Movatterモバイル変換


[0]ホーム

URL:


US10030267B2 - Methods and systems for processing polynucleotides - Google Patents

Methods and systems for processing polynucleotides
Download PDF

Info

Publication number
US10030267B2
US10030267B2US15/832,183US201715832183AUS10030267B2US 10030267 B2US10030267 B2US 10030267B2US 201715832183 AUS201715832183 AUS 201715832183AUS 10030267 B2US10030267 B2US 10030267B2
Authority
US
United States
Prior art keywords
sequence
nucleic acid
cell
barcode
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/832,183
Other versions
US20180094314A1 (en
Inventor
Benjamin Hindson
Christopher Hindson
Michael Schnall-Levin
Kevin Ness
Mirna Jarosz
Serge Saxonov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
10X Genomics Inc
Original Assignee
10X Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/752,641external-prioritypatent/US20150376609A1/en
Application filed by 10X Genomics IncfiledCritical10X Genomics Inc
Priority to US15/832,183priorityCriticalpatent/US10030267B2/en
Assigned to 10X GENOMICS, INC.reassignment10X GENOMICS, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HINDSON, BENJAMIN, NESS, KEVIN, SCHNALL-LEVIN, MICHAEL, SAXONOV, SERGE, HINDSON, Christopher, JAROSZ, MIRNA
Publication of US20180094314A1publicationCriticalpatent/US20180094314A1/en
Application grantedgrantedCritical
Publication of US10030267B2publicationCriticalpatent/US10030267B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 15/717,871, filed Sep. 27, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 14/752,641, filed Jun. 26, 2015, which claims priority to U.S. Provisional Patent Application No. 62/061,567, filed Oct. 8, 2014, and U.S. Provisional Patent Application No. 62/017,558, filed Jun. 26, 2014, each of which application is entirely incorporated herein by reference.
BACKGROUND
Significant advances in analyzing and characterizing biological and biochemical materials and systems have led to unprecedented advances in understanding the mechanisms of life, health, disease and treatment. Among these advances, technologies that target and characterize the genomic make up of biological systems have yielded some of the most groundbreaking results, including advances in the use and exploitation of genetic amplification technologies, and nucleic acid sequencing technologies.
Nucleic acid sequencing can be used to obtain information in a wide variety of biomedical contexts, including diagnostics, prognostics, biotechnology, and forensic biology. Sequencing may involve basic methods including Maxam-Gilbert sequencing and chain-termination methods, or de novo sequencing methods including shotgun sequencing and bridge PCR, or next-generation methods including polony sequencing, 454 pyrosequencing, Illumina sequencing, SOLiD sequencing, Ion Torrent semiconductor sequencing, HeliScope single molecule sequencing, SMRT® sequencing, and others.
Despite these advances in biological characterization, many challenges still remain unaddressed, or relatively poorly addressed by the solutions currently being offered. The present disclosure provides novel solutions and approaches to addressing many of the shortcomings of existing technologies.
BRIEF SUMMARY
Provided herein are methods, compositions and systems for analyzing individual cells or small populations of cells, including the analysis and attribution of nucleic acids from and to these individual cells or cell populations.
An aspect of the disclosure provides a method of analyzing nucleic acids from cells that includes providing nucleic acids derived from an individual cell into a discrete partition; generating one or more first nucleic acid sequences derived from the nucleic acids within the discrete partition, which one or more first nucleic acid sequences have attached thereto oligonucleotides that comprise a common nucleic acid barcode sequence; generating a characterization of the one or more first nucleic acid sequences or one or more second nucleic acid sequences derived from the one or more first nucleic acid sequences, which one or more second nucleic acid sequences comprise the common barcode sequence; and identifying the one or more first nucleic acid sequences or one or more second nucleic acid sequences as being derived from the individual cell based, at least in part, upon a presence of the common nucleic acid barcode sequence in the generated characterization.
In some embodiments, the discrete partition is a discrete droplet. In some embodiments, the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition. In some embodiments, at least 10,000, at least 100,000 or at least 500,000 of the oligonucleotides are co-partitioned with the nucleic acids derived from the individual cell into the discrete partition.
In some embodiments, the oligonucleotides are provided attached to a bead, where each oligonucleotide on a bead comprises the same barcode sequence, and the bead is co-partitioned with the individual cell into the discrete partition. In some embodiments, the oligonucleotides are releasably attached to the bead. In some embodiments, the bead comprises a degradable bead. In some embodiments, prior to or during generating the one or more first nucleic acid sequences the method includes releasing the oligonucleotides from the bead via degradation of the bead. In some embodiments, prior to generating the characterization, the method includes releasing the one or more first nucleic acid sequences from the discrete partition.
In some embodiments, generating the characterization comprises sequencing the one or more first nucleic acid sequences or the one or more second nucleic acid sequences. The method may also include assembling a contiguous nucleic acid sequence for at least a portion of a genome of the individual cell from sequences of the one or more first nucleic acid sequences or the one or more second nucleic acid sequences. Moreover, the method may also include characterizing the individual cell based upon the nucleic acid sequence for at least a portion of the genome of the individual cell.
In some embodiments, the nucleic acids are released from the individual cell in the discrete partition. In some embodiments, the nucleic acids comprise ribonucleic acid (RNA), such as, for example, messenger RNA (mRNA). In some embodiments, generating one or more first nucleic acid sequences includes subjecting the nucleic acids to reverse transcription under conditions that yield the one or more first nucleic acid sequences. In some embodiments, the reverse transcription occurs in the discrete partition. In some embodiments, the oligonucleotides are provided in the discrete partition and include a poly-T sequence. In some embodiments, the reverse transcription comprises hybridizing the poly-T sequence to at least a portion of each of the nucleic acids and extending the poly-T sequence in template directed fashion. In some embodiments, the oligonucleotides include an anchoring sequence that facilitates hybridization of the poly-T sequence. In some embodiments, the oligonucleotides include a random priming sequence that can be, for example, a random hexamer. In some embodiments, the reverse transcription comprises hybridizing the random priming sequence to at least a portion of each of the nucleic acids and extending the random priming sequence in template directed fashion.
In some embodiments, a given one of the one or more first nucleic acid sequences has sequence complementarity to at least a portion of a given one of the nucleic acids. In some embodiments, the discrete partition at most includes the individual cell among a plurality of cells. In some embodiments, the oligonucleotides include a unique molecular sequence segment. In some embodiments, the method can include identifying an individual nucleic acid sequence of the one or more first nucleic acid sequences or of the one or more second nucleic acid sequences as derived from a given nucleic acid of the nucleic acids based, at least in part, upon a presence of the unique molecular sequence segment. In some embodiments, the method includes determining an amount of the given nucleic acid based upon a presence of the unique molecular sequence segment.
In some embodiments, the method includes, prior to generating the characterization, adding one or more additional sequences to the one or more first nucleic acid sequences to generate the one or more second nucleic acid sequences. In some embodiments, the method includes adding a first additional nucleic acid sequence to the one or more first nucleic acid sequences with the aid of a switch oligonucleotide. In some embodiments, the switch oligonucleotide hybridizes to at least a portion of the one or more first nucleic acid sequences and is extended in a template directed fashion to couple the first additional nucleic acid sequence to the one or more first nucleic acid sequences. In some embodiments, the method includes amplifying the one of more first nucleic acid sequences coupled to the first additional nucleic acid sequence. In some embodiments, the amplifying occurs in the discrete partition. In some embodiments, the amplifying occurs after releasing the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence from the discrete partition.
In some embodiments, after the amplifying, the method includes adding one or more second additional nucleic acid sequences to the one or more first nucleic acid sequences coupled to the first additional sequence to generate the one or more second nucleic acid sequences. In some embodiments, the adding the one or more second additional sequences includes removing a portion of each of the one or more first nucleic acid sequences coupled to the first additional nucleic acid sequence and coupling thereto the one or more second additional nucleic acid sequences. In some embodiments, the removing is completed via shearing of the one or more first nucleic acid sequences coupled (e.g., ligated) to the first additional nucleic acid sequence.
In some embodiments, prior to generating the characterization, the method includes subjecting the one or more first nucleic acid sequences to transcription to generate one or more RNA fragments. In some embodiments, the transcription occurs after releasing the one or more first nucleic acid sequences from the discrete partition. In some embodiments, the oligonucleotides include a T7 promoter sequence. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more RNA sequences and coupling an additional sequence to the one or more RNA sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences coupled to the additional sequence to reverse transcription to generate the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes amplifying the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes subjecting the one or more RNA sequences to reverse transcription to generate one or more DNA sequences. In some embodiments, prior to generating the characterization, the method includes removing a portion of each of the one or more DNA sequences and coupling one or more additional sequences to the one or more DNA sequences to generate the one or more second nucleic acid sequences. In some embodiments, prior to generating the characterization, the method includes amplifying the one or more second nucleic acid sequences.
In some embodiments, the nucleic acids include complementary (cDNA) generated from reverse transcription of RNA from the individual cell. In some embodiments, the oligonucleotides include a priming sequence and are provided in the discrete partition. In some embodiments, the priming sequence includes a random N-mer. In some embodiments, generating the one or more first nucleic acid sequences includes hybridizing the priming sequence to the cDNA and extending the priming sequence in template directed fashion.
In some embodiments, the discrete partition includes switch oligonucleotides comprising a complement sequence of the oligonucleotides. In some embodiments, generating the one or more first nucleic acid sequences includes hybridizing the switch oligonucleotides to at least a portion of nucleic acid fragments derived from the nucleic acids and extending the switch oligonucleotides in template directed fashion. In some embodiments, generating the one or more first nucleic acid sequences includes attaching the oligonucleotides to the one or more first nucleic acid sequences. In some embodiments, the one or more first nucleic acid sequences are nucleic acid fragments derived from the nucleic acids. In some embodiments, generating the one or more first nucleic acid sequences includes coupling (e.g., ligating) the oligonucleotides to the nucleic acids.
In some embodiments, a plurality of partitions comprises the discrete partition. In some embodiments, the plurality of partitions, on average, comprises less than one cell per partition. In some embodiments, less than 25% of partitions of the plurality of partitions do not comprise a cell. In some embodiments, the plurality of partitions comprises discrete partitions each having at least one partitioned cell. In some embodiments, fewer than 25%, fewer than 20%, fewer than 15%, fewer than 10%, fewer than 5% or fewer than 1% of the discrete partitions comprise more than one cell. In some embodiments, at least a subset of the discrete partitions comprises a bead. In some embodiments, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% of the discrete partitions comprise at least one cell and at least one bead. In some embodiments, the discrete partitions include partitioned nucleic acid barcode sequences. In some embodiments, the discrete partitions include at least 1,000, at least 10,000, or at least 100,000 different partitioned nucleic acid barcode sequences. In some embodiments, the plurality of partitions comprises at least 1,000, at least 10,000 or at least 100,000 partitions.
In another aspect, the disclosure provides a method of characterizing cells in a population of a plurality of different cell types that includes providing nucleic acids from individual cells in the population into discrete partitions; attaching oligonucleotides that comprise a common nucleic acid barcode sequence to one or more fragments of the nucleic acids from the individual cells within the discrete partitions, where a plurality of different partitions comprise different common nucleic acid barcode sequences; and characterizing the one or more fragments of the nucleic acids from the plurality of discrete partitions, and attributing the one or more fragments to individual cells based, at least in part, upon the presence of a common barcode sequence; and characterizing a plurality of individual cells in the population based upon the characterization of the one or more fragments in the plurality of discrete partitions.
In some embodiments, the method includes fragmenting the nucleic acids. In some embodiments, the discrete partitions are droplets. In some embodiments, the characterizing the one or more fragments of the nucleic acids includes sequencing ribosomal deoxyribonucleic acid from the individual cells, and the characterizing the cells comprises identifying a cell genus, species, strain or variant. In some embodiments, the individual cells are derived from a microbiome sample. In some embodiments, the individual cells are derived from a human tissue sample. In some embodiments, the individual cells are derived from circulating cells in a mammal. In some embodiments, the individual cells are derived from a forensic sample. In some embodiments, the nucleic acids are released from the individual cells in the discrete partitions.
An additional aspect of the disclosure provides a method of characterizing an individual cell or population of cells that includes incubating a cell with a plurality of different cell surface feature binding group types, where each different cell surface binding group type is capable of binding to a different cell surface feature, and where each different cell surface binding group type comprises a reporter oligonucleotide associated therewith, under conditions that allow binding between one or more cell surface feature binding groups and its respective cell surface feature, if present; partitioning the cell into a partition that comprises a plurality of oligonucleotides comprising a barcode sequence; attaching the barcode sequence to oligonucleotide reporter groups present in the partition; sequencing the oligonucleotide reporter groups and attached barcodes; and characterizing cell surface features present on the cell based upon reporter oligonucleotides that are sequenced.
An additional aspect of the disclosure provides a composition comprising a plurality of partitions, each of the plurality of partitions comprising an individual cell and a population of oligonucleotides that comprise a common nucleic acid barcode sequence. In some embodiments, the plurality of partitions comprises droplets in an emulsion. In some embodiments, the population of oligonucleotides within each of the plurality of partitions is coupled to a bead disposed within each of the plurality of partitions. In some embodiments, the individual cell has associated therewith a plurality of different cell surface feature binding groups associated with their respective cell surface features and each different type of cell surface feature binding group includes an oligonucleotide reporter group comprising a different nucleotide sequence. In some embodiments, the plurality of different cell surface feature binding groups includes a plurality of different antibodies or antibody fragments having a binding affinity for a plurality of different cell surface features.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in the art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
INCORPORATION BY REFERENCE
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:
FIG. 1 schematically illustrates a microfluidic channel structure for partitioning individual or small groups of cells.
FIG. 2 schematically illustrates a microfluidic channel structure for co-partitioning cells and beads or microcapsules comprising additional reagents.
FIG. 3 schematically illustrates an example process for amplification and barcoding of cell's nucleic acids.
FIG. 4 provides a schematic illustration of use of barcoding of cell's nucleic acids in attributing sequence data to individual cells or groups of cells for use in their characterization.
FIG. 5 provides a schematic illustrating cells associated with labeled cell-binding ligands.
FIG. 6 provides a schematic illustration of an example workflow for performing RNA analysis using the methods described herein.
FIG. 7 provides a schematic illustration of an example barcoded oligonucleotide structure for use in analysis of ribonucleic (RNA) using the methods described herein.
FIG. 8 provides an image of individual cells co-partitioned along with individual barcode bearing beads
FIG. 9A-E provides schematic illustration of example barcoded oligonucleotide structures for use in analysis of RNA and example operations for performing RNA analysis.
FIG. 10 provides schematic illustration of example barcoded oligonucleotide structure for use in example analysis of RNA and use of a sequence for in vitro transcription.
FIG. 11 provides schematic illustration of an example barcoded oligonucleotide structure for use in analysis of RNA and example operations for performing RNA analysis.
FIG. 12A-B provides schematic illustration of example barcoded oligonucleotide structure for use in analysis of RNA.
FIG. 13A-C provides illustrations of example yields from template switch reverse transcription and PCR in partitions.
FIG. 14A-B provides illustrations of example yields from reverse transcription and cDNA amplification in partitions with various cell numbers.
FIG. 15 provides an illustration of example yields from cDNA synthesis and real-time quantitative PCR at various input cell concentrations and also the effect of varying primer concentration on yield at a fixed cell input concentration.
FIG. 16 provides an illustration of example yields from in vitro transcription.
FIG. 17 shows an example computer control system that is programmed or otherwise configured to implement methods provided herein.
DETAILED DESCRIPTION
While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
Where values are described as ranges, it will be understood that such disclosure includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.
I. Single Cell Analysis
Advanced nucleic acid sequencing technologies have yielded monumental results in sequencing biological materials, including providing substantial sequence information on individual organisms, and relatively pure biological samples. However, these systems have not proven effective at being able to identify and characterize sub-populations of cells in biological samples that may represent a smaller minority of the overall make up of the sample, but for which individualized sequence information could prove even more valuable.
Most nucleic acid sequencing technologies derive the nucleic acids that they sequence from collections of cells derived from tissue or other samples. The cells can be processed, en masse, to extract the genetic material that represents an average of the population of cells, which can then be processed into sequencing ready DNA libraries that are configured for a given sequencing technology. As will be appreciated, although often discussed in terms of DNA or nucleic acids, the nucleic acids derived from the cells may include DNA, or RNA, including, e.g., mRNA, total RNA, or the like, that may be processed to produce cDNA for sequencing, e.g., using any of a variety of RNA-seq methods. Following from this processing, absent a cell specific marker, attribution of genetic material as being contributed by a subset of cells or all cells in a sample is virtually impossible in such an ensemble approach.
In addition to the inability to attribute characteristics to particular subsets of populations of cells, such ensemble sample preparation methods also are, from the outset, predisposed to primarily identifying and characterizing the majority constituents in the sample of cells, and are not designed to be able to pick out the minority constituents, e.g., genetic material contributed by one cell, a few cells, or a small percentage of total cells in the sample. Likewise, where analyzing expression levels, e.g., of mRNA, an ensemble approach would be predisposed to presenting potentially grossly inaccurate data from cell populations that are non-homogeneous in terms of expression levels. In some cases, where expression is high in a small minority of the cells in an analyzed population, and absent in the majority of the cells of the population, an ensemble method would indicate low level expression for the entire population.
This original majority bias is further magnified, and even overwhelming, through processing operations used in building up the sequencing libraries from these samples. In particular, most next generation sequencing technologies rely upon the geometric amplification of nucleic acid fragments, such as the polymerase chain reaction, in order to produce sufficient DNA for the sequencing library. However, such geometric amplification is biased toward amplification of majority constituents in a sample, and may not preserve the starting ratios of such minority and majority components. By way of example, if a sample includes 95% DNA from a particular cell type in a sample, e.g., host tissue cells, and 5% DNA from another cell type, e.g., cancer cells, PCR based amplification can preferentially amplify the majority DNA in place of the minority DNA, both as a function of comparative exponential amplification (the repeated doubling of the higher concentration quickly outpaces that of the smaller fraction) and as a function of sequestration of amplification reagents and resources (as the larger fraction is amplified, it preferentially utilizes primers and other amplification reagents).
While some of these difficulties may be addressed by utilizing different sequencing systems, such as single molecule systems that don't require amplification, the single molecule systems, as well as the ensemble sequencing methods of other next generation sequencing systems, can also have requirements for sufficiently large input DNA requirements. In particular, single molecule sequencing systems like the Pacific Biosciences SMRT Sequencing system can have sample input DNA requirements of from 500 nanograms (ng) to upwards of 10 micrograms (μg), which is far larger than what can be derived from individual cells or even small subpopulations of cells. Likewise, other NGS systems can be optimized for starting amounts of sample DNA in the sample of from approximately 50 ng to about 1 μg.
II. Compartmentalization And Characterization Of Cells
Disclosed herein, however, are methods and systems for characterizing nucleic acids from small populations of cells, and in some cases, for characterizing nucleic acids from individual cells, especially in the context of larger populations of cells. The methods and systems provide advantages of being able to provide the attribution advantages of the non-amplified single molecule methods with the high throughput of the other next generation systems, with the additional advantages of being able to process and sequence extremely low amounts of input nucleic acids derivable from individual cells or small collections of cells.
In particular, the methods described herein compartmentalize the analysis of individual cells or small populations of cells, including e.g., nucleic acids from individual cells or small groups of cells, and then allow that analysis to be attributed back to the individual cell or small group of cells from which the nucleic acids were derived. This can be accomplished regardless of whether the cell population represents a 50/50 mix of cell types, a 90/10 mix of cell types, or virtually any ratio of cell types, as well as a complete heterogeneous mix of different cell types, or any mixture between these. Differing cell types may include cells or biologic organisms from different tissue types of an individual, from different individuals, from differing genera, species, strains, variants, or any combination of any or all of the foregoing. For example, differing cell types may include normal and tumor tissue from an individual, multiple different bacterial species, strains and/or variants from environmental, forensic, microbiome or other samples, or any of a variety of other mixtures of cell types.
In one aspect, the methods and systems described herein, provide for the compartmentalization, depositing or partitioning of the nucleic acid contents of individual cells from a sample material containing cells, into discrete compartments or partitions (referred to interchangeably herein as partitions), where each partition maintains separation of its own contents from the contents of other partitions. Unique identifiers, e.g., barcodes, may be previously, subsequently or concurrently delivered to the partitions that hold the compartmentalized or partitioned cells, in order to allow for the later attribution of the characteristics of the individual cells to the particular compartment.
As used herein, in some aspects, the partitions refer to containers or vessels (such as wells, microwells, tubes, through ports in nanoarray substrates, e.g., BioTrove nanoarrays, or other containers). In many some aspects, however, the compartments or partitions comprise partitions that are flowable within fluid streams. These partitions may be comprised of, e.g., microcapsules or micro-vesicles that have an outer barrier surrounding an inner fluid center or core, or they may be a porous matrix that is capable of entraining and/or retaining materials within its matrix. In some aspects, however, these partitions comprise droplets of aqueous fluid within a non-aqueous continuous phase, e.g., an oil phase. A variety of different vessels are described in, for example, U.S. patent application Ser. No. 13/966,150, filed Aug. 13, 2013, the full disclosure of which is incorporated herein by reference in its entirety for all purposes. Likewise, emulsion systems for creating stable droplets in non-aqueous or oil continuous phases are described in detail in, e.g., U.S. Patent Publication No. 2010/0105112, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
In the case of droplets in an emulsion, allocating individual cells to discrete partitions may generally be accomplished by introducing a flowing stream of cells in an aqueous fluid into a flowing stream of a non-aqueous fluid, such that droplets are generated at the junction of the two streams. By providing the aqueous cell-containing stream at a certain concentration level of cells, one can control the level of occupancy of the resulting partitions in terms of numbers of cells. In some cases, where single cell partitions are desired, it may be desirable to control the relative flow rates of the fluids such that, on average, the partitions contain less than one cell per partition, in order to ensure that those partitions that are occupied, are primarily singly occupied. Likewise, one may wish to control the flow rate to provide that a higher percentage of partitions are occupied, e.g., allowing for only a small percentage of unoccupied partitions. In some aspects, the flows and channel architectures are controlled as to ensure a desired number of singly occupied partitions, less than a certain level of unoccupied partitions and less than a certain level of multiply occupied partitions.
In many cases, the systems and methods are used to ensure that the substantial majority of occupied partitions (partitions containing one or more microcapsules) include no more than 1 cell per occupied partition. In some cases, the partitioning process is controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition.
Additionally or alternatively, in many cases, it is desirable to avoid the creation of excessive numbers of empty partitions. While this may be accomplished by providing sufficient numbers of cells into the partitioning zone, the poissonian distribution would expectedly increase the number of partitions that would include multiple cells. As such, in accordance with aspects described herein, the flow of one or more of the cells, or other fluids directed into the partitioning zone are controlled such that, in many cases, no more than 50% of the generated partitions are unoccupied, i.e., including less than 1 cell, no more than 25% of the generated partitions, no more than 10% of the generated partitions, may be unoccupied. Further, in some aspects, these flows are controlled so as to present non-poissonian distribution of single occupied partitions while providing lower levels of unoccupied partitions. Restated, in some aspects, the above noted ranges of unoccupied partitions can be achieved while still providing any of the single occupancy rates described above. For example, in many cases, the use of the systems and methods described herein creates resulting partitions that have multiple occupancy rates of from less than 25%, less than 20%, less than 15%, less than 10%, and in many cases, less than 5%, while having unoccupied partitions of from less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, and in some cases, less than 5%.
As will be appreciated, the above-described occupancy rates are also applicable to partitions that include both cells and beads carrying the barcode oligonucleotides. In particular, in some aspects, a substantial percentage of the overall occupied partitions will include both a bead and a cell. In particular, it may be desirable to provide that at least 50% of the partitions are occupied by at least one cell and at least one bead, or at least 75% of the partitions may be so occupied, or even at least 80% or at least 90% of the partitions may be so occupied. Further, in those cases where it is desired to provide a single cell and a single bead within a partition, at least 50% of the partitions can be so occupied, at least 60%, at least 70%, at least 80% or even at least 90% of the partitions can be so occupied.
Although described in terms of providing substantially singly occupied partitions, above, in certain cases, it is desirable to provide multiply occupied partitions, e.g., containing two, three, four or more cells and/or beads within a single partition. Accordingly, as noted above, the flow characteristics of the cell and/or bead containing fluids and partitioning fluids may be controlled to provide for such multiply occupied partitions. In particular, the flow parameters may be controlled to provide a desired occupancy rate at greater than 50% of the partitions, greater than 75%, and in some cases greater than 80%, 90%, 95%, or higher.
Additionally, in many cases, the multiple beads within a single partition may comprise different reagents associated therewith. In such cases, it may be advantageous to introduce different beads into a common channel or droplet generation junction, from different bead sources, i.e., containing different associated reagents, through different channel inlets into such common channel or droplet generation junction. In such cases, the flow and frequency of the different beads into the channel or junction may be controlled to provide for the desired ratio of microcapsules from each source, while ensuring the desired pairing or combination of such beads into a partition with the desired number of cells.
The partitions described herein are often characterized by having extremely small volumes, e.g., less than 10 μL, less than 5 μL, less than 1 μL, less than 900 picoliters (pL), less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, less than 1 pL, less than 500 nanoliters (nL), or even less than 100 nL, 50 nL, or even less.
For example, in the case of droplet based partitions, the droplets may have overall volumes that are less than 1000 pL, less than 900 pL, less than 800 pL, less than 700 pL, less than 600 pL, less than 500 pL, less than 400 pL, less than 300 pL, less than 200 pL, less than 100 pL, less than 50 pL, less than 20 pL, less than 10 pL, or even less than 1 pL. Where co-partitioned with beads, it will be appreciated that the sample fluid volume, e.g., including co-partitioned cells, within the partitions may be less than 90% of the above described volumes, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, or even less than 10% the above described volumes.
As is described elsewhere herein, partitioning species may generate a population of partitions. In such cases, any suitable number of partitions can be generated to generate the population of partitions. For example, in a method described herein, a population of partitions may be generated that comprises at least about 1,000 partitions, at least about 5,000 partitions, at least about 10,000 partitions, at least about 50,000 partitions, at least about 100,000 partitions, at least about 500,000 partitions, at least about 1,000,000 partitions, at least about 5,000,000 partitions at least about 10,000,000 partitions, at least about 50,000,000 partitions, at least about 100,000,000 partitions, at least about 500,000,000 partitions or at least about 1,000,000,000 partitions. Moreover, the population of partitions may comprise both unoccupied partitions (e.g., empty partitions) and occupied partitions
In certain cases, microfluidic channel networks are particularly suited for generating partitions as described herein. Examples of such microfluidic devices include those described in detail in Provisional U.S. Patent Application No. 61/977,804, filed Apr. 4, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes. Alternative mechanisms may also be employed in the partitioning of individual cells, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids. Such systems are generally available from, e.g., Nanomi, Inc.
An example of a simplified microfluidic channel structure for partitioning individual cells is illustrated inFIG. 1. As described elsewhere herein, in some cases, the majority of occupied partitions include no more than one cell per occupied partition and, in some cases, some of the generated partitions are unoccupied. In some cases, though, some of the occupied partitions may include more than one cell. In some cases, the partitioning process may be controlled such that fewer than 25% of the occupied partitions contain more than one cell, and in many cases, fewer than 20% of the occupied partitions have more than one cell, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions include more than one cell per partition. As shown, the channel structure can includechannel segments102,104,106 and108 communicating at achannel junction110. In operation, a firstaqueous fluid112 that includes suspendedcells114, may be transported alongchannel segment102 intojunction110, while asecond fluid116 that is immiscible with theaqueous fluid112 is delivered to thejunction110 fromchannel segments104 and106 to creatediscrete droplets118 of the aqueous fluid includingindividual cells114, flowing intochannel segment108.
In some aspects, thissecond fluid116 comprises an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, e.g., inhibiting subsequent coalescence of the resulting droplets. Examples of particularly useful partitioning fluids and fluorosurfactants are described for example, in U.S. Patent Publication No. 2010/0105112, the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
In other aspects, in addition to or as an alternative to droplet based partitioning, cells may be encapsulated within a microcapsule that comprises an outer shell or layer or porous matrix in which is entrained one or more individual cells or small groups of cells, and may include other reagents. Encapsulation of cells may be carried out by a variety of processes. In general, such processes combine an aqueous fluid containing the cells to be analyzed with a polymeric precursor material that may be capable of being formed into a gel or other solid or semi-solid matrix upon application of a particular stimulus to the polymer precursor. Such stimuli include, e.g., thermal stimuli (either heating or cooling), photo-stimuli (e.g., through photo-curing), chemical stimuli (e.g., through crosslinking, polymerization initiation of the precursor (e.g., through added initiators), or the like.
Preparation of microcapsules comprising cells may be carried out by a variety of methods. For example, air knife droplet or aerosol generators may be used to dispense droplets of precursor fluids into gelling solutions in order to form microcapsules that include individual cells or small groups of cells. Likewise, membrane based encapsulation systems, such as those available from, e.g., Nanomi, Inc., may be used to generate microcapsules as described herein. In some aspects, microfluidic systems like that shown inFIG. 1 may be readily used in encapsulating cells as described herein. In particular, and with reference toFIG. 1, the aqueous fluid comprising the cells and the polymer precursor material is flowed intochannel junction110, where it is partitioned intodroplets118 comprising theindividual cells114, through the flow ofnon-aqueous fluid116. In the case of encapsulation methods,non-aqueous fluid116 may also include an initiator to cause polymerization and/or crosslinking of the polymer precursor to form the microcapsule that includes the entrained cells. Examples of particularly useful polymer precursor/initiator pairs include those described in, e.g., U.S. Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference in their entireties for all purposes.
For example, in the case where the polymer precursor material comprises a linear polymer material, e.g., a linear polyacrylamide, PEG, or other linear polymeric material, the activation agent may comprise a cross-linking agent, or a chemical that activates a cross-linking agent within the formed droplets. Likewise, for polymer precursors that comprise polymerizable monomers, the activation agent may comprise a polymerization initiator. For example, in certain cases, where the polymer precursor comprises a mixture of acrylamide monomer with a N,N′-bis-(acryloyl)cystamine (BAC) comonomer, an agent such as tetraethylmethylenediamine (TEMED) may be provided within the second fluid streams inchannel segments104 and106, which initiates the copolymerization of the acrylamide and BAC into a cross-linked polymer network or, hydrogel.
Upon contact of thesecond fluid stream116 with the firstfluid stream112 atjunction110 in the formation of droplets, the TEMED may diffuse from thesecond fluid116 into the aqueousfirst fluid112 comprising the linear polyacrylamide, which will activate the crosslinking of the polyacrylamide within the droplets, resulting in the formation of the gel, e.g., hydrogel,microcapsules118, as solid or semi-solid beads or particles entraining thecells114. Although described in terms of polyacrylamide encapsulation, other ‘activatable’ encapsulation compositions may also be employed in the context of the methods and compositions described herein. For example, formation of alginate droplets followed by exposure to divalent metal ions, e.g., Ca2+, can be used as an encapsulation process using the described processes. Likewise, agarose droplets may also be transformed into capsules through temperature based gelling, e.g., upon cooling, or the like. As will be appreciated, in some cases, encapsulated cells can be selectively releasable from the microcapsule, e.g., through passage of time, or upon application of a particular stimulus, that degrades the microcapsule sufficiently to allow the cell, or its contents to be released from the microcapsule, e.g., into an additional partition, such as a droplet. For example, in the case of the polyacrylamide polymer described above, degradation of the microcapsule may be accomplished through the introduction of an appropriate reducing agent, such as DTT or the like, to cleave disulfide bonds that cross link the polymer matrix (See, e.g., U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference in their entirety for all purposes.
As will be appreciated, encapsulated cells or cell populations provide certain potential advantages of being storable, and more portable than droplet based partitioned cells. Furthermore, in some cases, it may be desirable to allow cells to be analyzed to incubate for a select period of time, in order to characterize changes in such cells over time, either in the presence or absence of different stimuli. In such cases, encapsulation of individual cells may allow for longer incubation than simple partitioning in emulsion droplets, although in some cases, droplet partitioned cells may also be incubated form different periods of time, e.g., at least 10 seconds, at least 30 seconds, at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 5 hours, or at least 10 hours or more. As alluded to above, the encapsulation of cells may constitute the partitioning of the cells into which other reagents are co-partitioned. Alternatively, encapsulated cells may be readily deposited into other partitions, e.g., droplets, as described above.
In accordance with certain aspects, the cells may be partitioned along with lysis reagents in order to release the contents of the cells within the partition. In such cases, the lysis agents can be contacted with the cell suspension concurrently with, or immediately prior to the introduction of the cells into the partitioning junction/droplet generation zone, e.g., through an additional channel or channels upstream ofchannel junction110. Examples of lysis agents include bioactive reagents, such as lysis enzymes that are used for lysis of different cell types, e.g., gram positive or negative bacteria, plants, yeast, mammalian, etc., such as lysozymes, achromopeptidase, lysostaphin, labiase, kitalase, lyticase, and a variety of other lysis enzymes available from, e.g., Sigma-Aldrich, Inc. (St Louis, Mo.), as well as other commercially available lysis enzymes. Other lysis agents may additionally or alternatively be co-partitioned with the cells to cause the release of the cell's contents into the partitions. For example, in some cases, surfactant based lysis solutions may be used to lyse cells, although these may be less desirable for emulsion based systems where the surfactants can interfere with stable emulsions. In some cases, lysis solutions may include non-ionic surfactants such as, for example, TritonX-100 andTween 20. In some cases, lysis solutions may include ionic surfactants such as, for example, sarcosyl and sodium dodecyl sulfate (SDS). Similarly, lysis methods that employ other methods may be used, such as electroporation, thermal, acoustic or mechanical cellular disruption may also be used in certain cases, e.g., non-emulsion based partitioning such as encapsulation of cells that may be in addition to or in place of droplet partitioning, where any pore size of the encapsulate is sufficiently small to retain nucleic acid fragments of a desired size, following cellular disruption.
In addition to the lysis agents co-partitioned with the cells described above, other reagents can also be co-partitioned with the cells, including, for example, DNase and RNase inactivating agents or inhibitors, such as proteinase K, chelating agents, such as EDTA, and other reagents employed in removing or otherwise reducing negative activity or impact of different cell lysate components on subsequent processing of nucleic acids. In addition, in the case of encapsulated cells, the cells may be exposed to an appropriate stimulus to release the cells or their contents from a co-partitioned microcapsule. For example, in some cases, a chemical stimulus may be co-partitioned along with an encapsulated cell to allow for the degradation of the microcapsule and release of the cell or its contents into the larger partition. In some cases, this stimulus may be the same as the stimulus described elsewhere herein for release of oligonucleotides from their respective bead or partition. In alternative aspects, this may be a different and non-overlapping stimulus, in order to allow an encapsulated cell to be released into a partition at a different time from the release of oligonucleotides into the same partition.
Additional reagents may also be co-partitioned with the cells, such as endonucleases to fragment the cell's DNA, DNA polymerase enzymes and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments. Additional reagents may also include reverse transcriptase enzymes, including enzymes with terminal transferase activity, primers and oligonucleotides, and switch oligonucleotides (also referred to herein as “switch oligos”) which can be used for template switching. In some cases, template switching can be used to increase the length of a cDNA. In one example of template switching, cDNA can be generated from reverse transcription of a template, e.g., cellular mRNA, where a reverse transcriptase with terminal transferase activity can add additional nucleotides, e.g., polyC, to the cDNA that are not encoded by the template, such, as at an end of the cDNA. Switch oligos can include sequences complementary to the additional nucleotides, e.g. polyG. The additional nucleotides (e.g., polyC) on the cDNA can hybridize to the sequences complementary to the additional nucleotides (e.g., polyG) on the switch oligo, whereby the switch oligo can be used by the reverse transcriptase as template to further extend the cDNA. Switch oligos may comprise deoxyribonucleic acids, ribonucleic acids, modified nucleic acids including locked nucleic acids (LNA), or any combination.
In some cases, the length of a switch oligo may be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250 nucleotides or longer.
In some cases, the length of a switch oligo may be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249 or 250 nucleotides or longer.
In some cases, the length of a switch oligo may be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249 or 250 nucleotides.
Once the contents of the cells are released into their respective partitions, the nucleic acids contained therein may be further processed within the partitions. In accordance with the methods and systems described herein, the nucleic acid contents of individual cells are generally provided with unique identifiers such that, upon characterization of those nucleic acids they may be attributed as having been derived from the same cell or cells. The ability to attribute characteristics to individual cells or groups of cells is provided by the assignment of unique identifiers specifically to an individual cell or groups of cells, which is another advantageous aspect of the methods and systems described herein. In particular, unique identifiers, e.g., in the form of nucleic acid barcodes are assigned or associated with individual cells or populations of cells, in order to tag or label the cell's components (and as a result, its characteristics) with the unique identifiers. These unique identifiers are then used to attribute the cell's components and characteristics to an individual cell or group of cells. In some aspects, this is carried out by co-partitioning the individual cells or groups of cells with the unique identifiers. In some aspects, the unique identifiers are provided in the form of oligonucleotides that comprise nucleic acid barcode sequences that may be attached to or otherwise associated with the nucleic acid contents of individual cells, or to other components of the cells, and particularly to fragments of those nucleic acids. The oligonucleotides are partitioned such that as between oligonucleotides in a given partition, the nucleic acid barcode sequences contained therein are the same, but as between different partitions, the oligonucleotides can, and do have differing barcode sequences, or at least represent a large number of different barcode sequences across all of the partitions in a given analysis. In some aspects, only one nucleic acid barcode sequence can be associated with a given partition, although in some cases, two or more different barcode sequences may be present.
The nucleic acid barcode sequences can include from 6 to about 20 or more nucleotides within the sequence of the oligonucleotides. In some cases, the length of a barcode sequence may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer. In some cases, the length of a barcode sequence may be at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer. In some cases, the length of a barcode sequence may be at most 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or shorter. These nucleotides may be completely contiguous, i.e., in a single stretch of adjacent nucleotides, or they may be separated into two or more separate subsequences that are separated by 1 or more nucleotides. In some cases, separated barcode subsequences can be from about 4 to about 16 nucleotides in length. In some cases, the barcode subsequence may be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some cases, the barcode subsequence may be at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some cases, the barcode subsequence may be at most 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or shorter.
The co-partitioned oligonucleotides can also comprise other functional sequences useful in the processing of the nucleic acids from the co-partitioned cells. These sequences include, e.g., targeted or random/universal amplification primer sequences for amplifying the genomic DNA from the individual cells within the partitions while attaching the associated barcode sequences, sequencing primers or primer recognition sites, hybridization or probing sequences, e.g., for identification of presence of the sequences or for pulling down barcoded nucleic acids, or any of a number of other potential functional sequences. Again, co-partitioning of oligonucleotides and associated barcodes and other functional sequences, along with sample materials is described in, for example, U.S. Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, as well as U.S. patent application Ser. No. 14/175,935, filed Feb. 7, 2014, the full disclosures of which are incorporated herein by reference in their entireties for all purposes. As will be appreciated other mechanisms of co-partitioning oligonucleotides may also be employed, including, e.g., coalescence of two or more droplets, where one droplet contains oligonucleotides, or microdispensing of oligonucleotides into partitions, e.g., droplets within microfluidic systems.
Briefly, in one example, beads, microparticles or microcapsules are provided that each include large numbers of the above described oligonucleotides releasably attached to the beads, where all of the oligonucleotides attached to a particular bead will include the same nucleic acid barcode sequence, but where a large number of diverse barcode sequences are represented across the population of beads used. In particularly useful examples, hydrogel beads, e.g., comprising polyacrylamide polymer matrices, are used as a solid support and delivery vehicle for the oligonucleotides into the partitions, as they are capable of carrying large numbers of oligonucleotide molecules, and may be configured to release those oligonucleotides upon exposure to a particular stimulus, as described elsewhere herein. In some cases, the population of beads will provide a diverse barcode sequence library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences. Additionally, each bead can be provided with large numbers of oligonucleotide molecules attached. In particular, the number of molecules of oligonucleotides including the barcode sequence on an individual bead can be at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
Moreover, when the population of beads is partitioned, the resulting population of partitions can also include a diverse barcode library that includes at least 1,000 different barcode sequences, at least 5,000 different barcode sequences, at least 10,000 different barcode sequences, at least at least 50,000 different barcode sequences, at least 100,000 different barcode sequences, at least 1,000,000 different barcode sequences, at least 5,000,000 different barcode sequences, or at least 10,000,000 different barcode sequences. Additionally, each partition of the population can include at least 1,000 oligonucleotide molecules, at least 5,000 oligonucleotide molecules, at least 10,000 oligonucleotide molecules, at least 50,000 oligonucleotide molecules, at least 100,000 oligonucleotide molecules, at least 500,000 oligonucleotides, at least 1,000,000 oligonucleotide molecules, at least 5,000,000 oligonucleotide molecules, at least 10,000,000 oligonucleotide molecules, at least 50,000,000 oligonucleotide molecules, at least 100,000,000 oligonucleotide molecules, and in some cases at least 1 billion oligonucleotide molecules.
In some cases, it may be desirable to incorporate multiple different barcodes within a given partition, either attached to a single or multiple beads within the partition. For example, in some cases, a mixed, but known barcode sequences set may provide greater assurance of identification in the subsequent processing, e.g., by providing a stronger address or attribution of the barcodes to a given partition, as a duplicate or independent confirmation of the output from a given partition.
The oligonucleotides are releasable from the beads upon the application of a particular stimulus to the beads. In some cases, the stimulus may be a photo-stimulus, e.g., through cleavage of a photo-labile linkage that releases the oligonucleotides. In other cases, a thermal stimulus may be used, where elevation of the temperature of the beads environment will result in cleavage of a linkage or other release of the oligonucleotides form the beads. In still other cases, a chemical stimulus is used that cleaves a linkage of the oligonucleotides to the beads, or otherwise results in release of the oligonucleotides from the beads. Examples of this type of system are described in U.S. patent application Ser. No. 13/966,150, filed Aug. 13, 2013, as well as U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, the full disclosures of which are hereby incorporated herein by reference n their entireties for all purposes. In one case, such compositions include the polyacrylamide matrices described above for encapsulation of cells, and may be degraded for release of the attached oligonucleotides through exposure to a reducing agent, such as DTT.
In accordance with the methods and systems described herein, the beads including the attached oligonucleotides are co-partitioned with the individual cells, such that a single bead and a single cell are contained within an individual partition. As noted above, while single cell/single bead occupancy is the most desired state, it will be appreciated that multiply occupied partitions (either in terms of cells, beads or both), or unoccupied partitions (either in terms of cells, beads or both) will often be present. An example of a microfluidic channel structure for co-partitioning cells and beads comprising barcode oligonucleotides is schematically illustrated inFIG. 2. As described elsewhere herein, in some aspects, a substantial percentage of the overall occupied partitions will include both a bead and a cell and, in some cases, some of the partitions that are generated will be unoccupied. In some cases, some of the partitions may have beads and cells that are not partitioned 1:1. In some cases, it may be desirable to provide multiply occupied partitions, e.g., containing two, three, four or more cells and/or beads within a single partition. As shown,channel segments202,204,206,208 and210 are provided in fluid communication atchannel junction212. An aqueous stream comprising theindividual cells214, is flowed throughchannel segment202 towardchannel junction212. As described above, these cells may be suspended within an aqueous fluid, or may have been pre-encapsulated, prior to the partitioning process.
Concurrently, an aqueous stream comprising thebarcode carrying beads216, is flowed throughchannel segment204 towardchannel junction212. Anon-aqueous partitioning fluid216 is introduced intochannel junction212 from each ofside channels206 and208, and the combined streams are flowed intooutlet channel210. Withinchannel junction212, the two combined aqueous streams fromchannel segments202 and204 are combined, and partitioned intodroplets218, that includeco-partitioned cells214 andbeads216. As noted previously, by controlling the flow characteristics of each of the fluids combining atchannel junction212, as well as controlling the geometry of the channel junction, one can optimize the combination and partitioning to achieve a desired occupancy level of beads, cells or both, within thepartitions218 that are generated.
In some cases, lysis agents, e.g., cell lysis enzymes, may be introduced into the partition with the bead stream, e.g., flowing throughchannel segment204, such that lysis of the cell only commences at or after the time of partitioning. Additional reagents may also be added to the partition in this configuration, such as endonucleases to fragment the cell's DNA, DNA polymerase enzyme and dNTPs used to amplify the cell's nucleic acid fragments and to attach the barcode oligonucleotides to the amplified fragments. As noted above, in many cases, a chemical stimulus, such as DTT, may be used to release the barcodes from their respective beads into the partition. In such cases, it may be particularly desirable to provide the chemical stimulus along with the cell-containing stream inchannel segment202, such that release of the barcodes only occurs after the two streams have been combined, e.g., within thepartitions218. Where the cells are encapsulated, however, introduction of a common chemical stimulus, e.g., that both releases the oligonucleotides form their beads, and releases cells from their microcapsules may generally be provided from a separate additional side channel (not shown) upstream of or connected to channeljunction212.
As will be appreciated, a number of other reagents may be co-partitioned along with the cells, beads, lysis agents and chemical stimuli, including, for example, protective reagents, like proteinase K, chelators, nucleic acid extension, replication, transcription or amplification reagents such as polymerases, reverse transcriptases, transposases which can be used for transposon based methods (e.g., Nextera), nucleoside triphosphates or NTP analogues, primer sequences and additional cofactors such as divalent metal ions used in such reactions, ligation reaction reagents, such as ligase enzymes and ligation sequences, dyes, labels, or other tagging reagents.
The channel networks, e.g., as described herein, can be fluidly coupled to appropriate fluidic components. For example, the inlet channel segments, e.g.,channel segments202,204,206 and208 are fluidly coupled to appropriate sources of the materials they are to deliver tochannel junction212. For example,channel segment202 will be fluidly coupled to a source of an aqueous suspension ofcells214 to be analyzed, whilechannel segment204 would be fluidly coupled to a source of an aqueous suspension ofbeads216.Channel segments206 and208 would then be fluidly connected to one or more sources of the non-aqueous fluid. These sources may include any of a variety of different fluidic components, from simple reservoirs defined in or connected to a body structure of a microfluidic device, to fluid conduits that deliver fluids from off-device sources, manifolds, or the like. Likewise, theoutlet channel segment210 may be fluidly coupled to a receiving vessel or conduit for the partitioned cells. Again, this may be a reservoir defined in the body of a microfluidic device, or it may be a fluidic conduit for delivering the partitioned cells to a subsequent process operation, instrument or component.
FIG. 8 shows images of individual Jurkat cells co-partitioned along with barcode oligonucleotide containing beads in aqueous droplets in an aqueous in oil emulsion. As illustrated, individual cells may be readily co-partitioned with individual beads. As will be appreciated, optimization of individual cell loading may be carried out by a number of methods, including by providing dilutions of cell populations into the microfluidic system in order to achieve the desired cell loading per partition as described elsewhere herein.
In operation, once lysed, the nucleic acid contents of the individual cells are then available for further processing within the partitions, including, e.g., fragmentation, amplification and barcoding, as well as attachment of other functional sequences. As noted above, fragmentation may be accomplished through the co-partitioning of shearing enzymes, such as endonucleases, in order to fragment the nucleic acids into smaller fragments. These endonucleases may include restriction endonucleases, including type II and type IIs restriction endonucleases as well as other nucleic acid cleaving enzymes, such as nicking endonucleases, and the like. In some cases, fragmentation may not be desired, and full length nucleic acids may be retained within the partitions, or in the case of encapsulated cells or cell contents, fragmentation may be carried out prior to partitioning, e.g., through enzymatic methods, e.g., those described herein, or through mechanical methods, e.g., mechanical, acoustic or other shearing.
Once co-partitioned, and the cells are lysed to release their nucleic acids, the oligonucleotides disposed upon the bead may be used to barcode and amplify fragments of those nucleic acids. A particularly elegant process for use of these barcode oligonucleotides in amplifying and barcoding fragments of sample nucleic acids is described in detail in U.S. Provisional Patent Application Nos. 61/940,318, filed Feb. 7, 2014, 61/991,018, Filed May 9, 2014, and U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, and previously incorporated by reference. Briefly, in one aspect, the oligonucleotides present on the beads that are co-partitioned with the cells, are released from their beads into the partition with the cell's nucleic acids. The oligonucleotides can include, along with the barcode sequence, a primer sequence at its 5′end. This primer sequence may be a random oligonucleotide sequence intended to randomly prime numerous different regions on the cell's nucleic acids, or it may be a specific primer sequence targeted to prime upstream of a specific targeted region of the cell's genome.
Once released, the primer portion of the oligonucleotide can anneal to a complementary region of the cell's nucleic acid. Extension reaction reagents, e.g., DNA polymerase, nucleoside triphosphates, co-factors (e.g., Mg2+ or Mn2+), that are also co-partitioned with the cells and beads, then extend the primer sequence using the cell's nucleic acid as a template, to produce a complementary fragment to the strand of the cell's nucleic acid to which the primer annealed, which complementary fragment includes the oligonucleotide and its associated barcode sequence. Annealing and extension of multiple primers to different portions of the cell's nucleic acids will result in a large pool of overlapping complementary fragments of the nucleic acid, each possessing its own barcode sequence indicative of the partition in which it was created. In some cases, these complementary fragments may themselves be used as a template primed by the oligonucleotides present in the partition to produce a complement of the complement that again, includes the barcode sequence. In some cases, this replication process is configured such that when the first complement is duplicated, it produces two complementary sequences at or near its termini, to allow formation of a hairpin structure or partial hairpin structure, the reduces the ability of the molecule to be the basis for producing further iterative copies. As described herein, the cell's nucleic acids may include any desired nucleic acids within the cell including, for example, the cell's DNA, e.g., genomic DNA, RNA, e.g., messenger RNA, and the like. For example, in some cases, the methods and systems described herein are used in characterizing expressed mRNA, including, e.g., the presence and quantification of such mRNA, and may include RNA sequencing processes as the characterization process. Alternatively or additionally, the reagents partitioned along with the cells may include reagents for the conversion of mRNA into cDNA, e.g., reverse transcriptase enzymes and reagents, to facilitate sequencing processes where DNA sequencing is employed. In some cases, where the nucleic acids to be characterized comprise RNA, e.g., mRNA, schematic illustration of one example of this is shown inFIG. 3.
As shown, oligonucleotides that include a barcode sequence are co-partitioned in, e.g., adroplet302 in an emulsion, along with a samplenucleic acid304. As noted elsewhere herein, theoligonucleotides308 may be provided on abead306 that is co-partitioned with the samplenucleic acid304, which oligonucleotides are releasable from thebead306, as shown in panel A. Theoligonucleotides308 include abarcode sequence312, in addition to one or more functional sequences, e.g.,sequences310,314 and316. For example,oligonucleotide308 is shown as comprisingbarcode sequence312, as well as sequence310 that may function as an attachment or immobilization sequence for a given sequencing system, e.g., a P5 sequence used for attachment in flow cells of an Illumina Hiseq® or Miseq® system. As shown, the oligonucleotides also include aprimer sequence316, which may include a random or targeted N-mer for priming replication of portions of the samplenucleic acid304. Also included withinoligonucleotide308 is asequence314 which may provide a sequencing priming region, such as a “read1” or R1 priming region, that is used to prime polymerase mediated, template directed sequencing by synthesis reactions in sequencing systems. As will be appreciated, the functional sequences may be selected to be compatible with a variety of different sequencing systems, e.g., 454 Sequencing, Ion Torrent Proton or PGM, Illumina X10, etc., and the requirements thereof. In many cases, thebarcode sequence312, immobilization sequence310 andR1 sequence314 may be common to all of the oligonucleotides attached to a given bead. Theprimer sequence316 may vary for random N-mer primers, or may be common to the oligonucleotides on a given bead for certain targeted applications.
As will be appreciated, in some cases, the functional sequences may include primer sequences useful for RNA-seq applications. For example, in some cases, the oligonucleotides may include poly-T primers for priming reverse transcription of RNA for RNA-seq. In still other cases, oligonucleotides in a given partition, e.g., included on an individual bead, may include multiple types of primer sequences in addition to the common barcode sequences, such as both DNA-sequencing and RNA sequencing primers, e.g., poly-T primer sequences included within the oligonucleotides coupled to the bead. In such cases, a single partitioned cell may be both subjected to DNA and RNA sequencing processes.
Based upon the presence ofprimer sequence316, the oligonucleotides can prime the sample nucleic acid as shown in panel B, which allows for extension of theoligonucleotides308 and308ausing polymerase enzymes and other extension reagents also co-partitioned with thebead306 and samplenucleic acid304. As shown in panel C, following extension of the oligonucleotides that, for random N-mer primers, would anneal to multiple different regions of the samplenucleic acid304; multiple overlapping complements or fragments of the nucleic acid are created, e.g., fragments318 and320. Although including sequence portions that are complementary to portions of sample nucleic acid, e.g., sequences322 and324, these constructs are generally referred to herein as comprising fragments of the samplenucleic acid304, having the attached barcode sequences.
The barcoded nucleic acid fragments may then be subjected to characterization, e.g., through sequence analysis, or they may be further amplified in the process, as shown in panel D. For example, additional oligonucleotides, e.g., oligonucleotide308b, also released frombead306, may prime the fragments318 and320. This shown in for fragment318. In particular, again, based upon the presence of the random N-mer primer316bin oligonucleotide308b(which in many cases can be different from other random N-mers in a given partition, e.g., primer sequence316), the oligonucleotide anneals with the fragment318, and is extended to create a complement326 to at least a portion of fragment318 which includes sequence328, that comprises a duplicate of a portion of the sample nucleic acid sequence. Extension of the oligonucleotide308bcontinues until it has replicated through theoligonucleotide portion308 of fragment318. As noted elsewhere herein, and as illustrated in panel D, the oligonucleotides may be configured to prompt a stop in the replication by the polymerase at a desired point, e.g., after replicating throughsequences316 and314 ofoligonucleotide308 that is included within fragment318. As described herein, this may be accomplished by different methods, including, for example, the incorporation of different nucleotides and/or nucleotide analogues that are not capable of being processed by the polymerase enzyme used. For example, this may include the inclusion of uracil containing nucleotides within thesequence region312 to prevent a non-uracil tolerant polymerase to cease replication of that region. As a result a fragment326 is created that includes the full-length oligonucleotide308bat one end, including thebarcode sequence312, the attachment sequence310, theR1 primer region314, and the random N-mer sequence316b. At the other end of the sequence may be included thecomplement316′ to the random N-mer of thefirst oligonucleotide308, as well as a complement to all or a portion of the R1 sequence, shown assequence314′. TheR1 sequence314 and itscomplement314′ are then able to hybridize together to form a partial hairpin structure328. As will be appreciated because the random N-mers differ among different oligonucleotides, these sequences and their complements would not be expected to participate in hairpin formation, e.g.,sequence316′, which is the complement to random N-mer316, would not be expected to be complementary to random N-mer sequence316b. This would not be the case for other applications, e.g., targeted primers, where the N-mers would be common among oligonucleotides within a given partition.
By forming these partial hairpin structures, it allows for the removal of first level duplicates of the sample sequence from further replication, e.g., preventing iterative copying of copies. The partial hairpin structure also provides a useful structure for subsequent processing of the created fragments, e.g., fragment326.
In general, the amplification of the cell's nucleic acids is carried out until the barcoded overlapping fragments within the partition constitute at least 1× coverage of the particular portion or all of the cell's genome, at least 2×, at least 3×, at least 4×, at least 5×, at least 10×, at least 20×, at least 40× or more coverage of the genome or its relevant portion of interest. Once the barcoded fragments are produced, they may be directly sequenced on an appropriate sequencing system, e.g., an Illumina Hiseq®, Miseq® or X10 system, or they may be subjected to additional processing, such as further amplification, attachment of other functional sequences, e.g., second sequencing primers, for reverse reads, sample index sequences, and the like.
All of the fragments from multiple different partitions may then be pooled for sequencing on high throughput sequencers as described herein, where the pooled fragments comprise a large number of fragments derived from the nucleic acids of different cells or small cell populations, but where the fragments from the nucleic acids of a given cell will share the same barcode sequence. In particular, because each fragment is coded as to its partition of origin, and consequently its single cell or small population of cells, the sequence of that fragment may be attributed back to that cell or those cells based upon the presence of the barcode, which will also aid in applying the various sequence fragments from multiple partitions to assembly of individual genomes for different cells. This is schematically illustrated inFIG. 4. As shown in one example, a firstnucleic acid404 from afirst cell400, and a secondnucleic acid406 from asecond cell402 are each partitioned along with their own sets of barcode oligonucleotides as described above. The nucleic acids may comprise a chromosome, entire genome or other large nucleic acid from the cells.
Within each partition, each cell'snucleic acids404 and406 is then processed to separately provide overlapping set of second fragments of the first fragment(s), e.g., second fragment sets408 and410. This processing also provides the second fragments with a barcode sequence that is the same for each of the second fragments derived from a particular first fragment. As shown, the barcode sequence for second fragment set408 is denoted by “1” while the barcode sequence for fragment set410 is denoted by “2”. A diverse library of barcodes may be used to differentially barcode large numbers of different fragment sets. However, it is not necessary for every second fragment set from a different first fragment to be barcoded with different barcode sequences. In fact, in many cases, multiple different first fragments may be processed concurrently to include the same barcode sequence. Diverse barcode libraries are described in detail elsewhere herein.
