本發明一種三次元影像對位之方法,係對於裸視三次元影像顯示裝置,尤其是對於外掛式裸視三次元影像顯示裝置,對於組裝,提供一影像對位之方法,主要透過顯示一對位用3D合成影像,讓操作者可將視景分離裝置,正確裝置於顯示器螢幕之上,以滿足角度與水平位置對位之需求,並達到顯示最佳三次元影像之目的。The method for aligning three-dimensional images of the present invention is a method for displaying an image alignment device for a naked-view three-dimensional image display device, in particular for an external naked-eye three-dimensional image display device, mainly for displaying a pair of images. The 3D synthetic image allows the operator to properly position the visual separation device on the display screen to meet the angular and horizontal position alignment requirements and achieve the best three-dimensional image display.
習知裸視三次元影像顯示之裝置(Auto-stereoscopic Display),主要係由一視景分離裝置(View Separation Device)、與一平面顯示器螢幕(Screen of Flat Panel Display)所構成。該視景分離裝置,根據光學特徵之不同,可分為視差光柵型(Pallax Barrier,以下簡稱視差光柵)、與柱狀透鏡陣列型(Lenticular Lens Array,以下簡稱Lenticular)之視景分離裝置。The conventional auto-stereoscopic display device is mainly composed of a View Separation Device and a Screen of Flat Panel Display. The visual field separating device can be classified into a parallax barrier type (Pallax Barrier, hereinafter referred to as a parallax barrier) and a lenticular lens array type (Lenticular Lens Array, hereinafter referred to as Lenticular) depending on the optical characteristics.
對於上述視景分離裝置,根據構成材料與顯示功能之不同,可分為2D/3D影像可切換(2D/3D image Swictable)視景分離裝置、與3D影像專用視景分離裝置。一般,可藉由液晶面板的技術,以產生液晶型視差光柵、液晶型Lenticular,達到該2D/3D影像可切換之目的。另外,根據光學結構之不同,可分為垂直條狀視差光柵、傾斜條狀視差光柵、傾斜格狀視差光柵、垂直柱狀透鏡陣列、傾斜柱狀透鏡陣列、與傾斜格狀透鏡陣列所構成。The above-described visual separation device can be classified into a 2D/3D image Swictable view separation device and a 3D image-dedicated view separation device depending on the constituent materials and display functions. Generally, the liquid crystal type parallax barrier and the liquid crystal type Lenticular can be produced by the technology of the liquid crystal panel, thereby achieving the purpose of switching the 2D/3D image. Further, depending on the optical structure, it may be divided into a vertical stripe parallax barrier, a tilted stripe parallax barrier, a tilted lattice parallax barrier, a vertical cylindrical lens array, a tilted cylindrical lens array, and an oblique lattice lens array.
對於3D影像專用Lenticular,一般可藉由塑膠射出成型、紫外光硬化轉印卷對卷製程(Roll-to-Roll UV-Cured Imprint Process),以大量製作3D影像專用Lenticular。另外,對於3D影像專用視差光柵,一般可藉由光蝕刻(Photo-Lithography)、網版印刷(Screen Printing)、與高精度噴墨印刷等製程,達到大量製作3D影像專用視差光柵之目的。其中,有關於光蝕刻、網版印刷等相關技術,請參閱中華民國專利申請案號:98133590、101127199、101129352、101133731、101142859、101147138。For the Lenticular for 3D image, the Lenticular for 3D image can be produced in large quantities by the plastic injection molding and the Roll-to-Roll UV-Cured Imprint Process. In addition, for a 3D image-specific parallax barrier, photolithography (Photo-Lithography), screen printing can generally be used.Screen printing, high-precision inkjet printing and other processes have achieved the goal of producing a large number of parallax barriers for 3D images. Among them, regarding related technologies such as photolithography and screen printing, please refer to the Republic of China Patent Application Nos.: 98133590, 101127199, 101129352, 101133731, 101142859, 101147138.
上述光蝕刻製程,一般使用具有視差光柵結構之光罩(Photo-Mask),對於已塗布有感光材料之透明基板(如玻璃),透過曝光、顯影、熱烤等作業,即可大量製作3D影像專用視差光柵。另外,根據材料構成之不同,該感光材料係可分為濕式光阻(Liquid Photo-Resistor)、乾膜光阻(Dry Film Photo-Resistor)、感光乳劑(Photosensitive Emulsion)、黑色乾膜防焊漆(Black Dry Film Solder Mask)、黑色液態感光成像防焊漆(Black Liquid Photoimageable Solder Mask)。In the photolithography process, a photo-Mask having a parallax barrier structure is generally used. For a transparent substrate (such as glass) coated with a photosensitive material, a large amount of 3D images can be produced through exposure, development, and hot baking. Dedicated parallax barrier. In addition, depending on the material composition, the photosensitive material can be classified into a liquid photo-resistor, a dry film photo-resist, a photosensitive sensitive emulsion, and a black dry film solder resist. Black Dry Film Solder Mask, Black Liquid Photoimageable Solder Mask.
對於該視差光柵與Lenticular,其相關之視景分離原理(Principle of View Separation)、最佳化設計、與3D影像合成之方法(Method of 3D Image Combination),請參閱中華民國專利案號:359609,及中華民國專利申請案號:098128986、098145946、099107311、099108528、099127429、100114446、100140729、101135830、101136929。For the parallax barrier and Lenticular, the related Principle of View Separation, Optimized Design, and Method of 3D Image Combination, please refer to the Republic of China Patent No. 359609. And the Republic of China patent application number: 098128986, 098145946, 099107311, 099108528, 099127429, 100114446, 100140729, 101135830, 101136929.
對於裸視三次元影像顯示之裝置,根據該視景分離裝置與該平面顯示器螢幕間組裝的構成,可分為內藏型(Build-inType)與外掛型(Attachable Type)的裸視三次元影像顯示之裝置。The device for displaying the three-dimensional image of the naked-view image can be divided into a built-in type (Build-inType) and an attached type (Attachable Type) naked-view three-dimensional image according to the configuration of the view separating device and the flat display screen. Display device.
所謂內藏型,係製造廠商於生產線上,將該視景分離裝置與該平面顯示器螢幕,組裝成一完整之裝置。其相關之技術,請參閱中華民國專利申請案號:100115096、101146100。The so-called built-in type is a manufacturer's production line that assembles the view separating device and the flat display screen into a complete device. For related technologies, please refer to the Republic of China patent application number: 100115096, 101146100.
對於外掛型,則透過一機械之結構,由使用者將該視景分離裝置,安裝於該平面顯示器螢幕上,亦可達到顯示三次元影像之目的(以下,簡稱外掛式裸視三次元影像顯示之裝置)。For the plug-in type, the user can mount the view separating device on the flat display screen through a mechanical structure, and can also achieve the purpose of displaying the three-dimensional image (hereinafter, referred to as the external naked-eye three-dimensional image display). Device).
如圖1所示,係監視器用外掛式裸視三次元影像顯示裝置之示意圖。該監視器用外掛式裸視三次元影像顯示裝置,主要係由一監視器10、一外掛式視景分離裝置10a、與一調整機構10b所構成。As shown in FIG. 1 , it is a schematic diagram of an external stereoscopic three-dimensional image display device for a monitor. The external stereoscopic three-dimensional image display device of the monitor is mainly composed of a monitor 10, an external view separating device 10a, and an adjusting mechanism 10b.Composition.
如圖2所示,係筆記型電腦用外掛式裸視三次元影像顯示裝置之示意圖。該筆記型電腦用外掛式裸視三次元影像顯示裝置,主要係由一筆記型電腦11、一外掛式視景分離裝置11a、與一調整機構11b所構成。As shown in FIG. 2, it is a schematic diagram of an external naked-eye three-dimensional image display device for a notebook computer. The external stereoscopic three-dimensional image display device for the notebook computer is mainly composed of a notebook computer 11, an external view separating device 11a, and an adjusting mechanism 11b.
如圖3所示,係平板電腦用外掛式裸視三次元影像顯示裝置之示意圖。該平板電腦用外掛式裸視三次元影像顯示裝置,主要係由一平板電腦12、一外掛式視景分離裝置12a、一調整機構12b與一裝置架12c所構成。As shown in FIG. 3, it is a schematic diagram of an external naked-eye three-dimensional image display device for a tablet computer. The external stereoscopic three-dimensional image display device for the tablet computer is mainly composed of a tablet computer 12, an external view separating device 12a, an adjusting mechanism 12b and a device frame 12c.
