Movatterモバイル変換


[0]ホーム

URL:


TWI863664B - Method and device for controlling navigation route - Google Patents

Method and device for controlling navigation route
Download PDF

Info

Publication number
TWI863664B
TWI863664BTW112141729ATW112141729ATWI863664BTW I863664 BTWI863664 BTW I863664BTW 112141729 ATW112141729 ATW 112141729ATW 112141729 ATW112141729 ATW 112141729ATW I863664 BTWI863664 BTW I863664B
Authority
TW
Taiwan
Prior art keywords
angle
route
mobile vehicle
absolute value
turning
Prior art date
Application number
TW112141729A
Other languages
Chinese (zh)
Other versions
TW202519829A (en
Inventor
許鴻斌
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司filedCritical友達光電股份有限公司
Priority to TW112141729ApriorityCriticalpatent/TWI863664B/en
Application grantedgrantedCritical
Publication of TWI863664BpublicationCriticalpatent/TWI863664B/en
Publication of TW202519829ApublicationCriticalpatent/TW202519829A/en

Links

Landscapes

Abstract

A method for controlling navigation route includes controlling a mobile vehicle to turn at a first turning angle which is the second angle minus the third angle when the absolute value of the first angle is greater than the absolute value of the third angle; and controlling the mobile vehicle to turn at a second turning angle which is the second angle minus the first angle when the absolute value of the first angle is less than the absolute value of the third angle, wherein the first angle is the angle at which the second route rotates to the first route, and the second angle is the angle at which the orientation of the mobile vehicle rotates to the second route, the third angle is the angle of the vertical path rotated to the second route, and the first route is the line connecting the first point to the target point, and the second route is the line connecting the current position of the mobile vehicle to the target point, the vertical path is the line connecting the current position of the mobile vehicle to the vertical projection point of the mobile vehicle on the first route.

Description

Translated fromChinese
導航路線控制方法及裝置Navigation route control method and device

本發明涉及一種導航路線控制方法及裝置,具體而言,本發明涉及一種快速切入原規劃路線之導航路線控制方法及裝置。The present invention relates to a navigation route control method and device. Specifically, the present invention relates to a navigation route control method and device for quickly switching to the original planned route.

隨著人力成本上漲以及人力資源短缺之問題日見嚴峻,工業自動化的需求也不斷地上升。企業間為了減少生產過程對人力的依賴,逐步提升自動化設備之比例。企業用於替代人力進行搬運之自動化設備包括無人搬運車(Automated Guided Vehicle,AGV)或者自主移動機器人(Autonomous Mobile Robot,AMR),其中AMR利用導航搭配建圖技術(例如同步定位和測繪(Simultaneous Localization And Mapping,SLAM))達成自主移動以進行例如物件搬運等任務。As labor costs rise and the shortage of human resources becomes more serious, the demand for industrial automation is also increasing. In order to reduce the dependence of production processes on manpower, companies are gradually increasing the proportion of automated equipment. The automated equipment used by companies to replace manpower for transportation includes unmanned guided vehicles (AGV) or autonomous mobile robots (AMR). AMR uses navigation and mapping technology (such as Simultaneous Localization And Mapping (SLAM)) to achieve autonomous movement to perform tasks such as object transportation.

然而,由於AMR不具有磁帶等導引方式,當車體距離起始點位過遠時,可能難以投入車體進行運作。目前雖有當車體距離起始點位過遠時,設計使車體以直線最短距離回歸至規劃路線上之方法。惟當車體距離規劃路線遙遠時,直線切回規劃路線很可能產生路線干涉之問題(例如干擾其他車體之路線或者受到場地貨物、障礙物等之干擾)。因此目前需要一種減少路線干涉問題並快速切入原規劃路線之導航路線控制方法及裝置。However, since AMR does not have guidance methods such as magnetic tape, it may be difficult to put the vehicle into operation when the vehicle is too far away from the starting point. Although there is a method designed to make the vehicle return to the planned route in a straight line with the shortest distance when the vehicle is too far away from the starting point. However, when the vehicle is far away from the planned route, switching back to the planned route in a straight line is likely to cause route interference problems (for example, interfering with the routes of other vehicles or being interfered by goods, obstacles, etc. on the site). Therefore, there is a need for a navigation route control method and device that reduces route interference problems and quickly cuts into the original planned route.

本發明之一目的在於提供一種導航路線控制方法及裝置,可以在減少路徑干涉之情況下快速導引車體回歸原規劃路線。One purpose of the present invention is to provide a navigation route control method and device that can quickly guide the vehicle back to the original planned route while reducing path interference.