The barcoded fragments, e.g., from fragment sets408 and410, may then be pooled for sequencing using, for example, sequence by synthesis technologies available from Illumina or Ion Torrent division of Thermo-Fisher, Inc. Once sequenced, the sequence reads412 can be attributed to their respective fragment set, e.g., as shown in aggregated reads414 and416, at least in part based upon the included barcodes, and in some cases, in part based upon the sequence of the fragment itself. The attributed sequence reads for each fragment set are then assembled to provide the assembled sequence for each cell's nucleic acids, e.g.,sequences418 and420, which in turn, may be attributed to individual cells, e.g.,cells400 and402.
While described in terms of analyzing the genetic material present within cells, the methods and systems described herein may have much broader applicability, including the ability to characterize other aspects of individual cells or cell populations, by allowing for the allocation of reagents to individual cells, and providing for the attributable analysis or characterization of those cells in response to those reagents. These methods and systems are particularly valuable in being able to characterize cells for, e.g., research, diagnostic, pathogen identification, and many other purposes. By way of example, a wide range of different cell surface features, e.g., cell surface proteins like cluster of differentiation or CD proteins, have significant diagnostic relevance in characterization of diseases like cancer.
In one particularly useful application, the methods and systems described herein may be used to characterize cell features, such as cell surface features, e.g., proteins, receptors, etc. In particular, the methods described herein may be used to attach reporter molecules to these cell features, that when partitioned as described above, may be barcoded and analyzed, e.g., using DNA sequencing technologies, to ascertain the presence, and in some cases, relative abundance or quantity of such cell features within an individual cell or population of cells.
In a particular example, a library of potential cell binding ligands, e.g., antibodies, antibody fragments, cell surface receptor binding molecules, or the like, maybe provided associated with a first set of nucleic acid reporter molecules, e.g., where a different reporter oligonucleotide sequence is associated with a specific ligand, and therefore capable of binding to a specific cell surface feature. In some aspects, different members of the library may be characterized by the presence of a different oligonucleotide sequence label, e.g., an antibody to a first type of cell surface protein or receptor would have associated with it a first known reporter oligonucleotide sequence, while an antibody to a second receptor protein would have a different known reporter oligonucleotide sequence associated with it. Prior to co-partitioning, the cells would be incubated with the library of ligands, that may represent antibodies to a broad panel of different cell surface features, e.g., receptors, proteins, etc., and which include their associated reporter oligonucleotides. Unbound ligands are washed from the cells, and the cells are then co-partitioned along with the barcode oligonucleotides described above. As a result, the partitions will include the cell or cells, as well as the bound ligands and their known, associated reporter oligonucleotides.
Without the need for lysing the cells within the partitions, one could then subject the reporter oligonucleotides to the barcoding operations described above for cellular nucleic acids, to produce barcoded, reporter oligonucleotides, where the presence of the reporter oligonucleotides can be indicative of the presence of the particular cell surface feature, and the barcode sequence will allow the attribution of the range of different cell surface features to a given individual cell or population of cells based upon the barcode sequence that was co-partitioned with that cell or population of cells. As a result, one may generate a cell-by-cell profile of the cell surface features within a broader population of cells. This aspect of the methods and systems described herein, is described in greater detail below.
This example is schematically illustrated inFIG. 5. As shown, a population of cells, represented bycells502 and504 are incubated with a library of cell surface associated reagents, e.g., antibodies, cell surface binding proteins, ligands or the like, where each different type of binding group includes an associated nucleic acid reporter molecule associated with it, shown as ligands and associatedreporter molecules506,508,510 and512 (with the reporter molecules being indicated by the differently shaded circles). Where the cell expresses the surface features that are bound by the library, the ligands and their associated reporter molecules can become associated or coupled with the cell surface. Individual cells are then partitioned into separate partitions, e.g., droplets514 and516, along with their associated ligand/reporter molecules, as well as an individual barcode oligonucleotide bead as described elsewhere herein, e.g., beads522 and524, respectively. As with other examples described herein, the barcoded oligonucleotides are released from the beads and used to attach the barcode sequence the reporter molecules present within each partition with a barcode that is common to a given partition, but which varies widely among different partitions. For example, as shown inFIG. 5, the reporter molecules that associate withcell502 in partition514 are barcoded withbarcode sequence518, while the reporter molecules associated with cell504 in partition516 are barcoded withbarcode520. As a result, one is provided with a library of oligonucleotides that reflects the surface ligands of the cell, as reflected by the reporter molecule, but which is substantially attributable to an individual cell by virtue of a common barcode sequence, allowing a single cell level profiling of the surface characteristics of the cell. As will be appreciated, this process is not limited to cell surface receptors but may be used to identify the presence of a wide variety of specific cell structures, chemistries or other characteristics.
III. Barcoding
Downstream applications, for example DNA sequencing, may rely on the barcodes to identify the origin of a sequence and, for example, to assemble a larger sequence from sequenced fragments. Therefore, it may be desirable to add barcodes to the polynucleotide fragments generated by the methods described herein. Barcodes may be of a variety of different formats, including polynucleotide barcodes. Depending upon the specific application, barcodes may be attached to polynucleotide fragments in a reversible or irreversible manner. Barcodes may also allow for identification and/or quantification of individual polynucleotide fragments during sequencing.
Barcodes may be loaded into partitions so that one or more barcodes are introduced into a particular partition. Each partition may contain a different set of barcodes. This may be accomplished by directly dispensing the barcodes into the partitions, enveloping the barcodes (e.g., in a droplet of an emulsion), or by placing the barcodes within a container that is placed in a partition (e.g., a microcapsule).
For example, a population of microcapsules may be prepared such that a first microcapsule in the population comprises multiple copies of identical barcodes (e.g., polynucleotide bar codes, etc.) and a second microcapsule in the population comprises multiple copies of a barcode that differs from the barcode within the first microcapsule. In some cases, the population of microcapsules may comprise multiple microcapsules (e.g., greater than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 500, 1000, 5000, 10000, 100000, 1000000, 10000000, 100000000, or 1000000000 microcapsules), each containing multiple copies of a barcode that differs from that contained in the other microcapsules. In some cases, the population may comprise greater than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 500, 1000, 5000, 10000, 100000, 1000000, 10000000, 100000000, or 1000000000 microcapsules with identical sets of barcodes. In some cases, the population may comprise greater than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 500, 1000, 5000, 10000, 100000, 1000000, 10000000, 100000000, or 1000000000 microcapsules, wherein the microcapsules each comprise a different combination of barcodes. For example, in some cases the different combinations overlap, such that a first microcapsule may comprise, e.g., barcodes A, B, and C, while a second microcapsule may comprise barcodes A, B, and D. In another example, the different combinations do not overlap, such that a first microcapsule may comprise, e.g., barcodes A, B, and C, while a second microcapsule may comprise barcodes D, E, and F. The use of microcapsules is, of course, optional. All of the combinations described above, and throughout this disclosure, may also be generated by dispending barcodes (and other reagents) directly into partitions (e.g., microwells).
The barcodes may be loaded into the partitions at an expected or predicted ratio of barcodes per species to be barcoded (e.g., polynucleotide fragment, strand of polynucleotide, cell, etc.). In some cases, the barcodes are loaded into partitions such that more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, or 200000 barcodes are loaded per species. In some cases, the barcodes are loaded in the partitions so that less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, or 200000 barcodes are loaded per species. In some cases, the average number of barcodes loaded per species is less than, or greater than, about 0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, or 200000 barcodes per species.
When more than one barcode is present per polynucleotide fragment, such barcodes may be copies of the same barcode, or multiple different barcodes. For example, the attachment process may be designed to attach multiple identical barcodes to a single polynucleotide fragment, or multiple different barcodes to the polynucleotide fragment.
The methods provided herein may comprise loading a partition (e.g., a microwell, droplet of an emulsion) with the reagents necessary for the attachment of barcodes to polynucleotide fragments. In the case of ligation reactions, reagents including restriction enzymes, ligase enzymes, buffers, adapters, barcodes and the like may be loaded into a partition. In the case barcoding by amplification, reagents including primers, DNA polymerases, DNTPs, buffers, barcodes and the like may be loaded into a partition. As described throughout this disclosure, these reagents may be loaded directly into the partition, or via a container such as a microcapsule. If the reagents are not disposed within a container, they may be loaded into a partition (e.g., a microwell) which may then be sealed with a wax or oil until the reagents are used.
Barcodes may be ligated to a polynucleotide fragment using sticky or blunt ends. Barcoded polynucleotide fragments may also be generated by amplifying a polynucleotide fragment with primers comprising barcodes.
Barcodes may be assembled combinatorially, from smaller components designed to assemble in a modular format. For example, three modules, 1A, 1B, and 1C may be combinatorially assembled to produce barcode 1ABC. Such combinatorial assembly may significantly reduce the cost of synthesizing a plurality of barcodes. For example, a combinatorial system consisting of 3 A modules, 3 B modules, and 3 C modules may generate 3*3*3=27 possible barcode sequences from only 9 modules.
Barcoding and beads of the present disclosure may be performed and used as described in, for example, WO2014/028537 and WO 2014/124338, each of which is entirely incorporated herein by reference.
IV. Applications of single cell analysis
There are a wide variety of different applications of the single cell processing and analysis methods and systems described herein, including analysis of specific individual ells, analysis of different cell types within populations of differing cell types, analysis and characterization of large populations of cells for environmental, human health, epidemiological forensic, or any of a wide variety of different applications.
A particularly valuable application of the single cell analysis processes described herein is in the sequencing and characterization of cancer cells. In particular, conventional analytical techniques, including the ensemble sequencing processes alluded to above, are not highly adept at picking small variations in genomic make-up of cancer cells, particularly where those exist in a sea of normal tissue cells. Further, even as between tumor cells, wide variations can exist and can be masked by the ensemble approaches to sequencing (See, e.g., Patel, et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science DOI: 10.1126/science.1254257 (Published online Jun. 12, 2014). Cancer cells may be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells, and subjected to the partitioning processes described above. Upon analysis, one can identify individual cell sequences as deriving from a single cell or small group of cells, and distinguish those over normal tissue cell sequences. Further, as described in co-pending U.S. Provisional Patent Application No. 62/017,808, filed Jun. 26, 2014, the full disclosures of which is hereby incorporated herein by reference in its entirety for all purposes, one may also obtain phased sequence information from each cell, allowing clearer characterization of the haplotype variants within a cancer cell. The single cell analysis approach is particularly useful for systems and methods involving low quantities of input nucleic acids, as described in co-pending U.S. Provisional Patent Application No. 62/017,580, filed Jun. 26, 2014, the full disclosures of which is hereby incorporated herein by reference in its entirety for all purposes.
As with cancer cell analysis, the analysis and diagnosis of fetal health or abnormality through the analysis of fetal cells is a difficult task using conventional techniques. In particular, in the absence of relatively invasive procedures, such as amniocentesis obtaining fetal cell samples can employ harvesting those cells from the maternal circulation. As will be appreciated, such circulating fetal cells make up an extremely small fraction of the overall cellular population of that circulation. As a result complex analyses are performed in order to characterize what of the obtained data is likely derived from fetal cells as opposed to maternal cells. By employing the single cell characterization methods and systems described herein, however, one can attribute genetic make up to individual cells, and categorize those cells as maternal or fetal based upon their respective genetic make-up. Further, the genetic sequence of fetal cells may be used to identify any of a number of genetic disorders, including, e.g., aneuploidy such as Down syndrome, Edwards syndrome, and Patau syndrome.
The ability to characterize individual cells from larger diverse populations of cells is also of significant value in both environmental testing as well as in forensic analysis, where samples may, by their nature, be made up of diverse populations of cells and other material that “contaminate” the sample, relative to the cells for which the sample is being tested, e.g., environmental indicator organisms, toxic organisms, and the like for, e.g., environmental and food safety testing, victim and/or perpetrator cells in forensic analysis for sexual assault, and other violent crimes, and the like.
Additional useful applications of the above described single cell sequencing and characterization processes are in the field of neuroscience research and diagnosis. In particular, neural cells can include long interspersed nuclear elements (LINEs), or ‘jumping’ genes that can move around the genome, which cause each neuron to differ from its neighbor cells. Research has shown that the number of LINEs in human brain exceeds that of other tissues, e.g., heart and liver tissue, with between 80 and 300 unique insertions (See, e.g., Coufal, N. G. et al.Nature460, 1127-1131 (2009)). These differences have been postulated as being related to a person's susceptibility to neuro-logical disorders (see, e.g., Muotri, A. R. et al.Nature468, 443-446 (2010)), or provide the brain with a diversity with which to respond to challenges. As such, the methods described herein may be used in the sequencing and characterization of individual neural cells.
The single cell analysis methods described herein are also useful in the analysis of gene expression, as noted above, both in terms of identification of RNA transcripts and their quantitation. In particular, using the single cell level analysis methods described herein, one can isolate and analyze the RNA transcripts present in individual cells, populations of cells, or subsets of populations of cells. In particular, in some cases, the barcode oligonucleotides may be configured to prime, replicate and consequently yield barcoded fragments of RNA from individual cells. For example, in some cases, the barcode oligonucleotides may include mRNA specific priming sequences, e.g., poly-T primer segments that allow priming and replication of mRNA in a reverse transcription reaction or other targeted priming sequences. Alternatively or additionally, random RNA priming may be carried out using random N-mer primer segments of the barcode oligonucleotides.
FIG. 6 provides a schematic of one example method for RNA expression analysis in individual cells using the methods described herein. As shown, at operation602 a cell containing sample is sorted for viable cells, which are quantified and diluted for subsequent partitioning. Atoperation604, the individual cells separately co-partitioned with gel beads bearing the barcoding oligonucleotides as described herein. The cells are lysed and the barcoded oligonucleotides released into the partitions atoperation606, where they interact with and hybridize to the mRNA atoperation608, e.g., by virtue of a poly-T primer sequence, which is complementary to the poly-A tail of the mRNA. Using the poly-T barcode oligonucleotide as a priming sequence, a reverse transcription reaction is carried out atoperation610 to synthesize a cDNA transcript of the mRNA that includes the barcode sequence. The barcoded cDNA transcripts are then subjected to additional amplification atoperation612, e.g., using a PCR process, purification atoperation614, before they are placed on a nucleic acid sequencing system for determination of the cDNA sequence and its associated barcode sequence(s). In some cases, as shown,operations602 through608 can occur while the reagents remain in their original droplet or partition, whileoperations612 through616 can occur in bulk (e.g., outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations612 through616. In some cases, barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion. In some cases,operation610 may be performed either within the partitions based upon co-partitioning of the reverse transcription mixture, e.g., reverse transcriptase and associated reagents, or it may be performed in bulk.
As noted elsewhere herein, the structure of the barcode oligonucleotides may include a number of sequence elements in addition to the oligonucleotide barcode sequence. One example of a barcode oligonucleotide for use in RNA analysis as described above is shown inFIG. 7. As shown, theoverall oligonucleotide702 is coupled to abead704 by areleasable linkage706, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence708, which may include one or more of a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well as sequencing primer sequences, e.g., a R1 primer for Illumina sequencing systems. Abarcode sequence710 is included within the structure for use in barcoding the sample RNA. An mRNA specific priming sequence, such as poly-T sequence712 is also included in the oligonucleotide structure. Ananchoring sequence segment714 may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. This anchoring sequence can include a random short sequence of nucleotides, e.g., 1-mer, 2-mer, 3-mer or longer sequence, which will ensure that the poly-T segment is more likely to hybridize at the sequence end of the poly-A tail of the mRNA. Anadditional sequence segment716 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, e.g., as a random sequence (e.g., such as a random N-mer sequence) that varies across individual oligonucleotides coupled to a single bead, whereasbarcode sequence710 can be constant among oligonucleotides tethered to an individual bead. This unique sequence serves to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual bead can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. This unique molecular sequence segment may include from 5 to about 8 or more nucleotides within the sequence of the oligonucleotides. In some cases, the unique molecular sequence segment can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or longer. In some cases, the unique molecular sequence segment can be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides in length or shorter.
In operation, and with reference toFIGS. 6 and 7, a cell is co-partitioned along with a barcode bearing bead and lysed while the barcoded oligonucleotides are released from the bead. The poly-T portion of the released barcode oligonucleotide then hybridizes to the poly-A tail of the mRNA. The poly-T segment then primes the reverse transcription of the mRNA to produce a cDNA transcript of the mRNA, but which includes each of the sequence segments708-716 of the barcode oligonucleotide. Again, because theoligonucleotide702 includes ananchoring sequence714, it will more likely hybridize to and prime reverse transcription at the sequence end of the poly-A tail of the mRNA. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a commonbarcode sequence segment710. However, by including the unique random N-mer sequence, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. This provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. As noted above, the transcripts are then amplified, cleaned up and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment.
As noted elsewhere herein, while a poly-T primer sequence is described, other targeted or random priming sequences may also be used in priming the reverse transcription reaction. Likewise, although described as releasing the barcoded oligonucleotides into the partition along with the contents of the lysed cells, it will be appreciated that in some cases, the gel bead bound oligonucleotides may be used to hybridize ad capture the mRNA on the solid phase of the gel beads, in order to facilitate the separation of the RNA from other cell contents.
An additional example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis, is shown inFIG. 9A. As shown, theoverall oligonucleotide902 can be coupled to abead904 by areleasable linkage906, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence908, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence for Illumina sequencing systems, as well asfunctional sequence910, which may include sequencing primer sequences, e.g., a R1 primer binding site for Illumina sequencing systems. Abarcode sequence912 is included within the structure for use in barcoding the sample RNA. An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence914 is also included in the oligonucleotide structure. An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. Anadditional sequence segment916 may be provided within the oligonucleotide sequence. This additional sequence can provide a unique molecular sequence segment, e.g., as a random N-mer sequence that varies across individual oligonucleotides coupled to a single bead, whereasbarcode sequence912 can be constant among oligonucleotides tethered to an individual bead. As described elsewhere herein, this unique sequence can serve to provide a unique identifier of the starting mRNA molecule that was captured, in order to allow quantitation of the number of original expressed RNA, e.g., mRNA counting. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
In an example method of cellular RNA (e.g., mRNA) analysis and in reference toFIG. 9A, a cell is co-partitioned along with a barcode bearing bead,switch oligo924, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). Inoperation950, the cell is lysed while thebarcoded oligonucleotides902 are released from the bead (e.g., via the action of the reducing agent) and the poly-T segment914 of the released barcode oligonucleotide then hybridizes to the poly-A tail ofmRNA920 that is released from the cell. Next, inoperation952 the poly-T segment914 is extended in a reverse transcription reaction using the mRNA as a template to produce acDNA transcript922 complementary to the mRNA and also includes each of thesequence segments908,912,910,916 and914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). Theswitch oligo924 may then hybridize with the additional bases added to the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into thecDNA transcript922 via extension of thecDNA transcript922 using theswitch oligo924 as a template. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a commonbarcode sequence segment912. However, by including the unique random N-mer sequence916, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. As described elsewhere herein, this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. Followingoperation952, thecDNA transcript922 is then amplified with primers926 (e.g., PCR primers) in operation954. Next, the amplified product is then purified (e.g., via solid phase reversible immobilization (SPRI)) inoperation956. Atoperation958, the amplified product is then sheared, ligated to additional functional sequences, and further amplified (e.g., via PCR). The functional sequences may include a sequencer specific flowcell attachment sequence930, e.g., a P7 sequence for Illumina sequencing systems, as well asfunctional sequence928, which may include a sequencing primer binding site, e.g., for a R2 primer for Illumina sequencing systems, as well asfunctional sequence932, which may include a sample index, e.g., an i7 sample index sequence for Illumina sequencing systems. In some cases,operations950 and952 can occur in the partition, whileoperations954,956 and958 can occur in bulk solution (e.g., in a pooled mixture outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations954,956 and958. In some cases, operation954 may be completed in the partition. In some cases, barcode oligonucleotides may be digested with exonucleases after the emulsion is broken. Exonuclease activity can be inhibited by ethylenediaminetetraacetic acid (EDTA) following primer digestion. Although described in terms of specific sequence references used for certain sequencing systems, e.g., Illumina systems, it will be understood that the reference to these sequences is for illustration purposes only, and the methods described herein may be configured for use with other sequencing systems incorporating specific priming, attachment, index, and other operational sequences used in those systems, e.g., systems available from Ion Torrent, Oxford Nanopore, Genia, Pacific Biosciences, Complete Genomics, and the like.
In an alternative example of a barcode oligonucleotide for use in RNA (e.g., cellular RNA) analysis as shown inFIG. 9A,functional sequence908 may be a P7 sequence andfunctional sequence910 may be a R2 primer binding site. Moreover, thefunctional sequence930 may be a P5 sequence,functional sequence928 may be a R1 primer binding site, andfunctional sequence932 may be an i5 sample index sequence for Illumina sequencing systems. The configuration of the constructs generated by such a barcode oligonucleotide can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
Shown inFIG. 9B is another example method for RNA analysis, including cellular mRNA analysis. In this method, theswitch oligo924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). Theswitch oligo924 may be labeled with anadditional tag934, e.g. biotin. Inoperation951, the cell is lysed while the barcoded oligonucleotides902 (e.g., as shown inFIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases,sequence908 is a P7 sequence andsequence910 is a R2 primer binding site. In other cases,sequence908 is a P5 sequence andsequence910 is a R1 primer binding site. Next, the poly-T segment914 of the released barcode oligonucleotide hybridizes to the poly-A tail ofmRNA920 that is released from the cell. Inoperation953, the poly-T segment914 is then extended in a reverse transcription reaction using the mRNA as a template to produce acDNA transcript922 complementary to the mRNA and also includes each of thesequence segments908,912,910,916 and914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). Theswitch oligo924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into thecDNA transcript922 via extension of thecDNA transcript922 using theswitch oligo924 as a template. Next, anisolation operation960 can be used to isolate thecDNA transcript922 from the reagents and oligonucleotides in the partition. Theadditional tag934, e.g. biotin, can be contacted with an interactingtag936, e.g., streptavidin, which may be attached to amagnetic bead938. Atoperation960 the cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via PCR) in operation955, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) inoperation957 and further processing (shearing, ligation ofsequences928,932 and930 and subsequent amplification (e.g., via PCR)) inoperation959. In some cases wheresequence908 is a P7 sequence andsequence910 is a R2 primer binding site,sequence930 is a P5 sequence andsequence928 is a R1 primer binding site andsequence932 is an i5 sample index sequence. In some cases wheresequence908 is a P5 sequence andsequence910 is a R1 primer binding site,sequence930 is a P7 sequence andsequence928 is a R2 primer binding site andsequence932 is an i7 sample index sequence. In some cases, as shown,operations951 and953 can occur in the partition, whileoperations960,955,957 and959 can occur in bulk solution (e.g., in a pooled mixture outside of the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperation960. Theoperations955,957, and959 can then be carried out followingoperation960 after the transcripts are pooled for processing.
Shown inFIG. 9C is another example method for RNA analysis, including cellular mRNA analysis. In this method, theswitch oligo924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs in a partition (e.g., a droplet in an emulsion). Inoperation961, the cell is lysed while the barcoded oligonucleotides902 (e.g., as shown inFIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases,sequence908 is a P7 sequence andsequence910 is a R2 primer binding site. In other cases,sequence908 is a P5 sequence andsequence910 is a R1 primer binding site. Next, the poly-T segment914 of the released barcode oligonucleotide then hybridizes to the poly-A tail ofmRNA920 that is released from the cell. Next, inoperation963 the poly-T segment914 is then extended in a reverse transcription reaction using the mRNA as a template to produce acDNA transcript922 complementary to the mRNA and also includes each of thesequence segments908,912,910,916 and914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). Theswitch oligo924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into thecDNA transcript922 via extension of thecDNA transcript922 using theswitch oligo924 as a template. Followingoperation961 andoperation963,mRNA920 andcDNA transcript922 are denatured inoperation962. Atoperation964, a second strand is extended from aprimer940 having anadditional tag942, e.g. biotin, and hybridized to thecDNA transcript922. Also inoperation964, the biotin labeled second strand can be contacted with an interactingtag936, e.g. streptavidin, which may be attached to amagnetic bead938. The cDNA can be isolated with a pull-down operation (e.g., via magnetic separation, centrifugation) before amplification (e.g., via polymerase chain reaction (PCR)) inoperation965, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) inoperation967 and further processing (shearing, ligation ofsequences928,932 and930 and subsequent amplification (e.g., via PCR)) inoperation969. In some cases wheresequence908 is a P7 sequence andsequence910 is a R2 primer binding site,sequence930 is a P5 sequence andsequence928 is a R1 primer binding site andsequence932 is an i5 sample index sequence. In some cases wheresequence908 is a P5 sequence andsequence910 is a R1 primer binding site,sequence930 is a P7 sequence andsequence928 is a R2 primer binding site andsequence932 is an i7 sample index sequence. In some cases,operations961 and963 can occur in the partition, whileoperations962,964,965,967, and969 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations962,964,965,967 and969.
Shown inFIG. 9D is another example method for RNA analysis, including cellular mRNA analysis. In this method, theswitch oligo924 is co-partitioned with the individual cell and barcoded bead along with reagents such as reverse transcriptase, a reducing agent and dNTPs. Inoperation971, the cell is lysed while the barcoded oligonucleotides902 (e.g., as shown inFIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases,sequence908 is a P7 sequence andsequence910 is a R2 primer binding site. In other cases,sequence908 is a P5 sequence andsequence910 is a R1 primer binding site. Next the poly-T segment914 of the released barcode oligonucleotide then hybridizes to the poly-A tail ofmRNA920 that is released from the cell. Next inoperation973, the poly-T segment914 is then extended in a reverse transcription reaction using the mRNA as a template to produce acDNA transcript922 complementary to the mRNA and also includes each of thesequence segments908,912,910,916 and914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). Theswitch oligo924 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence can then be incorporated into thecDNA transcript922 via extension of thecDNA transcript922 using theswitch oligo924 as a template. Inoperation966, themRNA920,cDNA transcript922 andswitch oligo924 can be denatured, and thecDNA transcript922 can be hybridized with acapture oligonucleotide944 labeled with anadditional tag946, e.g. biotin. In this operation, the biotin-labeledcapture oligonucleotide944, which is hybridized to the cDNA transcript, can be contacted with an interactingtag936, e.g. streptavidin, which may be attached to amagnetic bead938. Following separation from other species (e.g., excess barcoded oligonucleotides) using a pull-down operation (e.g., via magnetic separation, centrifugation), the cDNA transcript can be amplified (e.g., via PCR) withprimers926 atoperation975, followed by purification (e.g., via solid phase reversible immobilization (SPRI)) inoperation977 and further processing (shearing, ligation ofsequences928,932 and930 and subsequent amplification (e.g., via PCR)) inoperation979. In some cases wheresequence908 is a P7 sequence andsequence910 is a R2 primer binding site,sequence930 is a P5 sequence andsequence928 is a R1 primer binding site andsequence932 is an i5 sample index sequence. In other cases wheresequence908 is a P5 sequence andsequence910 is a R1 primer binding site,sequence930 is a P7 sequence andsequence928 is a R2 primer binding site andsequence932 is an i7 sample index sequence. In some cases,operations971 and973 can occur in the partition, whileoperations966,975,977 (purification), and979 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations966,975,977 and979.
Shown inFIG. 9E is another example method for RNA analysis, including cellular RNA analysis. In this method, an individual cell is co-partitioned along with a barcode bearing bead, aswitch oligo990, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). Inoperation981, the cell is lysed while the barcoded oligonucleotides (e.g.,902 as shown inFIG. 9A) are released from the bead (e.g., via the action of the reducing agent). In some cases,sequence908 is a P7 sequence andsequence910 is a R2 primer binding site. In other cases,sequence908 is a P5 sequence andsequence910 is a R1 primer binding site. Next, the poly-T segment of the released barcode oligonucleotide then hybridizes to the poly-A tail ofmRNA920 released from the cell. Next atoperation983, the poly-T segment is then extended in a reverse transcription reaction to produce acDNA transcript922 complementary to the mRNA and also includes each of thesequence segments908,912,910,916 and914 of the barcode oligonucleotide. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). Theswitch oligo990 may then hybridize with the cDNA transcript and facilitate template switching. A sequence complementary to the switch oligo sequence and including a T7 promoter sequence, can be incorporated into thecDNA transcript922. Atoperation968, a second strand is synthesized and atoperation970 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription. Atoperation985 the RNA transcripts can be purified (e.g., via solid phase reversible immobilization (SPRI)), reverse transcribed to form DNA transcripts, and a second strand can be synthesized for each of the DNA transcripts. In some cases, prior to purification, the RNA transcripts can be contacted with a DNase (e.g., DNAase I) to break down residual DNA. Atoperation987 the DNA transcripts are then fragmented and ligated to additional functional sequences, such assequences928,932 and930 and, in some cases, further amplified (e.g., via PCR). In some cases wheresequence908 is a P7 sequence andsequence910 is a R2 primer binding site,sequence930 is a P5 sequence andsequence928 is a R1 primer binding site andsequence932 is an i5 sample index sequence. In some cases wheresequence908 is a P5 sequence andsequence910 is a R1 primer binding site,sequence930 is a P7 sequence andsequence928 is a R2 primer binding site andsequence932 is an i7 sample index sequence. In some cases, prior to removing a portion of the DNA transcripts, the DNA transcripts can be contacted with an RNase to break down residual RNA. In some cases,operations981 and983 can occur in the partition, whileoperations968,970,985 and987 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations968,970,985 and987.
Another example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown inFIG. 10. As shown, theoverall oligonucleotide1002 is coupled to abead1004 by areleasable linkage1006, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence1008, which may include a sequencer specific flow cell attachment sequence, e.g., a P7 sequence, as well asfunctional sequence1010, which may include sequencing primer sequences, e.g., a R2 primer binding site. Abarcode sequence1012 is included within the structure for use in barcoding the sample RNA. An RNA specific (e.g., mRNA specific) priming sequence, such as poly-T sequence1014 may be included in the oligonucleotide structure. An anchoring sequence segment (not shown) may be included to ensure that the poly-T sequence hybridizes at the sequence end of the mRNA. Anadditional sequence segment1016 may be provided within the oligonucleotide sequence. This additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. An additionalfunctional sequence1020 may be included for in vitro transcription, e.g., a T7 RNA polymerase promoter sequence. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
In an example method of cellular RNA analysis and in reference toFIG. 10, a cell is co-partitioned along with a barcode bearing bead, and other reagents such as reverse transcriptase, reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). Inoperation1050, the cell is lysed while thebarcoded oligonucleotides1002 are released (e.g., via the action of the reducing agent) from the bead, and the poly-T segment1014 of the released barcode oligonucleotide then hybridizes to the poly-A tail ofmRNA1020. Next atoperation1052, the poly-T segment is then extended in a reverse transcription reaction using the mRNA as template to produce acDNA transcript1022 of the mRNA and also includes each of thesequence segments1020,1008,1012,1010,1016, and1014 of the barcode oligonucleotide. Within any given partition, all of the cDNA transcripts of the individual mRNA molecules will include a commonbarcode sequence segment1012. However, by including the unique random N-mer sequence, the transcripts made from different mRNA molecules within a given partition will vary at this unique sequence. As described elsewhere herein, this provides a quantitation feature that can be identifiable even following any subsequent amplification of the contents of a given partition, e.g., the number of unique segments associated with a common barcode can be indicative of the quantity of mRNA originating from a single partition, and thus, a single cell. At operation1054 a second strand is synthesized and atoperation1056 the T7 promoter sequence can be used by T7 polymerase to produce RNA transcripts in in vitro transcription. Atoperation1058 the transcripts are fragmented (e.g., sheared), ligated to additional functional sequences, and reverse transcribed. The functional sequences may include a sequencer specific flowcell attachment sequence1030, e.g., a P5 sequence, as well asfunctional sequence1028, which may include sequencing primers, e.g., a R1 primer binding sequence, as well asfunctional sequence1032, which may include a sample index, e.g., an i5 sample index sequence. Atoperation1060 the RNA transcripts can be reverse transcribed to DNA, the DNA amplified (e.g., via PCR), and sequenced to identify the sequence of the cDNA transcript of the mRNA, as well as to sequence the barcode segment and the unique sequence segment. In some cases,operations1050 and1052 can occur in the partition, whileoperations1054,1056,1058 and1060 can occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled in order to completeoperations1054,1056,1058 and1060.
In an alternative example of a barcode oligonucleotide for use in RNA (e.g., cellular RNA) analysis as shown inFIG. 10,functional sequence1008 may be a P5 sequence andfunctional sequence1010 may be a R1 primer binding site. Moreover, thefunctional sequence1030 may be a P7 sequence,functional sequence1028 may be a R2 primer binding site, andfunctional sequence1032 may be an i7 sample index sequence.
An additional example of a barcode oligonucleotide for use in RNA analysis, including messenger RNA (mRNA, including mRNA obtained from a cell) analysis is shown inFIG. 11. As shown, theoverall oligonucleotide1102 is coupled to abead1104 by areleasable linkage1106, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence1108, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well asfunctional sequence1110, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases,sequence1108 is a P7 sequence andsequence1110 is a R2 primer binding site. Abarcode sequence1112 is included within the structure for use in barcoding the sample RNA. Anadditional sequence segment1116 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. Anadditional sequence1114 may be included to facilitate template switching, e.g., polyG. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead.
In an example method of cellular mRNA analysis and in reference toFIG. 11, a cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). Inoperation1150, the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail ofmRNA1120 released from the cell. Next, inoperation1152, the poly-T sequence is then extended in a reverse transcription reaction using the mRNA as a template to produce acDNA transcript1122 complementary to the mRNA. Terminal transferase activity of the reverse transcriptase can add additional bases to the cDNA transcript (e.g., polyC). The additional bases added to the cDNA transcript, e.g., polyC, can then to hybridize with 1114 of the barcoded oligonucleotide. This can facilitate template switching and a sequence complementary to the barcode oligonucleotide can be incorporated into the cDNA transcript. The transcripts can be further processed (e.g., amplified, portions removed, additional sequences added, etc.) and characterized as described elsewhere herein, e.g., by sequencing. The configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown inFIG. 12A. As shown, theoverall oligonucleotide1202 is coupled to abead1204 by areleasable linkage1206, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence1208, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well as functional sequence1210, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases,sequence1208 is a P7 sequence and sequence1210 is a R2 primer binding site. Abarcode sequence1212 is included within the structure for use in barcoding the sample RNA. Anadditional sequence segment1216 may be provided within the oligonucleotide sequence. In some cases, this additional sequence can provide a unique molecular sequence segment, as described elsewhere herein. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. In an example method of cellular RNA analysis using this barcode, a cell is co-partitioned along with a barcode bearing bead and other reagents such as RNA ligase and a reducing agent into a partition (e.g. a droplet in an emulsion). The cell is lysed while the barcoded oligonucleotides are released (e.g., via the action of the reducing agent) from the bead. The barcoded oligonucleotides can then be ligated to the 5′ end of mRNA transcripts while in the partitions by RNA ligase. Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)) and further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled for the additional operations.
An additional example of a barcode oligonucleotide for use in RNA analysis, including cellular RNA analysis is shown inFIG. 12B. As shown, theoverall oligonucleotide1222 is coupled to abead1224 by areleasable linkage1226, such as a disulfide linker. The oligonucleotide may include functional sequences that are used in subsequent processing, such asfunctional sequence1228, which may include a sequencer specific flow cell attachment sequence, e.g., a P5 sequence, as well asfunctional sequence1230, which may include sequencing primer sequences, e.g., a R1 primer binding site. In some cases,sequence1228 is a P7 sequence andsequence1230 is a R2 primer binding site. Abarcode sequence1232 is included within the structure for use in barcoding the sample RNA. A priming sequence1234 (e.g., a random priming sequence) can also be included in the oligonucleotide structure, e.g., a random hexamer. Anadditional sequence segment1236 may be provided within the oligonucleotide sequence. In some cases, this additional sequence provides a unique molecular sequence segment, as described elsewhere herein. As will be appreciated, although shown as a single oligonucleotide tethered to the surface of a bead, individual beads can include tens to hundreds of thousands or even millions of individual oligonucleotide molecules, where, as noted, the barcode segment can be constant or relatively constant for a given bead, but where the variable or unique sequence segment will vary across an individual bead. In an example method of cellular mRNA analysis using the barcode oligonucleotide ofFIG. 12B, a cell is co-partitioned along with a barcode bearing bead and additional reagents such as reverse transcriptase, a reducing agent and dNTPs into a partition (e.g., a droplet in an emulsion). The cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent). In some cases,sequence1228 is a P7 sequence andsequence1230 is a R2 primer binding site. In other cases,sequence1228 is a P5 sequence andsequence1230 is a R1 primer binding site. Thepriming sequence1234 of random hexamers can randomly hybridize cellular mRNA. The random hexamer sequence can then be extended in a reverse transcription reaction using mRNA from the cell as a template to produce a cDNA transcript complementary to the mRNA and also includes each of thesequence segments1228,1232,1230,1236, and1234 of the barcode oligonucleotide. Subsequent operations may include purification (e.g., via solid phase reversible immobilization (SPRI)), further processing (shearing, ligation of functional sequences, and subsequent amplification (e.g., via PCR)), and these operations may occur in bulk (e.g., outside the partition). In the case where a partition is a droplet in an emulsion, the emulsion can be broken and the contents of the droplet pooled for additional operations. Additional reagents that may be co-partitioned along with the barcode bearing bead may include oligonucleotides to block ribosomal RNA (rRNA) and nucleases to digest genomic DNA and cDNA from cells. Alternatively, rRNA removal agents may be applied during additional processing operations. The configuration of the constructs generated by such a method can help minimize (or avoid) sequencing of the poly-T sequence during sequencing.
The single cell analysis methods described herein may also be useful in the analysis of the whole transcriptome. Referring back to the barcode ofFIG. 12B, thepriming sequence1234 may be a random N-mer. In some cases,sequence1228 is a P7 sequence andsequence1230 is a R2 primer binding site. In other cases,sequence1228 is a P5 sequence andsequence1230 is a R1 primer binding site. In an example method of whole transcriptome analysis using this barcode, the individual cell is co-partitioned along with a barcode bearing bead, poly-T sequence, and other reagents such as reverse transcriptase, polymerase, a reducing agent and dNTPs into a partition (e.g., droplet in an emulsion). In an operation of this method, the cell is lysed while the barcoded oligonucleotides are released from the bead (e.g., via the action of the reducing agent) and the poly-T sequence hybridizes to the poly-A tail of cellular mRNA. In a reverse transcription reaction using the mRNA as template, cDNA transcripts of cellular mRNA can be produced. The RNA can then be degraded with an RNase. Thepriming sequence1234 in the barcoded oligonucleotide can then randomly hybridize to the cDNA transcripts. The oligonucleotides can be extended using polymerase enzymes and other extension reagents co-partitioned with the bead and cell similar to as shown inFIG. 3 to generate amplification products (e.g., barcoded fragments), similar to the example amplification product shown inFIG. 3 (panel F). The barcoded nucleic acid fragments may, in some cases subjected to further processing (e.g., amplification, addition of additional sequences, clean up processes, etc. as described elsewhere herein) characterized, e.g., through sequence analysis. In this operation, sequencing signals can come from full length RNA.
Although operations with various barcode designs have been discussed individually, individual beads can include barcode oligonucleotides of various designs for simultaneous use.
In addition to characterizing individual cells or cell sub-populations from larger populations, the processes and systems described herein may also be used to characterize individual cells as a way to provide an overall profile of a cellular, or other organismal population. A variety of applications require the evaluation of the presence and quantification of different cell or organism types within a population of cells, including, for example, microbiome analysis and characterization, environmental testing, food safety testing, epidemiological analysis, e.g., in tracing contamination or the like. In particular, the analysis processes described above may be used to individually characterize, sequence and/or identify large numbers of individual cells within a population. This characterization may then be used to assemble an overall profile of the originating population, which can provide important prognostic and diagnostic information.
For example, shifts in human microbiomes, including, e.g., gut, buccal, epidermal microbiomes, etc., have been identified as being both diagnostic and prognostic of different conditions or general states of health. Using the single cell analysis methods and systems described herein, one can again, characterize, sequence and identify individual cells in an overall population, and identify shifts within that population that may be indicative of diagnostic ally relevant factors. By way of example, sequencing of bacterial16S ribosomal RNA genes has been used as a highly accurate method for taxonomic classification of bacteria. Using the targeted amplification and sequencing processes described above can provide identification of individual cells within a population of cells. One may further quantify the numbers of different cells within a population to identify current states or shifts in states over time. See, e.g., Morgan et al, PLoS Comput. Biol., Ch. 12, December 2012, 8(12):e1002808, and Ram et al., Syst. Biol. Reprod. Med., June 2011, 57(3):162-170, each of which is incorporated herein by reference in its entirety for all purposes. Likewise, identification and diagnosis of infection or potential infection may also benefit from the single cell analyses described herein, e.g., to identify microbial species present in large mixes of other cells or other biological material, cells and/or nucleic acids, including the environments described above, as well as any other diagnostically relevant environments, e.g., cerebrospinal fluid, blood, fecal or intestinal samples, or the like.
The foregoing analyses may also be particularly useful in the characterization of potential drug resistance of different cells, e.g., cancer cells, bacterial pathogens, etc., through the analysis of distribution and profiling of different resistance markers/mutations across cell populations in a given sample. Additionally, characterization of shifts in these markers/mutations across populations of cells over time can provide valuable insight into the progression, alteration, prevention, and treatment of a variety of diseases characterized by such drug resistance issues.
Although described in terms of cells, it will be appreciated that any of a variety of individual biological organisms, or components of organisms are encompassed within this description, including, for example, cells, viruses, organelles, cellular inclusions, vesicles, or the like. Additionally, where referring to cells, it will be appreciated that such reference includes any type of cell, including without limitation prokaryotic cells, eukaryotic cells, bacterial, fungal, plant, mammalian, or other animal cell types, mycoplasmas, normal tissue cells, tumor cells, or any other cell type, whether derived from single cell or multicellular organisms.
Similarly, analysis of different environmental samples to profile the microbial organisms, viruses, or other biological contaminants that are present within such samples, can provide important information about disease epidemiology, and potentially aid in forecasting disease outbreaks, epidemics an pandemics.
As described above, the methods, systems and compositions described herein may also be used for analysis and characterization of other aspects of individual cells or populations of cells. In one example process, a sample is provided that contains cells that are to be analyzed and characterized as to their cell surface proteins. Also provided is a library of antibodies, antibody fragments, or other molecules having a binding affinity to the cell surface proteins or antigens (or other cell features) for which the cell is to be characterized (also referred to herein as cell surface feature binding groups). For ease of discussion, these affinity groups are referred to herein as binding groups. The binding groups can include a reporter molecule that is indicative of the cell surface feature to which the binding group binds. In particular, a binding group type that is specific to one type of cell surface feature will comprise a first reporter molecule, while a binding group type that is specific to a different cell surface feature will have a different reporter molecule associated with it. In some aspects, these reporter molecules will comprise oligonucleotide sequences. Oligonucleotide based reporter molecules provide advantages of being able to generate significant diversity in terms of sequence, while also being readily attachable to most biomolecules, e.g., antibodies, etc., as well as being readily detected, e.g., using sequencing or array technologies. In the example process, the binding groups include oligonucleotides attached to them. Thus, a first binding group type, e.g., antibodies to a first type of cell surface feature, will have associated with it a reporter oligonucleotide that has a first nucleotide sequence. Different binding group types, e.g., antibodies having binding affinity for other, different cell surface features, will have associated therewith reporter oligonucleotides that comprise different nucleotide sequences, e.g., having a partially or completely different nucleotide sequence. In some cases, for each type of cell surface feature binding group, e.g., antibody or antibody fragment, the reporter oligonucleotide sequence may be known and readily identifiable as being associated with the known cell surface feature binding group. These oligonucleotides may be directly coupled to the binding group, or they may be attached to a bead, molecular lattice, e.g., a linear, globular, cross-slinked, or other polymer, or other framework that is attached or otherwise associated with the binding group, which allows attachment of multiple reporter oligonucleotides to a single binding group.
In the case of multiple reporter molecules coupled to a single binding group, such reporter molecules can comprise the same sequence, or a particular binding group will include a known set of reporter oligonucleotide sequences. As between different binding groups, e.g., specific for different cell surface features, the reporter molecules can be different and attributable to the particular binding group.
Attachment of the reporter groups to the binding groups may be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments. For example, in the case of oligonucleotide reporter groups associated with antibody based binding groups, such oligonucleotides may be covalently attached to a portion of an antibody or antibody fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labeling kits available from Innova Biosciences), as well as other non-covalent attachment mechanisms, e.g., using biotinylated antibodies and oligonucleotides (or beads that include one or more biotinylated linker, coupled to oligonucleotides) with an avidin or streptavidin linker. Antibody and oligonucleotide biotinylation techniques are available (See, e.g., Fang, et al.,Fluoride-Cleavable Biotinylation Phosphoramidite for5′-end-Labeling and Affinity Purification of Synthetic Oligonucleotides, Nucleic Acids Res. Jan. 15, 2003; 31(2):708-715, DNA 3′ End Biotinylation Kit, available from Thermo Scientific, the full disclosures of which are incorporated herein by reference in their entirety for all purposes). Likewise, protein and peptide biotinylation techniques have been developed and are readily available (See, e.g., U.S. Pat. No. 6,265,552, the full disclosures of which are incorporated herein by reference in their entirety for all purposes).
The reporter oligonucleotides may be provided having any of a range of different lengths, depending upon the diversity of reporter molecules desired or a given analysis, the sequence detection scheme employed, and the like. In some cases, these reporter sequences can be greater than about 5 nucleotides in length, greater than about 10 nucleotides in length, greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150 or even 200 nucleotides in length. In some cases, these reporter nucleotides may be less than about 250 nucleotides in length, less than about 200, 180, 150, 120 100, 90, 80, 70, 60, 50, 40, or even 30 nucleotides in length. In many cases, the reporter oligonucleotides may be selected to provide barcoded products that are already sized, and otherwise configured to be analyzed on a sequencing system. For example, these sequences may be provided at a length that ideally creates sequenceable products of a desired length for particular sequencing systems. Likewise, these reporter oligonucleotides may include additional sequence elements, in addition to the reporter sequence, such as sequencer attachment sequences, sequencing primer sequences, amplification primer sequences, or the complements to any of these.
In operation, a cell-containing sample is incubated with the binding molecules and their associated reporter oligonucleotides, for any of the cell surface features desired to be analyzed. Following incubation, the cells are washed to remove unbound binding groups. Following washing, the cells are partitioned into separate partitions, e.g., droplets, along with the barcode carrying beads described above, where each partition includes a limited number of cells, e.g., in some cases, a single cell. Upon releasing the barcodes from the beads, they will prime the amplification and barcoding of the reporter oligonucleotides. As noted above, the barcoded replicates of the reporter molecules may additionally include functional sequences, such as primer sequences, attachment sequences or the like.
The barcoded reporter oligonucleotides are then subjected to sequence analysis to identify which reporter oligonucleotides bound to the cells within the partitions. Further, by also sequencing the associated barcode sequence, one can identify that a given cell surface feature likely came from the same cell as other, different cell surface features, whose reporter sequences include the same barcode sequence, i.e., they were derived from the same partition.
Based upon the reporter molecules that emanate from an individual partition based upon the presence of the barcode sequence, one may then create a cell surface profile of individual cells from a population of cells. Profiles of individual cells or populations of cells may be compared to profiles from other cells, e.g., ‘normal’ cells, to identify variations in cell surface features, which may provide diagnostically relevant information. In particular, these profiles may be particularly useful in the diagnosis of a variety of disorders that are characterized by variations in cell surface receptors, such as cancer and other disorders.
V. Devices And Systems
Also provided herein are the microfluidic devices used for partitioning the cells as described above. Such microfluidic devices can comprise channel networks for carrying out the partitioning process like those set forth inFIGS. 1 and 2. Examples of particularly useful microfluidic devices are described in U.S. Provisional Patent Application No. 61/977,804, filed Apr. 4, 2014, and incorporated herein by reference in its entirety for all purposes. Briefly, these microfluidic devices can comprise channel networks, such as those described herein, for partitioning cells into separate partitions, and co-partitioning such cells with oligonucleotide barcode library members, e.g., disposed on beads. These channel networks can be disposed within a solid body, e.g., a glass, semiconductor or polymer body structure in which the channels are defined, where those channels communicate at their termini with reservoirs for receiving the various input fluids, and for the ultimate deposition of the partitioned cells, etc., from the output of the channel networks. By way of example, and with reference toFIG. 2, a reservoir fluidly coupled tochannel202 may be provided with an aqueous suspension ofcells214, while a reservoir coupled tochannel204 may be provided with an aqueous suspension ofbeads216 carrying the oligonucleotides.Channel segments206 and208 may be provided with a non-aqueous solution, e.g., an oil, into which the aqueous fluids are partitioned as droplets at thechannel junction212. Finally, an outlet reservoir may be fluidly coupled tochannel210 into which the partitioned cells and beads can be delivered and from which they may be harvested. As will be appreciated, while described as reservoirs, it will be appreciated that the channel segments may be coupled to any of a variety of different fluid sources or receiving components, including tubing, manifolds, or fluidic components of other systems.
Also provided are systems that control flow of these fluids through the channel networks e.g., through applied pressure differentials, centrifugal force, electrokinetic pumping, capillary or gravity flow, or the like.
VI. Kits
Also provided herein are kits for analyzing individual cells or small populations of cells. The kits may include one, two, three, four, five or more, up to all of partitioning fluids, including both aqueous buffers and non-aqueous partitioning fluids or oils, nucleic acid barcode libraries that are releasably associated with beads, as described herein, microfluidic devices, reagents for disrupting cells amplifying nucleic acids, and providing additional functional sequences on fragments of cellular nucleic acids or replicates thereof, as well as instructions for using any of the foregoing in the methods described herein.
VII. Computer Control Systems
The present disclosure provides computer control systems that are programmed to implement methods of the disclosure.FIG. 17 shows acomputer system1701 that is programmed or otherwise configured to implement methods of the disclosure including nucleic acid sequencing methods, interpretation of nucleic acid sequencing data and analysis of cellular nucleic acids, such as RNA (e.g., mRNA), and characterization of cells from sequencing data. Thecomputer system1701 can be an electronic device of a user or a computer system that is remotely located with respect to the electronic device. The electronic device can be a mobile electronic device.
Thecomputer system1701 includes a central processing unit (CPU, also “processor” and “computer processor” herein)1705, which can be a single core or multi core processor, or a plurality of processors for parallel processing. Thecomputer system1701 also includes memory or memory location1710 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit1715 (e.g., hard disk), communication interface1720 (e.g., network adapter) for communicating with one or more other systems, andperipheral devices1725, such as cache, other memory, data storage and/or electronic display adapters. Thememory1710,storage unit1715,interface1720 andperipheral devices1725 are in communication with theCPU1705 through a communication bus (solid lines), such as a motherboard. Thestorage unit1715 can be a data storage unit (or data repository) for storing data. Thecomputer system1701 can be operatively coupled to a computer network (“network”)1730 with the aid of thecommunication interface1720. Thenetwork1730 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. Thenetwork1730 in some cases is a telecommunication and/or data network. Thenetwork1730 can include one or more computer servers, which can enable distributed computing, such as cloud computing. Thenetwork1730, in some cases with the aid of thecomputer system1701, can implement a peer-to-peer network, which may enable devices coupled to thecomputer system1701 to behave as a client or a server.
TheCPU1705 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as thememory1710. The instructions can be directed to theCPU1705, which can subsequently program or otherwise configure theCPU1705 to implement methods of the present disclosure. Examples of operations performed by theCPU1705 can include fetch, decode, execute, and writeback.
TheCPU1705 can be part of a circuit, such as an integrated circuit. One or more other components of thesystem1701 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).
Thestorage unit1715 can store files, such as drivers, libraries and saved programs. Thestorage unit1715 can store user data, e.g., user preferences and user programs. Thecomputer system1701 in some cases can include one or more additional data storage units that are external to thecomputer system1701, such as located on a remote server that is in communication with thecomputer system1701 through an intranet or the Internet.
Thecomputer system1701 can communicate with one or more remote computer systems through thenetwork1730. For instance, thecomputer system1701 can communicate with a remote computer system of a user. Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access thecomputer system1701 via thenetwork1730.
Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of thecomputer system1701, such as, for example, on thememory1710 orelectronic storage unit1715. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by theprocessor1705. In some cases, the code can be retrieved from thestorage unit1715 and stored on thememory1710 for ready access by theprocessor1705. In some situations, theelectronic storage unit1715 can be precluded, and machine-executable instructions are stored onmemory1710.
The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.
Aspects of the systems and methods provided herein, such as thecomputer system1701, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.
Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
Thecomputer system1701 can include or be in communication with anelectronic display1735 that comprises a user interface (UI)1740 for providing, for example, results of nucleic acid sequencing, analysis of nucleic acid sequencing data, characterization of nucleic acid sequencing samples, cell characterizations, etc. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.
Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by thecentral processing unit1705. The algorithm can, for example, initiate nucleic acid sequencing, process nucleic acid sequencing data, interpret nucleic acid sequencing results, characterize nucleic acid samples, characterize cells, etc.
VIII. Examples
Example ICellular RNA Analysis Using Emulsions
In an example, reverse transcription with template switching and cDNA amplification (via PCR) is performed in emulsion droplets with operations as shown inFIG. 9A. The reaction mixture that is partitioned for reverse transcription and cDNA amplification (via PCR) includes 1,000 cells or 10,000 cells or 10 ng of RNA, beads bearing barcoded oligonucleotides/0.2% Tx-100/5× Kapa buffer, 2× Kapa HS HiFi Ready Mix, 4 μM switch oligo, and Smartscribe. Where cells are present, the mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead. The cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as inoperation950. The poly-T segment is extended in a reverse transcription reaction as inoperation952 and the cDNA transcript is amplified as in operation954. The thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min. Following thermal cycling, the emulsion is broken and the transcripts are purified with Dynabeads and 0.6×SPRI as inoperation956.
The yield from template switch reverse transcription and PCR in emulsions is shown for 1,000 cells inFIG. 13A and 10,000 cells inFIG. 13C and 10 ng of RNA inFIG. 13B (Smartscribe line). The cDNA transcripts from RT and PCR performed in emulsions for 10 ng RNA is sheared and ligated to functional sequences, cleaned up with 0.8×SPRI, and is further amplified by PCR as inoperation958. The amplification product is cleaned up with 0.8×SPRI. The yield from this processing is shown inFIG. 13B (SSII line).
Example IICellular RNA Analysis Using Emulsions
In another example, reverse transcription with template switching and cDNA amplification (via PCR) is performed in emulsion droplets with operations as shown inFIG. 9A. The reaction mixture that is partitioned for reverse transcription and cDNA amplification (via PCR) includes Jurkat cells, beads bearing barcoded oligonucleotides/0.2% TritonX-100/5× Kapa buffer, 2× Kapa HS HiFi Ready Mix, 4 μM switch oligo, and Smartscribe. The mixture is partitioned such that a majority or all of the droplets comprise a single cell and single bead. The cells are lysed while the barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of mRNA that is released from the cell as inoperation950. The poly-T segment is extended in a reverse transcription reaction as inoperation952 and the cDNA transcript is amplified as in operation954. The thermal cycling conditions are 42° C. for 130 minutes; 98° C. for 2 min; and 35 cycles of the following 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 6 min. Following thermal cycling, the emulsion is broken and the transcripts are cleaned-up with Dynabeads and 0.6×SPRI as inoperation956. The yield from reactions with various cell numbers (625 cells, 1,250 cells, 2,500 cells, 5,000 cells, and 10,000 cells) is shown inFIG. 14A. These yields are confirmed with GADPH qPCR assay results shown inFIG. 14B.
Example IIIRNA Analysis Using Emulsions
In another example, reverse transcription is performed in emulsion droplets and cDNA amplification is performed in bulk in a manner similar to that as shown inFIG. 9C. The reaction mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides, 10 ng Jurkat RNA (e.g., Jurkat mRNA), 5× First-Strand buffer, and Smartscribe. The barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as inoperation961. The poly-T segment is extended in a reverse transcription reaction as inoperation963. The thermal cycling conditions for reverse transcription are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and RNA and cDNA transcripts are denatured as inoperation962. A second strand is then synthesized by primer extension with a primer having a biotin tag as inoperation964. The reaction conditions for this primer extension include cDNA transcript as the first strand and biotinylated extension primer ranging in concentration from 0.5-3.0 μM. The thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. Following primer extension, the second strand is pulled down with Dynabeads MyOne Streptavidin C1 and T1, and cleaned-up with Agilent SureSelect XT buffers. The second strand is pre-amplified via PCR as inoperation965 with the following cycling conditions—one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. The yield for various concentrations of biotinylated primer (0.5 μM, 1.0 μM, 2.0 μM, and 3.0 μM) is shown inFIG. 15.
Example IVRNA Analysis Using Emulsions
In another example, in vitro transcription by T7 polymerase is used to produce RNA transcripts as shown inFIG. 10. The mixture that is partitioned for reverse transcription includes beads bearing barcoded oligonucleotides which also include a T7 RNA polymerase promoter sequence, 10 ng human RNA (e.g., human mRNA), 5× First-Strand buffer, and Smartscribe. The mixture is partitioned such that a majority or all of the droplets comprise a single bead. The barcoded oligonucleotides are released from the bead, and the poly-T segment of the barcoded oligonucleotide hybridizes to the poly-A tail of the RNA as inoperation1050. The poly-T segment is extended in a reverse transcription reaction as inoperation1052. The thermal cycling conditions are one cycle at 42° C. for 2 hours and one cycle at 70° C. for 10 min. Following thermal cycling, the emulsion is broken and the remaining operations are performed in bulk. A second strand is then synthesized by primer extension as inoperation1054. The reaction conditions for this primer extension include cDNA transcript as template and extension primer. The thermal cycling conditions are one cycle at 98° C. for 3 min and one cycle of 98° C. for 15 sec, 60° C. for 20 sec, and 72° C. for 30 min. Following this primer extension, the second strand is purified with 0.6×SPRI. As inoperation1056, in vitro transcription is then performed to produce RNA transcripts. In vitro transcription is performed overnight, and the transcripts are purified with 0.6×SPRI. The RNA yields from in vitro transcription are shown inFIG. 16.
While some embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (38)

