M329240 八、新型說明: 【新型所屬之技術領域】 本新型是有關於-種封裂模具,特別是指一種用於薄 型化光學指紋辨識模組之封裝模具。 / 【先前技術】 如圖1所不,習知一種光學指紋辨識模組1,包含一指 、文壓印單元U、一感測單元12、一反射鏡13及一透鏡單元 ⑷該指紋壓印單元u包含—組光源iu、—人光結構體 壓P區113及一導光板i i 4。光由該光源J J i射出 ,經入光結構體112導引至壓印區113,再經由指紋散射至 該導光板U4,該導光板114鑛—反射層,使得反射至該導 光板114的光得料反射至該透鏡以14,最後經由透鏡 單元14人射至反射鏡13,再經由反射鏡13反射至感測單 元12,使感測單元12感測到手指指紋成像。 欲封裝該光學指紋辨識模組丨時,是利用一上殼體2 對應4上成體2之下殼體3,將該光學指紋辨識模組1 封裝起來,而為讓光線可透過該光學指紋辨識模組丨的指 、、文壓印單元11,於該上殼體2對應該指紋壓印單元11的位 置開口又開夺日21 ’及於該開槽21上裝設一用於保護該指紋 壓印單元11之可透光體22。這樣的封裝方式不僅作業時間 較長,產能低落且成本較高。 如圖2所示,近年來,業界更開發出一種薄型化光學 指紋辨識模組4,該薄型化光學指紋辨識模組4具有一電路 板41、複數設置於電路板41頂面上之發光元件42及一影 M329240 像感測晶片43。這種薄型化光學指紋辨識模組4已知的封 裝方式,是利用射出成型的方式先製成一封裝宴 ^ 黏合於電路板41。封裝蓋體44上還預設分別 42及θθ片43的開槽,供嵌入且黏設透光元件45丨、452, 使透光元件451、452覆蓋在發光元件42及晶片43上方。 然而,利用射出成型封裝蓋體44再進行黏合的動作, ::旦費時也耗費人力成本。換言之,不論傳統光學指紋辨 識拉組1或薄型化光學指紋辨識模組4都有封裝效率低、 成,問題。以目前電子產品追求精巧的趨勢來說,特 別疋針對薄型域學指紋辨識模組4,實有改良其封裝方式 的必要。 【新型内容】 因此,本新型之目的,即在提供一種可高效率封裝薄 學指紋辨識模組之封裝模具,可於一次的封裝作業 ^同時完成上百顆或者更多數量的薄型化光學指紋辨 低果組,不僅速度快、作業時間Μ,且產能效率高、成本 斜斟於疋’本新型薄型化光學指紋辨識模組封裝模具,用以 ――電路基板上的複數個影像感測晶片及對應的發光元件 -人分別進行封裝。該模具包含·· 广第一模件’每一第一模件具有一第一合模面,及 曰孩弟一合模面凹陷形成的一進料槽道丨及 有—t該第—模件對應數量的第二模件,每-第一模件具 '、該第-合模面對應接合的第二合模面,及自該第二 M329240 口权面凹_成的複數模穴,和數錢應該等模穴而 等模穴對應連通的澆口。 當該第-模件與該第二模件相接合,該進料槽道盘該 等洗口相連通,且於該等模穴與該第—合模面之間各形成 一封裝空間。該電路基板夾置於該第__模件與第二模件之 間,且使位於電路基板上的每—影像感測晶片及至少一發 光元件能夠對應容置於該等模穴而受到單面封裝,藉此^ 型出複數個薄型化光學指紋辨識模組。 ,本新型之功效在於可以模造成型的方式完成薄型化光 學指紋辨識模組,具有速度快、作業時間短、產能效率高 、成本低等優點。 〇 【實施方式】 有關本新型之前述及其他技術内容、特點與功效,在 以下配合參考圖示之較佳實施例的詳細說明中,將可清楚 的呈現。 參閱圖3、4,本新型薄型化光學指紋辨識模組之封裝 模具5,用以針對一電路基板91上的複數個影像感測晶片 92及對應的發光元件93 一次分別進行封裝。該電路基板 91利用本發明模造成型出複數薄型化光學指紋辨識模組半 成品(圖未示),然後再經過分割及去毛邊等製程即可獲得 個個相互分離,最後將製成如圖8所示的薄型化光學指 紋辨識模組9。在每一薄型化光學指紋辨識模組9的電路基 板91上都有一影像感測晶片92及複數個發光元件93,且 都^:到固化後的塑料94 (本實施例為epoxy (環氧樹脂)) 7 M329240 包覆。 如圖3、5、6所示,本實施例封裝模具5包含一第一 模件6,及一篦-播放7 咏 弟一模件7。苐一模件6具有一第一合模面61 、:及一自該第-合模面61凹陷形成的進料槽道62。進料槽 道62概呈不對稱的u形,一端為供塑料(本實施例為 EPOXY (¾氧樹脂))導人的導人端⑵。本實施例導入端 621位於第一权件6之中心處,該進料槽道α自導入端 ⑵々朝一相反於—第—方向D的方向延伸後,反向彎折再沿 该第一方向D延伸到模件6邊緣。 第二模件7具有一與第一合模Φ 61接合之第二合模面 71、多數個自該第二合模面71凹陷且沿該第一方向d間隔 排列的模穴72、多數個洗口 73,及一填料口 74。模穴μ 呈長方體狀,輪廓對應薄片型光學指紋辨識模組9,且深度 大於或等於薄片型光學指紋辨識模組9之厚度。定義該等 模穴72各具有相對之一第一侧721及一第二側722,該等 π 口 73疋自模穴72的第一側721呈長條狀垂直該第一方 向D延伸。填料口 74是上下貫穿地形成於第二模件7之中 心處,當第二模件7與第一模件6上、下模合,填料口科 恰好對應進料槽道62的導入端621,藉此供塑料填入·,此 時’該等澆口 73末端也與進料槽道62互通。 為了避免塑料注入模穴72時,原本模穴72中的氣體 會在封裝體中形成氣孔,影響封裝品質,第二模件7更包 含自第一合模面61凹陷形成之多數個第一導氣槽75,及多 數個第二導氣槽76 (由於第二導氣槽76深度相對於模1 M329240 72或第一導氣槽75皆極淺,_3中未顯示)。該等 虱槽75 -對-地平行於該等模穴72的第二側⑶,且_ 等模穴72分別連接。該等第二導氣槽%則是垂直第; 氣槽75長度方向地自第一導氣槽75朝遠離模穴Μ方向延 伸,本實施例每一第一導氣槽75對應三個第二導氣槽76。 參閱圖4、5、6,為了使待封裝的整片電路基板91在 封裝時確實定位,第-模件6在第—合模面61上設有複數 相間隔的定位銷63,且第二模件7在第二合模面η對庫處 設有複數相間隔的讓位孔77。進行封裝作業時是將電路 基板之定位孔910穿設於第一模件6之定位銷63而將 電路基板91定位,接著再將第二模件7與第—模件6進行 上下相模合。此時,進料槽道62之導入端621對準第二模 件7之填料口 74,且該等澆口 73遠離模穴72之一端與進 料槽道62相連通,且每—薄型化光學指紋辨視模組9恰容 置於第二模件7之對應模穴72中。 當塑料由第二模件7之填料口 74灌入,會順勢流入進 料槽道62之導入端621,接著填滿進料槽道62。當進料槽 道62被塑料填滿,塑料將向上溢流至各澆口乃,接著配合 參閱圖7,塑料沿澆口 73流至模穴72,並覆蓋容置在模穴 72中之光學指紋辨識模組9。當塑料完全填滿模穴72時, 原本模穴72中的氣體部分混入塑料而排至第一導氣槽75, 部分氣體則未混入塑料,並排向第二導氣槽76,藉此避免 封裝體中有氣孔產生。 待塑料凝固,移開第二模件7,便可獲得模造成型的薄 M329240 型化光學減辨識龍半成品,再交域置作業廠進 割等後續作業。由於本新型是湘EPQXY作為封裝材料, 不但具有保護晶片、防靜電、抗表面刮傷的優點,且使封 裝完成的薄片型光學指紋辨識模組9可使發光元件%發出 的不可見光穿透,該薄片型光學指紋辨識模组9目此能達 到本身應具備的光傳導及感應功能。 特別說明的是,本發明之第一、第二模件6、7的數量M329240 VIII. New description: [New technical field] The new type is related to a type of cracking mold, especially a packaging mold for thin optical fingerprint identification module. [Prior Art] As shown in FIG. 1, an optical fingerprint identification module 1 includes a finger, a embossing unit U, a sensing unit 12, a mirror 13, and a lens unit (4). The unit u includes a group light source iu, a human light structure body pressure P region 113, and a light guide plate ii 4 . The light is emitted from the light source JJ i , guided to the embossed