners
US20040176788A1 (en)2003-03-072004-09-09Nmt Medical, Inc.Vacuum attachment system
US6790231B2 (en)2001-02-052004-09-14Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US20040181287A1 (en)2002-10-222004-09-16Scimed Life SystemsMale urethral stent device
US20040186566A1 (en)2003-03-182004-09-23Hindrichs Paul J.Body tissue remodeling methods and apparatus
US6797002B2 (en)2000-02-022004-09-28Paul A. SpenceHeart valve repair apparatus and methods
US6797001B2 (en)2002-03-112004-09-28Cardiac Dimensions, Inc.Device, assembly and method for mitral valve repair
US20040193191A1 (en)2003-02-062004-09-30Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US6802319B2 (en)1993-02-222004-10-12John H. StevensMinimally-invasive devices and methods for treatment of congestive heart failure
US6805710B2 (en)2001-11-132004-10-19Edwards Lifesciences CorporationMitral valve annuloplasty ring for molding left ventricle geometry
US6805711B2 (en)2000-06-022004-10-193F Therapeutics, Inc.Expandable medical implant and percutaneous delivery
US20040243227A1 (en)2002-06-132004-12-02Guided Delivery Systems, Inc.Delivery devices and methods for heart valve repair
US20040260317A1 (en)2003-06-202004-12-23Elliot BloomTensioning device, system, and method for treating mitral valve regurgitation
US20040260394A1 (en)2003-06-202004-12-23Medtronic Vascular, Inc.Cardiac valve annulus compressor system
US20040260393A1 (en)2000-09-202004-12-23Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20040267358A1 (en)2001-12-112004-12-30Oyvind ReitanImplant for treating an insufficiency of a heart valve
US20050004668A1 (en)2003-07-022005-01-06Flexcor, Inc.Annuloplasty rings and methods for repairing cardiac valves
US20050010787A1 (en)1999-04-302005-01-13Microvision, Inc.Method and system for identifying data locations associated with real world observations
US20050010287A1 (en)2000-09-202005-01-13Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050016560A1 (en)2003-07-212005-01-27Dee VoughlohnUnique hair-styling system and method
US6855126B2 (en)2001-04-022005-02-15David FlinchbaughConformable balloonless catheter
US6858039B2 (en)2002-07-082005-02-22Edwards Lifesciences CorporationMitral valve annuloplasty ring having a posterior bow
US20050049692A1 (en)2003-09-022005-03-03Numamoto Michael J.Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US20050055087A1 (en)2003-09-042005-03-10Guided Delivery Systems, Inc.Devices and methods for cardiac annulus stabilization and treatment
US20050055038A1 (en)2002-09-092005-03-10Brian KelleherDevice and method for endoluminal therapy
US20050060030A1 (en)2000-01-312005-03-17Lashinski Randall T.Remotely activated mitral annuloplasty system and methods
US20050070999A1 (en)2000-02-022005-03-31Spence Paul A.Heart valve repair apparatus and methods
US20050075727A1 (en)2001-10-292005-04-07Wheatley David JohnMitral valve prosthesis
US20050085903A1 (en)2003-10-172005-04-21Jan LauHeart valve leaflet locator
US6884250B2 (en)2002-07-222005-04-26Niti Medical Technologies Ltd.Intratubular anastomosis apparatus
US20050090827A1 (en)2003-10-282005-04-28Tewodros GedebouComprehensive tissue attachment system
US20050090834A1 (en)2003-10-232005-04-28Aptus Endosystems, Inc.Prosthesis delivery systems and methods
US20050096740A1 (en)2001-01-302005-05-05Edwards Lifesciences AgTransluminal mitral annuloplasty
US6893459B1 (en)2000-09-202005-05-17Ample Medical, Inc.Heart valve annulus device and method of using same
US20050107871A1 (en)2003-03-302005-05-19Fidel RealyvasquezApparatus and methods for valve repair
US20050119734A1 (en)2002-10-212005-06-02Spence Paul A.Tissue fastening systems and methods utilizing magnetic guidance
US20050125002A1 (en)2003-10-312005-06-09George BaranSystem and method for manipulating a catheter for delivering a substance to a body cavity
US20050125011A1 (en)2001-04-242005-06-09Spence Paul A.Tissue fastening systems and methods utilizing magnetic guidance
US20050131533A1 (en)2001-05-172005-06-16Ottavio AlfieriAnnuloplasty rings for repair of abnormal mitral valves
US6908478B2 (en)2001-12-052005-06-21Cardiac Dimensions, Inc.Anchor and pull mitral valve device and method
US6908482B2 (en)2001-08-282005-06-21Edwards Lifesciences CorporationThree-dimensional annuloplasty ring and template
US20050137686A1 (en)2003-12-232005-06-23Sadra Medical, A Delaware CorporationExternally expandable heart valve anchor and method
US20050137688A1 (en)2003-12-232005-06-23Sadra Medical, A Delaware CorporationRepositionable heart valve and method
US20050137695A1 (en)2003-12-232005-06-23Sadra MedicalReplacement valve and anchor
US6918917B1 (en)2000-10-102005-07-19Medtronic, Inc.Minimally invasive annuloplasty procedure and apparatus
US20050159728A1 (en)2004-01-152005-07-21Thomas Medical Products, Inc.Steerable sheath
US6926730B1 (en)2000-10-102005-08-09Medtronic, Inc.Minimally invasive valve repair procedure and apparatus
US20050177228A1 (en)2003-12-162005-08-11Solem Jan O.Device for changing the shape of the mitral annulus
US20050177180A1 (en)2001-11-282005-08-11Aptus Endosystems, Inc.Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20050187568A1 (en)2004-02-202005-08-25Klenk Alan R.Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US20050192596A1 (en)1999-11-182005-09-01Scimed Life Systems, Inc.Apparatus and method for compressing body tissue
US20050203606A1 (en)2004-03-092005-09-15Vancamp Daniel H.Stent system for preventing restenosis
US20050203549A1 (en)2004-03-092005-09-15Fidel RealyvasquezMethods and apparatus for off pump aortic valve replacement with a valve prosthesis
US20050216039A1 (en)2002-11-152005-09-29Lederman Robert JMethod and device for catheter based repair of cardiac valves
US20050222665A1 (en)1999-04-232005-10-06Ernest AranyiEndovascular fastener applicator
US6960217B2 (en)2001-11-282005-11-01Aptus Endosystems, Inc.Endovascular aneurysm repair system
US6964686B2 (en)1999-05-172005-11-15Vanderbilt UniversityIntervertebral disc replacement prosthesis
US20050256532A1 (en)2004-05-122005-11-17Asha NayakCardiovascular defect patch device and method
US20050267478A1 (en)2003-06-132005-12-01Corradi Ralph RSurgical fastener with predetermined resorption rate
US20050273138A1 (en)2003-12-192005-12-08Guided Delivery Systems, Inc.Devices and methods for anchoring tissue
US6976995B2 (en)2002-01-302005-12-20Cardiac Dimensions, Inc.Fixed length anchor and pull mitral valve device and method
US20050288778A1 (en)2004-06-292005-12-29Emanuel ShaoulianSelectively adjustable cardiac valve implants
US20060004443A1 (en)2000-10-232006-01-05Liddicoat John RAutomated annular plication for mitral valve repair
US20060004442A1 (en)2004-06-302006-01-05Benjamin SpenserParavalvular leak detection, sealing, and prevention
US6986775B2 (en)2002-06-132006-01-17Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US6989028B2 (en)2000-01-312006-01-24Edwards Lifesciences AgMedical system and method for remodeling an extravascular tissue structure
US20060020326A9 (en)2001-11-282006-01-26Aptus Endosystems, Inc.Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20060020336A1 (en)2001-10-232006-01-26Liddicoat John RAutomated annular plication for mitral valve repair
US20060020333A1 (en)2004-05-052006-01-26Lashinski Randall TMethod of in situ formation of translumenally deployable heart valve support
US20060025858A1 (en)2004-07-272006-02-02Alameddine Abdallah KMitral valve ring for treatment of mitral valve regurgitation
US20060030885A1 (en)2002-10-152006-02-09Hyde Gregory MApparatuses and methods for heart valve repair
US6997951B2 (en)1999-06-302006-02-14Edwards Lifesciences AgMethod and device for treatment of mitral insufficiency
US20060041319A1 (en)2001-07-032006-02-23Reflux CorporationPerorally removeable anti-reflux valve implantation
US7007798B2 (en)2001-05-172006-03-07Inion, Ltd.Storage for surgical fixation devices and arrangement for same
US7011669B2 (en)2000-08-112006-03-14Edwards Lifesciences CorporationDevice and method for treatment of atrioventricular regurgitation
US7018406B2 (en)1999-11-172006-03-28Corevalve SaProsthetic valve for transluminal delivery
US20060069429A1 (en)2001-04-242006-03-30Spence Paul ATissue fastening systems and methods utilizing magnetic guidance
US20060074486A1 (en)2000-01-142006-04-06Liddicoat John RTissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US20060085012A1 (en)2004-09-282006-04-20Medtronic Vascular, Inc.Torquing device delivered over a guidewire to rotate a medical fastener
US7037334B1 (en)2001-04-242006-05-02Mitralign, Inc.Method and apparatus for catheter-based annuloplasty using local plications
US20060095009A1 (en)2004-10-292006-05-04Lampropoulos Fred PSelf-suturing anchor device for a catheter
US20060106423A1 (en)2004-09-282006-05-18Thomas WeiselSuture anchor
US20060122633A1 (en)2002-06-132006-06-08John ToMethods and devices for termination
US20060129166A1 (en)2004-12-152006-06-15Vance Products Incorporated, D/B/A Cook Urological IncorporatedRadiopaque manipulation devices
US20060142694A1 (en)2004-12-282006-06-29Bednarek Michael CBi-directional steerable catheter control handle
US20060149280A1 (en)2000-06-272006-07-06Fraser HarvieSurgical procedures and instruments
US7077850B2 (en)2002-05-012006-07-18Scimed Life Systems, Inc.Tissue fastening devices and related insertion tools and methods
US20060161265A1 (en)2002-12-022006-07-20Levine Andy HBariatric sleeve
US20060184242A1 (en)2003-10-202006-08-17Samuel LichtensteinMethod and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve
US20060184240A1 (en)2003-06-252006-08-17Georgia Tech Research CorporationAnnuloplasty chain
US20060195134A1 (en)2005-02-282006-08-31Medtronic Vascular, Inc.Device, system, and method for aiding valve annuloplasty
US7101395B2 (en)2002-06-122006-09-05Mitral Interventions, Inc.Method and apparatus for tissue connection
US7101396B2 (en)2003-10-062006-09-053F Therapeutics, Inc.Minimally invasive valve replacement system
US20060206203A1 (en)2005-03-102006-09-14Jun YangValvular support prosthesis
US7118595B2 (en)2002-03-182006-10-10Medtronic, Inc.Flexible annuloplasty prosthesis and holder
US7125421B2 (en)2001-08-312006-10-24Mitral Interventions, Inc.Method and apparatus for valve repair
US20060241748A1 (en)2005-03-252006-10-26Lee Leonard YMethods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20060241656A1 (en)2002-06-132006-10-26Starksen Niel FDelivery devices and methods for heart valve repair
US20060247763A1 (en)2003-11-122006-11-02Medtronic Vascular, Inc.Coronary sinus approach for repair of mitral valve regurgitation
US20060259135A1 (en)2005-04-202006-11-16The Cleveland Clinic FoundationApparatus and method for replacing a cardiac valve
US20060271175A1 (en)2001-09-072006-11-30Woolfson Steven BFixation band for affixing a prosthetic heart valve to tissue
US20060276871A1 (en)2005-05-202006-12-07Exploramed Nc2, Inc.Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US20060282161A1 (en)2003-06-202006-12-14Medtronic Vascular, Inc.Valve annulus reduction system
US7150737B2 (en)2001-07-132006-12-19Sci/Med Life Systems, Inc.Methods and apparatuses for navigating the subarachnoid space
US20060287716A1 (en)2005-06-082006-12-21The Cleveland Clinic FoundationArtificial chordae
US20070001627A1 (en)2004-08-202007-01-04O2Micro Inc.Protection for external electrode fluorescent lamp system
US7159593B2 (en)2003-04-172007-01-093F Therapeutics, Inc.Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
US20070010800A1 (en)2005-06-222007-01-11Barry WeitznerMedical device control system
US20070016287A1 (en)2005-03-252007-01-18Cartledge Richard GMethods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20070016288A1 (en)2005-07-132007-01-18Gurskis Donnell WTwo-piece percutaneous prosthetic heart valves and methods for making and using them
US7166127B2 (en)2003-12-232007-01-23Mitralign, Inc.Tissue fastening systems and methods utilizing magnetic guidance
US20070021781A1 (en)2005-07-222007-01-25Jervis James EWedge Operated Retainer Device And Methods
US7169187B2 (en)1999-12-222007-01-30Ethicon, Inc.Biodegradable stent
US20070027533A1 (en)2005-07-282007-02-01Medtronic Vascular, Inc.Cardiac valve annulus restraining device
US20070027536A1 (en)2003-12-042007-02-01Tomislav MihaljevicAortic Valve Annuloplasty Rings
US7172625B2 (en)2002-07-162007-02-06Medtronic, Inc.Suturing rings for implantable heart valve prostheses
US20070038221A1 (en)1999-10-262007-02-15Stephen FineOrthopaedic ligament fixation system
US20070038296A1 (en)2005-07-152007-02-15Cleveland ClinicApparatus and method for remodeling a cardiac valve annulus
US20070038293A1 (en)1999-04-092007-02-15St Goar Frederick GDevice and methods for endoscopic annuloplasty
US20070039425A1 (en)2005-08-162007-02-22Wang Chun FScrewdriver with torque setting mechanism
US20070049942A1 (en)2005-08-302007-03-01Hindrichs Paul JSoft body tissue remodeling methods and apparatus
US20070049970A1 (en)2005-09-012007-03-01Ovalis Inc.Suture-based systems and methods for treating septal defects
US7186264B2 (en)2001-03-292007-03-06Viacor, Inc.Method and apparatus for improving mitral valve function
US20070051377A1 (en)2003-11-122007-03-08Medtronic Vascular, Inc.Cardiac valve annulus reduction system
US20070055206A1 (en)2005-08-102007-03-08Guided Delivery Systems, Inc.Methods and devices for deployment of tissue anchors
US20070061010A1 (en)2005-09-092007-03-15Hauser David LDevice and method for reshaping mitral valve annulus
US7192443B2 (en)2002-01-112007-03-20Edwards Lifesciences AgDelayed memory device
US20070066863A1 (en)2005-08-312007-03-22Medtronic Vascular, Inc.Device for treating mitral valve regurgitation
US20070083168A1 (en)2004-09-302007-04-12Whiting James STransmembrane access systems and methods
US20070100427A1 (en)2005-11-022007-05-03Eric PerouseDevice for treating a blood vessel and associated treatment kit
US20070106328A1 (en)2002-09-262007-05-10Wardle John LRetrieval devices for anchored cardiovascular sensors
US20070112359A1 (en)2004-12-072007-05-17Olympus CorporationEndo-therapy product system and cartridge including treatment device
US20070112422A1 (en)2005-11-162007-05-17Mark DehdashtianTransapical heart valve delivery system and method
US7220277B2 (en)2002-03-272007-05-22Sorin Biomedica Cardio S.P.A.Prosthesis for annuloplasty comprising a perforated element
US20070118154A1 (en)2005-11-232007-05-24Crabtree Traves DMethods and apparatus for atrioventricular valve repair
US20070118213A1 (en)2005-11-232007-05-24Didier LoulmetMethods, devices, and kits for treating mitral valve prolapse
US20070118151A1 (en)2005-11-212007-05-24The Brigham And Women's Hospital, Inc.Percutaneous cardiac valve repair with adjustable artificial chordae
US20070118215A1 (en)2005-11-162007-05-24Micardia CorporationMagnetic engagement of catheter to implantable device
US7226467B2 (en)1999-04-092007-06-05Evalve, Inc.Fixation device delivery catheter, systems and methods of use
US7226647B2 (en)2003-10-162007-06-05Hewlett-Packard Development Company, L.P.Permanent fixation of dyes to surface-modified inorganic particulate-coated media
US7229452B2 (en)2002-04-222007-06-12Tyco Healthcare Group LpTack and tack applier
US20070142907A1 (en)2005-12-162007-06-21Micardia CorporationAdjustable prosthetic valve implant
US7238191B2 (en)2002-09-042007-07-03Endoart S.A.Surgical ring featuring a reversible diameter remote control system
US20070162111A1 (en)2005-07-062007-07-12The Cleveland Clinic FoundationApparatus and method for replacing a cardiac valve
US20070198082A1 (en)2005-12-152007-08-23The Cleveland Clinic FoundationApparatus and method for treating a regurgitant valve
US20070219558A1 (en)2006-03-152007-09-20Allen DeutschMethod and apparatus for arthroscopic surgery using suture anchors
US20070239208A1 (en)2006-04-052007-10-11Crawford Bruce SSurgical implantation device and method
US20070255400A1 (en)2003-10-232007-11-01Parravicini Roberto EProsthetic Valve Apparatus, In Particular for Cardiac Applications
US7294148B2 (en)2004-04-292007-11-13Edwards Lifesciences CorporationAnnuloplasty ring for mitral valve prolapse
US20070270679A1 (en)2006-05-172007-11-22Duy NguyenDeflectable variable radius catheters
US20070270755A1 (en)2006-04-212007-11-22Abbott LaboratoriesGuidewire handling device
US20070276437A1 (en)2006-05-252007-11-29Mitralign, Inc.Lockers for surgical tensioning members and methods of using the same to secure surgical tensioning members
US20070282429A1 (en)2006-06-012007-12-06Hauser David LProsthetic insert for improving heart valve function
US20070282375A1 (en)2006-05-032007-12-06St. Jude Medical, Inc.Soft body tissue remodeling methods and apparatus
US7311729B2 (en)2002-01-302007-12-25Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7311728B2 (en)1999-06-292007-12-25Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US20070295172A1 (en)2006-06-232007-12-27Darian SwartzFastener Holding Device
US20070299424A1 (en)2006-05-162007-12-27Sarah CummingSteerable catheter using flat pull wires and method of making same
US7314485B2 (en)2003-02-032008-01-01Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US20080004697A1 (en)2006-06-282008-01-03Samuel Victor LichtensteinMethod for anchoring a mitral valve
US7316710B1 (en)2002-12-302008-01-08Advanced Cardiovascular Systems, Inc.Flexible stent
US20080027483A1 (en)2002-08-292008-01-31Mitralsoluations, Inc.Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008014144A2 (en)2006-07-242008-01-31Ethicon, Inc.Articulating laparoscopic device and method for delivery of medical fluid
US20080027555A1 (en)2004-01-022008-01-31Zimmer, Inc.Multipart component for an orthopaedic implant
US7329279B2 (en)2003-12-232008-02-12Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US20080035160A1 (en)2006-06-212008-02-14Woodson Beverly TSystem and method for temporary tongue suspension
US20080039935A1 (en)2006-08-142008-02-14Wally BuchMethods and apparatus for mitral valve repair
US7335213B1 (en)2002-11-152008-02-26Abbott Cardiovascular Systems Inc.Apparatus and methods for heart valve repair
US20080058595A1 (en)2006-06-142008-03-06Snoke Phillip JMedical device introduction systems and methods
US20080065011A1 (en)2006-09-082008-03-13Philippe MarchandIntegrated heart valve delivery system
US20080071366A1 (en)2006-09-192008-03-20Yosi TuvalAxial-force fixation member for valve
US20080086138A1 (en)2006-10-062008-04-10Arthrotek, Inc.Rotational securing of a suture
US20080086203A1 (en)2006-10-062008-04-10Roberts Harold GMitral and tricuspid annuloplasty rings
US20080091257A1 (en)2003-12-232008-04-17Xtent, Inc.Devices and methods for controlling and indicating the length of an interventional element
US20080091169A1 (en)2006-05-162008-04-17Wayne HeidemanSteerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US20080097483A1 (en)2006-05-022008-04-24Ethicon Endo-Surgery, Inc.Suture management
US20080103572A1 (en)2006-10-312008-05-01Medtronic, Inc.Implantable medical lead with threaded fixation
US20080125861A1 (en)2002-11-152008-05-29Webler William EValve aptation assist device
US7390329B2 (en)2004-05-072008-06-24Usgi Medical, Inc.Methods for grasping and cinching tissue anchors
US20080167713A1 (en)2007-01-082008-07-10Bolling Steven FReconfiguring Heart Features
US20080195126A1 (en)2007-02-142008-08-14Jan Otto SolemSuture and method for repairing a heart
US20080208265A1 (en)2005-02-082008-08-28Andrew FrazierSystem and method for percutaneous palate remodeling
US20080221672A1 (en)2007-02-232008-09-11Endovalve, Inc.Mitral Valve System
US20080228265A1 (en)2007-03-132008-09-18Mitralign, Inc.Tissue anchors, systems and methods, and devices
US20080234729A1 (en)2006-05-182008-09-25Page Edward CSuture lock fastening device
US7431692B2 (en)2006-03-092008-10-07Edwards Lifesciences CorporationApparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20080262609A1 (en)2006-12-052008-10-23Valtech Cardio, Ltd.Segmented ring placement
US20080262480A1 (en)2007-02-152008-10-23Stahler Gregory JInstrument assembly for robotic instrument system
US7442207B2 (en)2006-04-212008-10-28Medtronic Vascular, Inc.Device, system, and method for treating cardiac valve regurgitation
US20080275469A1 (en)2007-03-052008-11-06Fanton Gary STack anchor systems, bone anchor systems, and methods of use
US20080275551A1 (en)2007-05-012008-11-06Edwards Lifesciences CorporationInwardly-bowed tricuspid annuloplasty ring
US20080275300A1 (en)2007-04-272008-11-06Voyage Medical, Inc.Complex shape steerable tissue visualization and manipulation catheter
US20080281411A1 (en)2004-03-262008-11-13Eric BerreklouwAssembly Comprising A Ring For Attachment In A Passage Surrounded By Body Tissue As Well As An Applicator For Fitting The Ring In The Passage
US20080281353A1 (en)2007-05-102008-11-13Ernest AranyiPowered tacker instrument
US7452376B2 (en)2004-05-142008-11-18St. Jude Medical, Inc.Flexible, non-planar annuloplasty rings
US20080287862A1 (en)2007-05-182008-11-20Boston Scientific Scimed, Inc.Drive systems and methods of use
US20080288044A1 (en)2005-10-312008-11-20Osborne Thomas AComposite Stent Graft
US20080288062A1 (en)2000-05-252008-11-20Bioring SaDevice for shrinking or reinforcing the valvular orifices of the heart
US20080300629A1 (en)2007-05-312008-12-04Wilson-Cook Medical Inc.Suture lock
US20080300537A1 (en)2007-06-032008-12-04David Allen BowmanMethod and system for steering a catheter end in multiple planes
US20090024110A1 (en)2007-07-182009-01-22Wayne HeidemanCatheter and introducer catheter having torque transfer layer and method of manufacture
US20090028670A1 (en)2007-07-262009-01-29Sri InternationalSelectively rigidizable and actively steerable articulatable device
US7485142B2 (en)2001-12-212009-02-03Simcha MiloImplantation system for annuloplasty rings
US20090043381A1 (en)2004-10-052009-02-12Macoviak John AAtrioventricular valve annulus repair systems and methods including retro-chordal anchors
US20090054969A1 (en)2003-12-232009-02-26Amr SalahiehRepositionable Heart Valve and Method
US20090054723A1 (en)1999-08-092009-02-26Alexander KhairkhahanRetrievable devices for improving cardiac function
US20090062866A1 (en)2003-06-182009-03-05Jackson Roger PPolyaxial bone anchor with helical capture connection, insert and dual locking assembly
US7500989B2 (en)2005-06-032009-03-10Edwards Lifesciences Corp.Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US20090076600A1 (en)2004-12-152009-03-19Mednua LimitedMedical device suitable for use in treatment of a valve
US7510575B2 (en)2001-10-112009-03-31Edwards Lifesciences CorporationImplantable prosthetic valve
US20090088837A1 (en)2007-09-282009-04-02The Cleveland Clinic FoundationProsthetic chordae assembly and method of use
US20090093877A1 (en)2007-09-072009-04-09Yaron KeidarActive holder for annuloplasty ring delivery
US20090099650A1 (en)2001-11-282009-04-16Lee BolducDevices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20090105816A1 (en)2007-10-192009-04-23Olsen Daniel HSystem using a helical retainer in the direct plication annuloplasty treatment of mitral valve regurgitation
US7530995B2 (en)2003-04-172009-05-123F Therapeutics, Inc.Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7549983B2 (en)1999-09-202009-06-23Atritech, Inc.Method of closing an opening in a wall of the heart
US20090166913A1 (en)2007-12-302009-07-02Xiaoping GuoCatheter Shaft and Method of its Manufacture
US20090171439A1 (en)2005-07-142009-07-02Thomas NisslTemporary Stent
US20090177274A1 (en)2006-06-072009-07-09Marcio ScorsinDevice for replacing the chordae tendineae of an atrioventricular valve
US20090177266A1 (en)2005-02-072009-07-09Powell Ferolyn TMethods, systems and devices for cardiac valve repair
US7559936B2 (en)2002-08-132009-07-14The General Hospital CorporationCardiac devices and methods for percutaneous repair of atrioventricular valves
US7569062B1 (en)1998-07-152009-08-04St. Jude Medical, Inc.Mitral and tricuspid valve repair
US20090222083A1 (en)2008-02-062009-09-03Guided Delivery Systems Inc.Multi-window guide tunnel
US7585321B2 (en)1996-12-312009-09-08Edwards Lifesciences Pvt, Inc.Methods of implanting a prosthetic heart valve within a native heart valve
US7588582B2 (en)2002-06-132009-09-15Guided Delivery Systems Inc.Methods for remodeling cardiac tissue
US7591826B2 (en)2000-12-282009-09-22Cardiac Dimensions, Inc.Device implantable in the coronary sinus to provide mitral valve therapy
US20090248148A1 (en)2008-03-252009-10-01Ellipse Technologies, Inc.Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US20090254103A1 (en)2006-03-292009-10-08Deutsch Harvey LMethod and device for cavity obliteration
US7604646B2 (en)1999-04-092009-10-20Evalve, Inc.Locking mechanisms for fixation devices and methods of engaging tissue
US7608103B2 (en)2002-07-082009-10-27Edwards Lifesciences CorporationMitral valve annuloplasty ring having a posterior bow
WO2009130631A2 (en)2008-04-212009-10-29Simcha MiloSurgical stapling systems
US20090287304A1 (en)2008-05-132009-11-19Kardium Inc.Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US20090287231A1 (en)2006-03-282009-11-19Spatz-Fgia, Inc.Floating gastrointestinal anchor
US7625403B2 (en)2006-04-042009-12-01Medtronic Vascular, Inc.Valved conduit designed for subsequent catheter delivered valve therapy
US20090299409A1 (en)2008-05-302009-12-03Ethicon Endo-Surgery, Inc.Endoscopic suturing tension controlling and indication devices
US7632303B1 (en)2000-06-072009-12-15Advanced Cardiovascular Systems, Inc.Variable stiffness medical devices
US7635386B1 (en)2006-03-072009-12-22University Of Maryland, BaltimoreMethods and devices for performing cardiac valve repair
US7635329B2 (en)2004-09-272009-12-22Evalve, Inc.Methods and devices for tissue grasping and assessment
US20090326648A1 (en)2004-05-142009-12-31Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system
WO2010000454A1 (en)2008-07-042010-01-07Corus Uk LimitedMethod for coating a steel substrate, and coated steel substrate
US20100001038A1 (en)2008-07-022010-01-07Shalom LevinPivoting tacker
US20100010538A1 (en)2008-07-112010-01-14Maquet Cardiovascular LlcReshaping the mitral valve of a heart
US20100023118A1 (en)2008-07-242010-01-28Edwards Lifesciences CorporationMethod and apparatus for repairing or replacing chordae tendinae
US20100030014A1 (en)2008-07-302010-02-04Cube S.R.L.Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US20100030328A1 (en)2008-04-182010-02-04Medtronic, Inc.Apparatus for Treating a Heart Valve, in Particular a Mitral Valve
US20100042147A1 (en)2008-08-142010-02-18Edwards Lifesciences CorporationMethod and apparatus for repairing or replacing chordae tendinae
US20100063550A1 (en)2008-09-112010-03-11Innovasis, Inc,Radiolucent screw with radiopaque marker
US20100063542A1 (en)2008-09-082010-03-11Van Der Burg ErikKnotless suture anchor for soft tissue repair and method of use
US20100076499A1 (en)2008-03-032010-03-25Alaska Hand Research, LlcCannulated anchor and system
US7686822B2 (en)2003-05-132010-03-30Vafa ShayaniHernia repair method
US7699892B2 (en)2006-04-122010-04-20Medtronic Vascular, Inc.Minimally invasive procedure for implanting an annuloplasty device
US7704277B2 (en)2004-09-142010-04-27Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US20100106141A1 (en)2004-08-052010-04-29Osypka Thomas PCatheter Control Mechanism and Steerable Catheter
US20100114180A1 (en)2008-11-052010-05-06K2M, Inc.Multi-planar, taper lock screw with additional lock
US20100121349A1 (en)2008-10-102010-05-13Meier Stephen CTermination devices and related methods
US20100121437A1 (en)2008-04-162010-05-13Cardiovascular Technologies, LlcTransvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100121435A1 (en)2008-04-162010-05-13Cardiovascular Technologies, LlcPercutaneous transvalvular intrannular band for mitral valve repair
US7722666B2 (en)2005-04-152010-05-25Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20100130992A1 (en)2003-10-012010-05-27Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
WO2010065274A1 (en)2008-12-052010-06-10Boston Scientific Scimed, Inc.Insertion device and method for delivery of a mesh carrier
