本發明是有相關於一種投影裝置與投影校正方法,且特別是有關於一種應用變焦投影鏡頭的投影裝置與投影校正方法。The present invention relates to a projection device and a projection calibration method, and in particular to a projection device and a projection calibration method using a zoom projection lens.
現有的投影裝置的自動對焦功能通常採用以下兩種方法。第一種方法採用多距離多點校正以及建立焦距調整參數的查找表來調配不同距離的景深位置;第二種方法使用自動對焦轉換函式的自動對焦功能,採用固定距離單點校正,並計算獲得景深與距離的函數曲線。然而,上述兩種投影裝置的自動對焦方法只能應用於具有固定投射比的鏡頭(即具有固定的距離對應固定的景深位置的鏡頭),無法應用於具有可調整縮放比的鏡頭(即變焦投影鏡頭)。Existing projector autofocus methods typically employ the following two approaches. The first employs multi-distance, multi-point calibration and creates a lookup table of focus adjustment parameters to adjust the depth of field at different distances. The second utilizes an autofocus conversion function, employing single-point calibration at a fixed distance and calculating a function curve that plots the depth of field against distance. However, these two projector autofocus methods are only applicable to lenses with a fixed throw ratio (i.e., lenses with a fixed distance corresponding to a fixed depth of field position) and are not applicable to lenses with an adjustable zoom ratio (i.e., zoom projection lenses).
“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "Prior Art" section is intended solely to facilitate understanding of the present invention. Therefore, the information disclosed in this section may contain information that does not constitute general knowledge within the art. The information disclosed in this section does not imply that such information or the problems to be solved by one or more embodiments of the present invention were known or recognized by those skilled in the art prior to the filing of this application.
本發明提供一種投影裝置與投影校正方法,解決現有自動對焦功能無法應用於具有可調整縮放比的鏡頭(即變焦投影鏡頭)的問題。The present invention provides a projection device and projection calibration method that solves the problem that existing autofocus functions cannot be applied to lenses with adjustable zoom ratios (i.e., zoom projection lenses).
本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention.
為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種投影裝置,其包含:投影模組、變焦投影鏡頭、感測器、焦距調整模組、縮放比調整模組、偵測模組與控制單元;投影模組用於產生影像光束;變焦投影鏡頭設置於影像光束的傳遞路徑上,且用於將投影模組產生的影像光束投射至投影面上,以產生投影影像;感測器用於感測投影裝置與投影面之間的投影距離;焦距調整模組連接變焦投影鏡頭,且用於旋轉變焦投影鏡頭,以調整變焦投影鏡頭的成像焦距;縮放比調整模組連接變焦投影鏡頭,且用於調整變焦投影鏡頭內的透鏡群的位置,以調整投影影像的縮放比;偵測模組連接變焦投影鏡頭,且用於依據透鏡群的位移變化量,以產生對應的偵測數值;控制單元連接偵測模組、感測器及焦距調整模組,且用於根據偵測數值與投影距離利用自動對焦轉換函式計算出焦距調整參數,並根據焦距調整參數控制焦距調整模組調整變焦投影鏡頭的成像焦距,以進行自動對焦。To achieve one, some, or all of the above-mentioned objectives, or other objectives, one embodiment of the present invention provides a projection device comprising: a projection module, a zoom projection lens, a sensor, a focus adjustment module, a zoom ratio adjustment module, a detection module, and a control unit; the projection module is configured to generate an image beam; the zoom projection lens is disposed in a transmission path of the image beam and is configured to project the image beam generated by the projection module onto a projection surface to generate a projection image; the sensor is configured to sense the projection distance between the projection device and the projection surface; the focus adjustment module is connected to the zoom projection lens and is configured to rotate the zoom projection lens. The zoom projection lens is used to adjust the imaging focal length of the zoom projection lens. The zoom ratio adjustment module is connected to the zoom projection lens and is used to adjust the position of the lens group within the zoom projection lens to adjust the zoom ratio of the projected image. The detection module is connected to the zoom projection lens and is used to generate corresponding detection values based on the displacement change of the lens group. The control unit is connected to the detection module, sensor, and focus adjustment module and is used to calculate the focus adjustment parameters based on the detection values and projection distance using an autofocus conversion function. The focus adjustment module is then controlled based on the focus adjustment parameters to adjust the imaging focal length of the zoom projection lens for autofocus.
為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種投影校正方法,適用於投影裝置,投影裝置包括投影模組、變焦投影鏡頭、感測器、焦距調整模組、縮放比調整模組與偵測模組,縮放比調整模組與偵測模組連接變焦投影鏡頭,投影校正方法包括以下步驟:藉由投影模組產生影像光束,並經由變焦投影鏡頭將影像光束投射至投影面上,以產生投影影像;接收來自感測器所感測到的投影裝置與投影面之間的投影距離以及來自偵測模組基於縮放比調整模組調整變焦投影鏡頭內的透鏡群的位置所產生對應的偵測數值;根據偵測數值與投影距離利用自動對焦轉換函式計算出焦距調整參數,並根據焦距調整參數控制焦距調整模組調整變焦投影鏡頭的成像焦距,以進行自動對焦。To achieve one, part, or all of the above-mentioned purposes or other purposes, an embodiment of the present invention provides a projection correction method applicable to a projection device, wherein the projection device includes a projection module, a zoom projection lens, a sensor, a focus adjustment module, a zoom ratio adjustment module, and a detection module, wherein the zoom ratio adjustment module and the detection module are connected to the zoom projection lens. The projection correction method includes the following steps: generating an image beam by the projection module, and projecting the image beam onto the zoom projection lens through the zoom projection lens. The projector generates a projected image on the projection surface; receives the projection distance between the projection device and the projection surface as sensed by the sensor, as well as the corresponding detection value generated by the detection module. The zoom ratio adjustment module adjusts the position of the lens group within the zoom projection lens based on the detection value and the projection distance. An autofocus conversion function is used to calculate a focus adjustment parameter based on the detection value and the projection distance. The focus adjustment module is then controlled by the focus adjustment parameter to adjust the imaging focal length of the zoom projection lens for autofocus.
基於上述,在本發明的一實施例的投影裝置與投影校正方法中,根據投影裝置與投影面之間的投影距離和基於調整變焦投影鏡頭內的透鏡群的位置所產生對應的偵測數值,利用自動對焦轉換函式計算出焦距調整參數,再利用焦距調整參數調整變焦投影鏡頭的成像焦距,以進行自動對焦。因此,本發明的實施例的投影裝置與投影校正方法在有效投影距離內搭配任意縮放比的場景下均可實現變焦投影鏡頭的自動對焦功能。Based on the above, in a projection device and projection calibration method according to one embodiment of the present invention, an autofocus conversion function is used to calculate a focal length adjustment parameter based on the projection distance between the projection device and the projection surface and the corresponding detection value generated by adjusting the position of the lens group within the zoom projection lens. The focal length adjustment parameter is then used to adjust the imaging focal length of the zoom projection lens for automatic focus. Therefore, the projection device and projection calibration method according to the embodiment of the present invention can achieve autofocus for a zoom projection lens within the effective projection distance and at any zoom ratio.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。To make the above features and advantages of the present invention more clearly understood, the following examples are given and described in detail with reference to the accompanying drawings.