在一實施方式,導航路線控制方法包括根據第一角度之絕對值及第三角度之絕對值產生比較結果;其中第一角度為第二路線旋轉至第一路線之角度,第三角度為垂直路徑旋轉至第二路線之角度,第一角度及第三角度以順時針為正、逆時針為負;第一路線為第一點位至目標點位之連線,第二路線為移動載具之當前位置至目標點位之連線,垂直路徑為移動載具之當前位置至移動載具在第一路線上之垂直投影點之連線;以及根據比較結果控制移動載具之移動以第一轉彎角度或以第二轉彎角度轉彎修正,其中第一轉彎角度較第二轉彎角度接近第二角度減第三角度,第二轉彎角度較第一轉彎角度接近第二角度減第一角度;其中第二角度為移動載具之朝向旋轉至第二路線之角度,第二角度、第一轉彎角度及第二轉彎角度以順時針為正、逆時針為負。In one embodiment, a navigation route control method includes generating a comparison result according to an absolute value of a first angle and an absolute value of a third angle; wherein the first angle is an angle of rotation of the second route to the first route, and the third angle is an angle of rotation of the vertical route to the second route, and the first angle and the third angle are positive in clockwise direction and negative in counterclockwise direction; the first route is a line connecting the first point to the target point, the second route is a line connecting the current position of the mobile vehicle to the target point, and the vertical route is a line connecting the current position of the mobile vehicle to the target point. The connecting line of the vertical projection points of the mobile vehicle on the first route; and according to the comparison result, the movement of the mobile vehicle is controlled to be corrected at the first turning angle or the second turning angle, wherein the first turning angle is closer to the second angle minus the third angle than the second turning angle, and the second turning angle is closer to the second angle minus the first angle than the first turning angle; wherein the second angle is the angle of the mobile vehicle rotating to the second route, and the second angle, the first turning angle and the second turning angle are positive in clockwise direction and negative in counterclockwise direction.

藉由此配置,可以快速引導偏離原規劃路線(例如發生異常或者初始投放位置即偏離原規劃路線)之移動載具(例如車體)回歸至原規劃路線,同時減少回歸路線與原規劃路線之偏移量,以減少路線干涉之問題。With this configuration, a mobile vehicle (such as a vehicle body) that deviates from the original planned route (for example, an abnormality occurs or the initial deployment position deviates from the original planned route) can be quickly guided back to the original planned route, while reducing the offset between the return route and the original planned route to reduce the problem of route interference.

101:移動載具/車體101: Mobile vehicle/vehicle body

101A:轉向後之移動載具101A: Mobile vehicle after turning

111:第一點位111: First point

112:目標點位112: Target point

113:當前位置113: Current location

114:垂直投影點114: Vertical projection point

121:第一路線121: First Route

122:第二路線122: Second Route

123:垂直路徑123:Vertical path

124:朝向124: Direction

124A:朝向124A: Direction

131:第一角度131: First angle

132:第二角度132: Second angle

133:第三角度133: The third angle

200:方法200:Methods

201:步驟201: Steps

203:步驟203: Steps

205:步驟205: Steps

401:路線401:Route

610:移動載具610: Mobile Vehicle

611:導航系統611:Navigation system

613:感測器613:Sensor

圖1示根據本發明一實施例之移動載具(例如車體)經投放後之相對位置示意圖。Figure 1 is a schematic diagram showing the relative position of a mobile vehicle (such as a vehicle body) after being deployed according to an embodiment of the present invention.

圖2示出了根據本發明一實施例之導航路線控制方法之流程圖。Figure 2 shows a flow chart of a navigation route control method according to an embodiment of the present invention.

圖3A至圖3F示出了根據本發明一實施例之移動載具轉向之示意圖。Figures 3A to 3F show schematic diagrams of the turning of a mobile vehicle according to an embodiment of the present invention.

圖4示出了根據本發明一實施例之移動載具行走路線之示意圖。Figure 4 shows a schematic diagram of the moving route of a mobile vehicle according to an embodiment of the present invention.

圖5A至圖5D示出了本發明另一實施例之移動載具轉向之示意圖。Figures 5A to 5D show schematic diagrams of the turning of a mobile vehicle according to another embodiment of the present invention.

圖6示出了本發明又一實施例之導航路線控制裝置之方塊示意圖。Figure 6 shows a block diagram of a navigation route control device of another embodiment of the present invention.

以下通過特定的具體實施例並配合圖式以說明本發明所公開之實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。然而,以下所公開的內容並非用以限制本發明的保護範圍,在不悖離本發明構思精神的原則下,本領域技術人員可基於不同觀點與應用以其他不同實施例實現本發明。The following specific embodiments and drawings are used to illustrate the implementation methods disclosed in the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in this specification. However, the contents disclosed below are not intended to limit the scope of protection of the present invention. Without deviating from the spirit of the present invention, those skilled in the art can implement the present invention with other different embodiments based on different viewpoints and applications.

應當理解的是,儘管術語”第一”、”第二”、”第三”等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的”第一元件”、”部件”、”區域”、”層”或”部分”可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It should be understood that although the terms "first", "second", "third", etc. may be used herein to describe various elements, components, regions, layers and/or parts, these elements, components, regions, and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or part from another element, component, region, layer or part. Therefore, the "first element", "component", "region", "layer" or "part" discussed below can be referred to as the second element, component, region, layer or part without departing from the teachings of this article.

這裡使用的術語僅僅是為了描述特定實施例的目的,而不是限制性的。如本文所使用的,除非內容清楚地指示,否則單數形式”一”、”一個”和”該”旨在包括複數形式,包括”至少一個”。”或”表示”及/或”。如本文所使用的,術語”及/或”包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語”包括”及/或”包括”指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域整體、步驟、操作、元件、部件及/或其組合的存在或添加。The terms used herein are for the purpose of describing specific embodiments only and are not limiting. As used herein, unless the context clearly indicates otherwise, the singular forms "a", "an", and "the" are intended to include the plural forms, including "at least one". " or "means" and/or". As used herein, the term "and/or" includes any and all combinations of one or more of the relevant listed items. It should also be understood that when used in this specification, the term "includes" and/or "includes" specifies the presence of the features, regions, wholes, steps, operations, elements, and/or parts, but does not exclude the presence or addition of one or more other features, regions, wholes, steps, operations, elements, parts, and/or combinations thereof.

