Movatterモバイル変換


[0]ホーム

URL:


TWI860891B - Master-slave charging control method and related renewable energy supply system with maximum power point tracking - Google Patents

Master-slave charging control method and related renewable energy supply system with maximum power point tracking
Download PDF

Info

Publication number
TWI860891B
TWI860891BTW112144512ATW112144512ATWI860891BTW I860891 BTWI860891 BTW I860891BTW 112144512 ATW112144512 ATW 112144512ATW 112144512 ATW112144512 ATW 112144512ATW I860891 BTWI860891 BTW I860891B
Authority
TW
Taiwan
Prior art keywords
charging devices
current
charging device
powers
power
Prior art date
Application number
TW112144512A
Other languages
Chinese (zh)
Other versions
TW202522836A (en
Inventor
張益華
黃俊嘉
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司filedCritical台達電子工業股份有限公司
Priority to TW112144512ApriorityCriticalpatent/TWI860891B/en
Application grantedgrantedCritical
Publication of TWI860891BpublicationCriticalpatent/TWI860891B/en
Publication of TW202522836ApublicationCriticalpatent/TW202522836A/en

Links

Images

Landscapes

Abstract

A control method suitable for a renewable energy power supply system including several charging devices is disclosed. Several input terminals and several output terminals of the several charging devices are connected in parallel, and the several charging devices include a main charging device. The control method includes steps of: calculating a current system total power, calculating several MPPT parameters according to the current system total power to transmit to the several charging devices, calculating several target powers according to several current powers, calculating several control commands according to the several MPPT parameters and the several target powers, and controlling several output currents and several output voltages according to the several control commands.

Description

Translated fromChinese
主從充電控制方法及相關再生能源最大功率追蹤供電系統Master-slave charging control method and related renewable energy maximum power tracking power supply system

本揭露有關於一種充電控制方法及其再生能源最大功率追蹤供電系統,特別是用於多個充電裝置並聯的一種主從充電控制方法及其再生能源最大功率供電系統。The present disclosure relates to a charging control method and a renewable energy maximum power tracking power supply system, in particular to a master-slave charging control method and a renewable energy maximum power supply system for multiple charging devices in parallel.

再生能源供電系統包含再生能源發電機組與充電裝置,其中再生能源發電機組可以是太陽能面板或風力發電機。一般而言,發電機組產生的直流電源可經由直流轉換器轉換為符合要求的直流電源後,傳送到近端負載或遠端電網,而一部分的電源可儲存於本地電池。Renewable energy power supply system includes renewable energy generator set and charging device, wherein the renewable energy generator set can be a solar panel or a wind turbine. Generally speaking, the DC power generated by the generator set can be converted into DC power that meets the requirements by a DC converter and then transmitted to the near-end load or the remote power grid, while part of the power can be stored in the local battery.

最大功率點追蹤(Maximum Power Point Tracking,簡稱MPPT)是常用在太陽能面板或風力發電機的技術,其目的是在各種情形下都可以得到最大的功率輸出。傳統上,一個充電裝置通常僅對一個發電機組進行MPPT。考量人員安全與產品可靠度,充電裝置的前端會設置保護裝置,例如阻抗偵測器(Impedance Detector,IMD)、主要電路斷路器(Main Circuit Breaker,MCB)、突波保護裝置(Surge Protection Device,SPD)等。在此架構下,當再生能源供電系統使用的充電裝置的數量越多,所需的元件數越多,成本也越高。此外,為了適應不同的發電功率瓦數,需要開發多種不同功率的充電裝置,如此不利於工程開發與維護。Maximum Power Point Tracking (MPPT) is a technology commonly used in solar panels or wind turbines. Its purpose is to obtain the maximum power output in various situations. Traditionally, a charging device usually only performs MPPT on one generator set. Considering personnel safety and product reliability, protection devices such as impedance detectors (IMD), main circuit breakers (MCB), surge protection devices (SPD), etc. are installed at the front end of the charging device. Under this architecture, the more charging devices used in the renewable energy power supply system, the more components are required and the higher the cost. In addition, in order to adapt to different power generation wattages, it is necessary to develop a variety of charging devices with different powers, which is not conducive to engineering development and maintenance.

有鑑於環保意識抬頭,再生能源的供電需求也隨之提高,如何提供一種充電控制方法及其再生能源供電系統,能夠不過度增加成本並且有利於開發與維護,實為本領域的重要課題。As environmental awareness rises, the demand for renewable energy power supply is also increasing. How to provide a charging control method and a renewable energy power supply system that can not increase the cost excessively and is conducive to development and maintenance is indeed an important topic in this field.

為了解決上述問題,本揭露提出一種控制方法,適用於包含多個充電裝置的再生能源供電系統,其中多個充電裝置的多個輸入端及多個輸出端互相並聯,多個充電裝置包含主充電裝置,其中控制方法包含以下步驟S31至S35。S31:通過多個充電裝置,收集多個當前功率,以計算當前系統總功率。S32:通過主充電裝置,收集當前系統總功率,進行最大功率追蹤(MPPT),以計算多個MPPT參數,並傳送到多個充電裝置。S33:通過多個充電裝置,分別依據多個當前功率,均分計算多個目標功率。S34:通過多個充電裝置,分別依據多個MPPT參數及多個目標功率,計算多個控制命令。S35:通過多個充電裝置,分別依據多個控制命令,控制多個輸出電流與多個輸出電壓。In order to solve the above problems, the present disclosure proposes a control method, which is applicable to a renewable energy power supply system including multiple charging devices, wherein multiple input terminals and multiple output terminals of the multiple charging devices are connected in parallel to each other, and the multiple charging devices include a main charging device, wherein the control method includes the following steps S31 to S35. S31: Collect multiple current powers through multiple charging devices to calculate the current system total power. S32: Collect the current system total power through the main charging device, perform maximum power tracking (MPPT) to calculate multiple MPPT parameters, and transmit them to multiple charging devices. S33: Calculate multiple target powers equally through multiple charging devices based on multiple current powers respectively. S34: Calculate multiple control commands through multiple charging devices based on multiple MPPT parameters and multiple target powers respectively. S35: Controlling a plurality of output currents and a plurality of output voltages through a plurality of charging devices according to a plurality of control commands respectively.

本揭露並提出一種再生能源供電系統,包含再生能源發電機組以及多個充電裝置。再生能源發電機組經配置來產生輸入電壓及輸入電流。多個充電裝置的多個輸入端及多個輸出端互相並聯,且多個充電裝置中的每一者包含控制電路,控制電路電連接多個充電裝置的多個輸入端及多個輸出端,經配置來執行如上所述的控制方法。The present invention discloses a renewable energy power supply system, including a renewable energy generator set and a plurality of charging devices. The renewable energy generator set is configured to generate an input voltage and an input current. The plurality of input terminals and the plurality of output terminals of the plurality of charging devices are connected in parallel, and each of the plurality of charging devices includes a control circuit, the control circuit is electrically connected to the plurality of input terminals and the plurality of output terminals of the plurality of charging devices, and is configured to execute the control method described above.

本揭露的主從充電控制方法及其再生能源供電系統具備了以下優勢:(1)將多個充電裝置互相並聯,可適應不同的發電功率瓦數,無須另外開發不同功率瓦數的充電裝置,可增加系統規劃彈性;(2)採用單一保護裝置的集中式保護,可節省系統成本;(3)多個充電裝置採用主從式控制方法,同時兼具MPPT、輸入與輸出功率調節的能力;以及(4)依據充電裝置的額定功率來分配輸出功率占比,可增加系統規劃彈性。The master-slave charging control method and renewable energy power supply system disclosed in the present invention have the following advantages: (1) multiple charging devices are connected in parallel to adapt to different power wattages, without the need to develop charging devices with different power wattages, which can increase system planning flexibility; (2) centralized protection using a single protection device can save system costs; (3) multiple charging devices adopt a master-slave control method, which simultaneously has the ability to adjust MPPT, input and output power; and (4) the output power ratio is allocated according to the rated power of the charging device, which can increase system planning flexibility.

應該理解的是,前述的一般性描述和下列具體說明僅僅是示例性和解釋性的,並旨在提供所要求的本揭露的進一步說明。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the disclosure as claimed.

請參照第1圖,第1圖是依據本發明實施例的再生能源供電系統10的示意圖。再生能源供電系統10電連接負載90,經配置以提供電能到負載90。於一實施例中,再生能源供電系統10電連接電池80,經配置以提供電能到電池80。於一實施例中,負載90是直流通訊電源設備。Please refer to FIG. 1, which is a schematic diagram of a renewable energypower supply system 10 according to an embodiment of the present invention. The renewable energypower supply system 10 is electrically connected to aload 90 and is configured to provide power to theload 90. In one embodiment, the renewable energypower supply system 10 is electrically connected to abattery 80 and is configured to provide power to thebattery 80. In one embodiment, theload 90 is a DC communication power supply device.

