Movatterモバイル変換


[0]ホーム

URL:


TWI797887B - Testing method and testing system for determining radiation performance of a device under test (dut) - Google Patents

Testing method and testing system for determining radiation performance of a device under test (dut)
Download PDF

Info

Publication number
TWI797887B
TWI797887BTW110146826ATW110146826ATWI797887BTW I797887 BTWI797887 BTW I797887BTW 110146826 ATW110146826 ATW 110146826ATW 110146826 ATW110146826 ATW 110146826ATW I797887 BTWI797887 BTW I797887B
Authority
TW
Taiwan
Prior art keywords
test
effective isotropic
device under
under test
difference
Prior art date
Application number
TW110146826A
Other languages
Chinese (zh)
Other versions
TW202323832A (en
Inventor
謝士煒
康庭維
方士庭
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司filedCritical聯發科技股份有限公司
Priority to TW110146826ApriorityCriticalpatent/TWI797887B/en
Application grantedgrantedCritical
Publication of TWI797887BpublicationCriticalpatent/TWI797887B/en
Publication of TW202323832ApublicationCriticalpatent/TW202323832A/en

Links

Images

Landscapes

Abstract

A testing method for determining radiation performance of a device under test (DUT) is disclosed. The testing method comprises the following steps. The DUT is arranged at a first orientation. A first effective isotropic radiated power (EIRP) and a first effective isotropic sensitivity (EIS) of the DUT are measured at the first orientation. The DUT is arranged at a second orientation different from the first orientation, and a second EIRP of the DUT is measured at the second orientation. A second EIS of the DUT is measured at the second orientation according to a correlation between the first EIRP, the first EIS and the second EIRP.

Description

Translated fromChinese
用於確定被測設備的輻射性能的測試方法和測試系統Test method and test system for determining radiated performance of equipment under test

本發明涉及一種測試方法和測試系統,尤其涉及一種確定無線電設備輻射性能的測試方法和測試系統。The invention relates to a test method and a test system, in particular to a test method and a test system for determining the radiation performance of radio equipment.

為了以無線方式進行通訊,無線電設備可以配備TX路徑(即,發送路徑)和RX路徑(即,接收路徑)的電路。TX路徑可以執行無線電訊號的發送,RX路徑可以執行無線點訊號的接收。此外,可以考慮無線電訊號的功率電平來評估TX路徑和RX路徑的輻射性能。To communicate wirelessly, a radio may be equipped with circuitry for a TX path (ie, transmit path) and an RX path (ie, receive path). The TX path can perform the transmission of radio signals, and the RX path can perform the reception of radio point signals. In addition, the radiation performance of the TX path and the RX path can be evaluated considering the power level of the radio signal.

在評估無線電設備輻射性能的常規測試方案中,可以採用與無線電訊號的功率電平相關的「RX訊號強度指示(RX signal strength indication,RSSI)」來評估TX路徑。另一方面,「總各向同性靈敏度(total isotropic sensitivity,TIS)」可以用來評估RX路徑。在傳統方案中,可以根據RSSI來確定TIS,但是RSSI可能會有很大的變化,因此導致準確性較低(例如,低準確性範圍為+6dB~-6dB)。此外,如果傾向於在無線電設備的每個方向測量TIS,可能會消耗大量的測試時間。In a conventional test solution for evaluating the radiation performance of a radio device, an "RX signal strength indication (RSSI)" related to the power level of a radio signal can be used to evaluate the TX path. On the other hand, "total isotropic sensitivity (TIS)" can be used to evaluate the RX path. In conventional schemes, TIS can be determined according to RSSI, but RSSI may vary greatly, thus resulting in lower accuracy (for example, the low accuracy range is +6dB~-6dB). Also, tending to measure TIS in every direction of the radio can consume a significant amount of test time.

針對上述問題,所屬技術領域具有通常知識者致力於改進對無線電設備進行評估的測試方案,從而可以提高測量的準確性,也可以減少測試時間。In response to the above problems, those with ordinary knowledge in the technical field are committed to improving the test scheme for evaluating radio equipment, thereby improving the accuracy of measurement and reducing the time for testing.between.

根據本發明的一個方面,公開了一種用於確定被測設備(device under test,DUT)的輻射性能的測試方法,該測試方法包括如下步驟:將DUT佈置在第一方向。在第一方向測量DUT的第一有效各向同性輻射功率(effective isotropic radiated power,EIRP)和第一有效各向同性靈敏度(effective isotropic sensitivity,EIS)。將DUT佈置在不同於第一方向的第二方向,並且在第二方向測量DUT的第二EIRP。根據第一EIRP、第一EIS和第二EIRP之間的相關性,在第二方向測量DUT的第二EIS。According to one aspect of the present invention, a test method for determining the radiation performance of a device under test (DUT) is disclosed, the test method includes the following steps: arranging the DUT in a first direction. A first effective isotropic radiated power (EIRP) and a first effective isotropic sensitivity (effective isotropic sensitivity, EIS) of the DUT are measured in a first direction. The DUT is arranged in a second direction different from the first direction, and a second EIRP of the DUT is measured in the second direction. A second EIS of the DUT is measured in a second direction based on the correlation between the first EIRP, the first EIS and the second EIRP.

根據本發明的另一方面,公開了一種用於確定DUT的輻射性能的測試方法,該測試方法包括如下步驟:將DUT佈置在第一方向。在第一方向測量DUT的第一EIRP和第一EIS。將DUT佈置在不同於第一方向的第二方向,並且在第二方向測量DUT的第二EIRP。根據第一EIRP和第一EIS估計DUT在第二方向的第二EIS。According to another aspect of the present invention, a test method for determining radiation performance of a DUT is disclosed, the test method includes the following steps: arranging the DUT in a first direction. A first EIRP and a first EIS of the DUT are measured in a first direction. The DUT is arranged in a second direction different from the first direction, and a second EIRP of the DUT is measured in the second direction. A second EIS of the DUT in a second direction is estimated based on the first EIRP and the first EIS.

根據本發明的又一方面,公開了一種用於確定DUT的輻射性能的測試系統。該測試系統包括測量設備和處理模組。該測量設備配置為在第一方向測量DUT的第一EIRP,並且在不同於第一方向的第二方向測量DUT的第二EIRP。處理模組耦接於DUT、底座(base)和測量設備,並配置為在第一方向測量DUT的第一EIS並且根據第一EIRP、第一EIS和第二EIRP之間的相關性,在第二方向測量DUT的第二EIS。According to yet another aspect of the present invention, a test system for determining radiation performance of a DUT is disclosed. The test system includes measurement equipment and processing modules. The measurement device is configured to measure a first EIRP of the DUT in a first direction, and to measure a second EIRP of the DUT in a second direction different from the first direction. The processing module is coupled to the DUT, the base (base) and the measurement device, and is configured to measure a first EIS of the DUT in a first direction and according to a correlation between the first EIRP, the first EIS and the second EIRP, at Two-way measurement of the second EIS of the DUT.

100:TX路徑100:TX path

110:TX模組110:TX module

120:TX天線120:TX antenna

150:TX訊號150:TX signal

200:RX路徑200: RX path

210:RX模組210: RX module

220:RX天線220: RX antenna

310:RX天線310: RX antenna

320:TX天線320:TX antenna

330:天線330: Antenna

350:測試訊號350: Test signal

400:天線400: Antenna

1000:DUT1000:DUT

2000:測試系統2000: Test system

2100:消聲室2100: Anechoic chamber

2200:周圍壁2200: surrounding wall

2300:支撐底座2300: Support base

2400:處理模組2400: processing module

3000:測量設備3000: Measuring equipment

3100:喇叭天線3100: horn antenna

S110,S120,S130,S140,S150,S160,S170,S180:步驟S110, S120, S130, S140, S150, S160, S170, S180: steps

S210,S220,S230,S240,S250:步驟S210, S220, S230, S240, S250: steps

第1A圖~第1C圖是圖示用於評估DUT的測試系統的框圖。1A-1C are block diagrams illustrating a test system for evaluating a DUT.

第2圖是說明與在不同方向上的DUT相關聯的功率電平的示意圖。FIG. 2 is a schematic diagram illustrating power levels associated with a DUT in different directions.

第3A圖是從第2圖的另一方面說明與DUT相關聯的功率電平的示意圖。FIG. 3A is a schematic diagram illustrating the power levels associated with the DUT from another aspect of FIG. 2 .

第3B圖~第3D圖是圖示根據第3A圖的測試方案的其他示例的與DUT相關聯的功率電平的示意圖。3B-3D are schematic diagrams illustrating power levels associated with a DUT according to other examples of the test scheme of FIG. 3A.

第4圖是說明根據關於第2圖的各種測試方案的在不同方向與DUT相關聯的功率電平的示意圖。FIG. 4 is a schematic diagram illustrating power levels associated with a DUT in different directions according to various test scenarios with respect to FIG. 2 .

第5A圖是從第4圖的另一方面說明與DUT相關聯的功率電平的示意圖。FIG. 5A is a schematic diagram illustrating the power levels associated with the DUT from another aspect of FIG. 4 .

第5B圖~第5D圖是圖示根據第5A圖的測試方案的其他示例的與DUT相關聯的功率電平的示意圖。FIGS. 5B-5D are schematic diagrams illustrating power levels associated with a DUT according to other examples of the test scheme of FIG. 5A.

第6A圖是圖示根據第3A圖~第3D圖的測試方案的用於評估DUT的測試方法的流程圖。FIG. 6A is a flowchart illustrating a test method for evaluating a DUT according to the test schemes of FIGS. 3A to 3D .

第6B圖是圖示根據第5A圖~第5D圖的測試方案的用於評估DUT的測試方法的流程圖。FIG. 6B is a flowchart illustrating a test method for evaluating a DUT according to the test scheme of FIGS. 5A-5D .

在以下詳細描述中,為了解釋的目的,闡述了許多具體細節以提供對所公開實施例的透徹理解。然而,顯而易見的是,可以在沒有這些具體細節的情況下實踐一個或複數個實施例。在其他情況下,習知的結構和設備被示意性地示出以簡化繪圖。In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It may be evident, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown schematically to simplify drawing.