US20100152845A1 (en)2005-10-112010-06-17Medtronic Vascular, Inc.Annuloplasty Device Having Shape-Adjusting Tension Filaments
US20100161043A1 (en)2008-12-222010-06-24Valtech Cardio, Ltd.Implantation of repair chords in the heart
US20100168845A1 (en)2008-12-312010-07-01Genesee Biomedical, Inc.Semi-Rigid Annuloplasty Ring and Band
US20100168827A1 (en)2008-12-302010-07-01Schultz Jeffrey WDeflectable sheath introducer
US7748389B2 (en)2003-12-232010-07-06Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US20100174358A1 (en)2001-12-032010-07-08Rabkin Dmitry JMulti-Segment Modular Stent And Methods For Manufacturing Stents
US7753924B2 (en)2003-09-042010-07-13Guided Delivery Systems, Inc.Delivery devices and methods for heart valve repair
US20100179574A1 (en)2009-01-142010-07-15James LongoriaSynthetic chord
US7758632B2 (en)2002-05-102010-07-20Cordis CorporationFrame based unidirectional flow prosthetic implant
US7780726B2 (en)2001-07-042010-08-24Medtronic, Inc.Assembly for placing a prosthetic valve in a duct in the body
US20100217382A1 (en)2009-02-252010-08-26Edwards LifesciencesMitral valve replacement with atrial anchoring
US20100217184A1 (en)2009-02-202010-08-26Boston Scientific Scimed, Inc.Steerable catheter having intermediate stiffness transition zone
US20100234935A1 (en)2003-04-022010-09-16Boston Scientific Scimed, Inc.Detachable And Retrievable Stent Assembly
US20100249908A1 (en)2009-03-312010-09-30Edwards Lifesciences CorporationProsthetic heart valve system with positioning markers
US20100249497A1 (en)2009-03-302010-09-30Peine William JSurgical instrument
US20100249915A1 (en)2009-03-302010-09-30Ji ZhangValve prosthesis with movably attached claspers with apex
US20100249920A1 (en)2007-01-082010-09-30Millipede LlcReconfiguring heart features
US20100262232A1 (en)2009-04-102010-10-14Lon Southerland AnnestImplantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve
US20100262233A1 (en)2009-04-122010-10-14Texas Tech University SystemMitral Valve Coaptation Plate For Mitral Valve Regurgitation
US20100286628A1 (en)2009-05-072010-11-11Rainbow Medical LtdGastric anchor
US20100305475A1 (en)2007-04-232010-12-02Hinchliffe Peter W JGuidewire with adjustable stiffness
US20100324598A1 (en)2002-11-262010-12-23Abbott LaboratoriesMulti element biased suture clip
WO2010150178A2 (en)2009-06-262010-12-29Simcha MiloSurgical stapler and method of surgical stapling
US20110004210A1 (en)2005-09-302011-01-06Johnson Kristin DFlexible Endoscopic Catheter with Ligasure
US20110009956A1 (en)2002-08-292011-01-13Cartledge Richard GMagnetic docking system and method for the long term adjustment of an implantable device
US7871433B2 (en)2001-12-082011-01-18Lattouf Omar MTreatments for a patient with congestive heart failure
US20110011917A1 (en)2008-12-312011-01-20Hansen Medical, Inc.Methods, devices, and kits for treating valve prolapse
US20110029066A1 (en)2004-05-102011-02-03Ran GiladStent valve and method of using same
US20110026208A1 (en)2008-12-192011-02-03Panasonic CorporationExterior parts and method of manufacturing the same and electronic equipment using the same
US7883538B2 (en)2002-06-132011-02-08Guided Delivery Systems Inc.Methods and devices for termination
US7883475B2 (en)2005-11-082011-02-08Trustees Of Boston UniversityManipulators employing multiple deformable elongate members
US20110066231A1 (en)2007-01-032011-03-17Cartledge Richard GImplantable devices for controlling the size and shape of an anatomical structure or lumen
US20110071626A1 (en)2008-05-122011-03-24Wright John T MDevice and Method for the Surgical Treatment of Ischemic Mitral Regurgitation
US20110067770A1 (en)2009-09-212011-03-24Gulf Sea Ventures LLCFluid-directing multiport rotary valve
US20110082538A1 (en)2009-10-012011-04-07Jonathan DahlgrenMedical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US20110087146A1 (en)2009-10-092011-04-14Boston Scientific Scimed, Inc.Stomach bypass for the treatment of obesity
US7927371B2 (en)2005-07-152011-04-19The Cleveland Clinic FoundationApparatus and method for reducing cardiac valve regurgitation
US20110093002A1 (en)2009-10-202011-04-21Wilson-Cook Medical Inc.Stent-within-stent arrangements
US20110106247A1 (en)2009-10-292011-05-05Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US7942927B2 (en)2004-03-152011-05-17Baker Medical Research InstituteTreating valve failure
US20110118832A1 (en)2008-05-222011-05-19Prakash PunjabiAnnuloplasty Device
US7947056B2 (en)2001-01-182011-05-24Boston Scientific Scimed, Inc.Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy
US7955377B2 (en)2008-01-222011-06-07Cook Medical Technologies LlcValve frame
US20110137410A1 (en)2009-12-082011-06-09Hacohen GilFoldable hinged prosthetic heart valve
US20110144703A1 (en)2009-02-242011-06-16Krause William RFlexible Screw
US7993368B2 (en)2003-03-132011-08-09C.R. Bard, Inc.Suture clips, delivery devices and methods
US7993397B2 (en)2004-04-052011-08-09Edwards Lifesciences AgRemotely adjustable coronary sinus implant
US7992567B2 (en)2005-02-082011-08-09Koninklijke Philips Electronics N.V.System and method for percutaneous glossoplasty
US20110202130A1 (en)2008-07-292011-08-18St. Jude Medical Cardiology Divison Inc.Method and system for long term adjustment of an implantable device
US20110208283A1 (en)2010-02-242011-08-25Rust Matthew JTranscatheter valve structure and methods for valve delivery
US20110230961A1 (en)2010-01-052011-09-22Micardia CorporationDynamically adjustable annuloplasty ring and papillary muscle repositioning suture
US20110230941A1 (en)2008-11-262011-09-22Vimecon GmbhLaser applicator
US8034103B2 (en)2005-12-282011-10-11Sorin Biomedica Cardio S.R.L.Annuloplasty prosthesis with an auxetic structure
US20110257433A1 (en)2004-04-072011-10-20The University Of YorkLiquids
US20110264208A1 (en)2010-04-272011-10-27Medtronic, Inc.Prosthetic Heart Valve Devices and Methods of Valve Repair
US8052592B2 (en)2005-09-272011-11-08Evalve, Inc.Methods and devices for tissue grasping and assessment
US20110276062A1 (en)2001-11-282011-11-10Aptus Endosystems, Inc.Devices, systems, and methods for prosthesis delivery and implantation, including the use of a fastener tool
US8062355B2 (en)2005-11-042011-11-22Jenavalve Technology, Inc.Self-expandable medical instrument for treating defects in a patient's heart
US20110288435A1 (en)2010-05-192011-11-24George Michael ChristyTactile sensory testing instrument
US20110301498A1 (en)2009-02-162011-12-08Dokter Yves Fortems BvbaBiopsy device
US8075616B2 (en)2001-12-282011-12-13Edwards Lifesciences AgApparatus for applying a compressive load on body tissue
US8123801B2 (en)2001-12-212012-02-28QuickRing Medical Technologies, Ltd.Implantation system for annuloplasty rings
US20120053628A1 (en)2010-08-302012-03-01Depuy Mitek, Inc.Anchor driver with suture clutch
US8142495B2 (en)2006-05-152012-03-27Edwards Lifesciences AgSystem and a method for altering the geometry of the heart
US8142496B2 (en)1999-05-252012-03-27Daidalos Solutions B.V.Fixing device, in particular for fixing to vascular wall tissue
US20120078355A1 (en)2008-12-222012-03-29Yuval ZiporyDeployment techniques for annuloplasty ring and over-wire rotation tool
US20120078359A1 (en)2009-02-062012-03-29St. Jude Medical, Inc.Adjustable annuloplasty ring support
US8147542B2 (en)2008-12-222012-04-03Valtech Cardio, Ltd.Adjustable repair chords and spool mechanism therefor
US8152844B2 (en)2008-05-092012-04-10Edwards Lifesciences CorporationQuick-release annuloplasty ring holder
US20120089125A1 (en)2010-10-082012-04-12Greatbatch Ltd.Bi-Directional Catheter Steering Handle
US20120089022A1 (en)2010-07-092012-04-12Mitralign, Inc.Delivery catheter with forward-looking ultrasoung imaging
US8163013B2 (en)2001-10-012012-04-24Mvrx, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20120109155A1 (en)2010-10-272012-05-03Mitralign, Inc.Hand operated device for controlled deployment of a tissue anchor and method of using the same
US8187324B2 (en)2002-11-152012-05-29Advanced Cardiovascular Systems, Inc.Telescoping apparatus for delivering and adjusting a medical device in a vessel
US20120150290A1 (en)2010-11-122012-06-14Shlomo GabbayBeating heart buttress and implantation method to prevent prolapse of a heart valve
US8202315B2 (en)2001-04-242012-06-19Mitralign, Inc.Catheter-based annuloplasty using ventricularly positioned catheter
US20120158021A1 (en)2010-12-192012-06-21Mitralign, Inc.Steerable guide catheter having preformed curved shape
US8206439B2 (en)2004-02-232012-06-26International Heart Institute Of Montana FoundationInternal prosthesis for reconstruction of cardiac geometry
US8216302B2 (en)2005-10-262012-07-10Cardiosolutions, Inc.Implant delivery and deployment system and method
US20120179086A1 (en)2009-09-112012-07-12Peter ShankAnchors with open heads
US8231671B2 (en)2009-08-282012-07-31June-Hong KimMitral cerclage annuloplasty apparatus
WO2012106346A1 (en)2011-01-312012-08-09St. Jude Medical, Inc.Adjustable annuloplasty ring sizing indicator
US20120226349A1 (en)2011-03-012012-09-06Medtronic Ventor Technologies Ltd.Mitral Valve Repair
US8262725B2 (en)2008-04-162012-09-11Cardiovascular Technologies, LlcTransvalvular intraannular band for valve repair
US8265758B2 (en)2005-03-242012-09-11Metacure LimitedWireless leads for gastrointestinal tract applications
US20120239142A1 (en)2011-02-252012-09-20Jun LiuProsthetic heart valve delivery apparatus
US20120245604A1 (en)2011-03-252012-09-27Kardium Inc.Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US8287591B2 (en)2008-09-192012-10-16Edwards Lifesciences CorporationTransformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US8287584B2 (en)2005-11-142012-10-16Sadra Medical, Inc.Medical implant deployment tool
US8292884B2 (en)2002-08-012012-10-23Levine Robert ACardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US20120271198A1 (en)2005-03-242012-10-25Windcrest LlcVascular guidewire control apparatus
US8303608B2 (en)1999-04-092012-11-06Evalve, Inc.Fixation devices for variation in engagement of tissue
US20120296417A1 (en)2011-05-172012-11-22Boston Scientific Scimed, Inc.Corkscrew Annuloplasty Device
US20120296349A1 (en)2011-05-172012-11-22Boston Scientific Scimed, Inc.Percutaneous Mitral Annulus Mini-Plication
US20120310330A1 (en)2011-06-012012-12-06Micardia CorporationPercutaneous transcatheter repair of heart valves via trans-apical access
US8328868B2 (en)2004-11-052012-12-11Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US8333777B2 (en)2005-04-222012-12-18Benvenue Medical, Inc.Catheter-based tissue remodeling devices and methods
US20120323313A1 (en)2011-06-202012-12-20Jacques SeguinProsthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
WO2012176195A2 (en)2011-06-232012-12-27Valtech Cardio, Ltd.Closure element for use with annuloplasty structure
US8343213B2 (en)2003-12-232013-01-01Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US8349002B2 (en)2008-01-162013-01-08QuickRing Medical Technologies, Ltd.Adjustable annuloplasty rings
US8353956B2 (en)2009-02-172013-01-15Valtech Cardio, Ltd.Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8357195B2 (en)2010-04-152013-01-22Medtronic, Inc.Catheter based annuloplasty system and method
US20130030522A1 (en)2010-06-162013-01-31Rowe Stanton JDevices and methods for heart treatments
US20130046373A1 (en)2010-06-242013-02-21Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US8382829B1 (en)2008-03-102013-02-26Mitralign, Inc.Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20130053884A1 (en)2011-08-262013-02-28Abbott Cardiovascular Systems, Inc.Suture fastener combination device
US8388680B2 (en)2006-10-182013-03-05Guided Delivery Systems, Inc.Methods and devices for catheter advancement and delivery of substances therethrough
US20130079873A1 (en)2011-09-262013-03-28Edwards Lifesciences CorporationProsthetic mitral valve with ventricular tethers and methods for implanting same
US20130085529A1 (en)2011-10-032013-04-04Mark Edwin HousmanKnotless suture anchor
US8419825B2 (en)2008-07-172013-04-16Siemens Vai Metals Technologies GmbhMethod and system for energy-optimized and CO2 emission-optimized iron production
US20130096673A1 (en)2008-04-232013-04-18Medtronic, Inc.Prosthetic Heart Valve Devices And Methods Of Valve Replacement
US8430926B2 (en)2006-08-112013-04-30Japd Consulting Inc.Annuloplasty with enhanced anchoring to the annulus based on tissue healing
US20130116776A1 (en)2011-11-042013-05-09Valtech Cardio, Ltd.External aortic ring and spool mechanism therefor
US20130123910A1 (en)2009-02-092013-05-16St. Jude Medical, Cardiology Division, Inc.Inflatable minimally invasive system for delivering and securing an annular implant
US8449599B2 (en)2009-12-042013-05-28Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US8454686B2 (en)2007-09-282013-06-04St. Jude Medical, Inc.Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US8460371B2 (en)2002-10-212013-06-11Mitralign, Inc.Method and apparatus for performing catheter-based annuloplasty using local plications
US20130166017A1 (en)2007-07-312013-06-27Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US8475525B2 (en)2010-01-222013-07-024Tech Inc.Tricuspid valve repair using tension
US20130204361A1 (en)2010-02-032013-08-08Medtronic ATS Medical, Inc.Semi-flexible annuloplasty ring
US8518107B2 (en)2010-08-042013-08-27Valcare, Inc.Percutaneous transcatheter repair of heart valves
US20130226289A1 (en)2012-02-292013-08-29Valcare, Inc.Percutaneous annuloplasty system with anterior-posterior adjustment
US20130226290A1 (en)2012-02-292013-08-29ValCare,Inc.Methods, devices, and systems for percutaneously anchoring annuloplasty rings
US8523940B2 (en)2011-05-172013-09-03Boston Scientific Scimed, Inc.Annuloplasty ring with anchors fixed by curing polymer
US8551161B2 (en)2006-04-252013-10-08Medtronic Vascular, Inc.Cardiac valve annulus restraining device
US20130297013A1 (en)2012-05-042013-11-07St. Jude Medical, Cardiology Division, Inc.Hypotube shaft with articulation mechanism
US20130304093A1 (en)2007-10-192013-11-14Guided Delivery Systems Inc.Devices and methods for termination
US20130331930A1 (en)2012-06-072013-12-12Edwards Lifesciences CorporationSystems for implanting annuloplasty rings with microanchors
US8608797B2 (en)2005-03-172013-12-17Valtech Cardio Ltd.Mitral valve treatment techniques
US8628569B2 (en)2006-12-222014-01-14Edwards Lifesciences CorporationImplantable prosthetic valve assembly and method for making the same
US8628571B1 (en)2012-11-132014-01-14Mitraltech Ltd.Percutaneously-deliverable mechanical valve
US8641727B2 (en)2002-06-132014-02-04Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US8652202B2 (en)2008-08-222014-02-18Edwards Lifesciences CorporationProsthetic heart valve and delivery apparatus
US8652203B2 (en)2010-09-232014-02-18Cardiaq Valve Technologies, Inc.Replacement heart valves, delivery devices and methods
US20140067054A1 (en)2012-09-062014-03-06Edwards Lifesciences CorporationHeart Valve Sealing Devices
US8679174B2 (en)2005-01-202014-03-25JenaValve Technology, GmbHCatheter for the transvascular implantation of prosthetic heart valves
US20140088368A1 (en)2012-01-182014-03-27Kwang-Tai ParkSurgical instrument, surgical mesh and surgical retraction means of the instrument, and surgical method using the instrument
US20140088646A1 (en)2012-09-212014-03-27Boston Scientific Neuromodulation CorporationTissue fixation delivery apparatus
US8685086B2 (en)2006-02-182014-04-01The Cleveland Clinic FoundationApparatus and method for replacing a diseased cardiac valve
US20140094826A1 (en)2012-09-292014-04-03Mitralign, Inc.Plication Lock Delivery System and Method of Use Thereof
US20140114390A1 (en)2010-01-222014-04-244Tech Inc.Tricuspid valve repair using tension
WO2014064964A1 (en)2012-10-242014-05-01浜松ホトニクス株式会社Optical scanning device and light source device
US8715342B2 (en)2009-05-072014-05-06Valtech Cardio, Ltd.Annuloplasty ring with intra-ring anchoring
US20140135799A1 (en)2011-02-182014-05-15Guided Delivery Systems Inc.Implant retrieval device
US8728097B1 (en)2008-02-262014-05-20Mitralign, Inc.Tissue plication devices and methods for their use
US8728155B2 (en)2011-03-212014-05-20Cephea Valve Technologies, Inc.Disk-based valve apparatus and method for the treatment of valve dysfunction
US20140142695A1 (en)2008-12-222014-05-22Valtech Cardio, Ltd.Contractible annuloplasty structures
US20140142619A1 (en)2009-01-202014-05-22Guided Delivery Systems Inc.Anchor deployment devices and related methods
US8734467B2 (en)2009-12-022014-05-27Valtech Cardio, Ltd.Delivery tool for implantation of spool assembly coupled to a helical anchor
US20140148849A1 (en)2010-09-032014-05-29Guided Delivery Systems Inc.Devices and methods for anchoring tissue
US20140155783A1 (en)2011-02-182014-06-05Guided Delivery Systems Inc.Systems and methods for variable stiffness tethers
US8747463B2 (en)2003-08-222014-06-10Medtronic, Inc.Methods of using a prosthesis fixturing device
US20140163690A1 (en)2008-07-212014-06-12Jenesis Surgical, LlcRepositionable endoluminal support structure and its applications
US20140188108A1 (en)2012-12-282014-07-03Mitralign, Inc.Energy Assisted Tissue Piercing Device and Method of Use Thereof
US8778021B2 (en)2009-01-222014-07-15St. Jude Medical, Cardiology Division, Inc.Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US8784481B2 (en)2007-09-282014-07-22St. Jude Medical, Inc.Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20140207231A1 (en)2013-01-242014-07-24Mitraltech Ltd.Anchoring of prosthetic valve supports
US8790394B2 (en)2010-05-242014-07-29Valtech Cardio, Ltd.Adjustable artificial chordeae tendineae with suture loops
US8795357B2 (en)2011-07-152014-08-05Edwards Lifesciences CorporationPerivalvular sealing for transcatheter heart valve
US8795355B2 (en)2007-06-262014-08-05St. Jude Medical, Inc.Apparatus and method for implanting collapsible/expandable prosthetic heart valves
US8795356B2 (en)2009-04-152014-08-05Cardiaq Valve Technologies, Inc.Vascular implant
US8795298B2 (en)2008-10-102014-08-05Guided Delivery Systems Inc.Tether tensioning devices and related methods
US8808366B2 (en)2009-02-272014-08-19St. Jude Medical, Inc.Stent features for collapsible prosthetic heart valves
US20140243894A1 (en)2013-02-262014-08-28Mitralign, Inc.Devices and Methods for Percutaneous Tricuspid Valve Repair
US20140243963A1 (en)2009-05-042014-08-28Valtech Cardio, Ltd.Annuloplasty ring delivery cathethers
US20140243859A1 (en)2005-07-052014-08-28Mitralign, Inc.Tissue Anchor and Anchoring System
US20140251042A1 (en)2013-03-112014-09-11Boston Scientific Scimed, Inc.Deflection mechanism
US20140276648A1 (en)2013-03-142014-09-18Valtech Cardio, Ltd.Guidewire feeder
US20140275757A1 (en)2013-03-152014-09-18Mitralign, Inc.Translation Catheters, Systems, and Methods of Use Thereof
US8845717B2 (en)2011-01-282014-09-30Middle Park Medical, Inc.Coaptation enhancement implant, system, and method
US20140296962A1 (en)2011-10-212014-10-02Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US8852272B2 (en)2011-08-052014-10-07Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US8858623B2 (en)2011-11-042014-10-14Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US20140309661A1 (en)2011-11-082014-10-16Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
US20140309730A1 (en)2011-12-122014-10-16David AlonHeart Valve Repair Device
US8864822B2 (en)2003-12-232014-10-21Mitralign, Inc.Devices and methods for introducing elements into tissue
US8870948B1 (en)2013-07-172014-10-28Cephea Valve Technologies, Inc.System and method for cardiac valve repair and replacement
US8870949B2 (en)2007-10-152014-10-28Edwards Lifesciences CorporationTranscatheter heart valve with micro-anchors
US8889861B2 (en)2010-01-222014-11-18Cyclacel LimitedCrystalline forms of a purine derivative
US8888843B2 (en)2011-01-282014-11-18Middle Peak Medical, Inc.Device, system, and method for transcatheter treatment of valve regurgitation
US8894702B2 (en)2008-09-292014-11-25Cardiaq Valve Technologies, Inc.Replacement heart valve and method
US20140350660A1 (en)2011-12-012014-11-27Graeme CocksEndoluminal Prosthesis
US8911461B2 (en)2007-03-132014-12-16Mitralign, Inc.Suture cutter and method of cutting suture
US20140379006A1 (en)2013-06-252014-12-25Mitralign, Inc.Percutaneous Valve Repair by Reshaping and Resizing Right Ventricle
US8926697B2 (en)2011-06-232015-01-06Valtech Cardio, Ltd.Closed band for percutaneous annuloplasty
US8926696B2 (en)2008-12-222015-01-06Valtech Cardio, Ltd.Adjustable annuloplasty devices and adjustment mechanisms therefor
US8932348B2 (en)2006-05-182015-01-13Edwards Lifesciences CorporationDevice and method for improving heart valve function
US8932343B2 (en)2011-02-012015-01-13St. Jude Medical, Cardiology Division, Inc.Blunt ended stent for prosthetic heart valve
US20150018940A1 (en)2013-07-102015-01-15Medtronic, Inc.Helical coil mitral valve annuloplasty systems and methods
US8940044B2 (en)2011-06-232015-01-27Valtech Cardio, Ltd.Closure element for use with an annuloplasty structure
US8945211B2 (en)2008-09-122015-02-03Mitralign, Inc.Tissue plication device and method for its use
US8961602B2 (en)2012-01-272015-02-24St. Jude Medical, Cardiology Division, Inc.Adjustment suture markers for adjustable annuloplasty ring
US8979922B2 (en)2004-03-112015-03-17Percutaneous Cardiovascular Solutions Pty LimitedPercutaneous heart valve prosthesis
US20150081014A1 (en)2006-12-052015-03-19Valtech Cardio, Ltd.Implant and anchor placement
US8992604B2 (en)2010-07-212015-03-31Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US20150094600A1 (en)2013-10-012015-04-02Yale UniversitySystem And Method For Imaging Myelin
US20150100116A1 (en)2013-10-072015-04-09Medizinische Universitat WienImplant and method for improving coaptation of an atrioventricular valve
US9005273B2 (en)2003-12-232015-04-14Sadra Medical, Inc.Assessing the location and performance of replacement heart valves
US9011520B2 (en)2009-10-292015-04-21Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US20150112432A1 (en)2011-06-232015-04-23Valtech Cardio, Ltd.Closed band for percutaneous annuloplasty
US9017399B2 (en)2010-07-212015-04-28Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US20150127097A1 (en)2012-06-012015-05-07Universität Duisburg-EssenImplantable device for improving or rectifying a heart valve insufficiency
US20150133997A1 (en)2013-11-082015-05-14Coloplast A/SSystem and a method for surgical suture fixation
US20150182336A1 (en)2013-12-262015-07-02Valtech Cardio, Ltd.Implantation of flexible implant
US9072603B2 (en)2010-02-242015-07-07Medtronic Ventor Technologies, Ltd.Mitral prosthesis and methods for implantation
US9107749B2 (en)2010-02-032015-08-18Edwards Lifesciences CorporationMethods for treating a heart
US20150230919A1 (en)2014-02-142015-08-20Edwards Lifesciences CorporationPercutaneous leaflet augmentation
US9125632B2 (en)2007-10-192015-09-08Guided Delivery Systems, Inc.Systems and methods for cardiac remodeling
US9125742B2 (en)2005-12-152015-09-08Georgia Tech Research FoundationPapillary muscle position control devices, systems, and methods
US9138316B2 (en)2011-01-312015-09-22St. Jude Medical, Inc.Adjustable annuloplasty ring sizing indicator
US20150272586A1 (en)2012-10-232015-10-01Valtech Cardio, Ltd.Percutaneous tissue anchor techniques
US20150272734A1 (en)2012-10-232015-10-01Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
US20150282931A1 (en)2012-11-212015-10-08Edwards Lifesciences CorporationRetaining mechanisms for prosthetic heart valves
US9180007B2 (en)2009-10-292015-11-10Valtech Cardio, Ltd.Apparatus and method for guide-wire based advancement of an adjustable implant
US9180005B1 (en)2014-07-172015-11-10Millipede, Inc.Adjustable endolumenal mitral valve ring
US9198756B2 (en)2010-11-182015-12-01Pavilion Medical Innovations, LlcTissue restraining devices and methods of use
US20150351910A1 (en)2013-01-092015-12-104 Tech Inc.Soft tissue anchors and implantation techniques
US20160120645A1 (en)2013-06-062016-05-05David AlonHeart Valve Repair and Replacement
WO2016087934A1 (en)2014-12-022016-06-094Tech Inc.Off-center tissue anchors
US20160158008A1 (en)2008-12-222016-06-09Valtech Cardio, Ltd.Implantation of repair chords in the heart
US20160242762A1 (en)2013-10-302016-08-254Tech Inc.Multiple anchoring-point tension system
US9427316B2 (en)2012-04-192016-08-30Caisson Interventional, LLCValve replacement systems and methods
US20160262755A1 (en)2013-10-232016-09-15Valtech Cardio, Ltd.Anchor magazine
US20160302917A1 (en)2013-06-142016-10-20Hazu GmbhMethod and device for treatment of valve regurgitation
US20160317302A1 (en)2013-12-162016-11-03Jeko Metodiev MadjarovMethod and apparatus for therapy of aortic valve
US20160361058A1 (en)2001-11-282016-12-15Medtronic Vascular, Inc.Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20160361169A1 (en)2006-12-052016-12-15Valtech Cardio, Ltd.Implantation of repair devices in the heart
US9579090B1 (en)2013-02-272017-02-28The Administrators Of The Tulane Educational FundSurgical instrument with multiple instrument interchangeability
US9730793B2 (en)2012-12-062017-08-15Valtech Cardio, Ltd.Techniques for guide-wire based advancement of a tool
US20170245993A1 (en)2014-10-142017-08-31Valtech Cardio, Ltd.Leaflet-restraining techniques
US9788941B2 (en)2010-03-102017-10-17Mitraltech Ltd.Axially-shortening prosthetic valve
US9801720B2 (en)2014-06-192017-10-314Tech Inc.Cardiac tissue cinching
US20180008409A1 (en)2016-07-082018-01-11Valtech Cardio Ltd.Adjustable annuloplasty device with alternating peaks and troughs
US20180049875A1 (en)2015-04-302018-02-22Valtech Cardio, Ltd.Annuloplasty technologies
US20180168803A1 (en)2016-12-212018-06-21TriFlo Cardiovascular Inc.Heart valve support device and methods for making and using the same
US20180289480A1 (en)2017-04-062018-10-11University Of Maryland, BaltimoreDistal anchor apparatus and methods for mitral valve repair
US20180318083A1 (en)2015-12-302018-11-08Pipeline Medical Technologies, Inc.Mitral leaflet tethering
US20190029498A1 (en)2017-07-292019-01-31Endoscope Sp. Z O.O.Mechanical system for controlling distal tip of a medical insertion tube, especially an endoscope insertion tube and an endoscope handle
US20190111239A1 (en)2015-01-212019-04-18Medtronic Vascular, Inc.Guide catheter with steering mechanisms
US20190117400A1 (en)2016-06-012019-04-25On-X Life Technologies, Inc.Pull-through chordae tendineae system
US20190125325A1 (en)2017-11-022019-05-02Valtech Cardio, Ltd.Implant-cinching devices and systems
US20190151093A1 (en)2017-11-202019-05-23Valtech Cardio, Ltd.Cinching of dilated heart muscle
US20190175346A1 (en)2015-10-212019-06-13Coremedic AgMedical apparatus and method for heart valve repair
US20190183648A1 (en)2017-12-202019-06-20W. L. Gore & Associates, Inc.Artificial chordae tendineae repair devices and delivery thereof
WO2019145941A1 (en)2018-01-262019-08-01Valtech Cardio, Ltd.Techniques for facilitating heart valve tethering and chord replacement
WO2019145947A1 (en)2018-01-242019-08-01Valtech Cardio, Ltd.Contraction of an annuloplasty structure
US10368852B2 (en)2013-06-262019-08-06Strait Access Technologies Holdings (Pty) LtdOrientation device for use in mitral valve repair
EP3531975A1 (en)2016-10-312019-09-04Cardiac Implants LLCFlexible radio-opaque protrusions for revealing the position of a constricting cord or annulus ring prior to installation onto a cardiac valve annulus
US20190290431A1 (en)2018-03-202019-09-26Medtronic Vascular, Inc.Flexible canopy valve repair systems and methods of use
US20190290260A1 (en)2018-03-232019-09-26Neochord, Inc.Device for suture attachment for minimally invasive heart valve repair
WO2019182645A1 (en)2018-03-232019-09-26Conmed CorporationSuture anchor driver
US20190343633A1 (en)2018-05-092019-11-14Neochord, Inc.Suture length adjustment for minimally invasive heart valve repair
WO2019224814A1 (en)2018-05-242019-11-28Valtech Cardio, Ltd.Implantable annuloplasty structures to fit multiple annulus sizes