在結構上,再生能源供電系統10包含再生能源發電機組13、保護裝置15以及多個充電裝置CG1~CGj,其中j是大於1的正整數。再生能源發電機組13經配置以產生總輸入電壓VIN及總輸入電流IIN。保護裝置15電連接於再生能源發電機組13與多個充電裝置CG1~CGj之間,經配置以傳遞總輸入電壓VIN及總輸入電流IIN,並保護多個充電裝置CG1~CGj免於過電流、過載及短路的損害。多個充電裝置CG1~CGj的輸入端與輸出端互相並聯,經配置以將多個輸入電壓VIN1~VINj及多個輸入電流IIN1~IINj分別轉換為輸出電壓V1~Vj及輸出電流I1~Ij,其中輸出電壓V1~Vj的總和為母線電壓VOUT且輸出電流I1~Ij的總和為母線電流IOUT。總輸入電壓VIN近似於多個充電裝置CG1~CGj的多個輸入電壓VIN1~VINj的每一者,且總輸入電流IIN等於多個充電裝置CG1~CGj的多個輸入電流IIN1~IINj的總和。Structurally, the renewable energypower supply system 10 includes a renewableenergy generator set 13, aprotection device 15, and a plurality of charging devices CG1-CGj, where j is a positive integer greater than 1. The renewableenergy generator set 13 is configured to generate a total input voltage VIN and a total input current IIN. Theprotection device 15 is electrically connected between the renewable energy generator set 13 and the plurality of charging devices CG1-CGj, and is configured to transmit the total input voltage VIN and the total input current IIN, and protect the plurality of charging devices CG1-CGj from damage caused by overcurrent, overload, and short circuit. The input terminals and output terminals of the plurality of charging devices CG1-CGj are connected in parallel to each other and are configured to convert the plurality of input voltages VIN1-VINj and the plurality of input currents IIN1-IINj into output voltages V1-Vj and output currents I1-Ij, respectively, wherein the sum of the output voltages V1-Vj is the bus voltage VOUT and the sum of the output currents I1-Ij is the bus current IOUT. The total input voltage VIN is similar to each of the plurality of input voltages VIN1-VINj of the plurality of charging devices CG1-CGj, and the total input current IIN is equal to the sum of the plurality of input currents IIN1-IINj of the plurality of charging devices CG1-CGj.

於本實施例中,多個充電裝置CG1~CGj中的其中一者為主充電裝置,而其餘充電裝置為從屬充電裝置。舉例而言,充電裝置CG1為主充電裝置,而充電裝置CG2~CGj為從屬充電裝置,但不限於此。In this embodiment, one of the plurality of charging devices CG1-CGj is a master charging device, and the remaining charging devices are slave charging devices. For example, the charging device CG1 is a master charging device, and the charging devices CG2-CGj are slave charging devices, but not limited thereto.

請參閱第2圖,第2圖是依據本發明實施例的充電裝置CGi的示意圖。充電裝置CGi用以代表第1圖的充電裝置CG1~CGj中的一者,其中i是正整數且1≦i≦j。Please refer to Fig. 2, which is a schematic diagram of a charging device CGi according to an embodiment of the present invention. The charging device CGi is used to represent one of the charging devices CG1-CGj in Fig. 1, where i is a positive integer and 1≦i≦j.

在結構上,充電裝置CGi包含第一轉換電路21、中繼電容、第二轉換電路22以及控制電路23i。第一轉換電路21電連接圖1的保護裝置15、第二轉換電路22及控制電路23i,經配置來依據第一控制訊號C1i,將輸入電壓VINi及輸入電流IINi轉換為中繼電壓VMi及中繼電流IMi。中繼電容的一端電連接於第一轉換電路21與第二轉換電路22之間,中繼電容的另一端電連接接地端,中繼電容經配置以儲存中繼電壓VMi及中繼電流IMi的電能。第二轉換電路22電連接中繼電容、控制電路23i及圖1的負載90及電池80,經配置來依據第二控制訊號C2i,將中繼電壓VMi及中繼電流IMi轉換為輸出電壓Vi及輸出電流Ii。控制電路23i電連接第一轉換電路21的輸入端、第二轉換電路22的輸出端及負載90的輸入端,經配置來依據輸入電壓VINi、輸入電流IINi、母線電壓VOUT及母線電流IOUT,產生第一控制訊號C1i到第一轉換電路21以及產生第二控制訊號C2i到第二轉換電路22。本實施例的充電裝置CGi採用兩級轉換器,可同時達到充電裝置CGi的輸入端與輸出端的調節。Structurally, the charging device CGi includes afirst conversion circuit 21, a relay capacitor, asecond conversion circuit 22, and acontrol circuit 23i. Thefirst conversion circuit 21 is electrically connected to theprotection device 15, thesecond conversion circuit 22, and thecontrol circuit 23i of FIG. 1, and is configured to convert the input voltage VINi and the input current IINi into a relay voltage VMi and a relay current IMi according to a first control signal C1i. One end of the relay capacitor is electrically connected between thefirst conversion circuit 21 and thesecond conversion circuit 22, and the other end of the relay capacitor is electrically connected to the ground terminal. The relay capacitor is configured to store the electrical energy of the relay voltage VMi and the relay current IMi. Thesecond conversion circuit 22 is electrically connected to the relay capacitor, thecontrol circuit 23i, theload 90 and thebattery 80 of FIG. 1, and is configured to convert the relay voltage VMi and the relay current IMi into the output voltage Vi and the output current Ii according to the second control signal C2i. Thecontrol circuit 23i is electrically connected to the input end of thefirst conversion circuit 21, the output end of thesecond conversion circuit 22 and the input end of theload 90, and is configured to generate a first control signal C1i to thefirst conversion circuit 21 and a second control signal C2i to thesecond conversion circuit 22 according to the input voltage VINi, the input current IINi, the bus voltage VOUT and the bus current IOUT. The charging device CGi of this embodiment adopts a two-stage converter, which can simultaneously achieve regulation of the input and output ends of the charging device CGi.

請參照第3圖,第3圖是依據本發明實施例的控制方法30的流程圖。控制方法30適用於第1圖的再生能源供電系統10,控制方法30可編譯為程式碼,經配置來指示多個充電裝置CG1~CGj執行控制方法30包含的步驟S31至S34。Please refer to FIG. 3, which is a flow chart of acontrol method 30 according to an embodiment of the present invention. Thecontrol method 30 is applicable to the renewable energypower supply system 10 of FIG. 1. Thecontrol method 30 can be compiled into a program code and configured to instruct a plurality of charging devices CG1-CGj to execute steps S31 to S34 included in thecontrol method 30.

步驟S31:通過全部的充電裝置,收集多個當前功率,以計算當前系統總功率。Step S31: Collect multiple current powers through all charging devices to calculate the current system total power.

步驟S32:通過主充電裝置,依據當前系統總功率,進行最大功率追蹤,以計算多個MPPT參數,並傳送到全部的充電裝置。Step S32: The main charging device performs maximum power tracking based on the current total system power to calculate multiple MPPT parameters and transmit them to all charging devices.

步驟S33:通過全部的充電裝置,分別依據多個當前功率,計算目標功率。Step S33: Calculate the target power through all charging devices according to the multiple current powers.

步驟S34:通過全部的充電裝置,分別依據多個MPPT參數、目標功率,計算擾動分量及控制命令。Step S34: Calculate disturbance components and control commands through all charging devices according to multiple MPPT parameters and target power.

步驟S35:過全部的充電裝置,分別依據控制命令,控制輸出電流與輸出電壓。回到步驟S31。Step S35: All charging devices are controlled to control the output current and output voltage according to the control command. Return to step S31.

於部分實施例中,第2圖的控制電路23i可以包含特殊應用積體電路(ASIC)、微控制電路(MCU)、伺服器或其他具有資料存取、資料計算、資料儲存、資料傳送與接收、或類似功能的運算電路或元件,並可用以執行控制方法30。In some embodiments, thecontrol circuit 23i of FIG. 2 may include an application specific integrated circuit (ASIC), a microcontroller unit (MCU), a server, or other computing circuits or components having data access, data calculation, data storage, data transmission and reception, or similar functions, and may be used to execute thecontrol method 30.

請同時參照第3圖及第4圖,第4圖是依據本發明實施例用的控制方法30的操作時序圖。於本實施中,假設充電裝置CG1是主充電裝置,其餘的充電裝置CG2~CGj是從屬充電裝置。Please refer to Figure 3 and Figure 4 at the same time. Figure 4 is an operation timing diagram of thecontrol method 30 used in the embodiment of the present invention. In this embodiment, it is assumed that the charging device CG1 is the master charging device, and the remaining charging devices CG2 to CGj are slave charging devices.

於步驟S31,主充電裝置CG1收集再生能源供電系統10中全部的充電裝置CG1~CGj的多個當前功率P1~Pj,以計算總當前功率。In step S31, the main charging device CG1 collects multiple current powers P1-Pj of all the charging devices CG1-CGj in the renewable energypower supply system 10 to calculate the total current power.