50:鍵盤50: Keyboard
60:縮放調整環60: Zoom adjustment ring
62:開孔62: Opening
70:控制桿70: Control rod
80:偵測組件80: Detection Component
100:投影裝置100: Projection device
110:投影模組110: Projection Module
120:變焦投影鏡頭120: Zoom projection lens
130:感測器130: Sensor
140:焦距調整模組140: Focus adjustment module
150:縮放比調整模組150: Zoom ratio adjustment module
160:偵測模組160: Detection Module
170:控制單元170: Control unit
180:上蓋180: Upper cover
C:光軸C: Optical axis
d:投影距離d: Projection distance
E:延伸方向E: Extension direction
H:高度H: Height
Q:出光方向Q: Light emission direction
W:寬度W: Width
y:距離y : distance
IB:影像光束IB: Image beam
PS:投影面PS: Projection surface
S210,S220,S230:步驟S210, S220, S230: Steps
S730,S740,S810,S820,S830,S840,S850,S860:步驟S730, S740, S810, S820, S830, S840, S850, S860: Steps
S940,S950,S960,S970,S1010:步驟S940, S950, S960, S970, S1010: Steps
圖1為依據本發明的投影裝置的一實施例方塊圖;圖2為依據本發明的投影校正方法的一實施例流程圖;圖3為依據本發明的投影裝置的一實施例立體圖;圖4為圖3的投影裝置的偵測模組與縮放比調整模組的第一視角示意圖;圖5為圖3的投影裝置的偵測模組與縮放比調整模組的第二視角示意圖;圖6為圖3的投影裝置的偵測模組與縮放比調整模組的第三視角示意圖;圖7為依據本發明的投影校正方法的另一實施例流程圖;圖8為建立圖2與圖7中的自動對焦轉換函式的流程圖;圖9為依據本發明的投影校正方法的又一實施例流程圖;圖10為預設的自動對焦轉換函式與校正後的自動對焦轉換函式的曲線圖;圖11為依據本發明的投影校正方法的再一實施例流程圖;圖12為依據本實施例的投影裝置投射出投影影像的俯視圖;以及圖13為依據本實施例的投影裝置投射出投影影像的側視圖。FIG1 is a block diagram of an embodiment of a projection device according to the present invention; FIG2 is a flow chart of an embodiment of a projection correction method according to the present invention; FIG3 is a three-dimensional diagram of an embodiment of a projection device according to the present invention; FIG4 is a first perspective view of the detection module and the zoom ratio adjustment module of the projection device of FIG3; FIG5 is a second perspective view of the detection module and the zoom ratio adjustment module of the projection device of FIG3; FIG6 is a third perspective view of the detection module and the zoom ratio adjustment module of the projection device of FIG3; FIG7 is a fourth perspective view of the projection correction method according to the present invention; Flowchart of another embodiment of the projection calibration method;Figure 8 is a flowchart for establishing the autofocus conversion function shown in Figures 2 and 7; Figure 9 is a flowchart of another embodiment of the projection calibration method according to the present invention; Figure 10 is a graph of a preset autofocus conversion function and a calibrated autofocus conversion function; Figure 11 is a flowchart of another embodiment of the projection calibration method according to the present invention; Figure 12 is a top view of a projection image projected by a projection device according to this embodiment; and Figure 13 is a side view of a projection image projected by a projection device according to this embodiment.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The aforementioned technical contents, features, and functions of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the accompanying drawings. Directional terms such as up, down, left, right, front, and back mentioned in the following embodiments are merely references to the directions in the accompanying drawings. Therefore, the directional terms used are for illustrative purposes only and are not intended to limit the present invention.
請參閱圖1,其為依據本發明的投影裝置的一實施例方塊圖。如圖1所示,投影裝置100包括:投影模組110、變焦投影鏡頭120、感測器130、焦距調整模組140、縮放比調整模組150、偵測模組160與控制單元170。Please refer to Figure 1, which is a block diagram of an embodiment of a projection device according to the present invention. As shown in Figure 1, projection device 100 includes a projection module 110, a zoom projection lens 120, a sensor 130, a focus adjustment module 140, a zoom ratio adjustment module 150, a detection module 160, and a control unit 170.
在本實施例中,投影模組110用於產生影像光束IB。投影模組110可包括但不限於光源模組(未繪製)以及光閥(未繪製)。光源模組可用於提供照明光束(未繪製),且可由光源、波長轉換元件、勻光元件、濾光元件、導光元件等的至少其中之一的光學元件組合而成,光源用於提供具有不同波長的光束作為照明光束的來源,光源可以是發光二極體(Light emitting diodes,LED)、雷射二極體(Laser diodes,LD)或上述兩種的組合。光閥可配置於照明光束的傳遞路徑上,用於將照明光束轉換為影像光束IB。光閥可為但不限於液晶覆矽面板(Liquid Crystal On Silicon panel,LCoS panel)、數位微鏡元件(Digital Micro-mirror Device,DMD)等反射式光調變器或為透光液晶面板(Transparent Liquid Crystal Panel)、電光調變器(Electro-Optical Modulator)、磁光調變器(Magneto-Optic modulator)、聲光調變器(Acousto-Optic Modulator,AOM)等穿透式光調變器,但本實施例對光閥的型態及其種類並不加以限制。In this embodiment, the projection module 110 is used to generate an image beam IB. The projection module 110 may include, but is not limited to, a light source module (not shown) and a light valve (not shown). The light source module can be used to provide an illumination beam (not shown) and can be composed of at least one optical element such as a light source, a wavelength conversion element, a light homogenizer, a light filter element, and a light guide element. The light source is used to provide light beams with different wavelengths as the source of the illumination beam. The light source can be a light emitting diode (LED), a laser diode (LD), or a combination of the two. The light valve can be configured in the transmission path of the illumination beam to convert the illumination beam into the image beam IB. The light valve may be, but is not limited to, a reflective light modulator such as a liquid crystal on silicon (LCoS) panel or a digital micro-mirror device (DMD), or a transmissive light modulator such as a transparent liquid crystal panel, an electro-optical modulator, a magneto-optical modulator, or an acousto-optic modulator (AOM). However, this embodiment does not impose any restrictions on the type or type of light valve.
在本實施例中,變焦投影鏡頭120設置於影像光束IB的傳遞路徑上,且用於將投影模組110產生的影像光束IB投射至投影面PS上,以產生投影影像。變焦投影鏡頭120具有可調節的成像焦距以及可調整的縮放比;變焦投影鏡頭120可包括但不限於具有屈光度的多個光學鏡片的組合,光學鏡片可包括但不限於雙凹透鏡、雙凸透鏡、凹凸透鏡、凸凹透鏡、平凸透鏡以及平凹透鏡等非平面鏡片的各種組合,且該些光學鏡片可分成一個或多個透鏡群;投影面PS可為但不限於屏幕、布幕、牆壁或是其他可成像的物件。在一實施例中,變焦投影鏡頭120還可包括平面光學鏡片,例如:反射鏡,以反射方式將來自光閥的影像光束IB投射至投影面PS。In this embodiment, a zoom projection lens 120 is disposed in the transmission path of the image beam IB and is used to project the image beam IB generated by the projection module 110 onto a projection surface PS to produce a projected image. The zoom projection lens 120 has an adjustable imaging focal length and an adjustable zoom ratio. The zoom projection lens 120 may include, but is not limited to, a combination of multiple optical lenses having refractive powers. The optical lenses may include, but are not limited to, various combinations of biconcave lenses, biconvex lenses, concave-convex lenses, convex-concave lenses, plano-convex lenses, and non-planar lenses such as plano-concave lenses. These optical lenses may be divided into one or more lens groups. The projection surface PS may be, but is not limited to, a screen, a curtain, a wall, or other imageable object. In one embodiment, the zoom projection lens 120 may further include a plane optical lens, such as a reflective mirror, to reflect the image beam IB from the shutter onto the projection surface PS.
在本實施例中,感測器130用於感測投影裝置100與投影面PS之間的投影距離d。感測器130可包括但不限於雷射測距單元、紅外線測距單元與超音波測距單元的至少其中之一,且感測器130還可搭配相機和重力/加速度感測器的至少其中之一。在一實施例中,感測器130還可用於感測投影裝置100與投影面PS之間的投影角度。在另一實施例中,重力/加速度感測器與感測器130耦接,重力/加速度感測器用於偵測投影裝置100是否有被移動,當偵測到投影裝置100有被移動時,觸發感測器130感測投影距離d。In this embodiment, the sensor 130 is used to sense the projection distance d between the projection device 100 and the projection surface PS. The sensor 130 may include, but is not limited to, at least one of a laser ranging unit, an infrared ranging unit, and an ultrasonic ranging unit. The sensor 130 may also be coupled with at least one of a camera and a gravity/acceleration sensor. In one embodiment, the sensor 130 may also be used to sense the projection angle between the projection device 100 and the projection surface PS. In another embodiment, a gravity/acceleration sensor is coupled to the sensor 130 to detect whether the projection device 100 has been moved. When movement of the projection device 100 is detected, the sensor 130 is triggered to sense the projection distance d.
在本實施例中,焦距調整模組140連接變焦投影鏡頭120與控制單元170,且用於旋轉變焦投影鏡頭120,以調整變焦投影鏡頭120的成像焦距。焦距調整模組140可包括第一驅動裝置(例如:步進馬達)與第一調整組件(例如:焦距調整環),第一調整組件設於變焦投影鏡頭120上;可藉由第一驅動裝置驅動第一調整組件旋轉來調整變焦投影鏡頭120的成像焦距。In this embodiment, the focus adjustment module 140 connects the zoom projection lens 120 and the control unit 170 and is used to rotate the zoom projection lens 120 to adjust the imaging focal length of the zoom projection lens 120. The focus adjustment module 140 may include a first drive device (e.g., a stepping motor) and a first adjustment component (e.g., a focus adjustment ring). The first adjustment component is disposed on the zoom projection lens 120. The first drive device drives the first adjustment component to rotate to adjust the imaging focal length of the zoom projection lens 120.