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4935027A (en)1989-08-211990-06-19Inbae YoonSurgical suture instrument with remotely controllable suture material advancement
US5372604A (en)1993-06-181994-12-13Linvatec CorporationSuture anchor for soft tissue fixation
US5782862A (en)1996-07-011998-07-21Bonutti; Peter M.Suture anchor inserter assembly and method
US5752963A (en)1996-08-191998-05-19Bristol-Myers Squibb CompanySuture anchor driver
CA2217406C (en)1996-10-042006-05-30United States Surgical CorporationSuture anchor installation system with disposable loading unit
US5938616A (en)1997-01-311999-08-17Acuson CorporationSteering mechanism and steering line for a catheter-mounted ultrasonic transducer
EP2289423A1 (en)1998-05-142011-03-02David N. KragSystem for bracketing tissue
US9521999B2 (en)2005-09-132016-12-20Arthrex, Inc.Fully-threaded bioabsorbable suture anchor
US6447443B1 (en)2001-01-132002-09-10Medtronic, Inc.Method for organ positioning and stabilization
US6949122B2 (en)2001-11-012005-09-27Cardiac Dimensions, Inc.Focused compression mitral valve device and method
US7122039B2 (en)2002-05-012006-10-17Boston Scientific Scimed, Inc.Tying knots
US6932834B2 (en)2002-06-272005-08-23Ethicon, Inc.Suture anchor
US20040068273A1 (en)2002-10-022004-04-08Ibionics CorporationAutomatic laparoscopic incision closing apparatus
US7981152B1 (en)2004-12-102011-07-19Advanced Cardiovascular Systems, Inc.Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US20040220593A1 (en)2003-05-012004-11-04Secant Medical, LlcRestraining clip for mitral valve repair
US7862584B2 (en)2003-05-072011-01-04Anpa Medical, Inc.Suture lock
US7621948B2 (en)2003-07-212009-11-24The Trustees Of The University Of PennsylvaniaPercutaneous heart valve
US20050075654A1 (en)2003-10-062005-04-07Brian KelleherMethods and devices for soft tissue securement
US20050159810A1 (en)2004-01-152005-07-21Farzan FilsoufiDevices and methods for repairing cardiac valves
US8046050B2 (en)2004-03-052011-10-25Biosense Webster, Inc.Position sensing system for orthopedic applications
US20050234481A1 (en)2004-03-312005-10-20Wilson-Cook Medical Inc.Suture cutting device
US7645293B2 (en)2004-04-212010-01-12United States Surgical CorporationSuture anchor installation system and method
US7869865B2 (en)2005-01-072011-01-11Biosense Webster, Inc.Current-based position sensing
US20100298929A1 (en)2005-02-072010-11-25Thornton Troy LMethods, systems and devices for cardiac valve repair
US20090187216A1 (en)2006-05-182009-07-23Arthrex, Inc.Fenestrated swivel anchor for knotless fixation of tissue
US7749247B2 (en)2005-08-042010-07-06St. Jude Medical Puerto Rico, LlcTissue puncture closure device with coiled automatic tamping system
US20070083235A1 (en)2005-10-112007-04-12Jervis James EHelical retainer, tool for using the helical retainer, and methods
EP2012677B1 (en)2006-02-282011-11-16Bard Shannon LimitedDevice for inserting securing anchors into human or animal tissue
US8454683B2 (en)2006-04-122013-06-04Medtronic Vascular, Inc.Annuloplasty device having a helical anchor and methods for its use
WO2007137228A2 (en)2006-05-192007-11-29Norman GodinMedical staple, system and methods of use
US9211115B2 (en)2006-09-282015-12-15Bioventrix, Inc.Location, time, and/or pressure determining devices, systems, and methods for deployment of lesion-excluding heart implants for treatment of cardiac heart failure and other disease states
US8123668B2 (en)2006-09-282012-02-28Bioventrix (A Chf Technologies' Company)Signal transmitting and lesion excluding heart implants for pacing defibrillating and/or sensing of heart beat
US20080177380A1 (en)2007-01-192008-07-24Starksen Niel FMethods and devices for heart tissue repair
US11660190B2 (en)2007-03-132023-05-30Edwards Lifesciences CorporationTissue anchors, systems and methods, and devices
US8303622B2 (en)2007-03-142012-11-06St. Jude Medical, Inc.Heart valve chordae replacement methods and apparatus
US7771416B2 (en)2007-06-142010-08-10Ethicon Endo-Surgery, Inc.Control mechanism for flexible endoscopic device and method of use
WO2009039191A2 (en)2007-09-202009-03-26Sentreheart, Inc.Devices and methods for remote suture management
EP3613383B1 (en)2008-11-212023-08-30Percutaneous Cardiovascular Solutions Pty LimitedHeart valve prosthesis
CN103705280B (en)2008-11-262017-11-14史密夫和内修有限公司Tissue repair device
US8241351B2 (en)2008-12-222012-08-14Valtech Cardio, Ltd.Adjustable partial annuloplasty ring and mechanism therefor
AU2010242820B2 (en)2009-05-012014-12-11Cayenne Medical, Inc.Meniscal repair systems and methods
US8523881B2 (en)2010-07-262013-09-03Valtech Cardio, Ltd.Multiple anchor delivery tool
US20110144576A1 (en)2009-12-142011-06-16Voyage Medical, Inc.Catheter orientation control system mechanisms
US10076327B2 (en)2010-09-142018-09-18Evalve, Inc.Flexible actuator mandrel for tissue apposition systems
US8540735B2 (en)2010-12-162013-09-24Apollo Endosurgery, Inc.Endoscopic suture cinch system
EP2520250B1 (en)2011-05-042014-02-19Medtentia International Ltd OyMedical device for a cardiac valve implant
US9138214B2 (en)2012-03-022015-09-22Abbott Cardiovascular Systems, Inc.Suture securing systems, devices and methods
EP2783624A1 (en)2013-03-282014-10-01Injeq OyBioimpedance sensor, mandrine, cannula and method for measuring bioimpedance
US20160120642A1 (en)2013-05-242016-05-05Valcare, Inc.Heart and peripheral vascular valve replacement in conjunction with a support ring
US9248018B2 (en)2013-09-272016-02-02Surendra K. ChawlaValve repair device
US10058321B2 (en)2015-03-052018-08-28Ancora Heart, Inc.Devices and methods of visualizing and determining depth of penetration in cardiac tissue
EP3087952A1 (en)2015-04-292016-11-02Kephalios S.A.S.An annuloplasty system and a method for monitoring the effectiveness of an annuloplasty treatment
EP4241697A3 (en)2015-10-212024-01-17Coremedic AGMedical implant for heart valve repair
US10478303B2 (en)2017-03-132019-11-19Polares Medical Inc.Device, system, and method for transcatheter treatment of valvular regurgitation
EP3820406B1 (en)2018-07-122023-12-20Edwards Lifesciences Innovation (Israel) Ltd.Annuloplasty systems and locking tools therefor
SG11202112651QA (en)2019-05-292021-12-30Valtech Cardio LtdTissue anchor handling systems and methods
US20210015475A1 (en)2019-07-162021-01-21Jan R. LauTissue remodeling systems and methods
US12364606B2 (en)2019-07-232025-07-22Edwards Lifesciences Innovation (Israel) Ltd.Fluoroscopic visualization of heart valve anatomy
JP7592647B2 (en)2019-07-232024-12-02エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Contraction of valvular structures
WO2021038560A1 (en)2019-08-282021-03-04Valtech Cardio, Ltd.Low-profile steerable catheter
EP4021349B1 (en)2019-08-282025-01-22Boston Scientific Scimed Inc.Device for mitral repair including papillary muscle relocation
JP2022546160A (en)2019-08-302022-11-04エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Anchor channel tip
EP4034042A1 (en)2019-09-252022-08-03Cardiac Implants LLCCardiac valve annulus reduction system
EP4193934A1 (en)2019-10-292023-06-14Edwards Lifesciences Innovation (Israel) Ltd.Annuloplasty and tissue anchor technologies
CN114980815A (en)2019-12-202022-08-30爱德华兹生命科学创新(以色列)有限公司Implant attachment techniques
WO2021140398A2 (en)2020-01-102021-07-15Valtech Cardio, Ltd.Catheter ultrasound devices and methods for assessing targeted tissue
CN113331995A (en)2020-02-182021-09-03杭州德晋医疗科技有限公司Anchor with locking function, anchor component and ring-retracting system
EP4096529B1 (en)2020-03-232025-05-07Edwards Lifesciences Innovation (Israel) Ltd.Self-locking winch
IL301080A (en)2020-09-252023-05-01Edwards Lifesciences Innovation Israel Ltd anchor cartridges
WO2022066525A2 (en)2020-09-252022-03-31Boston Scientific Scimed, Inc.Tissue anchors minimizing migration and maximizing engagement
CN116437875A (en)2020-10-272023-07-14爱德华兹生命科学创新(以色列)有限公司Devices and methods for area reduction and closure of cardiac openings or chambers
JP2023549243A (en)2020-11-132023-11-22エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Valve leaflet treatment system and method
JP2024502674A (en)2021-01-152024-01-22エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Leaflet support between commissures
JP2024504346A (en)2021-01-212024-01-31エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Fasteners for percutaneous devices
KR20230144584A (en)2021-02-092023-10-16에드워즈 라이프사이언시스 이노베이션 (이스라엘) 리미티드 Organizational anchors and technologies for use with them
WO2022172108A1 (en)2021-02-092022-08-18Edwards Lifesciences Innovation (Israel) Ltd.Systems and apparatuses for heart valve repair
EP4312804A1 (en)2021-03-252024-02-07Edwards Lifesciences Innovation (Israel) Ltd.Tissue-contracting implants for heart valves
WO2022224071A1 (en)2021-04-222022-10-27Edwards Lifesciences Innovation (Israel) Ltd.Catheter stabilization devices
CN117396157A (en)2021-04-292024-01-12爱德华兹生命科学创新(以色列)有限公司 Transcatheter devices and methods for treating the heart
CA3219790A1 (en)2021-05-252022-12-01Edwards Lifesciences CorporationTranscatheter devices for repairing a leaflet of a heart valve of a subject
US20230218291A1 (en)2021-08-132023-07-13Ventrimend, IncEdge to edge repair of the mitral valve