於步驟S32,主充電裝置CG1依據當前系統總功率,進行最大功率追蹤,以計算多個MPPT參數,並傳送到全部的充電裝置。In step S32, the master charging device CG1 performs maximum power tracking according to the current total system power to calculate multiple MPPT parameters and transmit them to all charging devices.

於步驟S33,全部的充電裝置CG1~CGj分別依據多個當前功率P1~Pj,計算目標功率P1_target~Pj_target。於第一實施例中,假設多個充電裝置CG1~CGj的額定功率(或最大操作功率)相同,那麼全部的充電裝置CG1~CGj 依據以下算式(1)計算目標功率。In step S33, all charging devices CG1-CGj calculate target powers P1_target-Pj_target according to the current powers P1-Pj. In the first embodiment, assuming that the rated powers (or maximum operating powers) of the charging devices CG1-CGj are the same, all charging devices CG1-CGj calculate the target powers according to the following formula (1).

算式(1)Formula (1) .

於算式(1)中,Pi_target為第i個充電裝置CGi的目標功率,Pi=VINi╳IINi為第i個充電裝置CGi的當前功率,VINi為第i個充電裝置CGi的輸入電壓,IINi為第i個充電裝置CGi的輸入電流,j為充電裝置的數量, i、j是正整數且1≦i≦j。依據算式(1)可知,在額定功率相同的前提下,多個充電裝置CG1~CGj的目標功率P1_target~Pj_target是當前系統總功率的平均值。In formula (1), Pi_target is the target power of the i-th charging device CGi, Pi=VINi╳IINi is the current power of the i-th charging device CGi, VINi is the input voltage of the i-th charging device CGi, IINi is the input current of the i-th charging device CGi, j is the number of charging devices, i and j are positive integers and 1≦i≦j. According to formula (1), under the premise of the same rated power, the target powers P1_target~Pj_target of multiple charging devices CG1~CGj are the average value of the current system total power.

舉例而言,假設只有兩台充電裝置,主充電裝置CG1的當前功率為200W(瓦),從屬充電裝置CG2的當前功率為100W,且充電裝置CG1和CG2的額定功率均為200W。於此情況下,充電裝置CG1和CG2的目標功率為(200+100)/2=150W,以平均分配每個充電裝置的輸出功率。For example, assume that there are only two charging devices, the current power of the master charging device CG1 is 200W (watts), the current power of the slave charging device CG2 is 100W, and the rated power of charging devices CG1 and CG2 is 200W. In this case, the target power of charging devices CG1 and CG2 is (200+100)/2=150W to evenly distribute the output power of each charging device.

於第二實施例中,假設多個充電裝置CG1~CGj的額定功率(或最大操作功率)不盡相同,那麼全部的充電裝置CG1~CGj依據以下算式(2)計算目標功率。In the second embodiment, assuming that the rated powers (or maximum operating powers) of the plurality of charging devices CG1 -CGj are not the same, the target powers of all the charging devices CG1 -CGj are calculated according to the following formula (2).

算式(2)Formula (2) .

於算式(2)中,Pi_target為第i個充電裝置CGi的目標功率,Pi為第i個充電裝置CGi的當前功率,Pi_rated為第i個充電裝置CGi的額定功率,j為充電裝置的數量。依據述算式(2)可知,主充電裝置CG1計算每一個充電裝置的額定功率在總額定功率中的比例,並且按比例來乘以總當前功率,以計算每一個充電裝置的目標功率。In formula (2), Pi_target is the target power of the i-th charging device CGi, Pi is the current power of the i-th charging device CGi, Pi_rated is the rated power of the i-th charging device CGi, and j is the number of charging devices. According to formula (2), the main charging device CG1 calculates the proportion of the rated power of each charging device in the total rated power, and multiplies the proportion by the total current power to calculate the target power of each charging device.

舉例而言,假設只有兩台充電裝置,主充電裝置CG1的當前功率為50W,從屬充電裝置CG2的當前功率為100W,那麼總當前功率為50+100=150W。假設主充電裝置CG1的額定功率為200W,而從屬充電裝置CG2的額定功率為100W,那麼主充電裝置CG1的額定功率比例為

Figure 112144512-A0305-02-0012-8
,而從屬充電裝置CG2的額定功率比例為
Figure 112144512-A0305-02-0012-9
。依據算式(2)可計算出主充電裝置CG1的目標功率P1_target為
Figure 112144512-A0305-02-0012-10
,而從屬充電裝置CG2的目標功率P2_target為
Figure 112144512-A0305-02-0012-11
,以按照額定功率的比例來分配每個充電裝置的輸出功率。For example, if there are only two charging devices, the current power of the master charging device CG1 is 50W, and the current power of the slave charging device CG2 is 100W, then the total current power is 50+100=150W. If the rated power of the master charging device CG1 is 200W, and the rated power of the slave charging device CG2 is 100W, then the rated power ratio of the master charging device CG1 is
Figure 112144512-A0305-02-0012-8
, and the rated power ratio of the slave charger CG2 is
Figure 112144512-A0305-02-0012-9
According to formula (2), the target power P1_target of the main charging device CG1 can be calculated as
Figure 112144512-A0305-02-0012-10
, and the target power P2_target of the slave charging device CG2 is
Figure 112144512-A0305-02-0012-11
, to distribute the output power of each charging device in proportion to the rated power.

於步驟S34,全部的充電裝置CG1~CGj,依據多個MPPT參數及目標功率,計算擾動分量及控制命令。於一實施例中,多個MPPT參數包含MPPT的擾動方向參數DIR、斜率參數SLP及擾動振幅ΔXsys_step。擾動振幅ΔXsys_step為每一MPPT調節周期的系統步長(system step size),並由主充電裝置所設置或分配。於另一實施例中,擾動振幅ΔXsys_step事先預設在每一個充電裝置內建的記憶體。In step S34, all charging devices CG1~CGj calculate disturbance components and control commands according to multiple MPPT parameters and target power. In one embodiment, multiple MPPT parameters include disturbance direction parameter DIR, slope parameter SLP and disturbance amplitude ΔXsys_step of MPPT. The disturbance amplitude ΔXsys_step is the system step size of each MPPT adjustment cycle and is set or allocated by the master charging device. In another embodiment, the disturbance amplitude ΔXsys_step is preset in the built-in memory of each charging device.

全部的充電裝置CG1~CGj依據以下算式(3)計算擾動分量。The disturbance components of all charging devices CG1 to CGj are calculated according to the following equation (3).

算式(3)Formula (3) .

於算式(3)中,ΔXi是第i個充電裝置CGi的擾動分量,Pi_base是第i個充電裝置CGi的基礎功率;若每一個充電裝置的額定功率相同,那麼基礎功率Pi_base是當前系統總功率的平均值;若每一個充電裝置的額定功率不盡相同,那麼基礎功率Pi_base是額定功率Pi_rated。In formula (3), ΔXi is the disturbance component of the i-th charging device CGI, and Pi_base is the base power of the i-th charging device CGI. If the rated power of each charging device is the same, then the base power Pi_base is the average value of the current system total power. If the rated power of each charging device is different, then the base power Pi_base is the rated power Pi_rated.

接著,步驟S34更包含:全部的充電裝置CG1~CGj依據擾動分量、多個MPPT參數及先前控制命令Yi_prev,計算控制命令Yi。具體而言,全部的充電裝置CG1~CGj依據以下算式(4)計算控制命令Yi。Next, step S34 further includes: all charging devices CG1-CGj calculate the control command Yi according to the disturbance component, multiple MPPT parameters and the previous control command Yi_prev. Specifically, all charging devices CG1-CGj calculate the control command Yi according to the following formula (4).

算式(4)Formula (4) .

於算式(4)中,Yi是第i個充電裝置CGi的控制命令,ΔXi是第i個充電裝置CGi的擾動分量,ΔXconst_step是固定振幅,DIR是方向參數,SLP是斜率參數,且Yi_prev是第i個充電裝置CGi在先前MPPT週期的先前控制命令。In formula (4), Yi is the control command of the i-th charging device CGi, ΔXi is the disturbance component of the i-th charging device CGi, ΔXconst_step is the fixed amplitude, DIR is the direction parameter, SLP is the slope parameter, and Yi_prev is the previous control command of the i-th charging device CGi in the previous MPPT cycle.

於一實施例中,當再生能源供電系統10是採用擾動觀察法來找到最大功率點(MPP)輸出時,擾動分量ΔXi、擾動振幅ΔXsys_step、固定振幅ΔXconst_step、控制命令Yi和先前控制命令Yi_prev皆為電壓訊號。In one embodiment, when the renewable energypower supply system 10 adopts the disturbance observation method to find the maximum power point (MPP) output, the disturbance component ΔXi, the disturbance amplitude ΔXsys_step, the fixed amplitude ΔXconst_step, the control command Yi and the previous control command Yi_prev are all voltage signals.

