















本發明係有關一種無人機群飛導引控制系統及其方法,尤指一種兼具單一導控站以共同控制語言同時操縱複數無人機、無人機可自動結群飛行,及無人機可自動編列隊形之無人機群飛導引控制系統及其方法。The present invention relates to a drone swarm flight guidance control system and method thereof, and in particular to a drone swarm flight guidance control system and method thereof, which has a single control station that can simultaneously control multiple drones with a common control language, drones that can automatically fly in groups, and drones that can automatically form formations.
目前市面上的導控站,主要為單機操作之設計,雖然亦可用於複數無人機控制,但相關的設定過程過於繁瑣,且必須先在每個導控站對每架無人機建立一對一連線之後,方可再由相對應之每一導控站對每架無人機進行設定飛行條件。這種一對一之設定方式,對複數無人機(亦即複數導控站)之操作而言,效率低下(且可控制之無人機數量,也受到導控站之數量限制)!舉例來說,假設某節慶共有500架無人機要進行表演,則地面上也必須有500個導控站,以一對一的方式進行控制,若每個導控站都有單獨的電信門號,則必須有500個門號同時進行連線,不僅一對一操控十分麻煩,也占據相當的通訊頻寬(節慶時擁擠的參觀民眾已佔據極大之通訊頻寬),一旦發生基地台容量不足時(或訊號不穩定時),就可能無法順利控制這500架無人機順利進行表演。The control stations currently on the market are mainly designed for single-machine operation. Although they can also be used to control multiple drones, the related setting process is too cumbersome, and each control station must first establish a one-to-one connection with each drone before each corresponding control station can set the flight conditions for each drone. This one-to-one setting method is inefficient for the operation of multiple drones (that is, multiple control stations) (and the number of drones that can be controlled is also limited by the number of control stations)! For example, if there are 500 drones performing at a festival, there must be 500 control stations on the ground to control them one-to-one. If each control station has a separate telecommunications number, then 500 numbers must be connected at the same time. Not only is one-to-one control very troublesome, it also occupies a considerable communication bandwidth (the crowded visitors at the festival already occupy a lot of communication bandwidth). Once the base station capacity is insufficient (or the signal is unstable), it may not be possible to control these 500 drones to perform smoothly.
此外,對於常見之複數無人機表演,其實是先透過導控站不斷傳遞預設的路徑座標去控制相對應之無人機,這代表相對應之無人機與導控站之間的通訊不可中斷,否則將導致所有操作立即停止。當進行較遠距離之群飛表演時,例如,以500架無人機進行超過10公里的跨越山區遠距離群飛表演,一旦遇到沿途基地台容量不足、或通訊受山區地形阻礙(例如斷訊或通訊極差狀態),就可能無法進行一對一控制(共500組的一對一控制)之遠距離群飛。In addition, for common multi-drone performances, the control station actually continuously transmits the preset path coordinates to control the corresponding drones. This means that the communication between the corresponding drones and the control station cannot be interrupted, otherwise all operations will stop immediately. When performing a group flight performance over a longer distance, for example, a group flight performance of 500 drones over a distance of more than 10 kilometers across the mountains, once the base station capacity along the way is insufficient or the communication is blocked by the mountain terrain (such as disconnection or extremely poor communication), it may not be possible to perform a one-to-one control (a total of 500 groups of one-to-one control) long-distance group flight.
有鑑於此,必須研發出可解決上述習用缺點之技術。In view of this, it is necessary to develop technology that can solve the above-mentioned shortcomings.
本發明之目的,在於提供一種無人機群飛導引控制系統及其方法,其兼具單一導控站以共同控制語言同時操縱複數無人機、無人機可自動結群飛行,及無人機可自動編列隊形等優點。特別是,本發明所欲解決之問題係在於目前市面之無人機皆為一無人機對一地面控制站之設計,500架無人機必須由500台地面控制站控制,且必須有500個門號連線,不僅一對一操控十分麻煩,且占據極大之通訊頻寬,一旦發生基地台容量不足時(或訊號不穩定、甚至訊號極差時),就可能無法順利進行500架無人機之遠距離群飛控制等問題。The purpose of the present invention is to provide a drone swarm flight guidance control system and method, which has the advantages of a single control station controlling multiple drones simultaneously with a common control language, drones can automatically fly in groups, and drones can automatically form formations. In particular, the problem that the present invention aims to solve is that the current drones on the market are all designed with one drone for one ground control station. 500 drones must be controlled by 500 ground control stations and must have 500 port numbers connected. Not only is the one-to-one control very troublesome, but it also occupies a large communication bandwidth. Once the base station capacity is insufficient (or the signal is unstable or even very poor), it may be impossible to smoothly control the long-distance swarm flight of 500 drones.