What is claimed is:
1. A method for identifying a protein as originating from a single cell, comprising:
(a) exposing said protein of said single cell to one or more antibodies such that an antibody of said one or more antibodies that is specific to said protein couples to said protein, wherein said antibody is conjugated to a nucleic acid antibody barcode molecule comprising an antibody barcode sequence;
(b) co-partitioning said single cell comprising said protein coupled to said antibody with a single bead in a partition, wherein said single bead comprises a plurality of nucleic acid cell barcode molecules each comprising a cell barcode sequence;
(c) performing one or more reactions to generate, from said nucleic acid antibody barcode molecule and a nucleic acid cell barcode molecule from said plurality of nucleic acid cell barcode molecules, a synthesized nucleic acid molecule comprising (i) said antibody barcode sequence or a complement thereof, and (ii) said cell barcode sequence or a complement thereof;
(d) using a sequencer to sequence at least a portion of said synthesized nucleic acid molecule or a derivative thereof, to identify said antibody barcode sequence and said cell barcode sequence, and
(e) using said antibody barcode sequence and said cell barcode sequence to identify said protein as originating from said single cell.
2. The method ofclaim 1, wherein said plurality of nucleic acid cell barcode molecules comprises at least 100,000 nucleic acid cell barcode molecules.
3. The method ofclaim 1, wherein (c) is performed in said partition.
4. The method ofclaim 3, further comprising releasing or removing said synthesized nucleic acid molecule from said partition.
5. The method ofclaim 4, further comprising subjecting said synthesized nucleic acid molecule to one or more additional reactions subsequent to releasing or removing said synthesized nucleic acid molecule from said partition.
6. The method ofclaim 5, wherein said one or more additional reactions comprise polymerase chain reaction.
7. The method ofclaim 5, wherein said one or more additional reactions comprise addition of one or more functional sequences to said synthesized nucleic acid molecule, wherein said one or more functional sequences are configured to permit attachment to a flow cell of said sequencer.
8. The method ofclaim 1, wherein said single bead is a gel bead.
9. The method ofclaim 8, further comprising, prior to (c), releasing said nucleic acid cell barcode molecule from said single bead.
10. The method ofclaim 9, wherein said nucleic acid cell barcode molecule is released from said single bead upon exposure to a chemical stimulus in said partition.
11. The method ofclaim 1, wherein said protein is a cell surface protein.
12. The method ofclaim 1, wherein each of said plurality of nucleic acid cell barcode molecules comprises an identifier sequence separate from said cell barcode sequence, and wherein said identifier sequence is different for each nucleic acid cell barcode molecule of said plurality of nucleic acid cell barcode molecules.
13. The method ofclaim 1, wherein said nucleic acid cell barcode molecule further comprises a sequence that is complementary to a portion of said nucleic acid antibody barcode molecule.
14. The method ofclaim 13, wherein said sequence is a poly-thymine (poly-T) sequence.
15. The method ofclaim 14, wherein (c) comprises hybridizing said poly-T sequence to said portion of said nucleic acid antibody barcode molecule, wherein said portion of said nucleic acid antibody barcode molecule comprises a poly-adenine (poly-A) sequence.
16. The method ofclaim 1, wherein said one or more reactions comprise a nucleic acid amplification reaction.
17. The method ofclaim 1, wherein said one or more reactions comprise a reverse transcription reaction.
18. The method ofclaim 1, wherein said one or more reactions comprise a template switching reaction.
19. The method ofclaim 1, wherein said synthesized nucleic acid molecule comprises a functional sequence that is configured to permit attachment to a flow cell of said sequencer.
20. The method ofclaim 1, further comprising, subsequent to (c), adding one or more priming sequences to said synthesized nucleic acid molecule for primer extension of said synthesized nucleic acid molecule or a derivative thereof in said sequencer.
21. The method ofclaim 1, wherein, in at least (a), said antibody is covalently attached to said nucleic acid antibody barcode molecule.
22. The method ofclaim 1, wherein said partition is a droplet among a plurality of droplets.
23. The method ofclaim 1, wherein said partition is a well among a plurality of wells.
24. The method ofclaim 1, wherein, in (b), each of said plurality of nucleic acid cell barcode molecules comprises an identical cell barcode sequence, wherein said single bead is from a plurality of beads, and wherein said identical cell barcode sequence is different from cell barcode sequences of nucleic acid cell barcode molecules comprised in other beads of said plurality of beads.
25. The method ofclaim 10, wherein said chemical stimulus is a reducing agent.
26. The method ofclaim 1, wherein, in (b), said nucleic acid cell barcode molecule is covalently coupled to said single bead.
27. The method ofclaim 26, wherein, in (b), said nucleic acid cell barcode molecule is coupled to said single bead via a disulfide bond.
28. The method ofclaim 1, wherein said single bead comprises a disulfide bond.
29. The method ofclaim 1, wherein said nucleic acid cell barcode molecule is not releasably coupled to said single bead.
30. The method ofclaim 1, wherein said plurality of nucleic acid cell barcode molecules comprises at least 1,000,000 nucleic acid cell barcode molecules.
31. The method ofclaim 1, wherein said nucleic acid cell barcode molecule is releasably coupled to said single bead.
32. The method ofclaim 24, wherein said plurality of beads comprises at least 100,000 different cell barcode sequences.
33. The method ofclaim 32, wherein said plurality of beads comprises at least 1,000,000 different cell barcode sequences.
34. The method ofclaim 10, wherein said single bead is degradable upon exposure to said stimulus in said partition.
35. The method ofclaim 1, wherein, in (b), said partition comprises an enzyme.
36. The method ofclaim 35, wherein said enzyme is a restriction enzyme.
37. The method ofclaim 9, wherein said chemical stimulus cleaves a linkage from said nucleic acid cell barcode molecule to said single bead.
38. The method ofclaim 37, wherein said linkage is a disulfide bond.
US15/832,1832014-06-262017-12-05Methods and systems for processing polynucleotidesActiveUS10030267B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US15/832,183US10030267B2 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides

Applications Claiming Priority (5)

Application NumberPriority DateFiling DateTitle
US201462017558P2014-06-262014-06-26
US201462061567P2014-10-082014-10-08
US14/752,641US20150376609A1 (en)2014-06-262015-06-26Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US15/717,871US9951386B2 (en)2014-06-262017-09-27Methods and systems for processing polynucleotides
US15/832,183US10030267B2 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US15/717,871ContinuationUS9951386B2 (en)2012-08-142017-09-27Methods and systems for processing polynucleotides

Publications (2)

Publication NumberPublication Date
US20180094314A1 US20180094314A1 (en)2018-04-05
US10030267B2true US10030267B2 (en)2018-07-24

Family

ID=61756930

Family Applications (12)

Application NumberTitlePriority DateFiling Date
US15/717,871ActiveUS9951386B2 (en)2012-08-142017-09-27Methods and systems for processing polynucleotides
US15/832,183ActiveUS10030267B2 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides
US15/831,847AbandonedUS20180094313A1 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides
US15/831,726ActiveUS10208343B2 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides
US15/832,547ActiveUS10760124B2 (en)2012-12-142017-12-05Methods and systems for processing polynucleotides
US15/847,752ActiveUS10480028B2 (en)2012-08-142017-12-19Methods and systems for processing polynucleotides
US15/872,499ActiveUS10041116B2 (en)2014-06-262018-01-16Methods and systems for processing polynucleotides
US15/980,473ActiveUS10253364B2 (en)2012-12-142018-05-15Method and systems for processing polynucleotides
US16/045,474ActiveUS10344329B2 (en)2014-06-262018-07-25Methods and systems for processing polynucleotides
US16/138,448ActiveUS10337061B2 (en)2014-06-262018-09-21Methods and systems for processing polynucleotides
US16/144,832ActiveUS10457986B2 (en)2014-06-262018-09-27Methods and systems for processing polynucleotides
US16/570,898AbandonedUS20200199669A1 (en)2014-06-262019-09-13Methods and Systems for Processing Polynucleotides

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US15/717,871ActiveUS9951386B2 (en)2012-08-142017-09-27Methods and systems for processing polynucleotides

Family Applications After (10)

Application NumberTitlePriority DateFiling Date
US15/831,847AbandonedUS20180094313A1 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides
US15/831,726ActiveUS10208343B2 (en)2014-06-262017-12-05Methods and systems for processing polynucleotides
US15/832,547ActiveUS10760124B2 (en)2012-12-142017-12-05Methods and systems for processing polynucleotides
US15/847,752ActiveUS10480028B2 (en)2012-08-142017-12-19Methods and systems for processing polynucleotides
US15/872,499ActiveUS10041116B2 (en)2014-06-262018-01-16Methods and systems for processing polynucleotides
US15/980,473ActiveUS10253364B2 (en)2012-12-142018-05-15Method and systems for processing polynucleotides
US16/045,474ActiveUS10344329B2 (en)2014-06-262018-07-25Methods and systems for processing polynucleotides
US16/138,448ActiveUS10337061B2 (en)2014-06-262018-09-21Methods and systems for processing polynucleotides
US16/144,832ActiveUS10457986B2 (en)2014-06-262018-09-27Methods and systems for processing polynucleotides
US16/570,898AbandonedUS20200199669A1 (en)2014-06-262019-09-13Methods and Systems for Processing Polynucleotides

Country Status (1)

CountryLink
US (12)US9951386B2 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10131958B1 (en)2013-08-282018-11-20Cellular Research, Inc.Massively parallel single cell analysis
US10202646B2 (en)2009-12-152019-02-12Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US10227648B2 (en)2012-12-142019-03-1210X Genomics, Inc.Methods and systems for processing polynucleotides
US10253364B2 (en)2012-12-142019-04-0910X Genomics, Inc.Method and systems for processing polynucleotides
US10273541B2 (en)2012-08-142019-04-3010X Genomics, Inc.Methods and systems for processing polynucleotides
WO2019113533A1 (en)2017-12-082019-06-1310X Genomics, Inc.Methods and compositions for labeling cells
US10323279B2 (en)2012-08-142019-06-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US10338066B2 (en)2016-09-262019-07-02Cellular Research, Inc.Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US10400280B2 (en)2012-08-142019-09-0310X Genomics, Inc.Methods and systems for processing polynucleotides
US10400235B2 (en)2017-05-262019-09-0310X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US10428326B2 (en)2017-01-302019-10-0110X Genomics, Inc.Methods and systems for droplet-based single cell barcoding
US10533221B2 (en)2012-12-142020-01-1410X Genomics, Inc.Methods and systems for processing polynucleotides
US10550429B2 (en)2016-12-222020-02-0410X Genomics, Inc.Methods and systems for processing polynucleotides
US10557158B2 (en)2015-01-122020-02-1110X Genomics, Inc.Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10640763B2 (en)2016-05-312020-05-05Cellular Research, Inc.Molecular indexing of internal sequences
US10669570B2 (en)2017-06-052020-06-02Becton, Dickinson And CompanySample indexing for single cells
US10676789B2 (en)2012-12-142020-06-0910X Genomics, Inc.Methods and systems for processing polynucleotides
US10697000B2 (en)2015-02-242020-06-3010X Genomics, Inc.Partition processing methods and systems
US10745742B2 (en)2017-11-152020-08-1810X Genomics, Inc.Functionalized gel beads
US10752949B2 (en)2012-08-142020-08-2510X Genomics, Inc.Methods and systems for processing polynucleotides
US10774370B2 (en)2015-12-042020-09-1510X Genomics, Inc.Methods and compositions for nucleic acid analysis
US10815525B2 (en)2016-12-222020-10-2710X Genomics, Inc.Methods and systems for processing polynucleotides
US10829815B2 (en)2017-11-172020-11-1010X Genomics, Inc.Methods and systems for associating physical and genetic properties of biological particles
US10941396B2 (en)2012-02-272021-03-09Becton, Dickinson And CompanyCompositions and kits for molecular counting
US11078522B2 (en)2012-08-142021-08-0310X Genomics, Inc.Capsule array devices and methods of use
US11084036B2 (en)2016-05-132021-08-1010X Genomics, Inc.Microfluidic systems and methods of use
US11135584B2 (en)2014-11-052021-10-0510X Genomics, Inc.Instrument systems for integrated sample processing
US11155881B2 (en)2018-04-062021-10-2610X Genomics, Inc.Systems and methods for quality control in single cell processing
US11193121B2 (en)2013-02-082021-12-0710X Genomics, Inc.Partitioning and processing of analytes and other species
USRE48913E1 (en)2015-02-272022-02-01Becton, Dickinson And CompanySpatially addressable molecular barcoding
US11274343B2 (en)2015-02-242022-03-1510X Genomics, Inc.Methods and compositions for targeted nucleic acid sequence coverage
US11319583B2 (en)2017-02-012022-05-03Becton, Dickinson And CompanySelective amplification using blocking oligonucleotides
US11332776B2 (en)2015-09-112022-05-17Becton, Dickinson And CompanyMethods and compositions for library normalization
US11365409B2 (en)2018-05-032022-06-21Becton, Dickinson And CompanyMolecular barcoding on opposite transcript ends
US11390914B2 (en)2015-04-232022-07-19Becton, Dickinson And CompanyMethods and compositions for whole transcriptome amplification
US11492660B2 (en)2018-12-132022-11-08Becton, Dickinson And CompanySelective extension in single cell whole transcriptome analysis
US11512337B2 (en)2020-01-132022-11-29Fluent Biosciences Inc.Emulsion based drug screening
US11525157B2 (en)2016-05-312022-12-13Becton, Dickinson And CompanyError correction in amplification of samples
US11535882B2 (en)2015-03-302022-12-27Becton, Dickinson And CompanyMethods and compositions for combinatorial barcoding
US11591637B2 (en)2012-08-142023-02-2810X Genomics, Inc.Compositions and methods for sample processing
US11629344B2 (en)2014-06-262023-04-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US11639517B2 (en)2018-10-012023-05-02Becton, Dickinson And CompanyDetermining 5′ transcript sequences
US11649497B2 (en)2020-01-132023-05-16Becton, Dickinson And CompanyMethods and compositions for quantitation of proteins and RNA
US11661625B2 (en)2020-05-142023-05-30Becton, Dickinson And CompanyPrimers for immune repertoire profiling
US11661631B2 (en)2019-01-232023-05-30Becton, Dickinson And CompanyOligonucleotides associated with antibodies
US11739443B2 (en)2020-11-202023-08-29Becton, Dickinson And CompanyProfiling of highly expressed and lowly expressed proteins
US11773452B2 (en)2020-01-132023-10-03Fluent Biosciences Inc.Single cell sequencing
US11773436B2 (en)2019-11-082023-10-03Becton, Dickinson And CompanyUsing random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11773441B2 (en)2018-05-032023-10-03Becton, Dickinson And CompanyHigh throughput multiomics sample analysis
US11773389B2 (en)2017-05-262023-10-0310X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US11827936B2 (en)2020-01-132023-11-28Fluent Biosciences Inc.Methods and systems for single cell gene profiling
US11845986B2 (en)2016-05-252023-12-19Becton, Dickinson And CompanyNormalization of nucleic acid libraries
US11866782B2 (en)2020-03-162024-01-09Fluent Biosciences Inc.Multi-omic analysis in monodisperse droplets
US11932901B2 (en)2020-07-132024-03-19Becton, Dickinson And CompanyTarget enrichment using nucleic acid probes for scRNAseq
US11932849B2 (en)2018-11-082024-03-19Becton, Dickinson And CompanyWhole transcriptome analysis of single cells using random priming
US11939622B2 (en)2019-07-222024-03-26Becton, Dickinson And CompanySingle cell chromatin immunoprecipitation sequencing assay
US11965208B2 (en)2019-04-192024-04-23Becton, Dickinson And CompanyMethods of associating phenotypical data and single cell sequencing data
US12005454B2 (en)2014-04-102024-06-1110X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US12071617B2 (en)2019-02-142024-08-27Becton, Dickinson And CompanyHybrid targeted and whole transcriptome amplification
US12153043B2 (en)2020-02-252024-11-26Becton, Dickinson And CompanyBi-specific probes to enable the use of single-cell samples as single color compensation control
US12157913B2 (en)2020-06-022024-12-03Becton, Dickinson And CompanyOligonucleotides and beads for 5 prime gene expression assay
US12163191B2 (en)2014-06-262024-12-1010X Genomics, Inc.Analysis of nucleic acid sequences
US12188010B2 (en)2020-01-292025-01-07Becton, Dickinson And CompanyBarcoded wells for spatial mapping of single cells through sequencing
US12241059B2 (en)2020-07-152025-03-04Illumina, Inc.Tiered ligation oligos
US12264411B2 (en)2017-01-302025-04-0110X Genomics, Inc.Methods and systems for analysis
US12312640B2 (en)2014-06-262025-05-2710X Genomics, Inc.Analysis of nucleic acid sequences

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10466160B2 (en)2011-08-012019-11-05Celsee Diagnostics, Inc.System and method for retrieving and analyzing particles
US9404864B2 (en)2013-03-132016-08-02Denovo Sciences, Inc.System for imaging captured cells
CA2842359A1 (en)2011-08-012013-02-07Denovo SciencesCell capture system and method of use
US10221442B2 (en)2012-08-142019-03-0510X Genomics, Inc.Compositions and methods for sample processing
US9752181B2 (en)2013-01-262017-09-05Denovo Sciences, Inc.System and method for capturing and analyzing cells
US9707562B2 (en)2013-03-132017-07-18Denovo Sciences, Inc.System for capturing and analyzing cells
US9856535B2 (en)2013-05-312018-01-02Denovo Sciences, Inc.System for isolating cells
US10391490B2 (en)2013-05-312019-08-27Celsee Diagnostics, Inc.System and method for isolating and analyzing cells
US10395758B2 (en)2013-08-302019-08-2710X Genomics, Inc.Sequencing methods
US9824068B2 (en)2013-12-162017-11-2110X Genomics, Inc.Methods and apparatus for sorting data
AU2015273480A1 (en)*2014-06-112016-12-08Samplix S.A.R.L.Nucleotide sequence exclusion enrichment by droplet sorting (needls)
KR20170073667A (en)2014-10-292017-06-2810엑스 제노믹스, 인크.Methods and compositions for targeted nucleic acid sequencing
EP3259371B1 (en)2015-02-192020-09-02Becton, Dickinson and CompanyHigh-throughput single-cell analysis combining proteomic and genomic information
US11124823B2 (en)2015-06-012021-09-21Becton, Dickinson And CompanyMethods for RNA quantification
US11371094B2 (en)2015-11-192022-06-2810X Genomics, Inc.Systems and methods for nucleic acid processing using degenerate nucleotides
JP6735348B2 (en)2016-02-112020-08-0510エックス ジェノミクス, インコーポレイテッド Systems, methods and media for de novo assembly of whole genome sequence data
WO2017192387A1 (en)2016-05-022017-11-09Cellular Research, Inc.Accurate molecular barcoding
CN109074430B (en)2016-05-262022-03-29贝克顿迪金森公司Molecular marker counting adjustment method
WO2018081113A1 (en)2016-10-242018-05-03Sawaya SterlingConcealing information present within nucleic acids
AU2017359047C1 (en)2016-11-082024-10-24Becton, Dickinson And CompanyMethods for cell label classification
CN109952612B (en)2016-11-082023-12-01贝克顿迪金森公司Method for classifying expression profiles
US10011872B1 (en)2016-12-222018-07-0310X Genomics, Inc.Methods and systems for processing polynucleotides
ES2961580T3 (en)2017-01-132024-03-12Cellular Res Inc Hydrophilic coating of fluid channels
DK3583214T5 (en)2017-02-022024-09-02New York Genome Center Inc METHODS AND COMPOSITIONS FOR IDENTIFYING OR QUANTIFYING TARGETS IN A BIOLOGICAL SAMPLE
US10995333B2 (en)2017-02-062021-05-0410X Genomics, Inc.Systems and methods for nucleic acid preparation
CN110945139B (en)2017-05-182023-09-0510X基因组学有限公司Method and system for sorting droplets and beads
US10544413B2 (en)2017-05-182020-01-2810X Genomics, Inc.Methods and systems for sorting droplets and beads
WO2018226546A1 (en)2017-06-052018-12-1310X Genomics, Inc.Gaskets for the distribution of pressures in a microfluidic system
JP7032452B2 (en)*2017-08-012022-03-08イルミナ インコーポレイテッド Hydrogel beads for nucleotide sequencing
US10821442B2 (en)2017-08-222020-11-0310X Genomics, Inc.Devices, systems, and kits for forming droplets
JP6980904B2 (en)2017-08-292021-12-15バイオ−ラッド ラボラトリーズ インコーポレイテッド Systems and methods for isolating and analyzing cells
US10837047B2 (en)2017-10-042020-11-1710X Genomics, Inc.Compositions, methods, and systems for bead formation using improved polymers
US10590244B2 (en)2017-10-042020-03-1710X Genomics, Inc.Compositions, methods, and systems for bead formation using improved polymers
WO2019083852A1 (en)2017-10-262019-05-0210X Genomics, Inc.Microfluidic channel networks for partitioning
WO2019084043A1 (en)2017-10-262019-05-0210X Genomics, Inc.Methods and systems for nuclecic acid preparation and chromatin analysis
WO2019084165A1 (en)2017-10-272019-05-0210X Genomics, Inc.Methods and systems for sample preparation and analysis
WO2019108851A1 (en)2017-11-302019-06-0610X Genomics, Inc.Systems and methods for nucleic acid preparation and analysis
CN111492068B (en)2017-12-192025-03-21贝克顿迪金森公司 Oligonucleotide-associated particles
CN118547046A (en)2017-12-222024-08-2710X基因组学有限公司Systems and methods for processing nucleic acid molecules from one or more cells
WO2019148042A1 (en)*2018-01-262019-08-0110X Genomics, Inc.Compositions and methods for sample processing
SG11202007686VA (en)*2018-02-122020-09-2910X Genomics IncMethods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en)2018-02-222023-05-0210X Genomics, Inc.Methods and systems for characterizing analytes from individual cells or cell populations
WO2019169028A1 (en)2018-02-282019-09-0610X Genomics, Inc.Transcriptome sequencing through random ligation
WO2019191321A1 (en)*2018-03-282019-10-0310X Genomics, Inc.Nucleic acid enrichment within partitions
WO2019217758A1 (en)2018-05-102019-11-1410X Genomics, Inc.Methods and systems for molecular library generation
US11932899B2 (en)2018-06-072024-03-1910X Genomics, Inc.Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en)2018-06-252023-07-1810X Genomics, Inc.Methods and systems for cell and bead processing
US12188014B1 (en)2018-07-252025-01-0710X Genomics, Inc.Compositions and methods for nucleic acid processing using blocking agents
US20200032335A1 (en)2018-07-272020-01-3010X Genomics, Inc.Systems and methods for metabolome analysis
WO2020028882A1 (en)2018-08-032020-02-0610X Genomics, Inc.Methods and systems to minimize barcode exchange
US12065688B2 (en)2018-08-202024-08-2010X Genomics, Inc.Compositions and methods for cellular processing
CN118406747A (en)*2018-08-202024-07-30生物辐射实验室股份有限公司Nucleotide sequence generation by co-localization of barcode beads in partitions
WO2020041148A1 (en)2018-08-202020-02-2710X Genomics, Inc.Methods and systems for detection of protein-dna interactions using proximity ligation
SG11202102703VA (en)2018-10-262021-04-29Illumina IncModulating polymer beads for dna processing
US11459607B1 (en)2018-12-102022-10-0410X Genomics, Inc.Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11358137B2 (en)2018-12-262022-06-14Industrial Technology Research InstituteTubular structure for producing droplets and method for producing droplets
US12169198B2 (en)2019-01-082024-12-1710X Genomics, Inc.Systems and methods for sample analysis
US11845983B1 (en)2019-01-092023-12-1910X Genomics, Inc.Methods and systems for multiplexing of droplet based assays
WO2020150356A1 (en)2019-01-162020-07-23Becton, Dickinson And CompanyPolymerase chain reaction normalization through primer titration
US11055389B2 (en)*2019-01-302021-07-06Rsa Security LlcBiometric authentication using molecular snapshots
WO2020163630A1 (en)*2019-02-062020-08-13Singular Genomics Systems, Inc.Compositions and methods for nucleic acid sequencing
US11851683B1 (en)2019-02-122023-12-2610X Genomics, Inc.Methods and systems for selective analysis of cellular samples
US11467153B2 (en)2019-02-122022-10-1110X Genomics, Inc.Methods for processing nucleic acid molecules
CN118979095A (en)2019-02-122024-11-1910X基因组学有限公司 Methods for processing nucleic acid molecules
US12275993B2 (en)2019-02-122025-04-1510X Genomics, Inc.Analysis of nucleic acid sequences
US12305239B2 (en)2019-02-122025-05-2010X Genomics, Inc.Analysis of nucleic acid sequences
US11655499B1 (en)2019-02-252023-05-2310X Genomics, Inc.Detection of sequence elements in nucleic acid molecules
EP3938537A1 (en)2019-03-112022-01-1910X Genomics, Inc.Systems and methods for processing optically tagged beads
EP3947722A1 (en)2019-03-272022-02-0910X Genomics, Inc.Systems and methods for processing rna from cells
US10633693B1 (en)2019-04-162020-04-28Celsee Diagnostics, Inc.System and method for leakage control in a particle capture system
EP3966307B1 (en)2019-05-072024-11-20Bio-Rad Laboratories, Inc.System and method for automated single cell processing
US11273439B2 (en)2019-05-072022-03-15Bio-Rad Laboratories, Inc.System and method for target material retrieval from microwells
KR20250084977A (en)2019-06-142025-06-11바이오 래드 래버러토리스 인코오포레이티드System and method for automated single cell processing and analyses
US12235262B1 (en)2019-09-092025-02-2510X Genomics, Inc.Methods and systems for single cell protein analysis
CA3157359A1 (en)2019-10-102021-04-151859, Inc.Methods and systems for microfluidic screening
CN115066434A (en)2019-12-032022-09-16阿拉玛生物科学公司Nucleic acid linked immuno-sandwich assays (NULISA)
US11504719B2 (en)2020-03-122022-11-22Bio-Rad Laboratories, Inc.System and method for receiving and delivering a fluid for sample processing
US11851700B1 (en)2020-05-132023-12-2610X Genomics, Inc.Methods, kits, and compositions for processing extracellular molecules
US12084715B1 (en)2020-11-052024-09-1010X Genomics, Inc.Methods and systems for reducing artifactual antisense products
CN117015617B (en)2021-02-232025-04-0410X基因组学有限公司 Probe-based nucleic acid and protein analysis
WO2022221152A1 (en)*2021-04-132022-10-20Inscripta, Inc.Genomic edit detection at the single cell level
US11859241B2 (en)2021-06-172024-01-02Element Biosciences, Inc.Compositions and methods for pairwise sequencing
US11220707B1 (en)2021-06-172022-01-11Element Biosciences, Inc.Compositions and methods for pairwise sequencing
WO2023086847A1 (en)2021-11-102023-05-19Encodia, Inc.Methods for barcoding macromolecules in individual cells
WO2024098046A1 (en)2022-11-042024-05-1010X Genomics, Inc.Systems and methods for determining antigen specificity of antigen binding molecules and visualizing adaptive immune cell clonotyping data
WO2024238992A1 (en)2023-05-182024-11-2110X Genomics, Inc.Engineered non-strand displacing family b polymerases for reverse transcription and gap-fill applications