在本實施例中,縮放比調整模組150連接變焦投影鏡頭120,且用於調整變焦投影鏡頭120內的透鏡群的位置,以調整投影影像的縮放比(zoom ratio)。偵測模組160連接變焦投影鏡頭120,且用於偵測透鏡群的位移變化量,以產生對應的偵測數值。In this embodiment, the zoom ratio adjustment module 150 is connected to the zoom projection lens 120 and is used to adjust the position of the lens group within the zoom projection lens 120 to adjust the zoom ratio of the projected image. The detection module 160 is connected to the zoom projection lens 120 and is used to detect the displacement change of the lens group to generate a corresponding detection value.
在本實施例中,控制單元170連接偵測模組160、感測器130及焦距調整模組140,且用於根據偵測數值與投影距離d利用自動對焦轉換函式計算出焦距調整參數,並根據焦距調整參數控制焦距調整模組140調整變焦投影鏡頭120的成像焦距,以進行自動對焦。控制單元170可包括但不限於微處理器單元(microprocessor)、微控制器單元(Microcontroller Unit,MCU)、中央處理單元(Central Processing Unit,CPU)、數位信號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)、其他類似裝置或這些裝置的結合。在一實施例中,控制單元170可包括多個處理器。在一實施例中,控制單元170可藉由類比數位轉換器(Analog-to-Digital Converter,ADC)轉換偵測模組160的偵測數值(如可變電阻)得到偵測結果。In this embodiment, the control unit 170 is connected to the detection module 160, the sensor 130, and the focus adjustment module 140. The control unit 170 calculates a focus adjustment parameter based on the detection value and the projection distance d using an autofocus conversion function. The control unit 170 then controls the focus adjustment module 140 to adjust the imaging focal length of the zoom projection lens 120 based on the focus adjustment parameter for autofocus. The control unit 170 may include, but is not limited to, a microprocessor, a microcontroller unit (MCU), a central processing unit (CPU), a digital signal processor (DSP), a programmable controller, an application-specific integrated circuit (ASIC), a programmable logic device (PLD), other similar devices, or a combination of these devices. In one embodiment, the control unit 170 may include multiple processors. In one embodiment, the control unit 170 may convert the detection value (e.g., a variable resistor) of the detection module 160 using an analog-to-digital converter (ADC) to obtain a detection result.
請參閱圖1與圖2,圖2為依據本發明的投影校正方法的一實施例流程圖,圖2的投影校正方法可至少適用於圖1實施例的投影裝置100,以下搭配圖1所示的元件來說明圖2各步驟的細節。如圖2所示,投影校正方法包括以下步驟:藉由投影模組110產生影像光束IB,並經由變焦投影鏡頭120將影像光束IB投射至投影面PS上,以產生投影影像(步驟S210);接收來自感測器130所感測到的投影裝置100與投影面PS之間的投影距離d以及來自偵測模組160基於縮放比調整模組150調整變焦投影鏡頭120內的透鏡群的位置所產生對應的偵測數值(步驟S220);根據偵測數值與投影距離d利用自動對焦轉換函式計算出焦距調整參數,並根據焦距調整參數控制焦距調整模組140調整變焦投影鏡頭120的成像焦距,以進行自動對焦(步驟S230)。其中,步驟S220與步驟S230是由控制單元170執行,控制單元170具有運算判斷與控制焦距調整模組140的功能,且可定時抓取偵測模組160的偵測數值(即電信號值)以及感測器130的投影距離d。Please refer to Figures 1 and 2. Figure 2 is a flowchart of an embodiment of a projection calibration method according to the present invention. The projection calibration method of Figure 2 is applicable to at least the projection device 100 of the embodiment of Figure 1. The following describes the details of each step of Figure 2 with reference to the components shown in Figure 1. As shown in Figure 2, the projection calibration method includes the following steps: generating an image beam IB by the projection module 110 and projecting the image beam IB onto the projection surface PS via the zoom projection lens 120 to produce a projection image (step S210); receiving the projection distance d between the projection device 100 and the projection surface PS sensed by the sensor 130 and the projection distance d from the detection module 160 based on the zoom. The zoom adjustment module 150 adjusts the position of the lens group within the zoom projection lens 120 to generate corresponding detection values (step S220). Based on the detection values and the projection distance d, an autofocus conversion function is used to calculate a focus adjustment parameter. This focus adjustment parameter is then used to control the focus adjustment module 140 to adjust the imaging focal length of the zoom projection lens 120 for autofocus (step S230). Steps S220 and S230 are executed by the control unit 170, which performs computational analysis and controls the focus adjustment module 140. The control unit 170 also regularly captures the detection values (i.e., electrical signal values) from the detection module 160 and the projection distance d from the sensor 130.
在步驟S220中,感測器130可基於飛時測距(Time of Flight,ToF)技術進行投影距離d的感測(即感測器130可為飛時測距感測器),飛時測距感測器可使用雷射光信號、紅外線信號或超音波信號進行距離感測。In step S220, the sensor 130 may sense the projected distance d based on Time of Flight (ToF) technology (i.e., the sensor 130 may be a ToF sensor). A ToF sensor may use laser signals, infrared signals, or ultrasonic signals for distance sensing.
在本實施例中,可藉由手動或電動方式經由縮放比調整模組150調整變焦投影鏡頭120內的透鏡群的位置,以調整投影影像的縮放比。縮放比調整模組150可調整變焦投影鏡頭120內一個或多個透鏡群的位置。在一實施例中,縮放比調整模組150可包括第二驅動裝置(例如:步進馬達)與第二調整組件(例如:齒輪、螺桿、或其他可帶動機構運轉的裝置),使用者可利用遙控器或自投影裝置100的上蓋180露出的鍵盤(keypad)50(如圖3所示,圖3為依據本發明的投影裝置的一實施例立體圖)產生控制信號至縮放比調整模組150,以控制第二驅動裝置驅動第二調整組件,帶動變焦投影鏡頭120內的透鏡群的位置改變,以調整投影影像的縮放比。在另一實施例中,縮放比調整模組150可為具有可手動操作的調整組件(例如:縮放調整環60,如圖3所示),使用者可直接手動旋轉縮放調整環60相對變焦投影鏡頭120轉動,進而帶動變焦投影鏡頭120內的透鏡群的位置改變,以調整投影影像的縮放比。縮放調整環60例如可夾設於變焦投影鏡頭120上。In this embodiment, the zoom ratio of the projected image can be adjusted by manually or electrically adjusting the position of the lens group within the zoom projection lens 120 via the zoom ratio adjustment module 150. The zoom ratio adjustment module 150 can adjust the position of one or more lens groups within the zoom projection lens 120. In one embodiment, the zoom ratio adjustment module 150 may include a second drive device (e.g., a stepping motor) and a second adjustment assembly (e.g., a gear, screw, or other device capable of driving a mechanism). A user may utilize a remote control or a keypad 50 exposed from the top cover 180 of the projection device 100 (as shown in FIG. 3 , which is a perspective view of an embodiment of a projection device according to the present invention) to generate a control signal to the zoom ratio adjustment module 150. This control signal controls the second drive device to drive the second adjustment assembly, thereby causing the position of the lens group within the zoom projection lens 120 to change, thereby adjusting the zoom ratio of the projected image. In another embodiment, the zoom ratio adjustment module 150 may include a manually operable adjustment component (e.g., a zoom adjustment ring 60, as shown in FIG3 ). The user can manually rotate the zoom adjustment ring 60 relative to the zoom projection lens 120, thereby changing the position of the lens group within the zoom projection lens 120 to adjust the zoom ratio of the projected image. The zoom adjustment ring 60 may, for example, be clipped onto the zoom projection lens 120.