Patent Citations (849)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3656185A (en)1969-02-041972-04-18Rhone Poulenc SaCardiac valvular support prosthesis
US3604488A (en)1969-11-191971-09-14Vermont American CorpScrewdriver attachment
US3840018A (en)1973-01-311974-10-08M HeifetzClamp for occluding tubular conduits in the human body
US3881366A (en)1973-11-191975-05-06Gen Motors CorpAdjustable steering column
US3898701A (en)1974-01-171975-08-12Russa JosephImplantable heart valve
US4042979A (en)1976-07-121977-08-23Angell William WValvuloplasty ring and prosthetic method
US4118805A (en)1977-02-281978-10-10Codman & Shurtleff, Inc.Artificial sphincter
US4261342A (en)1978-10-261981-04-14Iker Aranguren DuoProcess for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US4214349A (en)1978-11-301980-07-29Midland-Ross CorporationTie wrap
US4290151A (en)1979-07-311981-09-22Massana Miguel PAdjustable annular prosthesis for cardiac surgery
US4778468A (en)1980-09-251988-10-18South African Invention Development CorporationSurgical implant
US4473928A (en)1980-11-201984-10-02Tridon LimitedHose clamps
US4602911A (en)1982-08-191986-07-29General Resorts S.A.Adjustable ringprosthesis
US4434828A (en)1982-12-201984-03-06Richard TrinciaScrewdriver with handle for storing bits
US4625727A (en)1985-01-241986-12-02Leiboff Arnold RAnastomosis device with excisable frame
US4712549A (en)1985-07-011987-12-15Edward Weck & Co.Automatic hemostatic clip applier
US5061277B1 (en)1986-08-062000-02-29Baxter Travenol LabFlexible cardiac valvular support prosthesis
US5061277A (en)1986-08-061991-10-29Baxter International Inc.Flexible cardiac valvular support prosthesis
US4961738A (en)1987-01-281990-10-09Mackin Robert AAngioplasty catheter with illumination and visualization within angioplasty balloon
US4917698A (en)1988-12-221990-04-17Baxter International Inc.Multi-segmented annuloplasty ring prosthesis
US5104407A (en)1989-02-131992-04-14Baxter International Inc.Selectively flexible annuloplasty ring
US5104407B1 (en)1989-02-131999-09-21Baxter IntSelectively flexible annuloplasty ring
US5683402A (en)1989-07-311997-11-04Baxter International Inc.Flexible suture guide and holder
US5601572A (en)1989-08-161997-02-11Raychem CorporationDevice or apparatus for manipulating matter having a elastic ring clip
WO1992005093A1 (en)1990-09-251992-04-02Allset Marine Lashing AbA twist lock for joining corner boxes when loading containers
US5626609A (en)1990-10-051997-05-06United States Surgical CorporationEndoscopic surgical instrument
US5042707A (en)1990-10-161991-08-27Taheri Syde AIntravascular stapler, and method of operating same
US5064431A (en)1991-01-161991-11-12St. Jude Medical IncorporatedAnnuloplasty ring
US5108420A (en)1991-02-011992-04-28Temple UniversityAperture occlusion device
US5477856A (en)1991-02-151995-12-26Lundquist; Ingemar H.Torquable catheter and torquable tubular member for use therewith
US5346498A (en)1991-11-061994-09-13Imagyn Medical, Inc.Controller for manipulation of instruments within a catheter
US5201880A (en)1992-01-271993-04-13Pioneering Technologies, Inc.Mitral and tricuspid annuloplasty rings
US5674279A (en)1992-01-271997-10-07Medtronic, Inc.Annuloplasty and suture rings
US5325845A (en)1992-06-081994-07-05Adair Edwin LloydSteerable sheath for use with selected removable optical catheter
US5300034A (en)1992-07-291994-04-05Minnesota Mining And Manufacturing CompanyIv injection site for the reception of a blunt cannula
US5258008A (en)1992-07-291993-11-02Wilk Peter JSurgical stapling device and associated method
US5306296A (en)1992-08-211994-04-26Medtronic, Inc.Annuloplasty and suture rings
US5474518A (en)1992-10-051995-12-12Farrer Velazquez; FranciscoCorrective device of urinary incontinence in women
US6074417A (en)1992-11-162000-06-13St. Jude Medical, Inc.Total mitral heterologous bioprosthesis to be used in mitral or tricuspid heart replacement
US5643317A (en)1992-11-251997-07-01William Cook Europe S.A.Closure prosthesis for transcatheter placement
US5383852A (en)1992-12-041995-01-24C. R. Bard, Inc.Catheter with independent proximal and distal control
EP0611561A1 (en)1993-02-181994-08-24Lubomyr Ihor KuzmakLaparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5449368A (en)1993-02-181995-09-12Kuzmak; Lubomyr I.Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US6802319B2 (en)1993-02-222004-10-12John H. StevensMinimally-invasive devices and methods for treatment of congestive heart failure
US6451054B1 (en)1993-02-222002-09-17Hearport, Inc.Less-invasive devices and methods for treatment of cardiac valves
US5855614A (en)1993-02-221999-01-05Heartport, Inc.Method and apparatus for thoracoscopic intracardiac procedures
US6651671B1 (en)1993-02-222003-11-25Heartport, Inc.Lens-invasive devices and methods for cardiac valve surgery
US6564805B2 (en)1993-02-222003-05-20Heartport, Inc.Less-invasive devices and methods for treatment of cardiac valves
US5450860A (en)1993-08-311995-09-19W. L. Gore & Associates, Inc.Device for tissue repair and method for employing same
US5464404A (en)1993-09-201995-11-07Abela Laser Systems, Inc.Cardiac ablation catheters and method
US5728116A (en)1994-01-131998-03-17Ethicon, Inc.Spiral surgical tack
US5843120A (en)1994-03-171998-12-01Medinol Ltd.Flexible-expandable stent
US20010021874A1 (en)1994-07-292001-09-13Alexandre CarpentierExpandable annuloplasty ring
US6217610B1 (en)1994-07-292001-04-17Edwards Lifesciences CorporationExpandable annuloplasty ring
US5810882A (en)1994-08-051998-09-22Origin Medsystems, Inc.Surgical helical fastener with applicator and method of use
US20080097523A1 (en)1994-08-052008-04-24Lee BolducSurgical helical fastener with applicator
US6296656B1 (en)1994-08-052001-10-02Origin Medsystems, Inc.Surgical helical fastener with applicator
US5593424A (en)1994-08-101997-01-14Segmed, Inc.Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5709695A (en)1994-08-101998-01-20Segmed, Inc.Apparatus for reducing the circumference of a vascular structure
US20020198586A1 (en)1995-04-122002-12-26Kanji InoueAppliance collapsible for insertion into a human organ and capable of resilient restoration
US6110200A (en)1995-06-072000-08-29St. Jude Medical, Inc.Adjustable sizing apparatus
US5676653A (en)1995-06-271997-10-14Arrow International Investment Corp.Kink-resistant steerable catheter assembly
US20030229350A1 (en)1995-08-222003-12-11Kay David B.Open helical organic tissue anchor having recessible head and method of making the organic tissue anchor
US5749371A (en)1995-10-061998-05-12Zadini; Filiberto P.Automatic guidewire placement device for medical catheters
US5824066A (en)1995-12-011998-10-20Medtronic, Inc.Annuloplasty prosthesis
US5730150A (en)1996-01-161998-03-24B. Braun Medical Inc.Guidewire dispenser
US5957953A (en)1996-02-161999-09-28Smith & Nephew, Inc.Expandable suture anchor
US5702397A (en)1996-02-201997-12-30Medicinelodge, Inc.Ligament bone anchor and method for its use
US5716370A (en)1996-02-231998-02-10Williamson, Iv; WarrenMeans for replacing a heart valve in a minimally invasive manner
US6402780B2 (en)1996-02-232002-06-11Cardiovascular Technologies, L.L.C.Means and method of replacing a heart valve in a minimally invasive manner
US6132390A (en)1996-02-282000-10-17Eupalamus LlcHandle for manipulation of a stylet used for deflecting a tip of a lead or catheter
US5782844A (en)1996-03-051998-07-21Inbae YoonSuture spring device applicator
US6702846B2 (en)1996-04-092004-03-09Endocare, Inc.Urological stent therapy system and method
US6042554A (en)1996-05-082000-03-28Heartport, Inc.Valve sizer and method of use
US20020022862A1 (en)1996-08-052002-02-21Arthrex, Inc.Hex drive bioabsorbable tissue anchor
US5669919A (en)1996-08-161997-09-23Medtronic, Inc.Annuloplasty system
US5830221A (en)1996-09-201998-11-03United States Surgical CorporationCoil fastener applier
US5716397A (en)1996-12-061998-02-10Medtronic, Inc.Annuloplasty device with removable stiffening element
US5935098A (en)1996-12-231999-08-10Conceptus, Inc.Apparatus and method for accessing and manipulating the uterus
US7585321B2 (en)1996-12-312009-09-08Edwards Lifesciences Pvt, Inc.Methods of implanting a prosthetic heart valve within a native heart valve
US5961440A (en)1997-01-021999-10-05Myocor, Inc.Heart wall tension reduction apparatus and method
US6059715A (en)1997-01-022000-05-09Myocor, Inc.Heart wall tension reduction apparatus
US7189199B2 (en)1997-01-022007-03-13Myocor, Inc.Methods and devices for improving cardiac function in hearts
US6629921B1 (en)1997-01-022003-10-07Myocor, Inc.Heart wall tension reduction apparatus and method
US6165119A (en)1997-01-022000-12-26Myocor, Inc.Heart wall tension reduction apparatus and method
US6589160B2 (en)1997-01-022003-07-08Myocor IncHeart wall tension reduction apparatus
US6045497A (en)1997-01-022000-04-04Myocor, Inc.Heart wall tension reduction apparatus and method
US6406420B1 (en)1997-01-022002-06-18Myocor, Inc.Methods and devices for improving cardiac function in hearts
US6050936A (en)1997-01-022000-04-18Myocor, Inc.Heart wall tension reduction apparatus
US6074401A (en)1997-01-092000-06-13Coalescent Surgical, Inc.Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5961539A (en)1997-01-171999-10-05Segmed, Inc.Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US5702398A (en)1997-02-211997-12-30Tarabishy; SamTension screw
US6086582A (en)1997-03-132000-07-11Altman; Peter A.Cardiac drug delivery system
US5876373A (en)1997-04-041999-03-02Eclipse Surgical Technologies, Inc.Steerable catheter
WO1998046149A1 (en)1997-04-111998-10-22Taccor, Inc.Steerable catheter with rotatable tip electrode and method of use
US20030105519A1 (en)1997-09-042003-06-05Roland FasolArtificial chordae replacement
US7682369B2 (en)1997-09-122010-03-23Evalve, Inc.Surgical device for connecting soft tissue
US7288097B2 (en)1997-09-122007-10-30Evalve, Inc.Surgical device for connecting soft tissue
US6461366B1 (en)1997-09-122002-10-08Evalve, Inc.Surgical device for connecting soft tissue
US6770083B2 (en)1997-09-122004-08-03Evalve, Inc.Surgical device for connecting soft tissue
US5984959A (en)1997-09-191999-11-16United States SurgicalHeart valve replacement tools and procedures
US6579297B2 (en)1997-10-012003-06-17Scimed Life Systems, Inc.Stent delivery system using shape memory retraction
US6174332B1 (en)1997-12-052001-01-16St. Jude Medical, Inc.Annuloplasty ring with cut zone
US6332893B1 (en)1997-12-172001-12-25Myocor, Inc.Valve to myocardium tension members device and method
US6530952B2 (en)1997-12-292003-03-11The Cleveland Clinic FoundationBioprosthetic cardiovascular valve system
US6251092B1 (en)1997-12-302001-06-26Medtronic, Inc.Deflectable guiding catheter
US6613079B1 (en)1998-02-052003-09-02Medtronic, Inc.Radially-expandable stent with controllable force profile
US20020087048A1 (en)1998-02-242002-07-04Brock David L.Flexible instrument
US6786925B1 (en)1998-04-202004-09-07St. Jude Medical Inc.Driver tool with multiple drive gear layers for heart prosthesis fasteners
US6143024A (en)1998-06-042000-11-07Sulzer Carbomedics Inc.Annuloplasty ring having flexible anterior portion
US6074341A (en)1998-06-092000-06-13Timm Medical Technologies, Inc.Vessel occlusive apparatus and method
US6361559B1 (en)1998-06-102002-03-26Converge Medical, Inc.Thermal securing anastomosis systems
US20030229395A1 (en)1998-06-162003-12-11Cardiac Concepts, Inc.Mitral valve annuloplasty ring
US6565603B2 (en)1998-06-162003-05-20Cardiac Concepts, Inc.Mitral valve annuloplasty ring
US6106550A (en)1998-07-102000-08-22Sulzer Carbomedics Inc.Implantable attaching ring
US6695866B1 (en)1998-07-152004-02-24St. Jude Medical, Inc.Mitral and tricuspid valve repair
US7569062B1 (en)1998-07-152009-08-04St. Jude Medical, Inc.Mitral and tricuspid valve repair
US6328746B1 (en)1998-08-062001-12-11Michael A. GambaleSurgical screw and driver system
WO2000009048A1 (en)1998-08-132000-02-24Obtech Medical AgFood intake restriction device
US6210347B1 (en)1998-08-132001-04-03Peter ForsellRemote control food intake restriction device
US6159240A (en)1998-08-312000-12-12Medtronic, Inc.Rigid annuloplasty device that becomes compliant after implantation
US6547801B1 (en)1998-09-142003-04-15Sofradim ProductionGastric constriction device
US6592593B1 (en)1998-09-182003-07-15United States Surgical CorporationEndovascular fastener applicator
US20020169358A1 (en)1998-09-212002-11-14Myocor, Inc.External stress reduction device and method
US6183411B1 (en)1998-09-212001-02-06Myocor, Inc.External stress reduction device and method
US6355030B1 (en)1998-09-252002-03-12Cardiothoracic Systems, Inc.Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US6102945A (en)1998-10-162000-08-15Sulzer Carbomedics, Inc.Separable annuloplasty ring
US6315784B1 (en)1999-02-032001-11-13Zarija DjurovicSurgical suturing unit
US20020151970A1 (en)1999-02-102002-10-17Garrison Michi E.Methods and devices for implanting cardiac valves
EP1034753A1 (en)1999-03-092000-09-13Jostra AGAnnuloplasty ring
US6319281B1 (en)1999-03-222001-11-20Kumar R. PatelArtificial venous valve and sizing catheter
US6629534B1 (en)1999-04-092003-10-07Evalve, Inc.Methods and apparatus for cardiac valve repair
US8303608B2 (en)1999-04-092012-11-06Evalve, Inc.Fixation devices for variation in engagement of tissue
US8740920B2 (en)1999-04-092014-06-03Evalve, Inc.Fixation devices, systems and methods for engaging tissue
US8343174B2 (en)1999-04-092013-01-01Evalve, Inc.Locking mechanisms for fixation devices and methods of engaging tissue
US8323334B2 (en)1999-04-092012-12-04Evalve, Inc.Methods and apparatus for cardiac valve repair
US7563267B2 (en)1999-04-092009-07-21Evalve, Inc.Fixation device and methods for engaging tissue
US7736388B2 (en)1999-04-092010-06-15Evalve, Inc.Fixation devices, systems and methods for engaging tissue
US20070038293A1 (en)1999-04-092007-02-15St Goar Frederick GDevice and methods for endoscopic annuloplasty
US7563273B2 (en)1999-04-092009-07-21Evalve, Inc.Methods and devices for capturing and fixing leaflets in valve repair
US7682319B2 (en)1999-04-092010-03-23Evalve, Inc.Steerable access sheath and methods of use
US7604646B2 (en)1999-04-092009-10-20Evalve, Inc.Locking mechanisms for fixation devices and methods of engaging tissue
US20080051703A1 (en)1999-04-092008-02-28Evalve, Inc.Multi-catheter steerable guiding system and methods of use
US20040039442A1 (en)1999-04-092004-02-26Evalve, Inc.Methods and apparatus for cardiac valve repair
US20040044350A1 (en)1999-04-092004-03-04Evalve, Inc.Steerable access sheath and methods of use
US7608091B2 (en)1999-04-092009-10-27Evalve, Inc.Methods and apparatus for cardiac valve repair
US7704269B2 (en)1999-04-092010-04-27Evalve, Inc.Methods and apparatus for cardiac valve repair
US8057493B2 (en)1999-04-092011-11-15Evalve, Inc.Fixation devices, systems and methods for engaging tissue
US8187299B2 (en)1999-04-092012-05-29Evalve, Inc.Methods and apparatus for cardiac valve repair
US7655015B2 (en)1999-04-092010-02-02Evalve, Inc.Fixation devices, systems and methods for engaging tissue
US20080167714A1 (en)1999-04-092008-07-10Evalve, Inc.Methods and apparatus for cardiac valve repair
US7666204B2 (en)1999-04-092010-02-23Evalve, Inc.Multi-catheter steerable guiding system and methods of use
US7226467B2 (en)1999-04-092007-06-05Evalve, Inc.Fixation device delivery catheter, systems and methods of use
US6752813B2 (en)1999-04-092004-06-22Evalve, Inc.Methods and devices for capturing and fixing leaflets in valve repair
US6231602B1 (en)1999-04-162001-05-15Edwards Lifesciences CorporationAortic annuloplasty ring
US6503274B1 (en)1999-04-162003-01-07Edwards Lifesciences CorporationMethod of implanting a flexible annuloplasty system
US20050222665A1 (en)1999-04-232005-10-06Ernest AranyiEndovascular fastener applicator
US20050010787A1 (en)1999-04-302005-01-13Microvision, Inc.Method and system for identifying data locations associated with real world observations
US6187040B1 (en)1999-05-032001-02-13John T. M. WrightMitral and tricuspid annuloplasty rings
US6964686B2 (en)1999-05-172005-11-15Vanderbilt UniversityIntervertebral disc replacement prosthesis
US8142496B2 (en)1999-05-252012-03-27Daidalos Solutions B.V.Fixing device, in particular for fixing to vascular wall tissue
US6602289B1 (en)1999-06-082003-08-05S&A Rings, LlcAnnuloplasty rings of particular use in surgery for the mitral valve
US6626899B2 (en)1999-06-252003-09-30Nidus Medical, LlcApparatus and methods for treating tissue
US7186262B2 (en)1999-06-252007-03-06Vahid SaadatApparatus and methods for treating tissue
US7562660B2 (en)1999-06-252009-07-21Hansen Medical, Inc.Apparatus and methods for treating tissue
US20090264994A1 (en)1999-06-252009-10-22Hansen Medical, Inc.Apparatus and methods for treating tissue
US7311728B2 (en)1999-06-292007-12-25Edwards Lifesciences AgDevice and method for treatment of mitral insufficiency
US6997951B2 (en)1999-06-302006-02-14Edwards Lifesciences AgMethod and device for treatment of mitral insufficiency
US20090054723A1 (en)1999-08-092009-02-26Alexander KhairkhahanRetrievable devices for improving cardiac function
US20040010287A1 (en)1999-08-092004-01-15Bonutti Peter M.Method and apparatus for securing tissue
US20080140116A1 (en)1999-08-092008-06-12Bonutti Peter MMethod and apparatus for securing tissue
US7549983B2 (en)1999-09-202009-06-23Atritech, Inc.Method of closing an opening in a wall of the heart
US6764310B1 (en)1999-09-242004-07-20Honda Giken Kogyo Kabushiki KaishaApparatus for simulating ride on vehicle
US6689164B1 (en)1999-10-122004-02-10Jacques SeguinAnnuloplasty device for use in minimally invasive procedure
US6626930B1 (en)1999-10-212003-09-30Edwards Lifesciences CorporationMinimally invasive mitral valve repair method and apparatus
US7112207B2 (en)1999-10-212006-09-26Edwards Lifesciences CorporationMinimally invasive mitral valve repair method and apparatus
US6626917B1 (en)1999-10-262003-09-30H. Randall CraigHelical suture instrument
US20070038221A1 (en)1999-10-262007-02-15Stephen FineOrthopaedic ligament fixation system
US6652556B1 (en)1999-10-272003-11-25Atritech, Inc.Filter apparatus for ostium of left atrial appendage
US7892281B2 (en)1999-11-172011-02-22Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US7018406B2 (en)1999-11-172006-03-28Corevalve SaProsthetic valve for transluminal delivery
US20050192596A1 (en)1999-11-182005-09-01Scimed Life Systems, Inc.Apparatus and method for compressing body tissue
US6711444B2 (en)1999-11-222004-03-23Scimed Life Systems, Inc.Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US7169187B2 (en)1999-12-222007-01-30Ethicon, Inc.Biodegradable stent
US20020177904A1 (en)1999-12-222002-11-28Huxel Shawn ThayerRemovable stent for body lumens
US20060074486A1 (en)2000-01-142006-04-06Liddicoat John RTissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US6537314B2 (en)2000-01-312003-03-25Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty and cardiac reinforcement
US20060116757A1 (en)2000-01-312006-06-01Randall LashinskiMethods and apparatus for remodeling an extravascular tissue structure
US7507252B2 (en)2000-01-312009-03-24Edwards Lifesciences AgAdjustable transluminal annuloplasty system
US6989028B2 (en)2000-01-312006-01-24Edwards Lifesciences AgMedical system and method for remodeling an extravascular tissue structure
US20050060030A1 (en)2000-01-312005-03-17Lashinski Randall T.Remotely activated mitral annuloplasty system and methods
US6709456B2 (en)2000-01-312004-03-23Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty with hemodynamic monitoring
US7011682B2 (en)2000-01-312006-03-14Edwards Lifesciences AgMethods and apparatus for remodeling an extravascular tissue structure
US20040138744A1 (en)2000-01-312004-07-15Randall LashinskiTransluminal mitral annuloplasty with active anchoring
US6706065B2 (en)2000-01-312004-03-16Ev3 Santa Rosa, Inc.Endoluminal ventricular retention
US6458076B1 (en)2000-02-012002-10-015 Star MedicalMulti-lumen medical device
US7527647B2 (en)2000-02-022009-05-05Spence Paul AHeart valve repair apparatus and methods
US20050070999A1 (en)2000-02-022005-03-31Spence Paul A.Heart valve repair apparatus and methods
US20120095552A1 (en)2000-02-022012-04-19Cardiac Valve Technologies LLCHeart valve repair apparatus and methods
US8100964B2 (en)2000-02-022012-01-24Cardiac Valve Technologies LLCHeart valve repair apparatus and methods
US20060149368A1 (en)2000-02-022006-07-06Spence Paul AHeart valve repair apparatus and methods
US6797002B2 (en)2000-02-022004-09-28Paul A. SpenceHeart valve repair apparatus and methods
US6461336B1 (en)2000-02-082002-10-08LARRé JORGE CASADOCardiological medical equipment
US6470892B1 (en)2000-02-102002-10-29Obtech Medical AgMechanical heartburn and reflux treatment
US6709385B2 (en)2000-02-112004-03-23Obtech Medical AgUrinary incontinence treatment apparatus
US6569198B1 (en)2000-03-312003-05-27Richard A. WilsonMitral or tricuspid valve annuloplasty prosthetic device
US6689125B1 (en)2000-04-042004-02-10Spinalabs, LlcDevices and methods for the treatment of spinal disorders
US6533772B1 (en)2000-04-072003-03-18Innex CorporationGuide wire torque device
US6368348B1 (en)2000-05-152002-04-09Shlomo GabbayAnnuloplasty prosthesis for supporting an annulus of a heart valve
US20030171760A1 (en)2000-05-192003-09-11Gambale Richard ATissue capturing and suturing device and method
US20080288062A1 (en)2000-05-252008-11-20Bioring SaDevice for shrinking or reinforcing the valvular orifices of the heart
US6406493B1 (en)2000-06-022002-06-18Hosheng TuExpandable annuloplasty ring and methods of use
US6805711B2 (en)2000-06-022004-10-193F Therapeutics, Inc.Expandable medical implant and percutaneous delivery
US7632303B1 (en)2000-06-072009-12-15Advanced Cardiovascular Systems, Inc.Variable stiffness medical devices
US6702826B2 (en)2000-06-232004-03-09Viacor, Inc.Automated annular plication for mitral valve repair
US20060149280A1 (en)2000-06-272006-07-06Fraser HarvieSurgical procedures and instruments
US6730121B2 (en)2000-07-062004-05-04MedtentiaAnnuloplasty devices and related heart valve repair methods
US6964684B2 (en)2000-07-062005-11-15MedtentiaAnnuloplasty devices and related heart valve repair methods
US6419696B1 (en)2000-07-062002-07-16Paul A. SpenceAnnuloplasty devices and related heart valve repair methods
US6613078B1 (en)2000-08-022003-09-02Hector Daniel BaroneMulti-component endoluminal graft assembly, use thereof and method of implanting
US7011669B2 (en)2000-08-112006-03-14Edwards Lifesciences CorporationDevice and method for treatment of atrioventricular regurgitation
US6524338B1 (en)2000-08-252003-02-25Steven R. GundryMethod and apparatus for stapling an annuloplasty band in-situ
US6554845B1 (en)2000-09-152003-04-29PARÉ Surgical, Inc.Suturing apparatus and method
