本發明是有關於一種波長轉換裝置,特別是有關於一種色輪裝置。The present invention relates to a wavelength conversion device, and more particularly to a color wheel device.
一般傳統反射式螢光色輪,是在一基板上鍍覆一高反射層,再於此高反射層上塗佈螢光粉,藉以利用此反射層將受雷射激發螢光粉的出光反射至前方出光。上述高反射層一般多採用金屬反射層、多層介電層(Dielectric Multi-layer) 反射膜、或金屬/介電複合層(Metal/Dielectric Multi-layer) 反射膜等光學反射層結構設計。Generally, a conventional reflective fluorescent color wheel is plated with a highly reflective layer on a substrate, and then coated with a fluorescent powder on the highly reflective layer, thereby using this reflective layer to reflect the light emitted by the laser-induced fluorescent powder. Go out to the front. The above-mentioned high reflection layer is generally designed with an optical reflection layer structure such as a metal reflection layer, a multilayer dielectric layer (Dielectric Multi-layer) reflective film, or a metal / dielectric composite layer (Metal / Dielectric Multi-layer) reflective film.
一般來說,所有材料皆具有其折射率。因此,當光線穿過不同材料時,會在不同材料之間的界面發生散射損耗(scattering loss)。舉例來說,當入射光由空氣(n=0)經由螢光粉的粘合劑介質(n≒1.4~1.5)而抵達螢光粉(n≒1.8)時,根據傅瑞柰反射定理(Fresnel law of reflection)大約會有4-5%的散射損耗。若在空氣與螢光粉之間設置複數層膜,且這些層膜的折射率係介於空氣與螢光粉之間且呈階梯式排序配置,雖然可將散射損耗減少至大約2%,但膜層數大幅增加將導致鍍膜製程繁瑣耗、膜層信賴性下降以及成本大幅提高。Generally, all materials have their refractive index. Therefore, when light passes through different materials, a scattering loss occurs at the interface between the different materials. For example, when the incident light reaches the phosphor (n ≒ 1.8) from air (n = 0) through the phosphor's binder medium (n 空气 1.4 ~ 1.5), according to the Fresnel law of reflection (Fresnel law of reflection) will have a scattering loss of about 4-5%. If a plurality of layers are provided between air and phosphor, and the refractive index of these layers is between air and phosphor and arranged in a stepwise order, although the scattering loss can be reduced to about 2%, but A large increase in the number of film layers will result in tedious coating processes, reduced film layer reliability, and significantly increased costs.
有鑑於此,本發明之一目的在於提出一種可有效減少入射光之散射損耗的波長轉換裝置。In view of this, it is an object of the present invention to provide a wavelength conversion device which can effectively reduce the scattering loss of incident light.
為了達到上述目的,依據本發明之一實施方式,一種波長轉換裝置包含基板、波長轉換元件以及抗反射結構。波長轉換元件設置於基板上。抗反射結構包含複數個堆疊層。堆疊層由波長轉換元件依序堆疊。每一堆疊層由複數個奈米顆粒所排列而成。堆疊層的孔隙率由抗反射結構面向波長轉換元件之第一側朝向抗反射結構背對波長轉換元件之第二側漸增。To achieve the above object, according to an embodiment of the present invention, a wavelength conversion device includes a substrate, a wavelength conversion element, and an anti-reflection structure. The wavelength conversion element is disposed on a substrate. The anti-reflection structure includes a plurality of stacked layers. The stacked layers are sequentially stacked by the wavelength conversion elements. Each stacked layer is composed of a plurality of nano particles. The porosity of the stacked layer gradually increases from the first side of the anti-reflection structure facing the wavelength conversion element toward the second side of the anti-reflection structure facing away from the wavelength conversion element.
於本發明的一或多個實施方式中,上述之堆疊層的等效折射率由抗反射結構之第一側朝向第二側漸減。In one or more embodiments of the present invention, the equivalent refractive index of the above-mentioned stacked layer gradually decreases from the first side toward the second side of the anti-reflection structure.
於本發明的一或多個實施方式中,上述之奈米顆粒的材料包含矽基材料。In one or more embodiments of the present invention, a material of the nano particles described above includes a silicon-based material.
於本發明的一或多個實施方式中,上述之堆疊層之等效折射率實質上介於1至1.5之範圍。In one or more embodiments of the present invention, the equivalent refractive index of the above-mentioned stacked layers is substantially in the range of 1 to 1.5.
於本發明的一或多個實施方式中,上述之奈米顆粒的材料包含鋁基材料。In one or more embodiments of the present invention, the material of the nano particles described above includes an aluminum-based material.
於本發明的一或多個實施方式中,上述之堆疊層之等效折射率實質上介於1至1.8之範圍。In one or more embodiments of the present invention, the equivalent refractive index of the above-mentioned stacked layers is substantially in the range of 1 to 1.8.