偵測模組160用於依據受縮放比調整模組150帶動的透鏡群的位移變化量,以產生對應的偵測數值,其中,偵測數值可為電信號值。另外,偵測模組160在投影裝置100開機後即開始進行偵測。在本實施例中,請參閱圖4至圖6,圖4為圖3的投影裝置的偵測模組與縮放比調整模組的第一視角示意圖,圖5為圖3的投影裝置的偵測模組與縮放比調整模組的第二視角示意圖,圖6為圖3的投影裝置的偵測模組與縮放比調整模組的第三視角示意圖;偵測模組160包括控制桿70與偵測組件80,偵測組件80連接控制桿70,縮放比調整模組150包括縮放調整環60,控制桿70插設於縮放調整環60的開孔62內,或者,控制桿70插設於變焦投影鏡頭120的轉接件(未繪製)的開孔內;縮放比調整模組150調整投影影像的縮放比時,縮放調整環60轉動,進而帶動控制桿70產生位移,使得偵測組件80根據控制桿70的位移偵測到電信號值變化,並產生對應的偵測數值,偵測組件80例如可為滑動式電阻。舉例而言,滑動式電阻可為最大電阻值為10千歐(kΩ)的線性可變電阻,當控制桿70產生位移時,例如控制桿70從一端滑到另外一端,控制桿70的移動距離例如為縮放調整環60的開孔62或變焦投影鏡頭120的轉接件的開孔的長度,滑動式電阻的電阻值會發生變化,使得偵測模組160輸出對應的電壓(即偵測數值)。The detection module 160 is used to adjust the displacement of the lens group driven by the zoom ratio adjustment module 150 according to the change in the zoom ratio to generate a corresponding detection value, wherein the detection value can be an electrical signal value. In addition, the detection module 160 begins to detect after the projection device 100 is turned on. In this embodiment, please refer to Figures 4 to 6. Figure 4 is a schematic diagram of the detection module and the zoom ratio adjustment module of the projection device of Figure 3 from a first perspective. Figure 5 is a schematic diagram of the detection module and the zoom ratio adjustment module of the projection device of Figure 3 from a second perspective. Figure 6 is a schematic diagram of the detection module and the zoom ratio adjustment module of the projection device of Figure 3 from a third perspective. The detection module 160 includes a control rod 70 and a detection component 80. The detection component 80 is connected to the control rod 70. The zoom ratio adjustment module 150 includes a zoom Adjustment ring 60 and control rod 70 are inserted into opening 62 of zoom adjustment ring 60, or, alternatively, control rod 70 is inserted into an opening of an adapter (not shown) of zoom projection lens 120. When zoom ratio adjustment module 150 adjusts the zoom ratio of the projected image, zoom adjustment ring 60 rotates, thereby causing control rod 70 to move. Detection component 80 detects changes in the electrical signal value based on the displacement of control rod 70 and generates a corresponding detection value. Detection component 80 can be, for example, a sliding resistor. For example, the sliding resistor can be a linear variable resistor with a maximum resistance of 10 kilo-ohms (kΩ). When the control rod 70 is displaced, for example, when the control rod 70 slides from one end to the other (the distance of movement of the control rod 70 is, for example, the length of the opening 62 of the zoom adjustment ring 60 or the opening of the adapter of the zoom projection lens 120), the resistance of the sliding resistor changes, causing the detection module 160 to output a corresponding voltage (i.e., a detection value).
在本實施例中,由於控制桿70相對於滑動式電阻橫向移動,但縮放調整環60為繞著變焦投影鏡頭120的中心旋轉的移動,故縮放調整環60的開孔62或變焦投影鏡頭120的轉接件的開孔的尺寸需要大於控制桿70的尺寸,以使得控制桿70於開孔62內的移動具有裕度,可使縮放調整環60因調整投影影像的縮放比而轉動時帶動控制桿70相對於滑動式電阻移動。另外,控制桿70的延伸方向E實質上與變焦投影鏡頭120的光軸(即對應於變焦投影鏡頭120的出光方向Q)平行。In this embodiment, since the control rod 70 moves laterally relative to the sliding resistor, while the zoom adjustment ring 60 rotates about the center of the zoom projection lens 120, the opening 62 of the zoom adjustment ring 60, or the opening of the adapter of the zoom projection lens 120, needs to be larger than the size of the control rod 70. This allows for sufficient movement of the control rod 70 within the opening 62. This allows the control rod 70 to move relative to the sliding resistor when the zoom adjustment ring 60 rotates to adjust the zoom ratio of the projected image. Furthermore, the extension direction E of the control rod 70 is substantially parallel to the optical axis of the zoom projection lens 120 (i.e., corresponding to the light output direction Q of the zoom projection lens 120).
在一實施例中,偵測模組160可包括齒輪結構(未繪製)與旋轉編碼器(未繪製),縮放比調整模組150可包括縮放調整環60;隨著縮放調整環60的旋轉帶動齒輪結構轉動,並使變焦投影鏡頭120內的透鏡群產生位移;齒輪結構的轉動帶動旋轉編碼器產生對應的偵測數值,故齒輪結構結合旋轉編碼器,可使偵測模組160產生十六進位數位編碼的偵測數值。在另一實施例中,偵測模組160可包括齒輪結構(未繪製)與霍爾元件(未繪製),縮放比調整模組150可包括縮放調整環60;隨著縮放調整環60的旋轉帶動齒輪結構轉動,並使變焦投影鏡頭120內的透鏡群產生位移;霍爾元件基於霍爾效應偵測齒輪結構的轉動,以產生對應的偵測數值,故齒輪結構結合霍爾元件,可使偵測模組160產生二進位數位編碼的偵測數值。在又一實施例中,偵測模組160可為步進馬達驅動器,且用於隨著變焦投影鏡頭120內的透鏡群的位移而產生對應的步進馬達移動步數(即偵測數值),本實施例相對上述其他實施例中的偵測模組160不需要使用另外安裝的機械結構(如齒輪結構),且本實施例中的偵測模組160與縮放比調整模組150的第二驅動裝置可為同一裝置,以節省投影裝置100的生產成本。In one embodiment, the detection module 160 may include a gear structure (not shown) and a rotary encoder (not shown), and the zoom ratio adjustment module 150 may include a zoom adjustment ring 60. Rotation of the zoom adjustment ring 60 drives the gear structure to rotate, causing the lens group within the zoom projection lens 120 to shift. The rotation of the gear structure drives the rotary encoder to generate a corresponding detection value. Therefore, the combination of the gear structure and the rotary encoder enables the detection module 160 to generate a hexadecimal-encoded detection value. In another embodiment, the detection module 160 may include a gear structure (not shown) and a Hall effect element (not shown), and the zoom ratio adjustment module 150 may include a zoom adjustment ring 60. Rotation of the zoom adjustment ring 60 drives the gear structure to rotate, causing the lens group within the zoom projection lens 120 to shift. The Hall effect element detects the rotation of the gear structure to generate a corresponding detection value. Therefore, the combination of the gear structure and the Hall effect element enables the detection module 160 to generate a binary digitally encoded detection value. In another embodiment, the detection module 160 may be a stepper motor driver, and is used to generate corresponding stepper motor movement steps (i.e., detection values) as the lens group within the zoom projection lens 120 shifts. Compared to the detection module 160 in the other embodiments described above, this embodiment does not require a separate mechanical structure (such as a gear structure). Furthermore, the detection module 160 and the second drive device of the zoom ratio adjustment module 150 in this embodiment can be the same device, thereby reducing the production cost of the projection device 100.
在步驟S230中,控制單元170可藉由投影裝置100儲存的自動對焦轉換函式計算出焦距調整模組140的第一驅動裝置的焦距調整步數,再提供對應焦距調整步數的控制信號給焦距調整模組140,使焦距調整模組140調整變焦投影鏡頭120的成像焦距,以進行自動對焦。In step S230, the control unit 170 calculates the focus adjustment steps of the first driving device of the focus adjustment module 140 using the autofocus conversion function stored in the projection device 100. The control unit 170 then provides a control signal corresponding to the focus adjustment steps to the focus adjustment module 140, causing the focus adjustment module 140 to adjust the imaging focal length of the zoom projection lens 120 for autofocus.
為了避免時常進行自動對焦,造成系統的不穩定,請參閱圖1與圖7,圖7為依據本發明的投影校正方法的另一實施例流程圖,圖7的投影校正方法可至少適用於圖1實施例的投影裝置100,以下搭配圖1所示的元件來說明圖7各步驟的細節。如圖7所示,投影校正方法除了包括步驟S210與步驟S220以外,還可包括以下步驟:判斷偵測數值的變動量是否超過預設閾值(步驟S730);判斷偵測數值的變動量超過預設閾值時,根據當前的偵測數值與當前的投影距離利用自動對焦轉換函式計算出新的焦距調整參數(步驟S740);判斷偵測數值的變動量未超過預設閾值時,則重新執行步驟S220。其中,步驟S730與步驟S740是由控制單元170執行。To avoid system instability caused by frequent autofocusing, please refer to Figures 1 and 7. Figure 7 is a flowchart of another embodiment of a projection calibration method according to the present invention. The projection calibration method of Figure 7 is applicable to at least the projection device 100 of the embodiment of Figure 1. The following describes the details of each step of Figure 7 with reference to the components shown in Figure 1. As shown in Figure 7, in addition to steps S210 and S220, the projection calibration method may also include the following steps: determining whether the variation of the detection value exceeds a preset threshold (step S730); if the variation of the detection value exceeds the preset threshold, calculating a new focus adjustment parameter using an autofocus conversion function based on the current detection value and the current projection distance (step S740); and if the variation of the detection value does not exceed the preset threshold, re-executing step S220. Steps S730 and S740 are executed by the control unit 170.