解決上述問題之技術手段係提供一種無人機群飛導引控制系統及其方法,關於該無人機群飛導引控制系統的部分,係包括:一導控站,係具有一導控處理模組及一第一無線通訊模組;該導控處理模組係用以輸出至少一隊形指令,並透過該第一無線通訊模組發出;及複數無人機,係分別對應該導控站而設;複數該無人機中之每一無人機係具有一機身,及設於該機身之複數旋翼、一無人機處理模組、一第二無線通訊模組、一機身方向感知器及一GPS感知器;該第二無線通訊模組係供該無人機與該第一無線通訊模組無線連結;該機身方向感知器係用以偵測該機身之朝向,複數該無人機其中一者被定義為臨時領導者無人機,其餘為跟隨者無人機,該臨時領導者無人機係透過該第二無線通訊模組接收至少一該隊形指令,並透過相對應之該無人機處理模組解析成複數解析隊形指令,複數該解析隊形指令係分別對應並傳送至其餘該跟隨者無人機;依據複數該解析隊形指令,分別將該臨時領導者無人機及複數該跟隨者無人機之距離排序後,依序由該臨時領導者無人機與第一順位之該跟隨者無人機進行相對位置隊形排列,隊形排好後,進行第二順位之該跟隨者無人機與第一順位之該跟隨者無人機之間的相對位置隊形排列,接著,依序進行至所有之該跟隨者無人機排列完畢為止,進而可控制複數該無人機之隊形;及複數該解析隊形指令中之每一解析隊形指令,係至少包括一指令者代碼、一指令模式代碼、一指令角度碼及一受指令者代碼;該指令者代碼係為相鄰二該無人機之已知位置者;該指令模式代碼係至少包括一機頭同方向形式之線狀隊形、一機頭偏斜一角度之環狀隊形其中一者;該指令角度碼係為相鄰二該無人機間之相對夾角之度數;該受指令者代碼係為相鄰二該無人機之未知位置者;藉此,達成以至少一該隊形指令控制該臨時領導者無人機及其餘該跟隨者無人機產生不同變化之隊形。The technical means for solving the above-mentioned problem is to provide a drone swarm flight guidance control system and method thereof. The drone swarm flight guidance control system comprises: a guidance control station having a guidance control processing module and a first wireless communication module; the guidance control processing module is used to output at least one formation instruction and send it through the first wireless communication module; and a plurality of drones are respectively arranged corresponding to the guidance control station; each of the plurality of drones has a fuselage, and a plurality of rotors arranged on the fuselage, a drone processing module, a second wireless communication module, a fuselage, and a plurality of rotors arranged on the fuselage. The second wireless communication module is used for wireless connection between the drone and the first wireless communication module; the body direction sensor is used to detect the direction of the body, one of the plurality of drones is defined as a temporary leader drone, and the rest are follower drones. The temporary leader drone receives at least one formation instruction through the second wireless communication module, and parses it into a plurality of parsed formation instructions through the corresponding drone processing module. The plurality of parsed formation instructions are respectively corresponding to and transmitted to the rest of the follower drones; according to the parsed formation instructions, The analysis formation instructions are used to sort the distances between the temporary leader drone and the plurality of follower drones, and then the temporary leader drone and the first-ranked follower drone are arranged in relative position formation. After the formation is arranged, the second-ranked follower drone and the first-ranked follower drone are arranged in relative position formation. Then, the following steps are performed in sequence until all the follower drones are arranged, thereby controlling the formation of the plurality of drones; and each of the analysis formation instructions in the plurality of analysis formation instructions includes at least one A commander code, a command mode code, a command angle code and a command receiver code; the commander code is the known position of the two adjacent drones; the command mode code includes at least one of a linear formation with the heads in the same direction and a circular formation with the heads tilted at an angle; the command angle code is the degree of the relative angle between the two adjacent drones; the command receiver code is the unknown position of the two adjacent drones; thereby, the temporary leader drone and the rest of the follower drones are controlled by at least one formation command to produce different formations.
關於該方法的部分,係依序包括下列步驟:一導控站發出指令步驟;一接收並解析指令步驟;一距離及隊形排列步驟;及一控制隊形變化步驟。The method includes the following steps in sequence: a control station issuing a command step; a command receiving and parsing step; a distance and formation arrangement step; and a formation change control step.