對於上述該外掛式裸視三次元影像顯示裝置,其相關構成之內容,請參閱中華民國專利申請案號:101115353、101116885、101118698、101119294、101147139、102104384。For the content of the above-mentioned external naked-eye three-dimensional image display device, please refer to the Republic of China Patent Application Nos. 101115353, 101116885, 101118698, 101119294, 101147139, 102104384.
另外,不論是製造廠商、或是使用者個人,皆須執行一對位(Alignment)之作業,方能將該視景分離裝置,正確安裝於該平面顯示器螢幕上。一般,於產線上,係利用標靶對位之方法,以進行視景分離裝置、與平面顯示器螢幕間之對位組裝,其相關標靶對位之內容,請參閱中華民國專利申請案號:98138470。In addition, both the manufacturer and the user must perform an Alignment operation to properly mount the Vision Separator on the flat panel display. Generally, on the production line, the method of target alignment is used to perform the alignment assembly between the visual separation device and the flat display screen. For the content of the related target alignment, please refer to the Republic of China patent application number: 98138470.
上述標靶對位方法,一般是利用光學顯微、影像處理與辨識、自動化機械之技術,以達到對位之目的,僅適用於裸視三次元影像顯示裝置之量產,卻無法幫助個人使用者,對於外掛式裸視三次元影像顯示裝置,達到安裝之目的。The above target alignment method generally uses optical microscopy, image processing and identification, and automated mechanical technology to achieve the purpose of alignment. It is only suitable for mass production of naked-eye three-dimensional image display devices, but cannot help personal use. For the external naked-eye three-dimensional image display device, the installation purpose is achieved.
針對上述之缺失,本發明一種三次元影像對位之方法(Auto-stereoscopic Display and Method of Alignment),係對於裸視三次元影像顯示裝置,尤其是對於外掛式裸視三次元影像顯示裝置,對於組裝,提供一影像對位之方法,主要透過顯示一對位用3D合成影像,讓操作者可將視景分離裝置,正確裝置於顯示器螢幕之上,以滿足角度與水平位置對位之需求,並達到顯示最佳三次元影像之目的。For the above-mentioned deficiency, the method of the present invention is an auto-stereoscopic display and method of Alignment, which is for a naked-view three-dimensional image display device, especially for an external naked-eye three-dimensional image display device. Assembling, providing a method of image alignment, mainly by displaying a pair of 3D composite images, so that the operator can correctly install the visual separation device on the display screen to meet the needs of the angle and horizontal position alignment. And achieve the purpose of displaying the best three-dimensional image.
所謂影像對位之方法,係利用該顯示器螢幕,以顯示一由具特殊圖案之左視景影像(Left View Image)、與右視景影像(Right View Image)所構成之對位用3D合成影像(3D Combined Image for Alignment)。該對位用3D合成影像,經該視景分離裝置作用後,可於不同的觀賞距離上,產生一顏色疊紋(Color Moiré)影像、與一3D影像。The method of image alignment is to use the display screen to display a device.A left-view image of a special pattern (Left View Image) and a 3D Combined Image for Alignment formed by a right view image (Right View Image). The alignment uses a 3D synthetic image, and after being applied by the visual separation device, a color Moiré image and a 3D image can be generated at different viewing distances.
是以,透過觀察該顏色疊紋的疊紋特徵角(Characteristic Angle of Moiré),以調整視景分離裝置與顯示器螢幕間相對角度之位置,可讓視景分離裝置之線特徵結構(line-Characterized Structure of View Separation Device)、與3D合成影像之線特徵結構(line-Characterized Structure of 3D Combined Image),達到相互平行之狀態,達到角度對位(Angular Alignment)之目的。上述之方法,稱為疊紋現象角度對位之方法(Method of Angular Alignment Based on Moiré Phenomenon)。Therefore, by observing the characteristic angle of Moiré of the color overlay to adjust the position of the relative angle between the visual separation device and the display screen, the line feature structure of the visual separation device (line-Characterized) Structure of View Separation Device) and line-characterized structure of 3D Combined Image achieve parallelism and achieve Angular Alignment. The above method is called Method of Angular Alignment Based on Moiré Phenomenon.
其次,透過觀察該3D影像,先找出最佳觀賞距離(Optimum View Distance)後,再透過一3D影像位移水平對位之方法(Method of Horizontal Alignment Based on 3D Image Displacement),對於觀賞者之左眼、與右眼,以投射正確之左視景、與右視景影像,達到水平位置對位之目的。最終,達到顯示最佳三次元影像之目的。Secondly, by observing the 3D image, first find the Optimum View Distance and then pass the Method of Horizontal Alignment Based on 3D Image Displacement for the viewer's left. The eye and the right eye are used to project the correct left view and right view image to achieve the horizontal position alignment. In the end, the goal of displaying the best three-dimensional image is achieved.
10‧‧‧監視器10‧‧‧ monitor
11‧‧‧筆記型電腦11‧‧‧Note Computer
12‧‧‧平板電腦12‧‧‧ Tablet PC
10a、11a、12a‧‧‧外掛式視景分離裝置10a, 11a, 12a‧‧‧ external view separation device
10b、11b、12b‧‧‧調整機構10b, 11b, 12b‧‧‧ adjustment agencies
12c‧‧‧裝置架12c‧‧‧ device rack
20、25‧‧‧線條狀結構物20, 25‧‧‧Linear structures
26‧‧‧灰色區塊26‧‧‧ Gray block
27‧‧‧黑色區塊27‧‧‧Black block
30‧‧‧顯示器螢幕30‧‧‧Display screen
40、40’‧‧‧垂直條狀視差光柵40, 40'‧‧‧Vertical strip parallax barrier
41‧‧‧透光元件41‧‧‧Lighting components
42‧‧‧遮蔽元件42‧‧‧shading components
45‧‧‧疊紋交界線45‧‧‧Drawing junction line
46、51‧‧‧角度對位基準線46, 51‧‧‧ Angle alignment baseline
50‧‧‧純色方塊圖案50‧‧‧ solid color square pattern
52、53、54、55‧‧‧3D圖案52, 53, 54, 55‧‧3D patterns
56‧‧‧對位用3D合成影像56‧‧‧3D composite image with 3D
P、P+δP‧‧‧線條結構物的線距Line spacing of P, P+δP‧‧‧ line structures
φ‧‧‧堆疊角度φ‧‧‧Stack angle
Φ‧‧‧疊紋特徵角度Φ‧‧‧Dipper feature angle
N‧‧‧顯示器螢幕水平方向次畫素之總數N‧‧‧Total number of secondary pixels in the horizontal direction of the monitor screen
M‧‧‧顯示器螢幕垂直方向次畫素之總數The total number of sub-pixels in the vertical direction of the M‧‧‧ display screen
i‧‧‧次畫素垂直位置之編號I‧‧‧ pixel vertical position number
j‧‧‧次畫素水平位置之編號J‧‧‧ pixel number position number
PH‧‧‧次畫素之水平寬度Horizontal width of PH ‧‧‧ pixels
PV‧‧‧次畫素之垂直高度PV ‧‧‧ pixels vertical height
X、Y、Z‧‧‧座標系X, Y, Z‧‧‧ coordinate system
V‧‧‧顯示器螢幕所顯示影像V‧‧‧Display image displayed on the monitor screen
V(i,j)‧‧‧位於螢幕(i,j)位置次畫素的影像資料V(i,j)‧‧‧ image data of sub-pixels located on the screen (i, j)
Vk‧‧‧單一視景影像Vk ‧‧‧Single view image
R、V0‧‧‧右視景影像R, V0 ‧ ‧ right view image
L、V1‧‧‧左視景影像L, V1 ‧ ‧ left view image
VΛ(i,j)‧‧‧位於(i,j)位置之單一視景次畫素影像資料VΛ (i,j)‧‧‧Single-view sub-pixel imagery at (i,j)
Σn‧‧‧多視景3D合成影像Σn ‧‧‧Multi-view 3D synthetic image
Σn=2/△=0‧‧‧雙視景3D合成影像Σn=2/△=0 ‧‧‧Dual view 3D synthetic image
ΣA‧‧‧對位用3D合成影像ΣA ‧‧‧3D synthetic image
k、Λ‧‧‧視景編號數k, Λ‧‧‧ view number
n‧‧‧總視景數N‧‧‧ total number of views
m‧‧‧水平最小視景影像顯示單元次畫素構成之數目m‧‧‧The number of sub-pixel components in the horizontal minimum view image display unit
Q‧‧‧垂直最小視景影像顯示單元次畫素構成之數目Q‧‧‧The number of sub-pixel components in the vertical minimum view image display unit
△‧‧‧橫向位移相位△‧‧‧lateral displacement phase
Π‧‧‧橫向位移振幅Π‧‧‧lateral displacement amplitude
int係‧‧‧取整數之函數Int is a function of integers
Mod‧‧‧取餘數之函數Mod‧‧‧ function of remainder
BH‧‧‧透光元件之水平寬度BH ‧‧‧Horizontal width of light-transmitting elements
Bv‧‧‧透光元件之垂直高度Bv ‧‧‧Vertical height of light-transmitting elements
‧‧‧遮蔽元件之水平寬度 ‧‧‧ Horizontal width of the shielding element
PB‧‧‧單元結構之水平寬度PB ‧‧‧ horizontal width of unit structure
θ‧‧‧傾斜條狀視差光柵之傾斜角度Angle of inclination of θ‧‧‧ oblique strip-shaped parallax barrier
Z0‧‧‧最佳觀賞距離Z0 ‧‧‧Best viewing distance
LB‧‧‧傾斜條狀視差光柵之裝置距離LB ‧‧‧ device distance of oblique strip parallax barrier
LH‧‧‧水平最佳視點間距LH ‧‧‧ horizontal best viewpoint spacing
LV‧‧‧垂直最佳視點間距LV ‧‧‧Vertical best viewpoint spacing
DH‧‧‧水平最小視景影像顯示單元之寬度DH ‧‧‧Horizontal minimum view image display unit width
DV‧‧‧垂直最小視景影像顯示單元之寬度DV ‧‧‧Width of vertical minimum view image display unit
q‧‧‧傾斜率q‧‧‧Slope rate
S‧‧‧遞增位移量S‧‧‧ incremental displacement
△B‧‧‧水平位移量△B‧‧‧ horizontal displacement
圖1:係監視器用外掛式裸視三次元影像顯示裝置之示意圖。Figure 1 is a schematic diagram of an external stereoscopic three-dimensional image display device for a monitor.