在一實施例中,自動對焦轉換函式為:FP=Zwc×Gst+dfp+,FP為焦距調整參數(即自動對焦時焦距調整模組140的第一驅動裝置需要對應調整移動的步數),Zwc為變焦投影鏡頭120的縮放比參數,縮放比參數與偵測數值有關,Gst為焦距調整模組140的馬達行程的總步數參數(即焦距調整模組140的第一驅動裝置的行程總步數),dfp為投影裝置100的焦距偏差數,a為變焦投影鏡頭120的成像物距的最小值,g(Dist)為投影距離轉換參數,Lc1與Lc2為變焦投影鏡頭120的透鏡參數且分別與變焦投影鏡頭120的入射表面的曲率及出射表面的曲率有關。其中,Gst與變焦投影鏡頭120的設計有關,同樣規格的變焦投影鏡頭120適用同一組數值;Lc1與Lc2與變焦投影鏡頭120的設計有關,同樣規格的變焦投影鏡頭120適用同一組數值,並為預先儲存且對應各變焦投影鏡頭120的固定參數值。In one embodiment, the autofocus conversion function is:FP =Zwc ×Gst +dfp +FP is the focus adjustment parameter (i.e., the number of stepsthat the first driving device of the focus adjustment module 140 needs to adjust during autofocus),Zwc is the zoom ratio parameter of the zoom projection lens 120,which is related to the detection value,Gst is the total number of steps of the motor stroke of the focus adjustment module 140 (i.e., the total numberof steps of the first driving device of the focus adjustment module 140),dfpis the focal deviation of the projection device 100,a is the minimum imaging object distance of the zoom projection lens 120,g (Dist ) is the projection distance conversion parameter,Lc1 andLc2 are lens parameters of the zoom projection lens 120 and are related to the curvature of the incident surface and the curvature of the exit surfaceof the zoom projection lens 120, respectively.Gst is related to the design of the zoom projection lens 120, and zoom projection lenses 120of the same specifications use the same set of values.Lc1 andLc2 arealso related to the design of the zoom projection lens 120, and zoom projection lenses 120of the same specifications use the same set of values. They are pre-stored fixed parameter values corresponding to each zoom projection lens 120.
在一實施例中,投影距離轉換參數g(Dist)由以下公式取得:,Dist為投影距離d(即感測器130所感測到的投影裝置100與投影面PS之間的投影距離d),Distmin為投影裝置100的最小投影距離(即變焦投影鏡頭120的最小像距),Distinterval為焦距調整模組140的計算精度參數。其中,Distinterval為焦距調整模組140的第一驅動裝置的步數對應的距離間距值(例如:5公分);當選擇較小的計算精度參數Distinterval時,投影裝置100可取得較精準的焦距調整參數FP,但對投影裝置100的運算負擔較大,反之,當選擇較大的計算精度參數Distinterval時,投影裝置100的運算負擔較小,但焦距調整參數FP的精準度較低,因此,可由投影裝置100的運算能力來決定計算精度參數Distinterval的大小。此外,在投影距離轉換參數g(Dist)中,由於近距離的感測誤差會大於遠距離的感測誤差,因此,選擇投影裝置100的最小投影距離來作為計算距離的基準點,使校正後的系統具有較小的誤差。然而,為了確保在最小的投影距離能清楚對焦,投影距離轉換參數g(Dist)中優選地是選擇以最小投影距離Distmin作為計算距離的基準點。In one embodiment, the projection distance conversion parameterg (Dist ) is obtained by the following formula:Dist is the projection distance d (i.e., the projection distance d between the projection device 100 and the projection surface PS sensed by the sensor 130),Distmin is the minimum projection distance of the projection device 100 (i.e., the minimum image distance of the zoom projection lens 120), andDistinterval is the calculation accuracy parameter of the focus adjustment module 140.Distinterval represents the distance interval corresponding to the number of steps of the first drive device of the focus adjustment module 140 (e.g., 5 cm). When a smaller calculation accuracy parameterDistinterval is selected, the projection device 100 can obtain a more accurate focus adjustment parameterFP , but this places a greater computational burden on the projection device 100. Conversely, when a larger calculation accuracy parameterDistinterval is selected, the computational burden on the projection device 100 is reduced, but the accuracy of the focus adjustment parameterFP is lower. Therefore, the calculation accuracy parameterDistinterval can be determined by the computational capability of the projection device 100. Furthermore, in the projection distance conversion parameterg (Dist ), because the sensing error at close distances is greater than that at long distances, the minimum projection distance of the projection device 100 is selected as the reference point for distance calculation, resulting in a calibrated system with minimal error. However, to ensure clear focus at the minimum projection distance, the projection distance conversion parameterg (Dist ) preferably uses the minimum projection distanceDistmin as the reference point for distance calculation.
在一實施例中,變焦投影鏡頭120的縮放比參數Zwc由以下公式取得:,Zoomcurrent為當前的偵測數值,Zoommin為第一偵測數值,Zoommax為第二偵測數值。其中,Zoommin與Zoommax可於圖8建立自動對焦轉換函式的流程中取得。In one embodiment, the zoom ratio parameterZwc of the zoom projection lens 120 is obtained by the following formula: ,Zoomcurrent is the current detection value,Zoommin is the first detection value, andZoommax is the second detection value.Zoommin andZoommax can be obtained from the process of establishing the auto-focus conversion function in FIG8 .
請參閱圖8,其為建立圖2與圖7中的自動對焦轉換函式的流程圖。如圖8所示,投影校正方法獲取自動對焦轉換函式包括以下步驟:在投影裝置100設置於最小投影距離Distmin處時,將感測器130感測到的投影距離d設定為最小投影距離Distmin(步驟S810);將縮放比調整模組150設定於變焦投影鏡頭120的變焦範圍的最遠端(Tele-end),並在接收到投影影像已清晰的第一信號後,藉由偵測模組160得到第一偵測數值Zoommin,藉由焦距調整模組140獲得第一焦距調整參數(步驟S820);將縮放比調整模組150設定於變焦投影鏡頭120的變焦範圍的廣角端(Wide-end),並在接收到投影影像已清晰的第二信號後,藉由偵測模組160得到第二偵測數值Zoommax,藉由焦距調整模組140獲得第二焦距調整參數(步驟S830);根據第一焦距調整參數與第二焦距調整參數換算出焦距偏差數dfp(步驟S840);根據第一偵測數值Zoommin與第二偵測數值Zoommax換算出變焦投影鏡頭120的縮放比參數Zwc(步驟S850);根據焦距調整模組140的馬達行程的總步數參數Gst、焦距偏差數dfp與縮放比參數Zwc建立自動對焦轉換函式(步驟S860)。其中,步驟S810至步驟S860是控制單元170於投影裝置100的出廠前所執行的步驟,因此,可知第一偵測數值Zoommin、第二偵測數值Zoommax、焦距調整模組140的馬達行程的總步數參數Gst與焦距偏差數dfp為投影裝置100出廠前預先儲存的預設值。Please refer to Figure 8, which is a flow chart for establishing the auto-focus conversion function in Figures 2 and 7. As shown in Figure 8, the projection calibration method for obtaining the auto-focus conversion function includes the following steps: when the projection device 100 is set at the minimum projection distanceDistmin , the projection distance d sensed by the sensor 130 is set to the minimum projection distanceDistmin (step S810); the zoom ratio adjustment module 150 is set to the far end (Tele-end) of the zoom range of the zoom projection lens 120, and after receiving a first signal indicating that the projected image is clear, the detection module 160 obtains a first detection valueZoommin The focus adjustment module 140 obtains a first focus adjustment parameter (step S820). The zoom ratio adjustment module 150 is set to the wide-end of the zoom range of the zoom projection lens 120. After receiving a second signal indicating that the projected image is clear, the detection module 160 obtains a second detection valueZoommax . The focus adjustment module 140 also obtains a second focus adjustment parameter (step S830). The focus deviation valuedfp is converted based on the first and second focus adjustment parameters (step S840). The zoom ratio parameterZwc of the zoom projection lens 120 is converted based on the first and second detection valuesZoommin andZoommax . (Step S850); an autofocus conversion function is established based on the total number of motor steps parameterGstof the focus adjustment module 140, the focal length deviationdfp, and the zoom ratioparameterZwc (Step S860). Steps S810 to S860 are executed by the control unit 170 before the projection device 100 is shipped. Therefore, it can be seenthat the first detection valueZoommin , the second detection valueZoommax , the total number of motor steps parameterGst of the focus adjustment module 140,and the focal length deviation dfparepre -stored default values before the projection device 100 is shipped.