本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。The above-mentioned purposes and advantages of the present invention can be easily understood from the detailed description and accompanying drawings of the following selected embodiments.
茲以下列實施例並配合圖式詳細說明本發明於後:The present invention is described in detail with the following embodiments and accompanying drawings:
10:導控站10: Control station
11:導控處理模組11: Guidance and control processing module
12:第一無線通訊模組12: The first wireless communication module
20:無人機20: Drones
20A:臨時領導者無人機20A: Temporary leader drone
20B:跟隨者無人機20B: Follower drone
21:機身21: Body
22:旋翼22: Rotor
23:無人機處理模組23: Drone processing module
24:第二無線通訊模組24: Second wireless communication module
241:短距離無線通訊模組241: Short-range wireless communication module
242:長距離無線通訊模組242: Long distance wireless communication module
25:機身方向感知器25: Body direction sensor
26:GPS感知器26: GPS sensor
91:障礙物91: Obstacles
M:隊形指令M: Formation command
M1:解析隊形指令M1: Parsing formation instructions
M11:指令者代碼M11: Commander code
M12:指令模式代碼M12: Command mode code
M13:指令角度碼M13: command angle code
M14:受指令者代碼M14: Order recipient code
S1:導控站發出指令步驟S1: The control station issues a command step
S2:接收並解析指令步驟S2: Receive and parse command steps
S3:距離及隊形排列步驟S3: Distance and formation steps
S4:控制隊形變化步驟S4: Control the formation change step
θ1:出導角θ1: lead angle
θ2:入導角θ2: Lead-in angle
W1:近距離動態避障範圍W1: Close-range dynamic obstacle avoidance range
W2:通訊範圍W2: Communication range
W3:執行任務空間範圍W3: Execution space range
W4:遠距離避障感測範圍W4: Long-distance obstacle avoidance sensing range
W5:近距離層級動態避障範圍W5: Close-range dynamic obstacle avoidance range
D1:安全結群距離D1: Safe grouping distance
D2:最小結群距離D2: Minimum clustering distance
第1圖係本發明之系統之示意圖。Figure 1 is a schematic diagram of the system of the present invention.
第2圖係本發明之無人機之內建偵測範圍之示意圖。Figure 2 is a schematic diagram of the built-in detection range of the drone of the present invention.
第3圖係為本發明之無人機之自動結群之示意圖。Figure 3 is a schematic diagram of the automatic grouping of drones of the present invention.
第4圖係為本發明之無人機之彼此間保持距離及動態避障之示意圖。Figure 4 is a schematic diagram of the drones of the present invention maintaining distance and dynamically avoiding obstacles.
第5圖係為本發明之無人機之彼此間多層保持距離及動態避障之示意圖。Figure 5 is a schematic diagram of the multi-layer distance maintenance and dynamic obstacle avoidance between the drones of the present invention.
第6圖係為本發明之無人機之自動結群且彼此間保持距離之示意圖。Figure 6 is a schematic diagram of the automatic grouping of drones of the present invention while maintaining a distance between each other.
第7圖係為本發明之於無人機內建出導角及入導角(虛擬引導系統)之示意圖。Figure 7 is a schematic diagram of the invention's built-in outbound and inbound guidance angles (virtual guidance system) in a drone.
第8圖係第7圖之第一種組合型態之示意圖。Figure 8 is a schematic diagram of the first combination type of Figure 7.
第9圖係第7圖之第二種組合型態之示意圖。Figure 9 is a schematic diagram of the second combination type of Figure 7.
第10圖係第8圖之第一種無人機編隊模式之示意圖。Figure 10 is a schematic diagram of the first drone formation mode in Figure 8.
第11圖係第8圖之第二種(多出導角)無人機編隊模式之示意圖。Figure 11 is a schematic diagram of the second drone formation mode (with more lead angles) in Figure 8.
第12圖係第9圖之無人機編隊模式之示意圖。Figure 12 is a schematic diagram of the drone formation mode in Figure 9.
第13圖係第8及第9圖之混合應用型態之無人機編隊模式之示意圖。Figure 13 is a schematic diagram of the drone formation mode of the hybrid application type of Figures 8 and 9.
第14圖係本發明之第一種群飛之示意圖。Figure 14 is a schematic diagram of the first type of flock flight of the present invention.
第15圖係本發明之第二種群飛之示意圖。Figure 15 is a schematic diagram of the second type of flock flight of the present invention.
第16圖係本發明之方法之流程圖。Figure 16 is a flow chart of the method of the present invention.