area 113 via the light incident structure 112 , and then scattered to the light guide plate U4 via the fingerprint. The light guide plate 114 is a mineral-reflective layer, so that the light reflected to the light guide plate 114 is reflected. The sensor unit 12 is reflected to the lens 14 and finally incident on the mirror 13 via the lens unit 14 and then reflected to the sensing unit 12 via the mirror 13 so that the sensing unit 12 senses the fingerprint of the finger. To package the optical fingerprint module ,, the optical fingerprint module 1 is packaged by an upper housing 2 corresponding to the lower housing 2 of the upper body 2, and the optical fingerprint is permeable to the optical fingerprint. The finger of the identification module 、, the embossing unit 11 is opened at a position corresponding to the position of the upper casing 2 corresponding to the fingerprint embossing unit 11 and a device 21 is mounted on the slot 21 for protecting the The light transmissive body 22 of the fingerprint imprinting unit 11. This type of packaging not only has a long operating time, but also has low productivity and high cost. As shown in FIG. 2, in recent years, the industry has developed a thinned optical fingerprint recognition module 4 having a circuit board 41 and a plurality of light-emitting elements disposed on the top surface of the circuit board 41. 42 and a shadow M329240 image sensing wafer 43. The thinned optical fingerprint recognition module 4 is known to be packaged by means of injection molding to form a package. The package cover 44 also defines openings for the respective 42 and θθ sheets 43 for embedding and affixing the light-transmitting elements 45A and 452 so that the light-transmitting elements 451 and 452 cover the light-emitting elements 42 and the wafer 43. However, the action of the injection molding of the package cover 44 to perform the bonding is also time-consuming and labor intensive. In other words, both the conventional optical fingerprint recognition pull group 1 and the thinned optical fingerprint recognition module 4 have low packaging efficiency and problems. In view of the current trend of electronic products, in particular, for the thin domain fingerprint identification module 4, it is necessary to improve the packaging method. [New content] Therefore, the purpose of the present invention is to provide a package mold capable of efficiently encapsulating a thin fingerprint identification module, and can complete hundreds or more thin optical fingerprints at the same time in one package operation. Recognizing the low fruit group, not only the speed is fast, the working time is ambiguous, and the productivity is high, and the cost is sloppy. The new thin optical fingerprint identification module packaging mold is used for a plurality of image sensing wafers on the circuit substrate. And the corresponding light-emitting elements - people are packaged separately. The mold comprises: a wide first module 'each of the first modules has a first clamping surface, and a feeding channel formed by the depression of the child's die face and has a t-first mode a corresponding number of second modules, each of the first modules having a second clamping surface corresponding to the first clamping surface, and a plurality of molding cavities formed by the second M329240 And the money should be equal to the cavity and the corresponding gate is connected to the gate. When the first mold member is engaged with the second mold member, the feed channel trays are in communication with each other, and a packaging space is formed between the mold holes and the first mold surface. The circuit substrate