圖2:係筆記型電腦用外掛式裸視三次元影像顯示裝置之示意圖。Figure 2: Schematic diagram of an external naked-eye three-dimensional image display device for a notebook computer.
圖3:係平板電腦用外掛式裸視三次元影像顯示裝置之示意圖。Figure 3 is a schematic diagram of an external naked-eye three-dimensional image display device for a tablet computer.
圖4:係疊紋現象之示意圖。Figure 4: Schematic diagram of the phenomenon of moiré.
圖5:係堆疊角度φ=0時所產生疊紋結構之示意圖。Figure 5: Schematic diagram of the embossed structure produced when the stacking angle φ = 0.
圖6:係堆疊角度φ≠0時所產生疊紋結構之示意圖。Figure 6: Schematic diagram of the embossed structure produced when the stacking angle φ ≠ 0.
圖7:係RGB顏色次畫素為垂直條狀排列顯示器螢幕構成之示意圖。Figure 7: Schematic diagram of the RGB color sub-pixels as a vertical strip-shaped display screen.
圖8:係右視景影像V0構成之示意圖。Figure 8 is a schematic diagram showing the composition of the right view image V0 .
圖9:係左視景影像V1構成之示意圖。Figure 9: schematic view showing a left view image composed of V1.
圖10:係雙視景3D合成影像Σn=2/△=0構成之示意圖。Fig. 10 is a schematic diagram showing the configuration of a double-view 3D synthetic image Σn=2/Δ=0 .
圖11:係垂直條狀視差光柵之示意圖。Figure 11 is a schematic illustration of a vertical strip-shaped parallax barrier.
圖12:係筆記型電腦用外掛式裸視三次元影像顯示裝置之示意圖。Figure 12 is a schematic diagram of an external naked-eye three-dimensional image display device for a notebook computer.
圖13、14:係顏色疊紋實際拍攝之影像。Figure 13, 14: Image taken by the actual color overlay.
圖15、16、17:係△=0,所呈現的視景分離作用之示意圖。Figures 15, 16, and 17 are diagrams showing the effect of the separation of the scenes represented by Δ = 0.
圖18、19:係視差光柵40’位移後,所呈現視景分離作用之示意圖。Figures 18 and 19 are schematic views showing the effect of the separation of the scenes after the displacement of the parallax barrier 40'.
圖20:係雙視景3D合成影像Σn=2/△=1構成之示意圖。Figure 20: Schematic diagram of a dual view 3D synthetic image Σn=2/△=1 .
圖21、22:係△=1,所呈現的視景分離作用之示意圖。Figures 21, 22: Schematic diagram of the visual separation effect presented by Δ=1.
圖23:係本發明一種三次元影像顯示裝置與對位方法實施例之示意圖。Figure 23 is a schematic diagram of an embodiment of a three-dimensional image display device and alignment method of the present invention.
圖24、25、26:係單一視景影像圖案構成之示意圖。Figures 24, 25, and 26 are schematic views showing the configuration of a single view image pattern.
圖27:係對位用3D合成影像構成之示意圖。Figure 27: Schematic diagram of the alignment of 3D synthetic images.
首先,說明疊紋(Moire)之現象。First, the phenomenon of Moire is explained.
根據維基百科(WIKIPEDIA,參考網址:http://en.wikipedia.org/wiki/Moir%C3%A9_pattern)之定義,如圖4所示,對於兩組具有週期性且平行分佈的線狀結構物(Periodically Distributed Parallel Lines Structure)20、25,以下,簡稱為線特徵結構(line-Characterized Structure)。當兩者的分佈週期(Distributing Period)具有些微的差異(即線距各為P、P+δP,其中,0<δ<1),且讓該兩組線特徵結構20、25,係以上、下的方式堆疊(Superimposed)。令該線特徵結構20為上結構、該線特徵結構25為下結構。對於該上結構20所構成的線、與該下結構25所構成的線,彼此間所具有一角度,令該角度為堆疊角度(Superimposed Angle)φ。當上、下結構20、25上的線,呈平行狀時,令φ=0。According to the definition of Wikipedia (WIKIPEDIA, reference URL: http://en.wikipedia.org/wiki/Moir%C3%A9_pattern), as shown in Figure 4, for two groups of linear structures with periodic and parallel distribution (Periodically Distributed Parallel Lines Structure) 20, 25, hereinafter, referred to simply as line-characterized structure. When the distribution period of the two has a slight difference (that is, the line spacing is P, P + δP, where 0 < δ < 1), and let the two sets of line features 20, 25, above, The next way is stacked (Superimposed). The line feature 20 is an upper structure, and the line feature 25 is a lower structure. The line formed by the upper structure 20 and the line formed by the lower structure 25 have an angle with each other such that the angle is a superimposed angle φ. When the lines on the upper and lower structures 20, 25 are parallel, let φ = 0.
如圖5所示,對於位於適當距離的觀看者而言,該上、下結構20、25以φ=0重疊時,觀看者會看到一呈現交替排列的灰色區塊(pale zone)26與黑色區塊(black zone)27。As shown in FIG. 5, for a viewer located at an appropriate distance, when the upper and lower structures 20, 25 overlap with φ=0, the viewer will see a gray area that appears alternately arranged.A pale zone 26 and a black zone 27 are used.
該灰色區塊26,係因上、下黑色線條幾乎重疊,可觀看到較多白色的部分,所以呈現灰色狀態。相反的,該黑色區塊27,則因上、下黑色線條幾乎措開,可觀看到較多黑色的部分,所以呈現黑色狀態。上述該呈交替狀的灰、黑色區塊26、27所構成的結構,即為疊紋。對於該相鄰灰、黑色區塊之交界,亦呈現線條狀之結構,以下,稱為疊紋交界線(Strip Boundary of Moiré)。The gray block 26 is in a gray state because the upper and lower black lines are almost overlapped and more white portions can be viewed. Conversely, the black block 27 is almost open due to the upper and lower black lines, and more black portions can be viewed, so that a black state is exhibited. The structure of the above-described alternating gray and black blocks 26 and 27 is a moiré. For the boundary between the adjacent gray and black blocks, a line-like structure is also present, hereinafter referred to as a Strip Boundary of Moiré.