步驟S820包括:將縮放比調整模組150設定於變焦投影鏡頭120的變焦範圍的最遠端時,投影裝置100出廠前的驗證者以人眼判斷當前的投影影像之對焦是否清晰,若不清晰則可操作投影裝置100的焦距調整模組140,將投影影像調整至最清晰的對焦狀態(例如:驗證者藉由螢幕顯示操控(On-Screen Display,OSD)或外部遙控裝置控制焦距調整模組140的轉動方向,使投影影像調整至最清晰的對焦狀態),若清晰則藉由螢幕顯示操控或外部遙控裝置輸出第一信號至控制單元170,同時,控制單元170藉由偵測模組160得到第一偵測數值Zoommin,控制單元170藉由焦距調整模組140得到第一焦距調整參數(即控制單元170基於驗證者操作焦距調整模組140的動作換算出第一焦距調整參數,例如:驗證者按壓外部遙控裝置的右鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動增加5步,從而第一焦距調整參數增加5;驗證者按壓外部遙控裝置的左鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動減少5步,從而第一焦距調整參數減少5)。Step S820 includes: when the zoom ratio adjustment module 150 is set to the farthest end of the zoom range of the zoom projection lens 120, the verifier of the projection device 100 before leaving the factory judges whether the focus of the current projected image is clear with the human eye. If it is not clear, the verifier can operate the focus adjustment module 140 of the projection device 100 to adjust the projected image to the clearest focus state (for example, the verifier controls the rotation direction of the focus adjustment module 140 through the on-screen display (OSD) or an external remote control device to adjust the projected image to the clearest focus state). If it is clear, the verifier outputs a first signal to the control unit 170 through the on-screen display control or the external remote control device. At the same time, the control unit 170 obtains a first detection valueZoommin through the detection module 160. , the control unit 170 obtains the first focus adjustment parameter through the focus adjustment module 140 (that is, the control unit 170 converts the first focus adjustment parameter based on the verifier's operation of the focus adjustment module 140, for example: the verifier presses the right button of the external remote control device once, which can increase the corresponding adjustment movement of the first driving device of the focus adjustment module 140 by 5 steps, thereby increasing the first focus adjustment parameter by 5; the verifier presses the left button of the external remote control device once, which can reduce the corresponding adjustment movement of the first driving device of the focus adjustment module 140 by 5 steps, thereby reducing the first focus adjustment parameter by 5).
步驟S830包括:投影裝置100維持放置於最小投影距離Distmin處,且將縮放比調整模組150設定於變焦投影鏡頭120的變焦範圍的最遠端時,投影裝置100出廠前的驗證者以人眼判斷當前的投影影像之對焦是否清晰,若不清晰則可操作投影裝置100的焦距調整模組140,將投影影像調整至最清晰的對焦狀態(例如:驗證者藉由螢幕顯示操控或外部遙控裝置控制焦距調整模組140的轉動方向,使投影影像調整至最清晰的對焦狀態),若清晰則藉由螢幕顯示操控或外部遙控裝置輸出第二信號至控制單元170,同時,控制單元170藉由偵測模組160得到第二偵測數值Zoommax,控制單元170藉由焦距調整模組140得到第二焦距調整參數(即控制單元170基於驗證者操作焦距調整模組140的動作換算出第二焦距調整參數,例如:驗證者按壓外部遙控裝置的右鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動增加5步,從而第二焦距調整參數增加5;驗證者按壓外部遙控裝置的左鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動減少5步,從而第二焦距調整參數減少5)。Step S830 includes: the projection device 100 is kept at the minimum projection distanceDistmin , and the zoom ratio adjustment module 150 is set to the farthest end of the zoom range of the zoom projection lens 120, the verifier of the projection device 100 before leaving the factory judges whether the focus of the current projected image is clear with the human eye. If it is not clear, the verifier can operate the focus adjustment module 140 of the projection device 100 to adjust the projected image to the clearest focus state (for example, the verifier controls the rotation direction of the focus adjustment module 140 through the screen display control or the external remote control device to adjust the projected image to the clearest focus state). If it is clear, the verifier outputs a second signal to the control unit 170 through the screen display control or the external remote control device. At the same time, the control unit 170 obtains the second detection valueZoommax through the detection module 160 , the control unit 170 obtains the second focus adjustment parameter through the focus adjustment module 140 (i.e., the control unit 170 converts the second focus adjustment parameter based on the verifier's operation of the focus adjustment module 140. For example: if the verifier presses the right button of the external remote control device once, the corresponding adjustment movement of the first driving device of the focus adjustment module 140 may be increased by 5 steps, thereby increasing the second focus adjustment parameter by 5; if the verifier presses the left button of the external remote control device once, the corresponding adjustment movement of the first driving device of the focus adjustment module 140 may be reduced by 5 steps, thereby decreasing the second focus adjustment parameter by 5).
在步驟S840中,控制單元170可根據變焦投影鏡頭120的透鏡參數(Lc1與Lc2)、投影距離d、第一偵測數值Zoommin與第二偵測數值Zoommax、第一焦距調整參數與第二焦距調整參數,利用自動對焦轉換函式進行計算,以換算出焦距偏差數dfp。In step S840, the control unit 170 maycalculate the focal length deviationdfp using an auto-focus conversion function based on the lens parameters (Lc1 andLc2 )of the zoom projection lens120 , the projection distanced, the first detection value Zoommin and the second detection value Zoommax,andthe first and second focal length adjustment parameters.
請參閱圖1與圖9,圖9為依據本發明的投影校正方法的又一實施例流程圖,圖9的投影校正方法可至少適用於圖1實施例的投影裝置100,以下搭配圖1所示的元件來說明圖9中各步驟的細節。如圖9所示,投影校正方法除了可包括圖2的步驟S210至步驟S230以外,還可包括以下步驟:當控制單元170控制焦距調整模組140進行自動對焦後的投影影像不清晰時,使投影模組110投射出校正影像(校正影像例如可包括校正圖案),並根據焦距調整指令控制焦距調整模組140調整成像焦距,以調整校正影像的清晰度(步驟S940);接收校正影像已清晰的校正完成信號,並獲取新焦距調整參數(步驟S950);根據新焦距調整參數計算出新焦距偏差數dfp’(步驟S960);以及根據新焦距偏差數dfp’更新自動對焦轉換函式(步驟S970)。其中,步驟S940至步驟S970可稱為自動對焦校正程序;為避免圖9的圖面過於複雜,圖9省略繪製步驟S210與步驟S220。另外,圖9的步驟S940至步驟S970也可應用於圖7的投影校正方法中,步驟S940至步驟S970的順序可以根據實際需要進行調整。Please refer to FIG. 1 and FIG. 9 . FIG. 9 is a flow chart of another embodiment of a projection calibration method according to the present invention. The projection calibration method of FIG. 9 is applicable to at least the projection device 100 of the embodiment of FIG. 1 . The following describes the details of each step in FIG. 9 with reference to the components shown in FIG. 1 . As shown in FIG9 , the projection calibration method may include steps S210 to S230 of FIG2 , and further include the following steps: when the projected image is unclear after the control unit 170 controls the focus adjustment module 140 to perform autofocus, the control unit 170 causes the projection module 110 to project a calibration image (the calibration image may include a calibration pattern, for example), and controls the focus adjustment module 140 to adjust the imaging focus according to the focus adjustment instruction to adjust the clarity of the calibration image (step S940); receives a calibration completion signal indicating that the calibration image is clear, and obtains new focus adjustment parameters (step S950); calculates a new focus deviationdfp ' based on the new focus adjustment parameters (step S960); and updates the autofocus conversion function based on the new focus deviationdfp ' (step S970). Steps S940 through S970 can be referred to as the autofocus calibration process. To reduce the complexity of FIG9 , steps S210 and S220 are omitted from FIG9 . Furthermore, steps S940 through S970 in FIG9 can also be applied to the projection calibration method of FIG7 , and the order of steps S940 through S970 can be adjusted based on actual needs.