本發明係為一種無人機群飛導引控制系統及其方法,參閱第1、第2、第3、第4、第5、第6、第7、第8及第9圖,關於該無人機群飛導引控制系統的部分,係包括:一導控站10,係具有一導控處理模組11及一第一無線通訊模組12。該導控處理模組11係用以輸出至少一隊形指令M,並透過該第一無線通訊模組12發出。The present invention is a drone swarm flight guidance control system and method thereof. Referring to Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9, the drone swarm flight guidance control system includes: a
複數無人機20,係分別對應該導控站10而設。複數該無人機20中之每一無人機20係具有一機身21,及設於該機身21之複數旋翼22、一無人機處理模組23、一第二無線通訊模組24、一機身方向感知器25及一GPS感知器26。該第二無線通訊模組24係供該無人機20與該第一無線通訊模組12無線連結;該機身方向感知器25係用以偵測該機身21(實際上是偵測該機身21之一機頭的朝向或是方向)之朝向(或是方向)。複數該無人機20其中一者被定義為臨時領導者無人機20A,其餘為跟隨者無人機20B。該臨時領導者無人機20A係透過該第二無線通訊模組24接收至少一該隊形指令M,並透過相對應之該無人機處理模組23解析成複數解析隊形指令M1,複數該解析隊形指令M1係分別對應並傳送至其餘該跟隨者無人機20B(可參考第7圖)。A plurality of
依據複數該解析隊形指令M1,分別將該臨時領導者無人機20A及複數該跟隨者無人機20B之距離排序後,依序由該臨時領導者無人機20A與第一順位之該跟隨者無人機20B進行相對位置隊形排列,隊形排好後,進行第二順位之該跟隨者無人機20B與第一順位之該跟隨者無人機20B之間的相對位置隊形排列,接著,依序進行至所有之該跟隨者無人機20B排列完畢為止,進而可控制複數該無人機20之隊形。According to the multiple analyzed formation instructions M1, the distances of the
複數該解析隊形指令M1中之每一解析隊形指令M1(如第7圖所示),係至少包括一指令者代碼M11、一指令模式代碼M12、一指令角度碼M13及一受指令者代碼M14。該指令者代碼M11係為相鄰二該無人機20之已知位置者(通常是代表該臨時領導者無人機20A、前一順位之該跟隨者無人機20B其中一者);該指令模式代碼M12係至少包括一機頭同方向形式之線狀隊形、一機頭偏斜一角度之環狀隊形其中一者。該指令角度碼M13係為相鄰二該無人機20間之相對夾角之度數(可參考第7、第8及第9圖,且第8及第9圖均以圓圈代表該無人機20);該受指令者代碼M14係為相鄰二該無人機20之未知位置者(通常是該臨時領導者無人機20A後之第一順位之該跟隨者無人機20B,或是任何後一順位之該跟隨者無人機20B)。Each of the plurality of analyzed formation commands M1 (as shown in FIG. 7 ) includes at least a commander code M11, a command mode code M12, a command angle code M13, and a command receiver code M14. The commander code M11 is a known position of two adjacent drones 20 (usually representing one of the
藉此,達成以至少一該隊形指令M控制該臨時領導者無人機20A及其餘該跟隨者無人機20B產生不同變化之隊形(可參考第10、第11、第12及第13圖,均以圓圈代表該無人機20)。In this way, at least one formation command M is used to control the
實務上,該第二無線通訊模組24可為一短距離無線通訊模組241、一長距離無線通訊模組242其中至少一者。In practice, the second
該短距離無線通訊模組241可為公知Wifi裝置、藍芽裝置、ZigBee其中至少一者。The short-range
該短距離無線通訊模組241之一無線通訊範圍係小於100m。The wireless communication range of the short-range
該長距離無線通訊模組242之該無線通訊範圍係大於5km。The wireless communication range of the long-distance
關於該方法的部分(如第16圖所示),可適用於該無人機群飛導引控制系統,該方法可依序包括下列步驟:The part about the method (as shown in Figure 16) can be applied to the UAV swarm flight guidance control system. The method can include the following steps in sequence:
一導控站發出指令步驟S1,該導控處理模組11係用以輸出至少一隊形指令M,該第一無線通訊模組12係用以無線發出至少一該隊形指令M。A control station issues a command step S1, the
一接收並解析指令步驟S2,該臨時領導者無人機20A係透過該第二無線通訊模組24接收至少一該隊形指令M,並透過相對應之該無人機處理模組23解析成複數解析隊形指令M1,複數該解析隊形指令M1係分別對應並傳送至其餘該跟隨者無人機20B。A receiving and parsing command step S2, the