第1A圖~第1C圖是圖示用於評估DUT 1000的測試系統2000的框圖。DUT 1000可以指可以執行無線通訊的無線電設備。例如,DUT 1000可以指智慧型電話、智慧手錶或一組無線耳機中的一個等。DUT 1000可以透過Wi-Fi、Wi-Max、藍牙、4G LTE和5G NR(甚至未來的6G)無線協議等執行去往/來自遠端對等設備或遠端基地台的上行鏈路/下行鏈路通訊。1A-1C are block diagrams illustrating atest system 2000 for evaluating theDUT 1000 .DUT 1000 may refer to a radio device that can perform wireless communications. For example,DUT 1000 may refer to a smartphone, a smart watch, or one of a set of wireless headphones, among others.DUT 1000 can perform uplink/downlink to/from remote peer devices or remote base stations via Wi-Fi, Wi-Max, Bluetooth, 4G LTE and 5G NR (even future 6G) wireless protocols, etc. road communication.

具體地,參考第1A圖,為了以無線方式執行雙工通訊(即,雙向通訊),DUT 1000可以包括TX路徑(即,發送路徑)100的電路和RX路徑(即,接收路徑)200。TX路徑100可以包括TX模組110和TX天線120,其中,TX模組110可以生成和處理(例如,調變、通道編碼等)基頻訊號,並且基頻訊號可以轉換為RF訊號。RF訊號可以被TX天線120輻射為TX訊號150,並且TX訊號150可以具有功率電平。另一方面,參考第1B圖,DUT 1000的RX路徑200可以包括RX模組210和RX天線220,其中RX路徑200可以用於接收測試訊號350。測試訊號350可以具有測試功率,並且可以透過RX天線220接收測試訊號350,然後透過RX模組210被處理(例如,解調、解碼、定時恢復等)。在第1A圖和第1B圖的示例中,DUT 1000的TX路徑100配備有TX天線120,並且RX路徑200配備有RX天線220,分別地。在如第1C圖所示的另一示例中,TX路徑100和RX路徑200可以共同使用(即,共用)單個天線400。即,TX路徑100可以發送TX訊號150並且RX路徑200可以透過同一天線400接收測試訊號350。Specifically, referring to FIG. 1A, in order to wirelessly perform duplex communication (i.e., two-way communication),DUT 1000 may include circuitry of TX path (i.e., transmit path) 100 and RX path (i.e.,receive path) 200. TheTX path 100 may include aTX module 110 and aTX antenna 120, wherein theTX module 110 may generate and process (eg, modulate, channel code, etc.) a baseband signal, and convert the baseband signal into an RF signal. The RF signal may be radiated by theTX antenna 120 as aTX signal 150, and the TX signal 150 may have a power level. On the other hand, referring to FIG. 1B , theRX path 200 of theDUT 1000 may include theRX module 210 and theRX antenna 220 , wherein theRX path 200 may be used to receive thetest signal 350 . Thetest signal 350 can have a test power, and thetest signal 350 can be received by theRX antenna 220 and then processed (eg, demodulated, decoded, timing recovery, etc.) by theRX module 210 . In the examples of FIGS. 1A and 1B , theTX path 100 of theDUT 1000 is equipped with aTX antenna 120 and theRX path 200 is equipped with anRX antenna 220 , respectively. In another example as shown in FIG. 1C , theTX path 100 and theRX path 200 may share (ie, share) asingle antenna 400 . That is, theTX path 100 can transmit the TX signal 150 and theRX path 200 can receive thetest signal 350 through thesame antenna 400 .

為了評估DUT 1000的TX路徑100和RX路徑200的輻射性能,可以在測試系統2000中提供消聲室(anechoic chamber)2100、處理模組2400和測量設備3000。如第1A圖和第1B圖所示,測量設備3000可以耦接並控制「喇叭天線(horn)」3100,同樣地,與測量裝置3000相關聯的TX天線320和RX天線310可以設置在喇叭天線3100內。喇叭天線3100與TX天線320和RX天線310以及DUT 1000一起設置在消聲室2100內。In order to evaluate the radiation performance of theTX path 100 and theRX path 200 of theDUT 1000 , ananechoic chamber 2100 , aprocessing module 2400 and ameasurement device 3000 may be provided in thetest system 2000 . As shown in Figures 1A and 1B, ameasurement device 3000 can be coupled to and controls a "horn" 3100, and likewise, aTX antenna 320 and anRX antenna 310 associated with themeasurement device 3000 can be placed on the horn antenna within 3100. Thehorn antenna 3100 is provided in theanechoic chamber 2100 together with theTX antenna 320 and theRX antenna 310 and theDUT 1000 .

DUT 1000可以安裝在支撐底座2300上。支撐底座2300可以由處理模組2400控制,以便將DUT 1000佈置在一些選定的方向上,以評估DUT 1000在這些方向上的輻射性能。在一個示例中,DUT 1000可以佈置在方向O1、O2、O3、O4和O5等,它們分別是指0度、30度、60度、90度和120度。在其他示例中,這些用於佈置DUT 1000的方向O1、O2、O3、O4和O5可以以更接近的方式,例如分別為0度、5度、10度、15度和20度。此外,處理模組2400可以控制測量設備3000來調整測試訊號350的功率。此外,處理模組2400可以控制DUT 1000以設置TX訊號150。DUT 1000 may be mounted onsupport base 2300 . Thesupport base 2300 can be controlled by theprocessing module 2400 to arrange theDUT 1000 in some selected directions to evaluate the radiation performance of theDUT 1000 in these directions. In one example, theDUT 1000 may be arranged in directions O1, O2, O3, O4, and O5, etc., which refer to 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees, respectively. In other examples, these directions O1 , O2 , O3 , O4 and O5 for arranging theDUT 1000 may be in a closer manner, such as 0 degrees, 5 degrees, 10 degrees, 15 degrees and 20 degrees, respectively. In addition,processing module 2400Themeasurement device 3000 can be controlled to adjust the power of thetest signal 350 . In addition, theprocessing module 2400 can control theDUT 1000 to set theTX signal 150 .

在第1A圖和第1B圖的示例中,測量設備3000配備有TX天線320和RX天線310。在第1C圖所示的另一個示例中,測量設備3000可以使用單個天線330以操作,即測量裝置3000可以透過同一天線330發送測試訊號350和接收TX訊號150。In the examples of FIGS. 1A and 1B , themeasurement device 3000 is equipped with aTX antenna 320 and anRX antenna 310 . In another example shown in FIG. 1C , themeasurement device 3000 can operate using asingle antenna 330 , that is, themeasurement device 3000 can transmit thetest signal 350 and receive the TX signal 150 through thesame antenna 330 .

第2圖是說明與在不同方向O1~O5上的DUT 1000相關聯的功率電平的示意圖。第3A圖是從第2圖的另一方面說明與DUT相關聯的功率電平的示意圖。參考第2圖和第3A圖,DUT 1000的第一方向O1(例如,0度)可以被選擇為「參考方向」,並且DUT 1000的TX-路徑100和RX-路徑200在第一方向O1處的輻射性能可以首先被評估為「參考」。在第一方向O1,由TX路徑100發送的TX訊號150可以透過視線(line-of-sight)路徑傳送或被消聲室2100的周圍壁2200反射到測量設備3000。與測量設備3000相關聯的一個或複數個天線(第1A圖和1B的示例中的TX天線320和RX天線310或第1C圖中的公共天線)可以針對複數個水平極化和垂直極化進行調整。對於測量設備3000的一個或複數個天線的所有極化,可以測量接收到的TX訊號150的功率電平以計算和確定EIRP。EIRP可以指用於評估DUT 1000的TX路徑100的輻射性能的性能指示或性能索引。在第一方向O1處確定的與TX路徑100相關聯的EIRP可以稱為「第一EIRP」或「EIRP(1)」。例如,在第一方向O1(例如,0度),EIRP(1)被確定為16dBm。處理模組2400可以控制測量設備3000針對所有水平和垂直極化調整其一個或複數個天線,以便計算和確定EIRP(1)。FIG. 2 is a schematic diagram illustrating power levels associated withDUT 1000 in different directions O1-O5. FIG. 3A is a schematic diagram illustrating the power levels associated with the DUT from another aspect of FIG. 2 . Referring to Figures 2 and 3A, a first direction O1 (eg, 0 degrees) of theDUT 1000 may be selected as the "reference direction", and the TX-path 100 and the RX-path 200 of theDUT 1000 are at the first direction O1 The radiated performance can first be evaluated as a "reference". In the first direction O1 , the TX signal 150 sent by theTX path 100 may be transmitted through a line-of-sight path or reflected by the surroundingwall 2200 of theanechoic chamber 2100 to themeasurement device 3000 . One or a plurality of antennas (TX antenna 320 andRX antenna 310 in the examples of FIGS. 1A and 1B or a common antenna in FIG. 1C ) associated with themeasurement device 3000 can be configured for a plurality of horizontal and vertical polarizations. Adjustment. For all polarizations of the antenna or antennas of themeasurement device 3000, the power level of the received TX signal 150 can be measured to calculate and determine the EIRP. EIRP may refer to a performance indicator or performance index used to evaluate the radiation performance of theTX path 100 of theDUT 1000 . The EIRP associated with theTX path 100 determined at the first direction O1 may be referred to as the "first EIRP" or "EIRP(1)". For example, in a first direction O1 (eg, 0 degrees), EIRP(1) is determined to be 16dBm. Theprocessing module 2400 may control themeasurement device 3000 to adjust its antenna or antennas for all horizontal and vertical polarizations in order to calculate and determine EIRP(1).