US20050010287A1 (en)2000-09-202005-01-13Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US6893459B1 (en)2000-09-202005-05-17Ample Medical, Inc.Heart valve annulus device and method of using same
US20040260393A1 (en)2000-09-202004-12-23Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20050216079A1 (en)2000-09-202005-09-29Ample Medical, Inc.Heart valve annulus device and method of using same
US20080065204A1 (en)2000-09-202008-03-13Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050171601A1 (en)2000-10-052005-08-04Cosgrove Delos M.Minimally-invasive annuloplasty repair segment delivery system
US6602288B1 (en)2000-10-052003-08-05Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en)2000-10-062004-04-20Myocor, Inc.Methods and devices for improving mitral valve function
US6926730B1 (en)2000-10-102005-08-09Medtronic, Inc.Minimally invasive valve repair procedure and apparatus
US6918917B1 (en)2000-10-102005-07-19Medtronic, Inc.Minimally invasive annuloplasty procedure and apparatus
US20020082525A1 (en)2000-10-182002-06-27Oslund John C.Rapid exchange delivery catheter
US20060004443A1 (en)2000-10-232006-01-05Liddicoat John RAutomated annular plication for mitral valve repair
US6527780B1 (en)2000-10-312003-03-04Odyssey Medical, Inc.Medical implant insertion system
US7591826B2 (en)2000-12-282009-09-22Cardiac Dimensions, Inc.Device implantable in the coronary sinus to provide mitral valve therapy
US7947056B2 (en)2001-01-182011-05-24Boston Scientific Scimed, Inc.Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy
US20050096740A1 (en)2001-01-302005-05-05Edwards Lifesciences AgTransluminal mitral annuloplasty
US20020103532A1 (en)2001-01-302002-08-01Langberg Jonathan J.Transluminal mitral annuloplasty
US6790231B2 (en)2001-02-052004-09-14Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US20020151916A1 (en)2001-02-052002-10-17Junichi MuramatsuApparatus for ligating living tissues
US20020120292A1 (en)2001-02-282002-08-29Morgan Daniel E.Parabolic eyelet suture anchor
US6786924B2 (en)2001-03-152004-09-07Medtronic, Inc.Annuloplasty band and method
US20020133180A1 (en)2001-03-152002-09-19Ryan Timothy R.Annuloplasty band and method
US7186264B2 (en)2001-03-292007-03-06Viacor, Inc.Method and apparatus for improving mitral valve function
US6855126B2 (en)2001-04-022005-02-15David FlinchbaughConformable balloonless catheter
WO2002085250A2 (en)2001-04-192002-10-31Mathys Orthopädie GmbHBiologically-functionalised, metabolically-inductive implant surfaces
US20050125011A1 (en)2001-04-242005-06-09Spence Paul A.Tissue fastening systems and methods utilizing magnetic guidance
US20130131791A1 (en)2001-04-242013-05-23Mitralign, Inc.Catheter-based annuloplasty using ventricularly positioned catheter
US20060069429A1 (en)2001-04-242006-03-30Spence Paul ATissue fastening systems and methods utilizing magnetic guidance
US7037334B1 (en)2001-04-242006-05-02Mitralign, Inc.Method and apparatus for catheter-based annuloplasty using local plications
US20140188215A1 (en)2001-04-242014-07-03Mitralign, Inc.Method and apparatus for catheter-based annuloplasty using local plications
US6619291B2 (en)2001-04-242003-09-16Edwin J. HlavkaMethod and apparatus for catheter-based annuloplasty
US8202315B2 (en)2001-04-242012-06-19Mitralign, Inc.Catheter-based annuloplasty using ventricularly positioned catheter
US6682558B2 (en)2001-05-102004-01-273F Therapeutics, Inc.Delivery system for a stentless valve bioprosthesis
US20050131533A1 (en)2001-05-172005-06-16Ottavio AlfieriAnnuloplasty rings for repair of abnormal mitral valves
US7007798B2 (en)2001-05-172006-03-07Inion, Ltd.Storage for surgical fixation devices and arrangement for same
US6726717B2 (en)2001-05-172004-04-27Edwards Lifesciences CorporationAnnular prosthesis for mitral valve
US20020188301A1 (en)2001-06-112002-12-12Dallara Mark DouglasTissue anchor insertion system
US20020188350A1 (en)2001-06-112002-12-12Pietro ArruAnnuloplasty prosthesis and a method for its manufacture
US20030078653A1 (en)2001-06-152003-04-24Ivan VeselyTissue engineered mitral valve chordae and methods of making and using same
US20060041319A1 (en)2001-07-032006-02-23Reflux CorporationPerorally removeable anti-reflux valve implantation
US7780726B2 (en)2001-07-042010-08-24Medtronic, Inc.Assembly for placing a prosthetic valve in a duct in the body
US7150737B2 (en)2001-07-132006-12-19Sci/Med Life Systems, Inc.Methods and apparatuses for navigating the subarachnoid space
US6726716B2 (en)2001-08-242004-04-27Edwards Lifesciences CorporationSelf-molding annuloplasty ring
US6749630B2 (en)2001-08-282004-06-15Edwards Lifesciences CorporationTricuspid ring and template
US6908482B2 (en)2001-08-282005-06-21Edwards Lifesciences CorporationThree-dimensional annuloplasty ring and template
US7125421B2 (en)2001-08-312006-10-24Mitral Interventions, Inc.Method and apparatus for valve repair
US20060271175A1 (en)2001-09-072006-11-30Woolfson Steven BFixation band for affixing a prosthetic heart valve to tissue
US20030050693A1 (en)2001-09-102003-03-13Quijano Rodolfo C.Minimally invasive delivery system for annuloplasty rings
US20040138745A1 (en)2001-10-012004-07-15Ample Medical, Inc.Methods and devices for heart valve treatments
US8163013B2 (en)2001-10-012012-04-24Mvrx, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US7510575B2 (en)2001-10-112009-03-31Edwards Lifesciences CorporationImplantable prosthetic valve
US20030078465A1 (en)2001-10-162003-04-24Suresh PaiSystems for heart treatment
US20060020336A1 (en)2001-10-232006-01-26Liddicoat John RAutomated annular plication for mitral valve repair
US20050075727A1 (en)2001-10-292005-04-07Wheatley David JohnMitral valve prosthesis
US6805710B2 (en)2001-11-132004-10-19Edwards Lifesciences CorporationMitral valve annuloplasty ring for molding left ventricle geometry
US7329280B2 (en)2001-11-132008-02-12Edwards Lifesciences Corp.Methods of implanting a mitral valve annuloplasty ring to correct mitral regurgitation
US6960217B2 (en)2001-11-282005-11-01Aptus Endosystems, Inc.Endovascular aneurysm repair system
US20160361058A1 (en)2001-11-282016-12-15Medtronic Vascular, Inc.Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20110238088A1 (en)2001-11-282011-09-29Aptus Endosystems, Inc.Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20110276062A1 (en)2001-11-282011-11-10Aptus Endosystems, Inc.Devices, systems, and methods for prosthesis delivery and implantation, including the use of a fastener tool
US20060287661A1 (en)2001-11-282006-12-21Aptus Endosystems, Inc.Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20090099650A1 (en)2001-11-282009-04-16Lee BolducDevices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20060020326A9 (en)2001-11-282006-01-26Aptus Endosystems, Inc.Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20050177180A1 (en)2001-11-282005-08-11Aptus Endosystems, Inc.Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20100174358A1 (en)2001-12-032010-07-08Rabkin Dmitry JMulti-Segment Modular Stent And Methods For Manufacturing Stents
WO2003047467A1 (en)2001-12-042003-06-12Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template system
US6908478B2 (en)2001-12-052005-06-21Cardiac Dimensions, Inc.Anchor and pull mitral valve device and method
US7871433B2 (en)2001-12-082011-01-18Lattouf Omar MTreatments for a patient with congestive heart failure
US20040267358A1 (en)2001-12-112004-12-30Oyvind ReitanImplant for treating an insufficiency of a heart valve
US20030114901A1 (en)2001-12-192003-06-19Loeb Marvin P.Device for treatment of atrioventricular valve regurgitation
US7485142B2 (en)2001-12-212009-02-03Simcha MiloImplantation system for annuloplasty rings
US8123801B2 (en)2001-12-212012-02-28QuickRing Medical Technologies, Ltd.Implantation system for annuloplasty rings
US20030120340A1 (en)2001-12-262003-06-26Jan LiskaMitral and tricuspid valve repair
US8075616B2 (en)2001-12-282011-12-13Edwards Lifesciences AgApparatus for applying a compressive load on body tissue
US20040024451A1 (en)2002-01-022004-02-05Medtronic, Inc.Prosthetic heart valve system
US8070805B2 (en)2002-01-092011-12-06Edwards Lifesciences LlcDevices and methods for heart valve treatment
US20080195200A1 (en)2002-01-092008-08-14Myocor, Inc.Devices and methods for heart valve treatment
US7077862B2 (en)2002-01-092006-07-18Myocor, Inc.Devices and methods for heart valve treatment
US6764510B2 (en)2002-01-092004-07-20Myocor, Inc.Devices and methods for heart valve treatment
US7192443B2 (en)2002-01-112007-03-20Edwards Lifesciences AgDelayed memory device
US20040019377A1 (en)2002-01-142004-01-29Taylor Daniel C.Method and apparatus for reducing mitral regurgitation
US20030144657A1 (en)2002-01-282003-07-31Cardiac Pacemakers, Inc.Inner and outer telescoping catheter delivery system
US6976995B2 (en)2002-01-302005-12-20Cardiac Dimensions, Inc.Fixed length anchor and pull mitral valve device and method
US7311729B2 (en)2002-01-302007-12-25Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20110035000A1 (en)2002-01-302011-02-10Cardiac Dimensions, Inc.Tissue Shaping Device
US7364588B2 (en)2002-03-112008-04-29Cardiac Dimensions, Inc.Device, assembly and method for mitral valve repair
US6797001B2 (en)2002-03-112004-09-28Cardiac Dimensions, Inc.Device, assembly and method for mitral valve repair
US20070255397A1 (en)2002-03-182007-11-01Ryan Timothy RFlexible annuloplasty prosthesis and holder
US6719786B2 (en)2002-03-182004-04-13Medtronic, Inc.Flexible annuloplasty prosthesis and holder
US7118595B2 (en)2002-03-182006-10-10Medtronic, Inc.Flexible annuloplasty prosthesis and holder
US7220277B2 (en)2002-03-272007-05-22Sorin Biomedica Cardio S.P.A.Prosthesis for annuloplasty comprising a perforated element
US20030199974A1 (en)2002-04-182003-10-23Coalescent Surgical, Inc.Annuloplasty apparatus and methods
US20050065601A1 (en)2002-04-182005-03-24Coalescent Surgical, Inc.Annuloplasty apparatus and methods
US20110004298A1 (en)2002-04-182011-01-06Medtronic, Inc.Annuloplasty apparatus and methods
US7229452B2 (en)2002-04-222007-06-12Tyco Healthcare Group LpTack and tack applier
US20030204195A1 (en)2002-04-242003-10-30Michael KeaneDevice for inserting surgical implants
US6764810B2 (en)2002-04-252004-07-20Taiwan Semiconductor Manufacturing Co., LtdMethod for dual-damascene formation using a via plug
US20030204193A1 (en)2002-04-252003-10-30Stefan GabrielSuture anchor insertion tool
US7077850B2 (en)2002-05-012006-07-18Scimed Life Systems, Inc.Tissue fastening devices and related insertion tools and methods
US7758632B2 (en)2002-05-102010-07-20Cordis CorporationFrame based unidirectional flow prosthetic implant
US7101395B2 (en)2002-06-122006-09-05Mitral Interventions, Inc.Method and apparatus for tissue connection
US20170224489A1 (en)2002-06-132017-08-10Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US7883538B2 (en)2002-06-132011-02-08Guided Delivery Systems Inc.Methods and devices for termination
US8641727B2 (en)2002-06-132014-02-04Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US6986775B2 (en)2002-06-132006-01-17Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US20060025787A1 (en)2002-06-132006-02-02Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US20140194976A1 (en)2002-06-132014-07-10Guided Delivery Systems Inc.Devices and methods for heart valve repair
US20040243227A1 (en)2002-06-132004-12-02Guided Delivery Systems, Inc.Delivery devices and methods for heart valve repair
US20060241656A1 (en)2002-06-132006-10-26Starksen Niel FDelivery devices and methods for heart valve repair
US20060122633A1 (en)2002-06-132006-06-08John ToMethods and devices for termination
US7588582B2 (en)2002-06-132009-09-15Guided Delivery Systems Inc.Methods for remodeling cardiac tissue
US9226825B2 (en)2002-06-132016-01-05Guided Delivery Systems, Inc.Delivery devices and methods for heart valve repair
US7608103B2 (en)2002-07-082009-10-27Edwards Lifesciences CorporationMitral valve annuloplasty ring having a posterior bow
US6858039B2 (en)2002-07-082005-02-22Edwards Lifesciences CorporationMitral valve annuloplasty ring having a posterior bow
US7172625B2 (en)2002-07-162007-02-06Medtronic, Inc.Suturing rings for implantable heart valve prostheses
US6884250B2 (en)2002-07-222005-04-26Niti Medical Technologies Ltd.Intratubular anastomosis apparatus
US20040019359A1 (en)2002-07-242004-01-29Worley Seth J.Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US8292884B2 (en)2002-08-012012-10-23Levine Robert ACardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US7559936B2 (en)2002-08-132009-07-14The General Hospital CorporationCardiac devices and methods for percutaneous repair of atrioventricular valves
US20040148021A1 (en)2002-08-292004-07-29Cartledge Richard G.Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US20090125102A1 (en)2002-08-292009-05-14Mitralsolutions, Inc.Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US7175660B2 (en)2002-08-292007-02-13Mitralsolutions, Inc.Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
US7455690B2 (en)2002-08-292008-11-25Mitralsolutions, Inc.Methods for controlling the internal circumference of an anatomic orifice or lumen
US20080027483A1 (en)2002-08-292008-01-31Mitralsoluations, Inc.Implantable devices for controlling the size and shape of an anatomical structure or lumen
US20110257633A1 (en)2002-08-292011-10-20Cartledge Richard GMagnetic docking system and method for the long term adjustment of an implantable device
US20110009956A1 (en)2002-08-292011-01-13Cartledge Richard GMagnetic docking system and method for the long term adjustment of an implantable device
US7238191B2 (en)2002-09-042007-07-03Endoart S.A.Surgical ring featuring a reversible diameter remote control system
US20050055038A1 (en)2002-09-092005-03-10Brian KelleherDevice and method for endoluminal therapy
US20040059413A1 (en)2002-09-202004-03-25Claudio ArgentoSuture template for facilitating implantation of a prosthetic heart valve
US20070106328A1 (en)2002-09-262007-05-10Wardle John LRetrieval devices for anchored cardiovascular sensors
US20040127982A1 (en)2002-10-012004-07-01Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20060030885A1 (en)2002-10-152006-02-09Hyde Gregory MApparatuses and methods for heart valve repair
US7087064B1 (en)2002-10-152006-08-08Advanced Cardiovascular Systems, Inc.Apparatuses and methods for heart valve repair
US20050119734A1 (en)2002-10-212005-06-02Spence Paul A.Tissue fastening systems and methods utilizing magnetic guidance
US8460371B2 (en)2002-10-212013-06-11Mitralign, Inc.Method and apparatus for performing catheter-based annuloplasty using local plications
US20040181287A1 (en)2002-10-222004-09-16Scimed Life SystemsMale urethral stent device
US20040148019A1 (en)2002-11-122004-07-29Vidlund Robert M.Devices and methods for heart valve treatment
US20040148020A1 (en)2002-11-122004-07-29Vidlund Robert M.Devices and methods for heart valve treatment
US8187324B2 (en)2002-11-152012-05-29Advanced Cardiovascular Systems, Inc.Telescoping apparatus for delivering and adjusting a medical device in a vessel
US20080125861A1 (en)2002-11-152008-05-29Webler William EValve aptation assist device
US7226477B2 (en)2002-11-152007-06-05Advanced Cardiovascular Systems, Inc.Apparatuses and methods for heart valve repair
US7335213B1 (en)2002-11-152008-02-26Abbott Cardiovascular Systems Inc.Apparatus and methods for heart valve repair
US7927370B2 (en)2002-11-152011-04-19Advanced Cardiovascular Systems, Inc.Valve aptation assist device
US20050216039A1 (en)2002-11-152005-09-29Lederman Robert JMethod and device for catheter based repair of cardiac valves
US8070804B2 (en)2002-11-152011-12-06Abbott Cardiovascular Systems Inc.Apparatus and methods for heart valve repair
US7404824B1 (en)2002-11-152008-07-29Advanced Cardiovascular Systems, Inc.Valve aptation assist device
US7485143B2 (en)2002-11-152009-02-03Abbott Cardiovascular Systems Inc.Apparatuses and methods for heart valve repair
US20040133274A1 (en)2002-11-152004-07-08Webler William E.Cord locking mechanism for use in small systems
US20100324598A1 (en)2002-11-262010-12-23Abbott LaboratoriesMulti element biased suture clip
US20060161265A1 (en)2002-12-022006-07-20Levine Andy HBariatric sleeve
US20040111095A1 (en)2002-12-052004-06-10Cardiac Dimensions, Inc.Medical device delivery system
US20040122514A1 (en)2002-12-202004-06-24Fogarty Thomas J.Biologically implantable prosthesis and methods of using the same
US7316710B1 (en)2002-12-302008-01-08Advanced Cardiovascular Systems, Inc.Flexible stent
US20040133374A1 (en)2003-01-072004-07-08Guide Technology, Inc.System for providing a calibrated path for multi-signal cables in testing of integrated circuits
US7314485B2 (en)2003-02-032008-01-01Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US20040193191A1 (en)2003-02-062004-09-30Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US20040176788A1 (en)2003-03-072004-09-09Nmt Medical, Inc.Vacuum attachment system
US7993368B2 (en)2003-03-132011-08-09C.R. Bard, Inc.Suture clips, delivery devices and methods
US20040186566A1 (en)2003-03-182004-09-23Hindrichs Paul J.Body tissue remodeling methods and apparatus
US20050107871A1 (en)2003-03-302005-05-19Fidel RealyvasquezApparatus and methods for valve repair
US20100234935A1 (en)2003-04-022010-09-16Boston Scientific Scimed, Inc.Detachable And Retrievable Stent Assembly
US7530995B2 (en)2003-04-172009-05-123F Therapeutics, Inc.Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7159593B2 (en)2003-04-172007-01-093F Therapeutics, Inc.Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7686822B2 (en)2003-05-132010-03-30Vafa ShayaniHernia repair method
US20050267478A1 (en)2003-06-132005-12-01Corradi Ralph RSurgical fastener with predetermined resorption rate
US20060241622A1 (en)2003-06-132006-10-26Zergiebel Earl MMultiple member interconnect for surgical instrument and absorbable screw fastener
US20090062866A1 (en)2003-06-182009-03-05Jackson Roger PPolyaxial bone anchor with helical capture connection, insert and dual locking assembly
US20060282161A1 (en)2003-06-202006-12-14Medtronic Vascular, Inc.Valve annulus reduction system
US20040260317A1 (en)2003-06-202004-12-23Elliot BloomTensioning device, system, and method for treating mitral valve regurgitation
US20040260394A1 (en)2003-06-202004-12-23Medtronic Vascular, Inc.Cardiac valve annulus compressor system
US20060184240A1 (en)2003-06-252006-08-17Georgia Tech Research CorporationAnnuloplasty chain
US20050004668A1 (en)2003-07-022005-01-06Flexcor, Inc.Annuloplasty rings and methods for repairing cardiac valves
US20050016560A1 (en)2003-07-212005-01-27Dee VoughlohnUnique hair-styling system and method
US8747463B2 (en)2003-08-222014-06-10Medtronic, Inc.Methods of using a prosthesis fixturing device
US20050049692A1 (en)2003-09-022005-03-03Numamoto Michael J.Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US8343173B2 (en)2003-09-042013-01-01Guided Delivery Systems Inc.Delivery devices and methods for heart valve repair
US7753924B2 (en)2003-09-042010-07-13Guided Delivery Systems, Inc.Delivery devices and methods for heart valve repair
US20050055087A1 (en)2003-09-042005-03-10Guided Delivery Systems, Inc.Devices and methods for cardiac annulus stabilization and treatment
US20100130992A1 (en)2003-10-012010-05-27Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US7101396B2 (en)2003-10-062006-09-053F Therapeutics, Inc.Minimally invasive valve replacement system
US7226647B2 (en)2003-10-162007-06-05Hewlett-Packard Development Company, L.P.Permanent fixation of dyes to surface-modified inorganic particulate-coated media
US20050085903A1 (en)2003-10-172005-04-21Jan LauHeart valve leaflet locator
US7004176B2 (en)2003-10-172006-02-28Edwards Lifesciences AgHeart valve leaflet locator
US20060184242A1 (en)2003-10-202006-08-17Samuel LichtensteinMethod and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve
US20070255400A1 (en)2003-10-232007-11-01Parravicini Roberto EProsthetic Valve Apparatus, In Particular for Cardiac Applications
US20050090834A1 (en)2003-10-232005-04-28Aptus Endosystems, Inc.Prosthesis delivery systems and methods
US20050090827A1 (en)2003-10-282005-04-28Tewodros GedebouComprehensive tissue attachment system
US20050125002A1 (en)2003-10-312005-06-09George BaranSystem and method for manipulating a catheter for delivering a substance to a body cavity
US20060247763A1 (en)2003-11-122006-11-02Medtronic Vascular, Inc.Coronary sinus approach for repair of mitral valve regurgitation
US20070051377A1 (en)2003-11-122007-03-08Medtronic Vascular, Inc.Cardiac valve annulus reduction system
US20070027536A1 (en)2003-12-042007-02-01Tomislav MihaljevicAortic Valve Annuloplasty Rings
US20050177228A1 (en)2003-12-162005-08-11Solem Jan O.Device for changing the shape of the mitral annulus
US20050273138A1 (en)2003-12-192005-12-08Guided Delivery Systems, Inc.Devices and methods for anchoring tissue
US20050137686A1 (en)2003-12-232005-06-23Sadra Medical, A Delaware CorporationExternally expandable heart valve anchor and method
US20080091257A1 (en)2003-12-232008-04-17Xtent, Inc.Devices and methods for controlling and indicating the length of an interventional element
US7329279B2 (en)2003-12-232008-02-12Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US9005273B2 (en)2003-12-232015-04-14Sadra Medical, Inc.Assessing the location and performance of replacement heart valves
US7748389B2 (en)2003-12-232010-07-06Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US7166127B2 (en)2003-12-232007-01-23Mitralign, Inc.Tissue fastening systems and methods utilizing magnetic guidance
US20050137688A1 (en)2003-12-232005-06-23Sadra Medical, A Delaware CorporationRepositionable heart valve and method
US20050137695A1 (en)2003-12-232005-06-23Sadra MedicalReplacement valve and anchor
US8864822B2 (en)2003-12-232014-10-21Mitralign, Inc.Devices and methods for introducing elements into tissue
US20090054969A1 (en)2003-12-232009-02-26Amr SalahiehRepositionable Heart Valve and Method
US8142493B2 (en)2003-12-232012-03-27Mitralign, Inc.Method of heart valve repair
US20070080188A1 (en)2003-12-232007-04-12Mitralign, Inc.Tissue fastening systems and methods
US8343213B2 (en)2003-12-232013-01-01Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US20080027555A1 (en)2004-01-022008-01-31Zimmer, Inc.Multipart component for an orthopaedic implant
US20050159728A1 (en)2004-01-152005-07-21Thomas Medical Products, Inc.Steerable sheath
US20050187568A1 (en)2004-02-202005-08-25Klenk Alan R.Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US8206439B2 (en)2004-02-232012-06-26International Heart Institute Of Montana FoundationInternal prosthesis for reconstruction of cardiac geometry
US20050203549A1 (en)2004-03-092005-09-15Fidel RealyvasquezMethods and apparatus for off pump aortic valve replacement with a valve prosthesis