於本發明的一或多個實施方式中,上述之孔隙率實質上介於5%至95%之範圍。In one or more embodiments of the present invention, the above-mentioned porosity is substantially in a range of 5% to 95%.
於本發明的一或多個實施方式中,上述之抗反射結構的厚度實質上介於100奈米至10微米之範圍。In one or more embodiments of the present invention, the thickness of the anti-reflection structure is substantially in a range of 100 nanometers to 10 micrometers.
於本發明的一或多個實施方式中,上述之基板為反射式的。In one or more embodiments of the present invention, the aforementioned substrate is reflective.
於本發明的一或多個實施方式中,上述之基板為穿透式的。波長轉換裝置進一步包含分色層設置於基板與波長轉換元件之間。In one or more embodiments of the present invention, the aforementioned substrate is transmissive. The wavelength conversion device further includes a color separation layer disposed between the substrate and the wavelength conversion element.
為了達到上述目的,依據本發明之另一實施方式,一種波長轉換裝置包含螢光粉層以及抗反射結構。螢光粉層具有第一折射率。抗反射結構由複數個奈米顆粒堆疊而成。奈米顆粒的材料包含矽基材料或鋁基材料。抗反射結構配置以由入射環境接收激發光線。激發光線經由抗反射結構進入螢光粉層。入射環境具有第二折射率。抗反射結構的孔隙率的分佈係由靠近螢光粉層之一側朝向遠離螢光粉層之一側漸增。抗反射結構之折射率實質上介於第一折射率及第二折射率之間。In order to achieve the above object, according to another embodiment of the present invention, a wavelength conversion device includes a phosphor powder layer and an anti-reflection structure. The phosphor layer has a first refractive index. The anti-reflection structure is formed by stacking a plurality of nano particles. The material of the nano particles includes a silicon-based material or an aluminum-based material. The anti-reflection structure is configured to receive excitation light from an incident environment. The excitation light enters the phosphor layer through the anti-reflection structure. The incident environment has a second refractive index. The distribution of the porosity of the anti-reflection structure gradually increases from the side near the phosphor layer toward the side far from the phosphor layer. The refractive index of the anti-reflection structure is substantially between the first refractive index and the second refractive index.
綜上所述,本發明的波長轉換裝置的抗反射結構是將奈米顆粒進行排列而形成由波長轉換元件依序堆疊之堆疊層,並使堆疊層的孔隙率由抗反射結構面向波長轉換元件之第一側朝向抗反射結構背對波長轉換元件之第二側漸增。相對地,堆疊層的等效折射率由抗反射結構的第一側朝向第二側漸減。藉此,本發明的波長轉換裝置僅需調整奈米顆粒在各堆疊層中的密度,即可有效減少入射光由空氣進入波長轉換元件的過程中所發生之散射損耗,進而提高波長轉換裝置整體的輸出亮度。不僅如此,本發明的波長轉換裝置還具備製程簡單,價格便宜等優點。In summary, the anti-reflection structure of the wavelength conversion device of the present invention is to arrange nano particles to form a stacked layer sequentially stacked by the wavelength conversion elements, and the porosity of the stacked layer faces the wavelength conversion element from the anti-reflection structure. The first side of the anti-reflection structure faces away from the second side of the wavelength conversion element. In contrast, the equivalent refractive index of the stacked layer gradually decreases from the first side of the anti-reflection structure toward the second side. With this, the wavelength conversion device of the present invention only needs to adjust the density of nano particles in each stacked layer, which can effectively reduce the scattering loss that occurs when the incident light enters the wavelength conversion element from the air, thereby improving the overall wavelength conversion device. Output brightness. In addition, the wavelength conversion device of the present invention also has the advantages of simple manufacturing process and low price.
以上所述僅係用以闡述本發明所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本發明之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above is only used to explain the problem to be solved by the present invention, the technical means for solving the problem, and the effects produced by it, etc. The specific details of the present invention will be described in detail in the following embodiments and related drawings.
以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。In the following, a plurality of embodiments of the present invention will be disclosed graphically. For the sake of clarity, many practical details will be described in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, in order to simplify the drawings, some conventional structures and components will be shown in the drawings in a simple and schematic manner.
請參照第1圖以及第2圖。第1圖為繪示本發明一實施方式之波長轉換裝置100的示意圖。第2圖為繪示本發明一實施方式之波長轉換裝置100的局部放大圖。Please refer to Figure 1 and Figure 2. FIG. 1 is a schematic diagram illustrating a wavelength conversion device 100 according to an embodiment of the present invention. FIG. 2 is a partially enlarged view showing a wavelength conversion device 100 according to an embodiment of the present invention.