is interposed between the first __ module and the second module, and the image sensing chip and the at least one illuminating component on the circuit substrate are respectively accommodated in the cavity and received a single The surface package is used to generate a plurality of thin optical fingerprint recognition modules. The utility model has the advantages that the thin optical fingerprint identification module can be completed in a mold-forming manner, and has the advantages of high speed, short working time, high productivity, low cost and the like. [Embodiment] The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIGS. 3 and 4, the package mold 5 of the thin optical imaging module of the present invention is used to package a plurality of image sensing chips 92 and corresponding light-emitting elements 93 on a circuit substrate 91 at a time. The circuit substrate 91 is formed by using the mold of the invention to form a plurality of semi-finished products of thin and thin optical fingerprint identification modules (not shown), and then separated by a process such as dividing and deburring to obtain separate ones, and finally, as shown in FIG. The thinned optical fingerprint recognition module 9 is shown. An image sensing chip 92 and a plurality of light emitting elements 93 are disposed on the circuit substrate 91 of each thinned optical fingerprinting module 9, and are: to the cured plastic 94 (this embodiment is epoxy) )) 7 M329240 coated. As shown in Figs. 3, 5 and 6, the package mold 5 of the present embodiment comprises a first module member 6, and a cymbal-player 7-module member 7. The first mold member 6 has a first mold clamping surface 61, and a feed channel 62 recessed from the first mold surface 61. The feed channel 62 has an asymmetrical u-shape and one end is a guide end (2) for plastic (in this embodiment, EPOXY (3⁄4 oxy)). In this embodiment, the introduction end 621 is located at the center of the first weight member 6. The feed channel α extends from the introduction end (2) toward a direction opposite to the first direction D, and is reversely bent and then along the first direction. D extends to the edge of the module 6. The second module 7 has a second clamping surface 71 joined to the first clamping Φ 61, a plurality of cavities 72 recessed from the second clamping surface 71 and spaced along the first direction d, and a plurality of cavities Wash port 73, and a filler port 74. The cavity μ is in the shape of a rectangular parallelepiped, and the contour corresponds to the thin-film optical fingerprint recognition module 9, and the depth is greater than or equal to the thickness of the thin-film optical fingerprint recognition module 9. It is defined that the cavities 72 each have a first side 721 and a second side 722 which extend from the first side 721 of the cavity 72 in an elongated vertical direction in the first direction D. The filling port 74 is formed at the center of the second mold member 7 so as to penetrate vertically. When the second mold member 7 is combined with the first mold member 6 and the lower mold member, the filler port corresponds to the introduction end 621 of the feed channel 62. Thereby, the plastic is filled in. At this time, the ends of the gates 73 also communicate with the feed channel 62. In order to prevent the plastic from being injected into the cavity 72, the gas in the original cavity 72 will form pores in the package, which affects the package quality. The second module 7 further includes a plurality of first guides formed by recessing from the first mold surface 61. The gas groove 75, and a plurality of second gas guiding grooves 76 (the