US20050203606A1 (en)2004-03-092005-09-15Vancamp Daniel H.Stent system for preventing restenosis
US8979922B2 (en)2004-03-112015-03-17Percutaneous Cardiovascular Solutions Pty LimitedPercutaneous heart valve prosthesis
US7942927B2 (en)2004-03-152011-05-17Baker Medical Research InstituteTreating valve failure
US20080281411A1 (en)2004-03-262008-11-13Eric BerreklouwAssembly Comprising A Ring For Attachment In A Passage Surrounded By Body Tissue As Well As An Applicator For Fitting The Ring In The Passage
US7993397B2 (en)2004-04-052011-08-09Edwards Lifesciences AgRemotely adjustable coronary sinus implant
US20110257433A1 (en)2004-04-072011-10-20The University Of YorkLiquids
US7294148B2 (en)2004-04-292007-11-13Edwards Lifesciences CorporationAnnuloplasty ring for mitral valve prolapse
US8012201B2 (en)2004-05-052011-09-06Direct Flow Medical, Inc.Translumenally implantable heart valve with multiple chamber formed in place support
US20060020333A1 (en)2004-05-052006-01-26Lashinski Randall TMethod of in situ formation of translumenally deployable heart valve support
US20060020327A1 (en)2004-05-052006-01-26Lashinski Randall TNonstented heart valves with formed in situ support
US7390329B2 (en)2004-05-072008-06-24Usgi Medical, Inc.Methods for grasping and cinching tissue anchors
US20110029066A1 (en)2004-05-102011-02-03Ran GiladStent valve and method of using same
US20050256532A1 (en)2004-05-122005-11-17Asha NayakCardiovascular defect patch device and method
US20090326648A1 (en)2004-05-142009-12-31Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system
US7452376B2 (en)2004-05-142008-11-18St. Jude Medical, Inc.Flexible, non-planar annuloplasty rings
US7510577B2 (en)2004-06-292009-03-31Micardia CorporationAdjustable cardiac valve implant with ferromagnetic material
US7361190B2 (en)2004-06-292008-04-22Micardia CorporationAdjustable cardiac valve implant with coupling mechanism
US20050288778A1 (en)2004-06-292005-12-29Emanuel ShaoulianSelectively adjustable cardiac valve implants
US7377941B2 (en)2004-06-292008-05-27Micardia CorporationAdjustable cardiac valve implant with selective dimensional adjustment
US20060004442A1 (en)2004-06-302006-01-05Benjamin SpenserParavalvular leak detection, sealing, and prevention
US20060025858A1 (en)2004-07-272006-02-02Alameddine Abdallah KMitral valve ring for treatment of mitral valve regurgitation
US20100106141A1 (en)2004-08-052010-04-29Osypka Thomas PCatheter Control Mechanism and Steerable Catheter
US20070001627A1 (en)2004-08-202007-01-04O2Micro Inc.Protection for external electrode fluorescent lamp system
US8460370B2 (en)2004-09-142013-06-11Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US7704277B2 (en)2004-09-142010-04-27Edwards Lifesciences AgDevice and method for treatment of heart valve regurgitation
US20130268069A1 (en)2004-09-142013-10-10Edwards Lifesciences AgDevice and method for reducing mitral valve regurgitation
US7635329B2 (en)2004-09-272009-12-22Evalve, Inc.Methods and devices for tissue grasping and assessment
US20060085012A1 (en)2004-09-282006-04-20Medtronic Vascular, Inc.Torquing device delivered over a guidewire to rotate a medical fastener
US20060106423A1 (en)2004-09-282006-05-18Thomas WeiselSuture anchor
US20070083168A1 (en)2004-09-302007-04-12Whiting James STransmembrane access systems and methods
US20090043381A1 (en)2004-10-052009-02-12Macoviak John AAtrioventricular valve annulus repair systems and methods including retro-chordal anchors
US20060095009A1 (en)2004-10-292006-05-04Lampropoulos Fred PSelf-suturing anchor device for a catheter
US8328868B2 (en)2004-11-052012-12-11Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US20070112359A1 (en)2004-12-072007-05-17Olympus CorporationEndo-therapy product system and cartridge including treatment device
US20090076600A1 (en)2004-12-152009-03-19Mednua LimitedMedical device suitable for use in treatment of a valve
US20060129166A1 (en)2004-12-152006-06-15Vance Products Incorporated, D/B/A Cook Urological IncorporatedRadiopaque manipulation devices
US20060142694A1 (en)2004-12-282006-06-29Bednarek Michael CBi-directional steerable catheter control handle
US8679174B2 (en)2005-01-202014-03-25JenaValve Technology, GmbHCatheter for the transvascular implantation of prosthetic heart valves
US20090177266A1 (en)2005-02-072009-07-09Powell Ferolyn TMethods, systems and devices for cardiac valve repair
US7992567B2 (en)2005-02-082011-08-09Koninklijke Philips Electronics N.V.System and method for percutaneous glossoplasty
US20080208265A1 (en)2005-02-082008-08-28Andrew FrazierSystem and method for percutaneous palate remodeling
US20060195134A1 (en)2005-02-282006-08-31Medtronic Vascular, Inc.Device, system, and method for aiding valve annuloplasty
US20060206203A1 (en)2005-03-102006-09-14Jun YangValvular support prosthesis
US9526613B2 (en)2005-03-172016-12-27Valtech Cardio Ltd.Mitral valve treatment techniques
US8608797B2 (en)2005-03-172013-12-17Valtech Cardio Ltd.Mitral valve treatment techniques
US20120271198A1 (en)2005-03-242012-10-25Windcrest LlcVascular guidewire control apparatus
US8265758B2 (en)2005-03-242012-09-11Metacure LimitedWireless leads for gastrointestinal tract applications
US20060241748A1 (en)2005-03-252006-10-26Lee Leonard YMethods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20070016287A1 (en)2005-03-252007-01-18Cartledge Richard GMethods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US7722666B2 (en)2005-04-152010-05-25Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20060259135A1 (en)2005-04-202006-11-16The Cleveland Clinic FoundationApparatus and method for replacing a cardiac valve
US8333777B2 (en)2005-04-222012-12-18Benvenue Medical, Inc.Catheter-based tissue remodeling devices and methods
US20060276871A1 (en)2005-05-202006-12-07Exploramed Nc2, Inc.Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US7500989B2 (en)2005-06-032009-03-10Edwards Lifesciences Corp.Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US20060287716A1 (en)2005-06-082006-12-21The Cleveland Clinic FoundationArtificial chordae
US20070010800A1 (en)2005-06-222007-01-11Barry WeitznerMedical device control system
US20140243859A1 (en)2005-07-052014-08-28Mitralign, Inc.Tissue Anchor and Anchoring System
US8951286B2 (en)2005-07-052015-02-10Mitralign, Inc.Tissue anchor and anchoring system
US8951285B2 (en)2005-07-052015-02-10Mitralign, Inc.Tissue anchor, anchoring system and methods of using the same
US20070162111A1 (en)2005-07-062007-07-12The Cleveland Clinic FoundationApparatus and method for replacing a cardiac valve
US20070016288A1 (en)2005-07-132007-01-18Gurskis Donnell WTwo-piece percutaneous prosthetic heart valves and methods for making and using them
US20090171439A1 (en)2005-07-142009-07-02Thomas NisslTemporary Stent
US7927371B2 (en)2005-07-152011-04-19The Cleveland Clinic FoundationApparatus and method for reducing cardiac valve regurgitation
US20070038296A1 (en)2005-07-152007-02-15Cleveland ClinicApparatus and method for remodeling a cardiac valve annulus
US20070021781A1 (en)2005-07-222007-01-25Jervis James EWedge Operated Retainer Device And Methods
US20070027533A1 (en)2005-07-282007-02-01Medtronic Vascular, Inc.Cardiac valve annulus restraining device
US20070055206A1 (en)2005-08-102007-03-08Guided Delivery Systems, Inc.Methods and devices for deployment of tissue anchors
US20070039425A1 (en)2005-08-162007-02-22Wang Chun FScrewdriver with torque setting mechanism
US20070049942A1 (en)2005-08-302007-03-01Hindrichs Paul JSoft body tissue remodeling methods and apparatus
US20070066863A1 (en)2005-08-312007-03-22Medtronic Vascular, Inc.Device for treating mitral valve regurgitation
US20070078297A1 (en)2005-08-312007-04-05Medtronic Vascular, Inc.Device for Treating Mitral Valve Regurgitation
US20070049970A1 (en)2005-09-012007-03-01Ovalis Inc.Suture-based systems and methods for treating septal defects
US20090076586A1 (en)2005-09-092009-03-19Edwards Lifesciences CorporationDevice and Method for ReShaping Mitral Valve Annulus
US20070061010A1 (en)2005-09-092007-03-15Hauser David LDevice and method for reshaping mitral valve annulus
US8052592B2 (en)2005-09-272011-11-08Evalve, Inc.Methods and devices for tissue grasping and assessment
US20110004210A1 (en)2005-09-302011-01-06Johnson Kristin DFlexible Endoscopic Catheter with Ligasure
US20100152845A1 (en)2005-10-112010-06-17Medtronic Vascular, Inc.Annuloplasty Device Having Shape-Adjusting Tension Filaments
US8216302B2 (en)2005-10-262012-07-10Cardiosolutions, Inc.Implant delivery and deployment system and method
US20080288044A1 (en)2005-10-312008-11-20Osborne Thomas AComposite Stent Graft
US20070100427A1 (en)2005-11-022007-05-03Eric PerouseDevice for treating a blood vessel and associated treatment kit
US8062355B2 (en)2005-11-042011-11-22Jenavalve Technology, Inc.Self-expandable medical instrument for treating defects in a patient's heart
US7883475B2 (en)2005-11-082011-02-08Trustees Of Boston UniversityManipulators employing multiple deformable elongate members
US8287584B2 (en)2005-11-142012-10-16Sadra Medical, Inc.Medical implant deployment tool
US20070112422A1 (en)2005-11-162007-05-17Mark DehdashtianTransapical heart valve delivery system and method
US20070118215A1 (en)2005-11-162007-05-24Micardia CorporationMagnetic engagement of catheter to implantable device
US20070118151A1 (en)2005-11-212007-05-24The Brigham And Women's Hospital, Inc.Percutaneous cardiac valve repair with adjustable artificial chordae
US20070118213A1 (en)2005-11-232007-05-24Didier LoulmetMethods, devices, and kits for treating mitral valve prolapse
US20070118154A1 (en)2005-11-232007-05-24Crabtree Traves DMethods and apparatus for atrioventricular valve repair
US20070198082A1 (en)2005-12-152007-08-23The Cleveland Clinic FoundationApparatus and method for treating a regurgitant valve
US9125742B2 (en)2005-12-152015-09-08Georgia Tech Research FoundationPapillary muscle position control devices, systems, and methods
US20070142907A1 (en)2005-12-162007-06-21Micardia CorporationAdjustable prosthetic valve implant
US8034103B2 (en)2005-12-282011-10-11Sorin Biomedica Cardio S.R.L.Annuloplasty prosthesis with an auxetic structure
US8685086B2 (en)2006-02-182014-04-01The Cleveland Clinic FoundationApparatus and method for replacing a diseased cardiac valve
US7635386B1 (en)2006-03-072009-12-22University Of Maryland, BaltimoreMethods and devices for performing cardiac valve repair
US7431692B2 (en)2006-03-092008-10-07Edwards Lifesciences CorporationApparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US7871368B2 (en)2006-03-092011-01-18Edwards Lifesciences CorporationApparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20070219558A1 (en)2006-03-152007-09-20Allen DeutschMethod and apparatus for arthroscopic surgery using suture anchors
US20090287231A1 (en)2006-03-282009-11-19Spatz-Fgia, Inc.Floating gastrointestinal anchor
US20090254103A1 (en)2006-03-292009-10-08Deutsch Harvey LMethod and device for cavity obliteration
US7625403B2 (en)2006-04-042009-12-01Medtronic Vascular, Inc.Valved conduit designed for subsequent catheter delivered valve therapy
US20070239208A1 (en)2006-04-052007-10-11Crawford Bruce SSurgical implantation device and method
US7699892B2 (en)2006-04-122010-04-20Medtronic Vascular, Inc.Minimally invasive procedure for implanting an annuloplasty device
US20070270755A1 (en)2006-04-212007-11-22Abbott LaboratoriesGuidewire handling device
US7442207B2 (en)2006-04-212008-10-28Medtronic Vascular, Inc.Device, system, and method for treating cardiac valve regurgitation
US8551161B2 (en)2006-04-252013-10-08Medtronic Vascular, Inc.Cardiac valve annulus restraining device
US20080097483A1 (en)2006-05-022008-04-24Ethicon Endo-Surgery, Inc.Suture management
US20070282375A1 (en)2006-05-032007-12-06St. Jude Medical, Inc.Soft body tissue remodeling methods and apparatus
US8142495B2 (en)2006-05-152012-03-27Edwards Lifesciences AgSystem and a method for altering the geometry of the heart
US8591576B2 (en)2006-05-152013-11-26Edwards Lifesciences AgMethod for altering the geometry of the heart
US8734699B2 (en)2006-05-162014-05-27St. Jude Medical, Atrial Fibrillation Division, Inc.Steerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US20080091169A1 (en)2006-05-162008-04-17Wayne HeidemanSteerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US20070299424A1 (en)2006-05-162007-12-27Sarah CummingSteerable catheter using flat pull wires and method of making same
US20070270679A1 (en)2006-05-172007-11-22Duy NguyenDeflectable variable radius catheters
US20080234729A1 (en)2006-05-182008-09-25Page Edward CSuture lock fastening device
US8932348B2 (en)2006-05-182015-01-13Edwards Lifesciences CorporationDevice and method for improving heart valve function
US20070276437A1 (en)2006-05-252007-11-29Mitralign, Inc.Lockers for surgical tensioning members and methods of using the same to secure surgical tensioning members
US20070282429A1 (en)2006-06-012007-12-06Hauser David LProsthetic insert for improving heart valve function
US20120191182A1 (en)2006-06-012012-07-26Edwards Lifesciences CorporationProsthetic insert for treating a mitral valve
US20090177274A1 (en)2006-06-072009-07-09Marcio ScorsinDevice for replacing the chordae tendineae of an atrioventricular valve
US20080058595A1 (en)2006-06-142008-03-06Snoke Phillip JMedical device introduction systems and methods
US20080035160A1 (en)2006-06-212008-02-14Woodson Beverly TSystem and method for temporary tongue suspension
US20070295172A1 (en)2006-06-232007-12-27Darian SwartzFastener Holding Device
US20080004697A1 (en)2006-06-282008-01-03Samuel Victor LichtensteinMethod for anchoring a mitral valve
US7955315B2 (en)2006-07-242011-06-07Ethicon, Inc.Articulating laparoscopic device and method for delivery of medical fluid
WO2008014144A2 (en)2006-07-242008-01-31Ethicon, Inc.Articulating laparoscopic device and method for delivery of medical fluid
US8430926B2 (en)2006-08-112013-04-30Japd Consulting Inc.Annuloplasty with enhanced anchoring to the annulus based on tissue healing
US20080039935A1 (en)2006-08-142008-02-14Wally BuchMethods and apparatus for mitral valve repair
WO2008031103A2 (en)2006-09-082008-03-13Edwards Lifesciences CorporationIntegrated heart valve delivery system
US20080065011A1 (en)2006-09-082008-03-13Philippe MarchandIntegrated heart valve delivery system
US20080071366A1 (en)2006-09-192008-03-20Yosi TuvalAxial-force fixation member for valve
US20080086138A1 (en)2006-10-062008-04-10Arthrotek, Inc.Rotational securing of a suture
US20080086203A1 (en)2006-10-062008-04-10Roberts Harold GMitral and tricuspid annuloplasty rings
US8388680B2 (en)2006-10-182013-03-05Guided Delivery Systems, Inc.Methods and devices for catheter advancement and delivery of substances therethrough
US20080103572A1 (en)2006-10-312008-05-01Medtronic, Inc.Implantable medical lead with threaded fixation
US20160361169A1 (en)2006-12-052016-12-15Valtech Cardio, Ltd.Implantation of repair devices in the heart
US20150081014A1 (en)2006-12-052015-03-19Valtech Cardio, Ltd.Implant and anchor placement
US20160361168A1 (en)2006-12-052016-12-15Valtech Cardio, Ltd.Implantation of repair devices in the heart
US20170000609A1 (en)2006-12-052017-01-05Valtech Cardio, Ltd.Implantation of repair devices in the heart
US20080262609A1 (en)2006-12-052008-10-23Valtech Cardio, Ltd.Segmented ring placement
US8628569B2 (en)2006-12-222014-01-14Edwards Lifesciences CorporationImplantable prosthetic valve assembly and method for making the same
US9326857B2 (en)2007-01-032016-05-03St. Jude Medical, Cardiology Division, Inc.Implantable devices for controlling the size and shape of an anatomical structure or lumen
US20110066231A1 (en)2007-01-032011-03-17Cartledge Richard GImplantable devices for controlling the size and shape of an anatomical structure or lumen
US20080167713A1 (en)2007-01-082008-07-10Bolling Steven FReconfiguring Heart Features
US20100249920A1 (en)2007-01-082010-09-30Millipede LlcReconfiguring heart features
US20080195126A1 (en)2007-02-142008-08-14Jan Otto SolemSuture and method for repairing a heart
US20080262480A1 (en)2007-02-152008-10-23Stahler Gregory JInstrument assembly for robotic instrument system
US20080221672A1 (en)2007-02-232008-09-11Endovalve, Inc.Mitral Valve System
US20080275469A1 (en)2007-03-052008-11-06Fanton Gary STack anchor systems, bone anchor systems, and methods of use
US20080228265A1 (en)2007-03-132008-09-18Mitralign, Inc.Tissue anchors, systems and methods, and devices
US8845723B2 (en)2007-03-132014-09-30Mitralign, Inc.Systems and methods for introducing elements into tissue
US20150051697A1 (en)2007-03-132015-02-19Mitralign, Inc.Systems and methods for introducing elements into tissue
US8911461B2 (en)2007-03-132014-12-16Mitralign, Inc.Suture cutter and method of cutting suture
US20140094906A1 (en)2007-03-132014-04-03Mitralign, Inc.Tissue anchors, systems and methods, and devices
US20100305475A1 (en)2007-04-232010-12-02Hinchliffe Peter W JGuidewire with adjustable stiffness
US20080275300A1 (en)2007-04-272008-11-06Voyage Medical, Inc.Complex shape steerable tissue visualization and manipulation catheter
US20080275551A1 (en)2007-05-012008-11-06Edwards Lifesciences CorporationInwardly-bowed tricuspid annuloplasty ring
US20080281353A1 (en)2007-05-102008-11-13Ernest AranyiPowered tacker instrument
US20080287862A1 (en)2007-05-182008-11-20Boston Scientific Scimed, Inc.Drive systems and methods of use
US20080300629A1 (en)2007-05-312008-12-04Wilson-Cook Medical Inc.Suture lock
US20080300537A1 (en)2007-06-032008-12-04David Allen BowmanMethod and system for steering a catheter end in multiple planes
US8795355B2 (en)2007-06-262014-08-05St. Jude Medical, Inc.Apparatus and method for implanting collapsible/expandable prosthetic heart valves
US20090024110A1 (en)2007-07-182009-01-22Wayne HeidemanCatheter and introducer catheter having torque transfer layer and method of manufacture
US20090028670A1 (en)2007-07-262009-01-29Sri InternationalSelectively rigidizable and actively steerable articulatable device
US20130166017A1 (en)2007-07-312013-06-27Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US20090093877A1 (en)2007-09-072009-04-09Yaron KeidarActive holder for annuloplasty ring delivery
US8784481B2 (en)2007-09-282014-07-22St. Jude Medical, Inc.Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US8961595B2 (en)2007-09-282015-02-24St. Jude Medical, Inc.Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US20090088837A1 (en)2007-09-282009-04-02The Cleveland Clinic FoundationProsthetic chordae assembly and method of use
US8454686B2 (en)2007-09-282013-06-04St. Jude Medical, Inc.Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US8870949B2 (en)2007-10-152014-10-28Edwards Lifesciences CorporationTranscatheter heart valve with micro-anchors
US9125632B2 (en)2007-10-192015-09-08Guided Delivery Systems, Inc.Systems and methods for cardiac remodeling
US20130304093A1 (en)2007-10-192013-11-14Guided Delivery Systems Inc.Devices and methods for termination
US20090105816A1 (en)2007-10-192009-04-23Olsen Daniel HSystem using a helical retainer in the direct plication annuloplasty treatment of mitral valve regurgitation
US20090166913A1 (en)2007-12-302009-07-02Xiaoping GuoCatheter Shaft and Method of its Manufacture
US8349002B2 (en)2008-01-162013-01-08QuickRing Medical Technologies, Ltd.Adjustable annuloplasty rings
US7955377B2 (en)2008-01-222011-06-07Cook Medical Technologies LlcValve frame
US8790367B2 (en)2008-02-062014-07-29Guided Delivery Systems Inc.Multi-window guide tunnel
US20090222083A1 (en)2008-02-062009-09-03Guided Delivery Systems Inc.Multi-window guide tunnel
US20140303649A1 (en)2008-02-062014-10-09Guided Delivery Systems Inc.Multi-window guide tunnel
US20100094248A1 (en)2008-02-062010-04-15Guided Delivery Systems Inc.Multi-window guide tunnel
US20140303720A1 (en)2008-02-262014-10-09Mitralign, Inc.Tissue plication devices and methods for their use
US8728097B1 (en)2008-02-262014-05-20Mitralign, Inc.Tissue plication devices and methods for their use
US20100076499A1 (en)2008-03-032010-03-25Alaska Hand Research, LlcCannulated anchor and system
US8382829B1 (en)2008-03-102013-02-26Mitralign, Inc.Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20130190863A1 (en)2008-03-102013-07-25Mitralign, Inc.Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20090248148A1 (en)2008-03-252009-10-01Ellipse Technologies, Inc.Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US8480732B2 (en)2008-04-162013-07-09Heart Repair Technologies, Inc.Transvalvular intraannular band for valve repair
US20100121435A1 (en)2008-04-162010-05-13Cardiovascular Technologies, LlcPercutaneous transvalvular intrannular band for mitral valve repair
US8262725B2 (en)2008-04-162012-09-11Cardiovascular Technologies, LlcTransvalvular intraannular band for valve repair
US20130090724A1 (en)2008-04-162013-04-11Cardiovascular Technologies, LlcTransvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100121437A1 (en)2008-04-162010-05-13Cardiovascular Technologies, LlcTransvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100030328A1 (en)2008-04-182010-02-04Medtronic, Inc.Apparatus for Treating a Heart Valve, in Particular a Mitral Valve
WO2009130631A2 (en)2008-04-212009-10-29Simcha MiloSurgical stapling systems
EP2273928A2 (en)2008-04-212011-01-19Simcha MiloSurgical stapling systems
US8475491B2 (en)2008-04-212013-07-02QuickRing Medical Technologies, Ltd.Surgical stapling systems
US20130096673A1 (en)2008-04-232013-04-18Medtronic, Inc.Prosthetic Heart Valve Devices And Methods Of Valve Replacement
US8152844B2 (en)2008-05-092012-04-10Edwards Lifesciences CorporationQuick-release annuloplasty ring holder
US20110071626A1 (en)2008-05-122011-03-24Wright John T MDevice and Method for the Surgical Treatment of Ischemic Mitral Regurgitation
US20090287304A1 (en)2008-05-132009-11-19Kardium Inc.Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US20110118832A1 (en)2008-05-222011-05-19Prakash PunjabiAnnuloplasty Device
US20090299409A1 (en)2008-05-302009-12-03Ethicon Endo-Surgery, Inc.Endoscopic suturing tension controlling and indication devices
US9192472B2 (en)2008-06-162015-11-24Valtec Cardio, Ltd.Annuloplasty devices and methods of delivery therefor
US20100001038A1 (en)2008-07-022010-01-07Shalom LevinPivoting tacker
WO2010000454A1 (en)2008-07-042010-01-07Corus Uk LimitedMethod for coating a steel substrate, and coated steel substrate
US20100010538A1 (en)2008-07-112010-01-14Maquet Cardiovascular LlcReshaping the mitral valve of a heart
US8419825B2 (en)2008-07-172013-04-16Siemens Vai Metals Technologies GmbhMethod and system for energy-optimized and CO2 emission-optimized iron production
US8852261B2 (en)2008-07-212014-10-07Jenesis Surgical, LlcRepositionable endoluminal support structure and its applications
