本發明是有關於一種檢測裝置及其注入口結構,且特別是有關於一種可破壞流體表面張力的注入口結構及應用該注入口結構的檢測裝置。The invention relates to a detection device and an injection port structure thereof, and in particular to an injection port structure capable of destroying the surface tension of a fluid and a detection device using the injection port structure.
為了因應現在醫療上注重預防醫學、早期診斷與早期治療的需求,促使對於檢驗環境自動化、定點照護(Point of Care,POC)或近病人端檢驗(Near Patient Testing)與分子診斷的需求提高。目前,血液檢體大多仍是在離心機中經過分離,被分離的待測流體再另外取出至檢測裝置進行檢測,檢測裝置例如為檢測儀或快篩卡匣。In order to respond to the current medical needs for preventive medicine, early diagnosis and early treatment, the demand for automated test environments, Point of Care (POC) or Near Patient Testing and molecular diagnosis has increased. At present, most blood samples are still separated in a centrifuge, and the separated fluid to be tested is then taken out to a testing device for testing, such as a tester or a quick-screen cassette.
習知的檢測裝置中,當流體滴入檢測裝置的注入口時,流體的行為因易受到表面張力的影響,而不易被導入注入口內部,所以需要額外使用吸收材來引導吸附流體,使流體通過注入口進到檢測裝置內部。如此一來,會增加檢測裝置的製造成本。In the conventional detection device, when the fluid drips into the injection port of the detection device, the behavior of the fluid is easily affected by the surface tension and is not easy to be introduced into the injection port. Therefore, an additional absorbent material is needed to guide the adsorption of the fluid and make the fluid Enter the detection device through the injection port. This will increase the manufacturing cost of the detection device.
本發明提供一種注入口結構,其可破壞流體的表面張力,使流體藉由毛細現象流入微流道中。The invention provides an injection port structure, which can destroy the surface tension of a fluid and cause the fluid to flow into a microchannel through a capillary phenomenon.
本發明提供一種檢測裝置,可以不使用吸收材即可讓流體進入注入口結構與微流道中,具有降低成本的優勢。The invention provides a detection device, which can allow fluid to enter the injection port structure and the microchannel without using an absorbing material, and has the advantage of reducing costs.
本發明的注入口結構,適於與一微流道相接。注入口結構包括一注入口部以及至少一個微結構。注入口部具有一內表面。微結構配置於注入口部內,且連接內表面,其中當一流體注入注入口部時,微結構破壞流體的表面張力,使流體藉由毛細現象而流入微流道中。The injection port structure of the present invention is suitable for connecting with a micro-flow channel. The injection port structure includes an injection port and at least one microstructure. The injection port portion has an inner surface. The microstructure is arranged in the injection port and is connected to the inner surface. When a fluid is injected into the injection port, the microstructure destroys the surface tension of the fluid and causes the fluid to flow into the microchannel through the capillary phenomenon.
本發明的檢測裝置,其包括至少一注入口結構以及至少一微流道。注入口結構包括注入口部以及至少一個微結構。注入口部具有一內表面。微結構配置於注入口部內,且連接內表面。微流道連接注入口結構。當一流體注入注入口部時,微結構破壞流體的表面張力,使流體藉由毛細現象而流入微流道中。The detection device of the present invention includes at least one injection port structure and at least one microchannel. The injection port structure includes an injection port and at least one microstructure. The injection port portion has an inner surface. The microstructure is arranged in the injection port and connected to the inner surface. The microchannel is connected to the injection port structure. When a fluid is injected into the injection port, the microstructure destroys the surface tension of the fluid, so that the fluid flows into the microchannel through the capillary phenomenon.
在本發明的一實施例中,上述的微結構為凸起狀微結構,突起於注入口部的內表面上。In an embodiment of the present invention, the microstructure is a convex microstructure, and is protruded on the inner surface of the injection port.
在本發明的一實施例中,上述的微結構為凹陷狀微結構,內埋於注入口部的內表面。In an embodiment of the present invention, the above microstructure is a recessed microstructure, and is embedded in the inner surface of the injection port.