在步驟S940中,使用者在控制單元170控制焦距調整模組140進行自動對焦後藉由人眼判斷此時的投影影像的對焦狀況不清晰時,代表因為變焦投影鏡頭120與焦距調整模組140之間存在組裝公差或投影裝置100經外力撞擊等狀況造成投影裝置100儲存的自動對焦轉換函式(即圖7所建立的自動對焦轉換函式)不適用,因此,使用者可藉由螢幕顯示操控或外部遙控裝置的按鍵輸出校正信號至控制單元170,使得控制單元170控制投影模組110投射出校正影像,再藉由螢幕顯示操控或外部遙控裝置的按鍵輸出焦距調整指令至控制單元170,使得控制單元170控制焦距調整模組140調整成像焦距,以將校正影像整至影像清晰。In step S940, if the user determines that the focus of the projected image is not clear after the control unit 170 controls the focus adjustment module 140 to perform auto-focus, this indicates that there is an assembly tolerance between the zoom projection lens 120 and the focus adjustment module 140, or the projection device 100 has been impacted by an external force, causing the auto-focus conversion function stored in the projection device 100 (i.e., the auto-focus conversion function established in FIG. 7 ) to be incorrect. Not applicable. Therefore, the user can output a calibration signal to the control unit 170 via the screen display control or the buttons on an external remote control device, causing the control unit 170 to control the projection module 110 to project the calibration image. The user can then output a focus adjustment command to the control unit 170 via the screen display control or the buttons on the external remote control device, causing the control unit 170 to control the focus adjustment module 140 to adjust the imaging focus to make the calibration image clear.
在步驟S950中,當使用者判斷校正影像清晰時,藉由螢幕顯示操控或外部遙控裝置的按鍵輸出校正完成信號至控制單元170,使控制單元170基於焦距調整模組140於步驟S940中的調整動作換算出新焦距調整參數。在步驟S960中,控制單元170基於新焦距調整參數換算出新焦距偏差數dfp’。舉例而言,使用者按壓外部遙控裝置的右鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動增加5步,從而焦距偏差數增加1;使用者按壓外部遙控裝置的左鍵一次,可使焦距調整模組140的第一驅動裝置對應調整移動減少5步,從而焦距偏差數減少1;當原焦距偏差數dfp為100,且使用者按壓外部遙控裝置的右鍵五次後,才使該校正影像清晰,則新焦距偏差數dfp’為105。在步驟S970中,控制單元170根據新焦距偏差數dfp’更新投影裝置100儲存的自動對焦轉換函式(即將自動對焦轉換函式中的焦距偏差數dfp更新為新焦距偏差數dfp’)。In step S950, when the user determines that the corrected image is clear, they output a correction completion signal to control unit 170 via the screen display or a button on an external remote control device. Control unit 170 then calculates new focus adjustment parameters based on the adjustment performed by focus adjustment module 140 in step S940. In step S960, control unit 170 converts the new focus adjustment parameters into a new focus deviation valuedfp '. For example, if the user presses the right button of the external remote control device once, the corresponding adjustment movement of the first drive device of the focus adjustment module 140 may increase by 5 steps, thereby increasing the focus deviation by 1. If the user presses the left button of the external remote control device once, the corresponding adjustment movement of the first drive device of the focusadjustment module 140 may decrease by 5 steps, thereby decreasing the focus deviation by 1. If the original focus deviationdfp is 100, and the user presses the right button of the external remote control device five times before the correction image is clear, the new focus deviationdfp ' is105 . In step S970, the control unit 170 updates the auto-focus conversion function stored in the projection device 100 according to the new focal length deviationdfp' (ie, updates the focal length deviationdfp in the auto-focus conversion function to the new focal lengthdeviationdfp ').
請參閱圖10,其為預設的自動對焦轉換函式與校正後的自動對焦轉換函式的曲線圖。在圖10中,橫軸為投影距離,單位為公分(centimeter,cm);縱軸為焦距調整參數(馬達步數);實線與一點鏈線分別為預設的自動對焦轉換函式對於最遠端與廣角端的函式,實線與一點鏈線之間的涵蓋範圍為預設的自動對焦轉換函式可支援的範圍;虛線與兩點鏈線分別為校正後的自動對焦轉換函式對於最遠端與廣角端的函式,虛線與兩點鏈線之間的涵蓋範圍為校正後的自動對焦轉換函式可支援的範圍。在圖10所示,投影裝置100於任一個可支援的投影距離處以及搭配支援的任一個縮放比進行一次的微調校正後,校正後的自動對焦轉換函式對於最遠端或廣角端的投影成像皆可有最佳的自動對焦效果。Please refer to Figure 10, which shows a graph of the default autofocus conversion function and the calibrated autofocus conversion function. In Figure 10, the horizontal axis represents projection distance in centimeters (cm); the vertical axis represents the focus adjustment parameter (motor steps). The solid line and the one-point link represent the default autofocus conversion function for the telephoto and wide-angle positions, respectively. The range covered by the solid line and the one-point link represents the range supported by the default autofocus conversion function. The dashed line and the two-point link represent the calibrated autofocus conversion function for the telephoto and wide-angle positions, respectively. The range covered by the dashed line and the two-point link represents the range supported by the calibrated autofocus conversion function. As shown in Figure 10 , after a single fine-tuning calibration of the projection device 100 at any supported projection distance and any supported zoom ratio, the calibrated autofocus conversion function achieves optimal autofocus for both telephoto and wide-angle projection imaging.
基於上述,當投影裝置100的自動對焦效果不佳時,投影裝置100可藉由自動對焦校正程序對應修正誤差,並建立校正後的自動對焦轉換函式,使得投影裝置100在變焦投影鏡頭120與焦距調整模組140之間存在組裝公差或投影裝置100經外力撞擊等狀況發生後,可再度恢復到在有效投影距離內搭配支援的任意縮放比之條件下皆有良好的對焦效果,因此,投影裝置100可讓使用者具有較佳的體驗。另外,步驟S940至步驟S970可在任意有效投影距離搭配任意縮放比的場景下執行,並藉由人眼判斷只做一次對焦校正微調即可使投影影像清晰。Based on the above, when the autofocus performance of the projection device 100 is poor, the projection device 100 can correct the error through an autofocus calibration process and establish a corrected autofocus conversion function. This allows the projection device 100 to recover to maintain good focus within the effective projection distance and at any supported zoom ratio, even if there are assembly tolerances between the zoom projection lens 120 and the focus adjustment module 140, or if the projection device 100 is impacted by external forces. Therefore, the projection device 100 provides users with a better user experience. Furthermore, steps S940 through S970 can be performed at any effective projection distance and zoom ratio, and a single fine-tuning of the focus calibration, based on human visual perception, is sufficient to achieve a clear projected image.
請參閱圖1與圖11,圖11為依據本發明的投影校正方法的再一實施例流程圖,圖11的投影校正方法可至少適用於圖1實施例的投影裝置100,以下搭配圖1所示的元件來說明圖11中各步驟的細節。如圖11所示,投影校正方法除了可包括圖2的步驟S210至步驟S230以外,還可包括以下步驟:根據感測器130所感測到的投影裝置100與投影面PS之間的投影角度、當前投射比與投影裝置100的影像垂直距離比利用梯形校正演算法計算出新投影影像的四個角落點的座標,並根據所述四個角落點的座標對投影影像進行梯形校正(步驟S1010)。另外,圖11的步驟S1010也可應用於圖7及/或圖9的投影校正方法中,步驟S1010的順序可以根據實際需要進行調整。Please refer to Figures 1 and 11. Figure 11 is a flow chart of another embodiment of a projection correction method according to the present invention. The projection correction method of Figure 11 is applicable to at least the projection device 100 of the embodiment of Figure 1. The following describes the details of each step in Figure 11 with reference to the components shown in Figure 1. As shown in Figure 11, in addition to steps S210 to S230 of Figure 2, the projection correction method may also include the following steps: calculating the coordinates of the four corner points of the new projected image using a keystone correction algorithm based on the projection angle between the projection device 100 and the projection surface PS sensed by the sensor 130, the current throw ratio, and the vertical distance ratio of the image of the projection device 100, and performing keystone correction on the projected image based on the coordinates of the four corner points (step S1010). In addition, step S1010 in FIG11 can also be applied to the projection correction method in FIG7 and/or FIG9 . The order of step S1010 can be adjusted according to actual needs.