一般,該疊紋交界線,並非為一明顯之細線,以分隔該兩相鄰灰、黑色區塊26、27,而是具有一小寬度,於該寬度區域中,係具由灰變黑(或相反)漸進變化的特徵。令該疊紋交界線、與該下結構25所構成的線間,亦具有一疊紋特徵角(Characteristic Angle of Moiré)Φ。當φ=0時、Φ=0。亦即,當該上結構20之線條、以平行於該下結構25線條之方式堆疊時(即φ=0),該疊紋交界線亦具有與該下結構25線條平行之特徵(即Φ=0)。Generally, the dazzling boundary line is not a distinct thin line to separate the two adjacent gray and black blocks 26, 27, but has a small width in which the harness is grayed out from gray ( Or vice versa) the characteristics of progressive changes. The dazzling boundary line and the line formed by the lower structure 25 also have a characteristic angle of Moiré. When φ = 0, Φ = 0. That is, when the lines of the upper structure 20 are stacked in parallel with the lines of the lower structure 25 (i.e., φ = 0), the moiré boundary line also has a feature parallel to the line of the lower structure 25 (i.e., Φ = 0).
另外,如圖6所示,當堆疊角度不為零時(φ≠0),該疊紋交界線與該下結構25線條間,呈現一角度之關係,即疊紋特徵角亦不為零(Φ≠0)。In addition, as shown in FIG. 6, when the stacking angle is not zero (φ ≠ 0), the overlapping boundary line and the line of the lower structure 25 exhibit an angle relationship, that is, the embossed feature angle is not zero ( Φ≠0).
綜上所述,透過利用疊紋結構與其所具有角度之特徵,即疊紋交界線與疊紋特徵角,可用來調整該上、下結構20、25間角度之關係。以下,簡稱為疊紋角度對位之方法。換言之,藉由觀察該疊紋特徵角度Φ的變化,透過改變該上、下結構20、25間之堆疊角度(即相對角度),直到讓該疊紋特徵角度為零(Φ=0)時,達到讓該堆疊角度歸零(φ=0)。亦即,達到讓該上、下線條狀結構物20、25呈平行狀態之目的。In summary, the relationship between the angles of the upper and lower structures 20 and 25 can be adjusted by utilizing the features of the embossed structure and its angle of intersection, that is, the stencil boundary line and the embossed feature angle. Hereinafter, it is simply referred to as a method of aligning the overlapping angles. In other words, by observing the change of the moiré feature angle Φ, by changing the stacking angle (ie, the relative angle) between the upper and lower structures 20, 25 until the moiré feature angle is zero (Φ = 0), The stacking angle is zeroed (φ=0). That is, the purpose of bringing the upper and lower line structures 20, 25 into a parallel state is achieved.
由於,視景分離裝置與顯示器螢幕RGB顏色次畫素排列之構成,皆具有線條特徵之結構,是以,可將疊紋現象,應用於視景分離裝置與顯示器螢幕間角度之對位(Angular Alignment)。Since the framing separation device and the RGB color sub-pixel arrangement of the display screen have the structure of the line feature, the tiling phenomenon can be applied to the alignment between the visor separating device and the display screen (Angular) Alignment).
以下,藉由RGB顏色次畫素為水平排列之顯示器螢幕、垂直條狀視差光柵、與雙視景影像(2-View Image)為例,說明本發明疊紋角度對位方法之功效。上述該雙視景影像,如下文說明,係由具特殊圖案之右視景影像(Right View Image)、與左視景影像(Left View Image),以構成對位用3D合成影像(3D Combined Image for Alignment)。Hereinafter, the effect of the moiré angle aligning method of the present invention will be described by taking a RGB color sub-pixel horizontally arranged display screen, a vertical strip parallax barrier, and a 2-view image as an example. The above dual view image, as explained below, isRight view image with special pattern and Left View Image to form 3D Combined Image for Alignment.
首先,說明RGB顏色次畫素為垂直條狀排列顯示器螢幕之構成、顯示器螢幕所顯示影像之定義、單一視景影像之定義、與多視景3D合成影像之產生。First, the description of the RGB color sub-pixels is the configuration of the vertical strip-shaped display screen, the definition of the image displayed on the display screen, the definition of the single-view image, and the generation of the multi-view 3D composite image.
對於習知液晶螢幕、電漿螢幕、或是有機發光二極體(OLED)螢幕等平面顯示器螢幕,如圖7所示,系RGB顏色次畫素為垂直條狀排列顯示器螢幕構成之示意圖。該顯示器螢幕30,係由N×M個RGB顏色次畫素(Color Sub-Pixel)所構成。該RGB顏色次畫素,具有沿水平方向依次排列之特徵,以構成RGB顏色次畫素垂直條狀之排列(Vertical Strip Configuration)。其中,N為構成該顯示器螢幕水平方向(X軸)次畫素之總數、M則為構成該顯示器螢幕垂直方向(Y軸)次畫素之總數。另外,利用i、j之編號,以表示單一個次畫素垂直與水平位置,其中,0≦j≦N-1;0≦i≦M-1。該單一個次畫素具有PH×PV之大小,其中,PH為次畫素之水平寬度、PV為次畫素之垂直高度。為了後文之圖示說明,定義一座標系X、Y、Z,令該座標系之X軸係設置於水平之方向、Y軸係設置於垂直之方向、Z軸則以垂直於該顯示器螢幕之方向設置,且該三軸之方向遵守右手定則(Right-Hand Rule)。另外,對於上述顯示器螢幕所顯示影像V,可如下表示:
式(4)、與式(5)所產生之多視景3D合成影像Σn,其差異只在於合成影像之結構,具有不同傾斜之特徵,如右傾斜與左傾斜之特徵。該具傾斜特徵合成影像之結構,係對應具同樣傾斜特徵之視差光柵、與Lenticular。The multi-view 3D synthetic image Σn generated by the equations (4) and (5) differs only in the structure of the synthesized image, and has different tilt characteristics, such as right tilt and left tilt. The structure with the oblique feature synthetic image corresponds to a parallax barrier having the same tilting feature and Lenticular.
如圖8、9所示,對於上述該具特殊圖案之右視景影像V0、與左視景影像V1之構成,令其各自為純藍色、與純紅色畫面所構成。更清楚地說,該右視景影像V0(另以R代表右視景)、與左視景影像V1(另以L代表左視景),係個別由純藍色、與純紅色之垂直線條所構成。另外,令n=2、m=3、Q=∞、Π=1、△=0後,將其帶入式(4),即可得一由藍、紅色垂直線條所構成之雙視景3D合成影像Σn=2/△=0。As shown in FIGS. 8 and 9, the right view video V0 and the left view video V1 having the special pattern are each formed of a pure blue color and a pure red picture. More specifically, the right view image V0 (other with R for the right view) and the left view image V1 (with L for the left view) are individually made of pure blue and pure red. Vertical lines are formed. In addition, let n=2, m=3, Q=∞, Π=1, △=0, then bring it into formula (4), then you can get a double view 3D composed of blue and red vertical lines. Synthetic image Σn=2/△=0 .
如圖10所示。將該雙視景3D合成影像Σn=2/△=0,顯示於該顯示器螢幕30上,於肉眼觀察下,該雙視景3D合成影像Σn=2/△=0,係呈純紫色之畫面(以下,簡稱為純紫色雙視景3D合成影像Σn=2/△=0)。As shown in Figure 10. The dual-view 3D synthetic image Σn=2/△=0 is displayed on the display screen 30. Under the naked eye, the dual-view 3D synthetic image Σn=2/△=0 is pure purple. The picture (hereinafter, referred to as pure purple dual view 3D synthetic image Σn=2/△=0 ).