此後,可以評估DUT 1000的RX路徑200在第一方向O1處的輻射性能。EIS可以用作RX路徑200的性能指示或性能索引。為了測量與RX路徑200相關聯的EIS,測量設備3000可以以測試功率發送測試訊號350,並且測試訊號350可以是與資料位元(data-bits)相關聯的調變訊號。測試訊號350可由DUT 1000的RX路徑200接收和解調以檢索其資料位元。可以評估解調時資料位元的誤碼率(Bit error rate,BER),較小的BER表示較少的誤碼位,該較少的誤碼位元指示RX路徑200在給定測試訊號350的這種測試功率的情況下表現良好。因此,BER的值可以用作DUT 1000的RX路徑200的性能指示或性能索引,並且可以對DUT 1000進行調節測試(以BER為標準)。如果BER小於門檻,則表明DUT 1000的RX路徑200執行很好,DUT 1000可以透過監管測試。Thereafter, the radiation performance of theRX path 200 of theDUT 1000 in the first direction O1 can be evaluated. The EIS can be used as a performance indication or performance index for theRX path 200 . To measure the EIS associated with theRX path 200, themeasurement device 3000 may send atest signal 350 at a test power, andThetest signal 350 may be a modulated signal associated with data-bits.Test signal 350 may be received and demodulated byRX path 200 ofDUT 1000 to retrieve its data bits. The bit error rate (BER) of the data bits during demodulation can be evaluated, and a smaller BER indicates fewer bit errors, which indicate that theRX path 200 is in a giventest signal 350 The case of this test power performed well. Therefore, the value of BER can be used as a performance indicator or performance index of theRX path 200 of theDUT 1000, and theDUT 1000 can be tuned (with BER as the standard). If the BER is less than the threshold, it indicates that theRX path 200 of theDUT 1000 is performing well and theDUT 1000 can pass the regulatory test.

可以調整測試訊號350的測試功率,並且可以在給定不同級別的測試功率的情況下對DUT 1000執行調節測試。如果測試功率太低(即測試訊號350太弱),則DUT 1000的RX路徑200不能很好地處理測試訊號350的資料位元,DUT 1000也不能通過調節測試。DUT 1000可以通過調節測試的測試訊號350的測試功率的「最小電平」被認為是EIS。在圖2和第3A圖所示的例子中,第一方向O1處的EIS(1)被確定為-86dBm(即,-86dBm是DUT 1000可以通過調節測試的測試訊號350的測試功率的「最小電平」)。此外,處理模組2400可以說明計算BER、將BER與門檻進行比較並識別測試功率的最小電平以確定EIS。The test power oftest signal 350 can be adjusted, and conditioning tests can be performed onDUT 1000 given different levels of test power. If the test power is too low (ie, thetest signal 350 is too weak), theRX path 200 of theDUT 1000 cannot handle the data bits of thetest signal 350 well, and theDUT 1000 cannot pass the conditioning test. The "minimum level" at which theDUT 1000 can be considered EIS by adjusting the test power of thetest signal 350 under test. In the example shown in FIGS. 2 and 3A, the EIS(1) at the first direction O1 is determined to be -86dBm (i.e., -86dBm is the "minimum" test power of thetest signal 350 that theDUT 1000 can pass the conditioning test. level"). Additionally, theprocessing module 2400 can be configured to calculate the BER, compare the BER to a threshold, and identify a minimum level of test power to determine the EIS.

在另一個示例中,與測試訊號350的解調資料位元相關聯的另一個性能指示或性能索引「吞吐量中斷率」也可以用作DUT 1000的調節測試標準。當「吞吐量中斷率」小於或等於門檻,這可指示DUT 1000的RX路徑200表現良好,因此DUT 1000可以通過調節測試。In another example, another performance indicator or performance index “throughput outage rate” associated with the demodulated data bits of thetest signal 350 can also be used as a conditioning test criterion for theDUT 1000 . When the "throughput outage rate" is less than or equal to the threshold, this may indicate that theRX path 200 of theDUT 1000 is performing well, and thus theDUT 1000 may pass the regulation test.

此後,處理模組2400可以控制支撐基座2300以將DUT 1000佈置在第二方向O2(例如,30度)以測量與DUT 1000的TX路徑100相關聯的EIRP。在第二方向O2的EIRP可以被稱為「第二EIRP」或「EIRP(2)」。EIRP(2)可以透過與確定第一方向O1處的EIRP(1)相同的方案來確定,並且在該示例中EIRP(2)可以被確定為18dBm。Thereafter, theprocessing module 2400 may control thesupport base 2300 to arrange theDUT 1000 in a second orientation O2 (eg, 30 degrees) to measure the EIRP associated with theTX path 100 of theDUT 1000 . The EIRP in the second direction O2 may be referred to as "second EIRP" or "EIRP(2)". EIRP(2) can be determined through the same scheme as determining EIRP(1) at the first direction O1, and in this exampleEIRP(2) can be determined to be 18dBm.

然後,可以確定與處於第二方向O2的DUT 1000的RX路徑200相關聯的EIS(稱為「第二EIS」或「EIS(2)」)。評估EIS(2)的測試方案可能與評估EIS(1)的測試方案不同。為了評估第二方向O2上的EIS(2),來自測量裝置3000的測試訊號350可能不需要「掃描」測試功率的寬功率範圍,相反,測試訊號350的測試功率可以直接從初始功率電平PI2開始。可以首先提供具有等於初始功率電平PI2的測試功率的測試訊號350以對DUT 1000進行調節測試。在調節測試中,檢查BER或「吞吐量中斷率」是否小於門檻。在一種情況下,如果DUT 1000在初始功率電平PI2下不能通過調節測試,則表明DUT 1000的RX路徑200在初始功率電平PI2下不能很好地執行。然後,測試訊號350的測試功率可以從初始功率電平PI2增加,並且再次對DUT 1000進行調節測試。如果增加了這樣的測試功率,DUT 1000仍然不能通過調節測試,可以進一步增加測試功率並且重新進行調節測試。可以重複上述測試方案,直到DUT 1000可以通過調節測試,並且第二方向O2上的EIS(2)被確定為DUT 1000可以通過調節測試的測試功率的「最小電平」。在第3A圖的例子中,在一種情況下,DUT 1000在-88dBm的初始功率電平PI2無法通過調節測試,則測試功率增加。測試功率不斷增加,增加到-86dBm時DUT 1000可以通過調節測試。也就是說,-86dBm是DUT 1000可以通過調節測試的測試功率的「最小電平」。因此,第二方向O2上的EIS(2)被確定為-86dBm。Then, the EIS associated with theRX path 200 of theDUT 1000 in the second direction O2 (referred to as the "second EIS" or "EIS(2)") can be determined. The test protocol for evaluating EIS(2) may differ from the test protocol for evaluating EIS(1). In order to evaluate EIS(2) in the second direction O2, thetest signal 350 from themeasurement device 3000 may not need to "sweep" the wide power range of the test power, instead, the test power of thetest signal 350 can be directly increased from the initial power level PI2 start.DUT 1000 may be conditioned tested by first providingtest signal 350 with a test power equal to initial power level PI2. In the throttling test, it is checked whether the BER or "throughput outage ratio" is less than a threshold. In one instance, if theDUT 1000 fails the conditioning test at the initial power level PI2, it indicates that theRX path 200 of theDUT 1000 is not performing well at the initial power level PI2. Then, the test power of thetest signal 350 can be increased from the initial power level PI2, and the conditioning test of theDUT 1000 can be performed again. If such a test power is increased and theDUT 1000 still fails the conditioning test, the test power may be further increased and the conditioning test may be repeated. The above test scheme can be repeated until theDUT 1000 can pass the conditioning test and the EIS(2) in the second direction O2 is determined to be the "minimum level" of test power at which theDUT 1000 can pass the conditioning test. In the example of FIG. 3A, in a case where theDUT 1000 fails the conditioning test at an initial power level PI2 of -88dBm, the test power is increased. The test power increases continuously, and when it reaches -86dBm, theDUT 1000 can pass the adjustment test. In other words, -86dBm is the "minimum level" of the test power that theDUT 1000 can pass the conditioning test. Therefore, EIS(2) in the second direction O2 is determined to be -86dBm.

在另一種情況下,如果在初始功率電平PI2下DUT 1000可以通過調節測試,則測試訊號350的測試功率可以從初始功率電平PI2降低並且再次對DUT 1000執行調節測試。如果DUT 1000仍能通過調節測試,則測試功率將進一步降低。重複上述測試方案,直到DUT 1000無法通過調節測試。在第3A圖的例子中,在另一種情況下,如果DUT 1000可以在-88dBm的初始功率電平PI2下通過調節測試,則降低測試功率。當測試功率降低到-92dBm時,DUT 1000仍然可以通過調節測試,但是,如果測試功率降低到-92.1dBm,則發現DUT 1000無法透過調節。也就是說,-92dBm是DUT 1000可以通過調節測試的「最小電平」,EIS(2)被確定為-92dBm。In another case, if theDUT 1000 can pass the conditioning test at the initial power level PI2, the test power of thetest signal 350 can be reduced from the initial power level PI2 and the conditioning test is performed on theDUT 1000 again. If theDUT 1000 still passes the conditioning test, the test power is further reduced. Repeat the above test scheme until theDUT 1000 fails the conditioning test. In the example in Figure 3A, in another case, if theDUT 1000 can operate at an initial power level of -88dBmIf the adjustment test is passed under PI2, the test power is reduced. When the test power is reduced to -92dBm, theDUT 1000 can still pass the regulation test, but if the test power is reduced to -92.1dBm, it is found that theDUT 1000 cannot pass the regulation. In other words, -92dBm is the "minimum level" at which theDUT 1000 can pass the conditioning test, and EIS(2) is determined to be -92dBm.

在上述測試方案中,測試訊號350的測試功率可能不需要「掃描」寬功率範圍來定位EIS(2)。相反,測試功率從初始功率電平PI2開始,並且僅「掃描」初始功率電平PI2附近的功率範圍。如果DUT 1000在初始功率電平PI2不能通過調節測試,則測試功率從初始功率電平PI2增加(即,在初始功率電平PI2之上的功率範圍內調整測試功率)。另一方面,如果DUT 1000可以在初始功率電平PI2下通過調節測試,則測試功率從初始功率電平PI2降低(即在初始功率電平PI2之下的功率範圍內調整測試功率)。也就是說,測試功率只需要在接近(即高於或低於)初始功率電平PI2的較窄功率範圍內進行調整,從而可以減少確定EIS(2)的測試時間。In the above test scheme, the test power of thetest signal 350 may not need to "sweep" a wide power range to locate the EIS (2). Instead, the test power starts from an initial power level PI2 and only "sweeps" the power range around the initial power level PI2. If theDUT 1000 fails the conditioning test at the initial power level PI2, the test power is increased from the initial power level PI2 (ie, the test power is adjusted within a power range above the initial power level PI2). On the other hand, if theDUT 1000 can pass the conditioning test at the initial power level PI2, the test power is reduced from the initial power level PI2 (ie, the test power is adjusted within the power range below the initial power level PI2). That is to say, the test power only needs to be adjusted within a narrow power range close to (ie higher than or lower than) the initial power level PI2, so that the test time for determining EIS(2) can be reduced.