如第1圖與第2圖所示,於本實施方式中,波長轉換裝置100包含基板110、波長轉換元件120以及抗反射結構130。波長轉換元件120設置於基板110上。抗反射結構130包含複數個堆疊層131。堆疊層131由波長轉換元件120依序堆疊。每一堆疊層131由複數個奈米顆粒132所排列而成。堆疊層131的孔隙率由抗反射結構130面向波長轉換元件120之第一側130a朝向抗反射結構130背對波長轉換元件120之第二側130b漸增。As shown in FIGS. 1 and 2, in this embodiment, the wavelength conversion device 100 includes a substrate 110, a wavelength conversion element 120, and an anti-reflection structure 130. The wavelength conversion element 120 is disposed on the substrate 110. The anti-reflection structure 130 includes a plurality of stacked layers 131. The stacked layers 131 are sequentially stacked by the wavelength conversion element 120. Each stacked layer 131 is formed by a plurality of nano particles 132. The porosity of the stacked layer 131 gradually increases from the first side 130 a of the anti-reflection structure 130 facing the wavelength conversion element 120 toward the second side 130 b of the anti-reflection structure 130 facing away from the wavelength conversion element 120.
於一些實施方式中,堆疊層131之孔隙率實質上介於5%至95%之範圍。舉例來說,最靠近第一側130a之堆疊層131的孔隙率約為5%,而最靠近第二側130b之堆疊層131的孔隙率約為95%,但本發明並不以此為限,可依據實際需求而彈性調整前述孔隙率的範圍。In some embodiments, the porosity of the stacked layer 131 is substantially in the range of 5% to 95%. For example, the porosity of the stacked layer 131 closest to the first side 130a is about 5%, and the porosity of the stacked layer 131 closest to the second side 130b is about 95%, but the present invention is not limited thereto. According to actual needs, the aforementioned porosity range can be adjusted elastically.
需說明的是,若堆疊層131的孔隙率越小,則入射光進入此堆疊層131會受到較多奈米顆粒132折射,因此此堆疊層131的等效折射率較大。相對地,若堆疊層131的孔隙率越大,則入射光進入此堆疊層131會受到較少奈米顆粒132折射,因此此堆疊層131的等效折射率較小。由此可知,由於前述堆疊層131的孔隙率係由抗反射結構130之第一側130a朝向第二側130b漸增,因此前述堆疊層131的等效折射率反而會由抗反射結構130之第一側130a朝向第二側130b漸減。It should be noted that if the porosity of the stacked layer 131 is smaller, incident light entering the stacked layer 131 will be refracted by more nano particles 132, so the equivalent refractive index of the stacked layer 131 is larger. In contrast, if the porosity of the stacked layer 131 is larger, the incident light entering the stacked layer 131 will be refracted by fewer nano particles 132, so the equivalent refractive index of the stacked layer 131 is smaller. It can be seen that, because the porosity of the stacked layer 131 gradually increases from the first side 130a to the second side 130b of the anti-reflection structure 130, the equivalent refractive index of the stacked layer 131 will instead One side 130a gradually decreases toward the second side 130b.
於一些實施方式中,奈米顆粒132的材料包含矽基材料。於一些實施例中,矽基材料為矽氧化物(SiOx),但本發明並不以此為限。於一些實施方式中,材料包含矽基材料之奈米顆粒132所堆疊而成的堆疊層131之等效折射率實質上介於1至1.5之範圍。於一些實施方式中,波長轉換元件120為螢光粉層,且其折射率大於1.5。藉此,由空氣經由抗反射結構130至波長轉換元件120的折射率是呈階梯式排序配置的,因此根據傅瑞柰反射定理可以有效減少入射光由空氣經由抗反射結構130至波長轉換元件120時所發生之散射損耗,進而提高波長轉換裝置100整體的輸出亮度。In some embodiments, the material of the nano particles 132 includes a silicon-based material. In some embodiments, the silicon-based material is silicon oxide (SiOx ), but the invention is not limited thereto. In some embodiments, the equivalent refractive index of the stacked layer 131 formed by stacking the nano particles 132 of the silicon-based material is substantially in the range of 1 to 1.5. In some embodiments, the wavelength conversion element 120 is a phosphor layer, and its refractive index is greater than 1.5. In this way, the refractive index of air from the anti-reflection structure 130 to the wavelength conversion element 120 is arranged in a stepwise order. Therefore, according to the Fourier's reflection theorem, the incident light can be effectively reduced when air passes from the anti-reflection structure 130 to the wavelength conversion element 120. The generated scattering loss further improves the output brightness of the entire wavelength conversion device 100.