一距離及隊形排列步驟S3,依據複數該解析隊形指令M1,分別將該臨時領導者無人機20A及複數該跟隨者無人機20B之距離排序後,依序由該臨時領導者無人機20A與第一順位之該跟隨者無人機20B進行相對位置隊形排列,隊形排好後,進行第二順位之該跟隨者無人機20B與第一順位之該跟隨者無人機20B之間的相對位置隊形排列,接著,依序進行至所有之該跟隨者無人機20B排列完畢為止,進而可控制複數該無人機20之隊形。A distance and formation arrangement step S3, according to the plurality of analyzed formation instructions M1, after sorting the distances of the
一控制隊形變化步驟S4,複數該解析隊形指令M1中之每一解析隊形指令M1,係至少包括一指令者代碼M11、一指令模式代碼M12、一指令角度碼M13及一受指令者代碼M14。該指令者代碼M11係為相鄰二該無人機20之已知位置者;該指令模式代碼M12係至少包括一機頭同方向形式之線狀隊形、一機頭偏斜一角度之環狀隊形其中一者。該指令角度碼M13係為相鄰二該無人機20間之相對夾角之度數(可參考第7、第8及第9圖,且第8及第9圖均以圓圈代表該無人機20);該受指令者代碼M14係為相鄰二該無人機20之未知位置者。藉此,達成以至少一該隊形指令M控制該臨時領導者無人機20A及其餘該跟隨者無人機20B產生不同變化之隊形(可參考第10、第11、第12及第13圖,均以圓圈代表該無人機20)。A formation change control step S4, each of the plurality of formation change commands M1 includes at least a commander code M11, a command mode code M12, a command angle code M13 and a command receiver code M14. The commander code M11 is the known position of the two
實務上,該第二無線通訊模組24可為一短距離無線通訊模組241、一長距離無線通訊模組242其中至少一者。In practice, the second
該短距離無線通訊模組241可為公知Wifi裝置、藍芽裝置、ZigBee其中至少一者。The short-range
該短距離無線通訊模組241之無線通訊範圍係小於100m。The wireless communication range of the short-range
該長距離無線通訊模組242之該無線通訊範圍係大於5km。The wireless communication range of the long-distance
複數該無人機20中之每一無人機20係設至少一電池(公知技術,圖中未示,合先陳明),其係供應飛行所需電力(量)。Each of the plurality of
當該臨時領導者無人機20A損壞(被擊落或失效)時,係選擇複數該跟隨者無人機20B其中一者遞補。When the
前述選擇條件係選自距離原有該臨時領導者無人機20A最近者、距離一目標最近者、剩餘電力最高者其中一者。The aforementioned selection condition is to select one of the one closest to the original
該指令角度碼M13可為一出導角θ1、一入導角θ2其中一者(可參考第7、第8及第9圖所示)。The command angle code M13 can be one of an outgoing lead angle θ1 and an incoming lead angle θ2 (see Figures 7, 8 and 9).
關於複數該無人機20之群飛控制,可參考第14圖,為便於說明,分別以代號A、B、C、D表示;又,全部之機頭方向均朝前(正右方定義為0度),並設定代號A為該臨時領導者無人機20A,代號B、C及D為該跟隨者無人機20B。Regarding the group flight control of
茲舉以下兩個簡化實施例說明:The following two simplified implementation examples are given for illustration:
[a]第一種群飛模式:當該指令角度碼M13為90度;且該指令模式代碼M12為該線狀隊形時,該臨時領導者無人機20A與其餘之該跟隨者無人機20B係構成直線排列狀之群飛模式。[a] The first group flight mode: When the command angle code M13 is 90 degrees and the command mode code M12 is the linear formation, the
由於全部之機頭方向朝前(複數該跟隨者無人機20B之正右方定義為0度),屬於T1隊形,所以只要定義好AB、BC及CD等三組(亦即三組該解析隊形指令M1)該無人機20間之關係即可。換言之,此時三組之該解析隊形指令M1分別為:AT190B、BT190C與CT190D。所有之該跟隨者無人機20B即可跟隨該臨時領導者無人機20A,以直線排列之隊形群飛。Since all the noses are facing forward (the right side of the
更詳細的講,該解析隊形指令M1:AT190B之內容可分成四部分,即A、T1、90及B,其意指:B跟隨A飛,以T1的隊形,相對角度為90度。To be more specific, the content of the analytical formation instruction M1: AT190B can be divided into four parts, namely A, T1, 90 and B, which means: B follows A in the formation of T1, with a relative angle of 90 degrees.