參考圖1示出了本實施例中移動載具101(例如車體101)初始投入使用之示意圖。其中第一路線121為第一點位111至目標點位112之連線,第一點位111為原規劃路線之起始點,目標點位112為欲使移動載具101回歸至原規劃路線上之目標位置;第二路線122為移動載具101之當前位置113至目標點位112之連線,即移動載具101回歸原規劃路線目標位置之最短距離;垂直路徑123為移動載具101之當前位置113至移動載具101在第一路線121上之垂直投影點114之連線。當移動載具101被投放在偏離原規劃路線上時(或者是發生異常使移動載具101偏離原規劃路線),導航系統(未示出)需控制移動載具101回歸至原規劃路線上。然而,第二路線122雖然為移動載具101欲回歸至原規劃路線上之目標點位112的最短距離,惟從圖中可見,第二路線122偏離原規劃路線程度高,容易與場域中其他車體之動線或障礙物產生干擾問題。因此以下將說明本發明之導航路線控制方法,以降低回歸路線偏離原規劃路線之程度,達到減少動線干涉問題之目標。Reference FIG. 1 shows a schematic diagram of the initial use of the mobile vehicle 101 (e.g., vehicle body 101) in this embodiment. The first route 121 is a line connecting the first point 111 to the target point 112, the first point 111 is the starting point of the original planned route, and the target point 112 is the target position to which the mobile vehicle 101 is to return on the original planned route; the second route 122 is a line connecting the current position 113 of the mobile vehicle 101 to the target point 112, that is, the shortest distance for the mobile vehicle 101 to return to the target position of the original planned route; the vertical route 123 is a line connecting the current position 113 of the mobile vehicle 101 to the vertical projection point 114 of the mobile vehicle 101 on the first route 121. When the mobile vehicle 101 is placed on a route that deviates from the original planned route (or an abnormality occurs that causes the mobile vehicle 101 to deviate from the original planned route), the navigation system (not shown) needs to control the mobile vehicle 101 to return to the original planned route. However, although the second route 122 is the shortest distance for the mobile vehicle 101 to return to the target point 112 on the original planned route, it can be seen from the figure that the second route 122 deviates from the original planned route to a high degree, and it is easy to cause interference problems with the movement lines or obstacles of other vehicles in the field. Therefore, the navigation route control method of the present invention will be described below to reduce the degree of deviation of the return route from the original planned route, so as to achieve the goal of reducing the interference problem of the movement line.

參考圖2以及圖3A至圖3F說明本發明一實施例之導航路線控制方法200。在本方法中,步驟201包括比較第一角度131之絕對值與第三角度133之絕對值之大小。首先參考圖3A,第一路線121、第二路線122以及垂直路徑123會形成一直角三角形,其中第一角度131為第二路線122旋轉至第一路線121之角度,第二角度132為移動載具101之朝向124旋轉至第二路線122之角度,第三角度133為垂直路徑123旋轉至第二路線122之角度(即第一角度131之絕對值與第三角度133之絕對值相加為90度)。第一角度131、第二角度132以及第三角度133皆以順時針旋轉為正、逆時針旋轉為負,例如在圖3A中,第一角度131以及第三角度133皆為負值,而第二角度132為正值。Referring to FIG. 2 and FIG. 3A to FIG. 3F , a navigation route control method 200 according to an embodiment of the present invention is described. In the method, step 201 includes comparing the absolute value of the first angle 131 with the absolute value of the third angle 133. First, referring to FIG. 3A , the first route 121, the second route 122, and the vertical path 123 form a right triangle, wherein the first angle 131 is the angle at which the second route 122 rotates to the first route 121, the second angle 132 is the angle at which the orientation 124 of the mobile vehicle 101 rotates to the second route 122, and the third angle 133 is the angle at which the vertical path 123 rotates to the second route 122 (i.e., the absolute value of the first angle 131 and the absolute value of the third angle 133 add up to 90 degrees). The first angle 131, the second angle 132 and the third angle 133 are all positive when rotating clockwise and negative when rotating counterclockwise. For example, in FIG. 3A, the first angle 131 and the third angle 133 are both negative values, while the second angle 132 is a positive value.