depth of the second gas guiding groove 76 is extremely shallow with respect to the die 1 M329240 72 or the first gas guiding groove 75, not shown in _3). The gutters 75-to-ground are parallel to the second side (3) of the cavities 72, and the e-cavities 72 are connected, respectively. The second air guiding groove % is vertical; the air groove 75 extends from the first air guiding groove 75 in the longitudinal direction away from the cavity, and each first air guiding groove 75 corresponds to three second in this embodiment. Air guide groove 76. Referring to FIGS. 4, 5, and 6, in order to ensure that the entire circuit board 91 to be packaged is properly positioned during packaging, the first mold member 6 is provided with a plurality of spaced apart positioning pins 63 on the first clamping surface 61, and second. The module 7 is provided with a plurality of spaced-apart retaining holes 77 at the second mold clamping surface η. In the packaging operation, the positioning hole 910 of the circuit board is passed through the positioning pin 63 of the first module 6 to position the circuit board 91, and then the second module 7 and the first module 6 are vertically coupled. At this time, the introduction end 621 of the feed channel 62 is aligned with the filler port 74 of the second module 7, and the gates 73 are connected to the feed channel 62 at one end of the gate 72, and are thinned each. The optical fingerprint recognition module 9 is conveniently placed in the corresponding cavity 72 of the second module 7. When the plastic is poured from the filling port 74 of the second module 7, it will flow into the introduction end 621 of the feed channel 62 and then fill the feed channel 62. When the feed channel 62 is filled with plastic, the plastic will overflow upwardly to the gates. Then, referring to Figure 7, the plastic flows along the gate 73 to the cavity 72 and covers the optics contained in the cavity 72. Fingerprint identification module 9. When the plastic completely fills the cavity 72, the gas portion of the original cavity 72 is mixed into the plastic and discharged to the first air guiding groove 75, and some of the gas is not mixed into the plastic, and is discharged to the second air guiding groove 76, thereby avoiding packaging. There are pores in the body. After the plastic is solidified, the second module 7 is removed, and the mold-type thin M329240 type optical minus the identification dragon semi-finished product can be obtained, and then the subsequent operations such as cutting operation are performed. Since the present invention is a packaging material of Hunan EPQXY, it not only has the advantages of protecting the wafer, preventing static electricity, and resisting surface scratches, but also enabling the packaged sheet-type optical fingerprint recognition module 9 to penetrate the invisible light emitted by the light-emitting element. The sheet-type optical fingerprint recognition module 9 can achieve the light transmission and sensing functions that it should have. Specifically, the number of the first and second modules 6, 7 of the present invention is specified.