更具體地,在上述測試方案中,初始功率電平PI2可以被設置為「負EIRP(2)減去偏移值F2」。偏移值F2可以等於由校正函數C2校正的差值D1,其中校正函數C2用於動態調整或校正偏移值F2,使得偏移值F2可以更加精確。在第3A圖的例子中,校正函數C2可以將偏移值F2校正為等於差值D1。確定初始功率電平PI2的方案如等式(1-1)~(1-3)所示:D1=(-EIRP(1))-EIS(1)=(-16dBm)-(-86dBm)=70dBm 等式(1-1)More specifically, in the above test scheme, the initial power level PI2 can be set as "negative EIRP(2) minus the offset value F2". The offset value F2 can be equal to the difference D1 corrected by the correction function C2, wherein the correction function C2 is used to dynamically adjust or correct the offset value F2, so that the offset value F2 can be more accurate. In the example of FIG. 3A, correction function C2 may correct offset value F2 to be equal to difference value D1. The scheme for determining the initial power level PI2 is shown in equations (1-1)~(1-3): D1=(-EIRP(1))-EIS(1)=(-16dBm)-(-86dBm)= 70dBm Equation (1-1)

F2=C2(D1)=D1=70dBm 等式(1-2)F2=C2(D1)=D1=70dBm Equation (1-2)

PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm 等式(1-3)PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm Equation (1-3)

隨後,DUT 1000可以被佈置在下一個方向,即第三方向O3(例如,60度)。在第三方向O3處,EIRP(3)(或稱為「第三EIRP」)可以使用與評估EIRP(2)和EIRP(1)相同的方案進行測量,並且測得的EIRP(3)為20dBm。然後,測試訊號350的測試功率的初始功率電平PI3可以被設置為「負EIRP(3)減去偏移值F3」。在第2圖和第3A圖的例子中,如果校正函數C3可以將偏移值F3校正為等於差值D1,確定初始功率電平PI3的方案如等式(1-4)和(1-5)所示:F3=C3(D1)=D1=70dBm 等式(1-4)Subsequently,DUT 1000 may be arranged in the next orientation, ie, third orientation O3 (eg, 60 degrees). At the third direction O3, EIRP(3) (or "third EIRP") can be measured using the same protocol as for evaluating EIRP(2) and EIRP(1), and the measured EIRP(3) is 20dBm .Then, the initial power level PI3 of the test power of thetest signal 350 can be set as "negative EIRP(3) minus the offset value F3". In the example of Figure 2 and Figure 3A, if the correction function C3 can correct the offset value F3 to be equal to the difference D1, the scheme for determining the initial power level PI3 is as shown in equations (1-4) and (1-5 ) shows: F3=C3(D1)=D1=70dBm Equation (1-4)

PI3=(-EIRP(3))-F3=(-20dBm)-(70dBm)=-90dBm 等式(1-5)PI3=(-EIRP(3))-F3=(-20dBm)-(70dBm)=-90dBm Equation (1-5)

然後,可以採用具有從-90dBm的初始功率電平PI3開始的測試功率的測試訊號350來評估第三方向O3上的「第三EIS」或「EIS(3)」,其方案與確定EIS(2)的方案相同。在圖2和第3A圖的例子中,EIS(3)被確定為-92dBm。The "third EIS" or "EIS(3)" in the third direction O3 can then be evaluated using thetest signal 350 with test powers starting from an initial power level PI3 of -90dBm, the same approach as determining EIS(2 ) in the same way. In the example of Figures 2 and 3A, EIS(3) was determined to be -92dBm.

同樣,用於評估EIRP(2)、EIS(2)、EIRP(3)和EIS(3)的相同方案可用於其他方向O4和O5等。在第2圖和第3A圖的例子中,初始功率電平PI4可以被設置為「負EIRP(4)減去偏移值F4」,並且初始功率電平PI5可以被設置為「負EIRP(5)減去偏移值F5」。此外,校正函數C4和C5還可以將偏移值F4和F5校正為等於差值D1,如等式(1-6)~(1-9)所示:F4=C4(D1)=D1=70dBm 等式(1-6)Likewise, the same protocol used to evaluate EIRP(2), EIS(2), EIRP(3) and EIS(3) can be used for other directions O4 and O5 etc. In the example of Figures 2 and 3A, the initial power level PI4 can be set to "negative EIRP(4) minus the offset value F4", and the initial power level PI5 can be set to "negative EIRP(5 ) minus the offset value F5". In addition, the correction functions C4 and C5 can also correct the offset values F4 and F5 to be equal to the difference D1, as shown in equations (1-6)~(1-9): F4=C4(D1)=D1=70dBm Equation (1-6)

F5=C5(D1)=D1=70dBm 等式(1-7)F5=C5(D1)=D1=70dBm Equation (1-7)

PI4=(-EIRP(4))-F4=(-16dBm)-(70dBm)=-86dBm 等式(1-8)PI4=(-EIRP(4))-F4=(-16dBm)-(70dBm)=-86dBm Equation (1-8)

PI5=(-EIRP(5))-F5=(-18dBm)-(70dBm)=-88dBm 等式(1-9)PI5=(-EIRP(5))-F5=(-18dBm)-(70dBm)=-88dBm Equation (1-9)

在方向O4上,測試訊號350的測試功率可以從-86dBm的初始功率電平PI4開始,然後將EIS(4)定位為-90dBm。同樣,在方向O5上,測試訊號350的測試功率可以從-88dBm的初始功率電平PI5開始,然後將EIS(5)定位為-94dBm。In direction O4, the test power of thetest signal 350 may start from an initial power level PI4 of -86dBm, and then position the EIS(4) at -90dBm. Likewise, in direction O5, the test power of thetest signal 350 can start from an initial power level PI5 of -88dBm, and then position the EIS(5) at -94dBm.

在第2圖和第3A圖的例子中,在感興趣的方向,例如第二方向O2,根據測試訊號350確定EIS(2),測試功率從初始功率電平PI2開始。此外,初始功率電平PI2設定為「負EIRP(2)減去偏移值F2」,其中偏移值F2根據EIRP(1)和EIS(1)設定。即,根據EIRP(2)、EIRP(1)和EIS(1)之間的相關性確定EIS(2)。換句話說,感興趣的方向On處的EIS(n)是根據方向On處的EIRP(n)與先前相鄰方向On-1處的EIRP(n-1)和EIS(n-1)之間的相關性確定的。在第2圖和第3A圖的例子中,校正函數C2~C5可以將偏移值F2~F5校正為都等於相同的值,即負ERIP(1)與EIS(1)之間的差值D1。在其他示例中,偏移值F2~F5可以透過校正函數C2~C5動態地校正,使得偏移值F2~F5彼此不同,如將在以下段落中參照第3B圖和第3C圖討論的。In the example of Figures 2 and 3A, in the direction of interest, e.g. the second directionO2, determine EIS(2) according to thetest signal 350, and the test power starts from the initial power level PI2. In addition, the initial power level PI2 is set as "negative EIRP(2) minus the offset value F2", wherein the offset value F2 is set according to EIRP(1) and EIS(1). That is, EIS(2) is determined from the correlation among EIRP(2), EIRP(1), and EIS(1). In other words, the EIS(n) at the direction On of interest is calculated according to the difference between the EIRP(n) at the direction On and the EIRP(n-1) and EIS(n-1) at the previous adjacent direction On-1 The correlation is determined. In the example of Figure 2 and Figure 3A, the correction functions C2~C5 can correct the offset values F2~F5 to be equal to the same value, which is the difference D1 between negative ERIP(1) and EIS(1) . In other examples, the offset values F2-F5 can be dynamically corrected by the correction functions C2-C5 so that the offset values F2-F5 are different from each other, as will be discussed with reference to FIG. 3B and FIG. 3C in the following paragraphs.

第3B圖~第3D圖是說明根據第3A圖的測試方案的其他實例的與DUT相關聯的功率電平的示意圖。首先,參考第3B圖,用於設置初始功率電平PIn的偏移值Fn可以透過校正函數Cn作為前兩個方向的差值Dn-2和Dn-1的平均值來校正。校正函數Cn可以將偏移值Fn校正為「(Dn-2+Dn-1)/2」,即校正函數Cn可以將偏移值Fn從「Dn-2」校正為「(Dn-2+Dn-1)/2」。當EIS(2)確定時,可以得到負EIRP(2)與EIS(2)的差值D2,可以利用差值D2對偏移值F3進行校正。例如,偏移值F3可以被校正為差值D1和D2的平均值(即,F3=(D1+D2)/2),並且初始功率電平PI3被設置為「負EIRP(3)減去偏移值F3」。然後,根據從初始功率電平PI3開始的測試功率確定EIS(3)。然後,獲得負EIRP(3)和EIS(3)之間的差值D3。3B-3D are schematic diagrams illustrating power levels associated with a DUT according to other examples of the test scheme of FIG. 3A. First, referring to FIG. 3B, the offset value Fn for setting the initial power level PIn can be corrected by the correction function Cn as the average value of the differences Dn-2 and Dn-1 in the first two directions. The correction function Cn can correct the offset value Fn to "(Dn-2+Dn-1)/2", that is, the correction function Cn can correct the offset value Fn from "Dn-2" to "(Dn-2+Dn -1)/2". When EIS(2) is determined, the difference D2 between negative EIRP(2) and EIS(2) can be obtained, and the offset value F3 can be corrected by using the difference D2. For example, offset value F3 may be corrected to be the average of differences D1 and D2 (i.e., F3=(D1+D2)/2), and initial power level PI3 set to "negative EIRP(3) minus offset Shift value F3". Then, EIS(3) is determined from the test power starting from the initial power level PI3. Then, the difference D3 between negative EIRP(3) and EIS(3) is obtained.