承上,在本實施例中,本方法包括在比較第一角度131之絕對值與第三角度133之絕對值之大小後,當第一角度131之絕對值大於第三角度133之絕對值時,控制移動載具之移動以第一轉彎角度轉彎修正,該第一轉彎角度為第二角度132減第三角度133(步驟203);以及當第一角度131之絕對值小於等於第三角度133之絕對值時,控制移動載具之移動以第二轉彎角度轉彎修正。該第二轉彎角度為第二角度132減第一角度131(步驟205)。具體而言,該第一轉彎角度較該第二轉彎角度接近一第二角度減該第三角度,例如可為為第二角度132減第三角度133。另一方面,該第二轉彎角度較該第一轉彎角度接近該第二角度減該第一角度,例如第二角度132減第一角度131。隨著移動載具101逐漸靠近第一路線121,第一角度131之絕對值將會逐漸變小,以下參考圖3A至圖3F示出了控制移動載具101逐漸切入原規劃路線過程中各個示例性階段,包含初始投入狀態(圖3A)、|θ1|>|θ3|(圖3B)、|θ1|=|θ3|(圖3C)、|θ1|<|θ3|(圖3D)、|θ1|<<|θ3|(圖3E)以及|θ1|<1(圖3F)。As mentioned above, in this embodiment, the method includes, after comparing the absolute value of the first angle 131 and the absolute value of the third angle 133, when the absolute value of the first angle 131 is greater than the absolute value of the third angle 133, controlling the movement of the mobile vehicle to bend and correct at a first turning angle, which is the second angle 132 minus the third angle 133 (step 203); and when the absolute value of the first angle 131 is less than or equal to the absolute value of the third angle 133, controlling the movement of the mobile vehicle to bend and correct at a second turning angle, which is the second angle 132 minus the first angle 131 (step 205). Specifically, the first turning angle is closer to the second angle minus the third angle than the second turning angle, for example, the second angle 132 minus the third angle 133. On the other hand, the second turning angle is closer to the second angle minus the first angle than the first turning angle, for example, the second angle 132 minus the first angle 131. As the mobile vehicle 101 gradually approaches the first route 121, the absolute value of the first angle 131 will gradually decrease. The following reference Figures 3A to 3F show various exemplary stages in the process of controlling the mobile vehicle 101 to gradually cut into the original planned route, including the initial input state (Figure 3A), |θ1 |>|θ3 | (Figure 3B), |θ1 |=|θ3 | (Figure 3C), |θ1 |<|θ3 | (Figure 3D), |θ1 |<<|θ3 | (Figure 3E) and |θ1 |<1 (Figure 3F).

應注意的是,雖然在本實施例中第一角度131之絕對值與第三角度133之絕對值之比較結果是直接以第一角度131之絕對值與第三角度133之絕對值做大小比較,惟在不同實施例中,亦可以其他方式根據一第一角度之絕對值及一第三角度之絕對值產生一比較結果,例如以加權值或其他數值方法對於第一角度及/或第三角度進行處理後再進行比較,本發明並未對此設限。此外,雖然在本實施例中,第一轉彎角度為第二角度132減第三角度133,且第二轉彎角度為第二角度132減第一角度131,惟在不同實施例中第一轉彎角度可以為接近第二角度132減第三角度133之角度值,而不完全等同(例如為第二角度132減第三角度133後再加上一預設值等),同理,第二轉彎角度亦可以不完全等於第二角度132減第一角度131,本發明並未對此設限。It should be noted that, although in the present embodiment, the comparison result of the absolute value of the first angle 131 and the absolute value of the third angle 133 is directly compared by comparing the absolute value of the first angle 131 and the absolute value of the third angle 133, in different embodiments, a comparison result can also be generated based on the absolute value of a first angle and the absolute value of a third angle in other ways, such as processing the first angle and/or the third angle with a weighted value or other numerical methods before performing comparison, and the present invention is not limited to this. In addition, although in this embodiment, the first turning angle is the second angle 132 minus the third angle 133, and the second turning angle is the second angle 132 minus the first angle 131, in different embodiments, the first turning angle may be close to the angle value of the second angle 132 minus the third angle 133, but not completely equal (for example, the second angle 132 minus the third angle 133 plus a preset value, etc.). Similarly, the second turning angle may not be completely equal to the second angle 132 minus the first angle 131, and the present invention is not limited to this.

參考圖3A示出了本發明一實施例之移動載具101被投入場域使用時之初始狀態,由於移動載具101距離原規劃路線(即第一路線121)較遠,第一角度131之絕對值大於第三角度133之絕對值,因此根據步驟203控制移動載具101依據第一轉彎角度轉向。根據圖中所示,第二角度132為順時針因此為正值,第三角度133為逆時針因此為負值,第一轉彎角度為第二角度132減第三角度133,等同於控制移動載具101順時針轉動第二角度132加上第三角度133之絕對值(即θ2+|θ3|),轉向後之移動載具(參圖中虛線三角形)101A之朝向124A將正面對第一路線121(即其朝向124A之延伸垂直於第一路線121)。例如假設在本實施例中第一角度131為-60度、第二角度132為150度且第三角度133為-30度,由於第一角度131之絕對值大於第三角度133之絕對值(|-60|>30),因此控制移動載具101轉動第一轉彎角度,其中第一轉彎角度為180度(150-(-30)),即移動載具101順時針轉動180度。由於原先移動載具101之朝向124為正背對第一路線121(即其朝向124之背面延伸垂直於第一路線121),經轉向180度後移動載具101A之朝向124A轉為正面對第一路線121。Reference FIG3A shows the initial state of a mobile vehicle 101 of an embodiment of the present invention when it is put into use on site. Since the mobile vehicle 101 is far away from the original planned route (i.e., the first route 121), the absolute value of the first angle 131 is greater than the absolute value of the third angle 133. Therefore, according to step 203, the mobile vehicle 101 is controlled to turn according to the first turning angle. As shown in the figure, the second angle 132 is clockwise and therefore a positive value, the third angle 133 is counterclockwise and therefore a negative value, and the first turning angle is the second angle 132 minus the third angle 133, which is equivalent to controlling the mobile vehicle 101 to rotate clockwise by the second angle 132 plus the absolute value of the third angle 133 (i.e., θ2 + |θ3 |). After turning, the direction 124A of the mobile vehicle (see the dotted triangle in the figure) 101A will face the first route 121 (i.e., the extension of its direction 124A is perpendicular to the first route 121). For example, assuming that in this embodiment the first angle 131 is -60 degrees, the second angle 132 is 150 degrees, and the third angle 133 is -30 degrees, since the absolute value of the first angle 131 is greater than the absolute value of the third angle 133 (|-60|>30), the mobile vehicle 101 is controlled to rotate by the first turning angle, wherein the first turning angle is 180 degrees (150-(-30)), that is, the mobile vehicle 101 rotates 180 degrees clockwise. Since the original direction 124 of the mobile vehicle 101 is facing away from the first route 121 (that is, the back of the direction 124 extends perpendicular to the first route 121), after turning 180 degrees, the direction 124A of the mobile vehicle 101A turns to face the first route 121.