Citations (456)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2797149A (en)1953-01-081957-06-25Technicon International LtdMethods of and apparatus for analyzing liquids containing crystalloid and non-crystalloid constituents
US3047367A (en)1959-12-011962-07-31Technicon InstrAutomatic analysis with fluid segmentation
US3479141A (en)1967-05-171969-11-18Technicon CorpMethod and apparatus for analysis
US4124638A (en)1977-09-121978-11-07Hansen John NSolubilizable polyacrylamide gels containing disulfide cross-linkages
US4253846A (en)1979-11-211981-03-03Technicon Instruments CorporationMethod and apparatus for automated analysis of fluid samples
JPS5949832A (en)1982-08-141984-03-22バイエル・アクチエンゲゼルシヤフト Dispersion manufacturing method and device
WO1984002000A1 (en)1981-01-101984-05-24Shaw Stewart P DChemical droplet reactor
JPS60227826A (en)1984-04-271985-11-13Sogo Yatsukou KkGraft capsule responding to ph
US4582802A (en)1983-09-301986-04-15The United States Of America As Represented By The Department Of Health And Human ServicesStimulation of enzymatic ligation of DNA by high concentrations of nonspecific polymers
EP0249007A2 (en)1986-04-141987-12-16The General Hospital CorporationA method of screening hybridomas
EP0271281A2 (en)1986-12-111988-06-15AT&T Corp.Method for fabricating articles which include high silica glass bodies and articles formed thereby
US5137829A (en)1987-10-051992-08-11Washington UniversityDNA transposon TN5SEQ1
US5149625A (en)1987-08-111992-09-22President And Fellows Of Harvard CollegeMultiplex analysis of DNA
US5185099A (en)1988-04-201993-02-09Institut National De Recherche Chimique AppliqueeVisco-elastic, isotropic materials based on water, fluorinate sufactants and fluorinated oils, process for their preparation, and their use in various fields, such as optics, pharmacology and electrodynamics
US5202231A (en)1987-04-011993-04-13Drmanac Radoje TMethod of sequencing of genomes by hybridization of oligonucleotide probes
US5270183A (en)1991-02-081993-12-14Beckman Research Institute Of The City Of HopeDevice and method for the automated cycling of solutions between two or more temperatures
WO1994018218A1 (en)1993-02-011994-08-18Seq, Ltd.Methods and apparatus for dna sequencing
WO1994019101A1 (en)1993-02-161994-09-01Alliance Pharmaceutical Corp.Method of microemulsifying fluorinated oils
WO1994023699A1 (en)1993-04-191994-10-27Medisorb Technologies International L.P.Long-acting treatment by slow-release delivery of antisense oligodeoxyribonucleotides from biodegradable microparticles
US5413924A (en)1992-02-131995-05-09Kosak; Kenneth M.Preparation of wax beads containing a reagent for release by heating
US5418149A (en)1990-07-241995-05-23Hoffmann-La Roche Inc.Reduction of non-specific amplification glycosylase using DUTP and DNA uracil
US5436130A (en)1992-03-191995-07-25The Regents Of The University Of CaliforniaMultiple tag labeling method for DNA sequencing
WO1995030782A1 (en)1994-05-101995-11-16Soane BiosciencesSeparation media for use in gel electrophoresis
US5489523A (en)1990-12-031996-02-06StratageneExonuclease-deficient thermostable Pyrococcus furiosus DNA polymerase I
US5512131A (en)1993-10-041996-04-30President And Fellows Of Harvard CollegeFormation of microstamped patterns on surfaces and derivative articles
US5558071A (en)1994-03-071996-09-24Combustion Electromagnetics, Inc.Ignition system power converter and controller
WO1996029629A2 (en)1995-03-011996-09-26President And Fellows Of Harvard CollegeMicrocontact printing on surfaces and derivative articles
US5585069A (en)1994-11-101996-12-17David Sarnoff Research Center, Inc.Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
WO1996041011A1 (en)1995-06-071996-12-19Lynx Therapeutics, Inc.Oligonucleotide tags for sorting and identification
US5587128A (en)1992-05-011996-12-24The Trustees Of The University Of PennsylvaniaMesoscale polynucleotide amplification devices
US5605793A (en)1994-02-171997-02-25Affymax Technologies N.V.Methods for in vitro recombination
US5618711A (en)1986-08-221997-04-08Hoffmann-La Roche Inc.Recombinant expression vectors and purification methods for Thermus thermophilus DNA polymerase
EP0637996B1 (en)1992-05-011997-07-23The Trustees Of The University Of PennsylvaniaMicrofabricated detection structures
US5695940A (en)1987-04-011997-12-09Hyseq, Inc.Method of sequencing by hybridization of oligonucleotide probes
US5700642A (en)1995-05-221997-12-23Sri InternationalOligonucleotide sizing using immobilized cleavable primers
US5708153A (en)1991-09-181998-01-13Affymax Technologies N.V.Method of synthesizing diverse collections of tagged compounds
WO1998002237A1 (en)1996-07-151998-01-22Kemgas LimitedProduction of powders
US5736330A (en)1995-10-111998-04-07Luminex CorporationMethod and compositions for flow cytometric determination of DNA sequences
US5739036A (en)1996-04-151998-04-14Dade International Inc.Method for analysis
US5744311A (en)1994-04-181998-04-28Becton, Dickinson And CompanyStrand displacement amplification using thermophilic enzymes
US5756334A (en)1990-04-261998-05-26New England Biolabs, Inc.Thermostable DNA polymerase from 9°N-7 and methods for producing the same
US5834197A (en)1994-05-111998-11-10Genera Technologies LimitedMethods of capturing species from liquids and assay procedures
WO1998052691A1 (en)1997-05-161998-11-26Alberta Research CouncilMicrofluidic system and methods of use
US5842787A (en)1997-10-091998-12-01Caliper Technologies CorporationMicrofluidic systems incorporating varied channel dimensions
US5846719A (en)1994-10-131998-12-08Lynx Therapeutics, Inc.Oligonucleotide tags for sorting and identification
US5846727A (en)1996-06-061998-12-08Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical CollegeMicrosystem for rapid DNA sequencing
US5851769A (en)1995-09-271998-12-22The Regents Of The University Of CaliforniaQuantitative DNA fiber mapping
US5856174A (en)1995-06-291999-01-05Affymetrix, Inc.Integrated nucleic acid diagnostic device
US5872010A (en)1995-07-211999-02-16Northeastern UniversityMicroscale fluid handling system
WO1999009217A1 (en)1997-08-151999-02-25Hyseq, Inc.Methods and compositions for detection or quantification of nucleic acid species
US5900481A (en)1996-11-061999-05-04Sequenom, Inc.Bead linkers for immobilizing nucleic acids to solid supports
US5958703A (en)1996-12-031999-09-28Glaxo Group LimitedUse of modified tethers in screening compound libraries
US5965443A (en)1996-09-091999-10-12Wisconsin Alumni Research FoundationSystem for in vitro transposition
WO1999052708A1 (en)1998-04-131999-10-21Luminex CorporationLiquid labeling with fluorescent microparticles
US5994056A (en)1991-05-021999-11-30Roche Molecular Systems, Inc.Homogeneous methods for nucleic acid amplification and detection
US5997636A (en)1998-05-011999-12-07Instrumentation Technology Associates, Inc.Method and apparatus for growing crystals
WO2000008212A1 (en)1998-08-072000-02-17Cellay, LlcGel microdrops in genetic analysis
US6033880A (en)1993-07-282000-03-07The Perkin-Elmer CorporationNucleic acid amplification reaction apparatus and method
US6046003A (en)1995-11-302000-04-04Pharmaseq, Inc.Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
US6051377A (en)1995-11-302000-04-18Pharmaseq, Inc.Multiplex assay for nucleic acids employing transponders
WO2000023181A1 (en)1998-10-192000-04-27Lingna WangMethod and apparatus for production of small particles of micrometer or nanometer size
US6057149A (en)1995-09-152000-05-02The University Of MichiganMicroscale devices and reactions in microscale devices
WO2000026412A1 (en)1998-11-022000-05-11Kenneth Loren BeattieNucleic acid analysis using sequence-targeted tandem hybridization
WO2000043766A1 (en)1999-01-212000-07-27Caliper Technologies Corp.Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6103537A (en)1997-10-022000-08-15Aclara Biosciences, Inc.Capillary assays involving separation of free and bound species
US6143496A (en)1997-04-172000-11-07Cytonix CorporationMethod of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
WO2000070095A2 (en)1999-05-172000-11-23Dade Behring Inc.Homogeneous isothermal amplification and detection of nucleic acids using a template switch oligonucleotide
US6159717A (en)1992-09-142000-12-12Institute For Molecular Biology And Biotechnology/ForthEukaryotic transposable element
US6171850B1 (en)1999-03-082001-01-09Caliper Technologies Corp.Integrated devices and systems for performing temperature controlled reactions and analyses
WO2001002850A1 (en)1999-07-062001-01-11Caliper Technologies Corp.Microfluidic systems and methods for determining modulator kinetics
WO2001014589A2 (en)1999-08-202001-03-01Luminex CorporationLiquid array technology
US6207384B1 (en)1998-03-272001-03-27The General Hospital CorporationSystematic identification of essential genes by in vitro transposon mutagenesis
WO2001027610A2 (en)1999-10-132001-04-19Signature Bioscience, Inc.System and method for detecting and identifying molecular events in a test sample
US6258571B1 (en)1998-04-102001-07-10GensetHigh throughput DNA sequencing vector
US6265552B1 (en)1993-07-302001-07-24Affymax Technologies N.V.Biotinylation of proteins
US20010020588A1 (en)1997-09-152001-09-13Whitehead Institute For Biomedical ResearchMethods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US6291243B1 (en)1999-04-282001-09-18The Board Of Trustees Of The Leland Stanford Jr. UniversityP element derived vector and methods for its use
US6294385B1 (en)1998-09-232001-09-25Wisconsin Alumni Research FoundationMethod for making insertional mutations using a Tn5 synaptic complex
US6297006B1 (en)1997-01-162001-10-02Hyseq, Inc.Methods for sequencing repetitive sequences and for determining the order of sequence subfragments
US6296020B1 (en)1998-10-132001-10-02Biomicro Systems, Inc.Fluid circuit components based upon passive fluid dynamics
US6297017B1 (en)1997-07-112001-10-02Brax Group LimitedCategorising nucleic acids
US6303343B1 (en)1999-04-062001-10-16Caliper Technologies Corp.Inefficient fast PCR
US6306590B1 (en)1998-06-082001-10-23Caliper Technologies Corp.Microfluidic matrix localization apparatus and methods
US20010036669A1 (en)2000-02-232001-11-01Paul JedrzejewskiMicrofluidic devices and methods
US20010041357A1 (en)1999-07-282001-11-15Yves FouilletMethod for carrying out a biochemical protocol in continuous flow in a microreactor
WO2001089787A2 (en)2000-05-252001-11-29President And Fellows Of Harvard CollegeMicrofluidic systems including three-dimensionally arrayed channel networks
WO2001090418A1 (en)2000-05-222001-11-29The Regents Of The University Of CaliforniaRapid haplotyping by single molecule detection
US6327410B1 (en)1997-03-142001-12-04The Trustees Of Tufts CollegeTarget analyte sensors utilizing Microspheres
US20010048900A1 (en)2000-05-242001-12-06Bardell Ronald L.Jet vortex mixer
US20020001856A1 (en)2000-04-062002-01-03Chow Andrea W.Methods and devices for achieving long incubation times in high-throughput systems
US20020005354A1 (en)1997-09-232002-01-17California Institute Of TechnologyMicrofabricated cell sorter
WO2002018949A2 (en)2000-08-312002-03-07The Regents Of The University Of CaliforniaCapillary array and related methods
US6355198B1 (en)1996-03-152002-03-12President And Fellows Of Harvard CollegeMethod of forming articles including waveguides via capillary micromolding and microtransfer molding
US20020034737A1 (en)1997-03-042002-03-21Hyseq, Inc.Methods and compositions for detection or quantification of nucleic acid species
US6361950B1 (en)1995-11-302002-03-26Pharmaseq, Inc.Multiplex assay for nucleic acids employing transponders
US6372813B1 (en)1999-06-252002-04-16MotorolaMethods and compositions for attachment of biomolecules to solid supports, hydrogels, and hydrogel arrays
WO2002031203A2 (en)2000-10-102002-04-18Diversa CorporationHigh throughput or capillary-based screening for a bioactivity or biomolecule
US20020043463A1 (en)2000-08-312002-04-18Alexander ShenderovElectrostatic actuators for microfluidics and methods for using same
US6379929B1 (en)1996-11-202002-04-30The Regents Of The University Of MichiganChip-based isothermal amplification devices and methods
US20020051992A1 (en)1997-05-232002-05-02Lynx Therapeutics, Inc.System and apparatus for sequential processing of analytes
US20020051971A1 (en)1999-05-212002-05-02John R. StuelpnagelUse of microfluidic systems in the detection of target analytes using microsphere arrays
US20020058332A1 (en)2000-09-152002-05-16California Institute Of TechnologyMicrofabricated crossflow devices and methods
US20020068278A1 (en)1997-12-312002-06-06Klaus GieseMetastatic breast and colon cancer regulated genes
US6409832B2 (en)2000-03-312002-06-25Micronics, Inc.Protein crystallization in microfluidic structures
US20020089100A1 (en)2000-11-142002-07-11Akira KawasakiProduction apparatus of monodisperse particle and production process of monodisperse particle and monodisperse particle produced by the process
US20020092767A1 (en)1997-09-192002-07-18Aclara Biosciences, Inc.Multiple array microfluidic device units
US6432360B1 (en)1997-10-102002-08-13President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US6432290B1 (en)1999-11-262002-08-13The Governors Of The University Of AlbertaApparatus and method for trapping bead based reagents within microfluidic analysis systems
US20020113009A1 (en)2000-08-072002-08-22Nanostream, Inc.Microfluidic separators
US20020119536A1 (en)2000-09-142002-08-29Caliper Technologies Corp.Microfluidic devices and methods for performing temperature mediated reactions
US20020131147A1 (en)1998-08-272002-09-19Paolini Richard J.Electrophoretic medium and process for the production thereof
US20020160518A1 (en)2001-04-032002-10-31Hayenga Jon W.Microfluidic sedimentation
WO2002086148A1 (en)2001-04-182002-10-31Ambrigen, LlcParticle based assay system
US20020166582A1 (en)2000-04-142002-11-14Nanostream, Inc.Microfluidic branch metering systems and methods
US6485944B1 (en)1997-10-102002-11-26President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US20020175079A1 (en)1997-08-132002-11-28CepheidDevice and method for the manipulation of a fluid sample
US20020179849A1 (en)1999-05-122002-12-05Kevin MaherMultiplexed fluorescent detection in microfluidic devices
US6492118B1 (en)1999-08-272002-12-10Matrix Technologies CorporationMethods of immobilizing ligands on solid supports
US20030005967A1 (en)2001-07-072003-01-09Nanostream, Inc.Microfluidic metering systems and methods
US20030007898A1 (en)2001-06-202003-01-09Coventor, Inc.Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030008285A1 (en)2001-06-292003-01-09Fischer Steven M.Method of DNA sequencing using cleavable tags
US20030008323A1 (en)1999-04-152003-01-09Ilya RavkinChemical-library composition and method
US6511803B1 (en)1997-10-102003-01-28President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US20030022231A1 (en)1999-08-132003-01-30Brandeis UniversityDetection of nucleic acids
US20030027214A1 (en)1999-02-172003-02-06Kamb Carl AlexanderMethods for substrate-ligand interaction screening
US20030027221A1 (en)2001-04-062003-02-06Scott Melissa E.High-throughput screening assays by encapsulation
US20030028981A1 (en)1997-10-142003-02-13Chandler Don J.Precision fluorescently dyed particles and methods of making and using same
US20030036206A1 (en)2001-02-152003-02-20Caliper Technologies Corp.Microfluidic systems with enhanced detection systems
US6524456B1 (en)1999-08-122003-02-25Ut-Battelle, LlcMicrofluidic devices for the controlled manipulation of small volumes
US20030039978A1 (en)2001-08-272003-02-27Hannah Eric C.Electron induced fluorescent method for nucleic acid sequencing
US20030044777A1 (en)1993-10-282003-03-06Kenneth L. BeattieFlowthrough devices for multiple discrete binding reactions
US20030044836A1 (en)1998-10-152003-03-06Princeton University, Office Of Technology & Trademark LicensingQuantitative analysis of hybridization patterns and intensities in oligonucleotide arrays
US20030075446A1 (en)2001-10-192003-04-24Culbertson Christopher T.Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
US20030082587A1 (en)2001-12-282003-05-01Michael SeulArrays of microparticles and methods of preparation thereof
US20030089605A1 (en)2001-10-192003-05-15West Virginia University Research CorporationMicrofluidic system for proteome analysis
US6569631B1 (en)1998-11-122003-05-273-Dimensional Pharmaceuticals, Inc.Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes
US20030104466A1 (en)1997-04-042003-06-05Caliper Technologies CorporationMicrofluidic sequencing systems
US6579851B2 (en)2000-03-142003-06-17Amylin Pharmaceuticals, Inc.Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility
US20030124509A1 (en)1999-06-032003-07-03Kenis Paul J.A.Laminar flow patterning and articles made thereby
US6593113B1 (en)1997-07-142003-07-15Finnzymes OyIn vitro method for providing templates for DNA sequencing
WO2003062462A2 (en)2002-01-162003-07-31Dynal Biotech AsaMethod for isolating nucleic acids and protein from a single sample
US20030149307A1 (en)2001-10-242003-08-07Baxter International Inc.Process for the preparation of polyethylene glycol bis amine
US6613752B2 (en)1999-10-282003-09-02The Board Of Trustees Of The Leland Stanford Junior UniversityMethods of in vivo gene transfer using a sleeping beauty transposon system
US20030170698A1 (en)2002-01-042003-09-11Peter GascoyneDroplet-based microfluidic oligonucleotide synthesis engine
US20030182068A1 (en)2001-10-302003-09-25Battersby Bronwyn J.Device and methods for directed synthesis of chemical libraries
US6632606B1 (en)2000-06-122003-10-14Aclara Biosciences, Inc.Methods for single nucleotide polymorphism detection
US6632655B1 (en)1999-02-232003-10-14Caliper Technologies Corp.Manipulation of microparticles in microfluidic systems
WO2004002627A2 (en)2002-06-282004-01-08President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
WO2004010106A2 (en)2002-07-242004-01-29Ptc Therapeutics, Inc.METHODS FOR IDENTIFYING SMALL MOLEDULES THAT MODULATE PREMATURE TRANSLATION TERMINATION AND NONSENSE MEDIATED mRNA DECAY
US20040063138A1 (en)1999-02-162004-04-01Mcginnis Malcolm D.Polynucleotide sequencing method
US6723513B2 (en)1998-12-232004-04-20Lingvitae AsSequencing method using magnifying tags
US20040081962A1 (en)2002-10-232004-04-29Caifu ChenMethods for synthesizing complementary DNA
US20040101880A1 (en)2001-02-082004-05-27Rozwadowski Kevin LReplicative in vivo gene targeting
US20040132122A1 (en)2000-06-212004-07-08Sukanta BanerjeeMultianalyte molecular analysis using application-specific random particle arrays
WO2004061083A2 (en)2002-12-272004-07-22Amgen Inc.Rna interference
WO2004065617A2 (en)2003-01-172004-08-05The Trustees Of Boston UniversityHaplotype analysis
WO2004069849A2 (en)2003-01-292004-08-19454 CorporationBead emulsion nucleic acid amplification
EP1019496B1 (en)1997-07-072004-09-29Medical Research CouncilIn vitro sorting method
US6800298B1 (en)2000-05-112004-10-05Clemson UniversityBiological lubricant composition and method of applying lubricant composition
US6806058B2 (en)2001-05-262004-10-19One Cell Systems, Inc.Secretions of proteins by encapsulated cells
WO2004091763A2 (en)2003-04-102004-10-28President And Fellows Of Harvard CollegeFormation and control of fluidic species
WO2004102204A1 (en)2003-05-162004-11-25Global Technologies (Nz) LtdMethod and apparatus for mixing sample and reagent in a suspension fluid
WO2004103565A2 (en)2003-05-192004-12-02Hans-Knöll-Institut für Naturstoff-Forschung e.V.Device and method for structuring liquids and for dosing reaction liquids into liquid compartments immersed in a separation medium
WO2004105734A1 (en)2003-05-282004-12-09Valorisation Recherche, Societe En CommanditeMethod of preparing microcapsules
US20040258701A1 (en)2003-04-042004-12-23Pfizer Inc.Microfluidized oil-in-water emulsions and vaccine compositions
WO2005002730A1 (en)2003-07-022005-01-13The University Of ManchesterMicrofluidic method and device
US20050042625A1 (en)1997-01-152005-02-24Xzillion Gmbh & Co.Mass label linked hybridisation probes
WO2005021151A1 (en)2003-08-272005-03-10President And Fellows Of Harvard CollegeElectronic control of fluidic species
WO2005023331A2 (en)2003-09-042005-03-17The United States Of America As Represented By The Department Of Veterans AffairsHydrogel nanocompsites for ophthalmic applications
US6880576B2 (en)2001-06-072005-04-19Nanostream, Inc.Microfluidic devices for methods development
US6884788B2 (en)2001-02-222005-04-26Anika Therapeutics, Inc.Thiol-modified hyaluronan
WO2005040406A1 (en)2003-10-172005-05-06Diversa CorporationHigh throughput screening of antibody libraries
WO2005049787A2 (en)2003-11-242005-06-02Yeda Research And Development Co.Ltd.Compositions and methods for in vitro sorting of molecular and cellular libraries
US20050130188A1 (en)1997-03-142005-06-16The Trustees Of Tufts CollegeMethods for detecting target analytes and enzymatic reactions
US6913935B1 (en)1997-12-042005-07-05Amersham Biosciences Uk LimitedMultiple assay method
US20050181379A1 (en)2004-02-182005-08-18Intel CorporationMethod and device for isolating and positioning single nucleic acid molecules
WO2005082098A2 (en)2004-02-272005-09-09President And Fellows Of Harvard CollegePolony fluorescent in situ sequencing beads
US20050202429A1 (en)2002-03-202005-09-15Innovativebio.BizMicrocapsules with controlable permeability encapsulating a nucleic acid amplification reaction mixture and their use as reaction compartment for parallels reactions
US20050202489A1 (en)2004-03-122005-09-15Cho Yoon-KyoungMethod and apparatus for amplifying nucleic acids
US20050221339A1 (en)2004-03-312005-10-06Medical Research Council Harvard UniversityCompartmentalised screening by microfluidic control
US6969488B2 (en)1998-05-222005-11-29Solexa, Inc.System and apparatus for sequential processing of analytes
US6974669B2 (en)2000-03-282005-12-13Nanosphere, Inc.Bio-barcodes based on oligonucleotide-modified nanoparticles
US20050287572A1 (en)2004-06-012005-12-29The Regents Of The University Of CaliforniaMicrofabricated integrated DNA analysis system
US20060002890A1 (en)2004-07-052006-01-05Ulrich HerselHydrogel formulations
US20060020371A1 (en)2004-04-132006-01-26President And Fellows Of Harvard CollegeMethods and apparatus for manipulation and/or detection of biological samples and other objects
WO2006030993A1 (en)2004-09-142006-03-23Jin-Ho ChoyInformation code system using dna sequences
US20060073487A1 (en)2004-10-012006-04-06Oliver Kerry GSystem and method for inhibiting the decryption of a nucleic acid probe sequence used for the detection of a specific nucleic acid
US20060078888A1 (en)2004-10-082006-04-13Medical Research Council Harvard UniversityIn vitro evolution in microfluidic systems
US7041481B2 (en)2003-03-142006-05-09The Regents Of The University Of CaliforniaChemical amplification based on fluid partitioning
EP1672064A1 (en)2003-09-222006-06-21RikenEfficient method of preparing dna inverted repeat structure
US20060153924A1 (en)2003-03-312006-07-13Medical Research CouncilSelection by compartmentalised screening
WO2006078841A1 (en)2005-01-212006-07-27President And Fellows Of Harvard CollegeSystems and methods for forming fluidic droplets encapsulated in particles such as colloidal particles
US20060177832A1 (en)2005-02-102006-08-10Sydney BrennerGenetic analysis by sequence-specific sorting
US20060177833A1 (en)2005-02-102006-08-10Sydney BrennerMethods and compositions for tagging and identifying polynucleotides
US20060199193A1 (en)2005-03-042006-09-07Tae-Woong KooSensor arrays and nucleic acid sequencing applications
WO2006096571A2 (en)2005-03-042006-09-14President And Fellows Of Harvard CollegeMethod and apparatus for forming multiple emulsions
US7115400B1 (en)1998-09-302006-10-03Solexa Ltd.Methods of nucleic acid amplification and sequencing
JP2006289250A (en)2005-04-082006-10-26Kao Corp Micromixer and fluid mixing method using the same
US20060240506A1 (en)2002-09-092006-10-26Ariel KushmaroMethod for isolating and culturing unculturable microorganisms
US7129091B2 (en)2002-05-092006-10-31University Of ChicagoDevice and method for pressure-driven plug transport and reaction
US20060257893A1 (en)2005-02-182006-11-16Toru TakahashiDevices and methods for monitoring genomic DNA of organisms
US7138267B1 (en)2001-04-042006-11-21Epicentre Technologies CorporationMethods and compositions for amplifying DNA clone copy number
US20060263888A1 (en)2000-06-022006-11-23Honeywell International Inc.Differential white blood count on a disposable card
US20060275782A1 (en)1999-04-202006-12-07Illumina, Inc.Detection of nucleic acid reactions on bead arrays
US20060292583A1 (en)1999-08-302006-12-28The Government of the U.S.A as represented by the Secretary of Dept. of Health and Human ServicesHigh speed parallel molecular nucleic acid sequencing
WO2007001448A2 (en)2004-11-042007-01-04Massachusetts Institute Of TechnologyCoated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
WO2007002490A2 (en)2005-06-222007-01-04The Research Foundation Of State University Of New YorkMassively parallel 2-dimensional capillary electrophoresis
JP2007015990A (en)2005-07-082007-01-25National Institute Of Advanced Industrial & Technology Inorganic microcapsule encapsulating macro-biomaterial and method for producing the same
US20070020640A1 (en)2005-07-212007-01-25Mccloskey Megan LMolecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
WO2007012638A1 (en)2005-07-252007-02-01Commissariat A L'energie AtomiqueMethod for controlling communication between two electrowetting zones, device comprising zones capable of being isolated from one another and method for making such a device
WO2007018601A1 (en)2005-08-022007-02-15Rubicon Genomics, Inc.Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
WO2007024840A2 (en)2005-08-222007-03-01Critical Therapeutics, Inc.Method of quantitating nucleic acids by flow cytometry microparticle-based array
US20070054119A1 (en)2005-03-042007-03-08Piotr GarsteckiSystems and methods of forming particles
US20070072208A1 (en)2005-06-152007-03-29Radoje DrmanacNucleic acid analysis by random mixtures of non-overlapping fragments
US20070154903A1 (en)2005-06-232007-07-05Nanosphere, Inc.Selective isolation and concentration of nucleic acids from complex samples
US20070160503A1 (en)2003-06-132007-07-12Palaniappan SethuMicrofluidic systems for size based removal of red blood cells and platelets from blood
WO2007081387A1 (en)2006-01-112007-07-19Raindance Technologies, Inc.Microfluidic devices, methods of use, and kits for performing diagnostics
WO2007084192A2 (en)2005-09-162007-07-26The Regents Of The University Of CaliforniaA colorimetric bio-barcode amplification assay for analyte detection
US20070172873A1 (en)2006-01-232007-07-26Sydney BrennerMolecular counting
WO2007089541A2 (en)2006-01-272007-08-09President And Fellows Of Harvard CollegeFluidic droplet coalescence
US20070190543A1 (en)2005-11-142007-08-16Applera CorporationCoded Molecules for Detecting Target Analytes
US20070207060A1 (en)2004-07-212007-09-06Chengdu Kuachang Medical Industrial LimitedTesting method of analytic chip of multiple reactors, the analytic chip, and the testing device
US7268167B2 (en)2001-02-232007-09-11Japan Science And Technology AgencyProcess for producing emulsion and microcapsules and apparatus therefor
US20070228588A1 (en)2006-03-302007-10-04Yasuko NoritomiApparatus for producing particles, emulsifier holding member, method for producing particles, and method for producing molecular membrane
EP1841879A2 (en)2005-01-252007-10-10Compass Genetics, LlcIsothermal dna amplification
US20070238113A1 (en)1999-11-082007-10-11Eiken Kagaku Kabushiki KaishaMethod for detecting mutations and/or polymorphisms
WO2007114794A1 (en)2006-03-312007-10-11Nam Trung NguyenActive control for droplet-based microfluidics
WO2007121489A2 (en)2006-04-192007-10-25Applera CorporationReagents, methods, and libraries for gel-free bead-based sequencing
US20070259357A1 (en)2006-01-232007-11-08Sydney BrennerNucleic acid analysis using sequence tokens
US20070264320A1 (en)2006-05-092007-11-15The Regents Of The University Of CaliforniaMicrofluidic device for forming monodisperse lipoplexes
US7297485B2 (en)2001-10-152007-11-20Qiagen GmbhMethod for nucleic acid amplification that results in low amplification bias
WO2007133710A2 (en)2006-05-112007-11-22Raindance Technologies, Inc.Microfluidic devices and methods of use thereof
WO2007138178A2 (en)2006-05-302007-12-06Centre National De La Recherche ScientifiqueMethod for treating drops in a microfluid circuit
WO2007139766A2 (en)2006-05-222007-12-06Nanostring Technologies, Inc.Systems and methods for analyzing nanoreporters
WO2007140015A2 (en)2006-05-262007-12-06Althea Technologies, IncBiochemical analysis of partitioned cells
WO2007147079A2 (en)2006-06-142007-12-21Living Microsystems, Inc.Rare cell analysis using sample splitting and dna tags
WO2007149432A2 (en)2006-06-192007-12-27The Johns Hopkins UniversitySingle-molecule pcr on microparticles in water-in-oil emulsions
US20080004436A1 (en)2004-11-152008-01-03Yeda Research And Development Co. Ltd. At The Weizmann Institute Of ScienceDirected Evolution and Selection Using in Vitro Compartmentalization
US7329493B2 (en)2004-12-222008-02-12Asiagen CorporationOne-tube nested PCR for detecting Mycobacterium tuberculosis
WO2008021123A1 (en)2006-08-072008-02-21President And Fellows Of Harvard CollegeFluorocarbon emulsion stabilizing surfactants
WO2008061193A2 (en)2006-11-152008-05-22Biospherex LlcMultitag sequencing and ecogenomics analysis
WO2008091792A2 (en)2007-01-232008-07-31Honeywell International Inc.Hydrogel microarray with embedded metal nanoparticles
WO2008102057A1 (en)2007-02-212008-08-28Valtion Teknillinen TutkimuskeskusMethod and test kit for determining the amounts of target sequences and nucleotide variations therein
WO2008109176A2 (en)2007-03-072008-09-12President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
US20080228268A1 (en)2007-03-152008-09-18Uluru, Inc.Method of Formation of Viscous, Shape Conforming Gels and Their Uses as Medical Prosthesis
US20080242560A1 (en)2006-11-212008-10-02Gunderson Kevin LMethods for generating amplified nucleic acid arrays
US20080241820A1 (en)2007-02-162008-10-02Krutzik Peter OMultiplex cellular assays using detectable cell barcodes
WO2008121342A2 (en)2007-03-282008-10-09President And Fellows Of Harvard CollegeEmulsions and techniques for formation
WO2008134153A1 (en)2007-04-232008-11-06Advanced Liquid Logic, Inc.Bead-based multiplexed analytical methods and instrumentation
WO2008150432A1 (en)2007-06-012008-12-11454 Life Sciences CorporationSystem and meth0d for identification of individual samples from a multiplex mixture
US20090005252A1 (en)2006-02-242009-01-01Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
WO2009005680A1 (en)2007-06-292009-01-08President And Fellows Of Harvard CollegeMethods and apparatus for manipulation of fluidic species
US20090011943A1 (en)2005-06-152009-01-08Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
WO2009011808A1 (en)2007-07-132009-01-22President And Fellows Of Harvard CollegeDroplet-based selection
WO2009015296A1 (en)2007-07-242009-01-29The Regents Of The University Of CaliforniaMicrofabricated dropley generator
US20090025277A1 (en)2005-02-212009-01-29Kagoshima UniversityMethod for purifying biodiesel fuel
US20090035770A1 (en)2006-10-252009-02-05The Regents Of The University Of CaliforniaInline-injection microdevice and microfabricated integrated DNA analysis system using same
US20090053169A1 (en)2007-08-202009-02-26Pharmain CorporationOligonucleotide Core Carrier Compositions for Delivery of Nucleic Acid-Containing Therapeutic Agents, Methods of Making and Using the Same
WO2009048532A2 (en)2007-10-052009-04-16President And Fellows Of Harvard CollegeFormation of particles for ultrasound application, drug release, and other uses, and microfluidic methods of preparation
US20090099041A1 (en)2006-02-072009-04-16President And Fellows Of Harvard CollegeMethods for making nucleotide probes for sequencing and synthesis
US20090098555A1 (en)2007-09-262009-04-16President And Fellows Of Harvard CollegeMethods and applications for stitched dna barcodes
WO2009061372A1 (en)2007-11-022009-05-14President And Fellows Of Harvard CollegeSystems and methods for creating multi-phase entities, including particles and/or fluids
US7536928B2 (en)2005-06-162009-05-26Ntn CorporationBall screw
US20090148961A1 (en)2006-09-272009-06-11Alessandra LuchiniSmart hydrogel particles for biomarker harvesting
US20090155780A1 (en)2007-12-142009-06-18Board Of Trustees Of The University Of IllinoisMethods for determining genetic haplotypes and DNA mapping
WO2009085215A1 (en)2007-12-212009-07-09President And Fellows Of Harvard CollegeSystems and methods for nucleic acid sequencing
US20090197772A1 (en)2004-03-312009-08-06Andrew GriffithsCompartmentalised combinatorial chemistry by microfluidic control
US20090203531A1 (en)2008-02-122009-08-13Nurith KurnMethod for Archiving and Clonal Expansion
US20090202984A1 (en)2008-01-172009-08-13Sequenom, Inc.Single molecule nucleic acid sequence analysis processes and compositions
JP2009208074A (en)2008-02-082009-09-17Kao CorpManufacturing method of fine particle dispersion liquid
US7608451B2 (en)2002-06-262009-10-27Transgen Rx, Inc.Gene regulation in transgenic animals using a transposon-based vector
US7608434B2 (en)2004-08-042009-10-27Wisconsin Alumni Research FoundationMutated Tn5 transposase proteins and the use thereof
US20090286687A1 (en)2003-07-052009-11-19The Johns Hopkins UniversityMethod and Compositions for Detection and Enumeration of Genetic Variations
US7622280B2 (en)2001-11-162009-11-24454 Life Sciences CorporationEmulsion compositions
US7645596B2 (en)1998-05-012010-01-12Arizona Board Of RegentsMethod of determining the nucleotide sequence of oligonucleotides and DNA molecules
WO2010004018A2 (en)2008-07-112010-01-14Eth ZurichDegradable microcapsules
US20100021984A1 (en)2008-05-232010-01-28Edd Jon FMicrofluidic Droplet Encapsulation
US20100022414A1 (en)2008-07-182010-01-28Raindance Technologies, Inc.Droplet Libraries
US20100035254A1 (en)2003-04-082010-02-11Pacific Biosciences Of California, Inc.Composition and method for nucleic acid sequencing
US7666664B2 (en)2006-07-142010-02-23Roche Molecular Systems, Inc.Instrument for heating and cooling
US20100062494A1 (en)2008-08-082010-03-11President And Fellows Of Harvard CollegeEnzymatic oligonucleotide pre-adenylation
US20100069263A1 (en)2008-09-122010-03-18Washington, University OfSequence tag directed subassembly of short sequencing reads into long sequencing reads
WO2010033200A2 (en)2008-09-192010-03-25President And Fellows Of Harvard CollegeCreation of libraries of droplets and related species
US20100086914A1 (en)2008-10-032010-04-08Roche Molecular Systems, Inc.High resolution, high throughput hla genotyping by clonal sequencing
EP1967592B1 (en)1995-06-072010-04-28Solexa, Inc.Method of improving the efficiency of polynucleotide sequencing
US20100113296A1 (en)2008-11-052010-05-06Joel MyersonMethods And Kits For Nucleic Acid Analysis
US20100120098A1 (en)2008-10-242010-05-13Epicentre Technologies CorporationTransposon end compositions and methods for modifying nucleic acids
US7745178B2 (en)1999-10-272010-06-29Affymetrix, Inc.Complexity management of genomic DNA
US7745218B2 (en)2002-02-222010-06-29Korea Advanced Institute Of Science And TechnologyGenome minimization by tn5-coupled cre/loxP excision system
US20100173394A1 (en)2008-09-232010-07-08Colston Jr Billy WayneDroplet-based assay system
US20100187705A1 (en)2009-01-232010-07-29The Industry & Academic Cooperation In Chungnam National University (Iac)Preparation method for micro-capsule using a microfluidic chip system
US20100210479A1 (en)2003-03-312010-08-19Medical Research CouncilMethod of synthesis and testing of cominatorial libraries using microcapsules
WO2010104604A1 (en)2009-03-132010-09-16President And Fellows Of Harvard CollegeMethod for the controlled creation of emulsions, including multiple emulsions
US20100248237A1 (en)2009-02-252010-09-30Thomas FroehlichMiniaturized, high-throughput nucleic acid analysis
WO2010115154A1 (en)2009-04-022010-10-07Fluidigm CorporationMulti-primer amplification method for barcoding of target nucleic acids
WO2010117620A2 (en)2009-03-302010-10-14Illumina, Inc.Gene expression analysis in single cells
US20100304982A1 (en)2009-05-292010-12-02Ion Torrent Systems, Inc.Scaffolded nucleic acid polymer particles and methods of making and using
WO2010148039A2 (en)2009-06-152010-12-23Complete Genomics, Inc.Methods and compositions for long fragment read sequencing
WO2010151776A2 (en)2009-06-262010-12-29President And Fellows Of Harvard CollegeFluid injection
US20110000560A1 (en)2009-03-232011-01-06Raindance Technologies, Inc.Manipulation of Microfluidic Droplets
US20110008775A1 (en)2007-12-102011-01-13Xiaolian GaoSequencing of nucleic acids
US20110028412A1 (en)2009-08-032011-02-03Cappellos, Inc.Herbal enhanced analgesic formulations
US20110033548A1 (en)2009-08-052011-02-10E.I. Du Pont De Nemours And CompanyDegradable crosslinked aminated dextran microspheres and methods of use
US20110033854A1 (en)2007-12-052011-02-10Complete Genomics, Inc.Methods and compositions for long fragment read sequencing
US20110053798A1 (en)2009-09-022011-03-03Quantalife, Inc.System for mixing fluids by coalescence of multiple emulsions
US20110059556A1 (en)2009-09-042011-03-10The Research Foundation Of State University Of New YorkRapid and Continuous Analyte Processing in Droplet Microfluidic Devices
US7910354B2 (en)2006-10-272011-03-22Complete Genomics, Inc.Efficient arrays of amplified polynucleotides
WO2011047870A1 (en)2009-10-222011-04-28Plasticell LtdNested cell encapsulation
WO2011056546A1 (en)2009-10-272011-05-12President And Fellows Of Harvard CollegeDroplet creation techniques
US7947477B2 (en)2006-06-302011-05-24Applied Biosystems, LlcEmulsion PCR and amplicon capture
WO2011066476A1 (en)2009-11-252011-06-03Quantalife, Inc.Methods and compositions for detecting genetic material
US7960104B2 (en)2005-10-072011-06-14Callida Genomics, Inc.Self-assembled single molecule arrays and uses thereof
WO2011074960A1 (en)2009-12-172011-06-23Keygene N.V.Restriction enzyme based whole genome sequencing
US20110160078A1 (en)2009-12-152011-06-30Affymetrix, Inc.Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels
US20110195496A1 (en)2003-09-252011-08-11Atsushi MuraguchiMicrowell array chip and method of manufacturing same
US8008018B2 (en)2006-02-022011-08-30The Board Of Trustees Of The Leland Stanford Junior UniversityDetermination of fetal aneuploidies by massively parallel DNA sequencing
US20110217736A1 (en)2010-03-022011-09-08Quantalife, Inc.System for hot-start amplification via a multiple emulsion
US8053192B2 (en)2007-02-022011-11-08Illumina Cambridge Ltd.Methods for indexing samples and sequencing multiple polynucleotide templates
WO2011140627A1 (en)2009-11-042011-11-17The University Of British ColumbiaNucleic acid-containing lipid particles and related methods
US20110306141A1 (en)2010-06-152011-12-15Src, Inc.Location Analysis Using Fire Retardant-Protected Nucleic Acid-Labeled Tags
US20110305761A1 (en)2008-06-052011-12-15President And Fellows Of Harvard CollegePolymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets
US20120000777A1 (en)2010-06-042012-01-05The Regents Of The University Of CaliforniaDevices and methods for forming double emulsion droplet compositions and polymer particles
US20120015822A1 (en)2008-12-192012-01-19President And Fellows Of Harvard CollegeParticle-assisted nucleic acid sequencing
US8101346B2 (en)2005-09-132012-01-24Canon Kabushiki KaishaIdentifier and nucleic acid amplification method of verification using the same
WO2012012037A1 (en)2010-07-192012-01-26New England Biolabs, Inc.Oligonucleotide adaptors: compositions and methods of use
US8124404B2 (en)2003-07-012012-02-28Oxitec LimitedStable integrands
US8137563B2 (en)2007-04-252012-03-20Ge Healthcare Bio-Sciences AbPreparation of polysaccharide beads
US20120071331A1 (en)2010-09-212012-03-22James CasbonIncreasing confidence of allele calls with molecular counting
WO2012047889A2 (en)2010-10-042012-04-12Genapsys Inc.Systems and methods for automated reusable parallel biological reactions
WO2012048341A1 (en)2010-10-082012-04-12President And Fellows Of Harvard CollegeHigh-throughput single cell barcoding
US20120121481A1 (en)2009-03-132012-05-17President And Fellows Of Harvard CollegeScale-up of flow-focusing microfluidic devices
GB2485850A (en)2009-11-252012-05-30Bio Rad LaboratoriesDNA copy number and Chromosome aneuploidy detection by amplification wherein the ligated products are partitioned into oil droplets prior to amplification
WO2012083225A2 (en)2010-12-162012-06-21Gigagen, Inc.System and methods for massively parallel analysis of nycleic acids in single cells
US20120172259A1 (en)2008-07-022012-07-05Illumina Cambridge LimitedUsing populations of beads for the fabrication of arrays on surfaces
US20120190032A1 (en)2010-03-252012-07-26Ness Kevin DDroplet generation for droplet-based assays
US20120196288A1 (en)2011-01-272012-08-02Lawrence Livermore National Security, LlcChip-Based Droplet Sorting
EP1905828B1 (en)1999-01-072012-08-08Medical Research CouncilOptical sorting method
WO2012106546A2 (en)2011-02-022012-08-09University Of Washington Through Its Center For CommercializationMassively parallel continguity mapping
US20120208724A1 (en)2011-02-102012-08-16Steemers Frank JLinking sequence reads using paired code tags
US20120211084A1 (en)2009-09-022012-08-23President And Fellows Of Harvard CollegeMultiple emulsions created using jetting and other techniques
WO2012112804A1 (en)2011-02-182012-08-23Raindance Technoligies, Inc.Compositions and methods for molecular labeling
WO2012112970A2 (en)2011-02-182012-08-23Bio-Rad Laboratories, Inc.Methods and compositions for detecting genetic material
US20120220497A1 (en)2009-11-032012-08-30Gen 9, Inc.Methods and Microfluidic Devices for the Manipulation of Droplets in High Fidelity Polynucleotide Assembly
US8273573B2 (en)2002-05-092012-09-25The University Of ChicagoMethod for obtaining a collection of plugs comprising biological molecules
WO2012136734A1 (en)2011-04-052012-10-11Tracesa Ltd.Fluid identification system and production and use thereof
WO2012142611A2 (en)2011-04-142012-10-18Complete Genomics, Inc.Sequencing small amounts of complex nucleic acids
US8298767B2 (en)2009-08-202012-10-30Population Genetics Technologies LtdCompositions and methods for intramolecular nucleic acid rearrangement
WO2012149042A2 (en)2011-04-252012-11-01Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
WO2012148497A2 (en)2011-04-282012-11-01The Board Of Trustees Of The Leland Stanford Junior UniversityIdentification of polynucleotides associated with a sample
US20120297493A1 (en)2003-12-242012-11-22Transgenrx, Inc.Gene Therapy Using Transposon-Based Vectors
WO2012166425A2 (en)2011-05-272012-12-06President And Fellows Of Harvard CollegeMethods of amplifying whole genome of a single cell
US20120309002A1 (en)2011-06-022012-12-06Raindance Technologies, Inc.Sample multiplexing
US20130018970A1 (en)2007-01-222013-01-17Comcast Cable Holdings, LlcSystem and Method for Providing an Application to a Device
US8361299B2 (en)2008-10-082013-01-29Sage Science, Inc.Multichannel preparative electrophoresis system
US20130028812A1 (en)2010-10-072013-01-31The Regents Of The University Of CaliforniaMethods and systems for on demand droplet generation and impedance based detection
WO2013019751A1 (en)2011-07-292013-02-07Bio-Rad Laboratories, Inc.,Library characterization by digital assay
US20130041004A1 (en)2008-09-252013-02-14Anthony S. DragerLiquid Formulations Of Bendamustine
US20130046030A1 (en)2011-05-232013-02-21Basf SeControl of emulsions, including multiple emulsions
WO2013036929A1 (en)2011-09-092013-03-14The Board Of Trustees Of The Leland Stanford JuniorMethods for obtaining a sequence
US20130084243A1 (en)2010-01-272013-04-04Liliane GoetschIgf-1r specific antibodies useful in the detection and diagnosis of cellular proliferative disorders
US8420386B2 (en)2003-02-102013-04-16Max-Delbruck-Centrum Fur Molekulare Medizin (Mdc)Transposon-based targeting system
US20130096073A1 (en)2000-03-012013-04-18Zvi SidelmanCasein Derived Peptides And Uses Thereof
WO2013055955A1 (en)2011-10-122013-04-18Complete Genomics, Inc.Identification of dna fragments and structural variations
US20130109575A1 (en)2009-12-232013-05-02Raindance Technologies, Inc.Microfluidic systems and methods for reducing the exchange of molecules between droplets
US20130109576A1 (en)2011-10-282013-05-02Anthony P. ShuberMethods for detecting mutations
US20130130919A1 (en)2011-10-182013-05-23The Regents Of The University Of CaliforniaLong-Range Barcode Labeling-Sequencing
US8461129B2 (en)2006-09-252013-06-11Archer Daniels Midland CompanySuperabsorbent surface-treated carboxyalkylated polysaccharides and process for producing same
US20130157899A1 (en)2007-12-052013-06-20Perkinelmer Health Sciences, Inc.Reagents and methods relating to dna assays using amplicon probes on encoded particles
US20130189700A1 (en)2011-07-252013-07-25Bio-Rad Laboratories, Inc.Breakage of an emulsion containing nucleic acid
US20130203675A1 (en)2010-09-162013-08-08Joseph M. DeSimoneAsymmetric biofunctional silyl monomers and particles thereof as prodrugs and delivery vehicles for pharmaceutical, chemical and biological agents
US20130211055A1 (en)2012-02-152013-08-15Wisconsin Alumni Research FoundationDithioamine reducing agents
US20130210991A1 (en)2012-02-092013-08-15Life Technologies CorporationHydrophilic Polymeric Particles and Methods for Making and Using Same
WO2013123125A1 (en)2012-02-172013-08-22President And Fellows Of Harvard CollegeAssembly of nucleic acid sequences in emulsions
WO2013122996A1 (en)2012-02-142013-08-22The Johns Hopkins UniversityMirna analysis methods
US20130225418A1 (en)2012-02-242013-08-29Andrew WatsonLabeling and sample preparation for sequencing
WO2013134261A1 (en)2012-03-052013-09-12President And Fellows Of Harvard CollegeSystems and methods for epigenetic sequencing
WO2013150083A1 (en)2012-04-032013-10-10MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.Analysis of nucleic acid molecules distributed on a surface or within a layer by sequencing with position identification
US20130296173A1 (en)2012-04-232013-11-07Complete Genomics, Inc.Pre-anchor wash
WO2013177220A1 (en)2012-05-212013-11-28The Scripps Research InstituteMethods of sample preparation
US8598328B2 (en)2006-12-132013-12-03National University Corporation Nagoya UniversityTol1 factor transposase and DNA introduction system using the same
US20130343317A1 (en)2011-11-042013-12-26Kamran EtemadSignaling for configuration of downlink coordinated multipoint communications
WO2014028537A1 (en)2012-08-142014-02-2010X Technologies, Inc.Microcapsule compositions and methods
WO2014053854A1 (en)2012-10-042014-04-10Base4 Innovation LtdSequencing method
US20140120529A1 (en)2012-10-152014-05-01Life Technologies CorporationCompositions, methods, systems and kits for target nucleic acid enrichment
WO2014071361A1 (en)2012-11-052014-05-08Rubicon GenomicsBarcoding nucleic acids
WO2014074611A1 (en)2012-11-072014-05-15Good Start Genetics, Inc.Methods and systems for identifying contamination in samples
WO2014093676A1 (en)2012-12-142014-06-1910X Technologies, Inc.Methods and systems for processing polynucleotides
EP2752664A1 (en)2013-01-072014-07-09Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.Label-free method for the detection of analytes
WO2014108810A2 (en)2013-01-092014-07-17Lumina Cambridge LimitedSample preparation on a solid support
US20140227706A1 (en)2011-05-162014-08-14Dna Chip Research Inc.Method for assessing progression of clinical state of malignant neoplasm by quantitative detection of DNA in blood
US20140228255A1 (en)2013-02-082014-08-1410X Technologies, Inc.Polynucleotide barcode generation
US8829171B2 (en)2011-02-102014-09-09Illumina, Inc.Linking sequence reads using paired code tags
WO2014144495A1 (en)2013-03-152014-09-18Abvitro, Inc.Single cell bar-coding for antibody discovery
US20140302503A1 (en)2013-03-082014-10-09Bio-Rad Laboratories, Inc.Compositions, methods and systems for polymerase chain reaction assays
US20140315725A1 (en)2008-11-072014-10-23Sequenta, Inc.Sequence analysis of complex amplicons
US20140378350A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20140378322A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20140378349A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20140378345A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
WO2014210353A2 (en)2013-06-272014-12-3110X Technologies, Inc.Compositions and methods for sample processing
US20150005199A1 (en)2012-08-142015-01-0110X Technologies, Inc.Compositions and methods for sample processing
US20150005200A1 (en)2012-08-142015-01-0110X Technologies, Inc.Compositions and methods for sample processing
US8927218B2 (en)2011-06-272015-01-06Flir Systems, Inc.Methods and compositions for segregating target nucleic acid from mixed nucleic acid samples
US20150072899A1 (en)2007-10-152015-03-12Sigma-Aldrich Co. LlcDegenerate oligonucleotides and their uses
US8986286B2 (en)2001-06-292015-03-24Coloplast A/SCatheter device
WO2015044428A1 (en)2013-09-302015-04-02Sten LinnarssonMethod for capturing and encoding nucleic acid from a plurality of single cells
US9005935B2 (en)2011-05-232015-04-14Agilent Technologies, Inc.Methods and compositions for DNA fragmentation and tagging by transposases
US20150111788A1 (en)2011-11-222015-04-23Active MotifMultiplex isolation of protein-associated nucleic acids
US20150119280A1 (en)2013-10-282015-04-30Massachusetts Institute Of TechnologyHydrogel Microstructures with Immiscible Fluid Isolation for Small Reaction Volumes
US20150267191A1 (en)2012-09-212015-09-24The Broad Institute, Inc.Compositions and methods for labeling of agents
US9150916B2 (en)2011-06-242015-10-06Beat ChristenCompositions and methods for identifying the essential genome of an organism
US20150299772A1 (en)2012-12-032015-10-22Elim Biopharmaceuticals, Inc.Single-stranded polynucleotide amplification methods
US20150298091A1 (en)2014-04-212015-10-22President And Fellows Of Harvard CollegeSystems and methods for barcoding nucleic acids
WO2015164212A1 (en)2014-04-212015-10-29President And Fellows Of Harvard CollegeSystems and methods for barcoding nucleic acids
US9175295B2 (en)2005-07-052015-11-03The Chemo-Sero-Therapeutic Research InstituteModified transposon vector and its use
US20150329891A1 (en)*2013-12-302015-11-19Atreca, Inc.Analysis of nucleic acids associated with single cells using nucleic acid barcodes
US20150337298A1 (en)2014-05-232015-11-26Fluidigm CorporationHaploidome determination by digitized transposons
US20150368638A1 (en)2013-03-132015-12-24Illumina, Inc.Methods and compositions for nucleic acid sequencing
US20150376605A1 (en)2014-06-262015-12-3110X Genomics, Inc.Methods and Compositions for Sample Analysis
US20150376700A1 (en)2014-06-262015-12-3110X Genomics, Inc.Analysis of nucleic acid sequences
US20150376608A1 (en)2014-06-262015-12-31IIIumina, Inc.Library preparation of tagged nucleic acid using single tube add-on protocol
US20150379196A1 (en)2014-06-262015-12-3110X Technologies, Inc.Processes and systems for nucleic acid sequence assembly
US20150376609A1 (en)2014-06-262015-12-3110X Genomics, Inc.Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US9238671B2 (en)2011-01-282016-01-19Illumina, Inc.Oligonucleotide replacement for di-tagged and directional libraries
US20160024558A1 (en)2014-07-232016-01-2810X Genomics, Inc.Nucleic acid binding proteins and uses thereof
US20160060691A1 (en)2013-05-232016-03-03The Board Of Trustees Of The Leland Stanford Junior UniversityTransposition of Native Chromatin for Personal Epigenomics
US20160060621A1 (en)2014-06-242016-03-03Bio-Rad Laboratories, Inc.Digital pcr barcoding
WO2016040476A1 (en)2014-09-092016-03-17The Broad Institute, Inc.A droplet-based method and apparatus for composite single-cell nucleic acid analysis
US20160115474A1 (en)2011-11-222016-04-28Active Motif, Inc.Targeted transposition for use in epigenetic studies
US9328382B2 (en)2013-03-152016-05-03Complete Genomics, Inc.Multiple tagging of individual long DNA fragments
US20160122753A1 (en)2013-06-122016-05-05Tarjei MikkelsenHigh-throughput rna-seq
US20160122817A1 (en)2014-10-292016-05-0510X Genomics, Inc.Methods and compositions for targeted nucleic acid sequencing
US20160160235A1 (en)2013-07-122016-06-09University Of South AlabamaMinimal piggybac vectors for genome integration
US20160177359A1 (en)2014-02-032016-06-23Thermo Fisher Scientific Baltics UabMethod for controlled dna fragmentation
US20160208323A1 (en)2013-06-212016-07-21The Broad Institute, Inc.Methods for Shearing and Tagging DNA for Chromatin Immunoprecipitation and Sequencing
US20160231324A1 (en)2013-09-242016-08-11The Regents Of The University Of CaliforniaEncapsulated sensors and sensing systems for bioassays and diagnostics and methods for making and using them
WO2016126871A2 (en)2015-02-042016-08-11The Regents Of The University Of CaliforniaSequencing of nucleic acids via barcoding in discrete entities
US20160244825A1 (en)2014-09-152016-08-25Abvitro, Inc.High-throughput nucleotide library sequencing
US20160244809A1 (en)2015-02-242016-08-2510X Genomics, Inc.Partition Processing Methods and Systems
US20160257984A1 (en)2015-01-122016-09-0810X Genomics, Inc.Processes and Systems for Preparation of Nucleic Acid Sequencing Libraries and Libraries Prepared Using Same
US20160281160A1 (en)2015-02-242016-09-2910X Genomics, Inc.Methods and compositions for targeted nucleic acid sequence coverage
US20160348093A1 (en)2015-05-182016-12-0110X Genomics, Inc.Mobile Solid Phase Compositions for Use in Biochemical Reactions and Analyses
WO2016191618A1 (en)2015-05-272016-12-01Jianbiao ZhengMethods of inserting molecular barcodes
US20160376663A1 (en)2014-02-272016-12-29Igenomx International Genomics CorporationMethods for analysis of somatic mobile elements, and uses thereof
US20170016041A1 (en)2015-05-182017-01-1910X Genomics, Inc.Stabilized reducing agents and methods using same
WO2017015075A1 (en)2015-07-172017-01-26President And Fellows Of Harvard CollegeMethods of amplifying nucleic acid sequences
WO2017025594A1 (en)2015-08-122017-02-16Cemm Forschungszentrum Für Molekulare Medizin GmbhMethods for studying nucleic acids
US9574226B2 (en)2012-03-062017-02-21Illumina, Inc.Methods of nucleic acid sequencing
WO2017053905A1 (en)2015-09-242017-03-30Abvitro LlcAffinity-oligonucleotide conjugates and uses thereof
US20170114390A1 (en)2012-12-142017-04-2710X Genomics, Inc.Methods and systems for processing polynucleotides
US9637799B2 (en)2013-08-282017-05-02Cellular Research, Inc.Massively parallel single cell analysis
WO2017075265A1 (en)2015-10-282017-05-04The Broad Institute, Inc.Multiplex analysis of single cell constituents
US20170145476A1 (en)2015-11-192017-05-2510X Genomics, Inc.Transformable tagging compositions, methods, and processes incorporating same
US9694361B2 (en)2014-04-102017-07-0410X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20170260584A1 (en)2016-02-112017-09-1410X Genomics, Inc.Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes
US20180016634A1 (en)2014-06-262018-01-1810X Genomics, Inc.Methods and systems for processing polynucleotides