同樣,在第四和第五方向O4和O5上,偏移值F4被設置為差值D2和D3的平均值,並且偏移值F5被設置為差值D3和D4的平均值。第3B圖中採用的上述測試方案表示為等式(2-1)~(2-8):F2=C2(D1)=D1=70dBm 等式(2-1)Also, in the fourth and fifth directions O4 and O5, the offset value F4 is set as the average value of the differences D2 and D3, and the offset value F5 is set as the average value of the differences D3 and D4. The above test scheme adopted in Figure 3B is expressed as equations (2-1)~(2-8): F2=C2(D1)=D1=70dBm Equation (2-1)

PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm 等式(2-2)PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm Equation (2-2)

F3=C3(D1)=(D1+D2)/2=(70dBm+74dBm)/2=72dBm 等式(2-3)F3=C3(D1)=(D1+D2)/2=(70dBm+74dBm)/2=72dBm Equation (2-3)

PI3=(-EIRP(3))-F3=(-20dBm)-(72dBm)=-92dBm 等式(2-4)PI3=(-EIRP(3))-F3=(-20dBm)-(72dBm)=-92dBm Equation (2-4)

F4=C4(D2)=(D2+D3)/2=(74dBm+72dBm)/2=73dBm 等式(2-5)F4=C4(D2)=(D2+D3)/2=(74dBm+72dBm)/2=73dBm Equation (2-5)

PI4=(-EIRP(4))-F4=(-16dBm)-(73dBm)=-89dBm 等式(2-6)PI4=(-EIRP(4))-F4=(-16dBm)-(73dBm)=-89dBm Equation (2-6)

F5=C5(D3)=(D3+D4)/2=(72dBm+74dBm)/2=73dBm 等式(2-7)F5=C5(D3)=(D3+D4)/2=(72dBm+74dBm)/2=73dBm Equation (2-7)

PI5=(-EIRP(5))-F5=(-18dBm)-(73dBm)=-91dBm 等式(2-8)PI5=(-EIRP(5))-F5=(-18dBm)-(73dBm)=-91dBm Equation (2-8)

在第3B圖的例子中,根據在方向On處的EIRP(n)與在前兩個方向On-2和On-1處的EIRP(n-2)、EIS(n-2)、EIRP(n-1)和EIS(n)之間的相關性確定感興趣方向On處的EIS(n)。In the example in Figure 3B, according to the EIRP(n) at the direction On and the EIRP(n-2), EIS(n-2), EIRP(n) at the first two directions On-2 and On-1 The correlation between -1) and EIS(n) determines the EIS(n) at the direction of interest On.

接下來,在第3C圖的例子中,偏移值Fn可以被校正為所有先前方向的差值D1、D2、……、Dn-2和Dn-1的平均值。校正函數Cn可以將偏移值Fn校正為等於「(D1+D2+...+Dn-2+Dn-1)/(n-1)」,即校正函數Cn可以將偏移值Fn從「D1」校正為「(D1+D2+...+Dn-2+Dn-1)/(n-1)」。例如,在第四方向O4,偏移值F4被設置為差值D1、D2和D3的平均值。同樣,在第五方向O5,偏移值F5被設置為差值D1、D2、D3和D4的平均值。第3C圖的例子的方案可表示為等式(3-1)~(3-8):F2=C2(D1)=D1=70dBm 等式(3-1)Next, in the example of FIG. 3C, the offset value Fn may be corrected as the average value of the differences D1, D2, . . . , Dn-2 and Dn-1 of all previous directions. The correction function Cn can correct the offset value Fn to be equal to "(D1+D2+...+Dn-2+Dn-1)/(n-1)", that is, the correction function Cn can change the offset value Fn from "D1 " is corrected to "(D1+D2+...+Dn-2+Dn-1)/(n-1)". For example, in the fourth direction O4, the offset value F4 is set as the average value of the difference values D1, D2 and D3. Likewise, in the fifth direction O5, the offset value F5 is set as the average value of the differences D1, D2, D3 and D4. The scheme of the example in Figure 3C can be expressed as equations (3-1)~(3-8): F2=C2(D1)=D1=70dBm Equation (3-1)

PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm 等式(3-2)PI2=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm Equation (3-2)

F3=C3(D1)=(D1+D2)/2=(70dBm+74dBm)/2=72dBm 等式(3-3)F3=C3(D1)=(D1+D2)/2=(70dBm+74dBm)/2=72dBm Equation (3-3)

PI3=(-EIRP(3))-F3=(-20dBm)-(72dBm)=-92dBm 等式(3-4)PI3=(-EIRP(3))-F3=(-20dBm)-(72dBm)=-92dBm Equation (3-4)

F4=C4(D1)=(D1+D2+D3)/3=(70dBm+74dBm+72dBm)/3=72dBm 等式(3-5)F4=C4(D1)=(D1+D2+D3)/3=(70dBm+74dBm+72dBm)/3=72dBm Equation (3-5)

PI4=(-EIRP(4))-F4=(-16dBm)-(72dBm)=-88dBm 等式(3-6)PI4=(-EIRP(4))-F4=(-16dBm)-(72dBm)=-88dBm Equation (3-6)

F5=C5(D1)=(D1+D2+D3+D4)/4=(70dBm+74dBm+72dBm+74dBm)/4=72.5dBm 等式(3-7)F5=C5(D1)=(D1+D2+D3+D4)/4=(70dBm+74dBm+72dBm+74dBm)/4=72.5dBm Equation (3-7)

PI5=(-EIRP(5))-F5=(-18dBm)-(72.5dBm)=-90.5dBm 等式(3-8)PI5=(-EIRP(5))-F5=(-18dBm)-(72.5dBm)=-90.5dBm Equation (3-8)

在第3C圖的例子中,在感興趣的方向On處的EIS(n)是根據方向On處的EIRP(n)和之前所有方向O1、O2、...、On-2和On-1處的差值D1、D2、……、Dn-2和Dn-1確定的。換句話說,EIS(n)是根據方向On處的EIRP(n)與方向所有之前方向O1~On-1處的EIRP(1)~EIRP(n-1)和EIS(1)~EIS(n-1)之間的相關性確定的。In the example in Figure 3C, the EIS(n) at the direction of interest On is based on the EIRP(n) at the direction On and all previous directions O1, O2, ..., On-2 and On-1 The differences D1, D2, ..., Dn-2 and Dn-1 are determined. In other words, EIS(n) is based on EIRP(n) at direction On and EIRP(1)~EIRP(n-1) and EIS(1)~EIS(n) at all previous directions O1~On-1 in direction -1) The correlation between is determined.

接下來,在第3D圖的例子中,可以選擇方向O1、O3和O5,並且可以根據測試訊號350的測試功率「實際測量」EIS(1)、EIS(3)和EIS(5)。然後,可以得到負ERIP(1)和EIS(1)之間的差值D1、負ERIP(3)和EIS(3)之間的差值D3,以及負ERIP(5)和EIS(5)之間的差值D5。然後,偏移值F2可以被確定為差值D1和D3的插值(interpolation)(例如,平均值),並且初始功率電平PI2被設置為「負EIRP(2)減去偏移值F2」。然後,測試訊號350的測試功率從初始功率電平PI2開始,評估DUT 1000的RX路徑200並進行調節測試,並且EIS(2)被確定為DUT 1000通過調節測試的最小測試功率電平。同樣地,偏移值F4可以被確定為差值D3和D5的插值(例如,平均值),並且初始功率電平PI4被設置為「負EIRP(4)減去偏移值F4」。然後,測試訊號350的測試功率從初始功率電平PI4開始到確定的EIS(4)。Next, in the example in the 3D diagram, directions O1 , O3 and O5 can be selected, and EIS(1), EIS(3) and EIS(5) can be “actually measured” according to the test power of thetest signal 350 . Then, the difference D1 between negative ERIP(1) and EIS(1), the difference D3 between negative ERIP(3) and EIS(3), and the difference between negative ERIP(5) and EIS(5) can be obtained. The difference between D5. Then, the offset value F2 can be determined as an interpolation (eg, average value) of the differences D1 and D3, and the initial power level PI2 is set as "negative EIRP(2) minus the offset value F2". Then, the test power of thetest signal 350 starts from the initial power level PI2, theRX path 200 of theDUT 1000 is evaluated and the conditioning test is performed, and EIS(2) is determined as the minimum test power level for theDUT 1000 to pass the conditioning test. Likewise, the offset value F4 can be determined as an interpolation (eg, average value) of the differences D3 and D5, and the initial power level PI4 is set as "negative EIRP(4) minus the offset value F4". Then, the test power of thetest signal 350 starts from the initial power level PI4 to the determined EIS(4).

由上可知,在第2圖和第3A圖~第3D圖示例中,以從初始功率電平PIn開始的測試功率根據測試訊號350「實際測量」在方向On處的EIS(n)。在其他例子中,為了進一步減少評估EIS(n)的測試時間,測試系統2000可不需要「實際測量」EIS(n),而是透過「估計」來確定EIS(n),如將在以下段落中參考第4圖和第5A圖~第5D圖討論的。It can be known from the above that, in the examples in Fig. 2 and Fig. 3A ~ Fig. 3D, the EIS(n) in the direction On is "actually measured" according to thetest signal 350 with the test power starting from the initial power level PIn. In other examples, in order to further reduce the test time for evaluating EIS(n), thetest system 2000 does not need to "actually measure" EIS(n), but to determine EIS(n) through "estimation", as will be described in the following paragraphs Discussed with reference to Figure 4 and Figure 5A-5D.