藉由此配置,當移動載具101在距離原規劃路線較遠之距離(即|θ1|>|θ3|)被投放使用時,無論移動載具之原朝向124,皆可以透過步驟203使移動載具101之朝向124轉為正面對第一路線121。在圖3A中雖以正背對第一路線121作為移動載具101之初始朝向124,惟在不同實施例中移動載具101亦可以有其他朝向124(例如逆時針偏離第二路線(122)10度、20度、30度或者順時針偏離第二路線122等),本發明並未對此設限。With this configuration, when the mobile vehicle 101 is deployed at a distance far from the originally planned route (i.e. |θ1 |>|θ3 |), regardless of the original orientation 124 of the mobile vehicle, the orientation 124 of the mobile vehicle 101 can be turned to face the first route 121 through step 203. Although FIG. 3A shows the mobile vehicle 101 facing away from the first route 121 as the initial orientation 124, in different embodiments, the mobile vehicle 101 may have other orientations 124 (e.g., 10 degrees, 20 degrees, 30 degrees counterclockwise from the second route (122) or clockwise from the second route 122, etc.), and the present invention is not limited thereto.

承上參考圖3B繼續說明本實施例,圖3B示出了接續圖3A後移動載具101之動向。在圖3B中由於移動載具101距離原規劃路線仍舊遙遠,第一角度131之絕對值大於第三角度133之絕對值,因此根據步驟203控制移動載具101依據第一轉彎角度轉向。應注意的是,由於在圖3A中移動載具101已轉向正面對第一路線121,從圖中可見,第二角度132等於第三角度133(θ23=0),因此第一轉彎角度等於零(即不轉向)。藉由此配置,當移動載具101經控制轉向為正面對第一路線121後,在第一角度131之絕對值仍大於第三角度133之絕對值時,移動載具101將保持直線朝著第一路線121前進。此外,參考圖3C示出第一角度131之絕對值等於第三角度133之絕對值時,移動載具101之動向。根據步驟205,此時應控制移動載具101之移動以第二轉彎角度轉彎修正,且該第二轉彎角度為第二角度132減第一角度131。惟此時,移動載具101仍保持正向面對第一路線121,且第二角度132等於第三角度133,而第一角度131又等於第三角度133,因此第二轉彎角度此時仍為零,移動載具101繼續保持直線朝著第一路線121前進。The present embodiment is further described with reference to FIG. 3B , which shows the movement of the mobile vehicle 101 after FIG. 3A . In FIG. 3B , since the mobile vehicle 101 is still far away from the originally planned route, the absolute value of the first angle 131 is greater than the absolute value of the third angle 133, and therefore the mobile vehicle 101 is controlled to turn according to the first turning angle according to step 203 . It should be noted that, since the mobile vehicle 101 has turned to face the first route 121 in FIG. 3A , it can be seen from the figure that the second angle 132 is equal to the third angle 133 (θ23 =0), and therefore the first turning angle is equal to zero (i.e., no turning). With this configuration, after the mobile vehicle 101 is controlled to turn to face the first route 121, when the absolute value of the first angle 131 is still greater than the absolute value of the third angle 133, the mobile vehicle 101 will keep moving straight toward the first route 121. In addition, reference FIG. 3C shows the movement of the mobile vehicle 101 when the absolute value of the first angle 131 is equal to the absolute value of the third angle 133. According to step 205, the movement of the mobile vehicle 101 should be controlled to be corrected by a second turning angle, and the second turning angle is the second angle 132 minus the first angle 131. However, at this time, the mobile vehicle 101 still faces the first route 121, and the second angle 132 is equal to the third angle 133, and the first angle 131 is equal to the third angle 133, so the second turning angle is still zero at this time, and the mobile vehicle 101 continues to move forward in a straight line toward the first route 121.