於一實施例中,進行最大功率追蹤時,若方向參數DIR為1,那麼充電裝置CGi增加控制命令Yi;若MPPT調節方向參數DIR為-1,那麼充電裝置CGi減少控制命令Yi。若主充電裝置CG1判斷在下一個MPPT週期需增加功率,那麼斜率參數SLP為1;若主充電裝置CG1判斷在下一個MPPT週期需降低功率,那麼斜率參數SLP為-1。此外,目前有各種MPPT控制方法被提出,例如擾動觀察法、增量電導法、電流掃描法等。本實施例以擾動觀察法為例,充電裝置的控制電路會於每次MPPT調節周期小幅地增加或減少電壓,並且量測充電裝置的當前功率。若當前功率增加,控制電路繼續依相同方向調節電壓,直到當前功率不增加為止。In one embodiment, when performing maximum power tracking, if the direction parameter DIR is 1, the charging device CGi increases the control command Yi; if the MPPT adjustment direction parameter DIR is -1, the charging device CGi decreases the control command Yi. If the main charging device CG1 determines that the power needs to be increased in the next MPPT cycle, the slope parameter SLP is 1; if the main charging device CG1 determines that the power needs to be reduced in the next MPPT cycle, the slope parameter SLP is -1. In addition, various MPPT control methods have been proposed, such as the perturbation observation method, the incremental conductivity method, the current scanning method, etc. This embodiment takes the perturbation observation method as an example. The control circuit of the charging device will slightly increase or decrease the voltage in each MPPT adjustment cycle and measure the current power of the charging device. If the current power increases, the control circuit continues to adjust the voltage in the same direction until the current power stops increasing.

最後,於步驟S35,全部的充電裝置CG1~CGj,分別依據控制命令Y1~Yj,控制輸出電流I1~Ij與輸出電壓V1~Vj。詳細來說,步驟S35更包含:全部的充電裝置CG1~CGj分別依據控制命令Y1~Yj、輸入電壓VIN1~VINj及輸入電流IIN1~IINj,產生第一控制訊號C11~C1j,以進行輸入端的功率調節;以及依據輸入穩壓命令Vstable、中繼電壓VM1~VMj、輸出電流I1~Ij及輸出電壓V1~Vj,產生第二控制訊號C21~C2j,以進行輸出端的功率調節。Finally, in step S35, all the charging devices CG1~CGj control the output currents I1~Ij and the output voltages V1~Vj according to the control commands Y1~Yj, respectively. In detail, step S35 further includes: all the charging devices CG1~CGj generate first control signals C11~C1j according to the control commands Y1~Yj, the input voltages VIN1~VINj and the input currents IIN1~IINj, respectively, to adjust the power at the input end; and generate second control signals C21~C2j according to the input voltage regulation command Vstable, the relay voltages VM1~VMj, the output currents I1~Ij and the output voltages V1~Vj, to adjust the power at the output end.

於一實施例中,步驟S32更包含:主充電裝置CG1傳送同步時序到全部的充電裝置CG1~CGj,因此在步驟S35中,全部的充電裝置CG1~CGj在同步時序下,分別控制多個輸出電流I1~Ij及多個輸出電壓V1~Vj,以同步調節功率。In one embodiment, step S32 further includes: the master charging device CG1 transmits the synchronization timing to all the charging devices CG1-CGj, so in step S35, all the charging devices CG1-CGj respectively control the multiple output currents I1-Ij and the multiple output voltages V1-Vj under the synchronization timing to synchronously adjust the power.

如此一來,控制方法30可適用於多個充電裝置CG1~CGj互相並聯的再生能源供電系統10,無須另外開發不同功率瓦數的充電裝置,可增加系統規劃彈性。並且,多個充電裝置CG1~CGj同時兼具MPPT、輸入端與輸出端功率調節的能力。In this way, thecontrol method 30 can be applied to the renewable energypower supply system 10 in which multiple charging devices CG1-CGj are connected in parallel, without the need to develop charging devices with different power wattages, which can increase the flexibility of system planning. In addition, multiple charging devices CG1-CGj simultaneously have the capabilities of MPPT, input and output power regulation.

請參閱第5圖,第5圖是依據本發明實施例的主控制電路與從屬控制電路並聯的功能方塊示意圖。於本實施例中,假設控制電路231為主充電裝置CG1中的主控制電路,而控制電路232~23j為從屬充電裝置CG2~CGj中的從屬控制電路,但不限於此。Please refer to FIG. 5, which is a functional block diagram of a master control circuit and a slave control circuit connected in parallel according to an embodiment of the present invention. In this embodiment, it is assumed that thecontrol circuit 231 is the master control circuit in the master charging device CG1, and the control circuits 232-23j are the slave control circuits in the slave charging devices CG2-CGj, but the present invention is not limited thereto.

在結構上,主控制電路231包含MPPT單元50、功率偵測器501、第一運算單元51、第二運算單元52、PI(proportional–integral)控制電路53~57、暫存器58~59、乘法器M1以及減法器S1~S5。MPPT單元50電連接多個充電裝置CG1~CGj,經配置來向全部的充電裝置CG1~CGj收集多個當前功率P1~Pj,據以產生方向參數DIR、斜率參數SLP及擾動振幅ΔXsys_step。然後,MPPT單元50將方向參數DIR、斜率參數SLP及擾動振幅ΔXsys_step傳送到全部的第一運算單元51。此外,MPPT單元50傳送同步時序到全部的第一運算單元51,以同步進行功率調節。於一實施例中,只有主控制電路231設置MPPT單元50。於另一實施例中,全部的控制電路231~23j皆包含MPPT單元,但是僅有主控制電路231的MPPT單元50被致能,其餘的從屬控制電路232~23j的MPPT單元50被禁能;在此情況下,當主控制電路231故障時,致能一個從屬控制電路的MPPT單元50即可作為替代的主控制電路。Structurally, themain control circuit 231 includes anMPPT unit 50, apower detector 501, a first operation unit 51, asecond operation unit 52, a PI (proportional-integral) control circuit 53-57, registers 58-59, a multiplier M1, and subtractors S1-S5. TheMPPT unit 50 is electrically connected to a plurality of charging devices CG1-CGj, and is configured to collect a plurality of current powers P1-Pj from all the charging devices CG1-CGj, and to generate a direction parameter DIR, a slope parameter SLP, and a disturbance amplitude ΔXsys_step. Then, theMPPT unit 50 transmits the direction parameter DIR, the slope parameter SLP, and the disturbance amplitude ΔXsys_step to all the first operation units 51. In addition, theMPPT unit 50 transmits synchronization timing to all the first operation units 51 to synchronously perform power regulation. In one embodiment, only themaster control circuit 231 is provided with theMPPT unit 50. In another embodiment, all thecontrol circuits 231 to 23j include MPPT units, but only theMPPT unit 50 of themaster control circuit 231 is enabled, and theMPPT units 50 of the remaining slave control circuits 232 to 23j are disabled; in this case, when themaster control circuit 231 fails, theMPPT unit 50 of one slave control circuit can be enabled as a substitute master control circuit.

全部的控制電路231~23j都採用相同的電路結構來實現功率調節。以主控制電路231為例,功率偵測器501電連接多個充電裝置CG1~CGj的輸入端,經配置來偵測當前的輸入電壓VIN1及輸入電流IIN1。乘法器M1經配置來相乘輸入電壓VIN1和輸入電流IIN1,以計算當前功率P1。第一運算單元51電連接乘法器M1,經配置來向全部的第一運算單元51收集多個當前功率P1~Pj及多個額定功率P1_rated~Pj_rated。於部分實施例中,MPPT單元50和第一運算單元51通過數位訊號或類比訊號來傳輸多個MPPT參數、多個當前功率P1~Pj、多個額定功率P1_rated~Pj_rated 等資訊到其他充電裝置。All control circuits 231-23j use the same circuit structure to achieve power regulation. Taking themain control circuit 231 as an example, thepower detector 501 is electrically connected to the input terminals of multiple charging devices CG1-CGj, and is configured to detect the current input voltage VIN1 and input current IIN1. The multiplier M1 is configured to multiply the input voltage VIN1 and the input current IIN1 to calculate the current power P1. The first operation unit 51 is electrically connected to the multiplier M1, and is configured to collect multiple current powers P1-Pj and multiple rated powers P1_rated-Pj_rated from all the first operation units 51. In some embodiments, theMPPT unit 50 and the first operation unit 51 transmit information such as a plurality of MPPT parameters, a plurality of current powers P1-Pj, a plurality of rated powers P1_rated-Pj_rated to other charging devices via digital signals or analog signals.