於一些實施方式中,奈米顆粒132的材料包含鋁基材料。於一些實施例中,鋁基材料為鋁氧化物(AlOx),但本發明並不以此為限。於一些實施方式中,材料包含鋁基材料之奈米顆粒132所堆疊而成的堆疊層131之等效折射率實質上介於1至1.8之範圍。於一些實施方式中,波長轉換元件120為螢光粉層,且其折射率大於1.8。藉此,由空氣經由抗反射結構130至波長轉換元件120的折射率亦呈階梯式排序配置的,因此根據傅瑞柰反射定理同樣可以有效減少入射光由空氣經由抗反射結構130至波長轉換元件120時所發生之散射損耗。In some embodiments, the material of the nano-particles 132 includes an aluminum-based material. In some embodiments, the aluminum-based material is aluminum oxide (AlOx ), but the invention is not limited thereto. In some embodiments, the equivalent refractive index of the stacked layer 131 formed by stacking the nano particles 132 of the aluminum-based material is substantially in the range of 1 to 1.8. In some embodiments, the wavelength conversion element 120 is a phosphor layer, and its refractive index is greater than 1.8. As a result, the refractive index from air through the anti-reflection structure 130 to the wavelength conversion element 120 is also arranged in a stepwise order. Therefore, according to the Fourier's reflection theorem, the incident light can also be effectively reduced from the air through the anti-reflection structure 130 to the wavelength conversion element 120. The scattering losses that occur.
從另一個角度來看,螢光粉層(即波長轉換元件120)具有第一折射率。抗反射結構130由複數個奈米顆粒132堆疊而成。這些奈米顆粒132的材料包含矽基材料或鋁基材料。抗反射結構130配置以由一入射環境(例如,空氣)接收激發光線L(見第1圖)。激發光線L經由抗反射結構130進入螢光粉層。入射環境具有第二折射率。抗反射結構130的孔隙率的分佈係由靠近螢光粉層之一側朝向遠離螢光粉層之一側漸增。抗反射結構130之折射率實質上介於第一折射率及第二折射率之間。From another perspective, the phosphor layer (ie, the wavelength conversion element 120) has a first refractive index. The anti-reflection structure 130 is formed by stacking a plurality of nano particles 132. The material of these nano particles 132 includes a silicon-based material or an aluminum-based material. The anti-reflection structure 130 is configured to receive the excitation light L from an incident environment (for example, air) (see FIG. 1). The excitation light L enters the phosphor layer through the anti-reflection structure 130. The incident environment has a second refractive index. The distribution of the porosity of the anti-reflection structure 130 increases gradually from the side close to one side of the phosphor layer toward the side far from one side of the phosphor layer. The refractive index of the anti-reflection structure 130 is substantially between the first refractive index and the second refractive index.
於一些實施方式中,抗反射結構130的孔隙率實質上介於5%至95%之範圍,但本發明並不以此為限,可依據實際需求而彈性調整前述孔隙率的範圍。In some embodiments, the porosity of the anti-reflection structure 130 is substantially in the range of 5% to 95%, but the present invention is not limited thereto, and the aforementioned porosity range can be adjusted elastically according to actual needs.
於一些實施方式中,奈米顆粒132的粒徑實質上介於1奈米至100奈米之範圍。較佳地,奈米顆粒132的粒徑可進一步介於5奈米至50奈米之範圍,但本發明並不以此為限。In some embodiments, the particle size of the nano-particles 132 is substantially in a range from 1 nanometer to 100 nanometers. Preferably, the particle size of the nano-particles 132 may further range from 5 nanometers to 50 nanometers, but the invention is not limited thereto.
於一些實施方式中,抗反射結構130的厚度實質上介於100奈米至10微米之範圍。較佳地,抗反射結構130的厚度可進一步介於100奈米至5微米之範圍,但本發明並不以此為限。In some embodiments, the thickness of the anti-reflection structure 130 is substantially in the range of 100 nanometers to 10 micrometers. Preferably, the thickness of the anti-reflection structure 130 may further range from 100 nanometers to 5 micrometers, but the present invention is not limited thereto.
如第1圖所示,於本實施方式中,基板110包含基材111與反射層112。反射層112設置於基材111上,而波長轉換元件120設置於反射層112上。基材111、反射層112與波長轉換元件120三者形成一個三明治堆疊結構。如前所述,波長轉換元件120可為螢光粉層,並可受光線(例如,雷射)激發而發光,以作為波長轉換裝置100的發光層。因此,波長轉換裝置100在前述結構配置之下,當光線由空氣依序通過抗反射結構130與波長轉換元件120而抵達反射層112時,反射層112可將波長轉換元件120傳遞而來之光線反射,使得被反射的光線再由波長轉換元件120通過抗反射結構130而離開波長轉換裝置100。As shown in FIG. 1, in this embodiment, the substrate 110 includes a substrate 111 and a reflective layer 112. The reflective layer 112 is disposed on the substrate 111, and the wavelength conversion element 120 is disposed on the reflective layer 112. The substrate 111, the reflective layer 112, and the wavelength conversion element 120 form a sandwich stack structure. As described above, the wavelength conversion element 120 may be a phosphor powder layer, and may be excited by light (for example, laser) to emit light as the light emitting layer of the wavelength conversion device 100. Therefore, under the foregoing structural configuration of the wavelength conversion device 100, when light reaches the reflective layer 112 from the air through the anti-reflection structure 130 and the wavelength conversion element 120 in sequence, the reflective layer 112 can transmit the light from the wavelength conversion element 120. The reflection causes the reflected light to leave the wavelength conversion device 100 through the wavelength conversion element 120 through the anti-reflection structure 130.