在本發明的一實施例中,當上述的微結構為多個時,該些微結構呈等間距間隔排列。In an embodiment of the present invention, when there are multiple microstructures, the microstructures are arranged at regular intervals.
在本發明的一實施例中,上述的注入口部更具有一傾斜表面以及一底面。內表面連接於傾斜表面與底面之間,且內表面垂直或傾斜的連接底面。In an embodiment of the present invention, the injection port further includes an inclined surface and a bottom surface. The inner surface is connected between the inclined surface and the bottom surface, and the inner surface is vertically or inclined connected to the bottom surface.
在本發明的一實施例中,上述的微結構的一側邊位於傾斜表面與內表面的交界處。In an embodiment of the present invention, one side of the microstructure is located at an interface between the inclined surface and the inner surface.
在本發明的一實施例中,上述的微結構的一下表面與注入口部的底面之間具有一垂直間距。In an embodiment of the present invention, there is a vertical distance between the lower surface of the microstructure and the bottom surface of the injection port.
在本發明的一實施例中,上述的微結構的一下表面切齊於注入口部的底面。In one embodiment of the present invention, the lower surface of the microstructure is cut to the bottom surface of the injection port.
在本發明的一實施例中,上述的注入口部的俯視形狀為一圓形,而微流道的管徑小於或等於注入口部的直徑。In an embodiment of the present invention, the above-mentioned shape of the injection port portion is a circular shape, and the diameter of the microchannel is smaller than or equal to the diameter of the injection port portion.
在本發明的一實施例中,上述的微結構的俯視形狀包括多邊形、圓弧形或不規則形。In an embodiment of the present invention, the above-mentioned shape of the microstructure includes a polygonal shape, an arc shape, or an irregular shape.
基於上述,在本發明的注入口結構中,由於配置有至少一個微結構,且當流體注入注入口結構的注入口部時,微結構能破壞流體的表面張力,使流體可藉由毛細現象而流入與注入口結構相通的微流道。如此一來,注入口結構不需使用吸收材,即可引導流體進入。另外,本發明的檢測裝置包括上述的注入口結構,因為無需使用吸收材,因此可達成降低成本的需求。Based on the above, in the injection port structure of the present invention, at least one microstructure is configured, and when a fluid is injected into the injection port portion of the injection port structure, the microstructure can destroy the surface tension of the fluid, so that the fluid can be caused by capillary phenomenon. The inflow is in a microchannel communicating with the structure of the injection port. In this way, the injection port structure can guide the fluid to enter without using an absorbing material. In addition, the detection device of the present invention includes the above-mentioned injection port structure, and it is not necessary to use an absorbing material, so that the demand for cost reduction can be achieved.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
圖1繪示為本發明的一實施例的一種檢測裝置的局部俯視圖。圖2繪示為圖1的檢測裝置的局部立體剖面示意圖。請同時參考圖1與圖2,本實施例的檢測裝置100包括至少一注入口結構200(圖1中僅示意地繪示二個)以及至少一微流道300(圖1中僅示意地繪示二個),其中注入口結構200適於分別與微流道300相連接。FIG. 1 is a partial top view of a detection device according to an embodiment of the present invention. FIG. 2 is a schematic partial cross-sectional view of the detection device of FIG. 1. Please refer to FIG. 1 and FIG. 2 at the same time. The detection device 100 of this embodiment includes at least one injection port structure 200 (only two are schematically shown in FIG. 1) and at least one microchannel 300 (only schematically shown in FIG. 1) (Shown in two), wherein the injection port structure 200 is adapted to be respectively connected to the microchannel 300.