其中,步驟S1010由控制單元170執行;當前投射比由以下公式取得:,TRcurrent為當前投射比,TRTele為變焦投影鏡頭120的變焦範圍的最遠端的投射比,R為變焦投影鏡頭120的變焦範圍的最遠端與廣角端的比例差值,Zwc為變焦投影鏡頭120的縮放比參數,縮放比參數與偵測數值有關;投射比為投影距離d相對投影影像的寬度W的比例(請參閱圖12,其為依據本實施例的投影裝置100投射出投影影像的俯視圖);投影裝置100的影像垂直距離比由以下公式取得:,VO為影像垂直距離比,H為投影影像的高度,y為變焦投影鏡頭120的光軸C對應於投影面PS的位置與投影影像的頂邊之間的距離(請參閱圖13,其為依據本實施例的投影裝置100投射出投影影像的側視圖)。Step S1010 is executed by the control unit 170; the current throw ratio is obtained by the following formula: ,TRcurrent is the current throw ratio,TRTele is the throw ratio at the farthest end of the zoom range of the zoom projection lens 120, R is the ratio difference between the farthest end and the wide-angle end of the zoom range of the zoom projection lens 120, andZwc is the zoom ratio parameter of the zoom projection lens 120, which is related to the detection value. The throw ratio is the ratio of the projection distance d to the width W of the projected image (see FIG. 12 , which is a top view of the projection image projected by the projection device 100 according to this embodiment). The vertical distance ratio of the image of the projection device 100 is obtained by the following formula: ,VO is the image vertical distance ratio,H is the height of the projected image, andy is the distance between the position of the optical axis C of the zoom projection lens 120 corresponding to the projection surface PS and the top edge of the projected image (see Figure 13, which is a side view of the projection image projected by the projection device 100 according to this embodiment).
具體地,由於投影裝置100為可改變投射比(Throw Ratio)的投影裝置,隨著縮放比的調整,使得投影裝置100的投射比跟著變化,故梯形校正的參數亦需隨著變焦投影鏡頭120的縮放比參數Zwc的調整而變化,因此,控制單元170依據投影角度、依據縮放比參數Zwc獲取的當前投射比與影像垂直距離比,利用梯形校正演算法計算出新投影影像的四個角落點的座標,並將未經過梯形校正的投影影像的四個角落點的座標移動至新投影影像的四個角落點的座標,以對投影影像進行梯形校正。其中,梯形校正演算法的細節為本技術領域具有通常知識者所熟知,不再贅述。Specifically, since the projection device 100 is a variable throw ratio projection device, the throw ratio of the projection device 100 changes as the zoom ratio is adjusted. Therefore, the keystone correction parameters must also change as the zoom ratio parameterZwc of the zoom projection lens 120 is adjusted. Therefore, the control unit 170 uses a keystone correction algorithm to calculate the coordinates of the four corner points of the new projected image based on the projection angle, the current throw ratio obtained based on the zoom ratio parameterZwc , and the image vertical distance ratio. The control unit 170 then moves the coordinates of the four corner points of the uncorrected projected image to the coordinates of the four corner points of the new projected image to perform keystone correction on the projected image. The details of the keystone correction algorithm are well known to those skilled in the art and will not be elaborated upon here.
綜上所述,本發明之實施例的投影裝置與投影校正方法至少具有下列其中一個優點:根據投影裝置與投影面之間的投影距離和基於調整變焦投影鏡頭內的透鏡群的位置所產生對應的偵測數值,利用自動對焦轉換函式計算出焦距調整參數,再利用焦距調整參數調整變焦投影鏡頭的成像焦距,以進行自動對焦,達到投影裝置於有效投影距離內搭配支援的任意縮放比皆有良好的對焦效果。另外,使用者可在投影裝置的有效的投影距離內將變焦投影鏡頭固定在任意一個縮放比的位置之條件下,藉由人眼判斷只做一次對焦校正微調即可使投影影像清晰,同時,使得投影裝置在變焦投影鏡頭與焦距調整模組之間存在組裝公差或投影裝置經外力撞擊等狀況發生後,可再度恢復到在有效投影距離內搭配支援的任意縮放比之條件下皆有良好的對焦效果。此外,依據投影角度、依據縮放比參數獲取的當前投射比與影像垂直距離比,利用梯形校正演算法計算出新投影影像的四個角落點的座標,並將原始投影影像的四個角落點的座標移動到新投影影像的四個角落點的座標,藉此將投影影像修正為正確比例的矩形,解決現有梯形校正方法僅能在固定的投射比與影像垂直距離比以及變動的投影距離之條件下進行影像梯形校正,無法支援投射比變動後進行影像梯形校正的問題。In summary, the projection device and projection calibration method of the embodiments of the present invention have at least one of the following advantages: Based on the projection distance between the projection device and the projection surface and the corresponding detection value generated by adjusting the position of the lens group in the zoom projection lens, an autofocus conversion function is used to calculate the focal length adjustment parameter. The focal length adjustment parameter is then used to adjust the imaging focal length of the zoom projection lens for automatic focus, thereby achieving good focusing effect at any zoom ratio supported by the projection device within the effective projection distance. Furthermore, users can fix the zoom lens at any zoom ratio within the projection device's effective projection distance. Using human visual judgment, a single fine-tuning of focus correction is all that's needed to maintain a clear projected image. Furthermore, even if there are assembly tolerances between the zoom lens and the focus adjustment module, or if the projection device is impacted by external forces, the system can restore focus to maintain optimal focus at any supported zoom ratio within the effective projection distance. Furthermore, based on the projection angle, the current throw ratio obtained from the zoom ratio parameters, and the image vertical distance ratio, a keystone correction algorithm is used to calculate the coordinates of the four corner points of the newly projected image. The coordinates of the four corner points of the original projected image are then moved to the coordinates of the four corner points of the newly projected image, thereby correcting the projected image to a correctly proportioned rectangle. This addresses the problem that existing keystone correction methods only perform image keystone correction under conditions of a fixed throw ratio and image vertical distance ratio and a variable projection distance, and cannot support image keystone correction after the throw ratio changes.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用於命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above descriptions are merely preferred embodiments of the present invention and should not be construed as limiting the scope of the present invention. In other words, any simple equivalent variations and modifications made within the scope of the present invention's patent application and the contents of the invention description are still covered by the present invention. Furthermore, no single embodiment or patent application of the present invention is required to achieve all of the objects, advantages, or features disclosed herein. Furthermore, the abstract and title are intended solely to assist in searching patent documents and are not intended to limit the scope of the present invention. Furthermore, terms such as "first" and "second" in this specification or patent application are used solely to name elements or to distinguish between different embodiments or scopes, and are not intended to limit the upper or lower limits on the number of elements.
100:投影裝置100: Projection device
110:投影模組110: Projection Module
120:變焦投影鏡頭120: Zoom projection lens
130:感測器130: Sensor
140:焦距調整模組140: Focus adjustment module
150:縮放比調整模組150: Zoom ratio adjustment module
160:偵測模組160: Detection Module
170:控制單元170: Control unit
d:投影距離d: Projection distance
IB:影像光束IB: Image beam
PS:投影面PS: Projection surface
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US63/570,829 | 2024-03-28 |
| Publication Number | Publication Date |
|---|---|
| TWI898681Btrue TWI898681B (en) | 2025-09-21 |
| TW202538390A TW202538390A (en) | 2025-10-01 |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090036158A1 (en) | 2005-09-09 | 2009-02-05 | Nikon Corporation | Projector-attached electronic equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090036158A1 (en) | 2005-09-09 | 2009-02-05 | Nikon Corporation | Projector-attached electronic equipment |
| Publication | Publication Date | Title |
|---|---|---|
| US7286163B2 (en) | Image taking device with bent optical system | |
| KR100836326B1 (en) | Projection apparatus, elevation angle control method therefor and recording medium | |
| US7796877B2 (en) | Focus-controlling apparatus and photographing apparatus | |
| US8553135B2 (en) | Camera system and camera body | |
| CN100545732C (en) | camera with focus adjustment | |
| JP4549083B2 (en) | Optical equipment | |
| JP2003161869A (en) | Focal point/field angle adjusting apparatus for lens exchangeable projector | |
| JPH05107621A (en) | Image blur correcter and camera with image blur correcting function | |
| JP2589207Y2 (en) | Camera with remote control device | |
| TWI898681B (en) | Projection device and projection calibration method | |
| CN112799275B (en) | Focusing method and focusing system of ultra-short-focus projection lens and projector | |
| JP2003195145A (en) | Camera | |
| JP3198630B2 (en) | projector | |
| EP4625039A1 (en) | Projection device and projection correction method | |
| JP2835838B2 (en) | Auto focus projector | |
| JP3199048B2 (en) | projector | |
| JPH0553193A (en) | Projection type display device | |
| CN120730040A (en) | Projection device and projection correction method | |
| JP3402690B2 (en) | Camera with ranging device | |
| JP2005351959A (en) | Image projecting apparatus and focusing method for the same | |
| TWI895817B (en) | Projection system and calibration method thereof | |
| JP4865275B2 (en) | Focus detection apparatus and imaging apparatus | |
| US20240267498A1 (en) | Projection device and auto focus method | |
| CN118466102A (en) | Projection device and automatic focusing method | |
| JP2003005025A (en) | Camera having range-finder and camera |