其次,對應於上述多視景3D合成影像Σn,根據中華民國專利申請案號:0101135830,則可透過以下之公式,以設計一垂直條狀視差光柵之結構:
DH=mPH(7)DH =mPH (7)
DV=QPV(8)DV =QPV (8)
S=DV×tanθ=qDH(15)其中,PH為次畫素之水平寬度;PV為次畫素之垂直高度;BH為透光元件之水平寬度;Bv為透光元件之垂直高度;為遮蔽元件之水平寬度;θ為條狀視差光柵結構之傾斜角度;Z0為最佳觀賞距離;LB為視差光柵之裝置距離;LH為水平最佳視點間距;LV為垂直最佳視點間距;DH為水平最小視景影像顯示單元之寬度;DV為垂直最小視景影像顯示單元之寬度;q為傾斜率,係為一實數;S為格狀視差光柵遞增位移量。S=DV ×tanθ=qDH (15) where PH is the horizontal width of the sub-pixel; PV is the vertical height of the sub-pixel; BH is the horizontal width of the light-transmitting element; Bv is the light-transmitting element Vertical height The horizontal width of the shielding element; θ is the inclination angle of the strip-shaped parallax barrier structure; Z0 is the optimal viewing distance; LB is the device distance of the parallax barrier; LH is the horizontal optimal viewpoint spacing; LV is the vertical optimum Viewpoint spacing; DH is the width of the horizontal minimum view image display unit; DV is the width of the vertical minimum view image display unit; q is the tilt rate, which is a real number; S is the lattice-like parallax barrier incremental displacement.
如圖11所示,係垂直條狀視差光柵結構之示意圖。將上述n=2、m=3、Q=∞、Π=1、△=0等參數,帶入式(6)~式(15)中,其中,因Q=∞,可得DV=Bv=LV=∞、θ=0;因上述雙視景3D合成影像Σn=2/△=0,係由藍紅垂直線所構成,不具傾斜之特徵,是以,令S=q=0,即可得一垂直條狀視差光柵40。另外,該垂直條狀視差光柵40,係由一透光元件41、與一遮蔽元件42,沿水平方向上,以交替排列方式所構成。As shown in FIG. 11, it is a schematic diagram of a vertical strip-shaped parallax barrier structure. The above parameters such as n=2, m=3, Q=∞, Π=1, Δ=0 are brought into equations (6)~(15), where DV =B is obtained because Q=∞v = LV = ∞, θ = 0; because the above-mentioned dual-view 3D synthetic image Σn=2/△=0 , is composed of blue-red vertical lines, without the feature of tilting, so that S=q= 0, a vertical strip-shaped parallax barrier 40 is obtained. In addition, the vertical strip-shaped parallax barrier 40 is formed by a light-transmitting element 41 and a shielding element 42 in an alternating arrangement in the horizontal direction.
如圖12所示,如前述筆記型電腦用外掛式裸視三次元影像顯示裝置,主要係由一筆記型電腦11、一外掛式視景分離裝置11a、與一調整機構11b所構成。該外掛式視景分離裝置11a,係裝置有該視差光柵40,並透過該調整機構11b,可將該視差光柵40,裝置於該筆記型電腦11螢幕30上,該螢幕30即顯示該雙視景3D合成影像Σn=2/△=0。另外,該調整機構11b具有三自由度調整機構(Adjustable Mechanical Structure with 3 Degree of Freedom),亦即可對該視差光柵40,做水平、垂直之位移調整,與對Z軸做角度旋轉之調整,即可做堆疊角度φ之調整。其相關之技術,請參閱中華民國專利申請案號:102104384。As shown in FIG. 12, the external stereoscopic three-dimensional image display device for a notebook computer is mainly composed of a notebook computer 11, an external view separating device 11a, and an adjusting mechanism 11b. The external view separation device 11a is provided with the parallax barrier 40, and the adjustment mechanism 11b is configured to be mounted on the screen 30 of the notebook computer 11, and the screen 30 displays the dual view. Scene 3D synthetic image Σn=2/△=0 . In addition, the adjustment mechanism 11b has an Adjustable Mechanical Structure with 3 Degree of Freedom, and the horizontal and vertical displacement adjustment of the parallax barrier 40 can be performed, and the angular rotation of the Z axis can be adjusted. You can adjust the stacking angle φ. For related technologies, please refer to the Republic of China Patent Application No. 102104384.
如上述,將該垂直條狀視差光柵40,以LB之距離,裝置於該螢幕30上,並將該雙視景3D合成影像Σn=2/△=0,顯示於該螢幕30之上。之後,於距該螢幕30適當距離處(如最佳觀賞距離之一半、或者更接近螢幕),可拍攝取得一顏色疊紋之影像,如圖13所示。是以,於適當改變堆疊角度φ後,即可觀察到φ=0、φ≠0,所個別呈現的顏色疊紋影像、疊紋交界線45、與疊紋特徵角Φ。As described above, the vertical strip-shaped parallax barrier 40 is disposed on the screen 30 at a distance of LB , and the dual-view 3D composite image Σn=2/Δ=0 is displayed on the screen 30. . Thereafter, the screen 30 at a distance at a suitable distance (e.g., half the best viewing distance, or closer to the screen), a color image can be taken to obtain themoir, as shown in Fig. Therefore, after appropriately changing the stacking angle φ, φ=0, φ≠0, the color mosaic image, the overlapping boundary line 45, and the moiré characteristic angle Φ which are individually presented can be observed.
如前述,本發明的疊紋角度對位之方法,係藉由觀察該疊紋特徵角度Φ的變化,透過改變該上線條狀結構物(視差光柵)、下線條狀結構物間(顯示器螢幕所顯示之紅、藍線條)之堆疊角度φ,直到讓該疊紋特徵角度為零(Φ=0)時,即可達到讓該上、下線條狀結構物呈平行狀態之目的,亦即,達到角度對位之目的。As described above, the method of aligning the hem angle of the present invention is to change the upper line structure (parallax grating) and the lower line structure by observing the change of the apex angle Φ (display screen The stacking angle φ of the red and blue lines is displayed until the angle of the moiré feature is zero (Φ=0), so that the upper and lower line structures are parallelized, that is, The purpose of the angle alignment.
為了更清楚呈現該下線條狀結構之角度,可在上述該右視景影像(純藍色畫面)V0、與左視景影像(純紅色畫面)V1中,於同一位置(如圖13所示),加上複數條具適當寬度且為垂直的白色線條46,以下稱為角度對位基準線(Reference Line of Angular Alignment),以提供操作者一參考基準,讓操作者可更清楚判斷,該疊紋交界線45、與該角度對位基準線46,是否已達呈平行之狀態,如圖14所示。In order to more clearly present the angle of the lower line structure, the right view image (pure blue picture) V0 and the left view image (pure red picture) V1 may be in the same position (see FIG. 13). Shown), plus a plurality of white lines 46 of appropriate width and vertical, hereinafter referred to as the Reference Line of Angular Alignment, to provide an operator reference reference for the operator to make a clearer judgment Whether the dazzled boundary line 45 and the angle alignment reference line 46 have reached a parallel state, as shown in FIG.
事實上,該角度對位基準線46之斜率,係對應於該3D合成影像的線特徵結構與條狀視差光柵線特徵結構。亦即,若整體的設計是讓3D合成影像線特徵結構、與條狀視差光柵線特徵結構,具有傾斜角度θ,如公式(6)所定義,則該角度對位基準線46,亦須設計為具同樣θ角度的白色斜線。In fact, the slope of the angle alignment reference line 46 corresponds to the line feature structure of the 3D synthetic image and the strip parallax raster line feature structure. That is, if the overall design is to make the 3D synthetic image line feature structure and the strip parallax raster line feature structure have an inclination angle θ, as defined by the formula (6), the angle alignment reference line 46 must also be designed. It is a white slash with the same θ angle.
於完成上述角度之對位後,需再進行水平最佳視點之對位。如圖12所示,當然,可藉由該調整機構11b之機械結構,對該視差光柵40做水平位移調整,達到調整最佳視點位置之目的。對於上述藉由位移水平移視差光柵,以達到調整最佳視點位置之方法,稱為機械式最佳視點位移之方法。另外,本發明亦提供一3D影像位移水平對位之方法,說明如下。After the alignment of the above angles is completed, the alignment of the horizontal best viewpoints is required. As shown in FIG. 12, of course, the parallax barrier 40 can be horizontally displaced by the mechanical structure of the adjustment mechanism 11b to achieve the purpose of adjusting the optimal viewpoint position. For the above method of shifting the parallax barrier by displacement horizontally to achieve the adjustment of the optimum viewpoint position, it is called a mechanical optimum viewpoint displacement method. In addition, the present invention also provides a method for aligning the displacement level of a 3D image, which is explained below.