詳細來說,本實施例的檢測裝置100的每一注入口結構200包括一注入口部210以及至少一個微結構220(圖1中繪示五個)。注入口部210具有一內表面212,而微結構220配置於注入口部210內且連接內表面212。特別是,當一流體F注入注入口部210時,微結構220可破壞流體F的表面張力,使流體F藉由毛細現象而流入微流道300中。In detail, each injection port structure 200 of the detection device 100 of this embodiment includes an injection port portion 210 and at least one microstructure 220 (five are shown in FIG. 1). The injection port portion 210 has an inner surface 212, and the microstructure 220 is disposed in the injection port portion 210 and is connected to the inner surface 212. In particular, when a fluid F is injected into the injection port 210, the microstructure 220 can destroy the surface tension of the fluid F, and the fluid F flows into the microchannel 300 through a capillary phenomenon.
更具體來說,請再參考圖2,本實施例的注入口部210更具有一向下傾斜的傾斜表面214以及一底面216,其中內表面212連接於傾斜表面214與底面216之間,且內表面212垂直連接底面216,傾斜表面214的設計可引導流體F進入內表面212,然而內表面212對於底面216可以具有一傾斜角度設置(拔模斜角),本發明並不此以為限。如圖2所示,本實施例的注入口部210的俯視形狀具體化為一圓形,其中注入口部210的直徑由傾斜表面214最遠離內表面212的一側邊214a往傾斜表面214最鄰近內表面212的另一側邊214b逐漸縮小。換言之,本實施例的注入口部210的直徑並非為一定值,但並不以此為限。More specifically, referring to FIG. 2 again, the injection port 210 of this embodiment further has a downwardly inclined inclined surface 214 and a bottom surface 216, wherein the inner surface 212 is connected between the inclined surface 214 and the bottom surface 216, and the inner The surface 212 is vertically connected to the bottom surface 216, and the design of the inclined surface 214 can guide the fluid F into the inner surface 212. However, the inner surface 212 can have an inclined angle setting (draft angle) to the bottom surface 216, and the present invention is not limited thereto. As shown in FIG. 2, the plan view shape of the injection port 210 in this embodiment is embodied as a circle, and the diameter of the injection port 210 is from the side 214 a of the inclined surface 214 farthest from the inner surface 212 toward the inclined surface 214. The other side 214b adjacent to the inner surface 212 is gradually reduced. In other words, the diameter of the injection port 210 in this embodiment is not a certain value, but it is not limited thereto.
再者,在本實施例中,多個微結構220之間呈等間距間隔排列,其中微結構220為凸起狀微結構,亦即微結構220是以突出的型態配置於內表面212上。如圖2所示,微結構220的一側邊224是位於傾斜表面214與內表面212的交界處,然而側邊224亦可設置低於傾斜表面214與內表面212的交界處。微結構220的一上表面225為一向下傾斜的傾斜表面,在圖2中,上表面225的傾斜角度較傾斜表面214的傾斜角度更大,但並不此以為限。微結構220具有三個側表面221(圖2只有指出一個側表面221),其中兩個側表面221連接內表面212,側表面221垂直底面216設置,然而側表面221對於底面216可以具有一傾斜角度設置(拔模斜角),本發明並不此以為限。微結構220的一下表面226切齊於注入口部210的底面216。換言之,微結構220的高度與內表面212的深度實質上相同,但並不此以為限。此處,每一微結構220的俯視形狀例如是多邊形、圓弧形或不規則形,但並不此為限。Furthermore, in this embodiment, a plurality of microstructures 220 are arranged at regular intervals, wherein the microstructures 220 are convex microstructures, that is, the microstructures 220 are arranged on the inner surface 212 in a protruding form. . As shown in FIG. 2, one side 224 of the microstructure 220 is located at the boundary between the inclined surface 214 and the inner surface 212. However, the side 224 may be lower than the boundary between the inclined surface 214 and the inner surface 212. An upper surface 225 of the microstructure 220 is an inclined surface inclined downward. In FIG. 2, the inclination angle of the upper surface 225 is larger than that of the inclined surface 214, but it is not limited thereto. The microstructure 220 has three side surfaces 221 (only one side surface 221 is indicated in FIG. 2), of which two side surfaces 221 are connected to the inner surface 212, and the side surface 221 is perpendicular to the bottom surface 216. However, the side surface 221 may have a slope with respect to the bottom surface 216. The angle setting (draft angle) is not limited to the present invention. The lower surface 226 of the microstructure 220 is aligned with the bottom surface 216 of the injection port 210. In other words, the height of the microstructure 220 is substantially the same as the depth of the inner surface 212, but it is not limited thereto. Here, the top view shape of each microstructure 220 is, for example, a polygon, an arc, or an irregular shape, but it is not limited thereto.