若全部的充電裝置CG1~CGj的額定功率皆相同,那麼第一運算單元51經配置來依據算式(1),計算目標功率P1_target。若充電裝置CG1~CGj的額定功率不盡相同,那麼第一運算單元51經配置來依據算式(2),計算目標功率P1_target。接著,第一運算單元51經配置來依據當前功率P1、目標功率P1_target、方向參數DIR、斜率參數SLP、擾動振幅ΔXsys_step及算式(3),計算擾動分量ΔX1。If the rated powers of all the charging devices CG1 to CGj are the same, the first operation unit 51 is configured to calculate the target power P1_target according to equation (1). If the rated powers of the charging devices CG1 to CGj are not all the same, the first operation unit 51 is configured to calculate the target power P1_target according to equation (2). Then, the first operation unit 51 is configured to calculate the disturbance component ΔX1 according to the current power P1, the target power P1_target, the direction parameter DIR, the slope parameter SLP, the disturbance amplitude ΔXsys_step and equation (3).

暫存器58經配置來儲存固定振幅ΔXconst_step。第二運算單元52電連接第一運算單元51及暫存器58,經配置來依據擾動分量ΔX1、固定振幅ΔXconst_step、先前控制命令Y1_prev、方向參數DIR、斜率參數SLP及算式(4)計算控制命令Y1後,反饋控制命令Y1到自身以儲存為先前控制命令Y1_prev。減法器S1電連接充電裝置CG1的輸入端,經配置來將輸入電壓VIN1減去控制命令Y1,以產生第一電壓補償。PI控制器53電連接減法器S2,經配置來將第一電壓補償轉換為第一電流值。減法器S2電連接充電裝置CG1的輸入端,經配置來將第一電流值減去輸入電流IIN1,以產生第一電流補償。PI控制器54電連接減法器S2,經配置來將第一電流補償轉換為第一控制訊號C11,並輸入到第一轉換電路21。Theregister 58 is configured to store the fixed amplitude ΔXconst_step. Thesecond operation unit 52 is electrically connected to the first operation unit 51 and theregister 58, and is configured to calculate the control command Y1 according to the disturbance component ΔX1, the fixed amplitude ΔXconst_step, the previous control command Y1_prev, the direction parameter DIR, the slope parameter SLP and the formula (4), and then feed back the control command Y1 to itself to store it as the previous control command Y1_prev. The subtractor S1 is electrically connected to the input end of the charging device CG1, and is configured to subtract the control command Y1 from the input voltage VIN1 to generate a first voltage compensation. ThePI controller 53 is electrically connected to the subtractor S2, and is configured to convert the first voltage compensation into a first current value. The subtractor S2 is electrically connected to the input terminal of the charging device CG1 and is configured to subtract the input current IIN1 from the first current value to generate a first current compensation. ThePI controller 54 is electrically connected to the subtractor S2 and is configured to convert the first current compensation into a first control signal C11 and input it to thefirst conversion circuit 21.

暫存器59經配置來儲存輸入穩壓命令Vstable。減法器S3電連接暫存器59、第一轉換電路21的輸出端及中繼電容,經配置來將輸入穩壓命令Vstable減去中繼電壓VM1來產生穩壓補償。PI控制器55電連接減法器S3,經配置來將穩壓補償轉換為第二電流值。減法器S4電連接PI控制器55,經配置來將第二電流值減去輸出電流I1,以產生第二電流補償。PI控制器56電連接減法器S4,經配置來將該第二電流補償轉換為第一電壓值。減法器S5電連接PI控制器56,經配置來將第一電壓值減去輸出電壓V1,以產生第二電壓補償。PI控制器57電連接減法器S5,經配置來將第二電壓補償轉換為第二控制訊號C21。Theregister 59 is configured to store the input voltage regulation command Vstable. The subtractor S3 is electrically connected to theregister 59, the output end of thefirst conversion circuit 21 and the relay capacitor, and is configured to subtract the relay voltage VM1 from the input voltage regulation command Vstable to generate a voltage regulation compensation. ThePI controller 55 is electrically connected to the subtractor S3, and is configured to convert the voltage regulation compensation into a second current value. The subtractor S4 is electrically connected to thePI controller 55, and is configured to subtract the output current I1 from the second current value to generate a second current compensation. The PI controller 56 is electrically connected to the subtractor S4, and is configured to convert the second current compensation into a first voltage value. The subtractor S5 is electrically connected to the PI controller 56 and configured to subtract the output voltage V1 from the first voltage value to generate a second voltage compensation. ThePI controller 57 is electrically connected to the subtractor S5 and configured to convert the second voltage compensation into a second control signal C21.

因此,通過第5圖的控制電路並聯的電路架構,可執行第3圖的控制方法30。Therefore, thecontrol method 30 of FIG. 3 can be executed through the circuit architecture of the control circuit in parallel of FIG. 5.

綜上所述,本揭示實施例的主從充電控制方法及其再生能源供電系統具備了以下優勢:(1)將多個充電裝置互相並聯,可適應不同的發電功率瓦數,無須另外開發不同功率瓦數的充電裝置,可增加系統規劃彈性;(2)採用單一保護裝置的集中式保護,可節省系統成本;(3)多個充電裝置採用主從式控制方法,同時兼具MPPT、輸入與輸出功率調節的能力;及(4)依據充電裝置的額定功率來分配輸出功率占比,可增加系統規劃彈性。In summary, the master-slave charging control method and the renewable energy power supply system of the disclosed embodiment have the following advantages: (1) multiple charging devices are connected in parallel to adapt to different power wattages, without the need to develop charging devices with different power wattages, which can increase the flexibility of system planning; (2) centralized protection of a single protection device can be adopted to save system costs; (3) multiple charging devices adopt a master-slave control method, which has the ability of MPPT, input and output power regulation; and (4) the output power ratio is allocated according to the rated power of the charging device, which can increase the flexibility of system planning.

雖然本揭示的特定實施例已經揭露有關上述實施例,各種替代及改良可藉由相關領域中的一般技術人員在本揭示中執行而沒有從本揭示的原理及精神背離。因此,本揭示的保護範圍由所附申請專利範圍確定。Although specific embodiments of the present disclosure have been disclosed with respect to the above embodiments, various substitutions and improvements may be made by those skilled in the art in the present disclosure without departing from the principles and spirit of the present disclosure. Therefore, the scope of protection of the present disclosure is determined by the scope of the attached patent application.

10:再生能源供電系統10: Renewable energy power supply system

CG1~CGj,CGi:充電裝置CG1~CGj,CGi: Charging device

13:再生能源發電機組13: Renewable energy generator

15:保護裝置15: Protective device

90:負載90: Load

80:電池80:Battery

VIN:總輸入電壓VIN: Total input voltage

IIN:總輸入電流IIN: Total input current

VIN1~VINj,VINi:輸入電壓VIN1~VINj,VINi: Input voltage

IIN1~IINj,IINi:輸入電流IIN1~IINj,IINi: Input current

VOUT:母線電壓VOUT: Bus voltage

IOUT:母線電流IOUT: Bus current

V1~Vj,Vi:輸出電壓V1~Vj,Vi: output voltage

I1~Ij,Ii:輸出電流I1~Ij,Ii: output current

VM1~VMj,VMi:中繼電壓VM1~VMj,VMi: Relay voltage

IM1~IMj,IMi:中繼電流IM1~IMj,IMi: Relay current

231~23j,23i:控制電路231~23j,23i: Control circuit

21:第一轉換電路21: First conversion circuit

22:第二轉換電路22: Second conversion circuit

C1i,C11~C1j:第一控制訊號C1i, C11~C1j: first control signal

C2i,C21~C2j:第二控制訊號C2i, C21~C2j: second control signal

30:控制方法30: Control Methods

S31,S32,S33,S34,S35:步驟S31, S32, S33, S34, S35: Steps

231:主控制電路231: Main control circuit

232~23j:從屬控制電路232~23j: Slave control circuit

50:MPPT單元50:MPPT unit

DIR:方向參數DIR: Direction parameter

SLP:斜率參數SLP: Slope parameter

ΔXsys_step:擾動振幅ΔXsys_step: disturbance amplitude

M1:乘法器M1: Multiplier

P1~Pj:當前功率P1~Pj: Current power

51:第一運算單元51: First operation unit

52:第二運算單元52: Second operation unit

53,54,55,56,57:PI控制器53,54,55,56,57:PI controller

58,59:暫存器58,59: Register

ΔXconst_step:固定振幅ΔXconst_step: fixed amplitude

ΔX1~ΔXj:擾動分量ΔX1~ΔXj: disturbance component

Vstable:輸入穩壓命令Vstable: Enter the voltage stabilization command

S1,S2,S3,S4,S5:減法器S1,S2,S3,S4,S5: Subtractor

Y1_prev~Yj_prev:先前控制命令Y1_prev~Yj_prev: previous control command

Y1~Yj:控制命令Y1~Yj: control command

Pj_rated:額定功率Pj_rated: Rated power

為讓本揭露的上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式的說明如下: 第1圖是依據本發明實施例的再生能源供電系統的示意圖; 第2圖是依據本發明實施例的充電裝置的示意圖; 第3圖是依據本發明實施例的控制方法的流程圖; 第4圖是依據本發明實施例的控制方法的操作時序圖;以及 第5圖是依據本發明實施例的主控制電路與從屬控制電路並聯的功能方塊示意圖。In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more clearly understandable, the attached drawings are described as follows: FIG. 1 is a schematic diagram of a renewable energy power supply system according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a charging device according to an embodiment of the present invention; FIG. 3 is a flow chart of a control method according to an embodiment of the present invention; FIG. 4 is an operation timing diagram of a control method according to an embodiment of the present invention; and FIG. 5 is a functional block schematic diagram of a master control circuit and a slave control circuit in parallel according to an embodiment of the present invention.