US20140163690A1 (en)2008-07-212014-06-12Jenesis Surgical, LlcRepositionable endoluminal support structure and its applications
US20100023118A1 (en)2008-07-242010-01-28Edwards Lifesciences CorporationMethod and apparatus for repairing or replacing chordae tendinae
US20110202130A1 (en)2008-07-292011-08-18St. Jude Medical Cardiology Divison Inc.Method and system for long term adjustment of an implantable device
US20100030014A1 (en)2008-07-302010-02-04Cube S.R.L.Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US20100042147A1 (en)2008-08-142010-02-18Edwards Lifesciences CorporationMethod and apparatus for repairing or replacing chordae tendinae
US20140163670A1 (en)2008-08-222014-06-12Edwards Lifesciences CorporationProsthetic heart valve delivery system and method
US8652202B2 (en)2008-08-222014-02-18Edwards Lifesciences CorporationProsthetic heart valve and delivery apparatus
US20100063542A1 (en)2008-09-082010-03-11Van Der Burg ErikKnotless suture anchor for soft tissue repair and method of use
US20100063550A1 (en)2008-09-112010-03-11Innovasis, Inc,Radiolucent screw with radiopaque marker
US8945211B2 (en)2008-09-122015-02-03Mitralign, Inc.Tissue plication device and method for its use
US8287591B2 (en)2008-09-192012-10-16Edwards Lifesciences CorporationTransformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US8894702B2 (en)2008-09-292014-11-25Cardiaq Valve Technologies, Inc.Replacement heart valve and method
US20100121349A1 (en)2008-10-102010-05-13Meier Stephen CTermination devices and related methods
US8795298B2 (en)2008-10-102014-08-05Guided Delivery Systems Inc.Tether tensioning devices and related methods
US20140188140A1 (en)2008-10-102014-07-03Guided Delivery Systems Inc.Termination devices and related methods
US20100114180A1 (en)2008-11-052010-05-06K2M, Inc.Multi-planar, taper lock screw with additional lock
US20110230941A1 (en)2008-11-262011-09-22Vimecon GmbhLaser applicator
US8449573B2 (en)2008-12-052013-05-28Boston Scientific Scimed, Inc.Insertion device and method for delivery of a mesh carrier
WO2010065274A1 (en)2008-12-052010-06-10Boston Scientific Scimed, Inc.Insertion device and method for delivery of a mesh carrier
US20110026208A1 (en)2008-12-192011-02-03Panasonic CorporationExterior parts and method of manufacturing the same and electronic equipment using the same
US20100161043A1 (en)2008-12-222010-06-24Valtech Cardio, Ltd.Implantation of repair chords in the heart
US20140094903A1 (en)2008-12-222014-04-03Valtech Cardio, Ltd.Implantation of repair chords in the heart
US8147542B2 (en)2008-12-222012-04-03Valtech Cardio, Ltd.Adjustable repair chords and spool mechanism therefor
US20140142695A1 (en)2008-12-222014-05-22Valtech Cardio, Ltd.Contractible annuloplasty structures
US8926696B2 (en)2008-12-222015-01-06Valtech Cardio, Ltd.Adjustable annuloplasty devices and adjustment mechanisms therefor
US8808368B2 (en)2008-12-222014-08-19Valtech Cardio, Ltd.Implantation of repair chords in the heart
US9011530B2 (en)2008-12-222015-04-21Valtech Cardio, Ltd.Partially-adjustable annuloplasty structure
US20160158008A1 (en)2008-12-222016-06-09Valtech Cardio, Ltd.Implantation of repair chords in the heart
US20120078355A1 (en)2008-12-222012-03-29Yuval ZiporyDeployment techniques for annuloplasty ring and over-wire rotation tool
US20100168827A1 (en)2008-12-302010-07-01Schultz Jeffrey WDeflectable sheath introducer
US20110011917A1 (en)2008-12-312011-01-20Hansen Medical, Inc.Methods, devices, and kits for treating valve prolapse
US20100168845A1 (en)2008-12-312010-07-01Genesee Biomedical, Inc.Semi-Rigid Annuloplasty Ring and Band
US20100179574A1 (en)2009-01-142010-07-15James LongoriaSynthetic chord
US9173646B2 (en)2009-01-202015-11-03Guided Delivery Systems Inc.Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods
US20140142619A1 (en)2009-01-202014-05-22Guided Delivery Systems Inc.Anchor deployment devices and related methods
US8778021B2 (en)2009-01-222014-07-15St. Jude Medical, Cardiology Division, Inc.Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US20120078359A1 (en)2009-02-062012-03-29St. Jude Medical, Inc.Adjustable annuloplasty ring support
US20130123910A1 (en)2009-02-092013-05-16St. Jude Medical, Cardiology Division, Inc.Inflatable minimally invasive system for delivering and securing an annular implant
US20110301498A1 (en)2009-02-162011-12-08Dokter Yves Fortems BvbaBiopsy device
US9561104B2 (en)2009-02-172017-02-07Valtech Cardio, Ltd.Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8353956B2 (en)2009-02-172013-01-15Valtech Cardio, Ltd.Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US20100217184A1 (en)2009-02-202010-08-26Boston Scientific Scimed, Inc.Steerable catheter having intermediate stiffness transition zone
US20110144703A1 (en)2009-02-242011-06-16Krause William RFlexible Screw
US20100217382A1 (en)2009-02-252010-08-26Edwards LifesciencesMitral valve replacement with atrial anchoring
US8808366B2 (en)2009-02-272014-08-19St. Jude Medical, Inc.Stent features for collapsible prosthetic heart valves
US20100249915A1 (en)2009-03-302010-09-30Ji ZhangValve prosthesis with movably attached claspers with apex
US20100249497A1 (en)2009-03-302010-09-30Peine William JSurgical instrument
US20100249908A1 (en)2009-03-312010-09-30Edwards Lifesciences CorporationProsthetic heart valve system with positioning markers
US20100262232A1 (en)2009-04-102010-10-14Lon Southerland AnnestImplantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve
US20100262233A1 (en)2009-04-122010-10-14Texas Tech University SystemMitral Valve Coaptation Plate For Mitral Valve Regurgitation
US8795356B2 (en)2009-04-152014-08-05Cardiaq Valve Technologies, Inc.Vascular implant
US9474606B2 (en)2009-05-042016-10-25Valtech Cardio, Ltd.Over-wire implant contraction methods
US20140243963A1 (en)2009-05-042014-08-28Valtech Cardio, Ltd.Annuloplasty ring delivery cathethers
US8911494B2 (en)2009-05-042014-12-16Valtech Cardio, Ltd.Deployment techniques for annuloplasty ring
US9119719B2 (en)2009-05-072015-09-01Valtech Cardio, Ltd.Annuloplasty ring with intra-ring anchoring
US20160008132A1 (en)2009-05-072016-01-14Valtech Cardio, Ltd.Multiple anchor delivery tool
US20140343668A1 (en)2009-05-072014-11-20Valtech Cardio, Ltd.Annuloplasty ring with intra-ring anchoring
US20100286628A1 (en)2009-05-072010-11-11Rainbow Medical LtdGastric anchor
US8715342B2 (en)2009-05-072014-05-06Valtech Cardio, Ltd.Annuloplasty ring with intra-ring anchoring
WO2010150178A2 (en)2009-06-262010-12-29Simcha MiloSurgical stapler and method of surgical stapling
US8393517B2 (en)2009-06-262013-03-12QuickRing Medical Technologies, Ltd.Surgical stapler and method of surgical stapling
US8231671B2 (en)2009-08-282012-07-31June-Hong KimMitral cerclage annuloplasty apparatus
US20120179086A1 (en)2009-09-112012-07-12Peter ShankAnchors with open heads
US20110067770A1 (en)2009-09-212011-03-24Gulf Sea Ventures LLCFluid-directing multiport rotary valve
US9023100B2 (en)2009-09-292015-05-05Cardiaq Valve Technologies, Inc.Replacement heart valves, delivery devices and methods
US20110082538A1 (en)2009-10-012011-04-07Jonathan DahlgrenMedical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US20110087146A1 (en)2009-10-092011-04-14Boston Scientific Scimed, Inc.Stomach bypass for the treatment of obesity
US20110093002A1 (en)2009-10-202011-04-21Wilson-Cook Medical Inc.Stent-within-stent arrangements
US20160058557A1 (en)2009-10-292016-03-03Valtech Cardio, Ltd.Apparatus and method for guide-wire based advancement of a rotation assembly
US20110106247A1 (en)2009-10-292011-05-05Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US9011520B2 (en)2009-10-292015-04-21Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US9180007B2 (en)2009-10-292015-11-10Valtech Cardio, Ltd.Apparatus and method for guide-wire based advancement of an adjustable implant
US8277502B2 (en)2009-10-292012-10-02Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US9414921B2 (en)2009-10-292016-08-16Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US8734467B2 (en)2009-12-022014-05-27Valtech Cardio, Ltd.Delivery tool for implantation of spool assembly coupled to a helical anchor
US8585755B2 (en)2009-12-042013-11-19Edwards Lifesciences CorporationProsthetic apparatus for implantation at mitral valve
US8449599B2 (en)2009-12-042013-05-28Edwards Lifesciences CorporationProsthetic valve for replacing mitral valve
US20110137410A1 (en)2009-12-082011-06-09Hacohen GilFoldable hinged prosthetic heart valve
US20110230961A1 (en)2010-01-052011-09-22Micardia CorporationDynamically adjustable annuloplasty ring and papillary muscle repositioning suture
US8475525B2 (en)2010-01-222013-07-024Tech Inc.Tricuspid valve repair using tension
US8889861B2 (en)2010-01-222014-11-18Cyclacel LimitedCrystalline forms of a purine derivative
US20140114390A1 (en)2010-01-222014-04-244Tech Inc.Tricuspid valve repair using tension
US9107749B2 (en)2010-02-032015-08-18Edwards Lifesciences CorporationMethods for treating a heart
US20130204361A1 (en)2010-02-032013-08-08Medtronic ATS Medical, Inc.Semi-flexible annuloplasty ring
US20110208283A1 (en)2010-02-242011-08-25Rust Matthew JTranscatheter valve structure and methods for valve delivery
US9072603B2 (en)2010-02-242015-07-07Medtronic Ventor Technologies, Ltd.Mitral prosthesis and methods for implantation
US9788941B2 (en)2010-03-102017-10-17Mitraltech Ltd.Axially-shortening prosthetic valve
US8357195B2 (en)2010-04-152013-01-22Medtronic, Inc.Catheter based annuloplasty system and method
US20110264208A1 (en)2010-04-272011-10-27Medtronic, Inc.Prosthetic Heart Valve Devices and Methods of Valve Repair
US20110288435A1 (en)2010-05-192011-11-24George Michael ChristyTactile sensory testing instrument
US8790394B2 (en)2010-05-242014-07-29Valtech Cardio, Ltd.Adjustable artificial chordeae tendineae with suture loops
US20130030522A1 (en)2010-06-162013-01-31Rowe Stanton JDevices and methods for heart treatments
US20130046373A1 (en)2010-06-242013-02-21Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US20120089022A1 (en)2010-07-092012-04-12Mitralign, Inc.Delivery catheter with forward-looking ultrasoung imaging
US9017399B2 (en)2010-07-212015-04-28Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US8992604B2 (en)2010-07-212015-03-31Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US8518107B2 (en)2010-08-042013-08-27Valcare, Inc.Percutaneous transcatheter repair of heart valves
US20130289718A1 (en)2010-08-042013-10-31Valcare, Inc.Percutaneous transcatheter repair of heart valves
US20120053628A1 (en)2010-08-302012-03-01Depuy Mitek, Inc.Anchor driver with suture clutch
US20140148849A1 (en)2010-09-032014-05-29Guided Delivery Systems Inc.Devices and methods for anchoring tissue
US8652203B2 (en)2010-09-232014-02-18Cardiaq Valve Technologies, Inc.Replacement heart valves, delivery devices and methods
US20120089125A1 (en)2010-10-082012-04-12Greatbatch Ltd.Bi-Directional Catheter Steering Handle
US20120109155A1 (en)2010-10-272012-05-03Mitralign, Inc.Hand operated device for controlled deployment of a tissue anchor and method of using the same
US20120150290A1 (en)2010-11-122012-06-14Shlomo GabbayBeating heart buttress and implantation method to prevent prolapse of a heart valve
US9198756B2 (en)2010-11-182015-12-01Pavilion Medical Innovations, LlcTissue restraining devices and methods of use
US20120158021A1 (en)2010-12-192012-06-21Mitralign, Inc.Steerable guide catheter having preformed curved shape
US8888843B2 (en)2011-01-282014-11-18Middle Peak Medical, Inc.Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en)2011-01-282014-09-30Middle Park Medical, Inc.Coaptation enhancement implant, system, and method
US9138316B2 (en)2011-01-312015-09-22St. Jude Medical, Inc.Adjustable annuloplasty ring sizing indicator
WO2012106346A1 (en)2011-01-312012-08-09St. Jude Medical, Inc.Adjustable annuloplasty ring sizing indicator
US8932343B2 (en)2011-02-012015-01-13St. Jude Medical, Cardiology Division, Inc.Blunt ended stent for prosthetic heart valve
US20140155783A1 (en)2011-02-182014-06-05Guided Delivery Systems Inc.Systems and methods for variable stiffness tethers
US20140135799A1 (en)2011-02-182014-05-15Guided Delivery Systems Inc.Implant retrieval device
US20120239142A1 (en)2011-02-252012-09-20Jun LiuProsthetic heart valve delivery apparatus
US20120226349A1 (en)2011-03-012012-09-06Medtronic Ventor Technologies Ltd.Mitral Valve Repair
US8728155B2 (en)2011-03-212014-05-20Cephea Valve Technologies, Inc.Disk-based valve apparatus and method for the treatment of valve dysfunction
US20120245604A1 (en)2011-03-252012-09-27Kardium Inc.Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US8523940B2 (en)2011-05-172013-09-03Boston Scientific Scimed, Inc.Annuloplasty ring with anchors fixed by curing polymer
US20120296349A1 (en)2011-05-172012-11-22Boston Scientific Scimed, Inc.Percutaneous Mitral Annulus Mini-Plication
US20120296417A1 (en)2011-05-172012-11-22Boston Scientific Scimed, Inc.Corkscrew Annuloplasty Device
US20120310330A1 (en)2011-06-012012-12-06Micardia CorporationPercutaneous transcatheter repair of heart valves via trans-apical access
US20120323313A1 (en)2011-06-202012-12-20Jacques SeguinProsthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US20150112432A1 (en)2011-06-232015-04-23Valtech Cardio, Ltd.Closed band for percutaneous annuloplasty
WO2012176195A2 (en)2011-06-232012-12-27Valtech Cardio, Ltd.Closure element for use with annuloplasty structure
US8926697B2 (en)2011-06-232015-01-06Valtech Cardio, Ltd.Closed band for percutaneous annuloplasty
US8940044B2 (en)2011-06-232015-01-27Valtech Cardio, Ltd.Closure element for use with an annuloplasty structure
US8795357B2 (en)2011-07-152014-08-05Edwards Lifesciences CorporationPerivalvular sealing for transcatheter heart valve
US8852272B2 (en)2011-08-052014-10-07Mitraltech Ltd.Techniques for percutaneous mitral valve replacement and sealing
US20130053884A1 (en)2011-08-262013-02-28Abbott Cardiovascular Systems, Inc.Suture fastener combination device
US20130079873A1 (en)2011-09-262013-03-28Edwards Lifesciences CorporationProsthetic mitral valve with ventricular tethers and methods for implanting same
US20130085529A1 (en)2011-10-032013-04-04Mark Edwin HousmanKnotless suture anchor
US20140296962A1 (en)2011-10-212014-10-02Syntheon Cardiology, LlcActively Controllable Stent, Stent Graft, Heart Valve and Method of Controlling Same
US20130116776A1 (en)2011-11-042013-05-09Valtech Cardio, Ltd.External aortic ring and spool mechanism therefor
US9265608B2 (en)2011-11-042016-02-23Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US8858623B2 (en)2011-11-042014-10-14Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US20160113767A1 (en)2011-11-042016-04-28Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US20170325959A1 (en)2011-11-082017-11-16Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
US20140309661A1 (en)2011-11-082014-10-16Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
US20140350660A1 (en)2011-12-012014-11-27Graeme CocksEndoluminal Prosthesis
US20140309730A1 (en)2011-12-122014-10-16David AlonHeart Valve Repair Device
US20190038411A1 (en)2011-12-122019-02-07Cardiac Implants LlcCardiac Valve Replacement
US20140088368A1 (en)2012-01-182014-03-27Kwang-Tai ParkSurgical instrument, surgical mesh and surgical retraction means of the instrument, and surgical method using the instrument
US8961602B2 (en)2012-01-272015-02-24St. Jude Medical, Cardiology Division, Inc.Adjustment suture markers for adjustable annuloplasty ring
US20130226289A1 (en)2012-02-292013-08-29Valcare, Inc.Percutaneous annuloplasty system with anterior-posterior adjustment
US20130226290A1 (en)2012-02-292013-08-29ValCare,Inc.Methods, devices, and systems for percutaneously anchoring annuloplasty rings
US9427316B2 (en)2012-04-192016-08-30Caisson Interventional, LLCValve replacement systems and methods
US20130297013A1 (en)2012-05-042013-11-07St. Jude Medical, Cardiology Division, Inc.Hypotube shaft with articulation mechanism
US20150127097A1 (en)2012-06-012015-05-07Universität Duisburg-EssenImplantable device for improving or rectifying a heart valve insufficiency
US20130331930A1 (en)2012-06-072013-12-12Edwards Lifesciences CorporationSystems for implanting annuloplasty rings with microanchors
US20140067054A1 (en)2012-09-062014-03-06Edwards Lifesciences CorporationHeart Valve Sealing Devices
US20140088646A1 (en)2012-09-212014-03-27Boston Scientific Neuromodulation CorporationTissue fixation delivery apparatus
US20140094826A1 (en)2012-09-292014-04-03Mitralign, Inc.Plication Lock Delivery System and Method of Use Thereof
US20150272586A1 (en)2012-10-232015-10-01Valtech Cardio, Ltd.Percutaneous tissue anchor techniques
US20150272734A1 (en)2012-10-232015-10-01Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
WO2014064964A1 (en)2012-10-242014-05-01浜松ホトニクス株式会社Optical scanning device and light source device
US8628571B1 (en)2012-11-132014-01-14Mitraltech Ltd.Percutaneously-deliverable mechanical valve
US20150282931A1 (en)2012-11-212015-10-08Edwards Lifesciences CorporationRetaining mechanisms for prosthetic heart valves
US9730793B2 (en)2012-12-062017-08-15Valtech Cardio, Ltd.Techniques for guide-wire based advancement of a tool
US20140188108A1 (en)2012-12-282014-07-03Mitralign, Inc.Energy Assisted Tissue Piercing Device and Method of Use Thereof
US9693865B2 (en)2013-01-092017-07-044 Tech Inc.Soft tissue depth-finding tool
US20150351910A1 (en)2013-01-092015-12-104 Tech Inc.Soft tissue anchors and implantation techniques
US20140207231A1 (en)2013-01-242014-07-24Mitraltech Ltd.Anchoring of prosthetic valve supports
US20150351906A1 (en)2013-01-242015-12-10Mitraltech Ltd.Ventricularly-anchored prosthetic valves
US20140243894A1 (en)2013-02-262014-08-28Mitralign, Inc.Devices and Methods for Percutaneous Tricuspid Valve Repair
US9579090B1 (en)2013-02-272017-02-28The Administrators Of The Tulane Educational FundSurgical instrument with multiple instrument interchangeability
US20140251042A1 (en)2013-03-112014-09-11Boston Scientific Scimed, Inc.Deflection mechanism
US20140276648A1 (en)2013-03-142014-09-18Valtech Cardio, Ltd.Guidewire feeder
US20140275757A1 (en)2013-03-152014-09-18Mitralign, Inc.Translation Catheters, Systems, and Methods of Use Thereof
US20160120645A1 (en)2013-06-062016-05-05David AlonHeart Valve Repair and Replacement
US20160302917A1 (en)2013-06-142016-10-20Hazu GmbhMethod and device for treatment of valve regurgitation
US20140379006A1 (en)2013-06-252014-12-25Mitralign, Inc.Percutaneous Valve Repair by Reshaping and Resizing Right Ventricle
US10368852B2 (en)2013-06-262019-08-06Strait Access Technologies Holdings (Pty) LtdOrientation device for use in mitral valve repair
US20150018940A1 (en)2013-07-102015-01-15Medtronic, Inc.Helical coil mitral valve annuloplasty systems and methods
US20180318080A1 (en)2013-07-102018-11-08Medtronic, Inc.Helical coil mitral valve annuloplasty systems and methods
US8870948B1 (en)2013-07-172014-10-28Cephea Valve Technologies, Inc.System and method for cardiac valve repair and replacement
US20150094600A1 (en)2013-10-012015-04-02Yale UniversitySystem And Method For Imaging Myelin
US20150100116A1 (en)2013-10-072015-04-09Medizinische Universitat WienImplant and method for improving coaptation of an atrioventricular valve
US20160262755A1 (en)2013-10-232016-09-15Valtech Cardio, Ltd.Anchor magazine
US20160242762A1 (en)2013-10-302016-08-254Tech Inc.Multiple anchoring-point tension system
US20150133997A1 (en)2013-11-082015-05-14Coloplast A/SSystem and a method for surgical suture fixation
US20160317302A1 (en)2013-12-162016-11-03Jeko Metodiev MadjarovMethod and apparatus for therapy of aortic valve
US20150182336A1 (en)2013-12-262015-07-02Valtech Cardio, Ltd.Implantation of flexible implant
US20150230919A1 (en)2014-02-142015-08-20Edwards Lifesciences CorporationPercutaneous leaflet augmentation
US9801720B2 (en)2014-06-192017-10-314Tech Inc.Cardiac tissue cinching
US9180005B1 (en)2014-07-172015-11-10Millipede, Inc.Adjustable endolumenal mitral valve ring
US20170245993A1 (en)2014-10-142017-08-31Valtech Cardio, Ltd.Leaflet-restraining techniques
WO2016087934A1 (en)2014-12-022016-06-094Tech Inc.Off-center tissue anchors
US9907547B2 (en)2014-12-022018-03-064Tech Inc.Off-center tissue anchors
US20190111239A1 (en)2015-01-212019-04-18Medtronic Vascular, Inc.Guide catheter with steering mechanisms
US20180049875A1 (en)2015-04-302018-02-22Valtech Cardio, Ltd.Annuloplasty technologies
US20190175346A1 (en)2015-10-212019-06-13Coremedic AgMedical apparatus and method for heart valve repair
US20180318083A1 (en)2015-12-302018-11-08Pipeline Medical Technologies, Inc.Mitral leaflet tethering
US20190117400A1 (en)2016-06-012019-04-25On-X Life Technologies, Inc.Pull-through chordae tendineae system
US20180008409A1 (en)2016-07-082018-01-11Valtech Cardio Ltd.Adjustable annuloplasty device with alternating peaks and troughs
EP3531975A1 (en)2016-10-312019-09-04Cardiac Implants LLCFlexible radio-opaque protrusions for revealing the position of a constricting cord or annulus ring prior to installation onto a cardiac valve annulus
US20180168803A1 (en)2016-12-212018-06-21TriFlo Cardiovascular Inc.Heart valve support device and methods for making and using the same
US20180289480A1 (en)2017-04-062018-10-11University Of Maryland, BaltimoreDistal anchor apparatus and methods for mitral valve repair
US20190029498A1 (en)2017-07-292019-01-31Endoscope Sp. Z O.O.Mechanical system for controlling distal tip of a medical insertion tube, especially an endoscope insertion tube and an endoscope handle
US20190125325A1 (en)2017-11-022019-05-02Valtech Cardio, Ltd.Implant-cinching devices and systems
US20190151093A1 (en)2017-11-202019-05-23Valtech Cardio, Ltd.Cinching of dilated heart muscle
US20190183648A1 (en)2017-12-202019-06-20W. L. Gore & Associates, Inc.Artificial chordae tendineae repair devices and delivery thereof
WO2019145947A1 (en)2018-01-242019-08-01Valtech Cardio, Ltd.Contraction of an annuloplasty structure
WO2019145941A1 (en)2018-01-262019-08-01Valtech Cardio, Ltd.Techniques for facilitating heart valve tethering and chord replacement
US20190290431A1 (en)2018-03-202019-09-26Medtronic Vascular, Inc.Flexible canopy valve repair systems and methods of use
US20190290260A1 (en)2018-03-232019-09-26Neochord, Inc.Device for suture attachment for minimally invasive heart valve repair
WO2019182645A1 (en)2018-03-232019-09-26Conmed CorporationSuture anchor driver
US20190343633A1 (en)2018-05-092019-11-14Neochord, Inc.Suture length adjustment for minimally invasive heart valve repair
WO2019224814A1 (en)2018-05-242019-11-28Valtech Cardio, Ltd.Implantable annuloplasty structures to fit multiple annulus sizes