由於本實施例的注入口結構200設置有微結構220,因此當流體F注入注入口結構200的注入口部210時,微結構220能破壞流體F的表面張力,使流體F藉由毛細現象而流入與注入口結構200相通的微流道300。如此一來,注入口結構200不需使用吸收材,即可引導流體F進入注入口結構200以及微流道300中。換言之,本實施例的檢測裝置100可達成降低成本的需求。Since the injection port structure 200 of this embodiment is provided with the microstructure 220, when the fluid F is injected into the injection port portion 210 of the injection port structure 200, the microstructure 220 can destroy the surface tension of the fluid F, and the fluid F is caused by the capillary phenomenon It flows into the microchannel 300 communicating with the injection port structure 200. In this way, the injection port structure 200 can guide the fluid F into the injection port structure 200 and the microchannel 300 without using an absorbing material. In other words, the detection device 100 of this embodiment can meet the demand for cost reduction.
此外,本實施例的微流道300連接注入口結構200,可引導流體F進入檢測裝置100的反應槽(未繪示)以進行後續分析。較佳地,微流道300的管徑W小於或等於注入口部210的直徑D(此處是指內表面212的內徑),使流體F可利用毛細現象而更容易地進入微流道300內。In addition, the microchannel 300 in this embodiment is connected to the injection port structure 200 and can guide the fluid F into a reaction tank (not shown) of the detection device 100 for subsequent analysis. Preferably, the pipe diameter W of the microchannel 300 is smaller than or equal to the diameter D of the injection port 210 (here, the inner diameter of the inner surface 212), so that the fluid F can more easily enter the microchannel using the capillary phenomenon. Within 300.
在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。It must be noted here that the following embodiments use the component numbers and parts of the foregoing embodiments, in which the same reference numerals are used to indicate the same or similar components, and the description of the same technical content is omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and the following embodiments are not repeated.
圖3繪示為本發明的另一實施例的一種注入口結構的立體剖面示意圖。請同時參考圖2與圖3,本實施例的注入口結構200a與圖2中的注入口結構200相似,惟二者主要差異之處在於:本實施例的微結構220a的下表面226a與注入口部210的底面216之間具有一垂直間距H。換句話說,微結構220a的下表面226a與注入口部210的底面216並不位於同一平面。當流體F注入注入口結構200a的注入口部210時,微結構220a能破壞流體F的表面張力,而微結構220a的下表面226a與注入口部210的底面216之間的垂直間距H更利於產生毛細力,而使流體F藉由毛細現象而更容易地流入與注入口結構200a相通的微流道300。FIG. 3 is a schematic perspective sectional view of an injection port structure according to another embodiment of the present invention. Please refer to FIG. 2 and FIG. 3 at the same time. The injection port structure 200a in this embodiment is similar to the injection port structure 200 in FIG. 2, but the main difference is that the lower surface 226a of the microstructure 220a and the There is a vertical distance H between the bottom surfaces 216 of the entrance portions 210. In other words, the lower surface 226a of the microstructure 220a and the bottom surface 216 of the injection port 210 are not located on the same plane. When the fluid F is injected into the injection port 210 of the injection port structure 200a, the microstructure 220a can destroy the surface tension of the fluid F, and the vertical distance H between the lower surface 226a of the microstructure 220a and the bottom surface 216 of the injection port 210 is more favorable Capillary force is generated, so that the fluid F can more easily flow into the micro-flow channel 300 communicating with the injection port structure 200a through the capillary phenomenon.