第4圖是圖示根據關於第2圖的各種測試方案的在不同方向O1~O5與DUT 1000相關聯的功率電平的示意圖。第5A圖是從第4圖的另一方面說明與DUT 1000相關聯的功率電平的示意圖。在第4圖和第5A圖的例子中,僅針對第一方向O1(即參考方向)EIS(1)是根據測試訊號350「實際測量」的。另一方面,對於其他方向O2、O3、O4和O5等,EIS(2)、EIS(3)、EIS(4)和EIS(5)不是「實際測量」的,而是直接由「估計」決定。例如,EIS(2)可以估計為「負EIRP(2)減去偏移值F2」,並且EIS(3)可以估計為「負EIRP(3)減去偏移值F3」等。在第4圖和第5A圖的例子中,校正函數C2、C3、C4和C5可以將偏移值F2、F3、F4和F5校正為等於差值D1。這樣,EIS(2)~EIS(5)可以確定為等式(4-1a)~(4-8):F2=C2(D1)=D1=70dBm 等式(4-1a)Figure 4 is a diagram illustrating O1 in different directions according to various test scenarios related to Figure 2~05 Schematic diagram of power levels associated withDUT 1000. FIG. 5A is a schematic diagram illustrating the power levels associated withDUT 1000 from another aspect of FIG. 4 . In the examples of FIG. 4 and FIG. 5A , EIS(1) is “actually measured” according to thetest signal 350 only for the first direction O1 (ie, the reference direction). On the other hand, for other directions O2, O3, O4 and O5, etc., EIS(2), EIS(3), EIS(4) and EIS(5) are not "actually measured", but directly determined by "estimation" . For example, EIS(2) can be estimated as "negative EIRP(2) minus offset F2", and EIS(3) can be estimated as "negative EIRP(3) minus offset F3", etc. In the example of Figures 4 and 5A, correction functions C2, C3, C4 and C5 may correct offset values F2, F3, F4 and F5 to be equal to difference D1. In this way, EIS(2)~EIS(5) can be determined as equations (4-1a)~(4-8): F2=C2(D1)=D1=70dBm equation (4-1a)

F3=C3(D1)=D1=70dBm 等式(4-1b)F3=C3(D1)=D1=70dBm Equation (4-1b)

F4=C4(D1)=D1=70dBm 等式(4-1c)F4=C4(D1)=D1=70dBm Equation (4-1c)

F5=C5(D1)=D1=70dBm 等式(4-1d)F5=C5(D1)=D1=70dBm Equation (4-1d)

EIS(2)=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm 等式(4-2)EIS(2)=(-EIRP(2))-F2=(-18dBm)-(70dBm)=-88dBm Equation (4-2)

EIS(3)=(-EIRP(3))-F3=(-20dBm)-(70dBm)=-90dBm 等式(4-3)EIS(3)=(-EIRP(3))-F3=(-20dBm)-(70dBm)=-90dBm Equation (4-3)

EIS(4)=(-EIRP(4))-F4=(-16dBm)-(70dBm)=-86dBm 等式(4-4)EIS(4)=(-EIRP(4))-F4=(-16dBm)-(70dBm)=-86dBm Equation (4-4)

EIS(5)=(-EIRP(5))-F5=(-18dBm)-(70dBm)=-88dBm 等式(4-5)EIS(5)=(-EIRP(5))-F5=(-18dBm)-(70dBm)=-88dBm Equation (4-5)

第5B圖~第5D圖是圖示根據第5A圖的測試方案的其他示例的與DUT相關聯的功率電平的示意圖。在第5B圖的例子中,EIS(2)~EIS(5)仍可分別估計為負EIRP(2)~負EIRP(5)減去偏移值F2~F5。此外,偏移值Fn可以透過校正函數C2~C5校正為前兩個方向On-2和On-1處的差值Dn-2和Dn-1的平均值來。或者,在第5C圖例子中,偏移值Fn可以透過校正函數C2~C5校正為在所有先前方向O1~On-1處的差值D1~Dn-1的平均值。FIGS. 5B-5D are schematic diagrams illustrating power levels associated with a DUT according to other examples of the test scheme of FIG. 5A. In the example in FIG. 5B , EIS(2)~EIS(5) can still be estimated as negative EIRP(2)~negative EIRP(5) minus the offset values F2~F5, respectively. In addition, the offset value Fn can be corrected as the average value of the differences Dn-2 and Dn-1 at the first two directions On-2 and On-1 through the correction functions C2-C5. Alternatively, in the example in FIG. 5C , the offset value Fn can be corrected as the average value of the differences D1 ˜ Dn−1 in all previous directions O1 ˜ On−1 through the correction functions C2 ˜ C5 .

另一方面,在第5D圖例子中,可以根據測試訊號350的測試功率選擇方向O1、O3和O5並且可以「實際測量」EIS(1)、EIS(3)和EIS(5)。然後,可以得到負ERIP(1)和EIS(1)之間的差值D1、負ERIP(3)和EIS(3)之間的差值D3,以及負ERIP(5)和EIS(5)之間的差值D5。然後,偏移值F2可以被確定為差值D1和D3的插值(例如,平均值),並且EIS(2)被估計為「負EIRP(2)減去偏移值F2」。同樣地,偏移值F4可以被確定為差值D3和D5的插值(例如,平均值),並且EIS(4)被估計為「負EIRP(4)減去偏移值F4」。On the other hand, in the example shown in Figure 5D, the test function according to thetest signal 350 can beThe rate selects directions O1, O3 and O5 and can "actually measure" EIS(1), EIS(3) and EIS(5). Then, the difference D1 between negative ERIP(1) and EIS(1), the difference D3 between negative ERIP(3) and EIS(3), and the difference between negative ERIP(5) and EIS(5) can be obtained. The difference between D5. Then, the offset value F2 can be determined as an interpolation (eg, average value) of the differences D1 and D3, and EIS(2) is estimated as "negative EIRP(2) minus the offset value F2". Likewise, offset F4 can be determined as an interpolation (eg, average value) of differences D3 and D5, and EIS(4) is estimated as "negative EIRP(4) minus offset F4".

在第4圖和第5A圖~第5D圖的各種示例中,EIS(2)~EIS(5)分別估計為負EIRP(2)~負EIRP(5)減去偏移值F2~F5,其中偏移值F2~F5可與那些在第2圖和第3A圖~第3D圖例子中的相同。換句話說,第4圖和第5A圖~第5D圖的估計的EIS(2)~EIS(5)可以與第2圖和第3A圖~第3D圖的初始功率電平PI2~PI5基本相同。In the various examples in Figures 4 and 5A~5D, EIS(2)~EIS(5) are estimated as negative EIRP(2)~negative EIRP(5) minus offset values F2~F5, respectively, where The offset values F2-F5 may be the same as those in the examples in FIG. 2 and FIGS. 3A-3D. In other words, the estimated EIS(2)~EIS(5) of Figure 4 and Figure 5A~5D can be substantially the same as the initial power levels PI2~PI5 of Figure 2 and Figure 3A~3D .

第6A圖是圖示根據第3A圖和第3D圖的測試方案的用於評估DUT的測試方法的流程圖。參考第6A圖,首先,在步驟S110,使用處理模組2400控制支撐座2300將DUT 1000佈置在第一方向O1,並使用處理模組2400和測量設備3000在第一方向O1測量DUT 1000的EIRP(1)和EIS(1)。然後,在步驟S120,使用處理模組2400計算負EIRP(1)和EIS(1)之間的差值D1。接著,在步驟S130,控制支撐座2300將DUT 1000佈置在第二方向O2,並使用處理模組2400及測量設備3000在第二方向O2測量DUT 1000的EIRP(2)。FIG. 6A is a flowchart illustrating a test method for evaluating a DUT according to the test scenarios of FIGS. 3A and 3D . Referring to FIG. 6A, first, in step S110, use theprocessing module 2400 to control thesupport base 2300 to arrange theDUT 1000 in the first direction O1, and use theprocessing module 2400 and themeasuring device 3000 to measure the EIRP of theDUT 1000 in the first direction O1 (1) and EIS (1). Then, in step S120 , theprocessing module 2400 is used to calculate the difference D1 between negative EIRP(1) and EIS(1). Next, in step S130 , control thesupport base 2300 to arrange theDUT 1000 in the second direction O2 , and use theprocessing module 2400 and themeasurement device 3000 to measure the EIRP(2) of theDUT 1000 in the second direction O2 .

然後,在步驟S140,設置偏移值F2,並使用校正函數C2來校正偏移值F2。例如,偏移值F2可以等於差值D1,或者偏移值F2可以被校正為差值D1和其他一個或複數個方向上的其他差值的平均值。然後,在步驟S150,將初始功率電平PI2設置為「負EIRP(2)減去偏移值F2」,並以從初始功率電平PI2開始的測試功率發送測試訊號350。然後,在步驟S160,對與測試訊號350相關的DUT 1000執行調節測試,其中計算DUT 1000的性能索引(例如,與從測試訊號350解調的資料位元相關聯的BER或「吞吐量中斷率(throughput outage)」)作為調節測試的標準。Then, in step S140, the offset value F2 is set, and the offset value F2 is corrected using the correction function C2. For example, the offset value F2 may be equal to the difference value D1, or the offset value F2 may be corrected as the average value of the difference value D1 and other differences in one or more directions. Then, in step S150 , the initial power level PI2 is set as “negative EIRP(2) minus the offset value F2 ”, and thetest signal 350 is sent with the test power starting from the initial power level PI2 . Then, at step S160, a conditioning test is performed on theDUT 1000 associated with thetest signal 350, wherein a performance index of theDUT 1000 is calculated (e.g.The BER or "throughput outage") associated with the data bits demodulated by thetest signal 350 is used as a criterion for conditioning testing.