30:控制方法30: Control method

S31,S32,S33,S34,S35:步驟S31, S32, S33, S34, S35: Steps

Claims (19)

Translated fromChinese
一種控制方法,適用於包含多個充電裝置的一再生能源供電系統,其中該多個充電裝置的多個輸入端及多個輸出端互相並聯,該多個充電裝置包含一主充電裝置,其中該控制方法包含:步驟S31:通過該多個電裝置,收集多個當前功率,以計算一當前系統總功率;步驟S32:通過該主充電裝置,依據該當前系統總功率,進行最大功率追蹤(MPPT),以計算多個MPPT參數,並傳送到該多個充電裝置;步驟S33:通過該多個充電裝置,分別依據該多個當前功率,計算多個目標功率;步驟S34:通過該多個充電裝置,分別依據該多個MPPT參數及該多個目標功率,計算多個控制命令;以及步驟S35:通過該多個充電裝置,分別依據該多個控制命令,控制多個輸出電流與多個輸出電壓。A control method is applicable to a renewable energy power supply system including a plurality of charging devices, wherein a plurality of input terminals and a plurality of output terminals of the plurality of charging devices are connected in parallel, and the plurality of charging devices include a main charging device, wherein the control method comprises: step S31: collecting a plurality of current powers through the plurality of charging devices to calculate a current system total power; step S32: performing maximum power point tracking (MPPT) according to the current system total power through the main charging device ) to calculate multiple MPPT parameters and transmit them to the multiple charging devices; step S33: through the multiple charging devices, multiple target powers are calculated respectively according to the multiple current powers; step S34: through the multiple charging devices, multiple control commands are calculated respectively according to the multiple MPPT parameters and the multiple target powers; and step S35: through the multiple charging devices, multiple output currents and multiple output voltages are controlled respectively according to the multiple control commands.如請求項1所述的控制方法,其中若該多個充電裝置的多個額定功率相同,那麼該步驟S33包含:通過該多個充電裝置依據以下算式(1)計算該多個目標功率中的一者:
Figure 112144512-A0305-02-0023-1
其中Pi_target為一第i個充電裝置的一第一目標功率,Pi=VINi×IINi為該第i個充電裝置的一第一當前功率,VINi為該第i個充電裝置的一第一輸入電壓,IINi為該第i個充電裝置的一第一輸入電流,j為該多個充電裝置的數量,i、j是正整數且1≦i≦j。In the control method of claim 1, if the rated powers of the plurality of charging devices are the same, then the step S33 comprises: calculating one of the plurality of target powers by the plurality of charging devices according to the following formula (1):
Figure 112144512-A0305-02-0023-1
Wherein Pi_target is a first target power of an i-th charging device, Pi=VINi×IINi is a first current power of the i-th charging device, VINi is a first input voltage of the i-th charging device, IINi is a first input current of the i-th charging device, j is the number of the multiple charging devices, i and j are positive integers and 1≦i≦j.如請求項1所述的控制方法,其中若該多個充電裝置的多個額定功率不盡相同,那麼該步驟S33包含:通過該多個充電裝置依據以下算式(2)計算該多個目標功率中的一者:
Figure 112144512-A0305-02-0023-2
其中Pi_target為第i個充電裝置的一第一目標功率,Pi為該第i個充電裝置的一第一當前功率,Pi_rated為該第i個充電裝置的一第一額定功率,j為該多個充電裝置的數量,i、j是正整數且1≦i≦j。
In the control method of claim 1, if the rated powers of the plurality of charging devices are not the same, then the step S33 comprises: calculating one of the plurality of target powers by the plurality of charging devices according to the following formula (2):
Figure 112144512-A0305-02-0023-2
Wherein Pi_target is a first target power of the i-th charging device, Pi is a first current power of the i-th charging device, Pi_rated is a first rated power of the i-th charging device, j is the number of the plurality of charging devices, i and j are positive integers and 1≦i≦j.
如請求項2或3所述的控制方法,其中該步驟S34包含:通過該多個充電裝置依據以下算式(3)計算多個擾動分量中的一者:
Figure 112144512-A0305-02-0024-4
其中△Xi是該第i個充電裝置的一第一擾動分量,Pi_base是該第i個充電裝置的一基礎功率,△Xsys_step為一擾動振幅;其中若該多個充電裝置的該多個額定功率相同,那麼該基礎功率是該當前系統總功率的一平均值;若該多個充電裝置的該多個額定功率不盡相同,那麼該基礎功率是該多個額定功率。
The control method as claimed in claim 2 or 3, wherein the step S34 comprises: calculating one of the plurality of disturbance components by the plurality of charging devices according to the following equation (3):
Figure 112144512-A0305-02-0024-4
Wherein △Xi is a first disturbance component of the i-th charging device, Pi_base is a base power of the i-th charging device, and △Xsys_step is a disturbance amplitude; if the multiple rated powers of the multiple charging devices are the same, then the base power is an average value of the current system total power; if the multiple rated powers of the multiple charging devices are not the same, then the base power is the multiple rated powers.
如請求項4所述的控制方法,其中多個MPPT參數包含一擾動方向、一斜率參數及該擾動振幅,且該擾動振幅為每一MPPT調節周期的一系統步長。A control method as described in claim 4, wherein the multiple MPPT parameters include a disturbance direction, a slope parameter and the disturbance amplitude, and the disturbance amplitude is a system step size for each MPPT adjustment cycle.如請求項5所述的控制方法,其中該步驟S34包含:通過該多個充電裝置,分別依據該多個擾動分量、該多個MPPT參數及多個先前控制命令,計算該多個控制命令中的一者:(4) Yi=(△Xi+△Xconst_step)×DIR×SLP+Yi_prev其中Yi是該第i個充電裝置的一第一控制命令,△Xi是該第i個充電裝置的該第一擾動分量,△Xconst_step是固定振幅,DIR是擾動方向MPPT參數,SLP是該斜率參數,且Yi_prev是該第i個充電裝置在一先前MPPT週期的一第一先前控制命令。The control method as described in claim 5, wherein the step S34 comprises: calculating one of the multiple control commands by the multiple charging devices according to the multiple disturbance components, the multiple MPPT parameters and the multiple previous control commands: (4) Yi = (△Xi + △Xconst_step) × DIR × SLP + Yi_prev wherein Yi is a first control command of the i-th charging device, △Xi is the first disturbance component of the i-th charging device, △Xconst_step is a fixed amplitude, DIR is a disturbance direction MPPT parameter, SLP is the slope parameter, and Yi_prev is a first previous control command of the i-th charging device in a previous MPPT cycle.如請求項1所述的控制方法,其中該步驟S35更包含:通過該多個充電裝置,分別依據該多個控制命令、多個輸入電壓及多個輸入電流,產生多個第一控制訊號,以進行該多個輸入端的功率調節;以及通過該多個充電裝置,分別依據一輸入穩壓命令、多個中繼電壓、該多個輸出電流及該多個輸出電壓,產生多個第二控制訊號,以進行該多個輸出端的功率調節。The control method as described in claim 1, wherein the step S35 further comprises: generating multiple first control signals through the multiple charging devices according to the multiple control commands, the multiple input voltages and the multiple input currents to adjust the power of the multiple input ends; and generating multiple second control signals through the multiple charging devices according to an input voltage regulation command, the multiple relay voltages, the multiple output currents and the multiple output voltages to adjust the power of the multiple output ends.如請求項1所述的控制方法,其中該步驟S32更包含:通過該主充電裝置傳送一同步時序到該多個充電裝置;以及該多個充電裝置在該同步時序下,分別控制該多個輸出電流及該多個輸出電壓,以同步進行該多個輸出端的調節功率。The control method as described in claim 1, wherein the step S32 further comprises: transmitting a synchronization timing to the multiple charging devices through the main charging device; and the multiple charging devices respectively control the multiple output currents and the multiple output voltages under the synchronization timing to synchronously adjust the power of the multiple output ends.一種再生能源供電系統,包含:一再生能源發電機組,經配置來產生一總輸入電壓及一總輸入電流;以及多個充電裝置,其中該多個充電裝置的多個輸入端及多個輸出端互相並聯,且該多個充電裝置中的每一者包含:一控制電路,電連接該多個充電裝置的該多個輸入端及該多個輸出端,經配置來執行如請求項1所述的控制方法。A renewable energy power supply system comprises: a renewable energy generator set configured to generate a total input voltage and a total input current; and a plurality of charging devices, wherein the plurality of input terminals and the plurality of output terminals of the plurality of charging devices are connected in parallel, and each of the plurality of charging devices comprises: a control circuit electrically connected to the plurality of input terminals and the plurality of output terminals of the plurality of charging devices, and configured to execute the control method as described in claim 1.如請求項9所述的再生能源供電系統,其中該控制電路包含:一功率偵測器,電連接該多個充電裝置的該多個輸入端,經配置來偵測多個輸入電壓及多個輸入電流;一乘法器,經配置來相乘該多個輸入電壓和該多個輸入電流,以計算多個當前功率;一第一運算單元,電連接該乘法器及該多個充電裝置的多個第一運算單元,經配置來收集該多個當前功率及多個額定功率,並依據該多個當前功率及該多個額定功率,計算多個目標功率;其中該總輸入電壓近似於該多個充電裝置的該多個輸入電壓的每一者,且該總輸入電流等於該多個充電裝置的該多個輸入電流的總和。A renewable energy power supply system as described in claim 9, wherein the control circuit comprises: a power detector electrically connected to the multiple input terminals of the multiple charging devices, configured to detect multiple input voltages and multiple input currents; a multiplier configured to multiply the multiple input voltages and the multiple input currents to calculate multiple current powers; a first computing unit electrically connected to the multiplier and multiple first computing units of the multiple charging devices, configured to collect the multiple current powers and multiple rated powers, and calculate multiple target powers based on the multiple current powers and the multiple rated powers; wherein the total input voltage is approximately equal to each of the multiple input voltages of the multiple charging devices, and the total input current is equal to the sum of the multiple input currents of the multiple charging devices.如請求項10所述的再生能源供電系統,其中若該多個充電裝置的該多個額定功率皆相同,那麼該第一運算單元經配置來依據以下算式(1)計算該多個目標功率中的一者:
Figure 112144512-A0305-02-0027-5
其中Pi_target為一第i個充電裝置的一第一目標功率,Pi=VINi×IINi為該第i個充電裝置的一第一當前功率,VINi為該第i個充電裝置的一第一輸入電壓,IINi為該第i個充電裝置的一第一輸入電流,j為該多個充電裝置的數量,i、j是正整數且1≦i≦j。