首先,說明視景分離作用、最佳觀賞距離、與最佳視點。First, the visual separation effect, the optimal viewing distance, and the optimal viewpoint will be explained.
如圖15所示,該純紫色雙視景3D合成影像Σn=2/△=0,經由該垂直條狀視差光柵40之視景分離作用後,可於一最佳觀賞距離Z0(OVD,Optimum Viewing Distance)上,於複數個最佳視點(OVP,Optimum Viewing Point)處,將該純紫色的3D合成畫面Σn=2/△=0,個別分離成純藍畫面(即右視景影像R,該處則稱為右最佳視點)、與純紅畫面(即左視景影像L,該處則稱為左最佳視點)。是以,當觀賞者將右眼、與左眼,個別置放於該右、左最佳視點處時,即可觀看到一3D影像。As shown in FIG. 15, the pure purple dual-view 3D synthetic image Σn=2/Δ=0 , after the vertical separation of the vertical strip-shaped parallax barrier 40, can be at an optimal viewing distance Z0 (OVD). (Optimum Viewing Distance), at a plurality of optimal viewpoints (OVP, Optimum Viewing Point), the pure purple 3D composite image Σn=2/△=0 , individually separated into a pure blue picture (ie, right view) The image R, which is called the right best viewpoint, and the pure red image (ie, the left view image L, which is called the left best viewpoint). Therefore, when the viewer places the right eye and the left eye individually at the right and left optimal viewpoints, a 3D image can be viewed.
當然,對於上述該紫色雙視景3D合成影像Σn=2/△=0,因尚未裝置具視差之3D圖案,是以,觀賞者右、左眼,只能各自觀看到一純藍、純紅之畫面,如圖16、17所示。另外,對於觀賞位置而言,不論是觀賞2D、或者是3D影像,於正常使用的情況下,一般的觀賞者,會習慣性地調整自己的觀賞位置,以面對螢幕正中央之方式來觀賞影像。Of course, for the purple dual-view 3D synthetic image Σn=2/△=0 , since the 3D pattern with parallax has not been installed, the viewer's right and left eyes can only see a pure blue and pure one. The red screen is shown in Figures 16 and 17. In addition, for the viewing position, whether it is viewing 2D or 3D video, in normal use, the general viewer will habitually adjust his viewing position to face the center of the screen. image.
以下,係以觀賞者之右、左眼,是位於螢幕正中處之右、左最佳視點處為例,說明該3D影像位移水平對位之方法。Hereinafter, the right and left eyes of the viewer are taken as the right and left optimal viewpoints at the center of the screen, and the method of aligning the displacement level of the 3D image is described.
雖然,該視差光柵40已經過上述角度之對位,但仍然存在水平對位之問題。如圖16、17中所示,相較於該視差光柵40所裝置之水平裝置位置,如圖18、19中所示,該視差光柵40’,係假設裝置於水平向右移動一△B之位置。其結果是觀賞者的右、左眼,無法同樣在原來螢幕40的正中央前方處,換言之,無法在螢幕正中處之右、左最佳視點,正確觀看到該純藍、純紅之畫面。亦即,無法觀看到正確的3D影像。事實上,顯示給觀賞者的3D影像,係呈現嚴重鬼影之狀態。Although the parallax barrier 40 has been aligned with the above angles, there is still a problem of horizontal alignment. As shown in FIGS. 16 and 17, the parallax barrier 40' is assumed to move horizontally to the right by ΔB as shown in FIGS. 18 and 19, as compared with the horizontal device position of the device of the parallax barrier 40. position. As a result, the viewer's right and left eyes cannot be in the same front of the center of the original screen 40. In other words, the right and left best viewpoints in the middle of the screen cannot be correctly viewed, and the pure blue and pure red images are correctly viewed. That is, the correct 3D image cannot be viewed. In fact, the 3D image displayed to the viewer is in a state of severe ghosting.
相較於改變視差光柵水平位置的機械式對位,本發明提出一3D影像位移水平對位之方法,亦即,透過一種3D影像對位之方式,透過改變該3D影像之影像資料合成位置(Position of Image Data Combination),可於原螢幕正中處之右、左最佳視點上,呈現正確的3D影像,達到水平對位之目的,其說明如下。Compared with the mechanical alignment for changing the horizontal position of the parallax barrier, the present invention proposes a method for aligning the displacement of the 3D image, that is, by changing the position of the image data of the 3D image through a 3D image alignment ( Position of Image Data Combination), which can display the correct 3D image on the right and left best viewpoints in the middle of the original screen, and achieve the purpose of horizontal alignment.
相較於如圖10中所示之該雙視景3D合成影Σn=2/△=0,係由式(4)與n=2、m=3、Q=∞、Π=1、△=0等參數所構成。透過改變式(4)中的△值,可得到不同結構之3D合成影像。如圖20所示,係由△=1所構成之雙視景3D合成影像Σn=2/△=1。Compared with the double-view 3D synthetic imagen=2/△=0 as shown in FIG. 10, the equation (4) and n=2, m=3, Q=∞, Π=1, △ =0 and other parameters. By changing the value of Δ in equation (4), 3D composite images of different structures can be obtained. As shown in Fig. 20, a dual-view 3D synthetic image composed of Δ=1 Σn=2/Δ=1 .
該雙視景3D合成影像Σn=2/△=1的產生,如圖8、9所示,同樣是由該右視景影像V0(另以R代表右視景)、與左視景影像V1(另以L代表左視景)所構成,只是從不同的水平位置中(以下,稱為影像資料合成位置),取出該右、左視景影像,以合併成該雙視景3D合成影像Σn=2/△=1,即如圖20所示。事實上,式(4)中的△值,決定了該影像資料合成位置改變之量。The generation of the dual-view 3D composite image Σn=2/Δ=1 , as shown in FIGS. 8 and 9, is also the right view image V0 (also R represents the right view), and the left view The image V1 (also represented by L for the left view) is formed by taking out the right and left view images from different horizontal positions (hereinafter referred to as image data synthesis positions) to merge into the dual view 3D. The synthesized image Σn=2/ Δ=1, as shown in FIG. In fact, the value of Δ in equation (4) determines the amount of change in the position of the image data.
例如,△=1時,係代表該影像資料合成位置,係向右移動一個次畫素。之後,再將該雙視景3D合成影像Σn=2/△=1,顯示於該螢幕30上,經該已被水平移動視△B差光柵40’的作用後,如圖21、22所示,仍可於螢幕正中處之右、左最佳視點,觀看到該純藍、純紅之畫面。是以,對於裝置於任意水平位置之差光柵40’,透過設定適當的△值,代入式(4),可產生具一適當之3D合成影像,即可在螢幕正中處,觀看到正確的3D影像。For example, when Δ=1, it represents the composite position of the image data, and moves to the right by one sub-pixel. Then, the dual-view 3D composite image Σn=2/ Δ=1 is displayed on the screen 30, and after being horizontally moved by the ΔB difference grating 40', as shown in FIGS. 21 and 22 It can be seen that the pure blue and pure red images can still be seen at the right and left best viewpoints in the middle of the screen. Therefore, for the difference grating 40' of the device at any horizontal position, by setting an appropriate Δ value and substituting into the equation (4), a suitable 3D composite image can be generated, and the correct 3D can be viewed in the middle of the screen. image.
換言之,式(4)中的△值,呈現該影像資料合成位置之移動量,且該移動量係以單一個次畫素為移動之單位。另外,該△值可變化之範圍,係於受0≦△<n×m條件所規範,其中,n為總視景數、m為水平最小視景影像顯示單元次畫素構成之數目。事實上,對於式(4)、(5)之Λ而言,該視景編號數Λ係為△之周期函數,亦即,Λ(0)=Λ(n×m);且具有Λ(-△)=Λ(n×m-△)旋轉性(Rotation)之特性。In other words, the value of Δ in equation (4) represents the amount of movement of the composite position of the image data, and the amount of movement is a unit of movement with a single pixel. In addition, the range in which the Δ value can be changed is specified by the condition of 0≦Δ<n×m, where n is the total number of views and m is the number of sub-pixels of the horizontal minimum view image display unit. In fact, for equations (4) and (5), the number of scene numbers is a periodic function of Δ, that is, Λ(0)=Λ(n×m); and has Λ(- △) = Λ (n × m - Δ) characteristics of Rotation.