然後,在步驟S170,從初始功率電平PI2增加或減少測試功率,並以這種增加或減少的測試功率重複調節測試。此外,確定DUT 1000可以通過調節測試的測試功率的「最小電平」。例如,在一種情況下,如果DUT 1000在初始功率電平PI2無法通過調節測試,則反復增加測試功率並進行調節測試,直到確定出DUT 1000通過調節測試的測試功率的「最小電平」。另一方面,在另一種情況下,如果DUT 1000可以在初始功率電平PI2下通過調節測試,則反復降低測試功率並進行調節測試,直到確定出DUT 1000通過調節測試的測試功率的「最小電平」。然後,在步驟S180,將DUT 1000通過調節測試的測試功率的「最小電平」視為EIS(2),並最終確定EIS(2)。Then, at step S170, the test power is increased or decreased from the initial power level PI2, and the conditioning test is repeated with this increased or decreased test power. Additionally, a "minimum level" of test power at which theDUT 1000 can pass the conditioning test is determined. For example, in one case, if theDUT 1000 fails the conditioning test at the initial power level PI2, the test power is repeatedly increased and the conditioning test is performed until a "minimum level" of test power at which theDUT 1000 passes the conditioning test is determined. On the other hand, in another case, if theDUT 1000 can pass the conditioning test at the initial power level PI2, the test power is repeatedly reduced and the conditioning test is performed until the "minimum current" of the test power at which theDUT 1000 passes the conditioning test is determined. flat". Then, in step S180, the "minimum level" of the test power at which theDUT 1000 passes the conditioning test is regarded as EIS(2), and EIS(2) is finally determined.

第6B圖是圖示根據第5A圖~第5D圖的測試方案的用於評估DUT的測試方法的流程圖。在第6B圖的例子中,步驟S210~S240可以與第6A圖的步驟S110~S140相同。此外,在步驟S250中,估計EIS(2)為「負EIRP(2)減去偏移值F2」。也就是說,在步驟S250中,EIS(2)不是「實際測量」的,而是直接透過估計確定EIS(2)。FIG. 6B is a flowchart illustrating a test method for evaluating a DUT according to the test scheme of FIGS. 5A-5D . In the example of FIG. 6B, steps S210-S240 may be the same as steps S110-S140 of FIG. 6A. In addition, in step S250, the estimated EIS(2) is "negative EIRP(2) minus the offset value F2". That is to say, in step S250, EIS(2) is not "actually measured", but EIS(2) is determined directly through estimation.

根據本發明的測試系統2000和測試方法中採用的測試方案的各種示例,可以選擇一個或複數個方向(例如0度處的第一方向O1)作為一個或複數個參考方向,並且可以首先測量一個或複數個參考方向上的EIRP和EIS。然後,可以根據該感興趣方向On處的EIRP(n)與一個或複數個參考方向處的EIRP和EIS之間的相關性來確定感興趣方向On處的EIS(n)。與採用低準確性RSSI的傳統測試方案相比,本發明採用EIRP(其比RSSI更準確)來測量或估計EIS,從而可以實現更高的準確度。此外,測試訊號350的測試功率可直接從初始功率電平PIn開始以快速定位EIS,從而可減少確定EIS的測試時間。According to various examples of the test scheme adopted in thetest system 2000 and the test method of the present invention, one or multiple directions (such as the first direction O1 at 0 degrees) can be selected as one or multiple reference directions, and one can be measured first Or EIRP and EIS in multiple reference directions. Then, the EIS(n) at the direction of interest On can be determined according to the correlation between the EIRP(n) at the direction of interest On and the EIRP and EIS at one or multiple reference directions. Compared with traditional test schemes using RSSI with low accuracy, the present invention uses EIRP (which is more accurate than RSSI) to measure or estimate EIS, so that higher accuracy can be achieved. In addition, the test power of thetest signal 350 can directly start from the initial power level PIn to quickly locate the EIS, thereby reducing the test time for determining the EIS.

對所屬技術領域具有通常知識者顯而易見的是,可以對所公開的實施例進行各種修改和變化。說明書和示例旨在僅被視為示例性的,本發明的真實範圍由以下請求項及其等同物指示。Various modifications and changes to the disclosed embodiments will be apparent to those having ordinary skill in the art. It is intended that the specification and examples be considered exemplary only, with the true scope of the invention being indicated by the following claims and their equivalents.

S110,S120,S130,S140,S150,S160,S170,S180:步驟S110, S120, S130, S140, S150, S160, S170, S180: steps

Claims (20)

Translated fromChinese
一種用於確定被測設備輻射性能的測試方法,該測試方法包括:將所述被測設備佈置在第一方向;在所述第一方向測量所述被測設備的第一有效各向同性輻射功率和第一有效各向同性靈敏度;將所述被測設備佈置在不同於所述第一方向的第二方向,並在所述第二方向測量所述被測設備的第二有效各向同性輻射功率;以及根據所述第二有效各向同性輻射功率、所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度之間的相關性,在所述第二方向確定所述被測設備的第二有效各向同性靈敏度。A test method for determining the radiation performance of a device under test, the test method comprising: arranging the device under test in a first direction; measuring the first effective isotropic radiation of the device under test in the first direction power and first effective isotropy sensitivity; arranging said device under test in a second direction different from said first direction, and measuring a second effective isotropy of said device under test in said second direction radiated power; and based on a correlation between the second effective isotropic radiated power, the first effective isotropic radiated power and the first effective isotropic sensitivity, determining the The second effective isotropic sensitivity of the device under test.如請求項1所述之測試方法,其中,所述第二有效各向同性輻射功率、所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度之間的相關性包括所述第二有效各向同性輻射功率與與所述第一有效各向同性輻射功率及所述第一有效各向同性靈敏度相關的第一差值之間的相關性。The test method according to claim 1, wherein the correlation between the second effective isotropic radiation power, the first effective isotropic radiation power and the first effective isotropic sensitivity includes the A correlation between the second effective isotropic radiated power and a first difference related to the first effective isotropic radiated power and the first effective isotropic sensitivity.如請求項2所述之測試方法,其中,所述測量所述被測設備的所述第二有效各向同性靈敏度的步驟包括:將初始功率電平設置為負的所述第二有效各向同性輻射功率減去偏移值,其中所述偏移值與所述第一差值有關;以及根據與所述初始功率電平相關的測試訊號,在所述第二方向測量所述被測設備的所述第二有效各向同性靈敏度。The test method according to claim 2, wherein the step of measuring the second effective isotropic sensitivity of the device under test comprises: setting the initial power level to the negative second effective isotropic sensitivity subtracting an offset value from the isotropic radiated power, wherein the offset value is related to the first difference; and measuring the device under test in the second direction based on a test signal related to the initial power level The second effective isotropic sensitivity of .如請求項3所述之測試方法,其中,所述偏移值等於由校正函數校正後的所述第一差值。The testing method according to claim 3, wherein the offset value is equal to the first difference value corrected by a correction function.如請求項4所述之測試方法,進一步包括:獲得與在第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第三方向位於所述第一方向和所述第二方向之間;以及設定所述校正函數,校正所述偏移值等於所述第一差值和所述第三差值的平均值。The test method according to claim 4, further comprising: obtaining a third difference related to the third effective isotropic radiated power and the third effective isotropic sensitivity of the device under test in the third direction, wherein the third direction is located between the first direction and the second direction; and the correction function is set such that the offset value is corrected to be equal to the average value of the first difference and the third difference .如請求項4的測試方法,進一步包括:獲得與在第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第二方向位於所述第一方向和所述第三方向之間;以及設定所述偏移值等於所述第一差值和所述第三差值的插值。The test method according to claim 4, further comprising: obtaining a third difference related to the third effective isotropic radiation power and the third effective isotropic sensitivity of the device under test in the third direction, wherein the The second direction is located between the first direction and the third direction; and the offset value is set equal to an interpolation value of the first difference and the third difference.如請求項3所述之測試方法,其中,所述測量所述被測設備的所述第二有效各向同性靈敏度的步驟進一步包括:根據所述測試訊號對所述被測設備進行調節測試;根據所述調節測試的結果調整與所述初始功率電平相關的所述測試訊號的測試功率;以及將所述第二有效各向同性靈敏度確定為所述測試訊號的所述測試功率的電平。The test method according to claim 3, wherein the step of measuring the second effective isotropic sensitivity of the device under test further includes: performing an adjustment test on the device under test according to the test signal; adjusting the test power of the test signal relative to the initial power level based on the results of the conditioning test; and determining the second effective isotropic sensitivity as the level of the test power of the test signal .如請求項7所述之測試方法,其中,將所述第二有效各向同性靈敏度確定為所述被測設備能夠透過所述調節測試的標準的所述測試功率的最小電平。The test method according to claim 7, wherein the second effective isotropic sensitivity is determined as the minimum level of the test power at which the device under test can pass the standard of the adjustment test.如請求項8所述之測試方法,其中,對所述被測設備進行所述調節測試的步驟包括:計算與所述測試訊號相關的所述被測設備的性能索引;將所述性能索引與門檻進行比較;以及當所述性能索引小於或等於所述門檻時,確定所述被測設備可以透過所述調節測試的所述標準,所述性能索引是與所述測試訊號的資料位元相關聯的誤碼率值或吞吐量中斷率。The test method as described in claim 8, wherein the step of performing the adjustment test on the device under test includes: calculating the performance index of the device under test related to the test signal; combining the performance index with threshold; and when the performance index is less than or equal to the threshold, determining that the device under test can pass the standard of the conditioning test, the performance index is related to the data bits of the test signal bit error rate value or throughput outage rate for the link.一種用於確定被測設備的輻射性能的測試方法,該測試方法包括:將所述被測設備佈置在第一方向;在所述第一方向測量所述被測設備的第一有效各向同性輻射功率和第一有效各向同性靈敏度;將所述被測設備佈置在不同於所述第一方向的第二方向,並在所述第二方向測量所述被測設備的第二有效各向同性輻射功率;以及根據所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度在所述第二方向估計所述被測設備的第二有效各向同性靈敏度。A test method for determining the radiation performance of a device under test, the test method comprising: arranging the device under test in a first direction; measuring a first effective isotropy of the device under test in the first direction radiated power and a first effective isotropic sensitivity; arranging the device under test in a second direction different from the first direction, and measuring a second effective isotropic sensitivity of the device under test in the second direction isotropic radiated power; and estimating a second effective isotropic sensitivity of the device under test in the second direction based on the first effective isotropic radiated power and the first effective isotropic sensitivity.如請求項10所述之測試方法,其中,在所述第二方向估計所述被測設備的所述第二有效各向同性靈敏度包括:獲得與所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度相關的第一差值;以及將所述被測設備的所述第二有效各向同性靈敏度估計為負的所述第二有效各向同性輻射功率減去偏移值,其中所述偏移值與所述第一差值相關。The testing method according to claim 10, wherein estimating the second effective isotropic sensitivity of the device under test in the second direction comprises:obtaining a first difference associated with the first effective isotropic radiated power and the first effective isotropic sensitivity; and estimating the second effective isotropic sensitivity of the device under test as negative The second effective isotropic radiated power minus an offset value, wherein the offset value is related to the first difference.如請求項11所述之測試方法,其中,所述偏移值等於由校正函數校正的所述第一差值。The testing method according to claim 11, wherein the offset value is equal to the first difference corrected by a correction function.如請求項12的測試方法,進一步包括:獲得與在第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第三方向位於所述第一方向和所述第二方向之間;以及設定所述校正函數,校正所述偏移值等於所述第一差值和所述第三差值的平均值。The test method according to claim 12, further comprising: obtaining a third difference related to the third effective isotropic radiation power and the third effective isotropic sensitivity of the device under test in a third direction, wherein the The third direction is located between the first direction and the second direction; and the correction function is set such that the offset value is corrected to be equal to the average value of the first difference value and the third difference value.如請求項12的測試方法,進一步包括:獲得與在第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第二方向位於所述第一方向和所述第三方向之間;以及設定所述偏移值等於所述第一差值與所述第三差值的插值。The test method according to claim 12, further comprising: obtaining a third difference related to the third effective isotropic radiation power and the third effective isotropic sensitivity of the device under test in a third direction, wherein the The second direction is located between the first direction and the third direction; and the offset value is set equal to an interpolation value of the first difference and the third difference.一種用於確定被測設備的輻射性能的測試系統,該測試系統包括:測量設備,配置為在第一方向測量所述被測設備的第一有效各向同性輻射功率,並在不同於所述第一方向的第二方向測量所述被測設備的第二有效各向同性輻射功率;以及處理模組,耦接於所述被測設備和所述測量設備,配置為在所述第一方向測量所述被測設備的第一有效各向同性靈敏度,並根據所述第二有效各向同性輻射功率、所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度之間的相關性在所述第二方向確定所述被測設備的第二有效各向同性靈敏度。A test system for determining the radiation performance of a device under test, the test system comprising: a measuring device configured to measure a first effective isotropic radiated power of the device under test in a first direction, and different from the The second direction of the first direction measures a second effective isotropic radiated power of the device under test; anda processing module, coupled to the device under test and the measuring device, configured to measure a first effective isotropic sensitivity of the device under test in the first direction, and A correlation between isotropic radiated power, said first effective isotropic radiated power, and said first effective isotropic sensitivity determines a second effective isotropic sensitivity of said device under test in said second direction.如請求項15所述之測試系統,其中,所述第二有效各向同性輻射功率、所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度之間的所述相關性包括所述第二有效各向同性輻射功率與與所述第一有效各向同性輻射功率和所述第一有效各向同性靈敏度相關的第一差值之間的相關性。The test system according to claim 15, wherein the correlation between the second effective isotropic radiated power, the first effective isotropic radiated power, and the first effective isotropic sensitivity A correlation between the second effective isotropic radiated power and a first difference associated with the first effective isotropic radiated power and the first effective isotropic sensitivity is included.如請求項16所述之測試系統,其中,所述處理模組配置為執行:將初始功率電平設置為負的所述第二有效各向同性輻射功率減去偏移值,其中所述偏移值等於由校正函數校正的所述第一差值;以及根據與所述初始功率電平相關的測試訊號,在所述第二方向測量所述被測設備的所述第二有效各向同性靈敏度。The test system of claim 16, wherein the processing module is configured to perform: setting an initial power level to the negative second effective isotropic radiated power minus an offset value, wherein the offset a shift equal to said first difference corrected by a correction function; and measuring said second effective isotropy of said device under test in said second direction based on a test signal associated with said initial power level sensitivity.如請求項17所述之測試系統,其中,所述處理模組被進一步配置為執行:獲得與第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第三方向位於所述第一方向和所述第二方向之間;以及設定所述校正函數,校正所述偏移值等於所述第一差值與所述第三差值的平均值。The test system according to claim 17, wherein the processing module is further configured to perform: obtaining the third effective isotropic radiation power and the third effective isotropic radiation power of the device under test in a third direction a sensitivity-related third difference, wherein the third direction is between the first direction and the second direction; and setting the correction function to correct the offset equal to the first difference and The average value of the third difference.如請求項17所述之測試系統,其中,所述處理模組進一步配置為執行:獲得與在第三方向的所述被測設備的第三有效各向同性輻射功率和第三有效各向同性靈敏度相關的第三差值,其中所述第二方向位於所述第一方向和所述第三方向之間;以及設定所述偏移值等於所述第一差值與所述第三差值的插值。The test system according to claim 17, wherein the processing module is further configured to execute:obtaining a third difference related to a third effective isotropic radiated power and a third effective isotropic sensitivity of the device under test in a third direction, wherein the second direction is located between the first direction and the between the third directions; and setting the offset value equal to an interpolation value between the first difference and the third difference.如請求項17所述之測試系統,其中,所述處理模組進一步配置為執行:根據所述測試訊號對所述被測設備進行調節測試;根據所述調節測試的結果調整與所述初始功率電平相關的所述測試訊號的測試功率;以及將所述第二有效各向同性靈敏度確定為所述測試訊號的所述測試功率的電平。The test system according to claim 17, wherein the processing module is further configured to: perform an adjustment test on the device under test according to the test signal; adjust the initial power according to the result of the adjustment test level dependent test power of the test signal; and determining the second effective isotropic sensitivity as the level of the test power of the test signal.
TW110146826A2021-12-142021-12-14Testing method and testing system for determining radiation performance of a device under test (dut)TWI797887B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
TW110146826ATWI797887B (en)2021-12-142021-12-14Testing method and testing system for determining radiation performance of a device under test (dut)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
TW110146826ATWI797887B (en)2021-12-142021-12-14Testing method and testing system for determining radiation performance of a device under test (dut)