圖4繪示為本發明的又一實施例的一種注入口結構的俯視圖。請同時參考圖2與圖4,本實施例的注入口結構200b與圖2中的注入口結構200相似,惟二者主要差異之處在於:本實施例注入口結構200b的微結構220b為多個凹陷狀微結構,其中微結構220b內埋於注入口部210的內表面212,藉由設計凹陷的角度及大小,微結構220b能夠破壞流體F的表面張力,使流體F容易流入微流道300中。FIG. 4 is a top view of an injection port structure according to another embodiment of the present invention. Please refer to FIG. 2 and FIG. 4 at the same time. The injection port structure 200b in this embodiment is similar to the injection port structure 200 in FIG. 2, but the main difference is that the microstructure 220b of the injection port structure 200b in this embodiment is many. Recessed microstructures, in which the microstructure 220b is buried in the inner surface 212 of the injection port 210. By designing the angle and size of the recess, the microstructure 220b can destroy the surface tension of the fluid F and make the fluid F easily flow into the microchannel 300 in.
值得一提的是,本發明並不限定微結構220、220a、220b的結構型態,只要微結構220、220a、220b與注入口部210的內表面212可定義出一非平滑表面,皆屬於本發明所欲保護的範圍。基於上述的設計原理,微結構220、220a、220b的俯視形狀除了多邊形之外,於其他未繪示的實施例中,亦可為圓弧形或其他不規則形。It is worth mentioning that the present invention does not limit the structural types of the microstructures 220, 220a, and 220b, as long as the microstructures 220, 220a, 220b and the inner surface 212 of the injection port 210 can define a non-smooth surface, all belong to The scope of the present invention. Based on the above-mentioned design principles, in addition to polygons, the top structures of the microstructures 220, 220a, and 220b may be circular or other irregular shapes in other embodiments not shown.
綜上所述,本發明的檢測裝置具有注入口結構,其中注入口結構設置有微結構,因此當流體注入注入口結構的注入口部時,微結構能破壞流體的表面張力,使流體藉由毛細現象而流入與注入口結構相通的微流道。如此一來,本發明的注入口結構不需使用吸收材,即可引導流體進入微流道中。另一方面,由於本發明的檢測裝置不需使用吸收材,因此,本發明的檢測裝置可達成降低成本的需求。In summary, the detection device of the present invention has an injection port structure, wherein the injection port structure is provided with a microstructure, so when a fluid is injected into the injection port portion of the injection port structure, the microstructure can destroy the surface tension of the fluid, and the fluid passes Capillary flow flows into the microchannel communicating with the structure of the injection port. In this way, the injection port structure of the present invention can guide the fluid into the microfluidic channel without using an absorbing material. On the other hand, since the detection device of the present invention does not need to use an absorbing material, the detection device of the present invention can meet the demand for cost reduction.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100‧‧‧檢測裝置100‧‧‧testing device
200、200a、200b‧‧‧注入口結構200, 200a, 200b‧‧‧Injection port structure
210‧‧‧注入口部210‧‧‧ Injection port
212‧‧‧內表面212‧‧‧Inner surface
214‧‧‧傾斜表面214‧‧‧inclined surface
214a‧‧‧側邊214a‧‧‧side
214b‧‧‧另一側邊214b‧‧‧ the other side
216‧‧‧底面216‧‧‧ underside
220、220a、220b‧‧‧微結構220, 220a, 220b ‧‧‧ microstructure
221‧‧‧側表面221‧‧‧ side surface
224‧‧‧側邊224‧‧‧ side
225‧‧‧上表面225‧‧‧ Top surface
226、226a‧‧‧下表面226, 226a‧‧‧ lower surface
300‧‧‧微流道300‧‧‧microfluidic channel
D‧‧‧直徑D‧‧‧ diameter
F‧‧‧流體F‧‧‧ fluid
H‧‧‧垂直間距H‧‧‧Vertical spacing
W‧‧‧管徑W‧‧‧ diameter