In the renewable energy power supply system of claim 10, if the multiple rated powers of the multiple charging devices are the same, the first computing unit is configured to calculate one of the multiple target powers according to the following formula (1):
Figure 112144512-A0305-02-0027-5
Wherein Pi_target is a first target power of an i-th charging device, Pi=VINi×IINi is a first current power of the i-th charging device, VINi is a first input voltage of the i-th charging device, IINi is a first input current of the i-th charging device, j is the number of the multiple charging devices, i and j are positive integers and 1≦i≦j.
如請求項10所述的再生能源供電系統,其中若該多個充電裝置的多個額定功率不盡相同,那麼該第一運算單元經配置來依據以下算式(2)計算該多個目標功率中的一者:
Figure 112144512-A0305-02-0027-6
其中Pi_target為第i個充電裝置的一第一目標功率,Pi為該第i個充電裝置的一第一當前功率,Pi_rated為該第i個充電裝置的一第一額定功率,j為該多個充電裝置的數量,i、j是正整數且1≦i≦j,其中該第i個充電裝置包含一第一輸入電壓以及一第一輸入電流。
In the renewable energy power supply system as claimed in claim 10, if the multiple rated powers of the multiple charging devices are not the same, the first computing unit is configured to calculate one of the multiple target powers according to the following formula (2):
Figure 112144512-A0305-02-0027-6
Wherein Pi_target is a first target power of the i-th charging device, Pi is a first current power of the i-th charging device, Pi_rated is a first rated power of the i-th charging device, j is the number of the plurality of charging devices, i and j are positive integers and 1≦i≦j, wherein the i-th charging device includes a first input voltage and a first input current.
如請求項11或12所述的再生能源供電系統,其中該第一運算單元經配置來依據該多個當前功率中的一者、該多個目標功率中的一者、一擾動振幅及算式(3),計算一擾動分量:
Figure 112144512-A0305-02-0028-7
其中△Xi是該第i個充電裝置的該擾動分量,Pi_base是該第i個充電裝置的基礎功率,△Xsys_step為該擾動振幅;其中若該多個充電裝置的多個額定功率相同,那麼該基礎功率是該當前系統總功率的一平均值;若該多個充電裝置的該多個額定功率不盡相同,那麼該基礎功率是該多個額定功率。
The renewable energy power supply system as claimed in claim 11 or 12, wherein the first operation unit is configured to calculate a disturbance component according to one of the multiple current powers, one of the multiple target powers, a disturbance amplitude and formula (3):
Figure 112144512-A0305-02-0028-7
Wherein △Xi is the disturbance component of the i-th charging device, Pi_base is the base power of the i-th charging device, and △Xsys_step is the disturbance amplitude; if the multiple rated powers of the multiple charging devices are the same, then the base power is an average value of the current system total power; if the multiple rated powers of the multiple charging devices are not the same, then the base power is the multiple rated powers.
如請求項13所述的再生能源供電系統,其中該控制電路包含:一第一暫存器,經配置來儲存一固定振幅;以及一第二運算單元,電連接該第一運算單元及該第一暫存器,經配置來依據該擾動分量、該固定振幅、一方向參數、一斜率參數、一先前控制命令及以下算式(4)計算一控制命令:(4) Yi=(△Xi+△Xconst_step)×DIR×SLP+Yi_prev其中Yi是該第i個充電裝置的該控制命令,△Xi是該第i個充電裝置的該擾動分量,△Xconst_step是該固定振幅,DIR是該方向參數,SLP是該斜率參數,且Yi_prev是該第i個充電裝置在一先前MPPT週期的該先前控制命令。A renewable energy power supply system as described in claim 13, wherein the control circuit comprises: a first register configured to store a fixed amplitude; and a second operation unit electrically connected to the first operation unit and the first register, configured to calculate a control command according to the disturbance component, the fixed amplitude, a direction parameter, a slope parameter, a previous control command and the following formula (4): (4) Yi = (△Xi + △Xconst_step) × DIR × SLP + Yi_prev wherein Yi is the control command of the i-th charging device, △Xi is the disturbance component of the i-th charging device, △Xconst_step is the fixed amplitude, DIR is the direction parameter, SLP is the slope parameter, and Yi_prev is the previous control command of the i-th charging device in a previous MPPT cycle.如請求項14所述的再生能源供電系統,其中該多個充電裝置包含一主充電裝置,且該控制電路為一主控制電路,包含:一MPPT單元,電連接該多個充電裝置,經配置來依據該多個當前功率,產生多個MPPT參數;其中該多個MPPT參數包含該方向參數、該斜率參數及該擾動振幅,且該擾動振幅為每一MPPT調節周期的一系統步長。A renewable energy power supply system as described in claim 14, wherein the multiple charging devices include a main charging device, and the control circuit is a main control circuit, including: an MPPT unit, electrically connected to the multiple charging devices, configured to generate multiple MPPT parameters according to the multiple current powers; wherein the multiple MPPT parameters include the direction parameter, the slope parameter and the disturbance amplitude, and the disturbance amplitude is a system step size of each MPPT adjustment cycle.如請求項15所述的再生能源供電系統,其中該多個充電裝置的多個控制電路中的每一者皆包含該MPPT單元,僅有該主控制電路的該MPPT單元被致能,其餘的MPPT單元被禁能。A renewable energy power supply system as described in claim 15, wherein each of the multiple control circuits of the multiple charging devices includes the MPPT unit, and only the MPPT unit of the main control circuit is enabled, and the remaining MPPT units are disabled.如請求項14所述的再生能源供電系統,其中該控制電路包含:一第一減法器,電連接該多個充電裝置的該輸入端,經配置來將該第一輸入電壓減去該控制命令,以產生一第一電壓補償;一第一PI控制器,電連接該減法器,經配置來將該第一電壓補償轉換為一第一電流值;一第二減法器,電連接該多個充電裝置的該輸入端,經配置來將該第一電流值減去該第一輸入電流,以產生一第一電流補償;一第二PI控制器,電連接該第二減法器,經配置來將該第一電流補償轉換為一第一控制訊號。A renewable energy power supply system as described in claim 14, wherein the control circuit comprises: a first subtractor, electrically connected to the input terminals of the multiple charging devices, configured to subtract the control command from the first input voltage to generate a first voltage compensation; a first PI controller, electrically connected to the subtractor, configured to convert the first voltage compensation into a first current value; a second subtractor, electrically connected to the input terminals of the multiple charging devices, configured to subtract the first input current from the first current value to generate a first current compensation; a second PI controller, electrically connected to the second subtractor, configured to convert the first current compensation into a first control signal.如請求項17所述的再生能源供電系統,其中該控制電路包含:一第二暫存器,經配置來儲存一輸入穩壓命令;一第三減法器,電連接該第二暫存器,經配置來將該輸入穩壓命令減去一中繼電壓,以產生一穩壓補償;一第三PI控制器,電連接該第三減法器,經配置來將該穩壓補償轉換為一第二電流值;一第四減法器,電連接該第三PI控制器,經配置來將該第二電流值減去一輸出電流,以產生一第二電流補償;一第四PI控制器,電連接該第四減法器,經配置來將該第二電流補償轉換為一第一電壓值;一第五減法器,電連接該第四PI控制器,經配置來將該第一電壓值減去一輸出電壓,以產生一第二電壓補償;以及一第五PI控制器,電連接該第五減法器,經配置來將該第二電壓補償轉換為一第二控制訊號。The renewable energy power supply system as claimed in claim 17, wherein the control circuit comprises: a second register configured to store an input voltage regulation command; a third subtractor electrically connected to the second register, configured to subtract a relay voltage from the input voltage regulation command to generate a voltage regulation compensation; a third PI controller electrically connected to the third subtractor, configured to convert the voltage regulation compensation into a second current value; a fourth subtractor electrically connected to the third PI controller, configured to convert the voltage regulation compensation into a second current value; The second current value is subtracted from an output current to generate a second current compensation; a fourth PI controller is electrically connected to the fourth subtractor and configured to convert the second current compensation into a first voltage value; a fifth subtractor is electrically connected to the fourth PI controller and configured to subtract an output voltage from the first voltage value to generate a second voltage compensation; and a fifth PI controller is electrically connected to the fifth subtractor and configured to convert the second voltage compensation into a second control signal.如請求項18所述的再生能源供電系統,其中該多個充電裝置中的每一者更包含:一第一轉換電路,電連接該再生能源發電機組,經配置來依據該第一控制訊號,將該第一輸入電壓及該第一輸入電流轉換為該中繼電壓及一中繼電流;一第二轉換電路,電連接該第一轉換電路,經配置來依據該第二控制訊號,將該中繼電壓及該中繼電流轉換為該輸出電壓及該輸出電流;以及一中繼電容,該中繼電容的一端電連接於該第一轉換電路與該第二轉換電路之間,該中繼電容的另一端電連接一接地端,該中繼電容經配置以儲存該中繼電壓及該中繼電流的電能。A renewable energy power supply system as described in claim 18, wherein each of the plurality of charging devices further comprises: a first conversion circuit electrically connected to the renewable energy generator set, configured to convert the first input voltage and the first input current into the relay voltage and a relay current according to the first control signal; a second conversion circuit electrically connected to the first conversion circuit, The relay voltage and the relay current are configured to be converted into the output voltage and the output current according to the second control signal; and a relay capacitor, one end of which is electrically connected between the first conversion circuit and the second conversion circuit, and the other end of which is electrically connected to a ground terminal, and the relay capacitor is configured to store the electrical energy of the relay voltage and the relay current.
TW112144512A2023-11-172023-11-17Master-slave charging control method and related renewable energy supply system with maximum power point trackingTWI860891B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
TW112144512ATWI860891B (en)2023-11-172023-11-17Master-slave charging control method and related renewable energy supply system with maximum power point tracking