是以,對於視景分離裝置與影像顯示器螢幕間水平位置之對位,可藉由觀察一3D影像,並透過改變式(4)中的△值,亦即,改變該3D合成影像之影像資料合成位置,直至觀看到具最少鬼影的3D影像,即達到水平位置對位之目的。Therefore, by aligning the horizontal position between the visual separation device and the image display screen, the image data of the 3D synthetic image can be changed by observing a 3D image and changing the Δ value in the equation (4). Synthesize the position until the 3D image with the least ghost is viewed, that is, the horizontal position is aligned.
綜上所述,如圖23所示,本發明一種三次元影像顯示裝置與對位方法實施例之示意圖。該實施例,係由一筆記型電腦11、一外掛式視景分離裝置11a、一調整機構11b、一視差光柵40、一調整機構11b、一顯示器螢幕螢幕30、一對位用3D合成影像ΣA、與一影像對位之方法(無圖示)所構成。如前述,該影像對位之方法,係包含有一疊紋角度對位方法、與一3D影像位移水平對位方法。對於顯示器螢幕、視景分離裝置、多視景3D合成影像、疊紋角度對位方法、與3D影像位移水平對位方法等相關之詳細內容,如前述之說明。以下,補充說明該對位用3D合成影像ΣA的實際構成。In summary, as shown in FIG. 23, a schematic diagram of an embodiment of a three-dimensional image display device and a registration method is provided. The embodiment is composed of a notebook computer 11, an external view separating device 11a, an adjusting mechanism 11b, a parallax barrier 40, an adjusting mechanism 11b, a display screen 30, and a pair of 3D synthetic images.A , a method of alignment with an image (not shown). As described above, the method of image alignment includes a method of aligning the overlap angle and a method of aligning the displacement level of a 3D image. For the details of the display screen, the view separation device, the multi-view 3D composite image, the gradation angle aligning method, and the 3D image displacement level aligning method, as described above. Hereinafter, the actual configuration of the 3D synthesized image ΣA for the registration will be additionally described.
如圖24~26所示,該對位用3D合成影像ΣA,係一由具特殊圖案之右、左視景影像V0、V1所構成,並根據式(4)、式(5)以合成為一雙視景3D合成影像(未圖示)。該右、左視景影像V0、V1,係由一純色方塊圖案50、複數條角度對位基準線51、四組3D圖案52、53、54、55所構成。As shown in Figures 24~26, the alignment uses 3D synthetic image ΣA , which consists of right and left view images V0 and V1 with special patterns, and according to equations (4) and (5). It is synthesized into a pair of visual 3D synthetic images (not shown). The right and left view images V0 and V1 are composed of a solid color square pattern 50, a plurality of angular alignment reference lines 51, and four sets of 3D patterns 52, 53, 54, and 55.
該純色方塊圖案50,係具有適當之寬度、並置放於畫面之中央;另外,該純色方塊圖案50之顏色,係可為純紅、純藍、純綠等三原色其中一種顏色所構成,且該右、左視景影像V0、V1,係各自具有不同之顏色。另外,對於多視景的應用,於該相鄰視景影像中,所裝置之該純色方塊圖案50之顏色,係由不同的三原色所構成。The solid color square pattern 50 has a suitable width and is placed in the center of the screen. In addition, the color of the solid color square pattern 50 may be one of three primary colors such as pure red, pure blue, and pure green. The right and left view images V0 and V1 have different colors. In addition, for the application of multi-view, in the adjacent view image, the color of the solid color square pattern 50 is composed of different three primary colors.
該複數條角度對位基準線51,係具有適當之寬度與傾斜角度θ、且由純白色之顏色所構成;其中,傾斜角度θ係由公式(6)所定義。The plurality of angular alignment reference lines 51 have an appropriate width and inclination angle θ and are composed of pure white colors; wherein the inclination angle θ is defined by the formula (6).
是以,由上述右、左視景影像V0、V1所構成之對位用3D合成影像(未圖示),可產生顏色疊紋影像、疊紋交界線、與角度對位基準線,提供角度對位之操作。Therefore, the 3D composite image (not shown) formed by the right and left view images V0 and V1 can generate a color smear image, a ridged boundary line, and an angle aligning reference line. Provides angular alignment operations.
另外,該四組3D圖案52、53、54、55,具有相同之3D圖案結構、且可各自具有不同顏色(如純紅、純藍、純綠、純白)、係各自設置於畫面之四個角落處。該3D圖案結構52、53、54、55,經視差光柵的視景分離作用後,可於最佳視點處,呈現圖案結構的視覺深度。如圖24~26所示,該3D圖案結構52、53、54、55,係由一圓環、與一圓板所構成,於最佳視點處,可令該圓板具浮出螢幕、而該圓環具平貼於螢幕上的視覺效果。In addition, the four sets of 3D patterns 52, 53, 54, and 55 have the same 3D pattern structure, and each of them has different colors (such as pure red, pure blue, pure green, and pure white), and each of the four sets is set on the screen. Corner. The 3D pattern structures 52, 53, 54, 55, after being visually separated by the parallax barrier, can present the visual depth of the pattern structure at the optimal viewpoint. As shown in Figures 24 to 26, the 3D pattern structure 52, 53, 54, 55 is formed by a ring and a circular plate. At the optimal viewpoint, the circular plate can be floated out of the screen. The ring has a visual effect that is flat on the screen.
是以,當上述的角度、與水平位置的對位完成後,觀賞者可於螢幕正中處之右、左最佳視點,同時清楚看到四個浮出螢幕的圓板、與四個平貼螢幕的圓環、且該四個浮出螢幕圓板的3D影像,具有最少之鬼影。另外,該觀賞者之右、左眼,亦可各自觀看到具不同顏色之純色方塊圖案50。亦即,達到將視景分離裝置,正確裝置於顯示器螢幕之目的。Therefore, when the above angle and the alignment of the horizontal position are completed, the viewer can view the right and left best viewpoints in the middle of the screen, and clearly see the four floating screens and the four flat stickers. The ring of the screen and the 3D images of the four floating screen discs have the least ghosts. In addition, the viewer’s right and left eyes can also be viewed separatelyA solid color square pattern 50 of different colors is seen. That is, the purpose of the visual separation device is correctly installed on the display screen.
另外,於完成上述角度、與水平位置對位後,為了再確認最佳觀賞距離,如圖27所示,可提供另一對位用3D合成影像56,該對位用3D合成影像56,係由具有不同△值之3D圖案結構之3D影像所構成,如以n=2、m=3為例,該3D影像56,係由△=0、△=1、△=2、△=4、△=5之3D圖案結構之3D影像所構成,且對於任一△值之3D圖案結構之3D影像,於水平方向上,係以佈滿螢幕整體顯示區域方式,以顯示3D影像。對於其中任一排3D影像之製作,係於右、左視景影像V0、V1上,係將具適當大小之該3D圖案結構,於水平方向上,以適當之間距排滿螢幕;之最,對於該對於右、左視景影像V0、V1上圓板,做具浮出效果之視差位移後,再根據一△值,以形成一3D合成影像。當然,對於上述之製作,需要重複6次之處理,方能呈現6排各具不同△值之3D影像。是以,對於觀賞者而言,當觀賞者的觀賞位置是位於最佳觀賞距離上時,無關觀賞者所在之水平位置,該觀賞者可者到一排具某一△值之3D影像,於整排的3D影像上,所有的圓板皆呈現完美浮出螢幕、且具最少鬼影之效果。是以,達到同時確認最佳觀賞距離、與水平對位之目的。In addition, after the above angle is completed and the horizontal position is aligned, in order to reconfirm the optimal viewing distance, as shown in FIG. 27, another alignment 3D composite image 56 can be provided, and the alignment uses the 3D composite image 56. The 3D image is composed of a 3D image structure having different Δ values. For example, n=2 and m=3, the 3D image 56 is composed of Δ=0, Δ=1, Δ=2, Δ=4, The 3D image of the 3D pattern structure of Δ=5 is formed, and the 3D image of the 3D pattern structure of any Δ value is displayed in the horizontal direction by the entire display area of the screen to display the 3D image. For the production of any row of 3D images, on the right and left view images V0 and V1 , the 3D pattern structure having an appropriate size is arranged in the horizontal direction at an appropriate interval; Finally, for the discs on the right and left view images V0 and V1 , the parallax displacement with the floating effect is performed, and then a 3D composite image is formed according to a delta value. Of course, for the above-mentioned production, it is necessary to repeat the processing 6 times in order to present 6 rows of 3D images having different Δ values. Therefore, for the viewer, when the viewing position of the viewer is at the optimal viewing distance, regardless of the horizontal position of the viewer, the viewer can go to a row of 3D images with a certain delta value. On the entire row of 3D images, all the discs are perfectly floating and have the least ghost effect. Therefore, the purpose of simultaneously confirming the best viewing distance and the horizontal alignment is achieved.