當然,若數量增加,該解析隊形指令M1只要簡單修改增加即可,縱使有上百台,指定也十分精簡。Of course, if the number increases, the analysis formation command M1 can be simply modified and increased. Even if there are hundreds of units, the designation is very simple.
[b]第二種群飛模式:當該指令角度碼M13介於0度至90度之間(例如45度);且該指令模式代碼M12為該線狀隊形時,該臨時領導者無人機20A與其餘該跟隨者無人機20B係構成斜線排列狀之群飛模式(可參考第15圖)。[b] The second group flying mode: When the command angle code M13 is between 0 and 90 degrees (e.g. 45 degrees); and the command mode code M12 is the linear formation, the
由於全部之機頭方向朝前,屬於T1隊形,所以只要定義好AB、BC及CD等三組(亦即三組該解析隊形指令M1)該無人機20間之關係即可。換言之,此時三組之該解析隊形指令M1分別為:AT145B、BT145C與CT145D。所有之該跟隨者無人機20B即可跟隨該臨時領導者無人機20A,以斜線排列之隊形群飛。Since all the aircraft noses are facing forward, they belong to the T1 formation, so it is sufficient to define the relationship between the three groups of AB, BC and CD (i.e., the three groups of the analytical formation instructions M1). In other words, the three groups of analytical formation instructions M1 are: AT145B, BT145C and CT145D. All the follower drones 20B can follow the
為能更詳細的說明,再舉下列三例說明:To explain in more detail, let’s take the following three examples:
第一例:將第10圖之5個該無人機20分別設定為A、B、C、D與E機:A機與B機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T1(機頭呈同一"直線"),45度,B]。Example 1: Set the five
B機與C機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T1(直線),45度,B]。The analysis formation command M1 of machine B and machine C: [M11, M12, M13, M14] = [A, T1 (straight line), 45 degrees, B].
A機與D機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T1(直線),135度,B]。The analysis formation command M1 of aircraft A and D: [M11, M12, M13, M14] = [A, T1 (straight line), 135 degrees, B].
D機與E機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T1(直線),135度,B]。The analysis formation command M1 of the D and E machines: [M11, M12, M13, M14] = [A, T1 (straight line), 135 degrees, B].
第二例:將第12圖之其中三個該無人機20分別設定為A、B與C機:A機與B機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T2(機頭旋轉不同夾角而呈"斜線"),40度,B]。Second example: Set three of the
B機與C機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T2(斜線),40度,B]。The analysis formation command M1 of machine B and machine C: [M11, M12, M13, M14] = [A, T2 (diagonal line), 40 degrees, B].
第三例:將第13圖之其中三個該無人機20分別設定為A、B與C機:A機與B機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T2(斜線),45度,B]。Example 3: Set three of the
B機與C機之該解析隊形指令M1:[M11,M12,M13,M14]=[A,T1(直線),45度,B]。The analysis formation command M1 of machine B and machine C: [M11, M12, M13, M14] = [A, T1 (straight line), 45 degrees, B].
本案重點在於:The key points of this case are:
[a]共同控制語言建構專屬導控站。本案於該導控處理模組11與該無人機處理模組23分別植入相同之控制邏輯,達成以共同控制語言建構專屬複數該無人機20之該導控站10。[a] Common control language to construct a dedicated control station. In this case, the same control logic is implanted in the
簡言之,該導控處理模組11輸出該隊形指令M(即該共同控制語言),該臨時領導者無人機20A接收該隊形指令M(即該共同控制語言),並解析成複數解析隊形指令M1(即該共同控制語言)之過程,均達成以共同控制語言建構專屬複數該無人機20之該導控站10者。In short, the
[b]單一導控站同時操縱複數該無人機。本案以該導控處理模組11朝複數該無人機20發出至少一該隊形指令M時,係由該臨時領導者無人機20A接收,並由其無人機處理模組23解析成複數解析隊形指令M1,再分別傳送至其餘該跟隨者無人機20B,達成以該單一導控站10(至少一該隊形指令M)同時控制該臨時領導者無人機20A及其餘該跟隨者無人機20B產生不同變化之隊形(可參考第10、第11、第12及第13圖)。[b] A single control station controls multiple drones simultaneously. In this case, when the
[c]無人機可離線飛行。複數該無人機20係先依據複數該解析隊形指令M1,及該臨時領導者無人機20A與其餘該跟隨者無人機20B之距離排序,依序由該臨時領導者無人機20A與第一順位之該跟隨者無人機20B進行相對位置隊形排列。隊形排好後,再依序依第一、第二、…、到最後一順位,將其餘該跟隨者無人機20B間之隊形排列完畢。由於隊形已排列完畢,複數該無人機20即可配合至少一該解析隊形指令M1離線(與該導控站10離線)飛行。[c] Drones can fly offline. The plurality of