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1007137A (en)1908-06-081911-10-31Theodore D PalmerCloth-pressing machine.
US1020834A (en)1910-07-281912-03-19Robert MarshallRailway-crossing.
US1001775A (en)1910-08-111911-08-29Jakob SchambonyProcess for manufacturing writing-tablets of glass.
US1001187A (en)1910-11-211911-08-22Sidney O BigneyFob.
US1022144A (en)1911-02-081912-04-02Harry A KrauseTrolley.
US1022764A (en)1911-05-291912-04-09Stephen G WrightRoofing material.
US1005998A (en)1911-07-101911-10-17Arthur MunchausenBerry-carrier.
US1022143A (en)1911-08-091912-04-02Eduard KindlerSuspension device for trolley-wires.
US1005372A (en)1911-08-111911-10-10Albert GayPlow-fender.
US5237016A (en)1989-01-051993-08-17Siska Diagnostics, Inc.End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
US6582908B2 (en)1990-12-062003-06-24Affymetrix, Inc.Oligonucleotides
ATE142021T1 (en)1991-07-041996-09-15Immunodex K S POLYMER-BASED WATER-SOLUBLE REAGENTS AND CONJUGATES CONTAINING RESIDUALS DERIVED FROM DIVINYL SULFONE
ATE175997T1 (en)1991-08-101999-02-15Medical Res Council TREATMENT OF CELL POPULATIONS
US5897783A (en)1992-09-241999-04-27Amersham International PlcMagnetic separation method
US5705628A (en)1994-09-201998-01-06Whitehead Institute For Biomedical ResearchDNA purification and isolation using magnetic particles
WO1997045559A1 (en)1996-05-291997-12-04Cornell Research Foundation, Inc.Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US6133436A (en)1996-11-062000-10-17Sequenom, Inc.Beads bound to a solid support and to nucleic acids
US20020172965A1 (en)1996-12-132002-11-21Arcaris, Inc.Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom
IL131332A (en)1997-02-122003-07-31Eugene Y ChanMethods and products for analyzing polymers
ES2271994T3 (en)1997-05-022007-04-16Gen-Probe Incorporated TWO-STEP HYBRIDIZATION AND CAPTURE OF A POLINUCLEOTIDE.
NZ506071A (en)1998-02-192003-05-30Harvard CollegeMonovalent, multivalent, and multimeric major histocompatibility complex (MHC) binding domain fusion proteins and conjugates, and uses therefore
US6123798A (en)1998-05-062000-09-26Caliper Technologies Corp.Methods of fabricating polymeric structures incorporating microscale fluidic elements
US5942609A (en)1998-11-121999-08-24The Porkin-Elmer CorporationLigation assembly and detection of polynucleotides on solid-support
AU2206800A (en)1998-12-112000-06-26Regents Of The University Of California, TheTargeted molecular bar codes and methods for using the same
US6846622B1 (en)1999-05-262005-01-25Oregon Health & Science UniversityTagged epitope protein transposable element
US20010051348A1 (en)2000-01-282001-12-13Lee Chee WeeNovel ligands and methods for preparing same
WO2001077392A2 (en)2000-04-102001-10-18Matthew AshbyMethods for the survey and genetic analysis of populations
US20150329617A1 (en)2001-03-142015-11-19Dynal Biotech AsaNovel MHC molecule constructs, and methods of employing these constructs for diagnosis and therapy, and uses of MHC molecules
US7211654B2 (en)2001-03-142007-05-01Regents Of The University Of MichiganLinkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
US7262063B2 (en)2001-06-212007-08-28Bio Array Solutions, Ltd.Directed assembly of functional heterostructures
EP1427746A4 (en)2001-07-202005-09-28California Inst Of Techn PROTEIN AND NUCLEIC ACID EXPRESSION SYSTEMS
US7262056B2 (en)2001-11-082007-08-28Mirus Bio CorporationEnhancing intermolecular integration of nucleic acids using integrator complexes
AU2002329063A1 (en)2002-09-302004-04-23F.Hoffmann-La Roche AgOligonucleotides for genotyping thymidylate synthase gene
US6979713B2 (en)2002-11-252005-12-273M Innovative Properties CompanyCurable compositions and abrasive articles therefrom
US7316903B2 (en)2003-03-282008-01-08United States Of America As Represented By The Department Of Health And Human ServicesDetection of nucleic acid sequence variations using phase Mu transposase
GB0313170D0 (en)2003-06-092003-07-16Qinetiq LtdMethod and apparatus for spore disruption and/or detection
US7354706B2 (en)2003-09-092008-04-08The Regents Of The University Of Colorado, A Body CorporateUse of photopolymerization for amplification and detection of a molecular recognition event
EP1694869A2 (en)2003-11-102006-08-30Investigen, Inc.Methods of preparing nucleic acid for detection
US20050136417A1 (en)2003-12-192005-06-23Affymetrix, Inc.Amplification of nucleic acids
US20100216153A1 (en)2004-02-272010-08-26Helicos Biosciences CorporationMethods for detecting fetal nucleic acids and diagnosing fetal abnormalities
WO2006047183A2 (en)2004-10-212006-05-04New England Biolabs, Inc.Recombinant dna nicking endonuclease and uses thereof
US7700281B2 (en)2004-06-302010-04-20Usb CorporationHot start nucleic acid amplification
JP5165383B2 (en)2004-12-232013-03-21アイ−スタツト・コーポレイシヨン Molecular diagnostic system and method
US8407013B2 (en)2005-06-072013-03-26Peter K. RoganAB initio generation of single copy genomic probes
DE102005037401B4 (en)2005-08-082007-09-27MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Formation of an emulsion in a fluidic microsystem
US20070111241A1 (en)2005-10-142007-05-17Nezih CerebSystem and method for accessing, tracking, and editing sequence analysis and software to accomplish the same
US20070134277A1 (en)2005-12-092007-06-14Children's Medical Center CorporationPharmaceutical formulation for sulfur-containing drugs in liquid dosage forms
US20070141584A1 (en)2005-12-202007-06-21Roberts Douglas NMethods for assessment of native chromatin on microarrays
GB0603251D0 (en)2006-02-172006-03-29Isis InnovationDNA conformation
US20070231823A1 (en)2006-03-232007-10-04Mckernan Kevin JDirected enrichment of genomic DNA for high-throughput sequencing
RU2321638C2 (en)2006-05-232008-04-10Закрытое акционерное общество "Молекулярно-медицинские технологии"Method for preparing multifunctional multichip, multichip for successive or parallel screening biopolymers, method for analysis of biopolymers and set for realization of method
US8523939B1 (en)*2006-06-122013-09-03Cardica, Inc.Method and apparatus for heart valve surgery
US8394590B2 (en)2006-08-022013-03-12California Institute Of TechnologyCapture agents and related methods and systems for detecting and/or sorting targets
JP2008167722A (en)2007-01-152008-07-24Konica Minolta Medical & Graphic IncNucleic acid isolation method by heating on magnetic support
US9222936B2 (en)2007-04-182015-12-29Solulink, Inc.Methods and/or use of oligonucleotide conjugates for suppressing background due to cross-hybridization
WO2008135512A2 (en)2007-05-022008-11-13Jerzy PaszkowskiDna amplification method
CA2696843A1 (en)2007-08-152009-02-19Opgen, Inc.Method, system and software arrangement for comparative analysis and phylogeny with whole-genome optical maps
CA2714630A1 (en)2008-02-072009-08-13Pacific Biosciences Of California, Inc.Cis reactive oxygen quenchers integrated into linkers
EP2096039A1 (en)*2008-02-262009-09-02Nestec S.A.A reinforced packaging assembly
AU2009224170B2 (en)2008-03-112012-03-29National Cancer CenterMethod for measuring chromosome, gene or specific nucleotide sequence copy numbers using SNP array
GB0810051D0 (en)2008-06-022008-07-09Oxford Biodynamics LtdMethod of diagnosis
US10722562B2 (en)2008-07-232020-07-28Immudex ApsCombinatorial analysis and repair
HUE027961T2 (en)2008-10-242016-11-28Epicentre Tech CorpTransposon end compositions and methods for modifying nucleic acids
US20100136559A1 (en)2008-12-022010-06-03Bio-Rad Laboratories, Inc.Chromatin structure detection
WO2010075570A2 (en)2008-12-242010-07-01New York UniversityMethods, computer-accessible medium, and systems for score-driven whole-genome shotgun sequence assemble
US9347092B2 (en)2009-02-252016-05-24Roche Molecular System, Inc.Solid support for high-throughput nucleic acid analysis
EP2230312A1 (en)2009-03-192010-09-22Helmholtz-Zentrum für Infektionsforschung GmbHProbe compound for detecting and isolating enzymes and means and methods using the same
EP2427572B1 (en)2009-05-012013-08-28Illumina, Inc.Sequencing methods
US9334531B2 (en)2010-12-172016-05-10Life Technologies CorporationNucleic acid amplification
FR2945545B1 (en)2009-05-142011-08-05Univ Aix Marseille Ii METHOD FOR DETECTION OF PROCARYOTE DNA EXTRACTED FROM A SAMPLE SAMPLE
FR2945819B1 (en)2009-05-192011-06-17Commissariat Energie Atomique DEVICE AND METHOD FOR ISOLATING BIOLOGICAL OR CHEMICAL TARGETS
RU2552215C2 (en)2009-09-012015-06-10Конинклейке Филипс Электроникс Н.В.Device and method of selecting nucleic acids by means of micro-arrays
US9023769B2 (en)2009-11-302015-05-05Complete Genomics, Inc.cDNA library for nucleic acid sequencing
JP5901046B2 (en)2010-02-192016-04-06国立大学法人 千葉大学 Novel alternative splicing variant of OATP1B3 mRNA
US20110257889A1 (en)2010-02-242011-10-20Pacific Biosciences Of California, Inc.Sequence assembly and consensus sequence determination
DK2539450T3 (en)2010-02-252016-05-30Advanced Liquid Logic Inc PROCEDURE FOR PREPARING NUCLEIC ACID LIBRARIES
US8236574B2 (en)2010-03-012012-08-07Quanterix CorporationUltra-sensitive detection of molecules or particles using beads or other capture objects
FR2958186A1 (en)2010-03-302011-10-07Ecole Polytech DEVICE FOR FORMING DROPS IN A MICROFLUID CIRCUIT.
WO2011140510A2 (en)2010-05-062011-11-10Bioo Scientific CorporationOligonucleotide ligation, barcoding and methods and compositions for improving data quality and throughput using massively parallel sequencing
CN103119439A (en)2010-06-082013-05-22纽亘技术公司Methods and composition for multiplex sequencing
US20120003657A1 (en)2010-07-022012-01-05Samuel MyllykangasTargeted sequencing library preparation by genomic dna circularization
CN103202812B (en)2010-08-092015-10-28南京大学A kind of method of protein nano grain for the preparation of sending pharmacological active substance in body
EP2625295B1 (en)2010-10-082019-03-13President and Fellows of Harvard CollegeHigh-throughput immune sequencing
EP2633069B1 (en)2010-10-262015-07-01Illumina, Inc.Sequencing methods
US20130225623A1 (en)2010-10-272013-08-29Mount Sinai School Of MedicineMethods of Treating Psychiatric or Neurological Disorders with MGLUR Antagonists
CA2821299C (en)2010-11-052019-02-12Frank J. SteemersLinking sequence reads using paired code tags
CA2822439A1 (en)2010-12-232012-06-28Sequenom, Inc.Fetal genetic variation detection
US9163281B2 (en)2010-12-232015-10-20Good Start Genetics, Inc.Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US20120191366A1 (en)2011-01-202012-07-26Nathaniel PearsonMethods and Apparatus for Assigning a Meaningful Numeric Value to Genomic Variants, and Searching and Assessing Same
GB201101429D0 (en)2011-01-272011-03-16Biocompatibles Uk LtdDrug delivery system
CN103703143B (en)2011-01-312016-12-14爱普瑞斯生物公司The method of the multiple epi-positions in identification of cell
WO2012116331A2 (en)2011-02-252012-08-30Illumina, Inc.Methods and systems for haplotype determination
US9260753B2 (en)2011-03-242016-02-16President And Fellows Of Harvard CollegeSingle cell nucleic acid detection and analysis
JP2014516514A (en)2011-04-142014-07-17コンプリート・ジェノミックス・インコーポレイテッド Processing and analysis of complex nucleic acid sequence data
US9957558B2 (en)2011-04-282018-05-01Life Technologies CorporationMethods and compositions for multiplex PCR
EP2705156B1 (en)2011-05-052015-08-26Institut National de la Santé et de la Recherche Médicale (INSERM)Linear dna amplification
WO2013006824A2 (en)2011-07-072013-01-10Life Technologies CorporationPolymer particles, nucleic acid polymer particles and methods of making and using the same
US20130017978A1 (en)2011-07-112013-01-17Finnzymes OyMethods and transposon nucleic acids for generating a dna library
US9605304B2 (en)2011-07-202017-03-28The Hong Kong Polytechnic UniversityUltra-stable oligonucleotide-gold and-silver nanoparticle conjugates and method of their preparation
EP2739394A2 (en)2011-08-042014-06-11Sage Science, Inc.Microfluidic systems and methods for processing fluids
WO2013035114A1 (en)2011-09-082013-03-14Decode Genetics EhfTp53 genetic variants predictive of cancer
WO2013049227A2 (en)2011-09-262013-04-04Geneart AgHigh efficiency, small volume nucleic acid synthesis
JP6083713B2 (en)2011-11-162017-02-22インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Microfluidic device with deformable valve
EP2794928B1 (en)2011-12-222019-02-20President and Fellows of Harvard CollegeCompositions and methods for analyte detection
US20150125865A1 (en)2011-12-232015-05-07Gigagen, Inc.Methods And Apparatuses For Droplet Mixing
US9392566B2 (en)*2012-03-142016-07-12Telefonaktiebolaget Lm Ericsson (Publ)Avoiding unlimited number of unsuccessful location update or packet data connection establishment attempts
US9552458B2 (en)2012-03-162017-01-24The Research Institute At Nationwide Children's HospitalComprehensive analysis pipeline for discovery of human genetic variation
US8209130B1 (en)2012-04-042012-06-26Good Start Genetics, Inc.Sequence assembly
JP2015519886A (en)2012-04-162015-07-16バイオロジカル ダイナミクス,インク. Nucleic acid sample preparation
DK2861760T3 (en)2012-06-152020-03-09Univ Texas High capacity sequencing of multiple prints of a single cell
SG11201500313YA (en)2012-07-242015-02-27Sequenta IncSingle cell analysis using sequence tags
EP4450644A3 (en)2012-08-082025-01-08F. Hoffmann-La Roche AGIncreasing dynamic range for identifying multiple epitopes in cells
US10273541B2 (en)2012-08-142019-04-3010X Genomics, Inc.Methods and systems for processing polynucleotides
US11591637B2 (en)2012-08-142023-02-2810X Genomics, Inc.Compositions and methods for sample processing
US10323279B2 (en)2012-08-142019-06-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US10400280B2 (en)2012-08-142019-09-0310X Genomics, Inc.Methods and systems for processing polynucleotides
US10752949B2 (en)2012-08-142020-08-2510X Genomics, Inc.Methods and systems for processing polynucleotides
US9644199B2 (en)2012-10-012017-05-09Agilent Technologies, Inc.Immobilized transposase complexes for DNA fragmentation and tagging
FR2996545B1 (en)2012-10-082016-03-25Ecole Polytech MICROFLUIDIC METHOD FOR PROCESSING AND ANALYZING A SOLUTION CONTAINING BIOLOGICAL MATERIAL, AND CORRESPONDING MICROFLUIDIC CIRCUIT
FR2996544B1 (en)2012-10-082015-03-13Ecole Polytech MICROFLUIDIC CIRCUIT FOR COMBINING DROPS OF MULTIPLE FLUIDS AND CORRESPONDING MICROFLUIDIC PROCESS.
EP2917366B1 (en)2012-11-062017-08-02Oxford Nanopore Technologies LimitedQuadruplex method
DK2771468T3 (en)2012-12-122015-05-26Broad Inst IncProduction systems, processes and optimized drive configurations for sequence manipulation
US10533221B2 (en)2012-12-142020-01-1410X Genomics, Inc.Methods and systems for processing polynucleotides
US9483610B2 (en)2013-01-172016-11-01Edico Genome, Corp.Bioinformatics systems, apparatuses, and methods executed on an integrated circuit processing platform
US10381106B2 (en)2013-01-282019-08-13Hasso-Plattner-Institut Fuer Softwaresystemtechnik GmbhEfficient genomic read alignment in an in-memory database
US9273349B2 (en)2013-03-142016-03-01Affymetrix, Inc.Detection of nucleic acids
US10017807B2 (en)2013-03-152018-07-10Verinata Health, Inc.Generating cell-free DNA libraries directly from blood
DK2971080T3 (en)2013-03-152018-02-12Expedeon S L METHODS FOR AMPLIFICATION AND SEQUENCE USING THERMOSTABLE TTHPRIMPOL
EP2972366B1 (en)2013-03-152020-06-17Prognosys Biosciences, Inc.Methods for detecting peptide/mhc/tcr binding
US20140274729A1 (en)2013-03-152014-09-18Nugen Technologies, Inc.Methods, compositions and kits for generation of stranded rna or dna libraries
US9896717B2 (en)2013-05-092018-02-20Bio-Rad Laboratories, Inc.Magnetic immuno digital PCR assay
ES2754177T3 (en)2013-06-122020-04-16Massachusetts Gen Hospital Methods for multiplexed detection of target molecules and their uses
JP6738728B2 (en)2013-06-172020-08-19ザ・ブロード・インスティテュート・インコーポレイテッド Delivery and use of CRISPR-Cas systems, vectors and compositions for liver targeting and therapy
CN103394410B (en)2013-07-252016-04-20博奥生物集团有限公司A kind of intelligent magnetic frame of position-adjustable
US9855677B2 (en)*2013-07-292018-01-02Astec, Inc.Method and apparatus for making asphalt concrete using aggregate material from a plurality of material streams
US10395758B2 (en)2013-08-302019-08-2710X Genomics, Inc.Sequencing methods
EP3055431B1 (en)2013-10-092020-06-24Stc.UnmSynthetic long read dna sequencing
US9824068B2 (en)2013-12-162017-11-2110X Genomics, Inc.Methods and apparatus for sorting data
US20140315755A1 (en)2013-12-262014-10-23Tao ChenGenome-wide Antisense Oligonucleotide and RNAi
KR101464100B1 (en)2014-01-292014-11-21성균관대학교산학협력단Fusion nano liposome-fluorescence labeled nucleic acid for in vivo application, uses thereof and preparation method thereof
WO2015123588A1 (en)2014-02-132015-08-20Bio-Rad Laboratories, Inc.Chromosome conformation capture in partitions
WO2015160895A2 (en)2014-04-152015-10-22Illumina, Inc.Modified transposases for improved insertion sequence bias and increased dna input tolerance
US10975371B2 (en)2014-04-292021-04-13Illumina, Inc.Nucleic acid sequence analysis from single cells
SG11201610177UA (en)2014-06-062017-01-27Herlev HospitalDetermining antigen recognition through barcoding of mhc multimers
US9534215B2 (en)2014-06-112017-01-03Life Technologies CorporationSystems and methods for substrate enrichment
AU2015273480A1 (en)2014-06-112016-12-08Samplix S.A.R.L.Nucleotide sequence exclusion enrichment by droplet sorting (needls)
US11585806B2 (en)2014-06-132023-02-21Immudex ApsGeneral detection and isolation of specific cells by binding of labeled molecules
US10480021B2 (en)2014-06-232019-11-19Yale UniversityMethods for closed chromatin mapping and DNA methylation analysis for single cells
WO2016011414A1 (en)2014-07-182016-01-21Illumina, Inc.Non-invasive prenatal diagnosis of fetal genetic condition using cellular dna and cell free dna
WO2016033251A2 (en)2014-08-262016-03-03Nugen Technologies, Inc.Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
WO2016061517A2 (en)2014-10-172016-04-21Illumina Cambridge LimitedContiguity preserving transposition
EP3234602B1 (en)2014-12-192021-08-25F. Hoffmann-La Roche AGMethods for identifying multiple epitopes in selected sub-populations of cells
CA2975529A1 (en)2015-02-092016-08-1810X Genomics, Inc.Systems and methods for determining structural variation and phasing using variant call data
RU2717491C2 (en)2015-02-102020-03-23Иллюмина, Инк.Method and composition for analyzing cellular components
CN107208158B (en)2015-02-272022-01-28贝克顿迪金森公司Spatially addressable molecular barcode
EP3271713B1 (en)2015-03-182021-05-05The Broad Institute, Inc.Massively parallel on-chip coalescence of microemulsions
US20160289769A1 (en)2015-03-302016-10-06Verily Life Sciences LlcMethods for Combining Single Cell Profiling with Combinatorial Nanoparticle Conjugate Library Screening and In Vivo Diagnostic System
AU2016248995B2 (en)2015-04-172022-04-28President And Fellows Of Harvard CollegeBarcoding systems and methods for gene sequencing and other applications
WO2016169431A1 (en)2015-04-202016-10-27深圳华大基因研究院Method for constructing long fragment dna library
WO2016170126A1 (en)2015-04-222016-10-27Stilla TechnologiesContact-less priming method for loading a solution in a microfluidic device and associated system
CN107849560B (en)2015-04-272021-10-22阿布维特罗有限责任公司 Methods for sequencing, identifying, pairing, and validating therapeutics and disease-specific antigens
WO2016187717A1 (en)2015-05-262016-12-01Exerkine CorporationExosomes useful for genome editing
CN107615283B (en)2015-05-262022-07-05加利福尼亚太平洋生物科学股份有限公司Methods, software and systems for diploid genome assembly and haplotype sequence reconstruction
CN108377651A (en)2015-06-242018-08-07牛津生物动力有限公司The detection that chromosome interacts
US11479805B2 (en)2015-08-212022-10-25The General Hospital CorporationCombinatorial single molecule analysis of chromatin
WO2017053903A1 (en)2015-09-242017-03-30Abvitro LlcSingle amplicon activated exclusion pcr
WO2017053902A1 (en)2015-09-252017-03-30Abvitro LlcHigh throughput process for t cell receptor target identification of natively-paired t cell receptor sequences
US10900031B2 (en)2015-10-192021-01-26Zhejiang Annoroad Bio-Technology Co. Ltd.Method for constructing high-resolution single cell Hi-C library with a lot of information
WO2017075294A1 (en)2015-10-282017-05-04The Board Institute Inc.Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction
US11098304B2 (en)2015-11-042021-08-24Atreca, Inc.Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells
DE202016009134U1 (en)2015-12-042022-09-0210X Genomics, Inc. Systems and compositions for nucleic acid analysis
EP3397764A4 (en)2015-12-302019-05-22Bio-Rad Laboratories, Inc.Digital protein quantification
JP6735348B2 (en)2016-02-112020-08-0510エックス ジェノミクス, インコーポレイテッド Systems, methods and media for de novo assembly of whole genome sequence data
US20190078150A1 (en)2016-03-012019-03-14Universal Sequencing Technology CorporationMethods and Kits for Tracking Nucleic Acid Target Origin for Nucleic Acid Sequencing
US11680253B2 (en)2016-03-102023-06-20The Board Of Trustees Of The Leland Stanford Junior UniversityTransposase-mediated imaging of the accessible genome
CA3020542A1 (en)2016-04-112017-10-19Board Of Regents, The University Of Texas SystemMethods and compositions for detecting single t cell receptor affinity and sequence
WO2018031631A1 (en)2016-08-102018-02-15President And Fellows Of Harvard CollegeMethods of de novo assembly of barcoded genomic dna fragments
WO2018044831A1 (en)2016-08-302018-03-08Integrated Dna Technologies, Inc.Cleavable hairpin primers
JP7057348B2 (en)2016-08-312022-04-19プレジデント アンド フェローズ オブ ハーバード カレッジ A method of combining biomolecule detection with a single assay using fluorescent in situ sequencing
EP3507379A4 (en)2016-08-312020-05-13President and Fellows of Harvard College METHODS FOR DIGITAL AMPLIFICATION OF THE WHOLE GENOME
US20180080021A1 (en)2016-09-172018-03-22The Board Of Trustees Of The Leland Stanford Junior UniversitySimultaneous sequencing of rna and dna from the same sample
KR102638006B1 (en)2016-09-262024-02-20셀룰러 리서치, 인크.Measurement of protein expression using reagents with barcoded oligonucleotide sequences
SG10202012440VA (en)2016-10-192021-01-2810X Genomics IncMethods and systems for barcoding nucleic acid molecules from individual cells or cell populations
US11434483B2 (en)2016-12-072022-09-06Mgi Tech Co., Ltd.Method for constructing single cell sequencing library and use thereof
CN110139932B (en)2016-12-192024-05-17生物辐射实验室股份有限公司Drop-on labeled DNA with maintained adjacency
CN110462053A (en)2016-12-212019-11-15加利福尼亚大学董事会 Single-cell genome sequencing using hydrogel-based droplets
US10011872B1 (en)2016-12-222018-07-0310X Genomics, Inc.Methods and systems for processing polynucleotides
EP3565904A1 (en)2016-12-292019-11-13Illumina, Inc.Analysis system for orthogonal access to and tagging of biomolecules in cellular compartments
US12110545B2 (en)2017-01-062024-10-08Editas Medicine, Inc.Methods of assessing nuclease cleavage
WO2018132635A1 (en)2017-01-122018-07-19Massachusetts Institute Of TechnologyMethods for analyzing t cell receptors and b cell receptors
EP4310183A3 (en)2017-01-302024-02-2110X Genomics, Inc.Methods and systems for droplet-based single cell barcoding
GB201704402D0 (en)2017-03-202017-05-03Blacktrace Holdings LtdSingle cell DNA sequencing
EP3601605B1 (en)2017-03-242023-11-22National University of SingaporeMethods for multiplex detection of molecules
WO2018191563A1 (en)2017-04-122018-10-18Karius, Inc.Sample preparation methods, systems and compositions
US12054764B2 (en)2017-04-142024-08-06The Broad Institute, Inc.High-throughput screens for exploring biological functions of microscale biological systems
US10914729B2 (en)2017-05-222021-02-09The Trustees Of Princeton UniversityMethods for detecting protein binding sequences and tagging nucleic acids
US20180340169A1 (en)2017-05-262018-11-2910X Genomics, Inc.Single cell analysis of transposase accessible chromatin
CN108336542B (en)2017-06-232020-02-21番禺得意精密电子工业有限公司Electrical connector
JP7032452B2 (en)2017-08-012022-03-08イルミナ インコーポレイテッド Hydrogel beads for nucleotide sequencing
WO2019084328A1 (en)2017-10-262019-05-0210X Genomics, Inc.Methods for preparing nucleic acid molecules
US20190127731A1 (en)2017-10-262019-05-0210X Genomics, Inc.Methods for preparing nucleic acid molecules
CN111051523B (en)2017-11-152024-03-1910X基因组学有限公司Functionalized gel beads
US10829815B2 (en)2017-11-172020-11-1010X Genomics, Inc.Methods and systems for associating physical and genetic properties of biological particles