Publications (2)

Publication NumberPublication Date
TWI797887Btrue TWI797887B (en)2023-04-01
TW202323832A TW202323832A (en)2023-06-16

Family

ID=86945158

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW110146826ATWI797887B (en)2021-12-142021-12-14Testing method and testing system for determining radiation performance of a device under test (dut)

Country Status (1)

CountryLink
TW (1)TWI797887B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2006047677A1 (en)*2004-10-252006-05-04Qualcomm IncorporatedSystems, methods and apparatus for determining a radiated performance of a wireless device
TW200838180A (en)*2006-09-082008-09-16Qualcomm IncRadiated performance of a wireless device
WO2011134206A1 (en)*2010-04-262011-11-03深圳市鼎立方无线技术有限公司Method and device for testing effective isotropic sensitivity
CN113162706A (en)*2020-01-222021-07-23深圳市通用测试系统有限公司Radio frequency performance test method and system for wireless equipment
US20210364563A1 (en)*2020-05-202021-11-25Anritsu CorporationMobile terminal testing device and mobile terminal testing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2006047677A1 (en)*2004-10-252006-05-04Qualcomm IncorporatedSystems, methods and apparatus for determining a radiated performance of a wireless device
TW200838180A (en)*2006-09-082008-09-16Qualcomm IncRadiated performance of a wireless device
WO2011134206A1 (en)*2010-04-262011-11-03深圳市鼎立方无线技术有限公司Method and device for testing effective isotropic sensitivity
CN113162706A (en)*2020-01-222021-07-23深圳市通用测试系统有限公司Radio frequency performance test method and system for wireless equipment
US20210364563A1 (en)*2020-05-202021-11-25Anritsu CorporationMobile terminal testing device and mobile terminal testing method

Also Published As

Publication numberPublication date
TW202323832A (en)2023-06-16

Similar Documents

PublicationPublication DateTitle
KR102179044B1 (en)Apparatus and method for adjusting a receive beam gain in wireless communication system
US20210051678A1 (en)Wireless communication system, wireless communication method, base station, and terminal
US9143967B2 (en)Method and apparatus for determining distance in a Wi-Fi network
US9294177B2 (en)System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US20190271775A1 (en)Motion detection using the magnitude of channel impulse response
US20030068984A1 (en)Pathloss aided closed loop power control
US8843071B2 (en)Method and apparatus for controlling interference in near field communication network including a plurality of connections for direct communication between terminals
RU2011148605A (en) METHOD FOR TRANSMISSION OF THE RISING LINK TO THE MULTIPLE ANTENNAS
WO2011134206A1 (en)Method and device for testing effective isotropic sensitivity
CN110235413B (en)Method for estimating receiver sensitivity of data packet signal transceiver
CN112567642B (en) Beam training performed by end device
US20160301588A1 (en)System and method for testing wireless data packet signal transceiver
CN107872284B (en)Self-excitation detection method and device of wireless repeater
WO2012009867A1 (en)Method and device for testing total isotropic sensitivity of mobile terminal
WO2014190609A1 (en)Method and system for testing mobile terminal wifi ota
US11515952B1 (en)Testing method and testing system for evaluating radio device
TWI797887B (en)Testing method and testing system for determining radiation performance of a device under test (dut)
US11722200B2 (en)Apparatuses and methods for RSRP measurements for a wireless device with variable output power per antenna arrangement
WO2012009868A1 (en)Method and device for testing total isotropic sensitivity of mobile terminal
WO2022052571A1 (en)Terminal communication control method and communication device, and storage medium
US20150023193A1 (en)Channel quality indication with filtered interference
US20060009250A1 (en)Apparatus and method for determining access power in a mobile communication system
US20130033980A1 (en)Communications system providing enhanced channel switching features based upon modulation fidelity and related methods
KR101862285B1 (en)Bluetooth Low Energy (BLE) Distance Estimation Method of Mobile Device Using Beacon Transmission Signal
KR20130086870A (en)Method for transmitting signal of multiple antennas base station and apparatus thereof

[8]ページ先頭

©2009-2025 Movatter.jp