圖1繪示為本發明的一實施例的一種檢測裝置的局部俯視圖。 圖2繪示為圖1的檢測裝置的局部立體剖面示意圖。 圖3繪示為本發明的另一實施例的一種注入口結構的立體剖面示意圖。 圖4繪示為本發明的又一實施例的一種注入口結構的俯視圖。FIG. 1 is a partial top view of a detection device according to an embodiment of the present invention. FIG. 2 is a schematic partial cross-sectional view of the detection device of FIG. 1. FIG. 3 is a schematic perspective sectional view of an injection port structure according to another embodiment of the present invention. FIG. 4 is a top view of an injection port structure according to another embodiment of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106113044ATWI661184B (en) | 2017-04-19 | 2017-04-19 | Detection apparatus and inlet structure thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106113044ATWI661184B (en) | 2017-04-19 | 2017-04-19 | Detection apparatus and inlet structure thereof |
| Publication Number | Publication Date |
|---|---|
| TW201839373A TW201839373A (en) | 2018-11-01 |
| TWI661184Btrue TWI661184B (en) | 2019-06-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106113044ATWI661184B (en) | 2017-04-19 | 2017-04-19 | Detection apparatus and inlet structure thereof |
| Country | Link |
|---|---|
| TW (1) | TWI661184B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5051237A (en)* | 1988-06-23 | 1991-09-24 | P B Diagnostic Systems, Inc. | Liquid transport system |
| TWI283890B (en)* | 2005-08-08 | 2007-07-11 | Chien Hui Chuan | CMOS compatible piezo-inkjet head |
| TWI526392B (en)* | 2014-01-21 | 2016-03-21 | 國立清華大學 | Method for forming microfluidic structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5051237A (en)* | 1988-06-23 | 1991-09-24 | P B Diagnostic Systems, Inc. | Liquid transport system |
| TWI283890B (en)* | 2005-08-08 | 2007-07-11 | Chien Hui Chuan | CMOS compatible piezo-inkjet head |
| TWI526392B (en)* | 2014-01-21 | 2016-03-21 | 國立清華大學 | Method for forming microfluidic structure |
| Publication number | Publication date |
|---|---|
| TW201839373A (en) | 2018-11-01 |
| Publication | Publication Date | Title |
|---|---|---|
| Berthier et al. | Open microfluidics | |
| EP2896457B1 (en) | Microstructured micropillar arrays for controllable filling of a capillary pump | |
| JP6068850B2 (en) | Fluid handling apparatus and fluid handling method | |
| JP2013217918A (en) | Filter for capturing target substance | |
| ATE413921T1 (en) | MICROFLUIDIC DEVICE CONTAINING A BUBBLE TRAP | |
| JP6498249B2 (en) | Detector and its inlet structure | |
| US9399215B2 (en) | Sample holder with a well having a wicking promoter | |
| BR112018015316B1 (en) | PARTICLE SEPARATION APPARATUS AND METHOD FOR SEPARATING PARTICLES | |
| JP2013525772A5 (en) | ||
| CN108686725A (en) | A kind of microfluid analysis box | |
| TWI661184B (en) | Detection apparatus and inlet structure thereof | |
| CN207102625U (en) | A kind of microfluid analysis box | |
| ATE482011T1 (en) | FLOOR FOR A MASS EXCHANGE COLUMN | |
| JP2012239991A (en) | Device for classifying fine particle | |
| US20170259259A1 (en) | Micro liquid transfer structure and analysis device | |
| KR20120113533A (en) | Apparatus for separating target molecules and method for separating target molecules by using the same | |
| US11559808B2 (en) | Microfluidic device | |
| KR101602949B1 (en) | Plasma separation apparatus | |
| CN107238573A (en) | Fluid detection device | |
| KR20120061579A (en) | Hydrodynamic filter, filtering apparatus including the same and filtering method by the same | |
| JP6357217B2 (en) | Fluid handling apparatus and fluid handling method | |
| JP5207346B2 (en) | Microfluidic chip device | |
| JPWO2014126185A1 (en) | Pressure detector and blood circuit and blood purification apparatus provided with the same | |
| KR101575488B1 (en) | Micro fluid centrifuge for separation of particle | |
| JP6076126B2 (en) | Structure |