Patent Citations (647)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2797149A (en)1953-01-081957-06-25Technicon International LtdMethods of and apparatus for analyzing liquids containing crystalloid and non-crystalloid constituents
US3047367A (en)1959-12-011962-07-31Technicon InstrAutomatic analysis with fluid segmentation
US3479141A (en)1967-05-171969-11-18Technicon CorpMethod and apparatus for analysis
US4124638A (en)1977-09-121978-11-07Hansen John NSolubilizable polyacrylamide gels containing disulfide cross-linkages
US4253846A (en)1979-11-211981-03-03Technicon Instruments CorporationMethod and apparatus for automated analysis of fluid samples
WO1984002000A1 (en)1981-01-101984-05-24Shaw Stewart P DChemical droplet reactor
GB2097692B (en)1981-01-101985-05-22Shaw Stewart P DCombining chemical reagents
JPS5949832A (en)1982-08-141984-03-22バイエル・アクチエンゲゼルシヤフト Dispersion manufacturing method and device
US4582802A (en)1983-09-301986-04-15The United States Of America As Represented By The Department Of Health And Human ServicesStimulation of enzymatic ligation of DNA by high concentrations of nonspecific polymers
JPS60227826A (en)1984-04-271985-11-13Sogo Yatsukou KkGraft capsule responding to ph
EP0249007A2 (en)1986-04-141987-12-16The General Hospital CorporationA method of screening hybridomas
US5618711A (en)1986-08-221997-04-08Hoffmann-La Roche Inc.Recombinant expression vectors and purification methods for Thermus thermophilus DNA polymerase
EP0271281A2 (en)1986-12-111988-06-15AT&T Corp.Method for fabricating articles which include high silica glass bodies and articles formed thereby
US5202231A (en)1987-04-011993-04-13Drmanac Radoje TMethod of sequencing of genomes by hybridization of oligonucleotide probes
US5695940A (en)1987-04-011997-12-09Hyseq, Inc.Method of sequencing by hybridization of oligonucleotide probes
US5149625A (en)1987-08-111992-09-22President And Fellows Of Harvard CollegeMultiplex analysis of DNA
US5137829A (en)1987-10-051992-08-11Washington UniversityDNA transposon TN5SEQ1
US5185099A (en)1988-04-201993-02-09Institut National De Recherche Chimique AppliqueeVisco-elastic, isotropic materials based on water, fluorinate sufactants and fluorinated oils, process for their preparation, and their use in various fields, such as optics, pharmacology and electrodynamics
US5756334A (en)1990-04-261998-05-26New England Biolabs, Inc.Thermostable DNA polymerase from 9°N-7 and methods for producing the same
US5418149A (en)1990-07-241995-05-23Hoffmann-La Roche Inc.Reduction of non-specific amplification glycosylase using DUTP and DNA uracil
US5489523A (en)1990-12-031996-02-06StratageneExonuclease-deficient thermostable Pyrococcus furiosus DNA polymerase I
US5270183A (en)1991-02-081993-12-14Beckman Research Institute Of The City Of HopeDevice and method for the automated cycling of solutions between two or more temperatures
US5994056A (en)1991-05-021999-11-30Roche Molecular Systems, Inc.Homogeneous methods for nucleic acid amplification and detection
US5708153A (en)1991-09-181998-01-13Affymax Technologies N.V.Method of synthesizing diverse collections of tagged compounds
US5413924A (en)1992-02-131995-05-09Kosak; Kenneth M.Preparation of wax beads containing a reagent for release by heating
US5436130A (en)1992-03-191995-07-25The Regents Of The University Of CaliforniaMultiple tag labeling method for DNA sequencing
US5587128A (en)1992-05-011996-12-24The Trustees Of The University Of PennsylvaniaMesoscale polynucleotide amplification devices
EP0637996B1 (en)1992-05-011997-07-23The Trustees Of The University Of PennsylvaniaMicrofabricated detection structures
US6159717A (en)1992-09-142000-12-12Institute For Molecular Biology And Biotechnology/ForthEukaryotic transposable element
WO1994018218A1 (en)1993-02-011994-08-18Seq, Ltd.Methods and apparatus for dna sequencing
WO1994019101A1 (en)1993-02-161994-09-01Alliance Pharmaceutical Corp.Method of microemulsifying fluorinated oils
WO1994023699A1 (en)1993-04-191994-10-27Medisorb Technologies International L.P.Long-acting treatment by slow-release delivery of antisense oligodeoxyribonucleotides from biodegradable microparticles
US6033880A (en)1993-07-282000-03-07The Perkin-Elmer CorporationNucleic acid amplification reaction apparatus and method
US6265552B1 (en)1993-07-302001-07-24Affymax Technologies N.V.Biotinylation of proteins
US5512131A (en)1993-10-041996-04-30President And Fellows Of Harvard CollegeFormation of microstamped patterns on surfaces and derivative articles
US20030044777A1 (en)1993-10-282003-03-06Kenneth L. BeattieFlowthrough devices for multiple discrete binding reactions
US5605793A (en)1994-02-171997-02-25Affymax Technologies N.V.Methods for in vitro recombination
US5558071A (en)1994-03-071996-09-24Combustion Electromagnetics, Inc.Ignition system power converter and controller
US5744311A (en)1994-04-181998-04-28Becton, Dickinson And CompanyStrand displacement amplification using thermophilic enzymes
WO1995030782A1 (en)1994-05-101995-11-16Soane BiosciencesSeparation media for use in gel electrophoresis
US5834197A (en)1994-05-111998-11-10Genera Technologies LimitedMethods of capturing species from liquids and assay procedures
US6172218B1 (en)1994-10-132001-01-09Lynx Therapeutics, Inc.Oligonucleotide tags for sorting and identification
US5846719A (en)1994-10-131998-12-08Lynx Therapeutics, Inc.Oligonucleotide tags for sorting and identification
US5585069A (en)1994-11-101996-12-17David Sarnoff Research Center, Inc.Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
WO1996029629A2 (en)1995-03-011996-09-26President And Fellows Of Harvard CollegeMicrocontact printing on surfaces and derivative articles
US5700642A (en)1995-05-221997-12-23Sri InternationalOligonucleotide sizing using immobilized cleavable primers
EP1967592B1 (en)1995-06-072010-04-28Solexa, Inc.Method of improving the efficiency of polynucleotide sequencing
WO1996041011A1 (en)1995-06-071996-12-19Lynx Therapeutics, Inc.Oligonucleotide tags for sorting and identification
US5856174A (en)1995-06-291999-01-05Affymetrix, Inc.Integrated nucleic acid diagnostic device
US5872010A (en)1995-07-211999-02-16Northeastern UniversityMicroscale fluid handling system
US6057149A (en)1995-09-152000-05-02The University Of MichiganMicroscale devices and reactions in microscale devices
US5851769A (en)1995-09-271998-12-22The Regents Of The University Of CaliforniaQuantitative DNA fiber mapping
US5736330A (en)1995-10-111998-04-07Luminex CorporationMethod and compositions for flow cytometric determination of DNA sequences
US6057107A (en)1995-10-112000-05-02Luminex CorporationMethods and compositions for flow cytometric determination of DNA sequences
US6361950B1 (en)1995-11-302002-03-26Pharmaseq, Inc.Multiplex assay for nucleic acids employing transponders
US20010044109A1 (en)1995-11-302001-11-22Pharmaseq, Inc.Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
US6046003A (en)1995-11-302000-04-04Pharmaseq, Inc.Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
US6051377A (en)1995-11-302000-04-18Pharmaseq, Inc.Multiplex assay for nucleic acids employing transponders
US6355198B1 (en)1996-03-152002-03-12President And Fellows Of Harvard CollegeMethod of forming articles including waveguides via capillary micromolding and microtransfer molding
US5739036A (en)1996-04-151998-04-14Dade International Inc.Method for analysis
US5846727A (en)1996-06-061998-12-08Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical CollegeMicrosystem for rapid DNA sequencing
WO1998002237A1 (en)1996-07-151998-01-22Kemgas LimitedProduction of powders
US5965443A (en)1996-09-091999-10-12Wisconsin Alumni Research FoundationSystem for in vitro transposition
US5900481A (en)1996-11-061999-05-04Sequenom, Inc.Bead linkers for immobilizing nucleic acids to solid supports
US6379929B1 (en)1996-11-202002-04-30The Regents Of The University Of MichiganChip-based isothermal amplification devices and methods
US5958703A (en)1996-12-031999-09-28Glaxo Group LimitedUse of modified tethers in screening compound libraries
US20050042625A1 (en)1997-01-152005-02-24Xzillion Gmbh & Co.Mass label linked hybridisation probes
US6297006B1 (en)1997-01-162001-10-02Hyseq, Inc.Methods for sequencing repetitive sequences and for determining the order of sequence subfragments
US20030108897A1 (en)1997-01-162003-06-12Drmanac Radoje T.Methods and compositions for detection or quantification of nucleic acid species
US20020034737A1 (en)1997-03-042002-03-21Hyseq, Inc.Methods and compositions for detection or quantification of nucleic acid species
US6859570B2 (en)1997-03-142005-02-22Trustees Of Tufts College, Tufts UniversityTarget analyte sensors utilizing microspheres
US20050130188A1 (en)1997-03-142005-06-16The Trustees Of Tufts CollegeMethods for detecting target analytes and enzymatic reactions
US6327410B1 (en)1997-03-142001-12-04The Trustees Of Tufts CollegeTarget analyte sensors utilizing Microspheres
US6670133B2 (en)1997-04-042003-12-30Caliper Technologies Corp.Microfluidic device for sequencing by hybridization
US20030104466A1 (en)1997-04-042003-06-05Caliper Technologies CorporationMicrofluidic sequencing systems
US8278071B2 (en)1997-04-172012-10-02Applied Biosystems, LlcMethod for detecting the presence of a single target nucleic acid in a sample
US20020164820A1 (en)1997-04-172002-11-07Brown James F.Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US7972778B2 (en)1997-04-172011-07-05Applied Biosystems, LlcMethod for detecting the presence of a single target nucleic acid in a sample
US6143496A (en)1997-04-172000-11-07Cytonix CorporationMethod of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US20080213766A1 (en)1997-04-172008-09-04CytonixMethod and device for detecting the presence of a single target nucleic acid in samples
US8067159B2 (en)1997-04-172011-11-29Applied Biosystems, LlcMethods of detecting amplified product
WO1998052691A1 (en)1997-05-161998-11-26Alberta Research CouncilMicrofluidic system and methods of use
US7282370B2 (en)1997-05-232007-10-16Solexa, Inc.System and apparatus for sequential processing of analytes
US20090143244A1 (en)1997-05-232009-06-04Solexa, Inc.System and apparatus for sequential processing of analytes
US6406848B1 (en)1997-05-232002-06-18Lynx Therapeutics, Inc.Planar arrays of microparticle-bound polynucleotides
US20020051992A1 (en)1997-05-232002-05-02Lynx Therapeutics, Inc.System and apparatus for sequential processing of analytes
US6806052B2 (en)1997-05-232004-10-19Lynx Therapeutics, Inc.Planar arrays of microparticle-bound polynucleotides
US7638276B2 (en)1997-07-072009-12-29454 Life Sciences CorporationIn vitro sorting method
EP2258846A2 (en)1997-07-072010-12-08Medical Research CouncilA method for increasing the concentration of a nucleic acid molecule
EP1019496B1 (en)1997-07-072004-09-29Medical Research CouncilIn vitro sorting method
EP1482036B1 (en)1997-07-072007-10-03Medical Research CouncilA method for increasing the concentration of a nucleic acid molecule
EP1908832B1 (en)1997-07-072012-12-26Medical Research CouncilA method for increasing the concentration of a nucleic acid molecule
US6297017B1 (en)1997-07-112001-10-02Brax Group LimitedCategorising nucleic acids
US6593113B1 (en)1997-07-142003-07-15Finnzymes OyIn vitro method for providing templates for DNA sequencing
US20020175079A1 (en)1997-08-132002-11-28CepheidDevice and method for the manipulation of a fluid sample
WO1999009217A1 (en)1997-08-151999-02-25Hyseq, Inc.Methods and compositions for detection or quantification of nucleic acid species
US20010020588A1 (en)1997-09-152001-09-13Whitehead Institute For Biomedical ResearchMethods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US20020092767A1 (en)1997-09-192002-07-18Aclara Biosciences, Inc.Multiple array microfluidic device units
US20020005354A1 (en)1997-09-232002-01-17California Institute Of TechnologyMicrofabricated cell sorter
US6103537A (en)1997-10-022000-08-15Aclara Biosciences, Inc.Capillary assays involving separation of free and bound species
US5842787A (en)1997-10-091998-12-01Caliper Technologies CorporationMicrofluidic systems incorporating varied channel dimensions
US6485944B1 (en)1997-10-102002-11-26President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US6511803B1 (en)1997-10-102003-01-28President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US6432360B1 (en)1997-10-102002-08-13President And Fellows Of Harvard CollegeReplica amplification of nucleic acid arrays
US6929859B2 (en)1997-10-142005-08-16Don J. ChandlerPrecision fluorescently dyed particles and methods of making and using same
US20030028981A1 (en)1997-10-142003-02-13Chandler Don J.Precision fluorescently dyed particles and methods of making and using same
US6913935B1 (en)1997-12-042005-07-05Amersham Biosciences Uk LimitedMultiple assay method
JP2012131798A (en)1997-12-312012-07-12Novartis Vaccines & Diagnostics IncMetastatic breast and colon cancer regulated gene
US20020068278A1 (en)1997-12-312002-06-06Klaus GieseMetastatic breast and colon cancer regulated genes
US6207384B1 (en)1998-03-272001-03-27The General Hospital CorporationSystematic identification of essential genes by in vitro transposon mutagenesis
US6258571B1 (en)1998-04-102001-07-10GensetHigh throughput DNA sequencing vector
WO1999052708A1 (en)1998-04-131999-10-21Luminex CorporationLiquid labeling with fluorescent microparticles
US7645596B2 (en)1998-05-012010-01-12Arizona Board Of RegentsMethod of determining the nucleotide sequence of oligonucleotides and DNA molecules
US5997636A (en)1998-05-011999-12-07Instrumentation Technology Associates, Inc.Method and apparatus for growing crystals
US6969488B2 (en)1998-05-222005-11-29Solexa, Inc.System and apparatus for sequential processing of analytes
US6306590B1 (en)1998-06-082001-10-23Caliper Technologies Corp.Microfluidic matrix localization apparatus and methods
US6586176B1 (en)1998-08-072003-07-01Cellay, LlcGel microdrops in genetic analysis
US20030207260A1 (en)1998-08-072003-11-06Cellay, Llc C/O One Cell Systems, Inc.Gel microdroplets in genetic analysis
US20070020617A1 (en)1998-08-072007-01-25Cellay, Llc C/O One Cell Systems, Inc.Gel microdrops in genetic analysis
WO2000008212A1 (en)1998-08-072000-02-17Cellay, LlcGel microdrops in genetic analysis
US20020131147A1 (en)1998-08-272002-09-19Paolini Richard J.Electrophoretic medium and process for the production thereof
US6294385B1 (en)1998-09-232001-09-25Wisconsin Alumni Research FoundationMethod for making insertional mutations using a Tn5 synaptic complex
US7115400B1 (en)1998-09-302006-10-03Solexa Ltd.Methods of nucleic acid amplification and sequencing
US6296020B1 (en)1998-10-132001-10-02Biomicro Systems, Inc.Fluid circuit components based upon passive fluid dynamics
US20030044836A1 (en)1998-10-152003-03-06Princeton University, Office Of Technology & Trademark LicensingQuantitative analysis of hybridization patterns and intensities in oligonucleotide arrays
WO2000023181A1 (en)1998-10-192000-04-27Lingna WangMethod and apparatus for production of small particles of micrometer or nanometer size
WO2000026412A1 (en)1998-11-022000-05-11Kenneth Loren BeattieNucleic acid analysis using sequence-targeted tandem hybridization
US6569631B1 (en)1998-11-122003-05-273-Dimensional Pharmaceuticals, Inc.Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes
US6723513B2 (en)1998-12-232004-04-20Lingvitae AsSequencing method using magnifying tags
EP1905828B1 (en)1999-01-072012-08-08Medical Research CouncilOptical sorting method
WO2000043766A1 (en)1999-01-212000-07-27Caliper Technologies Corp.Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US20040063138A1 (en)1999-02-162004-04-01Mcginnis Malcolm D.Polynucleotide sequencing method
US20030027214A1 (en)1999-02-172003-02-06Kamb Carl AlexanderMethods for substrate-ligand interaction screening
US6632655B1 (en)1999-02-232003-10-14Caliper Technologies Corp.Manipulation of microparticles in microfluidic systems
US20030215862A1 (en)1999-02-232003-11-20Caliper Technologies Corp.Sequencing by incorporation
US6171850B1 (en)1999-03-082001-01-09Caliper Technologies Corp.Integrated devices and systems for performing temperature controlled reactions and analyses
US6303343B1 (en)1999-04-062001-10-16Caliper Technologies Corp.Inefficient fast PCR
US20030008323A1 (en)1999-04-152003-01-09Ilya RavkinChemical-library composition and method
US20060275782A1 (en)1999-04-202006-12-07Illumina, Inc.Detection of nucleic acid reactions on bead arrays
US6291243B1 (en)1999-04-282001-09-18The Board Of Trustees Of The Leland Stanford Jr. UniversityP element derived vector and methods for its use
US20020179849A1 (en)1999-05-122002-12-05Kevin MaherMultiplexed fluorescent detection in microfluidic devices
WO2000070095A2 (en)1999-05-172000-11-23Dade Behring Inc.Homogeneous isothermal amplification and detection of nucleic acids using a template switch oligonucleotide
US20020051971A1 (en)1999-05-212002-05-02John R. StuelpnagelUse of microfluidic systems in the detection of target analytes using microsphere arrays
US20030124509A1 (en)1999-06-032003-07-03Kenis Paul J.A.Laminar flow patterning and articles made thereby
US6372813B1 (en)1999-06-252002-04-16MotorolaMethods and compositions for attachment of biomolecules to solid supports, hydrogels, and hydrogel arrays
WO2001002850A1 (en)1999-07-062001-01-11Caliper Technologies Corp.Microfluidic systems and methods for determining modulator kinetics
US20010041357A1 (en)1999-07-282001-11-15Yves FouilletMethod for carrying out a biochemical protocol in continuous flow in a microreactor
US6524456B1 (en)1999-08-122003-02-25Ut-Battelle, LlcMicrofluidic devices for the controlled manipulation of small volumes
US20030022231A1 (en)1999-08-132003-01-30Brandeis UniversityDetection of nucleic acids
WO2001014589A2 (en)1999-08-202001-03-01Luminex CorporationLiquid array technology
US6492118B1 (en)1999-08-272002-12-10Matrix Technologies CorporationMethods of immobilizing ligands on solid supports
US20060292583A1 (en)1999-08-302006-12-28The Government of the U.S.A as represented by the Secretary of Dept. of Health and Human ServicesHigh speed parallel molecular nucleic acid sequencing
WO2001027610A2 (en)1999-10-132001-04-19Signature Bioscience, Inc.System and method for detecting and identifying molecular events in a test sample
WO2001027610A3 (en)1999-10-132002-03-28Signature Bioscience IncSystem and method for detecting and identifying molecular events in a test sample
US7745178B2 (en)1999-10-272010-06-29Affymetrix, Inc.Complexity management of genomic DNA
US6613752B2 (en)1999-10-282003-09-02The Board Of Trustees Of The Leland Stanford Junior UniversityMethods of in vivo gene transfer using a sleeping beauty transposon system
US20070238113A1 (en)1999-11-082007-10-11Eiken Kagaku Kabushiki KaishaMethod for detecting mutations and/or polymorphisms
US6432290B1 (en)1999-11-262002-08-13The Governors Of The University Of AlbertaApparatus and method for trapping bead based reagents within microfluidic analysis systems
US20010036669A1 (en)2000-02-232001-11-01Paul JedrzejewskiMicrofluidic devices and methods
US20130096073A1 (en)2000-03-012013-04-18Zvi SidelmanCasein Derived Peptides And Uses Thereof
US6579851B2 (en)2000-03-142003-06-17Amylin Pharmaceuticals, Inc.Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility
US6974669B2 (en)2000-03-282005-12-13Nanosphere, Inc.Bio-barcodes based on oligonucleotide-modified nanoparticles
US6409832B2 (en)2000-03-312002-06-25Micronics, Inc.Protein crystallization in microfluidic structures
US20020001856A1 (en)2000-04-062002-01-03Chow Andrea W.Methods and devices for achieving long incubation times in high-throughput systems
US20020166582A1 (en)2000-04-142002-11-14Nanostream, Inc.Microfluidic branch metering systems and methods
US6800298B1 (en)2000-05-112004-10-05Clemson UniversityBiological lubricant composition and method of applying lubricant composition
US20060008799A1 (en)2000-05-222006-01-12Hong CaiRapid haplotyping by single molecule detection
WO2001090418A1 (en)2000-05-222001-11-29The Regents Of The University Of CaliforniaRapid haplotyping by single molecule detection
US20010048900A1 (en)2000-05-242001-12-06Bardell Ronald L.Jet vortex mixer
WO2001089787A2 (en)2000-05-252001-11-29President And Fellows Of Harvard CollegeMicrofluidic systems including three-dimensionally arrayed channel networks
US20060263888A1 (en)2000-06-022006-11-23Honeywell International Inc.Differential white blood count on a disposable card
US6632606B1 (en)2000-06-122003-10-14Aclara Biosciences, Inc.Methods for single nucleotide polymorphism detection
US20040132122A1 (en)2000-06-212004-07-08Sukanta BanerjeeMultianalyte molecular analysis using application-specific random particle arrays
US20050244850A1 (en)2000-06-212005-11-03Hiu HuangAssembly of arrays on chips segmented from wafers
US20020113009A1 (en)2000-08-072002-08-22Nanostream, Inc.Microfluidic separators
WO2002018949A2 (en)2000-08-312002-03-07The Regents Of The University Of CaliforniaCapillary array and related methods
US20020043463A1 (en)2000-08-312002-04-18Alexander ShenderovElectrostatic actuators for microfluidics and methods for using same
WO2002018949A3 (en)2000-08-312003-01-16Univ CaliforniaCapillary array and related methods
US20020119536A1 (en)2000-09-142002-08-29Caliper Technologies Corp.Microfluidic devices and methods for performing temperature mediated reactions
US20020058332A1 (en)2000-09-152002-05-16California Institute Of TechnologyMicrofabricated crossflow devices and methods
US8252539B2 (en)2000-09-152012-08-28California Institute Of TechnologyMicrofabricated crossflow devices and methods
US7294503B2 (en)2000-09-152007-11-13California Institute Of TechnologyMicrofabricated crossflow devices and methods
WO2002031203A2 (en)2000-10-102002-04-18Diversa CorporationHigh throughput or capillary-based screening for a bioactivity or biomolecule
US20020089100A1 (en)2000-11-142002-07-11Akira KawasakiProduction apparatus of monodisperse particle and production process of monodisperse particle and monodisperse particle produced by the process
US20040101880A1 (en)2001-02-082004-05-27Rozwadowski Kevin LReplicative in vivo gene targeting
US20030036206A1 (en)2001-02-152003-02-20Caliper Technologies Corp.Microfluidic systems with enhanced detection systems
US6884788B2 (en)2001-02-222005-04-26Anika Therapeutics, Inc.Thiol-modified hyaluronan
US7268167B2 (en)2001-02-232007-09-11Japan Science And Technology AgencyProcess for producing emulsion and microcapsules and apparatus therefor
US20020160518A1 (en)2001-04-032002-10-31Hayenga Jon W.Microfluidic sedimentation
US7138267B1 (en)2001-04-042006-11-21Epicentre Technologies CorporationMethods and compositions for amplifying DNA clone copy number
US20030027221A1 (en)2001-04-062003-02-06Scott Melissa E.High-throughput screening assays by encapsulation
WO2002086148A1 (en)2001-04-182002-10-31Ambrigen, LlcParticle based assay system
US20050019839A1 (en)2001-05-262005-01-27Once Cell Systems, Inc.Secretions of proteins by encapsulated cells
US6806058B2 (en)2001-05-262004-10-19One Cell Systems, Inc.Secretions of proteins by encapsulated cells
US6880576B2 (en)2001-06-072005-04-19Nanostream, Inc.Microfluidic devices for methods development
US20030007898A1 (en)2001-06-202003-01-09Coventor, Inc.Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US8986286B2 (en)2001-06-292015-03-24Coloplast A/SCatheter device
US20030008285A1 (en)2001-06-292003-01-09Fischer Steven M.Method of DNA sequencing using cleavable tags
US20030005967A1 (en)2001-07-072003-01-09Nanostream, Inc.Microfluidic metering systems and methods
US6767731B2 (en)2001-08-272004-07-27Intel CorporationElectron induced fluorescent method for nucleic acid sequencing
US20030039978A1 (en)2001-08-272003-02-27Hannah Eric C.Electron induced fluorescent method for nucleic acid sequencing
US7297485B2 (en)2001-10-152007-11-20Qiagen GmbhMethod for nucleic acid amplification that results in low amplification bias
US20030089605A1 (en)2001-10-192003-05-15West Virginia University Research CorporationMicrofluidic system for proteome analysis
US20030075446A1 (en)2001-10-192003-04-24Culbertson Christopher T.Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
US20030149307A1 (en)2001-10-242003-08-07Baxter International Inc.Process for the preparation of polyethylene glycol bis amine
US20030182068A1 (en)2001-10-302003-09-25Battersby Bronwyn J.Device and methods for directed synthesis of chemical libraries
US7622280B2 (en)2001-11-162009-11-24454 Life Sciences CorporationEmulsion compositions
US20030082587A1 (en)2001-12-282003-05-01Michael SeulArrays of microparticles and methods of preparation thereof
US20030170698A1 (en)2002-01-042003-09-11Peter GascoyneDroplet-based microfluidic oligonucleotide synthesis engine
WO2003062462A2 (en)2002-01-162003-07-31Dynal Biotech AsaMethod for isolating nucleic acids and protein from a single sample
US7745218B2 (en)2002-02-222010-06-29Korea Advanced Institute Of Science And TechnologyGenome minimization by tn5-coupled cre/loxP excision system
US20050202429A1 (en)2002-03-202005-09-15Innovativebio.BizMicrocapsules with controlable permeability encapsulating a nucleic acid amplification reaction mixture and their use as reaction compartment for parallels reactions
US8889083B2 (en)2002-05-092014-11-18The University Of ChicagoDevice and method for pressure-driven plug transport and reaction
US8329407B2 (en)2002-05-092012-12-11The University Of ChicagoMethod for conducting reactions involving biological molecules in plugs in a microfluidic system
US8304193B2 (en)2002-05-092012-11-06The University Of ChicagoMethod for conducting an autocatalytic reaction in plugs in a microfluidic system
US8273573B2 (en)2002-05-092012-09-25The University Of ChicagoMethod for obtaining a collection of plugs comprising biological molecules
US8822148B2 (en)2002-05-092014-09-02The University Of ChicagoMethod of performing PCR reaction in continuously flowing microfluidic plugs
US7129091B2 (en)2002-05-092006-10-31University Of ChicagoDevice and method for pressure-driven plug transport and reaction
US7608451B2 (en)2002-06-262009-10-27Transgen Rx, Inc.Gene regulation in transgenic animals using a transposon-based vector
US8337778B2 (en)2002-06-282012-12-25President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
JP2006507921A (en)2002-06-282006-03-09プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Method and apparatus for fluid dispersion
US7708949B2 (en)2002-06-282010-05-04President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
WO2004002627A2 (en)2002-06-282004-01-08President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
US20050172476A1 (en)2002-06-282005-08-11President And Fellows Of Havard CollegeMethod and apparatus for fluid dispersion
WO2004010106A2 (en)2002-07-242004-01-29Ptc Therapeutics, Inc.METHODS FOR IDENTIFYING SMALL MOLEDULES THAT MODULATE PREMATURE TRANSLATION TERMINATION AND NONSENSE MEDIATED mRNA DECAY
US20060240506A1 (en)2002-09-092006-10-26Ariel KushmaroMethod for isolating and culturing unculturable microorganisms
US20040081962A1 (en)2002-10-232004-04-29Caifu ChenMethods for synthesizing complementary DNA
WO2004061083A2 (en)2002-12-272004-07-22Amgen Inc.Rna interference
US20040224331A1 (en)2003-01-172004-11-11The Trustees Of Boston UniversityHaplotype analysis
US7700325B2 (en)2003-01-172010-04-20Trustees Of Boston UniversityHaplotype analysis
WO2004065617A2 (en)2003-01-172004-08-05The Trustees Of Boston UniversityHaplotype analysis
US8318460B2 (en)2003-01-172012-11-27Trustees Of Boston UniversityHaplotype analysis
US20050079510A1 (en)2003-01-292005-04-14Jan BerkaBead emulsion nucleic acid amplification
EP2145955B1 (en)2003-01-292012-02-22454 Life Sciences CorporationBead emulsion nucleic acid amplification
EP1594980B1 (en)2003-01-292009-11-11454 CorporationBead emulsion nucleic acid amplification
US7842457B2 (en)2003-01-292010-11-30454 Life Sciences CorporationBead emulsion nucleic acid amplification
US8765380B2 (en)2003-01-292014-07-01454 Life Sciences CorporationBead emulsion nucleic acid amplification
US8748102B2 (en)2003-01-292014-06-10454 Life Sciences CorporationBead emulsion nucleic acid amplification
US7323305B2 (en)2003-01-292008-01-29454 Life Sciences CorporationMethods of amplifying and sequencing nucleic acids
US20090048124A1 (en)2003-01-292009-02-19Leamon John HMethods of amplifying and sequencing nucleic acids
WO2004069849A2 (en)2003-01-292004-08-19454 CorporationBead emulsion nucleic acid amplification
US20130078638A1 (en)2003-01-292013-03-28Jan BerkaBead Emulsion Nucleic Acid Amplification
US20110201526A1 (en)2003-01-292011-08-18Jan BerkaBead emulsion nucleic acid amplification
US8420386B2 (en)2003-02-102013-04-16Max-Delbruck-Centrum Fur Molekulare Medizin (Mdc)Transposon-based targeting system
USRE41780E1 (en)2003-03-142010-09-28Lawrence Livermore National Security, LlcChemical amplification based on fluid partitioning in an immiscible liquid
US7041481B2 (en)2003-03-142006-05-09The Regents Of The University Of CaliforniaChemical amplification based on fluid partitioning
US20100210479A1 (en)2003-03-312010-08-19Medical Research CouncilMethod of synthesis and testing of cominatorial libraries using microcapsules
US20060153924A1 (en)2003-03-312006-07-13Medical Research CouncilSelection by compartmentalised screening
EP2540389A1 (en)2003-03-312013-01-02Medical Research CouncilMethod of encapsulating a molecule and a microbead
US20120010107A1 (en)2003-03-312012-01-12Medical Research CouncilSelection by compartmentalised screening
US20120010098A1 (en)2003-03-312012-01-12Medical Research CouncilSelection by compartmentalised screening
US20040258701A1 (en)2003-04-042004-12-23Pfizer Inc.Microfluidized oil-in-water emulsions and vaccine compositions
US20100035254A1 (en)2003-04-082010-02-11Pacific Biosciences Of California, Inc.Composition and method for nucleic acid sequencing
WO2004091763A2 (en)2003-04-102004-10-28President And Fellows Of Harvard CollegeFormation and control of fluidic species
US20060163385A1 (en)2003-04-102006-07-27Link Darren RFormation and control of fluidic species
WO2004102204A1 (en)2003-05-162004-11-25Global Technologies (Nz) LtdMethod and apparatus for mixing sample and reagent in a suspension fluid
WO2004103565A2 (en)2003-05-192004-12-02Hans-Knöll-Institut für Naturstoff-Forschung e.V.Device and method for structuring liquids and for dosing reaction liquids into liquid compartments immersed in a separation medium
WO2004105734A1 (en)2003-05-282004-12-09Valorisation Recherche, Societe En CommanditeMethod of preparing microcapsules
US20070160503A1 (en)2003-06-132007-07-12Palaniappan SethuMicrofluidic systems for size based removal of red blood cells and platelets from blood
US8124404B2 (en)2003-07-012012-02-28Oxitec LimitedStable integrands
WO2005002730A1 (en)2003-07-022005-01-13The University Of ManchesterMicrofluidic method and device
US20090286687A1 (en)2003-07-052009-11-19The Johns Hopkins UniversityMethod and Compositions for Detection and Enumeration of Genetic Variations
WO2005021151A1 (en)2003-08-272005-03-10President And Fellows Of Harvard CollegeElectronic control of fluidic species
US20070003442A1 (en)2003-08-272007-01-04President And Fellows Of Harvard CollegeElectronic control of fluidic species
WO2005023331A2 (en)2003-09-042005-03-17The United States Of America As Represented By The Department Of Veterans AffairsHydrogel nanocompsites for ophthalmic applications
EP1672064A1 (en)2003-09-222006-06-21RikenEfficient method of preparing dna inverted repeat structure
US20110195496A1 (en)2003-09-252011-08-11Atsushi MuraguchiMicrowell array chip and method of manufacturing same
WO2005040406A1 (en)2003-10-172005-05-06Diversa CorporationHigh throughput screening of antibody libraries
WO2005049787A2 (en)2003-11-242005-06-02Yeda Research And Development Co.Ltd.Compositions and methods for in vitro sorting of molecular and cellular libraries
US20070077572A1 (en)2003-11-242007-04-05Yeda Research And Development Co. Ltd.Compositions and methods for in vitro sorting of molecular and cellular libraries
US20120297493A1 (en)2003-12-242012-11-22Transgenrx, Inc.Gene Therapy Using Transposon-Based Vectors
US20050181379A1 (en)2004-02-182005-08-18Intel CorporationMethod and device for isolating and positioning single nucleic acid molecules
WO2005082098A2 (en)2004-02-272005-09-09President And Fellows Of Harvard CollegePolony fluorescent in situ sequencing beads
US7425431B2 (en)2004-02-272008-09-16President And Fellows Of Harvard CollegePolony fluorescent in situ sequencing beads
US20050202489A1 (en)2004-03-122005-09-15Cho Yoon-KyoungMethod and apparatus for amplifying nucleic acids
US20050221339A1 (en)2004-03-312005-10-06Medical Research Council Harvard UniversityCompartmentalised screening by microfluidic control
US20070092914A1 (en)2004-03-312007-04-26Medical Research Council, Harvard UniversityCompartmentalised screening by microfluidic control
US20090197772A1 (en)2004-03-312009-08-06Andrew GriffithsCompartmentalised combinatorial chemistry by microfluidic control
US20060020371A1 (en)2004-04-132006-01-26President And Fellows Of Harvard CollegeMethods and apparatus for manipulation and/or detection of biological samples and other objects
US20050287572A1 (en)2004-06-012005-12-29The Regents Of The University Of CaliforniaMicrofabricated integrated DNA analysis system
US7799553B2 (en)2004-06-012010-09-21The Regents Of The University Of CaliforniaMicrofabricated integrated DNA analysis system
US20060002890A1 (en)2004-07-052006-01-05Ulrich HerselHydrogel formulations
US20070207060A1 (en)2004-07-212007-09-06Chengdu Kuachang Medical Industrial LimitedTesting method of analytic chip of multiple reactors, the analytic chip, and the testing device
US7608434B2 (en)2004-08-042009-10-27Wisconsin Alumni Research FoundationMutated Tn5 transposase proteins and the use thereof
WO2006030993A1 (en)2004-09-142006-03-23Jin-Ho ChoyInformation code system using dna sequences
US20060073487A1 (en)2004-10-012006-04-06Oliver Kerry GSystem and method for inhibiting the decryption of a nucleic acid probe sequence used for the detection of a specific nucleic acid
US20090197248A1 (en)2004-10-082009-08-06President And Fellows Of Harvard CollegeVitro evolution in microfluidic systems
US20060078888A1 (en)2004-10-082006-04-13Medical Research Council Harvard UniversityIn vitro evolution in microfluidic systems
US7968287B2 (en)2004-10-082011-06-28Medical Research Council Harvard UniversityIn vitro evolution in microfluidic systems
US9029083B2 (en)2004-10-082015-05-12Medical Research CouncilVitro evolution in microfluidic systems
US20130178368A1 (en)2004-10-082013-07-11Andrew David GriffithsIn vitro evolution in microfluidic systems
US8871444B2 (en)2004-10-082014-10-28Medical Research CouncilIn vitro evolution in microfluidic systems
WO2007001448A2 (en)2004-11-042007-01-04Massachusetts Institute Of TechnologyCoated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
US20080004436A1 (en)2004-11-152008-01-03Yeda Research And Development Co. Ltd. At The Weizmann Institute Of ScienceDirected Evolution and Selection Using in Vitro Compartmentalization
US7329493B2 (en)2004-12-222008-02-12Asiagen CorporationOne-tube nested PCR for detecting Mycobacterium tuberculosis
WO2006078841A1 (en)2005-01-212006-07-27President And Fellows Of Harvard CollegeSystems and methods for forming fluidic droplets encapsulated in particles such as colloidal particles
EP1841879A2 (en)2005-01-252007-10-10Compass Genetics, LlcIsothermal dna amplification
US8318433B2 (en)2005-02-102012-11-27Population Genetics Technologies Ltd.Methods and compositions for tagging and identifying polynucleotides
US20060177832A1 (en)2005-02-102006-08-10Sydney BrennerGenetic analysis by sequence-specific sorting
US8168385B2 (en)2005-02-102012-05-01Population Genetics Technologies LtdMethods and compositions for tagging and identifying polynucleotides
US20060177833A1 (en)2005-02-102006-08-10Sydney BrennerMethods and compositions for tagging and identifying polynucleotides
US20060257893A1 (en)2005-02-182006-11-16Toru TakahashiDevices and methods for monitoring genomic DNA of organisms
US7604938B2 (en)2005-02-182009-10-20Canon U.S. Life Sciences, Inc.Devices and methods for monitoring genomic DNA of organisms
US20090025277A1 (en)2005-02-212009-01-29Kagoshima UniversityMethod for purifying biodiesel fuel
WO2006096571A2 (en)2005-03-042006-09-14President And Fellows Of Harvard CollegeMethod and apparatus for forming multiple emulsions
US20060199193A1 (en)2005-03-042006-09-07Tae-Woong KooSensor arrays and nucleic acid sequencing applications
US20070054119A1 (en)2005-03-042007-03-08Piotr GarsteckiSystems and methods of forming particles
JP2006289250A (en)2005-04-082006-10-26Kao Corp Micromixer and fluid mixing method using the same
US20110071053A1 (en)2005-06-152011-03-24Callida Genomics, Inc.Single Molecule Arrays for Genetic and Chemical Analysis
US20070072208A1 (en)2005-06-152007-03-29Radoje DrmanacNucleic acid analysis by random mixtures of non-overlapping fragments
US7901891B2 (en)2005-06-152011-03-08Callida Genomics, Inc.Nucleic acid analysis by random mixtures of non-overlapping fragments
US20110319281A1 (en)2005-06-152011-12-29Callida Genomics, Inc.Nucleic Acid Analysis by Random Mixtures of Non-Overlapping Fragments
US8133719B2 (en)2005-06-152012-03-13Callida Genomics, Inc.Methods for making single molecule arrays
US20090137414A1 (en)2005-06-152009-05-28Complete Genomics, Inc.Single molecule arrays for genetic and chemical analysis
US20090137404A1 (en)2005-06-152009-05-28Complete Genomics, Inc.Single molecule arrays for genetic and chemical analysis
US20090011943A1 (en)2005-06-152009-01-08Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
US20070099208A1 (en)2005-06-152007-05-03Radoje DrmanacSingle molecule arrays for genetic and chemical analysis
US7709197B2 (en)2005-06-152010-05-04Callida Genomics, Inc.Nucleic acid analysis by random mixtures of non-overlapping fragments
US7536928B2 (en)2005-06-162009-05-26Ntn CorporationBall screw
WO2007002490A2 (en)2005-06-222007-01-04The Research Foundation Of State University Of New YorkMassively parallel 2-dimensional capillary electrophoresis
US20070154903A1 (en)2005-06-232007-07-05Nanosphere, Inc.Selective isolation and concentration of nucleic acids from complex samples
US9175295B2 (en)2005-07-052015-11-03The Chemo-Sero-Therapeutic Research InstituteModified transposon vector and its use
JP2007015990A (en)2005-07-082007-01-25National Institute Of Advanced Industrial & Technology Inorganic microcapsule encapsulating macro-biomaterial and method for producing the same
US20070020640A1 (en)2005-07-212007-01-25Mccloskey Megan LMolecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