以上所述,僅為本發明之較佳實施例而已,當不能以之限定本發明所實施之範圍,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內。如前述本發明所例舉實施例,雖然是藉由筆記型電腦;RGB顏色畫素為水平排列之顯示器螢幕;外掛型視景分離裝置;雙視景影像;垂直條狀視差光柵;四組具圓環、圓板結構之3D圖案;視差光柵結構之設計公式,以說明本發明之功效。本發明之方法,亦可適用於監視器、平板電腦等個人用產品;RGB顏色畫素為馬賽克排列、三角排列、與Pentile排列之顯示器螢幕;內藏型視景分離裝製;多視景影像;具其他特徵結構之視景分離裝置(如傾斜條狀視差光柵、傾斜格狀視差光柵、垂直柱狀透鏡陣列、傾斜柱狀透鏡陣列、傾斜格狀透鏡陣列);複數組具不同幾何結構、與視覺深度3D圖案;柱狀透鏡陣列結構之設計公式之應用。謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention should still be covered by the present invention. Within the scope. As described in the foregoing embodiments of the present invention, although the notebook computer; RGB color pixels are horizontally arranged display screen; external view separation device; dual view image; vertical strip parallax light; four groups The 3D pattern of the ring and disc structure; the design formula of the parallax barrier structure to illustrate the effects of the present invention. The method of the invention can also be applied to personal products such as monitors and tablet computers; the RGB color pixels are mosaic arrays, triangular arrays, display screens arranged with Pentile; built-in visual separation devices; multi-view images a view separating device having other characteristic structures (such as a tilt strip parallax grating, a tilt lattice parallax grating, a vertical cylindrical lens array, a tilt cylindrical lens array,Tilted lattice lens array; complex array with different geometry, 3D pattern with visual depth; application of the design formula of cylindrical lens array structure. I would like to ask your review board member to give a clear explanation and pray for it. It is the prayer.
11‧‧‧筆記型電腦11‧‧‧Note Computer
11a‧‧‧外掛式視景分離裝置11a‧‧‧External Vision Separator
11b‧‧‧調整機構11b‧‧‧Adjustment agency
30‧‧‧顯示器螢幕30‧‧‧Display screen
40‧‧‧垂直條狀視差光柵40‧‧‧Vertical strip parallax barrier
ΣA‧‧‧對位用3D合成影像ΣA ‧‧‧3D synthetic image
φ‧‧‧堆疊角度φ‧‧‧Stack angle
X、Y、Z‧‧‧座標系X, Y, Z‧‧‧ coordinate system
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102112534ATWI493229B (en) | 2013-04-09 | 2013-04-09 | A Method of Three - Dimensional Image Pairing |
| CN201310125529.1ACN104102012B (en) | 2013-04-09 | 2013-04-11 | Three-dimensional image alignment method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102112534ATWI493229B (en) | 2013-04-09 | 2013-04-09 | A Method of Three - Dimensional Image Pairing |
| Publication Number | Publication Date |
|---|---|
| TW201439591A TW201439591A (en) | 2014-10-16 |
| TWI493229Btrue TWI493229B (en) | 2015-07-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW102112534ATWI493229B (en) | 2013-04-09 | 2013-04-09 | A Method of Three - Dimensional Image Pairing |
| Country | Link |
|---|---|
| CN (1) | CN104102012B (en) |
| TW (1) | TWI493229B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104363441B (en)* | 2014-11-18 | 2016-08-17 | 深圳市华星光电技术有限公司 | Grating and display floater para-position applying method and device |
| EP4381735A4 (en)* | 2021-08-03 | 2025-05-28 | LEIA Inc. | SYSTEM AND METHOD FOR VIEW SYNTHESIS USING A DEPTH MAP |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6307585B1 (en)* | 1996-10-04 | 2001-10-23 | Siegbert Hentschke | Position-adaptive autostereoscopic monitor (PAM) |
| TW201140528A (en)* | 2010-05-04 | 2011-11-16 | Chunghwa Picture Tubes Ltd | Method of assembling autostereoscopic display |
| TW201243393A (en)* | 2011-04-26 | 2012-11-01 | Unique Instr Co Ltd | Multi-view three dimension image display method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100915793B1 (en)* | 2001-06-01 | 2009-09-08 | 소니 가부시끼 가이샤 | A stereoscopic image display device, a split wave plate filter attached to the display device, a position adjusting mechanism of the filter, a position adjusting method of the filter, and a positioning method |
| KR101113235B1 (en)* | 2004-11-29 | 2012-02-29 | 삼성전자주식회사 | Autostereoscopic display |
| DE102007026628B3 (en)* | 2007-06-07 | 2008-08-14 | Visumotion Gmbh | Parallax barrier screen adjusting method for industrial application, involves adjusting barrier screen to display screen such that adjustment of barrier screen to display screen with pixels is defined with preset tolerance of pixels |
| CN102540488B (en)* | 2012-02-10 | 2014-01-01 | 福建华映显示科技有限公司 | Aligning assembly method for stereoscopic display |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6307585B1 (en)* | 1996-10-04 | 2001-10-23 | Siegbert Hentschke | Position-adaptive autostereoscopic monitor (PAM) |
| TW201140528A (en)* | 2010-05-04 | 2011-11-16 | Chunghwa Picture Tubes Ltd | Method of assembling autostereoscopic display |
| TW201243393A (en)* | 2011-04-26 | 2012-11-01 | Unique Instr Co Ltd | Multi-view three dimension image display method |
| Publication number | Publication date |
|---|---|
| TW201439591A (en) | 2014-10-16 |
| CN104102012A (en) | 2014-10-15 |
| CN104102012B (en) | 2016-08-17 |
| Publication | Publication Date | Title |
|---|---|---|
| JP4714116B2 (en) | 3D image display apparatus and 3D image display method | |
| CN100434971C (en) | Glasses-free stereoscopic display | |
| JP5372203B2 (en) | Multi-scene 3D image display method | |
| CN105051591B (en) | Auto-stereoscopic display device | |
| KR100416548B1 (en) | Three dimensional image displaying apparatus | |
| US7268943B2 (en) | 3D display apparatus | |
| WO2016045257A1 (en) | Color filter and manufacturing method thereof, display panel, display device and drive method thereof | |
| JP2008067092A (en) | 3D image display apparatus and 3D image display method | |
| TW201320717A (en) | Method of displaying 3D image | |
| US20070086090A1 (en) | Image display device and optical element for forming stereoscopic image used in the same | |
| CN104423052B (en) | 3d Image Display Device | |
| JP5170230B2 (en) | Autostereoscopic display device | |
| CN103676166A (en) | 3D image display device | |
| JP2010540980A (en) | How to adjust the position of the parallax barrier screen on the display screen | |
| WO2015090003A1 (en) | Display substrate, display panel and stereoscopic display apparatus | |
| JP2004264762A (en) | Stereoscopic image display device | |
| US20110096152A1 (en) | Stereoscopic image display | |
| TWI489413B (en) | A Method of Multi - view Three - dimensional Image Display | |
| CN203482339U (en) | Three-dimensional display device | |
| TWI493229B (en) | A Method of Three - Dimensional Image Pairing | |
| Im et al. | 20.1: Mobile 3D Displays Based on a LTPS 2.4” VGA LCD Panel Attached with Lenticular Lens Sheets | |
| KR101732267B1 (en) | A structure of reducing moires in the contact-type 3 dimensional displays | |
| KR101420432B1 (en) | Lenticular type 3-dimension image display device | |
| KR100416549B1 (en) | Multi-view three dimensional image displaying apparatus | |
| KR101100392B1 (en) | Liquid crystal display for displaying stereoscopic images |