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
TW112144512ATWI860891B (en)2023-11-172023-11-17Master-slave charging control method and related renewable energy supply system with maximum power point tracking

Publications (2)

Publication NumberPublication Date
TWI860891Btrue TWI860891B (en)2024-11-01
TW202522836A TW202522836A (en)2025-06-01

Family

ID=94379772

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW112144512ATWI860891B (en)2023-11-172023-11-17Master-slave charging control method and related renewable energy supply system with maximum power point tracking

Country Status (1)

CountryLink
TW (1)TWI860891B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TW201023472A (en)*2008-12-052010-06-16Ablerex Electronics Co LtdBattery-charging device for a stand-alone generator system having a MPPT function and method thereof
WO2010096682A2 (en)*2009-02-192010-08-26Xslent Energy Technologies, LlcPower transfer management for local power sources of a grid-tied load
CN203225533U (en)*2013-03-062013-10-02陈小莉MPPT charging circuit
TWI469471B (en)*2012-11-232015-01-11Univ Nat Sun Yat SenMethod and circuit of the pulse charging with mppt
TWI487239B (en)*2012-08-152015-06-01Atomic Energy CouncilHousehold power parallel converter applied to solar power generation system with maximum power tracking effect
TW201705641A (en)*2015-07-162017-02-01Nat Chung-Hsing UnivRenewable energy control method and system for providing a dual-battery configuration to increase the battery lifetime and the overall energy utilization efficiency
TWM547776U (en)*2017-05-162017-08-21國立成功大學Control device for renewable power system
TWI642251B (en)*2016-11-042018-11-21朗天科技股份有限公司Energy system using maximum energy utilization point tracking technologies
CN109713714B (en)*2018-11-152020-12-25华为技术有限公司Maximum power point tracking method and equipment
TWM628678U (en)*2022-02-112022-06-21國立臺灣師範大學Intelligent multi-input and multi-output energy conversion system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TW201023472A (en)*2008-12-052010-06-16Ablerex Electronics Co LtdBattery-charging device for a stand-alone generator system having a MPPT function and method thereof
WO2010096682A2 (en)*2009-02-192010-08-26Xslent Energy Technologies, LlcPower transfer management for local power sources of a grid-tied load
TWI487239B (en)*2012-08-152015-06-01Atomic Energy CouncilHousehold power parallel converter applied to solar power generation system with maximum power tracking effect
TWI469471B (en)*2012-11-232015-01-11Univ Nat Sun Yat SenMethod and circuit of the pulse charging with mppt
CN203225533U (en)*2013-03-062013-10-02陈小莉MPPT charging circuit
TW201705641A (en)*2015-07-162017-02-01Nat Chung-Hsing UnivRenewable energy control method and system for providing a dual-battery configuration to increase the battery lifetime and the overall energy utilization efficiency
TWI642251B (en)*2016-11-042018-11-21朗天科技股份有限公司Energy system using maximum energy utilization point tracking technologies
TWM547776U (en)*2017-05-162017-08-21國立成功大學Control device for renewable power system
CN109713714B (en)*2018-11-152020-12-25华为技术有限公司Maximum power point tracking method and equipment
TWM628678U (en)*2022-02-112022-06-21國立臺灣師範大學Intelligent multi-input and multi-output energy conversion system

Also Published As

Publication numberPublication date
TW202522836A (en)2025-06-01

Similar Documents

PublicationPublication DateTitle
EP2290803B1 (en)Systems, methods, and apparatus for operating a power converter
CN110581565B (en)Control method and device in photovoltaic power generation grid-connected system
Wang et al.Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building
Sahoo et al.A novel sensorless current shaping control approach for SVPWM inverter with voltage disturbance rejection in a dc grid–based wind power generation system
CN110661274A (en)Composite dynamic power support system and coordination control method thereof
Zhou et al.Static state power smoothing and transient power quality enhancement of a DC microgrid based on multi-function SMES/battery distributed hybrid energy storage system
Zakaria et al.A hybrid interleaved DC-DC converter based on buck-boost topologies for medium voltage applications
Majji et al.MPC‐based DC microgrid integrated series active power filter for voltage quality improvement in distribution system
Baharudin et al.Design and performance analysis of grid connected photovoltaic (GCPV) based DSTATCOM for power quality improvements
CN114884122B (en)Charging control method, device and equipment
WO2021253257A1 (en)Power energy storage system and energy storage power supply system
CN111478368A (en) A connection transformer input method, system and equipment for hot standby connection transformer circuit
TWI860891B (en)Master-slave charging control method and related renewable energy supply system with maximum power point tracking
CN113097997B (en) An optimization method for transient voltage safety preventive control considering a large number of expected faults
TWI666852B (en)Power storage system, voltage transformer and power storage power conditioner
CN120021126A (en) Master-slave charging control method and related renewable energy maximum power tracking power supply system
Rajasree et al.Unified Power Quality Conditioner for Voltage Compensation in Microgird
CN112688298B (en) A method for parallel circulation suppression of low-voltage management devices at the end of low-voltage distribution network
Liu et al.Research on distributed energy storage pinning coordinated control method of microgrid clusters
CN111628491B (en)Direct current micro-grid improved droop control method based on line impedance detection
Thota et al.The Voltage stability analysis for grid-connected PV system using optimized control tested by IEEE 14 & 30 bus system
Sowmya Sree et al.Design of Fuzzy Logic Controller-Based DPFC Device for Solar-Wind Hybrid System
CN107086786A (en) Interactive voltage stabilizing system and operation method for bidirectional energy flow
Agarwal et al.Dynamic droop gain adjustment for proportional power sharing in low voltage DC microgrid
CN114268145A (en) A charge-discharge regulator and regulation method based on droop control

[8]ページ先頭

©2009-2025 Movatter.jp