WO2007012638A1 (en)2005-07-252007-02-01Commissariat A L'energie AtomiqueMethod for controlling communication between two electrowetting zones, device comprising zones capable of being isolated from one another and method for making such a device
US20090134027A1 (en)2005-07-252009-05-28Commissariat A L'energie AtomiqueMethod for Controlling a Communication Between Two Areas By Electrowetting, a Device Including Areas Isolatable From Each Other and Method for making Such a Device
WO2007018601A1 (en)2005-08-022007-02-15Rubicon Genomics, Inc.Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
US20100021973A1 (en)2005-08-022010-01-28Makarov Vladimir LCompositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
WO2007024840A2 (en)2005-08-222007-03-01Critical Therapeutics, Inc.Method of quantitating nucleic acids by flow cytometry microparticle-based array
US8101346B2 (en)2005-09-132012-01-24Canon Kabushiki KaishaIdentifier and nucleic acid amplification method of verification using the same
JP2009513948A (en)2005-09-162009-04-02ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Colorimetric bio barcode amplification assay for analyte detection
WO2007084192A2 (en)2005-09-162007-07-26The Regents Of The University Of CaliforniaA colorimetric bio-barcode amplification assay for analyte detection
US20110281738A1 (en)2005-10-072011-11-17Callida Genomics, Inc.Self-assembled single molecule arrays and uses thereof
US7960104B2 (en)2005-10-072011-06-14Callida Genomics, Inc.Self-assembled single molecule arrays and uses thereof
US20070190543A1 (en)2005-11-142007-08-16Applera CorporationCoded Molecules for Detecting Target Analytes
WO2007081387A1 (en)2006-01-112007-07-19Raindance Technologies, Inc.Microfluidic devices, methods of use, and kits for performing diagnostics
US20100137163A1 (en)2006-01-112010-06-03Link Darren RMicrofluidic Devices and Methods of Use in The Formation and Control of Nanoreactors
WO2007081385A2 (en)2006-01-112007-07-19Raindance Technologies, Inc.Microfluidic devices and methods of use in the formation and control of nanoreactors
US20070259357A1 (en)2006-01-232007-11-08Sydney BrennerNucleic acid analysis using sequence tokens
US7544473B2 (en)2006-01-232009-06-09Population Genetics Technologies Ltd.Nucleic acid analysis using sequence tokens
US20070172873A1 (en)2006-01-232007-07-26Sydney BrennerMolecular counting
WO2007089541A2 (en)2006-01-272007-08-09President And Fellows Of Harvard CollegeFluidic droplet coalescence
US20070195127A1 (en)2006-01-272007-08-23President And Fellows Of Harvard CollegeFluidic droplet coalescence
US8008018B2 (en)2006-02-022011-08-30The Board Of Trustees Of The Leland Stanford Junior UniversityDetermination of fetal aneuploidies by massively parallel DNA sequencing
US20090099041A1 (en)2006-02-072009-04-16President And Fellows Of Harvard CollegeMethods for making nucleotide probes for sequencing and synthesis
US20120135893A1 (en)2006-02-242012-05-31Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
US20090155781A1 (en)2006-02-242009-06-18Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
US20090005252A1 (en)2006-02-242009-01-01Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
US20090264299A1 (en)2006-02-242009-10-22Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
US20090118488A1 (en)2006-02-242009-05-07Complete Genomics, Inc.High throughput genome sequencing on DNA arrays
JP2007268350A (en)2006-03-302007-10-18Toshiba Corp Fine particle production apparatus, emulsifier holding part, fine particle production method, and molecular film production method
US20070228588A1 (en)2006-03-302007-10-04Yasuko NoritomiApparatus for producing particles, emulsifier holding member, method for producing particles, and method for producing molecular membrane
WO2007114794A1 (en)2006-03-312007-10-11Nam Trung NguyenActive control for droplet-based microfluidics
WO2007121489A2 (en)2006-04-192007-10-25Applera CorporationReagents, methods, and libraries for gel-free bead-based sequencing
US20070264320A1 (en)2006-05-092007-11-15The Regents Of The University Of CaliforniaMicrofluidic device for forming monodisperse lipoplexes
US20080014589A1 (en)2006-05-112008-01-17Link Darren RMicrofluidic devices and methods of use thereof
WO2007133710A2 (en)2006-05-112007-11-22Raindance Technologies, Inc.Microfluidic devices and methods of use thereof
US20080003142A1 (en)2006-05-112008-01-03Link Darren RMicrofluidic devices
US20130210639A1 (en)2006-05-112013-08-15Darren R. LinkMicrofluidic devices
WO2007139766A2 (en)2006-05-222007-12-06Nanostring Technologies, Inc.Systems and methods for analyzing nanoreporters
WO2007140015A2 (en)2006-05-262007-12-06Althea Technologies, IncBiochemical analysis of partitioned cells
US20080124726A1 (en)2006-05-262008-05-29Althea Technologies, Inc.Biochemical analysis of partitioned cells
WO2007138178A2 (en)2006-05-302007-12-06Centre National De La Recherche ScientifiqueMethod for treating drops in a microfluid circuit
WO2007147079A2 (en)2006-06-142007-12-21Living Microsystems, Inc.Rare cell analysis using sample splitting and dna tags
WO2007149432A2 (en)2006-06-192007-12-27The Johns Hopkins UniversitySingle-molecule pcr on microparticles in water-in-oil emulsions
US7947477B2 (en)2006-06-302011-05-24Applied Biosystems, LlcEmulsion PCR and amplicon capture
US7666664B2 (en)2006-07-142010-02-23Roche Molecular Systems, Inc.Instrument for heating and cooling
WO2008021123A1 (en)2006-08-072008-02-21President And Fellows Of Harvard CollegeFluorocarbon emulsion stabilizing surfactants
US20100105112A1 (en)2006-08-072010-04-29Christian HoltzeFluorocarbon emulsion stabilizing surfactants
US9012390B2 (en)2006-08-072015-04-21Raindance Technologies, Inc.Fluorocarbon emulsion stabilizing surfactants
US8461129B2 (en)2006-09-252013-06-11Archer Daniels Midland CompanySuperabsorbent surface-treated carboxyalkylated polysaccharides and process for producing same
US20090148961A1 (en)2006-09-272009-06-11Alessandra LuchiniSmart hydrogel particles for biomarker harvesting
US20090035770A1 (en)2006-10-252009-02-05The Regents Of The University Of CaliforniaInline-injection microdevice and microfabricated integrated DNA analysis system using same
US7910354B2 (en)2006-10-272011-03-22Complete Genomics, Inc.Efficient arrays of amplified polynucleotides
WO2008061193A3 (en)2006-11-152008-11-13Biospherex LlcMultitag sequencing and ecogenomics analysis
US8603749B2 (en)2006-11-152013-12-10Biospherex, LLCMultitag sequencing ecogenomics analysis-US
US20140194323A1 (en)2006-11-152014-07-10BioSpherex, LLC a Limited Liability CompanyMultitag sequencing ecogenomics analysis-us
WO2008061193A2 (en)2006-11-152008-05-22Biospherex LlcMultitag sequencing and ecogenomics analysis
US20080242560A1 (en)2006-11-212008-10-02Gunderson Kevin LMethods for generating amplified nucleic acid arrays
US8598328B2 (en)2006-12-132013-12-03National University Corporation Nagoya UniversityTol1 factor transposase and DNA introduction system using the same
US20130018970A1 (en)2007-01-222013-01-17Comcast Cable Holdings, LlcSystem and Method for Providing an Application to a Device
WO2008091792A2 (en)2007-01-232008-07-31Honeywell International Inc.Hydrogel microarray with embedded metal nanoparticles
US8053192B2 (en)2007-02-022011-11-08Illumina Cambridge Ltd.Methods for indexing samples and sequencing multiple polynucleotide templates
US8003312B2 (en)2007-02-162011-08-23The Board Of Trustees Of The Leland Stanford Junior UniversityMultiplex cellular assays using detectable cell barcodes
US20080241820A1 (en)2007-02-162008-10-02Krutzik Peter OMultiplex cellular assays using detectable cell barcodes
US20110263457A1 (en)2007-02-162011-10-27Krutzik Peter OMultiplex Cellular Assays Using Detectable Cell Barcodes
WO2008102057A1 (en)2007-02-212008-08-28Valtion Teknillinen TutkimuskeskusMethod and test kit for determining the amounts of target sequences and nucleotide variations therein
US9029085B2 (en)2007-03-072015-05-12President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
US20140199730A1 (en)2007-03-072014-07-17President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
US20100136544A1 (en)2007-03-072010-06-03Jeremy AgrestiAssays and other reactions involving droplets
US20140199731A1 (en)2007-03-072014-07-17President And Fellows Of Harvard CollegeAssay and other reactions involving droplets
US9017948B2 (en)2007-03-072015-04-28President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
WO2008109176A2 (en)2007-03-072008-09-12President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
US9068210B2 (en)2007-03-072015-06-30President And Fellows Of Harvard CollegeAssay and other reactions involving droplets
US20170183701A1 (en)2007-03-072017-06-29President And Fellows Of Harvard CollegeAssays and other reactions involving droplets
US20150353999A1 (en)2007-03-072015-12-10President And Fellows Of Harvard CollegeAssay and other reactions involving droplets
US20080228268A1 (en)2007-03-152008-09-18Uluru, Inc.Method of Formation of Viscous, Shape Conforming Gels and Their Uses as Medical Prosthesis
US20090012187A1 (en)2007-03-282009-01-08President And Fellows Of Harvard CollegeEmulsions and Techniques for Formation
EP2136786B1 (en)2007-03-282012-10-10The President and Fellows of Harvard CollegeApparatus for forming droplets
WO2008121342A2 (en)2007-03-282008-10-09President And Fellows Of Harvard CollegeEmulsions and techniques for formation
US7776927B2 (en)2007-03-282010-08-17President And Fellows Of Harvard CollegeEmulsions and techniques for formation
WO2008134153A1 (en)2007-04-232008-11-06Advanced Liquid Logic, Inc.Bead-based multiplexed analytical methods and instrumentation
US20100130369A1 (en)2007-04-232010-05-27Advanced Liquid Logic, Inc.Bead-Based Multiplexed Analytical Methods and Instrumentation
US8137563B2 (en)2007-04-252012-03-20Ge Healthcare Bio-Sciences AbPreparation of polysaccharide beads
US20090105959A1 (en)2007-06-012009-04-23Braverman Michael SSystem and method for identification of individual samples from a multiplex mixture
WO2008150432A1 (en)2007-06-012008-12-11454 Life Sciences CorporationSystem and meth0d for identification of individual samples from a multiplex mixture
WO2009005680A1 (en)2007-06-292009-01-08President And Fellows Of Harvard CollegeMethods and apparatus for manipulation of fluidic species
WO2009011808A1 (en)2007-07-132009-01-22President And Fellows Of Harvard CollegeDroplet-based selection
US20090068170A1 (en)2007-07-132009-03-12President And Fellows Of Harvard CollegeDroplet-based selection
US20120015382A1 (en)2007-07-132012-01-19President And Fellows Of Harvard CollegeDroplet-based selection
WO2009015296A1 (en)2007-07-242009-01-29The Regents Of The University Of CaliforniaMicrofabricated dropley generator
US20090053169A1 (en)2007-08-202009-02-26Pharmain CorporationOligonucleotide Core Carrier Compositions for Delivery of Nucleic Acid-Containing Therapeutic Agents, Methods of Making and Using the Same
US20090098555A1 (en)2007-09-262009-04-16President And Fellows Of Harvard CollegeMethods and applications for stitched dna barcodes
US8268564B2 (en)2007-09-262012-09-18President And Fellows Of Harvard CollegeMethods and applications for stitched DNA barcodes
WO2009048532A2 (en)2007-10-052009-04-16President And Fellows Of Harvard CollegeFormation of particles for ultrasound application, drug release, and other uses, and microfluidic methods of preparation
US20150072899A1 (en)2007-10-152015-03-12Sigma-Aldrich Co. LlcDegenerate oligonucleotides and their uses
WO2009061372A1 (en)2007-11-022009-05-14President And Fellows Of Harvard CollegeSystems and methods for creating multi-phase entities, including particles and/or fluids
US20110033854A1 (en)2007-12-052011-02-10Complete Genomics, Inc.Methods and compositions for long fragment read sequencing
US8592150B2 (en)2007-12-052013-11-26Complete Genomics, Inc.Methods and compositions for long fragment read sequencing
US20130157899A1 (en)2007-12-052013-06-20Perkinelmer Health Sciences, Inc.Reagents and methods relating to dna assays using amplicon probes on encoded particles
US20110008775A1 (en)2007-12-102011-01-13Xiaolian GaoSequencing of nucleic acids
US20090155780A1 (en)2007-12-142009-06-18Board Of Trustees Of The University Of IllinoisMethods for determining genetic haplotypes and DNA mapping
US20110267457A1 (en)2007-12-212011-11-03David A WeitzSystems and methods for nucleic acid sequencing
WO2009085215A1 (en)2007-12-212009-07-09President And Fellows Of Harvard CollegeSystems and methods for nucleic acid sequencing
US20090202984A1 (en)2008-01-172009-08-13Sequenom, Inc.Single molecule nucleic acid sequence analysis processes and compositions
JP2009208074A (en)2008-02-082009-09-17Kao CorpManufacturing method of fine particle dispersion liquid
US20090203531A1 (en)2008-02-122009-08-13Nurith KurnMethod for Archiving and Clonal Expansion
US20100021984A1 (en)2008-05-232010-01-28Edd Jon FMicrofluidic Droplet Encapsulation
US20140065234A1 (en)2008-06-052014-03-06President And Fellows Of Harvard CollegePolymersomes, liposomes, and other species associated with fluidic droplets
US20110305761A1 (en)2008-06-052011-12-15President And Fellows Of Harvard CollegePolymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets
US20120172259A1 (en)2008-07-022012-07-05Illumina Cambridge LimitedUsing populations of beads for the fabrication of arrays on surfaces
WO2010004018A2 (en)2008-07-112010-01-14Eth ZurichDegradable microcapsules
US20100022414A1 (en)2008-07-182010-01-28Raindance Technologies, Inc.Droplet Libraries
US20100062494A1 (en)2008-08-082010-03-11President And Fellows Of Harvard CollegeEnzymatic oligonucleotide pre-adenylation
US20100069263A1 (en)2008-09-122010-03-18Washington, University OfSequence tag directed subassembly of short sequencing reads into long sequencing reads
US20110218123A1 (en)2008-09-192011-09-08President And Fellows Of Harvard CollegeCreation of libraries of droplets and related species
WO2010033200A2 (en)2008-09-192010-03-25President And Fellows Of Harvard CollegeCreation of libraries of droplets and related species
US20110092376A1 (en)2008-09-232011-04-21Quantalife, Inc.System for droplet-based assays using an array of emulsions
US20110086780A1 (en)2008-09-232011-04-14Quantalife, Inc.System for forming an array of emulsions
US20110092392A1 (en)2008-09-232011-04-21Quantalife, Inc.System for forming an array of emulsions
US20100173394A1 (en)2008-09-232010-07-08Colston Jr Billy WayneDroplet-based assay system
US20130041004A1 (en)2008-09-252013-02-14Anthony S. DragerLiquid Formulations Of Bendamustine
US20100086914A1 (en)2008-10-032010-04-08Roche Molecular Systems, Inc.High resolution, high throughput hla genotyping by clonal sequencing
US8361299B2 (en)2008-10-082013-01-29Sage Science, Inc.Multichannel preparative electrophoresis system
US20100120098A1 (en)2008-10-242010-05-13Epicentre Technologies CorporationTransposon end compositions and methods for modifying nucleic acids
US20110287435A1 (en)2008-10-242011-11-24Epicentre Technologies CorporationTransposon end compositions and methods for modifying nucleic acids
US9080211B2 (en)2008-10-242015-07-14Epicentre Technologies CorporationTransposon end compositions and methods for modifying nucleic acids
US20100113296A1 (en)2008-11-052010-05-06Joel MyersonMethods And Kits For Nucleic Acid Analysis
US20140315725A1 (en)2008-11-072014-10-23Sequenta, Inc.Sequence analysis of complex amplicons
US8748094B2 (en)2008-12-192014-06-10President And Fellows Of Harvard CollegeParticle-assisted nucleic acid sequencing
US20120015822A1 (en)2008-12-192012-01-19President And Fellows Of Harvard CollegeParticle-assisted nucleic acid sequencing
US20100187705A1 (en)2009-01-232010-07-29The Industry & Academic Cooperation In Chungnam National University (Iac)Preparation method for micro-capsule using a microfluidic chip system
US20100248237A1 (en)2009-02-252010-09-30Thomas FroehlichMiniaturized, high-throughput nucleic acid analysis
US20120121481A1 (en)2009-03-132012-05-17President And Fellows Of Harvard CollegeScale-up of flow-focusing microfluidic devices
WO2010104604A1 (en)2009-03-132010-09-16President And Fellows Of Harvard CollegeMethod for the controlled creation of emulsions, including multiple emulsions
US20110000560A1 (en)2009-03-232011-01-06Raindance Technologies, Inc.Manipulation of Microfluidic Droplets
WO2010117620A3 (en)2009-03-302011-02-17Illumina, Inc.Gene expression analysis in single cells
WO2010117620A2 (en)2009-03-302010-10-14Illumina, Inc.Gene expression analysis in single cells
WO2010115154A1 (en)2009-04-022010-10-07Fluidigm CorporationMulti-primer amplification method for barcoding of target nucleic acids
US20100304982A1 (en)2009-05-292010-12-02Ion Torrent Systems, Inc.Scaffolded nucleic acid polymer particles and methods of making and using
WO2010148039A2 (en)2009-06-152010-12-23Complete Genomics, Inc.Methods and compositions for long fragment read sequencing
WO2010151776A2 (en)2009-06-262010-12-29President And Fellows Of Harvard CollegeFluid injection
US20120132288A1 (en)2009-06-262012-05-31President And Fellows Of Harvard CollegeFluid injection
US20110028412A1 (en)2009-08-032011-02-03Cappellos, Inc.Herbal enhanced analgesic formulations
US20110033548A1 (en)2009-08-052011-02-10E.I. Du Pont De Nemours And CompanyDegradable crosslinked aminated dextran microspheres and methods of use
US8298767B2 (en)2009-08-202012-10-30Population Genetics Technologies LtdCompositions and methods for intramolecular nucleic acid rearrangement
US8679756B1 (en)2009-08-202014-03-25Population Genetics Technologies LtdCompositions and methods for intramolecular nucleic acid rearrangement
US8563274B2 (en)2009-08-202013-10-22Population Genetics Technologies LtdCompositions and methods for intramolecular nucleic acid rearrangement
US9102980B2 (en)2009-08-202015-08-11Population Genetics Technologies Ltd.Compositions and methods for intramolecular nucleic acid rearrangement
US20130059310A1 (en)2009-08-202013-03-07Population Genetics Technologies LtdCompositions and Methods for Intramolecular Nucleic Acid Rearrangement
US20120211084A1 (en)2009-09-022012-08-23President And Fellows Of Harvard CollegeMultiple emulsions created using jetting and other techniques
US20110053798A1 (en)2009-09-022011-03-03Quantalife, Inc.System for mixing fluids by coalescence of multiple emulsions
WO2011028539A1 (en)2009-09-022011-03-10Quantalife, Inc.System for mixing fluids by coalescence of multiple emulsions
US20110059556A1 (en)2009-09-042011-03-10The Research Foundation Of State University Of New YorkRapid and Continuous Analyte Processing in Droplet Microfluidic Devices
WO2011047870A1 (en)2009-10-222011-04-28Plasticell LtdNested cell encapsulation
WO2011056546A1 (en)2009-10-272011-05-12President And Fellows Of Harvard CollegeDroplet creation techniques
US20120222748A1 (en)2009-10-272012-09-06President And Fellows Of Harvard CollegeDroplet creation techniques
US20120220497A1 (en)2009-11-032012-08-30Gen 9, Inc.Methods and Microfluidic Devices for the Manipulation of Droplets in High Fidelity Polynucleotide Assembly
WO2011140627A1 (en)2009-11-042011-11-17The University Of British ColumbiaNucleic acid-containing lipid particles and related methods
WO2011066476A1 (en)2009-11-252011-06-03Quantalife, Inc.Methods and compositions for detecting genetic material
GB2485850A (en)2009-11-252012-05-30Bio Rad LaboratoriesDNA copy number and Chromosome aneuploidy detection by amplification wherein the ligated products are partitioned into oil droplets prior to amplification
US9290808B2 (en)2009-12-152016-03-22Cellular Research, Inc.Digital counting of individual molecules by stochastic attachment of diverse labels
US8835358B2 (en)2009-12-152014-09-16Cellular Research, Inc.Digital counting of individual molecules by stochastic attachment of diverse labels
US20110160078A1 (en)2009-12-152011-06-30Affymetrix, Inc.Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels
WO2011074960A1 (en)2009-12-172011-06-23Keygene N.V.Restriction enzyme based whole genome sequencing
US20130109575A1 (en)2009-12-232013-05-02Raindance Technologies, Inc.Microfluidic systems and methods for reducing the exchange of molecules between droplets
US20130084243A1 (en)2010-01-272013-04-04Liliane GoetschIgf-1r specific antibodies useful in the detection and diagnosis of cellular proliferative disorders
US20110217736A1 (en)2010-03-022011-09-08Quantalife, Inc.System for hot-start amplification via a multiple emulsion
US20120190032A1 (en)2010-03-252012-07-26Ness Kevin DDroplet generation for droplet-based assays
US20120000777A1 (en)2010-06-042012-01-05The Regents Of The University Of CaliforniaDevices and methods for forming double emulsion droplet compositions and polymer particles
US20110306141A1 (en)2010-06-152011-12-15Src, Inc.Location Analysis Using Fire Retardant-Protected Nucleic Acid-Labeled Tags
WO2012012037A1 (en)2010-07-192012-01-26New England Biolabs, Inc.Oligonucleotide adaptors: compositions and methods of use
US20130203675A1 (en)2010-09-162013-08-08Joseph M. DeSimoneAsymmetric biofunctional silyl monomers and particles thereof as prodrugs and delivery vehicles for pharmaceutical, chemical and biological agents
US20120071331A1 (en)2010-09-212012-03-22James CasbonIncreasing confidence of allele calls with molecular counting
WO2012047889A2 (en)2010-10-042012-04-12Genapsys Inc.Systems and methods for automated reusable parallel biological reactions
US20130028812A1 (en)2010-10-072013-01-31The Regents Of The University Of CaliforniaMethods and systems for on demand droplet generation and impedance based detection
WO2012048341A1 (en)2010-10-082012-04-12President And Fellows Of Harvard CollegeHigh-throughput single cell barcoding
US20130274117A1 (en)2010-10-082013-10-17President And Fellows Of Harvard CollegeHigh-Throughput Single Cell Barcoding
US20140057799A1 (en)2010-12-162014-02-27GigagenSystem and Methods for Massively Parallel Analysis of Nucleic Acids in Single Cells
WO2012083225A2 (en)2010-12-162012-06-21Gigagen, Inc.System and methods for massively parallel analysis of nycleic acids in single cells
US20160326583A1 (en)2010-12-162016-11-10Gigagen, Inc.System and Methods for Massively Parallel Analysis of Nucleic Acids in Single Cells
US20120196288A1 (en)2011-01-272012-08-02Lawrence Livermore National Security, LlcChip-Based Droplet Sorting
US9238671B2 (en)2011-01-282016-01-19Illumina, Inc.Oligonucleotide replacement for di-tagged and directional libraries
US20130203605A1 (en)2011-02-022013-08-08University Of Washington Through Its Center For CommercializationMassively parallel contiguity mapping
WO2012106546A2 (en)2011-02-022012-08-09University Of Washington Through Its Center For CommercializationMassively parallel continguity mapping
US9074251B2 (en)2011-02-102015-07-07Illumina, Inc.Linking sequence reads using paired code tags
US8829171B2 (en)2011-02-102014-09-09Illumina, Inc.Linking sequence reads using paired code tags
US20120208724A1 (en)2011-02-102012-08-16Steemers Frank JLinking sequence reads using paired code tags
WO2012112804A1 (en)2011-02-182012-08-23Raindance Technoligies, Inc.Compositions and methods for molecular labeling
WO2012112970A2 (en)2011-02-182012-08-23Bio-Rad Laboratories, Inc.Methods and compositions for detecting genetic material
US20120220494A1 (en)2011-02-182012-08-30Raindance Technolgies, Inc.Compositions and methods for molecular labeling
WO2012136734A1 (en)2011-04-052012-10-11Tracesa Ltd.Fluid identification system and production and use thereof
WO2012142611A2 (en)2011-04-142012-10-18Complete Genomics, Inc.Sequencing small amounts of complex nucleic acids
US9347059B2 (en)2011-04-252016-05-24Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
US20120316074A1 (en)2011-04-252012-12-13Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
US20150011432A1 (en)2011-04-252015-01-08Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
WO2012149042A2 (en)2011-04-252012-11-01Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
US20150011430A1 (en)2011-04-252015-01-08Bio-Rad Laboratories, Inc.Methods and compositions for nucleic acid analysis
WO2012148497A2 (en)2011-04-282012-11-01The Board Of Trustees Of The Leland Stanford Junior UniversityIdentification of polynucleotides associated with a sample
US20140227706A1 (en)2011-05-162014-08-14Dna Chip Research Inc.Method for assessing progression of clinical state of malignant neoplasm by quantitative detection of DNA in blood
US20130046030A1 (en)2011-05-232013-02-21Basf SeControl of emulsions, including multiple emulsions
US9005935B2 (en)2011-05-232015-04-14Agilent Technologies, Inc.Methods and compositions for DNA fragmentation and tagging by transposases
WO2012166425A2 (en)2011-05-272012-12-06President And Fellows Of Harvard CollegeMethods of amplifying whole genome of a single cell
US20120309002A1 (en)2011-06-022012-12-06Raindance Technologies, Inc.Sample multiplexing
US9150916B2 (en)2011-06-242015-10-06Beat ChristenCompositions and methods for identifying the essential genome of an organism
US8927218B2 (en)2011-06-272015-01-06Flir Systems, Inc.Methods and compositions for segregating target nucleic acid from mixed nucleic acid samples
US20130189700A1 (en)2011-07-252013-07-25Bio-Rad Laboratories, Inc.Breakage of an emulsion containing nucleic acid
WO2013019751A1 (en)2011-07-292013-02-07Bio-Rad Laboratories, Inc.,Library characterization by digital assay
US9249460B2 (en)2011-09-092016-02-02The Board Of Trustees Of The Leland Stanford Junior UniversityMethods for obtaining a sequence
WO2013036929A1 (en)2011-09-092013-03-14The Board Of Trustees Of The Leland Stanford JuniorMethods for obtaining a sequence
US20130079231A1 (en)2011-09-092013-03-28The Board Of Trustees Of The Leland Stanford Junior UniversityMethods for obtaining a sequence
US20130157870A1 (en)2011-09-092013-06-20The Board Of Trustees Of The Leland Stanford Junior UniversityMethods for obtaining a sequence
WO2013055955A1 (en)2011-10-122013-04-18Complete Genomics, Inc.Identification of dna fragments and structural variations
US20130130919A1 (en)2011-10-182013-05-23The Regents Of The University Of CaliforniaLong-Range Barcode Labeling-Sequencing
US20130109576A1 (en)2011-10-282013-05-02Anthony P. ShuberMethods for detecting mutations
US20130343317A1 (en)2011-11-042013-12-26Kamran EtemadSignaling for configuration of downlink coordinated multipoint communications
US20150111788A1 (en)2011-11-222015-04-23Active MotifMultiplex isolation of protein-associated nucleic acids
US20160115474A1 (en)2011-11-222016-04-28Active Motif, Inc.Targeted transposition for use in epigenetic studies
US20130210991A1 (en)2012-02-092013-08-15Life Technologies CorporationHydrophilic Polymeric Particles and Methods for Making and Using Same
WO2013122996A1 (en)2012-02-142013-08-22The Johns Hopkins UniversityMirna analysis methods
US20130211055A1 (en)2012-02-152013-08-15Wisconsin Alumni Research FoundationDithioamine reducing agents
WO2013123125A1 (en)2012-02-172013-08-22President And Fellows Of Harvard CollegeAssembly of nucleic acid sequences in emulsions
US20150111256A1 (en)2012-02-172015-04-23President And Fellows Of Harvard CollegeAssembly of Nucleic Acid Sequences in Emulsions
US20130225418A1 (en)2012-02-242013-08-29Andrew WatsonLabeling and sample preparation for sequencing
WO2013126741A1 (en)2012-02-242013-08-29Raindance Technologies, Inc.Labeling and sample preparation for sequencing
WO2013134261A1 (en)2012-03-052013-09-12President And Fellows Of Harvard CollegeSystems and methods for epigenetic sequencing
US20150057163A1 (en)2012-03-052015-02-26The General Hospital CorporationSystems and methods for epigenetic sequencing
US9574226B2 (en)2012-03-062017-02-21Illumina, Inc.Methods of nucleic acid sequencing
WO2013150083A1 (en)2012-04-032013-10-10MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.Analysis of nucleic acid molecules distributed on a surface or within a layer by sequencing with position identification
US20130296173A1 (en)2012-04-232013-11-07Complete Genomics, Inc.Pre-anchor wash
WO2013177220A1 (en)2012-05-212013-11-28The Scripps Research InstituteMethods of sample preparation
US20150224466A1 (en)2012-08-142015-08-1310X Genomics, Inc.Capsule array devices and methods of use
US20140287963A1 (en)2012-08-142014-09-2510X Technologies, Inc.Capsule Array Devices and Methods of Use
US20170356027A1 (en)2012-08-142017-12-1410X Genomics, Inc.Capsule array devices and methods of use
US20150005199A1 (en)2012-08-142015-01-0110X Technologies, Inc.Compositions and methods for sample processing
WO2014028537A1 (en)2012-08-142014-02-2010X Technologies, Inc.Microcapsule compositions and methods
US20140378345A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20140378349A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20140378322A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US20150005200A1 (en)2012-08-142015-01-0110X Technologies, Inc.Compositions and methods for sample processing
US20140378350A1 (en)2012-08-142014-12-2510X Technologies, Inc.Compositions and methods for sample processing
US9695468B2 (en)2012-08-142017-07-0410X Genomics, Inc.Methods for droplet-based sample preparation
US20170321252A1 (en)2012-08-142017-11-0910X Genomics, Inc.Capsule array devices and methods of use
US20180030512A1 (en)2012-08-142018-02-0110X Genomics, Inc.Capsule array devices and methods of use
US9689024B2 (en)2012-08-142017-06-2710X Genomics, Inc.Methods for droplet-based sample preparation
US20150225777A1 (en)2012-08-142015-08-1310X Genomics, Inc.Capsule array devices and methods of use
US20140155295A1 (en)2012-08-142014-06-0510X Technologies, Inc.Capsule array devices and methods of use
US20150267191A1 (en)2012-09-212015-09-24The Broad Institute, Inc.Compositions and methods for labeling of agents
WO2014053854A1 (en)2012-10-042014-04-10Base4 Innovation LtdSequencing method
US20140120529A1 (en)2012-10-152014-05-01Life Technologies CorporationCompositions, methods, systems and kits for target nucleic acid enrichment
WO2014071361A1 (en)2012-11-052014-05-08Rubicon GenomicsBarcoding nucleic acids
WO2014074611A1 (en)2012-11-072014-05-15Good Start Genetics, Inc.Methods and systems for identifying contamination in samples
US20150299772A1 (en)2012-12-032015-10-22Elim Biopharmaceuticals, Inc.Single-stranded polynucleotide amplification methods
US20170335385A1 (en)2012-12-142017-11-2310X Genomics, Inc.Methods and systems for processing polynucleotides
US20170114390A1 (en)2012-12-142017-04-2710X Genomics, Inc.Methods and systems for processing polynucleotides
US20170247757A1 (en)2012-12-142017-08-3110X Genomics, Inc.Methods and systems for processing polynucleotides
US9701998B2 (en)2012-12-142017-07-1110X Genomics, Inc.Methods and systems for processing polynucleotides
US9410201B2 (en)2012-12-142016-08-0910X Genomics, Inc.Methods and systems for processing polynucleotides
US20140206554A1 (en)2012-12-142014-07-2410X Technologies, Inc.Methods and Systems for Processing Polynucleotides
WO2014093676A1 (en)2012-12-142014-06-1910X Technologies, Inc.Methods and systems for processing polynucleotides
US9856530B2 (en)2012-12-142018-01-0210X Genomics, Inc.Methods and systems for processing polynucleotides
US9567631B2 (en)2012-12-142017-02-1410X Genomics, Inc.Methods and systems for processing polynucleotides
US20150218633A1 (en)2012-12-142015-08-0610X Genomics, Inc.Methods and Systems for Processing Polynucleotides
EP2752664A1 (en)2013-01-072014-07-09Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.Label-free method for the detection of analytes
WO2014108810A2 (en)2013-01-092014-07-17Lumina Cambridge LimitedSample preparation on a solid support
US20140227684A1 (en)2013-02-082014-08-1410X Technologies, Inc.Partitioning and processing of analytes and other species
US9644204B2 (en)2013-02-082017-05-0910X Genomics, Inc.Partitioning and processing of analytes and other species
US20140235506A1 (en)2013-02-082014-08-2110X Technologies, Inc.Polynucleotide barcode generation
US20140228255A1 (en)2013-02-082014-08-1410X Technologies, Inc.Polynucleotide barcode generation
US20160304860A1 (en)2013-02-082016-10-2010X Genomics, Inc.Polynucleotide barcode generation
US9388465B2 (en)2013-02-082016-07-1210X Genomics, Inc.Polynucleotide barcode generation
US20170342404A1 (en)2013-02-082017-11-3010X Genomics, Inc.Partitioning and processing of analytes and other species
US20170362587A1 (en)2013-02-082017-12-2110X Genomics, Inc.Partitioning and processing of analytes and other species
US20140302503A1 (en)2013-03-082014-10-09Bio-Rad Laboratories, Inc.Compositions, methods and systems for polymerase chain reaction assays
US20150368638A1 (en)2013-03-132015-12-24Illumina, Inc.Methods and compositions for nucleic acid sequencing
US20140357500A1 (en)2013-03-152014-12-04Abvitro, Inc.Single cell bar-coding for antibody discovery
WO2014144495A1 (en)2013-03-152014-09-18Abvitro, Inc.Single cell bar-coding for antibody discovery
US9328382B2 (en)2013-03-152016-05-03Complete Genomics, Inc.Multiple tagging of individual long DNA fragments
US20160032282A1 (en)2013-03-152016-02-04Abvitro, Inc.Single cell bar-coding for antibody discovery
US20160060691A1 (en)2013-05-232016-03-03The Board Of Trustees Of The Leland Stanford Junior UniversityTransposition of Native Chromatin for Personal Epigenomics
US20160122753A1 (en)2013-06-122016-05-05Tarjei MikkelsenHigh-throughput rna-seq
US20160208323A1 (en)2013-06-212016-07-21The Broad Institute, Inc.Methods for Shearing and Tagging DNA for Chromatin Immunoprecipitation and Sequencing
WO2014210353A2 (en)2013-06-272014-12-3110X Technologies, Inc.Compositions and methods for sample processing
US20160160235A1 (en)2013-07-122016-06-09University Of South AlabamaMinimal piggybac vectors for genome integration
US9637799B2 (en)2013-08-282017-05-02Cellular Research, Inc.Massively parallel single cell analysis
US20160231324A1 (en)2013-09-242016-08-11The Regents Of The University Of CaliforniaEncapsulated sensors and sensing systems for bioassays and diagnostics and methods for making and using them
WO2015044428A1 (en)2013-09-302015-04-02Sten LinnarssonMethod for capturing and encoding nucleic acid from a plurality of single cells
US20160244742A1 (en)2013-09-302016-08-25Sten LinnarssonMethod for capturing and encoding nucleic acid from a plurality of single cells
US20150119280A1 (en)2013-10-282015-04-30Massachusetts Institute Of TechnologyHydrogel Microstructures with Immiscible Fluid Isolation for Small Reaction Volumes
US20150329891A1 (en)*2013-12-302015-11-19Atreca, Inc.Analysis of nucleic acids associated with single cells using nucleic acid barcodes
US20160177359A1 (en)2014-02-032016-06-23Thermo Fisher Scientific Baltics UabMethod for controlled dna fragmentation
US20160376663A1 (en)2014-02-272016-12-29Igenomx International Genomics CorporationMethods for analysis of somatic mobile elements, and uses thereof
US9694361B2 (en)2014-04-102017-07-0410X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20180015472A1 (en)2014-04-102018-01-1810X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20170348691A1 (en)2014-04-102017-12-0710X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20180008984A1 (en)2014-04-102018-01-1110X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20180015473A1 (en)2014-04-102018-01-1810X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20150298091A1 (en)2014-04-212015-10-22President And Fellows Of Harvard CollegeSystems and methods for barcoding nucleic acids
WO2015164212A1 (en)2014-04-212015-10-29President And Fellows Of Harvard CollegeSystems and methods for barcoding nucleic acids
US20150337298A1 (en)2014-05-232015-11-26Fluidigm CorporationHaploidome determination by digitized transposons
US20160060621A1 (en)2014-06-242016-03-03Bio-Rad Laboratories, Inc.Digital pcr barcoding
US20150379196A1 (en)2014-06-262015-12-3110X Technologies, Inc.Processes and systems for nucleic acid sequence assembly
US20180016634A1 (en)2014-06-262018-01-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US9951386B2 (en)2014-06-262018-04-2410X Genomics, Inc.Methods and systems for processing polynucleotides
US20150376608A1 (en)2014-06-262015-12-31IIIumina, Inc.Library preparation of tagged nucleic acid using single tube add-on protocol
US20150376700A1 (en)2014-06-262015-12-3110X Genomics, Inc.Analysis of nucleic acid sequences
US20150376605A1 (en)2014-06-262015-12-3110X Genomics, Inc.Methods and Compositions for Sample Analysis
US20150376609A1 (en)2014-06-262015-12-3110X Genomics, Inc.Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US20160024558A1 (en)2014-07-232016-01-2810X Genomics, Inc.Nucleic acid binding proteins and uses thereof
US20180030515A1 (en)2014-09-092018-02-01The Broad Institute Inc.Droplet-Based Method And Apparatus For Composite Single-Cell Nucleic Acid Analysis
WO2016040476A1 (en)2014-09-092016-03-17The Broad Institute, Inc.A droplet-based method and apparatus for composite single-cell nucleic acid analysis
US20160244825A1 (en)2014-09-152016-08-25Abvitro, Inc.High-throughput nucleotide library sequencing
US20160122817A1 (en)2014-10-292016-05-0510X Genomics, Inc.Methods and compositions for targeted nucleic acid sequencing
US20160257984A1 (en)2015-01-122016-09-0810X Genomics, Inc.Processes and Systems for Preparation of Nucleic Acid Sequencing Libraries and Libraries Prepared Using Same
WO2016126871A2 (en)2015-02-042016-08-11The Regents Of The University Of CaliforniaSequencing of nucleic acids via barcoding in discrete entities
US20170009274A1 (en)*2015-02-042017-01-12The Regents Of The University Of CaliforniaSequencing of nucleic acids via barcoding in discrete entities
US20160281160A1 (en)2015-02-242016-09-2910X Genomics, Inc.Methods and compositions for targeted nucleic acid sequence coverage
US20160244809A1 (en)2015-02-242016-08-2510X Genomics, Inc.Partition Processing Methods and Systems
US20160348093A1 (en)2015-05-182016-12-0110X Genomics, Inc.Mobile Solid Phase Compositions for Use in Biochemical Reactions and Analyses
US20170016041A1 (en)2015-05-182017-01-1910X Genomics, Inc.Stabilized reducing agents and methods using same
WO2016191618A1 (en)2015-05-272016-12-01Jianbiao ZhengMethods of inserting molecular barcodes
WO2017015075A1 (en)2015-07-172017-01-26President And Fellows Of Harvard CollegeMethods of amplifying nucleic acid sequences
WO2017025594A1 (en)2015-08-122017-02-16Cemm Forschungszentrum Für Molekulare Medizin GmbhMethods for studying nucleic acids
WO2017053905A1 (en)2015-09-242017-03-30Abvitro LlcAffinity-oligonucleotide conjugates and uses thereof
WO2017075265A1 (en)2015-10-282017-05-04The Broad Institute, Inc.Multiplex analysis of single cell constituents
US20170145476A1 (en)2015-11-192017-05-2510X Genomics, Inc.Transformable tagging compositions, methods, and processes incorporating same
US20170260584A1 (en)2016-02-112017-09-1410X Genomics, Inc.Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes

Non-Patent Citations (350)

* Cited by examiner, † Cited by third party
Title
"Portable Water Filters" (http://www.portablewaterfilters.org/water-filter-guide/particle-contaminant-size-chart-microns/) 2015, accessed Oct. 19, 2017.
10X Genomics. 10x Genomics Chromium™ Single Cell 3′ Solution Utilized for Perturb-seq Approach. Press Release. Dec. 19, 2016. Retrieved from https://www.10xgenomics.com/news/10x-genomics-chromium-single-cell-3-solution-utilized-perturb-seq-approach/.
Abate et al., Valve-based flow focusing for drop formation. Appl Phys Lett. 2009;94. 3 pages.
Abate, et al. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip. Sep. 21, 2009;9(18):2628-31. doi: 10.1039/b909386a. Epub Jul. 28, 2009.
Abate, et al. High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci U S A. Nov. 9, 2010;107(45):19163-6. doi: 10.1073/pNas.1006888107. Epub Oct. 20, 2010.
Adamson et al., "Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices", Lab Chip 6(9): 1178-1186 (Sep. 2006).
Adamson, et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell. Dec. 15, 2016;167(7):1867-1882.e21. doi: 10.1016/j.ce11.2016.11.048.
Adey, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biology 11:R119 (2010).
Agresti, et al. Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization. Proc Natl Acad Sci U S A. Nov. 8, 2005;102(45):16170-5. Epub Oct 31, 2005.
Ahern, "Biochemical, Reagents Kits Offer Scientists Good Return on Investment" The Scientist (1995) 9(15):1-7.
Aitman, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. Feb. 16, 2006;439(7078):851-5.
Akselband, "Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting", J. Exp. Marine Bioi., 329: 196-205 (2006).
Akselband, "Rapid mycobacteria drug susceptibility testing using gel microdrop (GMD) growth assay and flow cytometry", J. Microbiol. Methods, 62:181-197 (2005).
Altemos et al., "Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly," PLOS Computational Biology, May 15, 2014, vol. 10, Issue 5, 14 pages.
Amini, S. et al. "Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing" Nature Genetics (2014) 46:1343-1349 doi:10.1038/ng.3119.
Anna, S.L., et al., "Formation of dispersions using "flow focusing" in microchannels," Applied Physics Letters, vol. 82, No. 3, pp. 364-366 (2003).
Anonymous, "Oligo(dT)25 cellulose beads" NEB (2012) Retrieved from the Internet:https://www.neb.com/˜/media/Catalog/All-Products/286CA51268E24DE1B06F1CB288698B54/Datacards%20or%Manuals/S1408Datasheet-Lot0011205.pdf.
Anonymous, "Oligotex Handbook" Qiagen (2012) XP055314680, Retrieved from the Internet: URL:http://www.qiagen.com/de/resources/download.apsx?id=f9fald98-d54d-47e7-a20b-8b0cb8975009&lang=en.
Anonymous: "Viscosity—Basic concepts" (2004) XP055314117, Retrieved from the Internet: URL:http://Ihtc.epfl.ch/webdav/site/Ihtc/shared/import/migration/2 VISCOSITY.pdf.
Attia, et al. Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics. 2009; 7(1):1-28.
Balikova, et al. Autosomal-dominant microtia linked to five tandem copies of a copy-number-variable region at chromosome 4p16. Am J Hum Genet. Jan. 2008;82(1):181-7. doi: 10.1016/j.ajhg.2007.08.001.
Baret, et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip. Jul. 7, 2009;9(13):1850-8. doi: 10.1039/b902504a. Epub Apr. 23, 2009.
BD. BD Rhapsody™ Single-Cell Analysis System: Analyze hundreds of genes across tens of thousands of single cells in parallel. BD, Becton, Dickinson and Company. BDGM1012 Rev. 1. 2017. 8 pages.
Bentzen, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. Oct. 2016;34(10):1037-1045. doi: 10.1038/nbt.3662. Epub Aug. 29, 2016.
Berkum, et al. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp. May 6, 2010;(39). pii: 1869. doi: 10.3791/1869.
Biles et al., Low-fidelity Pyrococcus furiosis DNA polymerase mutants useful in error-prone PCR. Nucl. Acids Res. 32(22):e176 2004.
Bodi, K. et al. "Comparison of Commercially Available Target Enrichment Methods for Next-Generation Sequencing" J Biomolecular Techniques (2013) 24:73-86.
Boone, et al. Plastic advances microfluidic devices. The devices debuted in silicon and glass, but plastic fabrication may make them hugely successful in biotechnology application. Analytical Chemistry. Feb. 2002; 78A-86A.
Boulanger, et al, "Massively parallel haplotyping on microscopic beads for the high-throughput phase analysis of single molecules", PLoS One, vol. 7:1-10, 2012.
Braeckmans et al., Scanning the Code. Modern Drug Discovery. 2003:28-32.
Bransky, et al. A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip. Feb. 21, 2009;9(4):516-20. doi: 10.1039/b814810d. Epub Nov. 20, 2008.
Brenner, et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc Natl Acad Sci U S A. Feb. 15, 2000;97(4):1665-70.
Briggs, et al. "Tumor-infiltrating immune repertoires captures by single-cell barcoding in emulsion" with Supplementary material. bioRxiv 134841; doi: https://doi.org/10.1101/134841. Posted May 5, 2017.
Brouzes, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. Aug. 25, 2009;106(34):14195-200. doi: 10.1073/pnas.0903542106. Epub Jul. 15, 2009.
Brown, K., Targeted Sequencing Using Droplet-Based Microfluidics, RainDance Technologies, 2009, 1-18.
Browning, et al. Haplotype phasing: existing methods and new developments. Nat Rev Genet. Sep. 16, 2011;12(10):703-14. doi: 10.1038/nrg3054. Review.
Buchman GW, et al. Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase. PCR Methods Appl. Aug. 1993; 3(1):28-31.
Buenrostro, et al. "Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position." Nat Methods. Dec. 2013;10(12):1213-8. doi: 10.1038/nmeth.2688. Epub Oct. 6, 2013.
Buenrostro, et al. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol.; 109: 21.29.1-21.29.9. doi:10.1002/0471142727.mb2129s109.
Buenrostro, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. Jul. 23, 2015;523(7561):486-90. doi: 10.1038/nature14590. Epub Jun. 17, 2015.
Burns, et al. An Integrated Nanoliter DNA Analysis Device. Science. Oct. 16, 1998;282(5388):484-7.
Burns, et al. Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci U S A. May 28, 1996; 93(11): 5556-5561.
Burns, et al. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip. Sep. 2001;1(1):10-5. Epub Aug. 9, 2001.
Cappuzzo, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol. Aug. 1, 2005;23(22):5007-18.
Carroll, "The selection of high-producing cell lines using flow cytometry and cell sorting", Exp. Op. Biol. Ther., 4:11 1821-1829 (2004).
Caruccio N., Preparation of Next-Generation Sequencing Libraries Using Nextera Technology: Simultaneous DNA Fragmentation and Adaptor Tagging by in Vitro Transposition. Ch. 17 Methods in Microbiology 733:241 (2011).
Casbon, et al, "Reflex: intramolecular barcoding of long-range PCR products for sequencing multiple pooled DNAs", Nucleic Acids Res., pp. 1-6, 2013.
Chang et al. Droplet-based microfluidic platform platform for heterogeneous enzymatic assays, 2013, Lab Chip, 13, 1817-1822 (Year: 2013).
Chaudhary "A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins" Proc. Natl. Acad. Sci USA 87: 1066-1070 (Feb. 1990).
Chechetkin et al., Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing. J Biomol Struct Dyn. Aug. 2000;I8(1):83-101.
Chen, et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal Chem. Nov. 15, 2011;83(22):8816-20. doi: 10.1021/ac2022794. Epub Oct. 17, 2011.
Choi, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. Jul. 1, 2008;68(13):4971-6. doi: 10.1158/0008-5472.CAN-07-6158.
Chokkalingam, et al. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip. Dec. 21, 2013;13(24):4740-4. doi: 10.1039/c31c50945a.
Chou, et al. Disposable Microdevices for DNA Analysis and Cell Sorting. Proc. Solid-State Sensor and Actuator Workshop, Hilton Head, SC. Jun. 8-11, 1998; 11-14.
Christian, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757-761.
Christiansen et al. "The Covalent Eukaryotic Topoisomerase I-DNA Intermediate Catalyzes pH-dependent Hydrolysis and Alcoholysis" J Biol Chem (Apr. 14, 1994) 269(15):11367-11373.
Chu, et al. Controllable monodisperse multiple emulsions. Angew Chem Int Ed Engl. 2007;46(47):8970-4.
Chung, et al. Structural and molecular interrogation of intact biological systems. Nature. May 16, 2013;497(7449):332-7. doi: 10.1038/nature12107. Epub Apr. 10, 2013.
Clark, et al. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. Apr. 18, 2016;17:72. doi: 10.1186/s13059-016-0944-x.
Clausell-Tormos et al., "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms", Chem. Biol. 15:427-437 (2008).
Cong, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Cook, et al. Copy-number variations associated with neuropsychiatric conditions. Nature. Oct. 16, 2008;455(7215):919-23. doi: 10.1038/nature07458.
Co-pending U.S. Appl. No. 15/440,772, filed Feb. 23, 2017.
Co-pending U.S. Appl. No. 15/449,741, filed Mar. 3, 2017.
Co-pending U.S. Appl. No. 15/596,754, filed May 16, 2017.
Co-pending U.S. Appl. No. 15/687,357, filed Aug. 25, 2017.
Co-pending U.S. Appl. No. 15/687,856, filed Aug. 28, 2017.
Co-pending U.S. Appl. No. 15/693,374, filed Aug. 31, 2017.
Co-pending U.S. Appl. No. 15/717,840, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/717,847, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/717,871, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/718,764, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/718,893, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/719,459, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/720,085, filed Sep. 29, 2017.
Co-pending U.S. Appl. No. 15/825,740, filed Nov. 29, 2017.
Co-pending U.S. Appl. No. 15/831,726, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/831,847, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/832,547, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/842,550, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/842,687, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/842,713, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/847,659, filed Dec. 19, 2017.
Co-pending U.S. Appl. No. 15/847,752, filed Dec. 19, 2017.
Co-pending U.S. Appl. No. 15/848,714, filed Dec. 20, 2017.
Co-pending U.S. Appl. No. 15/850,241, filed Dec. 21, 2017.
Co-pending U.S. Appl. No. 15/872,499, filed Jan. 16, 2018.
Co-pending U.S. Appl. No. 15/875,899, filed Jan. 19, 2018.
Co-pending U.S. Appl. No. 15/887,711, filed Feb. 2, 2018.
Co-pending U.S. Appl. No. 15/887,947, filed Feb. 2, 2018.
Co-pending U.S. Appl. No. 15/933,299, filed Mar. 22, 2018.
Co-pending U.S. Appl. No. 15/975,468, filed May 9, 2018.
Co-pending U.S. Appl. No. 15/980,473, filed May 15, 2018.
Co-pending U.S. Appl. No. 15/985,388, filed May 21, 2018.
Coufal, et al. L1 retrotransposition in human neural progenitor cells. Nature. Aug. 27, 2009;460(7259):1127-31. doi: 10.1038/nature08248. Epub Aug. 5, 2009.
Curcio. Improved Techniques for High-Throughput Molecular Diagnostics. PhD Thesis. 2002.
Cusanovich, et al. Supplementary materials for Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. May 22, 2015;348(6237):910-4. doi: 10.1126/science.aab1601. Epub May 7, 2015.
Cusanovich; et al., "Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Sciencexpress, May 7, 2014, p. 1-9."
Damean, et al. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip. Jun. 21, 2009;9(12):1707-13. doi: 10.1039/b821021g. Epub Mar. 19, 2009.
De Bruin et al., UBS Investment Research. Q-Series®: DNA Sequencing. UBS Securities LLC. Jul. 12, 2007. 15 pages.
Dekker, et al. Capturing chromosome conformation. Science. Feb. 15, 2002;295(5558):1306-11.
Demirci, et al. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. Sep. 2007;7(9):1139-45. Epub Jul. 10, 2007.
Dey, et al. Integrated genome and transcriptome sequencing of the same cell. Dey, Siddharth S. et al. "Integrated Genome and Transcriptome Sequencing from the Same Cell." Nature biotechnology 33.3 (2015): 285-289. PMC. Web. Dec. 18, 2017.
Dixit, et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell. Dec. 15, 2016;167(7):1853-1866.e17. doi: 10.1016/j.ce11.2016.11.038.
Doerr, "The smallest bioreactor", Nature Methods, 2:5 326 (2005).
Doshi, et al. Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences 106.51 (2009): 21495-21499.
Dowding, et al. Oil core/polymer shell microcapsules by internal phase separation from emulsion droplets. II: controlling the release profile of active molecules. Langmuir. Jun. 7, 2005;21(12):5278-84.
Draper, et al. Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform. Anal Chem. Jul. 3, 2012;84(13):5801-8. doi: 10.1021/ac301141x. Epub Jun. 13, 2012.
Dressler, et al. Droplet-based microfluidics enabling impact on drug discovery. J Biomol Screen. Apr. 2014;19(4):483-96. doi: 10.1177/1087057113510401. Epub Nov. 15, 2013.
Dressman et al. Supplementary Information pp. 1-2 of article published 2003, PNAS 100(15:8817-22).
Dressman et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. 2003. 100(15):8817-8822.
Drmanac et al., Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv Biochem Eng Biotechnol. 2002;77 :75-101.
Droplet Based Sequencing (slides) dated (Mar. 12, 2008).
Eastburn, et al. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic droplets. Anal Chem. Aug. 20, 2013;85(16):8016-21. doi: 10.1021/ac402057q. Epub Aug. 8, 2013.
Esser-Kahn, et al. Triggered release from polymer capsules. Macromolecules. 2011; 44:5539-5553.
Fabi, et al. Correlation of efficacy between EGFR gene copy number and lapatinib/capecitabine therapy in HER2-positive metastatic breast cancer. J. Clin. Oncol. 2010; 28:15S. 2010 ASCO Meeting abstract Jun. 14, 2010:1059.
Fan, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. Oct. 21, 2008;105(42):16266-71. doi: 10.1073/pnas.0808319105. Epub Oct. 6, 2008.
Fan, et al. Whole-genome molecular haplotyping of single cells. Nature Biotechnology, vol. 29, No. 1. Jan. 1, 2011. pp. 51-57.
Fang, et al. Fluoride-cleavable biotinylation phosphoramidite for 5′-end-labeling and affinity purification of synthetic oligonucleotides. Nucleic Acids Res. Jan. 15, 2003;31(2):708-15.
Fisher, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12(1):R1. doi: 10.1186/gb-2011-12-1-r1. Epub Jan. 4, 2011.
Frampton, G.M. et al. "Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing" Nature Biotechnology (2013) 31(11):1023-1031. doi:10.1038/nbr.2696.
Fredrickson, et al. Macro-to-micro interfaces for microfluidic devices. Lab Chip. Dec. 2004;4(6):526-33. Epub Nov. 10, 2004.
Freiberg, et al. Polymer microspheres for controlled drug release. Int J Pharm. Sep. 10, 2004;282(1-2):1-18.
Fu, et al. A Microfabricated Fluorescence-Activated Cell Sorter. Nature Biotechnology.1999; 17:1109-1111.
Fulton et al., Advanced multiplexed analysis with the FlowMetrix system. Clin Chem. Sep. 1997;43(9): 1749-56.
Garstecki, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters. 2004; 85(13):2649-2651. DOI: 10.1063/1.1796526.
Gartner, et al. The Microfluidic Toolbox—examples for fluidic interfaces and standardization concepts. Proc. SPIE 4982, Microfluidics, BioMEMS, and Medical Microsystems, (Jan. 17, 2003); doi: 10.1117/12.479566.
Gericke, et al. Functional cellulose beads: preparation, characterization, and applications. Chemical reviews 113.7 (2013): 4812-4836.
Ghadessy, et al. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4552-7. Epub Mar. 27, 2001.
Gonzalez, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. Mar. 4, 2005;307(5714):1434-40. Epub Jan. 6, 2005.
Granieri, Lucia. Droplet-based microfluidics and engineering of tissue plasminogen activator for biomedical applications. Ph.D. Thesis, Nov. 13, 2009 (131 pages).
Grasland-Mongrain, et al. Droplet coalescence in microfluidic devices. Jan.-Jul. 2003. 31 pages. http://www.eleves.ens.fr/home/grasland/rapports/stage4.pdf.
Guo, et al. Droplet microfluidics for high-throughput biological assays. Lab Chip. Jun. 21, 2012;12(12):2146-55. doi: 10.1039/c21c21147e. Epub Feb. 9, 2012.
Gyarmati, et al. Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. European Polymer Journal. 2013; 49:1268-1286.
Hamilton, A.J. "microRNA in erythrocytes" Biochem. Soc. Trans. (2010) 38, 229-231.
Han, X. et al. "CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation" Science Advances (2015) 1(7): E1500454 (8 pages).
Hashimshony, et al. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Rep. Sep. 27, 2012;2(3):666-73. doi: 10.1016/j.celrep.2012.08.003. Epub Aug. 30, 2012.
He, "Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets" Anal. Chem 77: 1539-1544 (2005).
He, J. et al. "Genotyping-by-sequencing (GBS), an ultimate marker-assisted selections (MAS) tool to accelerate plant breeding" Frontiers in Plant Sci (Sep. 30, 2014) 5:1-8.
Hiatt, et al. Parallel, tag-directed assembly of locally derived short sequence reads. Nat Methods. Feb. 2010;7(2):119-22. doi: 10.1038/nmeth.1416. Epub Jan. 17, 2010.
Hirsch et al. (2002) "Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation." Analytical of Biochemistry 308(2):343-357.
Hjerten, et al. General methods to render macroporous stationary phases nonporous and deformable, exemplified with agarose and silica beads and their use in high-performance ion-exchange and hydrophobic-interaction chromatography of proteins. Chromatographia 31.1-2 (1991): 85-94.
Holmberg, et al. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Feb. 2, 2005. Electrophoresis, 26:501-510.
Holtze, et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip. Oct. 2008;8(10):1632-9. doi: 10.1039/b806706f. Epub Sep. 2, 2008.
Hosokawa, et al. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Scientific Reports 7, Article No. 5199 (2017).
Hosono S, et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. May 2003; 13(5):954-64. Epub Apr. 14, 2003.
Huebner, "Quantitative detection of protein expression in single cells using droplet microfluidics", Chem. Commun. 1218-1220 (2007).
Hug, et al. Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J Theor Biol. Apr. 21, 2003;221(4):615-24.
Illumina Nextera Enrichment Sample Preparation Guide. Feb. 2013.
Illumina TruSeq Custom Enrichment Kit Data Sheet. (c) 2014.
Imburgio, et al, "Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants", Biochemistry., 39:10419-30, 2000.
Invitrogen Dynal. Dynabeads M-280 Streptavidin 2006 product sheet.
Ioannidis, N. Manufacturing of agarose-based chromatographic adsorbents with controlled pore and particle sizes. A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy. 2009.
Jena, et al. Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics. Mar. 2012;6(1):12822-1282212. doi: 10.1063/1.3682098. Epub Mar. 15, 2012.
JPK "Determining the elastic modulus of biological samples using atomic force microscopy" (https://www.jpk.com/ app-technotes-img/AFM/pdf/jpk-app-elastic-modulus.14-1.pdf) 2009, pp. 1-9 (Year: 2009).
Jung, et al. Micro machining of injection mold inserts for fluidic channel of polymeric biochips. Sensors. 2007; 7(8):1643-1654.
Kamperman, et al. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape. Small. Jun. 2017;13(22). doi: 10.1002/smll.201603711. Epub Apr. 28, 2017.
Kaper, et al. Supporting Information for "Whole-genome haplotyping by dilution, amplification, and sequencing." Proc Natl Acad Sci U S A. Apr. 2, 2013;110(14):5552-7. doi: 10.1073/pnas.1218696110. Epub Mar. 18, 2013.
Kaper, et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci U S A. Apr. 2, 2013;110(14):5552-7. doi: 10.1073/pnas.1218696110. Epub Mar. 18, 2013.
Karmakar, et al. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat Chem. Sep. 2015;7(9):752-8. doi: 10.1038/nchem.2307. Epub Aug. 3, 2015.
Katsura, et al. Indirect micromanipulation of single molecules in water-in-oil emulsion. Electrophoresis. Jan. 2001;22(2):289-93.
Kebschull, et al. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron. Sep. 7, 2016;91(5):975-87. doi: 10.1016/j.neuron.2016.07.036. Epub Aug. 18, 2016.
Kenis, et al. Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science. Jul. 2, 1999;285(5424):83-5.
Khomiakova et al., Analysis of perfect and mismatched DNA duplexes by a generic hexanucleotide microchip. Mol Biol(Mosk). Jul.-Aug. 2003;37(4):726-41. Russian. Abstract only.
Kim et al., Albumin loaded microsphere of amphiphilic poly( ethylene glycol)/poly(a-ester) multiblock copolymer. Eu. J. Pharm. Sci. 2004;23:245-51. Available online Sep. 27, 2004.
Kim, et al. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed Engl. 2007;46(11):1819-22.
Kim, et al. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip. May 7, 2009;9(9):1290-3. doi: 10.1039/b818389a. Epub Feb. 10, 2009.
Kirkness et al. "Sequencing of isolated sperm cells for direct haplotyping of a human genome," Genome Res (2013) 23:826-832.
Kitzman et al. "Haplotype-resolved genome sequencing of a Gujarati Indian individual." Nat Biotechnol (2011) 29:59-63.
Kitzman, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. Jun. 6, 2012;4(137):137ra76. doi: 10.1126/scitranslmed.3004323.
Kivioj, et al., "Counting Absolute Numbers of Molecules Using Unique Molecular Identifiers", Nature Methods 9, 72-74 (2012).
Klein, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. May 21, 2015;161(5):1187-201. doi: 10.1016/j.ce11.2015.04.044.
Knight, et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. Nov. 13, 1999;354(9191):1676-81.
Kolodeziejczyk et al., "The technology and biology of single-cell RNA sequencing", Molecular Cell, vol. 58 (May 21, 2015).
Korlach et al., Methods in Enzymology, Chapter 20: Real-Time DNA Sequencing from Single Polymerase Molecules, (2010) 472:431-455.
Koster et al., "Drop-based microfluidic devices for encapsulation of single cells", Lab on a Chip the Royal Soc. of Chem. 8: 1110-1115 (2008).
Kozarewa, et al, "96-plex molecular barcoding for the Illumina Genome Analyzer", Methods Mol Biol., 733:279-98, 2011.
Kozarewa, et al. "Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes", Nat Methods., 6: 291-5, 2009.
Kutyavin, et al. Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents. Biochemistry. Aug. 27, 1996;35(34):11170-6.
Kwok, et al, "Single-molecule analysis for molecular haplotyping", Hum Mutat., 23:442-6, 2004.
Lagally, et al. Single-Molecular DNA Amplification and Analysis in an Integrated Microfluidic Device. Anal Chem. Feb. 1, 2001;73(3):565-70.
Lagus, et al. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J. Phys. D: Appl. Phys. (2013) 46:114005. (21 pages).
Laird et al, Hairpin-bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of individual DNA molecules, 2004, PNAS, 101, 204-209.
Lake, et al. "Integrative Single-Cell Analysis by Transcriptional and Epigenetic States in Human Adult Brain". Apr. 19, 2017. doi: https://doi.org/10.1101/128520.
Lan, et al. "Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding" with Supplementary Material. Nat Biotechnol. May 29, 2017. doi: 10.1038/nbt.3880. [Epub ahead of print].
Lasken, et al. (1996) Archaebacterial DNA Polymerases Tightly Bind Uracil-containing DNA. The Journal of Biological Chemistry, 271(30):17692-17696 (Year: 1996).
Lee et al. Alginate: Properties and biomedical applications. Prog Polym Sci 37(1):106-126 (2012).
Lee, et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. Jan. 11, 2016;6:18631. doi: 10.1038/srep18631.
Lee, et al., "Highly multiplexed subcellular RNA sequencing in situ. Science. Mar. 21, 2014;343(6177):1360-3. doi: 10.1126/science.1250212. Epub Feb. 27, 2014."
Lee, J-H. et al. "Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues" Nature Protocols (Feb. 12, 2015) 10(3):442-458.
Lennon; et al., "Lennon et al. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biology 11:R15 (2010)."
Li, et al. A single-cell-based platform for copy number variation profiling through digital counting of amplified genomic DNA fragments. ACS Appl Mater Interfaces. Mar. 24, 2017. doi: 10.1021/acsami.7b03146. [Epub ahead of print].
Li, Y., et al., "PEGylated PLGA Nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats," Journal of Controlled Release, vol. 71, pp. 203-211 (2001).
Lienemann, et al. Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab Chip. Feb. 14, 2017;17(4):727-737. doi: 10.1039/c61c01444e.
Linch, et al. Bone marrow processing and cryopreservation. Journal of Clinical Pathology; Feb. 1982, vol. 35, No. 2; pp. 186-190.
Liu, et al. Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release. Mar. 2, 2005;103(1):31-43. Epub Dec. 21, 2004.
Liu, et al. Smart thermo-triggered squirting capsules for Nanoparticle delivery. Soft Matter. 2010; 6(16):3759-3763.
Lo, et al. On the design of clone-based haplotyping. Genome Biol. 2013;14(9):R100.
Loscertales, I.G., et al., "Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets," Science, vol. 295, pp. 1695-1698 (2002).
Love, "A microengraving method for rapid selection of single cells producing antigen-specific antibodies", Nature Biotech, 24:6 703 (Jun. 2006).
Lowe, Adam J. Norbornenes and [n]polynorbornanes as molecular scaffolds for anion recognition. Ph.D. Thesis (May 2010). (361 pages).
Lundin, et al, "Hierarchical molecular tagging to resolve long continuous sequences by massively parallel sequencing", Sci Rep., 3:1186, 2003.
Lupski. Genomic rearrangements and sporadic disease. Nat Genet. Jul. 2007;39(7 Suppl):S43-7.
Macaulay, et al. Single-Cell Multiomics: Multiple Measurements from Single Cells. Trends in Genetics 33.2 (2017): 155-168. PMC. Web. Dec. 18, 2017.
Macaulay; et al., "G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods, 2015, p. 1-7."
Macosko, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. May 21, 2015;161(5):1202-14. doi: 10.1016/j.ce11.2015.05.002.
Mair, et al. Injection molded microfluidic chips featuring integrated interconnects. Lab Chip. Oct. 2006;6(10):1346-54. Epub Jul. 31, 2006.
Makino, et al. Preparation of hydrogel microcapsules: Effects of preparation conditions upon membrane properties. Colloids and Surfaces B: Biointerfaces. Nov. 1998; 12(2), 97-104.
Man. Monolithic Structures for Integrated Microfluidic Analysis. PhD Thesis. 2001.
Marcus. Gene method offers diagnostic hope. The Wall Street Journal. Jul. 11, 2012.
Maricic T, et al. Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands. Biotechniques. Jan. 2009; 46(1):51-2, 54-7.
Matochko, et al. Uniform amplification of phage display libraries in monodisperse emulsions. Methods. Sep. 2012;58(1):18-27. doi: 10.1016/j.ymeth.2012.07.012. Epub Jul. 20, 2012.
Mazutis, et al. Selective droplet coalescence using microfluidic systems. Lab Chip. Apr. 24, 2012;12(10):1800-6. doi: 10.1039/c21c40121e. Epub Mar. 27, 2012.
Merriman, et al. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. Dec. 2012;33(23):3397-417. doi: 10.1002/elps.201200424.
Microfluidic ChipShop. Microfluidic product catalogue. Mar. 2005.
Microfluidic ChipShop. Microfluidic product catalogue. Oct. 2009.
Miller JC, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007;25:778-785.
Miller-Stephenson Chemicals 157 FS Series catalog, www.miller-stephenon.com.
MiRNA (http://www.exiqon.com/what-are-microRNAs) accessed Oct. 19, 2017.
Mirzabekov, "DNA Sequencing by Hybridization—a Megasequencing Method and a Diagnostic Tool?" Trends in Biotechnology 12(1): 27-32 (1994).
Moore, et al. Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluidics and Nanofluidics. 2011; 10(4):877-888.
Morgan, et al. Chapter 12: Human microbiome analysis. PLoS Comput Biol. 2012;8(12):e1002808. doi: 10.1371/journal.pcbi.1002808. Epub Dec. 27, 2012.
Morimoto, et al. Monodisperse semi-permeable microcapsules for continuous observation of cells. 2009. Lab Chip 9(15):2217-2223.
Morton. Parameters of the human genome. Apr. 23, 1991. Proceedings of the National Academy of Sciences of the United States of America, 88: 7474-7476.
Mouritzen et al., Single nucleotide polymorphism genotyping using locked nucleic acid (LNa). Expert Rev Mol Diagn. Jan. 2003;3(1):27-38.
Mozhanova, A.A. et al. "Local elastic properties of biological materials studied by SFM" (2003) XP055314108, Retrieved from the Internet: URL:http://www.ntmdt.com/data/media/files/publications/2003/08.08_a.a.mozhanova_n.i.n_english.pdf.
Muotri, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. Nov. 18, 2010;468(7322):443-6. doi: 10.1038/nature09544.
Myllykangas et al., Targeted Sequencing Library Preparation by Genomic DNA Circularization, BMC Biotechnology, 2011, 11(122), 1-12.
Nagano, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. Oct. 3, 2013;502(7469):59-64. doi: 10.1038/nature12593. Epub Sep. 25, 2013.
Nagashima, et al. Preparation of monodisperse poly (acrylamide-co-acrylic acid) hydrogel microspheres by a membrane emulsification technique and their size-dependent surface properties. Colloids and Surfaces B: Biointerfaces. Jun. 15, 1998; 11(1-2), 47-56.
Narayanan, J. et al. "Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques" Journal of Physics: Conference Series 28 (2006) 83-86 (Year: 2006).
National Human Genome Research Institute (NHGRI). The Human Genome Project Completion: Frequently Asked Questions. Last Updated: Oct. 30, 2010.
Navin. The first five years of single-cell cancer genomics and beyond. Genome Res. Oct. 2015;25(10):1499-507. doi: 10.1101/gr.191098.115.
Nguyen, et al. In situ hybridization to chromosomes stabilized in gel microdrops. Cytometry. 1995; 21:111-119.
Nisisako, et al. Droplet formation in a microchannel network. Lab Chip. Feb. 2002;2(1):24-6. Epub Jan. 18, 2002.
Nisisako, T. et al. "Droplet Formation in a Microchannel on PMMA Plate" Abstract. 2001 Kluwer Academic Publishers. p. 137-138.
Novak, et al. Single cell multiplex gene detection and sequencing using microfluidically generated agarose emulsions. Angew Chem Int Ed Engl. Jan. 10, 2011;50(2):390-5. doi: 10.1002/anie.201006089.
Oberholzer, et al. Polymerase chain reaction in liposomes. Chem Biol. Oct. 1995;2(10):677-82.
Ogawa, et al. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem. Apr. 23, 2003;51(9):2806-12.
Okushima, S., et al,. "Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices," Langmuir, vol. 20, pp. 9905-9908 (2004).
Oligotex Handbook. For purification of poly A+ RNA from total RNA and directly from cultured cells or tissues as well as purification of polyadenylated in vitro transcripts. Jun. 2012.
Orakdogen, N. "Novel responsive poly(N,N-dimethylaminoethyl methacrylate) gel beads: preparation, mechanical properties and pH-dependent swelling behavior" J Polym Res (2012) 19:9914.
Oyola, et al, "Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes", BMC Genomics.,13:1, 2012.
Pantel, et al. Detection methods of circulating tumor cells. J Thorac Dis. Oct. 2012;4(5):446-7. doi: 10.3978/j.issn.2072-1439.2012.08.15.
Patel, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. Jun. 20, 2014;344(6190):1396-401. doi: 10.1126/science.1254257. Epub Jun. 12, 2014.
Perez, C., et al., "Poly(lactic acid)-poly(ethylene glycol) Nanoparticles as new carriers for the delivery of plasmid DNA," Journal of Controlled Release, vol. 75, pp. 211-224 (2001).
Perrott, Jimmy. Optimization and Improvement of Emulsion PCR for the Ion Torrent Next-Generation Sequencing Platform. (2011) Thesis.
Peters, et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature. Jul. 11, 2012;487(7406):190-5. doi: 10.1038/Nature11236.
Picot, J. et al. "A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen" Am J Hematology (Jan. 12, 2015) 90(4):339-345.
Pinto, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. Jul. 15, 2010;466(7304):368-72. doi: 10.1038/nature09146. Epub Jun. 9, 2010.
Plunkett, et al. Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules. Mar.-Apr. 2005;6(2):632-7.
Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300:763.
Pott, et al. Single-cell ATAC-seq: strength in numbers. Genome Biol. Aug. 21, 2015;16:172. doi: 10.1186/s13059-015-0737-7.
Preissl, et al. Single nucleus analysis of the chromatin landscape in mouse forebrain development. Posted Jul. 4, 2017. bioRxiv 159137; doi: https://doi.org/10.1101/159137.
Qiagen. Omniscript Reverse Transcription Handbook. Oct. 2010.
Rakszewska, A. et al. "One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis" NPG Asia Materials (2014) 6(10):e133 (12 pages).
Ram, et al. Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform. Syst Biol Reprod Med. Jun. 2011;57(3):162-70. doi: 10.3109/19396368.2011.555598. Epub Mar. 1, 2011.
Ramsey, J.M. "The burgeoning power of the shrinking laboratory" Nature Biotech (1999) 17:1061-1062.
Ramskold et al. (2012) "Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells" Nature Biotechnology 30(8):777-782.
Ran, et al., Genome Engineering Using the CRISPR-Cas9 System, Nature Protocol, (2013), 8(11):2281-2308.
Reis, A. et al. "CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology" (2014) XP002766825: URL:https://ww.neb.com/tools-and-resources/feabture-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology.
Reisner, et al, "Single-molecule denaturation mapping of DNA in nanofluidic channels", Proc Natl Acad Sci U.S.A., 107: 13294-9, 2010.
Repp et al. "Genotyping by Multiplex Polymerase Chain Reaction for Detection of Endemic Hepatitis B Virus Transmission" J Clinical Microbiology (1993) 31:1095-1102.
Richardson, et al. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic acids research 41.7 (2013): 4207-4218.
Roche. Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Basic MID Set Genome Sequencer FLX System, Technical Bulletin 004-2009, (Apr. 1, 2009) pp. 1-7. URL:http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09004 UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumSeriesChemistry-BasicMIDSet.pdf.
Roche. Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Extended MID Set Genome Sequencer FLX System, Technical Bulletin 005-2009, (Apr. 1, 2009) pp. 1-7. URL:http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09005 UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumChemistry-ExtendedMIDSet.pdf.
Rodrigue, S. et al. "Whole genome amplification and de novo assembly of single bacterial cells" PLoS One. Sep. 2, 2009;4(9):e6864. doi: 10.1371/journal.pone.0006864.
Rogozin, et al. A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct. Aug. 6, 2008;3:32. doi: 10.1186/1745-6150-3-32.
Ropers. New perspectives for the elucidation of genetic disorders. Am J Hum Genet. Aug. 2007;81(2):199-207. Epub Jun. 29, 2007.
Rotem, et al. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. PLoS One. May 22, 2015;10(5):e0116328. doi: 10.1371/journal.pone.0116328. eCollection 2015.
Rotem, et al. Single Cell Chip-Seq Using Drop-Based Microfluidics. Abstract #50. Frontiers of Single Cell Analysis, Stanford University Sep. 5-7, 2013.
Rotem, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. Nov. 2015;33(11):1165-72. doi: 10.1038/nbt.3383. Epub Oct. 12, 2015.
Ryan, "Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop and encapsulation", J. Clinical Microbial., 33:7 1720-1726 (1995).
Sakaguchi, et al. (1996) Cautionary Note on the Use of dUMP-Containing PCR Primers with Pfu and VentR. Biotechniques, 21(3): 369-370 (Year: 1996).
Sander JD, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods. 2011;8:67-69.
Schirinzi et al., Combinatorial sequencing-by-hybridization: Analysis of the NF1 gene. Genet Test. 2006 Spring;10(1):8-17.
Schmeider, et al. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One. Mar. 9, 2011;6(3):e17288. doi: 10.1371/journal.pone.0017288.
Schmitt, "Bead-based multiplex genotyping of human papillomaviruses", J. Clinical Microbial., 44:2 504-512 (2006).
Schubert, et al. Microemulsifying fluorinated oils with mixtures of fluorinated and hydrogenated surfactants. Colloids and Surfaces A; Physicochemical and Engineering Aspects, 84(1994) 97-106.
Schwartz, et al., "Capturing native long-range contiguity by in situ library construction and optical sequencing", PNAS (Nov. 2012), 109(46)18749-18754.
Sebat, et al. Strong association of de novo copy number mutations with autism. Science. Apr. 20, 2007;316(5823):445-9. Epub Mar. 15, 2007.
Seiffert, et al. Microfluidic fabrication of smart microgels from macromolecular precursors. 2010. Polymer.
Seiffert, et al. Smart microgel capsules from macromolecular precursors. J Am Chem Soc. May 12, 2010;132(18):6606-9. doi: 10.1021/ja102156h.
Shah, "Fabrication of mono disperse thermosensitive microgels and gel capsules in micro fluidic devices", Soft Matter, 4:2303-2309 (2008).
Shahi, et al. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. 2017; 7: 44447. Published online Mar. 14, 2017. doi: 10.1038/srep44447.
Shimkus, et al. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc Natl Acad Sci U S A. May 1985;82(9):2593-7.
Shlien, et al. Copy number variations and cancer. Genome Med. Jun. 16, 2009;1(6):62. doi: 10.1186/gm62.
Shlien, et al. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci U S A. Aug. 12, 2008;105(32):11264-9. doi: 10.1073/pnas.0802970105. Epub Aug. 6, 2008.
Shuttleworth, et al. Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol. Mar. 26, 2004;337(3):621-34.
Sigma. Streptavidin-agarose (S1638) product information sheet. www.sigma-aldrich.com.
Simeonov et al., Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res. Sep. 1, 2002;30(17):e91.
Skerra A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. Jul. 25, 1992; 20(14):3551-4.
Song, et al. Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl. Nov. 13, 2006;45(44):7336-56.
Sorokin et al., Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. J Biomol Struct Dyn. Jun. 2005;22(6):725-34.
Spormann Laboratory, Polymerase Chain Reaction (PCR), Alfred Spormann Laboratory, 2009, 1-3. (Year: 2009).
Stoeckius, et al. Large-scale simultaneous measurement of epitopes and transcriptomes in single cells. bioRxiv 113068; doi: https://doi.org/10.1101/113068.
Stoeckius, et al. Simultaneous epitope and transcriptome measurement in single cells. Nature methods. Jul. 31, 2017. Supplemental Materials.
Su, et al., Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006;25(2):211-23. (Feb. 2006).
Sun et al., Progress in research and application of liquid-phase chip technology. Chinese Journal Experimental Surgery. May 2005;22(5):639-40.
Susaki, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. Apr. 24, 2014;157(3):726-39. doi: 10.1016/j.ce11.2014.03.042. Epub Apr. 17, 2014.
Syed, et al. Next-generation sequencing library preparation: simultaneous fragmentation and tagging using in vitro transposition. Nature Methods 2 pgs (Nov. 2009).
Tawfik, D.S., et al., "Man-made cell-like compartments for molecular evolution," Nature Biotechnology, vol. 16, pp. 652-656 (1998).
Tayyab, S. et al. "Size exclusion chromatography and size exclusion HPLC of proteins" Biochem Ed, Pergamon, (1991) 19(3):149-152.
Tewhey et al., Supplementary Materials, Nature Biotechnology, 2009, 27(11), 1-22.
Tewhey, et al. Microdroplet-based PCR amplification for large-scale targeted sequencing. Nat Biotechnol. Nov. 2009;27(11):1025-31. doi: 10.1038/nbt.1583. Epub Nov. 1, 2009.
Theberge, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed Engl. Aug. 9, 2010;49(34):5846-68. doi:10.1002/anie.200906653.
ThermoFisher, Protocols, M-270 Streptavidin, ThermoFisherScientific, 2007, 1-5. (Year: 2007).
Thorsen, et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters. American Physical Society. 2001; 86(18):4163-4166.
Tomer, et al. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. Jul. 2014;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub Jun. 19, 2014.
Tonelli, et al. Perfluoropolyether functional oligomers: unusual reactivity in organic chemistry. Journal of fluorine chemistry. 2002; 118(1)″107-121.
Tubeleviciute, et al. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNa polymerase for diminished uracil binding. Protein Eng Des Sel. Aug. 2010;23(8):589-97. doi: 10.1093/protein/gzq032. Epub May 31, 2010.
Turner, et al, "High-throughput haplotype determination over long distances by haplotype fusion PCR and ligation haplotyping", Nat Protoc., 4:1771-83, 2009.
Turner, et al. Assaying chromosomal inversions by single-molecule haplotyping. Nat Methods. Jun. 2006;3(6):439-45.
Turner, et al. Methods for genomic partitioning. Annu Rev Genomics Hum Genet. 2009;10:263-84. doi: 10.1146/annurev-genom-082908-150112. Review.
Ushijima et al, Detection and interpretation of altered methylation patterns in cancer cells, 2005, Nature reviews, 5, 223-231.
Van Nieuwerburgh, et al, "Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination", Nucleic Acids Res., 40:1-8, 2012.
Wagner, et al. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab Chip. Jan. 7, 2016;16(1):65-9. doi: 10.1039/c5lc00823a. Epub Dec. 2, 2015.
Wang et al., "Self-Formed Adaptor PCR: a Simple and Efficient Method for Chromosome Walking", Applied and Environmental Microbiology (Aug. 2007), 73(15):5048-5051.
Wang et al., Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays. Biotechniques. 2003;35:300-08.
Wang, et al. A novel thermo-induced self-bursting microcapsule with magnetic-targeting property. Chemphyschem. Oct. 5, 2009;10(14):2405-9.
Wang, et al. Digital karyotyping. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):16156-61. Epub Dec. 2, 2002.
Ward, et al. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis. Oct. 2005;26(19):3716-24.
Weaver, "Rapid clonal growth measurements at the single-cell level: gel microdroplets and flow cytometry", Biotechnology, 9:873-877 (1991).
Weigl, et al. Microfluidic Diffusion-Based Separation and Detection. Science. 1999; pp. 346-347.
Wesolowska, et al. Cost-effective multiplexing before capture allows screening of 25 000 clinically relevant SNPs in childhood acute lymphoblastic leukemia. Leukemia. Jun. 2011;25(6):1001-6. doi: 10.1038/leu.2011.32. Epub Mar. 18, 2011.
Whitesides, "Soft lithography in biology and biochemistry", Annual Review of Biomedical Engineering, 3:335-373 (2001).
Williams et al., Amplification of complex gene libraries by emulsion PCR, Nature Methods 3(7):545-550 (2006).
Wiseman, R.W. et al. "Major histocompatibility complex genotyping with massively parallel pyrosequencing" Nature Medicine (Oct. 11, 2009) 15(11):1322-1326.
Wong, et al. Multiplexed Barcoded Crispr-Cas9 Screening Enabled by CombiGEM. PNAS. Mar. 1, 2016, vol. 113, pp. 2544-2549.
Woo, et al. G/C-modified oligodeoxynucleotides with selective complementarity: synthesis and hybridization properties. Nucleic Acids Res. Jul. 1, 1996;24(13):2470-5.
Wood AJ, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333:307.
Xi, et al. New library construction method for single-cell genomes. PLoS One. Jul. 19, 2017;12(7):e0181163. doi: 10.1371/journal.pone.0181163. eCollection 2017.
Xia and Whitesides, Soft Lithography, Angew. Chem. Int. Ed. 37:550-575 (1998).
Xia and Whitesides, Soft Lithography, Ann. Rev. Mat. Sci. 28:153-184 (1998).
Xiao, et al, "Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding", Hum Mutat., 28:913-21, 2007.
Yamamoto, et al. Chemical modification of Ce(IV)/EDTA-base artificial restriction DNA cutter for versatile manipulation of double-stranded DNA. Nucleic Acids Research. 2007; 35(7):e53.
Yan, Pu et al. "Rapid one-step construction of hairpin RNA" Biochem and Biophys Res Comm (Jun. 12, 2009) 383(4):464-468.
Zeng, et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem. Apr. 15, 2010;82(8):3183-90. doi: 10.1021/ac902683t.
Zhang F, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 2011;29:149-153.
Zhang, "Combinatorial marking of cells and organelles with reconstituted fluorescent proteins", Cell, 119:137-144 (Oct. 1, 2004).
Zhang, et al. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules. Nov. 2008;9(11):3321-31. doi: 10.1021/bm800867n. Epub Oct. 9, 2008.
Zhang. Genomics of inherited bone marrow failure and myelodysplasia. Dissertation [online]. University of Washington. 2015 [Retrieved on May 3, 2017].
Zhao, J., et al., "Preparation of hemoglobin-loaded Nano-sized particles with porous structure as oxygen carriers," Biomaterials, vol. 28, pp. 1414-1422 (2007).
Zheng, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. Jan. 16, 2017;8:14049. doi: 10.1038/ncomms14049.
Zheng, X.Y. et al. "Haplotyping germline and cancer genomes with high-throughput linked-read sequencing" Nature Biotech (Feb. 1, 2016) 34(3):303-311.
Zhou, Y. et al. "Development of an enzyme activity screening system for p-glucosidase-displaying yeasts using calcium alginate micro-beads and flow sorting" Appl Microbiol Biotechnol (2009) 84:375-382 (Year: 2009).
Zhu et al. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Accounts of Chemical Research Article ASAP. DOI: 10.1021/acs.accounts.6b00370.
Zhu, et al. Synthesis and self-assembly of highly incompatible polybutadienepoly(hexafluoropropoylene oxide) diblock copolymers. Journal of Polymer Science Part B: Polymer Physics. 2005; 43(24):3685-3694.
Zimmermann et at., Microscale production of hybridomas by hypo-osmolar electrofusion. Hum⋅ Antibodies Hybridomas. Jan. 1992;3(1 ): 14-8.
Zong, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. Dec. 21, 2012;338(6114):1622-6. doi: 10.1126/science.1229164.

Cited By (123)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12060607B2 (en)2009-12-152024-08-13Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US10202646B2 (en)2009-12-152019-02-12Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US11970737B2 (en)2009-12-152024-04-30Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US11993814B2 (en)2009-12-152024-05-28Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US10619203B2 (en)2009-12-152020-04-14Becton, Dickinson And CompanyDigital counting of individual molecules by stochastic attachment of diverse labels
US11634708B2 (en)2012-02-272023-04-25Becton, Dickinson And CompanyCompositions and kits for molecular counting
US10941396B2 (en)2012-02-272021-03-09Becton, Dickinson And CompanyCompositions and kits for molecular counting
US11359239B2 (en)2012-08-142022-06-1410X Genomics, Inc.Methods and systems for processing polynucleotides
US10626458B2 (en)2012-08-142020-04-2110X Genomics, Inc.Methods and systems for processing polynucleotides
US11591637B2 (en)2012-08-142023-02-2810X Genomics, Inc.Compositions and methods for sample processing
US10752949B2 (en)2012-08-142020-08-2510X Genomics, Inc.Methods and systems for processing polynucleotides
US10400280B2 (en)2012-08-142019-09-0310X Genomics, Inc.Methods and systems for processing polynucleotides
US12098423B2 (en)2012-08-142024-09-2410X Genomics, Inc.Methods and systems for processing polynucleotides
US10323279B2 (en)2012-08-142019-06-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US11441179B2 (en)2012-08-142022-09-1310X Genomics, Inc.Methods and systems for processing polynucleotides
US11078522B2 (en)2012-08-142021-08-0310X Genomics, Inc.Capsule array devices and methods of use
US10752950B2 (en)2012-08-142020-08-2510X Genomics, Inc.Methods and systems for processing polynucleotides
US12037634B2 (en)2012-08-142024-07-1610X Genomics, Inc.Capsule array devices and methods of use
US11035002B2 (en)2012-08-142021-06-1510X Genomics, Inc.Methods and systems for processing polynucleotides
US10597718B2 (en)2012-08-142020-03-2410X Genomics, Inc.Methods and systems for sample processing polynucleotides
US11021749B2 (en)2012-08-142021-06-0110X Genomics, Inc.Methods and systems for processing polynucleotides
US10669583B2 (en)2012-08-142020-06-0210X Genomics, Inc.Method and systems for processing polynucleotides
US10273541B2 (en)2012-08-142019-04-3010X Genomics, Inc.Methods and systems for processing polynucleotides
US10227648B2 (en)2012-12-142019-03-1210X Genomics, Inc.Methods and systems for processing polynucleotides
US10533221B2 (en)2012-12-142020-01-1410X Genomics, Inc.Methods and systems for processing polynucleotides
US11473138B2 (en)2012-12-142022-10-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US10676789B2 (en)2012-12-142020-06-0910X Genomics, Inc.Methods and systems for processing polynucleotides
US10253364B2 (en)2012-12-142019-04-0910X Genomics, Inc.Method and systems for processing polynucleotides
US10612090B2 (en)2012-12-142020-04-0710X Genomics, Inc.Methods and systems for processing polynucleotides
US11421274B2 (en)2012-12-142022-08-2310X Genomics, Inc.Methods and systems for processing polynucleotides
US11193121B2 (en)2013-02-082021-12-0710X Genomics, Inc.Partitioning and processing of analytes and other species
US11702706B2 (en)2013-08-282023-07-18Becton, Dickinson And CompanyMassively parallel single cell analysis
US10954570B2 (en)2013-08-282021-03-23Becton, Dickinson And CompanyMassively parallel single cell analysis
US10151003B2 (en)2013-08-282018-12-11Cellular Research, Inc.Massively Parallel single cell analysis
US10927419B2 (en)2013-08-282021-02-23Becton, Dickinson And CompanyMassively parallel single cell analysis
US11618929B2 (en)2013-08-282023-04-04Becton, Dickinson And CompanyMassively parallel single cell analysis
US10131958B1 (en)2013-08-282018-11-20Cellular Research, Inc.Massively parallel single cell analysis
US12005454B2 (en)2014-04-102024-06-1110X Genomics, Inc.Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10457986B2 (en)2014-06-262019-10-2910X Genomics, Inc.Methods and systems for processing polynucleotides
US12163191B2 (en)2014-06-262024-12-1010X Genomics, Inc.Analysis of nucleic acid sequences
US10337061B2 (en)2014-06-262019-07-0210X Genomics, Inc.Methods and systems for processing polynucleotides
US11629344B2 (en)2014-06-262023-04-1810X Genomics, Inc.Methods and systems for processing polynucleotides
US10760124B2 (en)2014-06-262020-09-0110X Genomics, Inc.Methods and systems for processing polynucleotides
US11713457B2 (en)2014-06-262023-08-0110X Genomics, Inc.Methods and systems for processing polynucleotides
US12312640B2 (en)2014-06-262025-05-2710X Genomics, Inc.Analysis of nucleic acid sequences
US10344329B2 (en)*2014-06-262019-07-0910X Genomics, Inc.Methods and systems for processing polynucleotides
US10480028B2 (en)2014-06-262019-11-1910X Genomics, Inc.Methods and systems for processing polynucleotides
US11135584B2 (en)2014-11-052021-10-0510X Genomics, Inc.Instrument systems for integrated sample processing
US10557158B2 (en)2015-01-122020-02-1110X Genomics, Inc.Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11414688B2 (en)2015-01-122022-08-1610X Genomics, Inc.Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11274343B2 (en)2015-02-242022-03-1510X Genomics, Inc.Methods and compositions for targeted nucleic acid sequence coverage
US10697000B2 (en)2015-02-242020-06-3010X Genomics, Inc.Partition processing methods and systems
US11603554B2 (en)2015-02-242023-03-1410X Genomics, Inc.Partition processing methods and systems
USRE48913E1 (en)2015-02-272022-02-01Becton, Dickinson And CompanySpatially addressable molecular barcoding
US11535882B2 (en)2015-03-302022-12-27Becton, Dickinson And CompanyMethods and compositions for combinatorial barcoding
US11390914B2 (en)2015-04-232022-07-19Becton, Dickinson And CompanyMethods and compositions for whole transcriptome amplification
US11332776B2 (en)2015-09-112022-05-17Becton, Dickinson And CompanyMethods and compositions for library normalization
US10774370B2 (en)2015-12-042020-09-1510X Genomics, Inc.Methods and compositions for nucleic acid analysis
US11473125B2 (en)2015-12-042022-10-1810X Genomics, Inc.Methods and compositions for nucleic acid analysis
US11873528B2 (en)2015-12-042024-01-1610X Genomics, Inc.Methods and compositions for nucleic acid analysis
US11624085B2 (en)2015-12-042023-04-1110X Genomics, Inc.Methods and compositions for nucleic acid analysis
US11084036B2 (en)2016-05-132021-08-1010X Genomics, Inc.Microfluidic systems and methods of use
US12138628B2 (en)2016-05-132024-11-1210X Genomics, Inc.Microfluidic systems and methods of use
US11845986B2 (en)2016-05-252023-12-19Becton, Dickinson And CompanyNormalization of nucleic acid libraries
US10640763B2 (en)2016-05-312020-05-05Cellular Research, Inc.Molecular indexing of internal sequences
US12331351B2 (en)2016-05-312025-06-17Becton, Dickinson And CompanyError correction in amplification of samples
US11220685B2 (en)2016-05-312022-01-11Becton, Dickinson And CompanyMolecular indexing of internal sequences
US11525157B2 (en)2016-05-312022-12-13Becton, Dickinson And CompanyError correction in amplification of samples
US11460468B2 (en)2016-09-262022-10-04Becton, Dickinson And CompanyMeasurement of protein expression using reagents with barcoded oligonucleotide sequences
US11467157B2 (en)2016-09-262022-10-11Becton, Dickinson And CompanyMeasurement of protein expression using reagents with barcoded oligonucleotide sequences
US11782059B2 (en)2016-09-262023-10-10Becton, Dickinson And CompanyMeasurement of protein expression using reagents with barcoded oligonucleotide sequences
US10338066B2 (en)2016-09-262019-07-02Cellular Research, Inc.Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US10858702B2 (en)2016-12-222020-12-0810X Genomics, Inc.Methods and systems for processing polynucleotides
US10815525B2 (en)2016-12-222020-10-2710X Genomics, Inc.Methods and systems for processing polynucleotides
US10550429B2 (en)2016-12-222020-02-0410X Genomics, Inc.Methods and systems for processing polynucleotides
US12084716B2 (en)2016-12-222024-09-1010X Genomics, Inc.Methods and systems for processing polynucleotides
US10793905B2 (en)2016-12-222020-10-0610X Genomics, Inc.Methods and systems for processing polynucleotides
US12110549B2 (en)2016-12-222024-10-0810X Genomics, Inc.Methods and systems for processing polynucleotides
US11180805B2 (en)2016-12-222021-11-2310X Genomics, IncMethods and systems for processing polynucleotides
US12264316B2 (en)2017-01-302025-04-0110X Genomics, Inc.Methods and systems for droplet-based single cell barcoding
US10428326B2 (en)2017-01-302019-10-0110X Genomics, Inc.Methods and systems for droplet-based single cell barcoding
US12264411B2 (en)2017-01-302025-04-0110X Genomics, Inc.Methods and systems for analysis
US11193122B2 (en)2017-01-302021-12-0710X Genomics, Inc.Methods and systems for droplet-based single cell barcoding
US11319583B2 (en)2017-02-012022-05-03Becton, Dickinson And CompanySelective amplification using blocking oligonucleotides
US10844372B2 (en)2017-05-262020-11-2410X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US10400235B2 (en)2017-05-262019-09-0310X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US11155810B2 (en)2017-05-262021-10-2610X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US10927370B2 (en)2017-05-262021-02-2310X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US11198866B2 (en)2017-05-262021-12-1410X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US11773389B2 (en)2017-05-262023-10-0310X Genomics, Inc.Single cell analysis of transposase accessible chromatin
US12084712B2 (en)2017-06-052024-09-10Becton, Dickinson And CompanySample indexing for single cells
US10676779B2 (en)2017-06-052020-06-09Becton, Dickinson And CompanySample indexing for single cells
US10669570B2 (en)2017-06-052020-06-02Becton, Dickinson And CompanySample indexing for single cells
US10876147B2 (en)2017-11-152020-12-2910X Genomics, Inc.Functionalized gel beads
US11884962B2 (en)2017-11-152024-01-3010X Genomics, Inc.Functionalized gel beads
US10745742B2 (en)2017-11-152020-08-1810X Genomics, Inc.Functionalized gel beads
US10829815B2 (en)2017-11-172020-11-1010X Genomics, Inc.Methods and systems for associating physical and genetic properties of biological particles
WO2019113533A1 (en)2017-12-082019-06-1310X Genomics, Inc.Methods and compositions for labeling cells
EP3919626A1 (en)2017-12-082021-12-0810X Genomics, Inc.Methods and compositions for labeling cells
EP4403644A2 (en)2017-12-082024-07-2410X Genomics, Inc.Methods and compositions for labeling cells
US11155881B2 (en)2018-04-062021-10-2610X Genomics, Inc.Systems and methods for quality control in single cell processing
US11773441B2 (en)2018-05-032023-10-03Becton, Dickinson And CompanyHigh throughput multiomics sample analysis
US11365409B2 (en)2018-05-032022-06-21Becton, Dickinson And CompanyMolecular barcoding on opposite transcript ends
US11639517B2 (en)2018-10-012023-05-02Becton, Dickinson And CompanyDetermining 5′ transcript sequences
US11932849B2 (en)2018-11-082024-03-19Becton, Dickinson And CompanyWhole transcriptome analysis of single cells using random priming
US11492660B2 (en)2018-12-132022-11-08Becton, Dickinson And CompanySelective extension in single cell whole transcriptome analysis
US11661631B2 (en)2019-01-232023-05-30Becton, Dickinson And CompanyOligonucleotides associated with antibodies
US12071617B2 (en)2019-02-142024-08-27Becton, Dickinson And CompanyHybrid targeted and whole transcriptome amplification
US11965208B2 (en)2019-04-192024-04-23Becton, Dickinson And CompanyMethods of associating phenotypical data and single cell sequencing data
US11939622B2 (en)2019-07-222024-03-26Becton, Dickinson And CompanySingle cell chromatin immunoprecipitation sequencing assay
US11773436B2 (en)2019-11-082023-10-03Becton, Dickinson And CompanyUsing random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11827936B2 (en)2020-01-132023-11-28Fluent Biosciences Inc.Methods and systems for single cell gene profiling
US11649497B2 (en)2020-01-132023-05-16Becton, Dickinson And CompanyMethods and compositions for quantitation of proteins and RNA
US11773452B2 (en)2020-01-132023-10-03Fluent Biosciences Inc.Single cell sequencing
US11512337B2 (en)2020-01-132022-11-29Fluent Biosciences Inc.Emulsion based drug screening
US12188010B2 (en)2020-01-292025-01-07Becton, Dickinson And CompanyBarcoded wells for spatial mapping of single cells through sequencing
US12153043B2 (en)2020-02-252024-11-26Becton, Dickinson And CompanyBi-specific probes to enable the use of single-cell samples as single color compensation control
US11866782B2 (en)2020-03-162024-01-09Fluent Biosciences Inc.Multi-omic analysis in monodisperse droplets
US11661625B2 (en)2020-05-142023-05-30Becton, Dickinson And CompanyPrimers for immune repertoire profiling
US12157913B2 (en)2020-06-022024-12-03Becton, Dickinson And CompanyOligonucleotides and beads for 5 prime gene expression assay
US11932901B2 (en)2020-07-132024-03-19Becton, Dickinson And CompanyTarget enrichment using nucleic acid probes for scRNAseq
US12241059B2 (en)2020-07-152025-03-04Illumina, Inc.Tiered ligation oligos
US11739443B2 (en)2020-11-202023-08-29Becton, Dickinson And CompanyProfiling of highly expressed and lowly expressed proteins

Also Published As

Publication numberPublication date
US10760124B2 (en)2020-09-01
US20200199669A1 (en)2020-06-25
US10337061B2 (en)2019-07-02
US9951386B2 (en)2018-04-24
US20180112266A1 (en)2018-04-26
US10041116B2 (en)2018-08-07
US10208343B2 (en)2019-02-19
US20190017115A9 (en)2019-01-17
US10480028B2 (en)2019-11-19
US10344329B2 (en)2019-07-09
US20180327839A1 (en)2018-11-15
US20180094313A1 (en)2018-04-05
US20180094314A1 (en)2018-04-05
US10457986B2 (en)2019-10-29
US20180016634A1 (en)2018-01-18
US20180258482A1 (en)2018-09-13
US20180094312A1 (en)2018-04-05
US10253364B2 (en)2019-04-09
US20190024166A1 (en)2019-01-24
US20180142292A1 (en)2018-05-24
US20190032129A1 (en)2019-01-31
US20180094315A1 (en)2018-04-05

Similar Documents

PublicationPublication DateTitle
US11713457B2 (en)Methods and systems for processing polynucleotides
US11359239B2 (en)Methods and systems for processing polynucleotides
US10457986B2 (en)Methods and systems for processing polynucleotides
US10752949B2 (en)Methods and systems for processing polynucleotides
US10273541B2 (en)Methods and systems for processing polynucleotides
US20220098659A1 (en)Methods and systems for processing polynucleotides
US12312640B2 (en)Analysis of nucleic acid sequences

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text:ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

ASAssignment

Owner name:10X GENOMICS, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HINDSON, BENJAMIN;HINDSON, CHRISTOPHER;SCHNALL-LEVIN, MICHAEL;AND OTHERS;SIGNING DATES FROM 20180313 TO 20180321;REEL/FRAME:045389/0130

STCFInformation on status: patent grant

Free format text:PATENTED CASE

CCCertificate of correction
FEPPFee payment procedure

Free format text:ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment:4


[8]ページ先頭

©2009-2025 Movatter.jp