[d]可隨時依任務彈性變更數量及隊形。本案可隨時依不同的該解析隊形指令M1,彈性變更複數該無人機20之數量及隊形。[d] The number and formation can be flexibly changed at any time according to the mission. In this case, the number and formation of
[e]可進行自動結群飛行。參閱第3圖,當相鄰(複數)之該無人機20進入彼此之該通訊範圍W2時,係透過該第二無線通訊模組24交換彼此之座標,使彼此保持該結群距離(如第3圖所示,可為一安全結群距離D1,或是如第5圖所示,可為一最小結群距離D2,該最小結群距離D2係小於該安全結群距離D1),進而,複數該無人機20係彼此保持該結群距離的自動結群飛行。[e] Automatic group flight can be performed. Referring to FIG. 3, when the adjacent (plural) drones 20 enter the communication range W2 of each other, the coordinates of each other are exchanged through the second
[f]近距離動態避障飛行模式。當複數該無人機20其中任一之第二無線通訊模組24,感測到一障礙物91(如第4圖所示)進入相對應之一近距離動態避障範圍W1,此時,該無人機處理模組23係進入一近距離動態避障飛行模式。進而,可再使該相鄰之該無人機20之該近距離動態避障範圍W1縮小成一近距離層級動態避障範圍W5(如第5圖所示,或是,如第2圖所示的一執行任務空間範圍W3、一遠距離避障感測範圍W4等)。[f] Short-range dynamic obstacle avoidance flight mode. When the second
本案之優點及功效可歸納如下:The advantages and effects of this case can be summarized as follows:
[1]單一導控站以共同控制語言同時操縱複數無人機。本案於該導控處理模組與該無人機處理模組分別植入相同之控制邏輯(共同控制語言),達成以共同語言建構專屬複數該無人機之該導控站。亦即,該導控處理模組朝複數該無人機發出至少一該隊形指令(亦即共同控制語言)時,係由該臨時領導者無人機接收,並由其無人機處理模組解析成複數解析隊形指令,複數該解析隊形指令係分別對應並傳送至其餘該跟隨者無人機。故,單一導控站以共同控制語言同時操縱複數無人機。[1] A single control station controls multiple drones simultaneously using a common control language. In this case, the control processing module and the drone processing module are respectively implanted with the same control logic (common control language), so as to achieve the construction of a control station dedicated to multiple drones using a common language. That is, when the control processing module sends at least one formation instruction (i.e., common control language) to multiple drones, it is received by the temporary leader drone and parsed by its drone processing module into multiple parsed formation instructions, which are respectively corresponded and transmitted to the remaining follower drones. Therefore, a single control station controls multiple drones simultaneously using a common control language.
[2]無人機可自動結群飛行。當相鄰(複數)之該無人機進入彼此之該通訊範圍時,係透過該第二無線通訊模組交換彼此之座標,使彼此保持一結群距離,進而,複數該無人機係彼此保持該結距距離的自動結群飛行。故,無人機可自動結群飛行。[2] Drones can fly in groups automatically. When adjacent (plural) drones enter the communication range of each other, they exchange coordinates with each other through the second wireless communication module so that they maintain a group distance. Then, the drones fly in groups automatically while maintaining the group distance. Therefore, drones can fly in groups automatically.
[3]無人機可自動編列隊形。複數該無人機可分別依據複數該解析隊形指令,及該臨時領導者無人機與其餘該跟隨者無人機之距離排序,進行相對位置隊形排列。進而,可以至少一該隊形指令控制該臨時領導者無人機及其餘該跟隨者無人機自動編列不同變化之隊形。且該臨時領導者無人機與其餘該跟隨者無人機之數量,均可依需求隨時予以增減或更換。故,無人機可自動編列隊形。[3] The drones can automatically form a formation. The plurality of drones can be arranged in a relative position formation according to the plurality of analyzed formation instructions and the distance ranking between the temporary leader drone and the remaining follower drones. Furthermore, at least one formation instruction can be used to control the temporary leader drone and the remaining follower drones to automatically form different formations. The number of the temporary leader drone and the remaining follower drones can be increased, decreased or replaced at any time according to demand. Therefore, the drones can automatically form a formation.
以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。The above is only a detailed description of the present invention through a preferred embodiment. Any simple modification and changes made to the embodiment do not deviate from the spirit and scope of the present invention.