不以本實施例所舉例為限,實際模具可包含上、下模座( 圖未不),該二模座模合面凹陷形成多數個鑲槽,分別供多 數個第一、第二模件6、7鑲入,進料槽道Q等位置設計 再視需求作適度調整,等藉此一次成型更多薄型化光學指 紋辨識模組9。 9 綜上所述,由於封裝模具5藉由第一模件6及第二模 件7將光學指紋辨識模組9容置於模穴72内,再將塑料注 入模穴72内便可將薄型化光學指紋辨識模組9封裝成型, 對該薄型化光學指紋辨識模組9單面封裝,不但可快速封 裝、提升產能,且相較於習知封裝方式可提高良率、降低 成本,故碟實能達成本新型之目的。 惟以上所述者,僅為本新型之較佳實施例而已,當不 旎以此限定本新型實施之範圍,即大凡依本新型申請專利範 圍及新型說明内谷所作之簡單的等效變化與修飾,皆仍屬本 新型專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一分解圖,說明一種習知光學指紋辨識模組是 10 M329240 利用:上殼體及-下殼體接合在一起以完成封裝; 圖2是一分解圖,說明一種習知之 又 識模組利用-射出成型之蓋體進行封裝;t化先子心紋辨 模組㈣杨㈣魏料指紋辨識 、下模合時,、垂直!^貫=,在第二模件與第-模件上 圖; Α第-方向剖經其中-模穴中央的示意 圖4是-平面圖,說明適用於本實 片電路基f及其上的多數個影像感測晶片及發光元^ 圖5是一平面圖,說明該較佳實施例之第一模件; 圖6是一平面圖,說明該較佳實施例之第二模件; 圖7 一部份剖視圖,說明在第二模件與第-模件上、 :模合時,平行第-方向剖經其中一模穴中央的示意圖; 及 說明經後續加工完成的一個薄型化 圖8是一立體圖 光學指紋辨識模組。 11 M329240 【主要元件符號說明】 5 ....... •…封裝模具 74......... 填料口 6 ....... •…第一模件 75......... 第一導氣槽 61…… …·第一合模面 76......... 第二導氣槽 62…… •…進料槽道 77......... 讓位孔 621… •…導入端 9 .......... 薄片型光學指紋 63…… •…定位銷 辨識模組 7 ....... •…第二模件 91......... 電路基板 71…… •…第二合模面 910....... 定位孔 72…… •…模穴 92......... 影像感測晶片 721 ··· •…第一側 93......... 發光元件 722… •…第二側 94......... 固化後塑料 73…… …·澆口 D.......... 第一方向 12Except for the example of the embodiment, the actual mold may include upper and lower mold bases (not shown), and the mold base of the mold base is recessed to form a plurality of insert grooves for respectively supplying a plurality of first and second mold parts. 6, 7 inlay, feed channel Q and other position design and then adjust the demand appropriately, and so on to form more thin optical fingerprint recognition module 9 at a time. In summary, since the package mold 5 accommodates the optical fingerprint recognition module 9 in the cavity 72 by the first module 6 and the second module 7, the plastic is injected into the cavity 72 to be thin. The optical fingerprint identification module 9 is packaged and molded, and the thinned optical fingerprint identification module 9 is packaged on one side, which not only can quickly package and improve the productivity, but also can improve the yield and reduce the cost compared with the conventional packaging method. The purpose of this new type can be achieved. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change made by the valley in accordance with the scope of the new patent application and the new description. Modifications are still within the scope of this new patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view showing a conventional optical fingerprint recognition module 10 M329240. The upper casing and the lower casing are joined together to complete the packaging. FIG. 2 is an exploded view illustrating A conventional knowledge module uses the injection-molded cover for encapsulation; the t-first nucleus discriminating module (4) Yang (four) Wei material fingerprint identification, the lower mold combination, vertical! ^ 均 =, in the second module and the first module; Figure Α in the first direction of the middle of the cavity - Figure 4 is a plan view, illustrating the majority of the circuit board f and its application Figure 5 is a plan view showing the first module of the preferred embodiment; Figure 6 is a plan view showing the second module of the preferred embodiment; Figure 7 is a partial cross-sectional view , illustrating a schematic diagram of the center of one of the cavities in the parallel direction in the second module and the first module, and a thinning pattern illustrated by the subsequent processing. FIG. 8 is a perspective optical fingerprint. Identification module. 11 M329240 [Description of main component symbols] 5 ....... •...Packing mold 74......... Filling port 6 ....... •...First module 75... ... the first air guiding groove 61 ... .... first clamping surface 76 ... ... second air guiding groove 62 ... ... ... feeding channel 77.... ..... Retaining hole 621... •...Introduction end 9 ..... Thin-film optical fingerprint 63... •...Positioning pin identification module 7 ....... •... Two module 91......... Circuit board 71... •...Second mold surface 910....... Positioning hole 72... •... cavity 92....... Image sensing wafer 721 ····...first side 93......lighting element 722...•...second side 94......... cured plastic 73... ...·gate D.......... first direction 12