於一些實施方式中,基板110的基材111可由玻璃、金屬(例如鋁)、陶瓷或半導體材料所製成,但本發明並不以此為限。In some embodiments, the substrate 111 of the substrate 110 may be made of glass, metal (such as aluminum), ceramic, or semiconductor materials, but the invention is not limited thereto.
根據以上配置可知,第1圖所示之實施方式的基板110為反射式的,而波長轉換裝置100為反射式色輪,但本發明並不以此為限。請參照第3圖,其為繪示本發明另一實施方式之波長轉換裝置200的示意圖。如第3圖所示,於本實施方式中,波長轉換裝置200包含基板210、波長轉換元件120以及抗反射結構130,其中波長轉換元件120與抗反射結構130與第1圖所示之實施方式相同,因此可參考前述相關說明,在此恕不贅述。需說明的是,本實施方式是以基板210取代第1圖中之基板110。具體來說,基板210包含基材211以及分色層212(dichroic layer)。分色層212設置於基材211上,而波長轉換元件120設置於分色層212上。基材211、分色層212與波長轉換元件120三者形成一個三明治堆疊結構。It can be known from the above configuration that the substrate 110 in the embodiment shown in FIG. 1 is reflective and the wavelength conversion device 100 is a reflective color wheel, but the present invention is not limited thereto. Please refer to FIG. 3, which is a schematic diagram illustrating a wavelength conversion device 200 according to another embodiment of the present invention. As shown in FIG. 3, in this embodiment, the wavelength conversion device 200 includes a substrate 210, a wavelength conversion element 120, and an anti-reflection structure 130. The wavelength conversion element 120, the anti-reflection structure 130, and the embodiment shown in FIG. 1 It is the same, so you can refer to the related descriptions above, and we will not repeat them here. It should be noted that, in this embodiment, the substrate 210 is used instead of the substrate 110 in the first figure. Specifically, the substrate 210 includes a substrate 211 and a dichroic layer 212. The color separation layer 212 is disposed on the substrate 211, and the wavelength conversion element 120 is disposed on the color separation layer 212. The substrate 211, the color separation layer 212, and the wavelength conversion element 120 form a sandwich stack structure.
進一步來說,基板210為穿透式的。如前所述,波長轉換元件120可為螢光粉層,並可受光線(例如,雷射)激發而發光,以作為波長轉換裝置200的發光層。因此,波長轉換裝置200在前述結構配置之下,光線可由空氣依序通過基材211、分色層212、波長轉換元件120與抗反射結構130,並由抗反射結構130離開波長轉換裝置200。其中,分色層212係配置以將入射光分離出一預定色光,以進一步與利用波長轉換元件120將此預定色光轉換成另一預定色光。換言之,本實施方式之波長轉換裝置200為穿透式色輪。Further, the substrate 210 is transmissive. As described above, the wavelength conversion element 120 may be a phosphor powder layer, and may be excited by light (for example, laser) to emit light as the light emitting layer of the wavelength conversion device 200. Therefore, under the aforementioned structural configuration of the wavelength conversion device 200, light can sequentially pass through the substrate 211, the dichroic layer 212, the wavelength conversion element 120, and the anti-reflection structure 130 from the air, and leave the wavelength conversion device 200 by the anti-reflection structure 130. The color separation layer 212 is configured to separate the incident light into a predetermined color light, and further convert the predetermined color light into another predetermined color light by using the wavelength conversion element 120. In other words, the wavelength conversion device 200 of this embodiment is a transmissive color wheel.
於一些實施方式中,基板210的基材211可由陶瓷、石英、玻璃等無機材料所製成,但本發明並不以此為限。In some embodiments, the substrate 211 of the substrate 210 may be made of inorganic materials such as ceramics, quartz, and glass, but the invention is not limited thereto.
請參照第4A圖至第4D圖,其為分別繪示本發明一實施方式之波長轉換裝置100在不同製造階段的示意圖。Please refer to FIG. 4A to FIG. 4D, which are schematic diagrams illustrating the wavelength conversion device 100 according to an embodiment of the present invention at different manufacturing stages.