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannesson. "Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis." The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. "Percutaneously adjustable pulmonary artery band." The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al."Novel Suture Device for Beating-Heart Mitral Leaflet Approximation", Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri et al., "An effective technique to correct anterior mitral leaflet prolapse," J Card 14(6):468-470 (1999).
Alfieri et al., "The double orifice technique in mitral valve repair: a simple solution for complex problems," Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al., "The edge to edge technique," The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Alfieri, "The edge-to-edge repair of the mitral valve," [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. "Adjustable Pulmonary Artery Banding." (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al."Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure." The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. "Simplified Placement of Multiple Artificial Mitral Valve Chords," The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dictionary.com definition of "lock", Jul. 29, 2013.
Dieter RS, "Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve," Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. "An implantable mechanical urinary sphincter: a new nonhydraulic design concept." Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. RING+STRING, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . , European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
Odell JA et al., "Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty," Circulation 92:150-154 (1995).
O'Reilly S et al., "Heart valve surgery pushes the envelope," Medtech Insight 8(3): 73, 99-108 (2006).
Park, Sang C. et al. "A percutaneously adjustable device for banding of the pulmonary trunk." International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., "An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract," Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. "Internal device for control of urinary incontinence." Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, "Two dimensional real-time ultrasonic imaging of the heart and great vessels", Mayo Clin Proc. vol. 53:271-303, 1978.

Also Published As

Publication numberPublication date
US12409032B2 (en)2025-09-09
US20190167425A1 (en)2019-06-06
US20210015617A1 (en)2021-01-21

Similar Documents

PublicationPublication DateTitle
US12409032B2 (en)Percutaneous implantation of an annuloplasty structure
US9918840B2 (en)Closed band for percutaneous annuloplasty
US11185412B2 (en)Deployment techniques for annuloplasty implants
US8926697B2 (en)Closed band for percutaneous annuloplasty
US12138165B2 (en)Annuloplasty implants
US11723774B2 (en)Multiple anchor delivery tool
US11006946B2 (en)Tissue anchors with hemostasis seal
US20230310156A1 (en)Multiple anchor delivery tool

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

ASAssignment

Owner name:VALTECH CARDIO, LTD, ISRAEL

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REICH, TAL;GROSS, AMIR;SHEPS, TAL;SIGNING DATES FROM 20150310 TO 20150311;REEL/FRAME:045927/0618

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

FEPPFee payment procedure

Free format text:PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPPInformation on status: patent application and granting procedure in general

Free format text:PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCFInformation on status: patent grant

Free format text:PATENTED CASE

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:4


[8]ページ先頭

©2009-2025 Movatter.jp