10:導控站10: Control station
11:導控處理模組11: Guidance and control processing module
12:第一無線通訊模組12: The first wireless communication module
20:無人機20: Drones
21:機身21: Body
22:旋翼22: Rotor
23:無人機處理模組23: Drone processing module
24:第二無線通訊模組24: Second wireless communication module
241:短距離無線通訊模組241: Short-range wireless communication module
242:長距離無線通訊模組242: Long distance wireless communication module
25:機身方向感知器25: Body direction sensor
26:GPS感知器26: GPS sensor
M:隊形指令M: Formation command
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| TW113117360ATWI883949B (en) | 2024-05-10 | 2024-05-10 | Uav group flight guiding and controlling system and method thereof | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| TW113117360ATWI883949B (en) | 2024-05-10 | 2024-05-10 | Uav group flight guiding and controlling system and method thereof | 
| Publication Number | Publication Date | 
|---|---|
| TWI883949Btrue TWI883949B (en) | 2025-05-11 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| TW113117360ATWI883949B (en) | 2024-05-10 | 2024-05-10 | Uav group flight guiding and controlling system and method thereof | 
| Country | Link | 
|---|---|
| TW (1) | TWI883949B (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| TW202217770A (en)* | 2020-10-29 | 2022-05-01 | 中華學校財團法人中華科技大學 | Intelligent fleet flight path planning method and system for drones including drones, a wireless communication system and an obstacle detection module | 
| US20230177968A1 (en)* | 2021-06-11 | 2023-06-08 | Netdrones, Inc. | Systems and methods for configuring a swarm of drones | 
| CN116830057A (en)* | 2021-08-20 | 2023-09-29 | 索尼集团公司 | Unmanned aerial vehicle (UAV) swarm control | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| TW202217770A (en)* | 2020-10-29 | 2022-05-01 | 中華學校財團法人中華科技大學 | Intelligent fleet flight path planning method and system for drones including drones, a wireless communication system and an obstacle detection module | 
| US20230177968A1 (en)* | 2021-06-11 | 2023-06-08 | Netdrones, Inc. | Systems and methods for configuring a swarm of drones | 
| CN116830057A (en)* | 2021-08-20 | 2023-09-29 | 索尼集团公司 | Unmanned aerial vehicle (UAV) swarm control | 
| Publication | Publication Date | Title | 
|---|---|---|
| US11449049B2 (en) | Flight management system for UAVs | |
| KR101941643B1 (en) | System and method for control of multi drone | |
| CN105353766B (en) | A kind of distributed fault-tolerance management method of multiple no-manned plane formation structure | |
| EP1612632B1 (en) | A system and method for in-flight control of an aerial vehicle | |
| US20200105150A1 (en) | Unmanned aircraft return flight control method, device, and unmanned aerial vehicle | |
| US20110046817A1 (en) | Incremental Position-Based Guidance For A UAV | |
| CN114047786A (en) | Cooperative processing system and method for distributed heterogeneous unmanned aerial vehicle cluster | |
| CN108983813A (en) | A kind of unmanned plane during flying preventing collision method and system | |
| US20210200245A1 (en) | Unmanned aerial vehicle for fleet operation and fleet operation system | |
| CN106535103B (en) | A kind of UAV Intelligent data transfer mode based on bluetooth communication | |
| KR20250019711A (en) | Unmanned aerial vehicle for fleet operation and fleet operation system | |
| TWI883949B (en) | Uav group flight guiding and controlling system and method thereof | |
| KR20220128600A (en) | How to platoon vehicles | |
| US11809176B2 (en) | Formation management and guidance system and method for automated formation flight | |
| CN117176289A (en) | Guidance method for UAV swarm anti-interception coordinated strike | |
| CN110673646A (en) | Method and system for control switching of unmanned aerial vehicles | |
| KR20200094937A (en) | Conveying system using unmanned aerial vehicle and operation method thereof | |
| US20250013251A1 (en) | Vehicle swarm control | |
| CN205405925U (en) | Unmanned aerial vehicle air traffic control system | |
| CN204089891U (en) | The Ethernet interface conversion equipment of difference SPI signal | |
| CN113938178B (en) | Unmanned aerial vehicle-based voice radio communication implementation method and system | |
| US12032370B2 (en) | Supporting an aircraft on a mission in which an intent of the aircraft is conveyed responsive to a lost-link event | |
| CN113674553A (en) | Flight full-phase digital instruction service on-demand pushing device based on data chain | |
| Li et al. | Policy analysis and operation rules suggestion of big cargo drones | |
| CN109358641A (en) | A multi-UAV indoor flight control platform |