如第4A圖所示,可先將矽醇鹽(silicon alkoxide)或鋁醇鹽(aluminum alkoxide)加入溶劑300中均勻混和而成溶液,再將此溶液施加於基板110上的波長轉換元件120。於一些實施例中,前述溶劑300為有機的,但本發明並不以此為限。由於表面張力的作用,在波長轉換元件120表面上的溶液的厚度不均。為了控制溶液的厚度並使其均勻化,可如第4B圖所示基於一軸線對基板110執行旋轉程序,而溶液多餘的部分會由波長轉換元件120的邊緣甩離。第4A圖與第4B圖的程序即為旋塗(spin-coating)製程。如第4C圖所示,在旋轉基板110的同時,溶劑300會揮發,進而使得前述矽醇鹽或鋁醇鹽凝聚。隨後,可再執行烘烤(back)/燒結(sinter)製程等熱製程,即可將前述矽醇鹽或鋁醇鹽轉變為如第4D圖所示之材料包含矽氧化物或鋁氧化物之奈米顆粒132。須說明的是,藉由控制第4A圖與第4B圖所示之旋塗製程的旋轉速率或配方濃度,即可製作出如第2圖所示之由奈米顆粒132所排列而成的複數個堆疊層131,且這些堆疊層131的孔隙率及等效折射率係呈階梯式排序配置。As shown in FIG. 4A, silicon alkoxide or aluminum alkoxide can be first added to the solvent 300 to be uniformly mixed into a solution, and then the solution is applied to the wavelength conversion element 120 on the substrate 110. In some embodiments, the aforementioned solvent 300 is organic, but the invention is not limited thereto. Due to the effect of surface tension, the thickness of the solution on the surface of the wavelength conversion element 120 is uneven. In order to control the thickness of the solution and make it uniform, a rotation process may be performed on the substrate 110 based on an axis as shown in FIG. 4B, and the excess portion of the solution may be shaken off by the edge of the wavelength conversion element 120. The procedure of FIGS. 4A and 4B is a spin-coating process. As shown in FIG. 4C, when the substrate 110 is rotated, the solvent 300 is volatilized, thereby causing the aforementioned silicon alkoxide or aluminum alkoxide to aggregate. Subsequently, a thermal process such as a backing / sinter process can be performed to convert the aforementioned silicon alkoxide or aluminum alkoxide into a material including silicon oxide or aluminum oxide as shown in FIG. 4D. Nano particles 132. It should be noted that by controlling the rotation rate or the formula concentration of the spin coating process shown in FIG. 4A and FIG. 4B, a plurality of nano particles 132 arranged as shown in FIG. 2 can be produced. The stacked layers 131 are arranged in a stepwise order.
請參照第5圖,其為繪示本發明另一實施方式之波長轉換裝置100的製造示意圖。如第5圖所示,可先將材料包含矽氧化物或鋁氧化物之奈米顆粒132或玻璃珠分散於溶劑中以形成電解質。接著,將輔助電極400與帶有波長轉換元件120之基板110浸入電解質中,並分別電性耦接至一電源的陽極與陰極,即可進行電泳沉積(electrophoretic deposition)製程。藉由控制電源的電壓或偏壓,即可調製奈米顆粒132的排列而在波長轉換元件120上形成複數個堆疊層131,且這些堆疊層131的孔隙率及等效折射率係呈階梯式排序配置。最後,將基板110拿出電解質並進行熱製程(例如燒結製程)以使奈米顆粒132黏合,即可在波長轉換元件120上獲得如第2圖所示之抗反射結構130。Please refer to FIG. 5, which is a schematic diagram of manufacturing a wavelength conversion device 100 according to another embodiment of the present invention. As shown in FIG. 5, nano particles 132 or glass beads containing silicon oxide or aluminum oxide may be dispersed in a solvent to form an electrolyte. Next, the auxiliary electrode 400 and the substrate 110 with the wavelength conversion element 120 are immersed in an electrolyte, and are electrically coupled to the anode and the cathode of a power source, respectively, to perform an electrophoretic deposition process. By controlling the voltage or bias voltage of the power supply, the arrangement of the nano-particles 132 can be modulated to form a plurality of stacked layers 131 on the wavelength conversion element 120, and the porosity and equivalent refractive index of these stacked layers 131 are stepped. Sorting configuration. Finally, the substrate 110 is taken out of the electrolyte and subjected to a thermal process (such as a sintering process) to adhere the nano particles 132 to obtain the anti-reflection structure 130 shown in FIG. 2 on the wavelength conversion element 120.