參考圖3D至圖3F繼續說明本實施例,圖3D至圖3F分別示出了接續圖3C後,移動載具101繼續移動使得第一角度131之絕對值小於第三角度133之絕對值、第一角度131之絕對值遠小於第三角度133之絕對值以及第一角度131之絕對值小於1(即移動載具101非常貼近原規劃路線)之情況。首先參考圖3D,當移動載具101經過如圖3C所示後持續向第一路線121前進,第一角度131之絕對值將小於第三角度133之絕對值,根據步驟205,此時應控制移動載具101以第二轉彎角度轉向,第二轉彎角度為第二角度132減第一角度131。例如假設在本實施例之圖3D中,第一角度131為-40度、第二角度132為-50度且第三角度133為-50度,則第二轉彎角度為-10度(即逆時針旋轉10度)。藉由此配置,移動載具101可以被控制為朝著第二路線122轉向,且隨著第一角度131之絕對值漸趨小,其對第二轉彎角度之影響也漸小(意即轉向後之移動載具101A之朝向124A將逐漸貼近第二路線122)。參考圖3E及圖3F(為了清楚呈現圖式,圖3F中未示出轉向前之移動載具101),隨著移動載具101距離第一路線121越近,其每次轉向時將更貼近第二路線122。當第一角度131之絕對值小於1時,轉向後之移動載具101A將非常貼近第二路線122,且同時第二路線122非常貼近於第一路線121,直到最終達到移動載具101回歸至第一路線121至目的。The present embodiment is further described with reference to FIGS. 3D to 3F , which respectively show that after FIG. 3C , the mobile vehicle 101 continues to move so that the absolute value of the first angle 131 is smaller than the absolute value of the third angle 133, the absolute value of the first angle 131 is much smaller than the absolute value of the third angle 133, and the absolute value of the first angle 131 is smaller than 1 (i.e., the mobile vehicle 101 is very close to the original planned route). First, referring to FIG. 3D , when the mobile vehicle 101 continues to move forward toward the first route 121 after passing through FIG. 3C , the absolute value of the first angle 131 will be less than the absolute value of the third angle 133. According to step 205, the mobile vehicle 101 should be controlled to turn at a second turning angle, which is the second angle 132 minus the first angle 131. For example, assuming that in FIG. 3D of the present embodiment, the first angle 131 is -40 degrees, the second angle 132 is -50 degrees, and the third angle 133 is -50 degrees, the second turning angle is -10 degrees (i.e., 10 degrees counterclockwise rotation). With this configuration, the mobile vehicle 101 can be controlled to turn toward the second route 122, and as the absolute value of the first angle 131 gradually decreases, its influence on the second turning angle also gradually decreases (i.e., the direction 124A of the mobile vehicle 101A after turning will gradually approach the second route 122). Referring to FIG. 3E and FIG. 3F (for the sake of clarity, FIG. 3F does not show the mobile vehicle 101 turning forward), as the mobile vehicle 101 gets closer to the first route 121, it will get closer to the second route 122 each time it turns. When the absolute value of the first angle 131 is less than 1, the mobile vehicle 101A will be very close to the second route 122 after turning, and at the same time, the second route 122 will be very close to the first route 121, until the mobile vehicle 101 finally returns to the first route 121 to reach the destination.

參考圖4示出了本發明一實施例之導航路線控制方法之行走路線401之示意圖。路線401是結合圖3A至圖3F移動載具101之動向所模擬出之移動路徑,從圖中可見,相較於最短路徑第二路線122,路線401偏離原始路徑之程度較低,以達成減少動線干涉問題,並達成快速切入原規劃路線之目的。應注意的是,路線401可能會因移動載具101之移動速度以及轉彎修正之頻率而有差異,例如轉彎修正之頻率較低時路線401較曲折、轉彎修正之頻率較高時路線401較平滑等,本發明並未對此設限。Referring to FIG4, a schematic diagram of a walking route 401 of a navigation route control method according to an embodiment of the present invention is shown. Route 401 is a moving route simulated by combining the movement of the mobile vehicle 101 in FIG3A to FIG3F. As can be seen from the figure, compared with the shortest path second route 122, the degree of deviation of route 401 from the original route is lower, so as to reduce the interference problem of the moving line and achieve the purpose of quickly cutting into the originally planned route. It should be noted that route 401 may vary due to the moving speed of mobile vehicle 101 and the frequency of turn correction. For example, route 401 may be more tortuous when the frequency of turn correction is lower, and route 401 may be smoother when the frequency of turn correction is higher. The present invention is not limited to this.

應注意的是,雖然在本實施例中,移動載具101初始投入之位置偏離原規劃路線較遠(第一角度131之絕對值大於第三角度133之絕對值),惟在不同實施例中,移動載具101也可以在不同位置被投入使用,例如參考圖5A至圖5D示出移動載具101在不同位置被投入後之轉向情況(示出轉向後之移動載具101A),本發明並未對此設限。此外,雖然在前述實施例中皆將移動載具101之位置示出在第一路線121之左側,惟在不同之實施例中,移動載具101可以落在第一路線121之任意方向(例如右側),本發明並未對此設限。It should be noted that, although in this embodiment, the position where the mobile vehicle 101 is initially deployed deviates from the original planned route (the absolute value of the first angle 131 is greater than the absolute value of the third angle 133), in different embodiments, the mobile vehicle 101 can also be deployed at different positions. For example, referring to Figures 5A to 5D, the turning situation of the mobile vehicle 101 after being deployed at different positions (showing the mobile vehicle 101A after turning), the present invention does not set a limit to this. In addition, although the position of the mobile vehicle 101 is shown on the left side of the first route 121 in the aforementioned embodiments, in different embodiments, the mobile vehicle 101 can fall in any direction of the first route 121 (for example, the right side), the present invention does not set a limit to this.