請參照第6圖,其為繪示本發明一實施方式之波長轉換裝置100的標準化輸出亮度與抗反射結構130的log(厚度)的關係圖。詳細來說,第6圖是在相同功率的雷射光源之下,對不具有抗反射結構130的波長轉換裝置以及複數組採用具有不同厚度之抗反射結構130的波長轉換裝置100進行反射光的亮度實驗所獲得的標準化輸出亮度與抗反射結構130的log(厚度)的關係圖。在與相比時,若以不具有抗反射結構130的波長轉換裝置所對應之輸出亮度為比對基礎,即可獲得前述採用具有不同厚度之抗反射結構130的波長轉換裝置100所各自對應的標準化輸出亮度。由第6圖可以清楚看出,當所採用之抗反射結構130的厚度大於100奈米時,波長轉換裝置100所對應之標準化輸出亮度可改善約2~4%左右。Please refer to FIG. 6, which is a diagram illustrating the relationship between the normalized output brightness of the wavelength conversion device 100 and the log (thickness) of the anti-reflection structure 130 according to an embodiment of the present invention. In detail, FIG. 6 shows reflected light from a wavelength conversion device 100 having an anti-reflection structure 130 and a wavelength conversion device 100 having an anti-reflection structure 130 having a different thickness under a laser light source of the same power. The relationship between the normalized output brightness obtained from the brightness experiment and the log (thickness) of the anti-reflection structure 130. In comparison, if the output brightness corresponding to the wavelength conversion device without the anti-reflection structure 130 is used as a comparison basis, the corresponding ones of the aforementioned wavelength conversion devices 100 having the anti-reflection structure 130 having different thicknesses can be obtained. Normalized output brightness. It can be clearly seen from FIG. 6 that when the thickness of the anti-reflection structure 130 used is greater than 100 nanometers, the standardized output brightness corresponding to the wavelength conversion device 100 can be improved by about 2 to 4%.
由以上對於本發明之具體實施方式之詳述,可以明顯地看出,本發明的波長轉換裝置的抗反射結構是將奈米顆粒進行排列而形成由波長轉換元件依序堆疊之堆疊層,並使堆疊層的孔隙率由抗反射結構面向波長轉換元件之第一側朝向抗反射結構背對波長轉換元件之第二側漸增。相對地,堆疊層的等效折射率由抗反射結構的第一側朝向第二側漸減。藉此,本發明的波長轉換裝置僅需調整奈米顆粒在各堆疊層中的密度,即可有效減少入射光由空氣進入波長轉換元件的過程中所發生之散射損耗,進而提高波長轉換裝置整體的輸出亮度。不僅如此,本發明的波長轉換裝置還具備製程簡單,價格便宜等優點。From the above detailed description of the specific embodiments of the present invention, it can be clearly seen that the anti-reflection structure of the wavelength conversion device of the present invention is to arrange nano particles to form a stacked layer sequentially stacked by wavelength conversion elements, and The porosity of the stacked layer is gradually increased from the first side of the anti-reflection structure facing the wavelength conversion element toward the second side of the anti-reflection structure facing away from the wavelength conversion element. In contrast, the equivalent refractive index of the stacked layer gradually decreases from the first side of the anti-reflection structure toward the second side. With this, the wavelength conversion device of the present invention only needs to adjust the density of nano particles in each stacked layer, which can effectively reduce the scattering loss that occurs when the incident light enters the wavelength conversion element from the air, thereby improving the overall wavelength conversion device Output brightness. In addition, the wavelength conversion device of the present invention also has the advantages of simple manufacturing process and low price.
雖然本發明已以實施方式揭露如上,然其並不用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the attached patent application.
100:波長轉換裝置 110:基板 111:基材 112:反射層 120:波長轉換元件 130:抗反射結構 130a:第一側 130b:第二側 131:堆疊層 132:奈米顆粒 200:波長轉換裝置 210:基板 211:基材 212:分色層 300:溶劑 400:輔助電極 L:激發光線100: Wavelength conversion device 110: Substrate 111: Base material 112: Reflective layer 120: Wavelength conversion element 130: Anti-reflection structure 130a: First side 130b: Second side 131: Stacked layer 132: Nano particles 200: Wavelength conversion device 210: substrate 211: substrate 212: color separation layer 300: solvent 400: auxiliary electrode L: excitation light
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖為繪示本發明一實施方式之波長轉換裝置的示意圖。In order to make the above and other objects, features, advantages, and embodiments of the present invention more comprehensible, the description of the drawings is as follows: FIG. 1 is a schematic diagram illustrating a wavelength conversion device according to an embodiment of the present invention.
第2圖為繪示本發明一實施方式之波長轉換裝置的局部放大圖。FIG. 2 is a partially enlarged view showing a wavelength conversion device according to an embodiment of the present invention.