參考圖6說明本發明又一實施例之導航路線控制裝置,該裝置包括移動載具610及導航系統611。移動載具610可以例如為自主移動機器人(AMR)或其他任意適當之移動裝置。導航系統611包括至少一個感測器613,感測器613可以例如安裝在移動載具610上任何適當之位置,以接收移動載具610之環境資訊,並傳送至導航系統611。例如感測器613可以包括單目相機、雙目相機、光達、無線射頻感測器等任何適當之感測器設備,以取得例如周遭環境之影像、與周遭物體之距離或深度等感測資訊。其中導航系統611可以包括定位及建圖技術(例如同步定位和測繪(SLAM)),以利用感測器613偵測之環境資訊進行定位以及建立機器可讀之地圖,並藉此在地圖中決定如前述實施例中說明之第一路線121、第二路線122、垂直路徑123、第一角度131、第二角度132以及第三角度133等,以實施導航路線控制方法200使移動載具610能夠在偏離原規劃路線時快速回歸,同時也減少路線干涉之問題。Referring to FIG. 6 , a navigation route control device of another embodiment of the present invention is illustrated, and the device includes a mobile vehicle 610 and a navigation system 611. The mobile vehicle 610 may be, for example, an autonomous mobile robot (AMR) or any other appropriate mobile device. The navigation system 611 includes at least one sensor 613, and the sensor 613 may be, for example, installed at any appropriate position on the mobile vehicle 610 to receive environmental information of the mobile vehicle 610 and transmit it to the navigation system 611. For example, the sensor 613 may include any appropriate sensor equipment such as a monocular camera, a binocular camera, a lidar, a wireless radio frequency sensor, etc., to obtain sensing information such as images of the surrounding environment, and the distance or depth to surrounding objects. The navigation system 611 may include positioning and mapping technology (such as simultaneous positioning and mapping (SLAM)) to use the environmental information detected by the sensor 613 for positioning and establishing a machine-readable map, and thereby determine the first route 121, the second route 122, the vertical path 123, the first angle 131, the second angle 132 and the third angle 133 described in the above embodiment in the map, so as to implement the navigation route control method 200 so that the mobile vehicle 610 can quickly return when it deviates from the original planned route, and at the same time reduce the problem of route interference.

200:方法200:Methods

201:步驟201: Steps

203:步驟203: Steps

205:步驟205: Steps

Claims (6)

Translated fromChinese
一種導航路線控制方法,其包括:根據一第一角度之絕對值及一第三角度之絕對值產生一比較結果;其中該第一角度為一第二路線旋轉至一第一路線之角度,該第三角度為一垂直路徑旋轉至該第二路線之角度,該第一角度及該第三角度以順時針為正、逆時針為負;該第一路線為一第一點位至一目標點位之連線,該第二路線為一移動載具之當前位置至該目標點位之連線,該垂直路徑為該移動載具之當前位置至該移動載具在該第一路線上之一垂直投影點之連線;以及根據該比較結果控制該移動載具之移動以一第一轉彎角度或以一第二轉彎角度轉彎修正,其中該第一轉彎角度較該第二轉彎角度接近一第二角度減該第三角度,該第二轉彎角度較該第一轉彎角度接近該第二角度減該第一角度;其中該第二角度為該移動載具之朝向旋轉至該第二路線之角度,該第二角度、該第一轉彎角度及該第二轉彎角度以順時針為正、逆時針為負。A navigation route control method, comprising: generating a comparison result according to an absolute value of a first angle and an absolute value of a third angle; wherein the first angle is an angle of a second route rotated to a first route, the third angle is an angle of a vertical route rotated to the second route, the first angle and the third angle are positive in clockwise direction and negative in counterclockwise direction; the first route is a line connecting a first point to a target point, the second route is a line connecting a current position of a mobile vehicle to the target point, the vertical route is a line connecting the current position of the mobile vehicle to the target point, a line connecting a vertical projection point of the vehicle on the first route; and controlling the movement of the mobile vehicle to bend and correct at a first turning angle or a second turning angle according to the comparison result, wherein the first turning angle is closer to a second angle minus the third angle than the second turning angle, and the second turning angle is closer to the second angle minus the first angle than the first turning angle; wherein the second angle is the angle of the mobile vehicle rotating to the second route, and the second angle, the first turning angle and the second turning angle are positive in clockwise direction and negative in counterclockwise direction.如請求項1所述之方法,其中根據該比較結果控制該移動載具之移動以該第一轉彎角度或以該第二轉彎角度轉彎修正進一步包括:當該第一角度之絕對值大於該第三角度之絕對值時,控制該移動載具之移動以該第一轉彎角度轉彎修正;以及當該第一角度之絕對值小於該第三角度之絕對值時,控制該移動載具之移動以該第二轉彎角度轉彎修正。The method as described in claim 1, wherein controlling the movement of the mobile vehicle to make a turn correction at the first turning angle or at the second turning angle according to the comparison result further includes: when the absolute value of the first angle is greater than the absolute value of the third angle, controlling the movement of the mobile vehicle to make a turn correction at the first turning angle; and when the absolute value of the first angle is less than the absolute value of the third angle, controlling the movement of the mobile vehicle to make a turn correction at the second turning angle.如請求項1所述之方法,其中該第一轉彎角度為該第二角度減該第三角度,該第二轉彎角度為該第二角度減該第一角度。The method as described in claim 1, wherein the first turning angle is the second angle minus the third angle, and the second turning angle is the second angle minus the first angle.如請求項2所述之方法,其中當該第一角度之絕對值等於該第三角度之絕對值時,控制該移動載具以該第二轉彎角度轉彎修正。The method as described in claim 2, wherein when the absolute value of the first angle is equal to the absolute value of the third angle, the mobile vehicle is controlled to make a turning correction at the second turning angle.一種導航路線控制裝置,其包括:一移動載具;以及一導航系統,包括至少一感測器,該導航系統利用該感測器偵測之環境資訊並控制該移動載具之動向以執行如請求項1至4中任一所述之導航路線控制方法。A navigation route control device, comprising: a mobile vehicle; and a navigation system, comprising at least one sensor, wherein the navigation system uses the environmental information detected by the sensor and controls the movement of the mobile vehicle to execute the navigation route control method as described in any one of claims 1 to 4.如請求項5所述之裝置,其中該感測器偵測包括周遭環境之影像、與周遭物體之距離以及深度中之至少一項或多項。The device as described in claim 5, wherein the sensor detects at least one or more of the image of the surrounding environment, the distance to the surrounding objects, and the depth.
TW112141729A2023-10-312023-10-31Method and device for controlling navigation routeTWI863664B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
TW112141729ATWI863664B (en)2023-10-312023-10-31Method and device for controlling navigation route