第3圖為繪示本發明另一實施方式之波長轉換裝置的示意圖。 第4A圖至第4D圖為分別繪示本發明一實施方式之波長轉換裝置在不同製造階段的示意圖。 第5圖為繪示本發明另一實施方式之波長轉換裝置的製造示意圖。 第6圖為繪示本發明一實施方式之波長轉換裝置的標準化輸出亮度與抗反射結構的log(厚度)的關係圖。FIG. 3 is a schematic diagram illustrating a wavelength conversion device according to another embodiment of the present invention. 4A to 4D are schematic diagrams respectively illustrating a wavelength conversion device according to an embodiment of the present invention at different manufacturing stages. FIG. 5 is a schematic diagram of manufacturing a wavelength conversion device according to another embodiment of the present invention. FIG. 6 is a diagram showing the relationship between the normalized output brightness and the log (thickness) of the anti-reflection structure of the wavelength conversion device according to an embodiment of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762465167P | 2017-03-01 | 2017-03-01 | |
| US62/465,167 | 2017-03-01 |
| Publication Number | Publication Date |
|---|---|
| TW201832914A TW201832914A (en) | 2018-09-16 |
| TWI640433Btrue TWI640433B (en) | 2018-11-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106127562ATWI640433B (en) | 2017-03-01 | 2017-08-15 | Wavelength conversion device |
| Country | Link |
|---|---|
| CN (1) | CN108538990B (en) |
| TW (1) | TWI640433B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111913337A (en) | 2019-05-09 | 2020-11-10 | 中强光电股份有限公司 | Wavelength conversion element and manufacturing method thereof |
| TWI725564B (en)* | 2019-09-30 | 2021-04-21 | 台達電子工業股份有限公司 | Wavelength conversion device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101939854A (en)* | 2008-01-04 | 2011-01-05 | 克里公司 | Light-emitting devices with high-efficiency fluorescent structures |
| CN104037276A (en)* | 2014-06-24 | 2014-09-10 | 合肥工业大学 | A kind of multi-layer structure white light LED device with gradient refractive index and packaging method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201044147Y (en)* | 2007-05-18 | 2008-04-02 | 深圳市国冶星光电子有限公司 | Novel improved structure of LED display apparatus |
| CN102588752A (en)* | 2011-01-07 | 2012-07-18 | 晶元光电股份有限公司 | Light emitting device |
| TWM495624U (en)* | 2014-09-15 | 2015-02-11 | Genesis Photonics Inc | Light-emitting element structure |
| CN112782924A (en)* | 2015-08-11 | 2021-05-11 | 台达电子工业股份有限公司 | Reflective color wheel |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101939854A (en)* | 2008-01-04 | 2011-01-05 | 克里公司 | Light-emitting devices with high-efficiency fluorescent structures |
| CN104037276A (en)* | 2014-06-24 | 2014-09-10 | 合肥工业大学 | A kind of multi-layer structure white light LED device with gradient refractive index and packaging method thereof |
| Publication number | Publication date |
|---|---|
| CN108538990A (en) | 2018-09-14 |
| TW201832914A (en) | 2018-09-16 |
| CN108538990B (en) | 2020-03-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103052841B (en) | Light source device | |
| JP6786799B2 (en) | Light wavelength conversion sheet, backlight device, image display device, and composition for light wavelength conversion layer | |
| JP6493713B2 (en) | LIGHT EMITTING ELEMENT AND LIGHTING DEVICE | |
| Tian et al. | Highly enhanced luminescence performance of LEDs via controllable layer‐structured 3D photonic crystals and photonic crystal beads | |
| CN105531535A (en) | Wavelength conversion sheet and backlight unit | |
| JP6089686B2 (en) | Light emitting device | |
| TW201447464A (en) | Wavelength conversion device and method for making the same | |
| JP6903927B2 (en) | Light wavelength conversion composition, light wavelength conversion member, light wavelength conversion sheet, backlight device, and image display device | |
| Wang et al. | Laser patterning of Y3Al5O12: Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs | |
| CN111341939A (en) | Array substrate, manufacturing method thereof, display panel and display device | |
| US9753277B2 (en) | Wavelength conversion device | |
| US20140226197A1 (en) | Optical element and projection-type display device using same | |
| TWI640433B (en) | Wavelength conversion device | |
| TWI614917B (en) | Wavelength conversion device | |
| CN110887022A (en) | Wavelength conversion device and light source system | |
| CN105280790A (en) | Light emitting element | |
| TW202000852A (en) | Wavelength conversion element, projection apparatus and manufacturing method of wavelength conversion element | |
| CN118888668B (en) | A light emitting diode packaging structure and preparation method thereof | |
| TWI677648B (en) | Optical wavelength conversion device | |
| JP2016524312A (en) | Manufacturing method of ultra thin organic light emitting device | |
| TW201440263A (en) | Optical device and manufacturing method thereof | |
| CN114326206A (en) | Display device | |
| CN113272687B (en) | color conversion element | |
| US20180252843A1 (en) | Wavelength conversion device | |
| JPWO2013046872A1 (en) | Optical element, light source device and projection display device |