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
TW112141729ATWI863664B (en)2023-10-312023-10-31Method and device for controlling navigation route

Publications (2)

Publication NumberPublication Date
TWI863664Btrue TWI863664B (en)2024-11-21
TW202519829A TW202519829A (en)2025-05-16

Family

ID=94379976

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW112141729ATWI863664B (en)2023-10-312023-10-31Method and device for controlling navigation route

Country Status (1)

CountryLink
TW (1)TWI863664B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20170307385A1 (en)*2014-10-032017-10-26Sharp Kabushiki KaishaAutonomous mobility apparatus
US20170313304A1 (en)*2016-04-272017-11-02Subaru CorporationTravel control device for vehicle
CN106843212B (en)*2017-02-082020-01-10重庆长安汽车股份有限公司Vehicle emergency auxiliary orientation system and method based on yaw angle correction for automatic driving
US20200180605A1 (en)*2017-09-152020-06-11Zoox, Inc.Electronic braking systems and methods
CN114509087A (en)*2022-02-212022-05-17高德软件有限公司Positioning method, electronic device and computer storage medium
EP3678110B1 (en)*2017-08-302022-08-10Nissan Motor Co., Ltd.Method for correcting positional error and device for correcting positional error in a drive-assisted vehicle
CN116007655A (en)*2022-12-052023-04-25广州阿路比电子科技有限公司Attitude sensor course angle testing system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20170307385A1 (en)*2014-10-032017-10-26Sharp Kabushiki KaishaAutonomous mobility apparatus
US20170313304A1 (en)*2016-04-272017-11-02Subaru CorporationTravel control device for vehicle
CN106843212B (en)*2017-02-082020-01-10重庆长安汽车股份有限公司Vehicle emergency auxiliary orientation system and method based on yaw angle correction for automatic driving
EP3678110B1 (en)*2017-08-302022-08-10Nissan Motor Co., Ltd.Method for correcting positional error and device for correcting positional error in a drive-assisted vehicle
US20200180605A1 (en)*2017-09-152020-06-11Zoox, Inc.Electronic braking systems and methods
CN114509087A (en)*2022-02-212022-05-17高德软件有限公司Positioning method, electronic device and computer storage medium
CN116007655A (en)*2022-12-052023-04-25广州阿路比电子科技有限公司Attitude sensor course angle testing system and method

Also Published As

Publication numberPublication date
TW202519829A (en)2025-05-16

Similar Documents

PublicationPublication DateTitle
JP7369626B2 (en) Vehicle control system, vehicle control method and program
CN110260867B (en)Method, equipment and device for determining and correcting neutral position in robot navigation
WO2020076422A2 (en)Autonomous map traversal with waypoint matching
CN112882053B (en)Method for actively calibrating external parameters of laser radar and encoder
CN106933223B (en)Autonomous navigation method and system for robot
Kandath et al.Autonomous navigation and sensorless obstacle avoidance for UGV with environment information from UAV
JPWO2019031168A1 (en) MOBILE BODY AND METHOD FOR CONTROLLING MOBILE BODY
JP6540917B1 (en) Self-propelled device, travel control method of self-propelled device and travel control program
CN114365012A (en) Environment map creation device and method thereof, self-position estimation device, and autonomous mobile body
WO2023036044A1 (en)Global path planning method, motion control method and computer program product
Aref et al.A macro-micro controller for pallet picking by an articulated-frame-steering hydraulic mobile machine
JP2008129695A (en) Route generation system and route generation method for moving body
JP4577247B2 (en) Mobile body and control method thereof
Romadon et al.Pose estimation on soccer robot using data fusion from encoders, inertial sensor, and image data
TWI863664B (en)Method and device for controlling navigation route
JP2019215773A (en)Travel control device and travel control method for unmanned carrier
CN109668572B (en)Laser forklift path searching method based on floyd algorithm
US5920172A (en)Path finding method for a self-propelled mobile unit
Hoang et al.Stabilization control of the differential mobile robot using Lyapunov function and extended Kalman filter
US11221206B2 (en)Device for measuring objects
Hentschel et al.A hybrid feedback controller for car-like robots–combining reactive obstacle avoidance and global replanning
WO2023124339A1 (en)Path planning method, motion control method and computer program product
Marques et al.Multi-sensor navigation for soccer robots
Wu et al.Development of an omnidirectional AGV by applying ORB-SLAM for navigation under ROS framework
Petrov et al.Vision-based line tracking control for nonholonomic differential-drive mobile robots

[8]ページ先頭

©2009-2025 Movatter.jp